
Modal and Relevance Logics for Qualitative
Spatial Reasoning

Pranab Kumar Ghosh

Supervisor:
Dr. Michael Winter

Submitted in partial fulfilment

of the requirements for the degree of
Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

©Pranab Kumar Ghosh, 2018

Abstract

Qualitative Spatial Reasoning (QSR) is an alternative technique to represent spatial relations

without using numbers. Regions and their relationships are used as qualitative terms. Mostly

peer qualitative spatial reasonings has two aspect: (a) the first aspect is based on inclusion

and it focuses on the ”part-of” relationship. This aspect is mathematically covered by

mereology. (b) the second aspect focuses on topological nature, i.e., whether they are in

”contact” without having a common part. Mereotopology is a mathematical theory that

covers these two aspects.

The theoretical aspect of this thesis is to use classical propositional logic with non-classical

relevance logic to obtain a logic capable of reasoning about Boolean algebras i.e., the

mereological aspect of QSR. Then, we extended the logic further by adding modal logic

operators in order to reason about topological contact i.e., the topological aspect of QSR.

Thus, we name this logic Modal Relevance Logic (MRL). We have provided a natural

deduction system for this logic by defining inference rules for the operators and constants

used in our (MRL) logic and shown that our system is correct. Furthermore, we have used

the functional programming language and interactive theorem prover Coq to implement

the definitions and natural deduction rules in order to provide an interactive system for

reasoning in the logic.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Michael Winter for his
continuous support, patience, motivation, and immense knowledge throughout this research.
His guidance helped me in all the time of the research and writing of this thesis. I could not
have imagined finishing this research without his help.

Besides my supervisor, I would like to thank the rest of the thesis committee: Dr. Brian
Ross, and Dr. Beatrice Ombuki-Berman, and external examiner Dr. Torsten Hahman to read
through my thesis and for their insightful comments and suggestions. I am appreciative to
the Department of Computer Science of Brock University for the excellent education and
environment.

I am profoundly grateful to my parents, brother, sister, wife Baishakhy and son Siddharth,
who always believe in me and encouraged to reach this goal.

Last but not the least, I wish to thank my late grandfather Manik Lal Ghosh, his words still
inspires me today. I dedicate this thesis to him.

Contents

1 Introduction 1

2 Mathematical Preliminaries 3
2.1 Topology . 3
2.2 Boolean Algebras . 5
2.3 Boolean Contact Algebras . 7
2.4 Propositional Logic (PL) . 9

2.4.1 Syntax . 10
2.4.2 Semantics . 11

2.5 Modal Logic (ML) . 12
2.5.1 Syntax . 12
2.5.2 Semantics . 13

2.6 Relevance Logic (RL) . 13
2.6.1 Syntax . 14
2.6.2 Semantics . 14

2.7 Propositional Relevance Logic (PRL) . 15
2.7.1 Syntax . 15
2.7.2 Semantics . 16

2.7.2.1 Semantics of PRL-frame Abbreviations 17
2.7.2.2 Additional Properties of PRL-frame 19

2.8 Propositional Relevance Logic with E (PRLE) 20
2.8.1 Syntax . 20
2.8.2 Semantics . 20
2.8.3 PRLE-frame Axioms . 21
2.8.4 Boolean Algebras in Original PRLE Language 27

2.8.4.1 Commutativity Axiom 27
2.8.4.2 Identity Axiom . 27
2.8.4.3 Distributivity Axiom . 28

2.8.4.4 Complement Axiom . 29
2.9 Modal Relevance Logic (MRL) . 30

2.9.1 Syntax . 31
2.9.2 Semantics . 31
2.9.3 BMRL-frame Axioms . 31

3 Natural Deduction 35
3.1 Rules of Natural Deduction . 39

3.1.1 Rules for the Equality . 40
3.1.2 Rules for the Propositional Operators 40
3.1.3 Rules for the Modal Operators . 41
3.1.4 Rules for the Basic Relevance Operators 42
3.1.5 Rules for the Derived Relevance Operators 43
3.1.6 Rules for the Constant E and U . 44
3.1.7 Rules for Contact . 45

3.2 Soundness of Natural Deduction Rules . 45
3.2.1 Equality Operator . 46
3.2.2 Propositional Operators . 47
3.2.3 Modal Operators . 50
3.2.4 Relevance Basic Operators . 52
3.2.5 Relevance Derived Operators . 54
3.2.6 Constant E and U . 61
3.2.7 Contact Axioms . 62

4 Proofs in Natural Deduction 64
4.1 Propositional Relevance Logic . 65
4.2 Propositional Relevance Logic with E . 72
4.3 Boolean Algebra Axioms in PRLE-frame 74
4.4 Additional Boolean Algebra Axioms in PRLE-frame 83
4.5 Boolean Contact Algebra Axioms in MRL-frame 90

5 The Coq Proof Assistant 93
5.1 Sort . 93

5.1.1 Set . 93
5.1.2 Prop . 94
5.1.3 Type . 95

5.2 Logical Operators . 95

5.3 Classes . 96
5.4 Tactic and Proof . 97
5.5 Proof with Ltac . 99

6 Implementation in Coq 102
6.1 Implementation of Boolean algebra . 102

6.1.1 Abstract Structure of Boolean algebra 102
6.1.2 Duality of Boolean algebra . 103
6.1.3 Order Relations on Boolean algebra 105

6.2 Implementation of Boolean contact algebra 106
6.3 Implementation of MRL Proposition and Model 106

6.3.1 MRL Proposition . 106
6.3.2 MRL Model . 107

6.4 Implementation of Natural Deduction Rules 107
6.4.1 Implementation of Propositional Operators 108

6.4.1.1 Propositional Logic False 108
6.4.1.2 Propositional Logic Implication 108
6.4.1.3 Propositional Logic Not 109
6.4.1.4 Propositional Logic And 110
6.4.1.5 Propositional Logic Or 111
6.4.1.6 Propositional Logic Equivalence 111
6.4.1.7 Propositional Logic True 112

6.4.2 Implementation of Modal Operators 112
6.4.2.1 Modal Logic Box . 112
6.4.2.2 Modal Logic Diamond 113

6.4.3 Implementation of Basic Relevance Operators 114
6.4.3.1 Relevance Logic Implication 114
6.4.3.2 Relevance Logic Not 115

6.4.4 Implementation of Derived Relevance Operators 116
6.4.4.1 Derived Relevance Operator And for Join 116
6.4.4.2 Derived Relevance Operator Or for Join 117
6.4.4.3 Derived Relevance Operator N 118
6.4.4.4 Derived Relevance Operator Implication for Meet 119
6.4.4.5 Derived Relevance Operator And for Meet 120
6.4.4.6 Derived Relevance Operator Or for Meet 120

6.4.5 Implementation of Constant E and U 121

6.4.5.1 Constant E . 122
6.4.5.2 Constant U . 122

6.4.6 Implementation of Contact . 123
6.4.6.1 Contact (BCA0) . 123
6.4.6.2 Contact (BCA1) . 123
6.4.6.3 Contact (BCA2) . 124
6.4.6.4 Contact (BCA3) . 124
6.4.6.5 Contact (BCA4) . 125

6.5 Proofs in Coq . 125
6.5.1 Propositional Logic . 126
6.5.2 Modal Logic . 126
6.5.3 Propositional Relevance Logic . 127
6.5.4 Propositional Relevance Logic with E 128
6.5.5 Boolean Algebra Axioms . 129
6.5.6 Additional Boolean Algebra Axioms 132
6.5.7 Boolean Contact Algebra Axioms 133

7 Conclusion and Future Work 136

List of Tables

3.1 Rules for Equality . 40
3.2 Rules for the Propositional Operators . 40
3.3 Rules for the Modal Operators . 42
3.4 Rules for the Basic Relevance Operators 42
3.5 Rules for the Derived Relevance Operators 43
3.6 Rules for the Constant E and U . 44
3.7 Rules for Contact . 45

List of Figures

2.1 Regular Open and Closed Set . 4
2.2 Compatibility Contact Relation . 7
2.3 Summation (Scenario 1) Contact Relation 8
2.4 Summation (Scenario 2) Contact Relation 8
2.5 Region x and y are Externally Contacted on a Topological Space 9
2.6 Relevance Implication . 14
2.7 A PRLE-model on the Boolean algebra with four elements 23
2.8 Distributive Boolean algebra Lattice (AND) 24
2.9 Distributive Boolean algebra Lattice (OR) 25
2.10 Inclusion of Logics Introduced . 30

3.1 Natural Deduction Proof Tree . 35

Chapter 1

Introduction

Applications of Qualitative Spatial Reasoning (QSR) include validating spatial problems in
everyday life situations. For example, an apartment design specification indicates which
rooms should be to close to others, or a city design specification states that essential public
services such as bus terminal, hospitals should be closer to residential area whereas factories
should be far away.

In mathematics and computer science, this type of problem is an application of QSR. In
artificial intelligence, QSR deals with qualitative features of spatial entities. Qualitative
reasoning is an alternative technique that represents spatial relations without using numbers.
Regions and their relationships are used as qualitative terms. Among others, the most basic
relationships between regions are the “part-of” and the “connection” (or “contact”) relation.

The relationship between regions has two aspects. The first aspect is based on inclusion and
it focuses on the “part-of” relationship. This aspect is mathematically covered by mereol-
ogy. The second aspect focuses on topological nature, i.e., whether they are in “contact”
without having a common part. Mereotopology is a mathematical theory that covers these
two aspects. We will use the theory of Boolean contact algebras (BCAs) as the concrete
mathematical theory of mereotopology. A BCA is a Boolean algebra with a binary contact
relation C. The order of the Boolean algebra provides the part-of relationship between
regions and the contact relation C the topological relationship between them.

In this thesis, our aim is to introduce a modal and relevance logic to reason about spatial
entities. At first, we would like to represent the logic and its basic features in theory and
then implement the logic using type theory.

1

CHAPTER 1. INTRODUCTION 2

Our logic is a combination of modal and relevance logic. Modal logic is a class of logics
extending propositional logic. It adds new operators that provide access to a restricted
version of quantification. Those operators can be used to describe the relationship of the
elements. Relevance logic is a non-classical logic that was developed to represent the feature
of the implication and was ignored in classical propositional logic. In this thesis, we will
use two relevance operators, one implication based on the sum (or union) operation of
regions and one negation based on the complement of a region. Consequently, the relevance
logic part will cover the part-of aspect of mereotopology. First, we will concentrate on the
relevance portion of the logic and present a set of axioms that is equivalent to fact that the
frame provides the structure of a Boolean algebra. Then we will introduce a modal operator
based on the contact relation together with a set of appropriate axioms forcing each frame to
be a BCA. In addition, we will provide a natural deduction system for our logic that we will
prove to be correct.

This thesis is not the first attempt to use modal logic for Qualitative Spatial Reasoning [8].
The fundamental difference between the approach taken in [8] and this thesis is the models
considered. In our logic models are Boolean contact algebras but in [8] models are general
topological spaces.

In order to perform the verification of our proofs in natural deduction, we will use the
functional programming language and interactive theorem prover Coq [21]. One of the key
advantages of Coq is programming and verification can be done in the same language. Also,
Coq allows users to write customized tactics in Coqs Ltac tactics language. This thesis is
not the first attempt to use Coq to reason about modal logic, our implementation of modal
logic is similar to [2].

The remainder of the thesis is structured as follows. Prior to discussing our implementation,
in Chapter 2 we will introduce the Boolean algebra, Boolean contact algebra, and its
basic properties as described in [13]. Then we will discuss the syntax and semantics of
propositional, modal and relevance logic. We will also define and prove the Boolean algebra
and Boolean contact algebra axioms in our enhanced modal relevance logic. In Chapter 3 we
will describe our implementation in natural deduction calculus. Then in Chapter 5, we will
discuss some features of Coq which are relevant to our implementation. A discussion of our
implementation follows in Chapter 6. Finally, in Chapter 7 we will present our conclusion
and future work.

Chapter 2

Mathematical Preliminaries

In this chapter we want to provide the mathematical preliminaries that are required for this
thesis. We will focus on topology, Boolean algebras, Boolean contact algebras, propositional,
relevance and modal logic.

2.1 Topology

Topology is a mathematical theory that represents the relationships between the spatial
entities of a space. In this theory spatial entities are represented as certain sets of points.
More details on topology and topological space can be found in [6, 7, 17, 19]. Topology
and topological space is formally defined as follows:

Definition 1. (Topology) Let X be a non-empty set and τ ⊆ P(X), i.e., a set of subsets of X.

Then τ is called a topology on X if it satisfies the following conditions:

1. The set X and empty set ∅ are in τ,

2. The union of any subset of τ is in τ and

3. The intersection of any finitely many sets of τ is in τ.

The pair 〈X, τ〉 with τ a topology on X is called a topological space.

Example 1. Suppose that X = {a, b, c} and τ = {∅, {a}, {a, b}}. Then τ is the topology of X

since it satisfies all the properties of Definition 1. Thus, 〈X, τ〉 is the topological space.

3

CHAPTER 2. MATHEMATICAL PRELIMINARIES 4

Given a topological space we can define open and closed sets as follows:

Definition 2. (Open and Closed set) Let 〈X, τ〉 be a topological space and A ⊆ X. Then we

say that A is open if A ∈ τ and that A is closed if X \ A ∈ τ, i.e. if the complement of A is

open.

Example 2. In the topological space from the previous example the open sets are the sets

∅, . . . , X and the closed sets are the sets ∅, . . . , X. As this example shows then empty set and

X are both open and closed. Such a set is usually called clopen. In general, since the ∅ is

open, X is closed, and, hence, clopen. A similar argument shows that also the ∅ is always

clopen.

An important notion in topology is the interior and the closure of a set. They are defined as
follows:

Definition 3. (Interior and Closure) Let x be a subset of X in a topological space 〈X,T 〉,

then the interior Int(x) of x is the largest open set contained in x, i.e., Int(x) −
⋃
{y |

y open and y ⊆ x}. The closure of Cl(x) is Cl(x) −
⋂
{y | y closed and x ⊆ y}

In mereotopology we concentrate on so-called regions. Regions are specific subsets of
a topological space. A very common approach is to define regions as the regular closed
subsets. Alternatively, and completely equivalent, one could also use the regular open
subsets.

Definition 4. (Regular Open and Closed set) Let x ⊆ X in a topological space 〈X,T 〉, then

X is called regular open iff1 x is equal to the interior of its closure, i.e., x = Int(Cl(x)) and

X is called regular closed iff x is equal to the closure of its interior, i.e., x = Cl(Int(x)).

Example 3. Consider a Euclidean plane R2 with regular topology in Figure 2.1. Then the

interior is regular open and the circle including the border is regular closed. Any single

point is closed but not regular closed since its interior is empty.

〈X, τ〉

Figure 2.1: Regular Open and Closed Set

From now on we will use the notation RegCL(X) and RegOP(X) to denote the set of regular
closed and regular open set respectively.

1We use the abbreviation iff for if and only if.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 5

2.2 Boolean Algebras

A Boolean algebra is a certain kind of ordered or lattice structure. It generalizes the well
known operations on sets and truth values. More details on Boolean algebra can be found
in [14, 15]. We will be using the same sets of notation as shown in the Lemma 3. Boolean
algebra formally defined as follows:

Definition 5. (Boolean algebra) A Boolean algebra (BA) is a structure B = 〈 B, +,·, ∗, 0, 1 〉
with a set B, two binary operators + and · on B, a unary operator ∗ on B and two elements

0, 1 ∈ B satisfying the following axioms for all x, y, z ∈ B:

Commutativity x + y = y + x x · y = y · x

Identity x + 0 = x x · 1 = x

Distributivity x + y · z = (x + y) · (x + z) x · (y + z) = x · y + x · z

Complements x + x∗ = 1 x · x∗ = 0

Example 4. Suppose that A = {a, b, c, d}. Then the powerset P(A) is a complete BA under

set inclusion according to Lemma 3.

It is worth mentioning that the axioms above are sufficient to prove other properties usually
required for Boolean algebras. In the following lemma, we have summarized other basic
properties of BA. Proofs are available in [9] as well as in the Coq code of this thesis.

Lemma 1. Let B = 〈B,+, ·,∗ , 0, 1〉 be a BA. Then the following axioms holds for all

x, y, z ∈ B:

UId1 If x + o = x for all x, then o = 0

UId2 If x · i = x for all x, then i = 1

Idm1 x + x = x

Idm2 x · x = x

Bnd1 x + 1 = 1

Bnd2 x · 0 = 0

Abs1 x + (x · y) = x

Abs2 x · (x + y) = x

UNg If x + xn = 1 and x · xn = 0, then xn = x∗

DNg x∗∗ = x

A1 x + (x∗ + y) = 1

CHAPTER 2. MATHEMATICAL PRELIMINARIES 6

A2 x · (x∗ · y) = 0

B1 (x + y) + (x∗ · y∗) = 1

B2 (x · y) · (x∗ + y∗) = 0

C1 (x + y) · (x∗ · y∗) = 0

C2 (x · y) + (x∗ + y∗) = 1

DMg1 (x + y)∗ = x∗ · y∗

DMg2 (x · y)∗ = x∗ + y∗

D1 (x + (y + z)) + x∗ = 1

D2 (x · (y · z)) · x∗ = 0

E1 y · (x + (y + z)) = y

E2 y + (x · (y · z)) = y

F1 (x + (y + z)) + y∗ = 1

F2 (x · (y · z)) · y∗ = 0

G1 (x + (y + z)) + z∗ = 1

G2 (x · (y · z)) · z∗ = 0

H1 ((x + y) + z)∗ · x = 0

H2 ((x · y) · z)∗ + x = 1

I1 ((x + y) + z)∗ · y = 0

I2 ((x · y) · z)∗ + y = 1

J1 ((x + y) + z)∗ · z = 0

J2 ((x · y) · z)∗ + z = 1

K1 (x + (y + z)) + ((x + y) + z)∗ = 1

K2 (x · (y · z)) · ((x · y) · z)∗ = 0

L1 (x + (y + z)) · ((x + y) + z)∗ = 0

L2 (x · (y · z)) + ((x · y) · z)∗ = 1

Ass1 x + (y + z) = (x + y) + z

Ass2 x · (y · z) = (x · y) · z

In the following lemma, we are going to state and proof another property of Boolean algebra.

Lemma 2. x = y iff x∗ = y∗ for all x, y ∈ B.

Proof.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 7

⇒ Proof is trivial.

⇐ Assume that x∗ = y∗. Then we have x∗∗ = y∗∗. From DNg we conclude x = y.

�

2.3 Boolean Contact Algebras

As mentioned in the introduction a Boolean algebra can be used to model the mereological
aspect of regions. In this section we want to concentrate on the topological aspect, i.e., a
contact relation C.

Definition 6. (Boolean contact algebra) [13] A binary relation C on a Boolean algebra B

is called contact relation if it satisfies the following axioms:

Null disconnected (C0) xCy⇒ x, y , 0

Reflexivity (C1) x , 0⇒ xCx

Symmetry (C2) xCy⇔ yCx

Compatibility (C3) xCy and y ≤ z⇒ xCz

Summation (C4) xC(y + z)⇒ xCy or xCz

Therefore Boolean contact algebra (BCA) is a structure of 〈B,C,+, ·,∗ , 0, 1〉.

The axioms C0 - C2 are trivial, thus we are going to explain only C3 and C4 with examples.
Compatibility (C3): For any three non-empty regions x, y and z, if region x is in contact
with y and y ≤ z, then x is in contact with z as well. This is called “contact relation axiom
C3” as well as “compatibility” axiom.

〈X, τ〉

x zy

Figure 2.2: Compatibility Contact Relation

Example 5. Consider a Euclidean plane R2 with regular topology and three non-empty

regions x, y and z with xCy and y ≤ z in Figure 2.2. Therefore, we conclude region x is in

contact with z as well.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 8

Summation (C4): Let any three non-empty regions x, y and z, If region x is in contact with
(y + z), then either x is in contact with y or x is in contact with z. This is called “contact
relation axiom C4” as well as “summation” axiom.

Example 6. Consider a Euclidean plane R2 with regular topology and three non-empty

regions x, y and z with xC(y + z) in Figure 2.3. In this case region x is in contact with region

y. But in Figure 2.4 region x is in contact with region z.

〈X, τ〉

x zy

Figure 2.3: Summation (Scenario 1) Contact Relation

〈X, τ〉

x yz

Figure 2.4: Summation (Scenario 2) Contact Relation

In the following lemma, we want to show that RegCL(X) is a Boolean algebra under set
inclusion.

Lemma 3. [12] Let RegCL(X) bet the set of regular closed sets of 〈X, τ〉, then RegCL(X)
with the operations below is a Boolean algebra.

1. x + y = x ∪ y,

2. x · y = Cl(Int(x ∩ y)),

3. x∗ = Cl(X \ x),

4. 0 = ∅ and

5. 1 = X.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 9

From Lemma 3, we have x · y ⊆ x ∩ y. Let us consider the scenario where x · y = ∅ but
x ∩ y , ∅, i.e., x and y do not share a common region but do have common points (Figure
2.5). Using this scenario we are going to formally define contact relation C.

Definition 7. (Contact relation) [12] Let x, y ∈ RegCL(X) in a topological space 〈X, τ〉.

Then the contact relation C on RegCL(X) is defined as:

xCy ⇐⇒ x ∩ y , ∅.

Example 7. Consider a Euclidean plane R2 with regular topology in Figure 2.5, regions

x, y ∈ RegCl(X) are externally connected i.e., the intersection of x and y has exactly one

point. Please note that x · y = ∅ since their intersection is not regular closed. Thus, x and y

are in contact, i.e. xCy, but x · y = ∅.

〈X, τ〉

x y

Figure 2.5: Region x and y are Externally Contacted on a Topological Space

2.4 Propositional Logic (PL)

Propositional logic was developed to constitute the relationships between declarative atomic
sentences. As well, it is required that those atomic sentences are propositions i.e., they are
either valid or false. To illustrate, let assume the sentences as follows:

1. Bangladesh is in South Asia.

2. “Bangladesh is a neighbour of India,” and “Bangladesh is in South Asia”.

3. What is the time now?

The first sentence has only one atomic proposition and it is either true or false. The second
sentence can be separated into two atomic propositions, and they are either true or false. But
the third sentence is not a declarative sentence, therefore, it is not a proposition. Classical
propositional logic uses logical connectives such as “and”, “or” and “implication” to join
propositions together to evaluate the truth-value of the declarative sentence. We are going to

CHAPTER 2. MATHEMATICAL PRELIMINARIES 10

start with propositional logic syntax and semantics. More details on propositional logic can
be found in [16].

2.4.1 Syntax

The syntax of propositional logic consists of propositional variables, propositional operators,
and constants. We formally define the propositional logic syntax as follows:

Definition 8. (Propositional logic syntax) Let P be a set of propositional variables, then

Prop be the set of propositional formulas is recursively defined by the following rules:

(PropL.1) Each propositional variable p ∈ P is a propositional formula, i.e., P ⊆

Prop,

(PropL.2) ⊥ is a propositional formula, i.e., ⊥ ∈ Prop and

(PropL.3) If ϕ, ψ ∈ Prop, then ϕ→ ψ ∈ Prop.

We will be using the same set of the operators and rules (PropL.1)-(PropL.3) in an enhance-
ment of the logics in this thesis. In such a context the rules from above have to be used just
with a different set of formulas instead of Prop. This will also be applied to other definitions
of syntactic or semantic rules defined later.

It is worth mentioning that operator mentioned in (PropL.1)-(PropL.3) are sufficient to
represent all propositional logic formulas, and the other optional operators are used for
simplicity of representation. Thus, we are going to introduce them as abbreviations as
follows:

¬ϕ := ϕ→ ⊥ PLAbbr1

ϕ ∧ ψ := ¬(ϕ→ ¬ψ) PLAbbr2

ϕ ∨ ψ := ¬ϕ→ ψ PLAbbr3

ϕ↔ ψ := ϕ→ ψ ∧ ψ→ ϕ PLAbbr4

> := ¬⊥ PLAbbr5

In the next section of semantics, the semantics definitions of those abbreviations will be
given in a lemma.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 11

2.4.2 Semantics

Validity evaluation process of propositional logic required replacing those propositions with
its actual value (either true or false) and this is called truth assignment. Then in the next step,
we want to evaluate the validity of the propositional formulas considering the semantics of
the logical operators.

According to the standard literature such as [16], propositional logic semantics does not
consider the universe, model, and frame. As we mention in the above, we want to reuse
the definition of propositional logic semantics as well in enhancement of the logics later
of this thesis which includes modal and relevance logic. Therefore, our propositional logic
semantics includes universe W, modelM, and frame F . Now we are going formally them
as follows:

Definition 9. (Propositional logic frame) A propositional logic frame (PL-frame) F consist

of a non-empty set universe W.

The elements of the universe set W are the states or worlds.

Definition 10. (Propositional logic model) A propositional logic modelM = 〈F , v〉 is a

pair where v is valuation function such that v : P→ P(W).

We will be using the same definition of the propositional logic model for the other logics
introduced later in this thesis only W will be replaced by respective logic universe W. For
example, for x ∈ W, then the possible subset of W is {∅, {x}}. Then v : P→ P(W) is true at
{x} and false otherwise. Thus, we are ensuring that propositional logic semantics remains
same with this new structure and it can be reused for other logics.

Definition 11. (Propositional logic semantics) LetM be a model, x ∈ W be a state, p ∈ P

true at x and ϕ ∈ Prop. We will write M, x |= ϕ i.e., ϕ is true (or satisfied) in M at x.

Furthermore, ϕ is called true inM (writtenM |= ϕ) iffM, x |= ϕ for all x ∈ W (though W

is a singleton for propositional logic). We will also write |= ϕ i.e., ϕ is valid (or true, or a

tautology) in all models. Therefore, the satisfaction relationM, x |= ϕ is recursively defined

by:

(SemPropL.1) M, x |= p⇔ x ∈ v(p),

(SemPropL.2) M, x 6|= ⊥ and

(SemPropL.3) M, x |= ϕ→ ψ⇔M, x |= ψ wheneverM, x |= ϕ.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 12

It is worth to mention thatM |= ϕ and |= ϕ will be used later in enhancement of the logics in
this thesis with the definition similar to the one above. In the following lemma, we want to
state the semantics of the abbreviations mentioned in the syntax section. Proofs are available
in the Coq code of this thesis.

Lemma 4. LetM be a model, and x ∈ W be a state. Then we have:

1. M, x |= ¬ϕ⇔M, x 6|= ϕ,

2. M, x |= ϕ ∧ ψ⇔M, x |= ψ andM, x |= ϕ,

3. M, x |= ϕ ∨ ψ⇔M, x |= ψ orM, x |= ϕ,

4. M, x |= ϕ↔ ψ⇔M, x |= ϕ→ ψ and M, x |= ψ→ ϕ and

5. M, x |= >.

2.5 Modal Logic (ML)

Modal logic is an extension of propositional logic by introducing new operators � and ^.
We are going to start with modal logic syntax and semantics and more details on modal
logic can be found in [5, 16].

2.5.1 Syntax

The syntax of modal logic consists of propositional logic syntax and modal operator that
provide access to a restricted version of quantification. The formal definition of modal logic
syntax is as follows:

Definition 12. (Modal logic syntax) The set Mod of modal logic formulas is recursively

defined by (PropL.1)-(PropL.3) and :

(ModL.1) If ϕ ∈ Mod, then [R]ϕ ∈ Mod.

It is worth mentioning that operators mentioned above are sufficient to represent all modal
logic formulas. But the other optional operator is used for simplicity of representation. Thus,
we are going to introduce them as an abbreviation as follows:

〈R〉ϕ := ¬[R3]¬ϕ MLAbbr1

In the next section of semantics, the semantics definitions of this abbreviation will be given
in a lemma.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 13

2.5.2 Semantics

We are going to formally define the semantics of modal logic as follows:

Definition 13. (Modal logic frame) A modal logic ML-frame F = 〈W,R〉 is a structure such

that:

1. W is a non-empty set, called the universe and

2. R is a binary relation on W, i.e., R ⊆ W ×W.

We will use the usual notation Rxy or xRy to denote {x, y} ∈ R, i.e., that x and y are in
relation R. The definition of the modal logic modelM is similar to Definition 10.

Definition 14. (Modal logic semantics) LetM be a model, and x, y ∈ W be a state, then

the satisfaction relationM, x |= ϕ andM, y |= ϕ is recursively defined by (SemPropL.1)-

(SemPropL.3) and :

(SemModL.1) M, x |= [R]ϕ⇔ ∀y ∈ W iff Rxy, thenM, y |= ϕ.

In the following lemma, we want to state the semantics of the abbreviation mentioned in the
syntax section. The proof is available in any standard literature of modal logic [5, 16].

Lemma 5. LetM be a model, and x, y ∈ W be the states. Then we have:

1. M, x |= 〈R〉ϕ⇔ ∃y ∈ W with Rxy andM, y |= ϕ.

2.6 Relevance Logic (RL)

[1, 11, 18] Relevance logic is non-classical logic that was developed to represent the feature
of the implication and was ignored in classical propositional logic. Assume two atomic
sentences “Today is Monday”, and “two and two is four”. If those two sentences are used to
form an implication→, then this statement is true. But whether or not “Today is Monday”
seems in no way relevant to whether “two and two are four”. On the other hand, if we
consider the true statement “if x = 1, then x + 1 = 2”, then the information of the assumption
“x = 1” is needed to conclude “x + 1 = 2”, i.e., the assumption is relevant to the conclusion.
Relevance logic focuses on implications of the latter form, i.e., it requires the assumption is
relevant to the conclusion in a valid implication.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 14

2.6.1 Syntax

To avoid conflict with “classical logic implication” (→) symbol, we will use� to denote
“relevance logic implication” and v is used to represent “relevance logic not” to avoid
conflict with “classical logic not” (¬). In the following definitions, we define the syntax and
semantics of relevance logic formally.

Definition 15. (Relevance logic syntax) The set RL of relevance logic formulas is recursively

defined by the rules (PropL.1) and

(RelL.1) If ϕ, ψ ∈ RL, then ϕ� ψ ∈ RL and

(RelL.2) If ϕ ∈ RL, then v ϕ ∈ RL.

2.6.2 Semantics

To evaluate the validity of a relevance logic formula, we will require ternary relation R on W,
and the unary function ∗ takes elements to elements of W. The usual notation Rxyz to denote
x,y and z are in relation R. [8] Urquhart's interpretation of Rxyz is based on a fusion (◦) oper-
ator, i.e., he uses Rxyz iff z = x ◦ y. His motivation is that the information of the implication
is the information that has to be added to the information needed for ϕ in order to conclude ψ.

In order to reason about Boolean algebras we will use a different interpretation of the
relevance implication. Our motivation is to split an element x into two components y and
z, i.e., x = f (y, z) for a suitable function f . In other words, we want to define a relevance
implication such that x consists of the information from y and z. We may visualize our
version of relevance logic implication in Figure 2.6.

zy

x |= ϕ� ψ

y |= ϕ z |= ψ

x = f (y, z)

Figure 2.6: Relevance Implication

CHAPTER 2. MATHEMATICAL PRELIMINARIES 15

In the following definitions, we will give a formal definition of relevance logic RL-frame F ,
modelM and semantics.

Definition 16. (Relevance logic frame) A relevance logic RL-frame F = 〈W, f , g〉 is a

structure such that:

1. W is a set of elements, called the universe,

2. f is a binary function between elements on W and

3. g is a unary function taking elements to elements.

Again, the definition of relevance logic model is similar to Definition 10.

Definition 17. (Relevance logic semantics) LetM be a model, and x, y, z ∈ W be a state.

Then the satisfaction relationM, x |= ϕ is recursively defined by (SemPropL.1) and :

(SemRelL.1) M, x |= ϕ� ψ⇔ ∀y, z(if x = f (y, z) andM, y |= ϕ, thenM, z |= ψ) and

(SemRelL.2) M, x |=v ϕ⇔M, g(x) 6|= ϕ.

2.7 Propositional Relevance Logic (PRL)

In this section we want to introduce propositional relevance logic, combining the properties
from propositional and relevance logic as defined above, without involving any new operator.
But we will bring in few abbreviations in this logic for simplicity of representation. Later
on, we will provide the semantics definitions of those abbreviations in some lemmas. Now
we are formally going defining the syntax and semantics of this logic.

2.7.1 Syntax

The syntax definition of propositional relevance logic is defined as follows:

Definition 18. (Propositional relevance logic syntax) The set PRL of propositional relevance

logic formulas is recursively defined by the rules (PropL.1) -(PropL.3) and (RelL.1) -

(RelL.2).

In addition to the abbreviation defined before we will use the following:

ϕ

Î

ψ := ¬(ϕ� ¬ψ) PRLAbbr1

ϕ Î ψ := ¬ϕ� ψ PRLAbbr2

CHAPTER 2. MATHEMATICAL PRELIMINARIES 16

Nϕ := v ¬ϕ PRLAbbr3

ϕ(ψ := N(Nϕ� Nψ) PRLAbbr4

ϕ >◦ ψ := ¬(ϕ(¬ψ) PRLAbbr5

ϕ

>
◦ ψ := ¬ϕ(ψ PRLAbbr6

In the next section, will provide lemmas that show establish the semantics of the abbrevia-
tions defined above.

2.7.2 Semantics

In order to evaluate the validity of propositional relevance logic formula, we will require a
universe, frame, and model. We are going to formally define them as follows:

Definition 19. (Propositional relevance logic frame and model) The definition of PRL-frames

and models are similar to the Definition of RL-frames and models.

Now we are going define the semantics of the propositional relevance logic as follows:

Definition 20. (Propositional relevance logic semantics) Let M be a model. Then the

satisfaction relation is recursively defined by (SemPropL.1) - (SemPropL.3) and (SemRelL.1)

- (SemRelL.2).

In the following lemma, we will give an obvious proof of the fact that g(g(x)) = x is
equivalent to the axiom schema ϕ↔vv ϕ for all x ∈ W in a PRL-frame. Please note that
the axiom schemas represent infinitely many formulas by substituting concrete formulas for
the formula variables ϕ, ψ, Consequently, we say that an axiom schema is valid iff all
instantiations of the schema by concrete formulas is valid. Furthermore, we will often call
schemas simply formulas.

Lemma 6. The formula ϕ↔vv ϕ is true in a PRL-frame F , iff g(g(x)) = x for all x ∈ W.

Proof. LetM be a model and x ∈ W. Then we have:

M, x |=vv ϕ

⇔M, g(x) 6|=v ϕ by Definition (SemRelL.2)

⇔M, g(g(x)) |= ϕ by Definition (SemRelL.2)

⇒ Assume the formula schema is valid in F . Then the formula p ↔vv p is valid in
the modelM based on F with v(p) = {x}. From the computation above we conclude
g(g(x)) = x.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 17

⇐ Assume g(g(x)) = x for all x ∈ W with M, x |= ϕ based on F . Then we have
M, g(g(x)) |= ϕ and we from the computation above we haveM, x |=vv ϕ. Therefore
we haveM, x |= ϕ→vv ϕ and we conclude F |= ϕ→vv ϕ.

�

Now in the following definition, we are going to define a dual operator f d, also we will give
a prove that f d can be derived from f and g.

Definition 21. (Dual operator in PRL-frame) Let F be a PRL-frame and x, y ∈ W. The dual

operator f d is defined as follows:

f d(x, y) := g(f (g(x), g(y)))

Lemma 7. If g(g(x)) = x for all x ∈ W, then f (x, y) = g(f d(g(x), g(y))) for all x, y ∈ W.

Proof. The proof as follows:

g(f d(g(x), g(y))) = g(g(f (g(g(x)), g(g(y))))) by Definition

= f (x, y) assumption

�

From now on we will assume that g is involutive, i.e., g(g(x)) = x for all x, or alternatively
that ϕ↔vv ϕ, in the PRL-frame. Note that Lemma 7 can be applied in this context.

2.7.2.1 Semantics of PRL-frame Abbreviations

Now, we are going to present the semantic properties of our abbreviations PRLAbbr1 -
PRLAbbr6 in the following lemmas.

Lemma 8. If x ∈ W, thenM, x |= ϕ

Î

ψ iff there are y, z ∈ W with x = f (y, z) andM, y |= ϕ

andM, z |= ψ.

Proof. LetM be a model and x ∈ W. Then we have:

M, x |= ϕ

Î

ψ

⇔M, x |= ¬(ϕ� ¬ψ) by Definition

⇔M, x 6|= ϕ� ¬ψ by Definition

⇔ there are y, z ∈ W so that it is not the case that by Definition

CHAPTER 2. MATHEMATICAL PRELIMINARIES 18

if x = f (y, z) andM, y |= ϕ, thenM, z |= ¬ψ

⇔ there are y, z ∈ W with x = f (y, z) andM, y |= ϕ

andM, z 6|= ¬ψ

⇔ there are y, z ∈ W with x = f (y, z) andM, y |= ϕ

andM, z |= ψ

�

Lemma 9. If x ∈ W, thenM, x |= ϕ Î ψ iff for all y, z ∈ W if x = f (y, z), thenM, y |= ϕ or

M, z |= ψ.

Proof. This can be shown similar to Lemma 8. �

Lemma 10. If x ∈ W, thenM, x |= Nϕ iffM, g(x) |= ϕ iffM, x |= ¬ v ϕ

Proof. LetM be a model and x ∈ W. Then we have:

M, x |= Nϕ

⇔M, x |=v ¬ϕ by Definition

⇔M, g(x) |= ϕ by Definition

⇔M, g(x) 6|= ¬ϕ by Definition

⇔M, x |= ¬ v ϕ by Definition

By the definition of N we obtain from the previous computationM, x |= Nϕ iffM, g(x) |=
ϕ. �

Lemma 11. If x ∈ W, thenM, x |= ϕ(ψ iff x = f d(y, z) andM, y |= ϕ impliesM, z |= ψ

for all y, z ∈ W.

Proof. LetM be a model and x ∈ W. Then we have:

M, x |= ϕ(ψ

⇔M, x |= N(Nϕ� Nψ) by Definition

⇔M, g(x) |= Nϕ� Nψ by Lemma 10

⇔ for all y, z ∈ W if g(x) = f (y, z) andM, y |= Nϕ, by Definition

thenM, z |= Nψ

⇔ for all y, z ∈ W if g(x) = f (y, z) andM, g(y) |= ϕ, by Lemma 10

thenM, g(z) |= ψ

CHAPTER 2. MATHEMATICAL PRELIMINARIES 19

⇔ for all y, z ∈ W if g(x) = g(f d(g(y), g(z))) and by Lemma 7

M, g(y) |= ϕ, thenM, g(z) |= ψ

⇔ for all y, z ∈ W if x = f d(g(y), g(z)) andM, g(y) |= ϕ, by g involutive

thenM, g(z) |= ψ

⇔ for all y, z ∈ W if x = f d(y, z) andM, y |= ϕ, by g involutive

thenM, z |= ψ

�

Lemma 12. If x ∈ W, then M, x |= ϕ >◦ ψ iff there are y, z ∈ W with x = f d(y, z) and

M, y |= ϕ andM, z |= ψ.

Proof. This can be shown similar to Lemma 8 by using Lemma 11 and exchanging f with
f d. �

Lemma 13. If x ∈ W, thenM, x |= ϕ

>
◦ ψ iff for all y, z ∈ W if x = f d(y, z), thenM, y |= ϕ

orM, z |= ψ.

Proof. This can be shown similar to Lemma 9 by using Lemma 11 and exchanging f with
f d. �

2.7.2.2 Additional Properties of PRL-frame

In this section, we are going to state some more additional property of PRL-frame in some
lemmas.

Lemma 14. If x ∈ W, then following statement is equivalent

1. M, x |= ϕ >◦ ψ,

2. M, x |=v (v ¬ϕ�v ψ) and

3. M, x |= N(Nϕ

Î

Nψ).

Proof. LetM be a model and x ∈ W. Then we have:

M, x |= ϕ >◦ ψ

⇔M, x |= ¬(ϕ(¬ψ) by Definition

⇔M, x |= ¬N(Nϕ� N¬ψ) by Definition

⇔M, x |= ¬(Nϕ� N¬ψ) by Definition

CHAPTER 2. MATHEMATICAL PRELIMINARIES 20

⇔M, x |= N¬(Nϕ� ¬Nψ) by Lemma 10

⇔M, x |=v ¬¬(v ¬ϕ� ¬ v ¬ψ) by Definition

⇔M, x |=v (v ¬ϕ�v ψ) by Definition

⇔M, x |= N¬(Nϕ� N¬ψ) by Definition

⇔M, x |= N(Nϕ

Î

Nψ) by Definition

�

2.8 Propositional Relevance Logic with E (PRLE)

Now, we want to introduce propositional relevance logic with E, adding a new formula E to
propositional relevance logic. Our motivation is that E is only true at the smallest element
of a Boolean algebra. In this section, we are going to formulate Boolean algebra axioms in
this new logic and prove that this logic’s frame is a Boolean algebra. Now we are going to
start with the formal definitions of syntax and semantics as follows:

2.8.1 Syntax

We are going to define the syntax of propositional relevance logic with E as follows:

Definition 22. (Propositional relevance logic with E syntax) The set PRLE the set of

propositional relevance logic with E formula is recursively defined by rules (PropL.1)-

(PropL.3), (RelL.1)-(RelL.2) and :

(PRLE.1) E ∈ PRLE.

For simplicity of representation, we are going to introduce a new formula U that is true in
the largest element of W, in a form of abbreviation as follows:

U := NE PRLEAbbr1

2.8.2 Semantics

As before, in order to define the validity evaluation of propositional relevance logic with E
formulas, we will require a universe, a frame, and a model. Now we are going to formally
define them as follows:

CHAPTER 2. MATHEMATICAL PRELIMINARIES 21

Definition 23. (Propositional relevance logic with E frame) A propositional relevance logic

with E PRLE-frame F = 〈W, e, f , g〉 is a structure such that:

1. 〈W, f , g〉 is a PRL-frame and

2. e ∈ W is the smallest element.

The definition of a modelM for propositional relevance logic with E is similar to Definition
10.
Now we are going to formally define the semantics of propositional relevance logic with E
as follows:

Definition 24. (Propositional relevance logic with E semantics) LetM be a model, and

x, y, z ∈ W be a state, then the satisfaction relation M, x |= ϕ is recursively defined by

(SemPropL.1)-(SemPropL.3), (SemRelL.1) - (SemRelL.2) and :

(SemPRLE.1) M, x |= E ⇔ x = e.

In the following lemma, we want to state the semantics of the abbreviation mentioned in the
syntax section.

Lemma 15. Let M be a model, and x ∈ W be a state, then the satisfaction relation

M, x |= U is recursively defined by:

1. M, x |= U ⇔ x = g(e).

As mentioned before, our ultimate goal is to formulate axioms that force any PRLE-frame
to be a Boolean algebra. This will be done in the next section.

2.8.3 PRLE-frame Axioms

In this section, we are going to present axioms that force any PRLE-frame to be a Boolean
algebra.

Lemma 16. The formula schema ϕ

Î

ψ → ψ

Î

ϕ is true in a PRLE-frame F , iff f is

commutative, i.e., f (x, y) = f (y, x) for all x, y ∈ W.

Proof.

⇒ Assume x, y ∈ W. Then by the assumption the formula F |= p

Î

q → q

Î

p for
propositional variables p and q are true in all models based on F . LetM be a model
with v(p) = {x} and v(q) = {y}. Then M, f (x, y) |= p

Î

q → q

Î

p. We want to

CHAPTER 2. MATHEMATICAL PRELIMINARIES 22

showM, f (x, y) |= p

Î

q, SinceM, x |= p andM, y |= q, thenM, f (x, y) |= p
Î

q

(by Lemma 8). we get M, f (x, y) |= q

Î

p. This implies that there are x′, y′ with
f (x, y) = f (y′, x′) and M, y′ |= q and M, x′ |= p (by Lemma 8). Since M, y′ |= q

implies y′ = y andM, x′ |= p implies x′ = x we obtain f (x, y) = f (y, x).

⇐ Let M be a model and w ∈ W so that we have to show M,w |= ϕ

Î

ψ → ψ

Î

ϕ.
Assume M,w |= ϕ

Î

ψ so that we have to show M,w |= ψ
Î

ϕ. This implies that
there are x, y with w = f (x, y) andM, x |= ϕ andM, y |= ψ (by Lemma 8). Since f is
commutative we have there are x, y with w = f (y, x) andM, x |= ϕ andM, y |= ψ. By
Lemma 8 we obtainM,w |= ψ

Î

ϕ.

�

Lemma 17. The formula schema ϕ >◦ ψ → ψ >◦ ϕ is true in a PRLE-frame F , iff f d is

commutative, i.e., f d(x, y) = f d(y, x) for all x, y ∈ W.

Proof. This can be shown similar to Lemma 16 by using Lemma 11 and exchanging f

with f d. �

Lemma 18. The formula schema ϕ→ ϕ

Î

E is true in a PRLE-frame F , iff x = f (x, e) for

all x ∈ W.

Proof.

⇒ Assume x ∈ W. Then by assumption the formula p → (p

Î

E) for a propositional
variable p is true in all models based on F . LetM be such a model with v(p) = {x}.
ThenM, x |= p and, hence,M, x |= p

Î

E (by Lemma 8). This implies that there are
y, z ∈ W with x = f (y, z) andM, y |= p andM, z |= E. By the definition of v(p) and E

we have y = x and z = e, i.e., x = f (x, e).

⇐ Assume x ∈ W withM, x |= ϕ. Since x = f (x, e) andM, x |= ϕ andM, e |= E. We
getM, x |= ϕ

Î

E (by Lemma 8).

�

Please note that it is not the case that the formula schema ϕ↔ (ϕ Î E) is true in a PRLE-
frame F iff x = f (x, e) for all x ∈ W. As an example consider the model based on the
Boolean algebra with four elements of Figure 2.7. If we use + for f , then x = f (x, 0) is
satisfied. In addition, Figure 2.7 shows thatM, x |= ϕ. However, if we choose x = f (0, x),
thenM, 0 6|= ϕ andM, x 6|= E in Figure 2.7. Because for x = f (x, e), ifM, x |= ϕ, then
M, x 6|= ϕ andM, x 6|= E.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 23

0

1

x g(x)

ϕ

Figure 2.7: A PRLE-model on the Boolean algebra with four elements

Lemma 19. The formula schema ϕ→ (ϕ >◦U) is true in a PRLE-frame F , iff x = f d(x, g(e))
for all x ∈ W.

Proof. This can be shown similar to Lemma 18 by using Lemma 11 and exchanging f

with f d. �

Please note that it is not the case that the formula schema ϕ→ (ϕ

>
◦ U) is true in a PRLE-frame

F iff x = f d(x, g(e)) for all x ∈ W.

Lemma 20. The formula schema ϕ >◦ (ψ

Î

χ)→ (ϕ >◦ ψ)

Î

(ϕ >◦ χ) is true in a PRLE-frame

F , iff f is distributive, i.e., f d(x, f (y, z)) = f (f d(x, y), f d(x, z)) for all x, y, z ∈ W.

Proof.

⇒ Assume x, y, z ∈ W. Then by the assumption the formula F |= p >◦ (q

Î

r) →
(p >◦ q)

Î

(p >◦ r) for propositional variables p, q and r are true in all models based
on F . LetM be a model with v(p) = {x}, v(q) = {y}, v(r) = {z}. We want to show
M, f d(x, f (y, z)) |= p >◦ (q

Î

r). SinceM, y |= q andM, z |= r we getM, f (y, z) |= q

Î

r.
Furthermore,M, x |= p so that we concludeM, f d(x, f (y, z)) |= p >◦ (q

Î

r).

This completes the proof of M, f d(x, f (y, z)) |= p >◦ (q

Î

r) so that we conclude
M, f d(x, f (y, z)) |= (p >◦ q)

Î

(p >◦ r). This implies that there are a, b ∈ W with
f d(x, f (y, z)) = f (a, b) andM, a |= p >◦ p andM, b |= p >◦ r. From the last property we
obtain elements c, d with b = f d(c, d) andM, c |= p andM, d |= r. By the definition
of v we get c = x and d = z so that we have f d(x, f (y, z)) = f (a, f d(x, z)). Similar we
obtain a = f d(x, y), i.e., we have f d(x, f (y, z)) = f (f d(x, y), f d(x, z)).

CHAPTER 2. MATHEMATICAL PRELIMINARIES 24

⇐ LetM be a model and w ∈ W so that we have to showM,w |= p >◦(q

Î

r)→ (p >◦q)
Î

(p >◦

r). Therefore, assumeM,w |= p >◦(q

Î

r) so that we have to showM,w |= (p >◦q)
Î

(p >◦r).
From M,w |= p >◦ (q

Î

r) we obtain elements x, y, z with w = f d(x, f (y, z)) and
M, x |= p >◦(q

Î

r). From the latter we get thatM, f (f d(x, y), f d(x, z)) |= (p >◦p)

Î

(p >◦r).
Since f is distributive we have w = f d(x, f (y, z)) = f (f d(x, y), f d(x, z)), and, hence,
M,w |= (p >◦ q)

Î

(p >◦ r).

�

0

1

x yx y

ϕ

ψ χ

ϕ

Figure 2.8: Distributive Boolean algebra Lattice (AND)

Please note that it is not the case that the opposite implication (ϕ >◦ψ)

Î

(ϕ >◦χ)→ ϕ >◦ (ψ

Î

χ)
is true, it is described in Figure 2.8, as well as:

M, 1 |= (ϕ >◦ ψ)

Î

(ϕ >◦ χ)

M, 1 6|= ϕ >◦ (ψ

Î

χ)

Similarly, it is not true that the formulas schema ϕ

>
◦ (ψ Î χ)→ (ϕ

>
◦ ψ) Î (ϕ

>
◦ χ) is true iff f

is distributive i.e., f d(x, f (y, z)) = f (f d(x, y), f d(x, z)) for all x, y, z ∈ W, it is explained in
Figure 2.9, as well as:

M, 1 |= ϕ

>
◦ (ψ Î χ)

M, 1 6|= (ϕ

>
◦ ψ) Î (ϕ

>
◦ χ)

Lemma 21. The formula schema ϕ

Î

(ψ >◦ χ)→ (ϕ

Î

ψ) >◦ (ϕ

Î

χ) is true in a PRLE-frame

F , iff f d is distributive, i.e., f (x, f d(y, z)) = f d(f (x, y), f (x, z)) for all x, y ∈ W.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 25

0

1

x x∗

ψ

ϕ

χ

Figure 2.9: Distributive Boolean algebra Lattice (OR)

Proof. This can be shown similar to Lemma 16 by using Lemma 11 and exchanging f

with f d. �

Please note that it is not the case that the the formulas schema ϕ

>
◦ (ψ Î χ)→ (ϕ

>
◦ ψ) Î (ϕ

>
◦ χ)

is true iff f is distributive, i.e., f d(x, f (y, z)) = f (f d(x, y), f d(x, z)) for all x, y, z ∈ W, it is
explained in Figure 2.9.

Lemma 22. If g(g(x)) = x and f d(x, g(e)) = x for all x ∈ W, then the formula schema

ϕ→ > >◦ (U ∧ (ϕ

Î

Nϕ)) is true in a PRLE-frame F , iff f (x, g(x)) = g(e).

Proof.

⇒ Assume x ∈ W. Then by the assumption the formula F |= p→ > >◦ (U ∧ (p

Î

N p))
for propositional variable p is true in all models based on F . LetM be a model with
v(p) = {x}. Then we get M, x |= p → > >◦ (U ∧ (p

Î

N p)). Since M, x |= p we
getM, x |= > >◦ (U ∧ (ϕ

Î

Nϕ)). Then there are elements a, b with x = f d(a, b) and
M, a |= > andM, b |= U ∧ (ϕ

Î

Nϕ). FromM, b |= U we obtain b = g(e) and from
M, b |= p

Î

N p we get to elements c, d with b = f (c, d) andM, c |= p andM, d |= N p.
Using the definition of v(p) get conclude that c = x and g(d) = x. Together we obtain
g(e) = b = f (c, d) = f (c, g(g(d))) = f (x, g(x)).

⇐ Assume w ∈ W withM,w |= ϕ. ThenM, g(w) |= Nϕ so that we haveM, f (w, g(w)) |=
ϕ

Î

Nϕ. Since g(e) = f (w, g(w)) by the assumption we obtainM, g(e) |= U∧ (ϕ

Î

Nϕ).
This impliesM, f d(x, g(e)) |= > >◦ (U ∧ (ϕ

Î

Nϕ)). Finally, f d(x, g(e)) = x shows that
M, x |= > >◦ (U ∧ (ϕ

Î

Nϕ)).

CHAPTER 2. MATHEMATICAL PRELIMINARIES 26

�

Lemma 23. If g(g(x)) = x and f d(x, g(e)) = x for all x ∈ W, then the formula schema

ϕ→ >

Î

(E ∧ (ϕ >◦ Nϕ)) is true in a PRLE-frame F , iff f d(x, g(x)) = e for all x ∈ W.

Proof. This can be shown similar to Lemma 22 by using Lemma 11 and exchanging f

with f d. �

Theorem 1. Let W be the universe of PRLE-frame. Then W with the operations defined by

1. x + y = f (x, y),

2. x · y = f d(x, y),

3. x∗ = g(x),

4. 0 = e and

5. 1 = g(e)

is a Boolean algebra iff the axiom schemas

Commutativity of

Î

ϕ

Î

ψ→ ψ

Î

ϕ

Commutativity of Î ϕ Î ψ→ ψ Î ϕ

Identity for

Î

ϕ→ ϕ

Î

E

Identity for >◦ ϕ→ ϕ >◦ U

Distributivity of

Î

on >◦ ϕ

Î

(ψ >◦ χ)→ (ϕ

Î

ψ) >◦ (ϕ

Î

χ)

Distributivity of >◦ on

Î

ϕ >◦ (ψ

Î

χ)→ (ϕ >◦ ψ)

Î

(ϕ >◦ χ)

Complements for

Î

ϕ→ > >◦ (U ∧ (ϕ

Î

Nϕ))

Complements for >◦ ϕ→ >

Î

(E ∧ (ϕ >◦ Nϕ))

are valid. We call a such frame a Boolean propositional relevance with E logic frame

(BPRLE-frame).

Please note that we will use (0, 1,+, ·, ∗) instead of (e, g(e), f , f d, g) for any BPRLE -frame
in the remainder of this thesis.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 27

2.8.4 Boolean Algebras in Original PRLE Language

In this section, we want to represent the axioms used in Theorem 1 without using abbrevia-
tions. Since PRLE language is a combination of propositional, relevance and propositional
relevance logic with E, our minimum set of operators and atomic formulas is (⊥,¬,→,�,v,
E).

2.8.4.1 Commutativity Axiom

We are going to represent the commutativity axioms from Theorem 1 in original PRLE
language as follows:

1. Commutativity of

Î

:

ϕ

Î

ψ→ ψ

Î

ϕ⇔ ¬(ϕ→ ¬ψ)→ ¬(ψ� ¬ϕ) by Definition

⇔ (ψ� ¬ϕ)→ (ϕ� ¬ψ) propositional logic

We may rewrite commutativity of

Î

axiom by the following axiom:

(ψ� ¬ϕ)→ (ϕ� ¬ψ).

2. Commutativity of Î:

ϕ

Î

ψ→ ψ Î ϕ⇔ ¬ϕ� ψ→ ¬ψ� ϕ by Definition

Similarly, we may rewrite commutativity of Î axiom by the following axiom:

(¬ϕ� ψ)→ (¬ψ� ϕ).

2.8.4.2 Identity Axiom

Now we going to represent the identity axioms from Theorem 1 in original PRLE language
as follows:

1. Identity for

Î

:

ϕ→ ϕ

Î

E ⇔ ϕ→ ¬(ϕ� ¬E) by Definition

We may rewrite identity for

Î

axiom by the following axiom:

ϕ→ ¬(ϕ� ¬E).

CHAPTER 2. MATHEMATICAL PRELIMINARIES 28

2. Identity for >◦:

ϕ→ ϕ >◦ U ⇔ ϕ→v (Nϕ�v U) by Definition

⇔ ϕ→v (v ¬ϕ�v U) by Definition

⇔ ϕ→v (v ¬ϕ�v NE) by Definition

⇔ ϕ→v (v ¬ϕ�vv ¬E) by Definition

⇔ ϕ→v (v ¬ϕ� ¬E) by Definition

Similarly, we may rewrite identity for >◦ axiom by the following axiom:

ϕ→v (v ¬ϕ� ¬E).

2.8.4.3 Distributivity Axiom

Now we going to represent the distributivity axioms from Theorem 1 in original PRLE
language as follows:

1. Distributivity of

Î

on >◦:

ϕ >◦ (ψ

Î

χ)→ (ϕ >◦ ψ)

Î

(ϕ >◦ χ)

⇔v (Nϕ�v (ψ

Î

χ))→v (Nϕ�v ψ)

Î

v (Nϕ�v χ) by Definition

⇔v (Nϕ�v ¬(ψ� ¬χ))→ by Definition

¬(v (Nϕ�v ψ)� ¬ v (Nϕ�v χ))

⇔v (v ¬ϕ�v ¬(ψ� ¬χ))→ by Definition

¬(v (v ¬ϕ�v ψ)� ¬ v (v ¬ϕ�v χ))

⇔v (ϕ
′

�v ¬(ψ� ¬χ))→ ϕ
′

:=v ¬ϕ

¬(v (ϕ
′

�v ψ)� ¬ v (ϕ
′

�v χ))

We may rewrite distributivity of

Î

on >◦ axiom by the following axiom:

v (ϕ
′

�v ¬(ψ� ¬χ))→ ¬(v (ϕ
′

�v ψ)� ¬ v (ϕ
′

�v χ)).

2. Distributivity of >◦ on

Î

:

ϕ

Î

(ψ >◦ χ)→ (ϕ

Î

ψ) >◦ (ϕ

Î

χ)

⇔ ¬(ϕ� ¬(ψ >◦ χ))→ ¬(ϕ� ¬ψ) >◦ ¬(ϕ� ¬χ) by Definition

⇔ ¬(ϕ� ¬ v (Nψ�v χ))→ by Definition

CHAPTER 2. MATHEMATICAL PRELIMINARIES 29

v (N¬(ϕ� ¬ψ)�v ¬(ϕ� ¬χ))

⇔ ¬(ϕ� ¬ v (v ¬ψ�v χ))→ by Definition

v (v ¬¬(ϕ� ¬ψ)�v ¬(ϕ� ¬χ))

⇔ ¬(ϕ� ¬ v (v ¬ψ�v χ))→ propositional logic

v (v (ϕ� ¬ψ)�v ¬(ϕ� ¬χ))

Similarly, we may rewrite identity for >◦ axiom by the following axiom:

¬(ϕ� ¬ v (v ¬ψ�v χ))→v (v (ϕ� ¬ψ)�v ¬(ϕ� ¬χ)).

2.8.4.4 Complement Axiom

Now we going to represent the complement axioms from Theorem 1 in original PRLE
language as follows:

1. Complement for

Î

:

ϕ→ > >◦ (U ∧ (ϕ
Î

Nϕ))

⇔ ϕ→ N(N>
Î

N(U ∧ (ϕ

Î

Nϕ))) by Definition

⇔ ϕ→ N¬(N>� ¬N(U ∧ (ϕ

Î

Nϕ))) by Definition

⇔ ϕ→ N¬(N>� ¬N(U ∧ ¬(ϕ� ¬Nϕ))) by Definition

⇔ ϕ→v ¬¬(v ¬>� ¬ v ¬(U ∧ ¬(ϕ� ¬ v ¬ϕ))) by Definition

⇔ ϕ→v ¬¬(v ¬¬⊥� ¬ v ¬(NE ∧ ¬(ϕ� ¬ v ¬ϕ))) by Definition

⇔ ϕ→v (v ⊥� ¬ v ¬(v ¬E ∧ ¬(ϕ� ¬ v ¬ϕ))) by Definition

⇔ ϕ→v (v ⊥� ¬ v ¬¬(v ¬E → ¬¬(ϕ� ¬ v ¬ϕ))) by Definition

⇔ ϕ→v (v ⊥� ¬ v (v ¬E → (ϕ� ¬ v ¬ϕ))) Prop. logic

We may rewrite complement for

Î

axiom by the following axiom:

ϕ→v (v ⊥� ¬ v (v ¬E → (ϕ� ¬ v ¬ϕ))).

2. Complement for >◦:

ϕ→ >

Î

(E ∧ (ϕ >◦ Nϕ))

⇔ ϕ→ ¬(>� ¬(E ∧ (ϕ >◦ Nϕ))) by Definition

⇔ ϕ→ ¬(>� ¬(E∧ v (Nϕ�v Nϕ))) by Definition

⇔ ϕ→ ¬(>� ¬(E∧ v (v ¬ϕ�vv ¬ϕ))) by Definition

CHAPTER 2. MATHEMATICAL PRELIMINARIES 30

⇔ ϕ→ ¬(>� ¬(E∧ v (v ¬ϕ� ¬ϕ))) by Definition

⇔ ϕ→ ¬(¬⊥� ¬¬(E →v ¬(v ¬ϕ� ¬ϕ))) by Definition

⇔ ϕ→ ¬(¬⊥� (E →v ¬(v ¬ϕ� ¬ϕ))) Prop. logic

Similarly, we may rewrite complement for >◦ axiom by the following axiom:

ϕ→ ¬(¬⊥� (E →v ¬(v ¬ϕ� ¬ϕ))).

2.9 Modal Relevance Logic (MRL)

In this section, we are going to introduce a new logic namely modal relevance logic by
adding the properties of modal logic with the propositional relevance logic with E. Later in
this section, we will provide axioms concerning the modal operator that forces every frame
to be a Boolean contact algebra. The logics and they relationships used in this thesis are
shown in Figure 2.10.

Propositional
Logic (PL)

Relevance
Logic (RL)

Modal Logic
(ML)

Propositional
Relevance
Logic (PRL)

Propositional
Relevance
Logic with E
(PRLE)

Modal Rele-
vance Logic
(MRL)

Boolean
PRLE-frame
(BPRLE)

Boolean
Contact
MRL-frame
(BMRL)

Figure 2.10: Inclusion of Logics Introduced

Now we are going to introduce the syntax and semantics of modal relevance logic in the
following sections.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 31

2.9.1 Syntax

Since we are not introducing any new operators, the syntax can be defined in terms of the
rules introduced earlier. The syntax of modal relevance logic is formally defined as follows:

Definition 25. (Modal relevance logic syntax) The set MRL of modal relevance logic

formulas is recursively defined by the rules (PropL.1)- (PropL.3), (RelL.1) - (RelL.2),

(PRLE.1) and (ModL.1).

2.9.2 Semantics

Similar to the previous logics we are going to define frames and models.

Definition 26. (Modal relevance logic frame) A modal relevance logic MRL-frame F =

〈W, e,R, f , g〉 is a structure such that:

(MLF.1) 〈W, e, f , g〉 is a PRLE-frame and

(MLF.2) R is a binary relation on W.

In the case that 〈W, e, f , g〉 is a BPRLE-frame. Then we call F a BMRL-frame.

The definition of a modal relevance logic modelM is again similar to Definition 10. Now
we are going to formally define the semantics of modal relevance logic as follows:

Definition 27. (Modal relevance logic semantics) LetM be a model, x, y, z ∈ W be a state

and ϕ ∈ MRL. The satisfaction relationM, x |= ϕ is recursively defined by (SemPropL.1) -

(SemPropL.3), (SemRelL.1)-(SemRelL.2), (SemPRLE.1) and (SemModL.1).

2.9.3 BMRL-frame Axioms

In this section, we are going to provide axioms that are equivalent to null disconnectedness,
reflexivity, symmetry, compatibility, and summation property of relation R in a BMRL-
frame.

Lemma 24. The formula [R]¬E is true in a BMRL-frame F , iff xRy implies y , 0 for all

x, y ∈ W.

Proof. LetM be any model based on F and x ∈ W. ThenM, x |= [R]¬E. This implies
that if xRy, thenM, y |= ¬E for all y ∈ W. Therefore, we conclude if xRy, then y , 0 for all
y ∈ W. �

CHAPTER 2. MATHEMATICAL PRELIMINARIES 32

Lemma 25. The formula schema ¬E → ([R]ϕ → ϕ) is true in a BMRL-frame F , iff xRx

for all x ∈ W with x , 0.

Proof.

⇒ Let be x ∈ W with x , 0. Assume that xRx is false. By assumption the formula
F |= ¬E → ([R]p → p) for propositional variable p is true in all models based on
F . LetM be a model with v(p) = W \ {x}. Then we getM, x |= ¬E → ([R]p→ p).
Since x , 0 have M, x |= ¬E, and, hence, M, x |= [R]p → p. Now, if xRy, then
x , y by the assumption, and, hence, M, y |= p. This shows thatM, x |= [R]p so
that we concludeM, x |= p, a contradiction to the definition of v(p). Therefore, the
assumption is wrong and xRx holds.

⇐ AssumeM, x |= ¬E and xRy impliesM, y |= ϕ for all y ∈ W. Then x , 0, therefore,
xRx by the assumption. HenceM, x |= ϕ.

�

Lemma 26. The formula schema ϕ→ [R]〈R〉ϕ is true in a BMRL-frame F , iff xRy implies

yRx for all x, y ∈ W.

Proof.

⇒ Assume x, y ∈ W with xRy. Then by the assumption the formula p→ [R]〈R〉p for a
propositional variable p is true in all models based on F . LetM be such a model
with v(p) = {x}. ThenM, x |= p and, hence,M, x |= [R]〈R〉p. Since we have xRy

we obtainM, y |= 〈R〉p. Therefore, there is a z ∈ W with yRz andM, z |= p. Since
v(p) = {x} we get z = x and, hence, yRx.

⇐ Let M be a model and x ∈ W so that we have to show ϕ → [R]〈R〉ϕ. Therefore,
assumeM, x |= ϕ so that we have to showM, x |= [R]〈R〉ϕ. Now, assume y ∈ W with
xRy so that we have to showM, y |= 〈R〉ϕ. But this is true since yRx follows from the
assumption and we haveM, x |= ϕ.

�

Lemma 27. The formula schema [R]ϕ→ [R](>(ϕ) is true in a BMRL-frame F , iff xRy

and y ≤ z implies xRz for all x, y, z ∈ W.

Proof.

CHAPTER 2. MATHEMATICAL PRELIMINARIES 33

⇒ Assume x, y, z ∈ W with xRy and y ≤ z. Then by the assumption the formula
[R]p → [R](> (p) for a propositional variable p is true in all models based on
F . Let M be a model with v(p) = {y | xRy}. Then M, x |= [R]p, and, hence,
M, x |= [R](>(p). Since xRy we getM, y |= >(p. From y ≤ z we get y = y + z.
Furthermore, we haveM, y |= > so that we concludeM, z |= p, i.e., xRz.

⇐ LetM be a model and x ∈ W so that we have to showM, x |= [R]ϕ→ [R](>(p).
AssumeM, x |= [R]ϕ ,i.e., xRy impliesM, y |= ϕ for all y, so that we have to show
M, x |= [R](> (p). Now, assume xRy so that we have to show M, y |= > (ϕ.
Therefore, assume u, z with y = u · z andM, u |= > so that we have to showM, z |= ϕ.
This implies y ≤ z from which we conclude xRz by the assumption. FromM, x |= [R]ϕ
we obtainM, z |= ϕ.

�

Lemma 28. If xRy implies yRx for all x, y ∈ W, then the formula schema ϕ→ [R](¬〈R〉ϕ�
〈R〉ϕ) is true in a BMRL-frame F , iff xR(y + z) implies xRy or xRz for all x, y, z ∈ W.

Proof.

⇒ Assume x, y, z ∈ W with xR(y + z). Then by the assumption the formula p →

[R](¬〈R〉p � 〈R〉p) for a propositional variable p is true in all models based on F .
LetM be a model with v(p) = {x}. ThenM, x |= p, and, hence,M, x |= [R](¬〈R〉p�
〈R〉p). Since xR(y + z) we obtain, M, y |= ¬〈R〉p implies M, z |= 〈R〉p, which is
equivalent toM, y |= 〈R〉p orM, z |= 〈R〉p. IfM, y |= 〈R〉p, then there is a u with yRu

and u = x, i.e., yRx. This implies xRy by the symmetry of R. The caseM, z |= 〈R〉p

follows analogously.

⇐ Let M be a model and x ∈ W so that we have to show ϕ → [R](¬〈R〉ϕ � 〈R〉ϕ).
AssumeM, x |= ϕ so that we have to showM, x |= [R](¬〈R〉ϕ� 〈R〉ϕ). Now assume
xR(y + z) so that we have to show M, y |= ¬〈R〉ϕ implies M, z |= 〈R〉ϕ. This is
equivalent toM, y |= 〈R〉ϕ orM, z |= 〈R〉ϕ. From xR(y + z) and the assumption we get
xRy or xRz. If xRy, then yRx by symmetry. Therefore,M, y |= 〈R〉ϕ sinceM, x |= ϕ.
The case xRz follows analogously.

�

Theorem 2. Let F be a BMRL-frame. Then R is a contact relation iff the following axioms:

Null disconnected (BCAx0) [R]¬E

CHAPTER 2. MATHEMATICAL PRELIMINARIES 34

Reflexivity (BCAx1) ¬E → ([R]ϕ→ ϕ)

Symmetry (BCAx2) ϕ→ [R]〈C〉ϕ

Compatibility (BCAx3) [R]ϕ→ [R](>(ϕ)

Summation (BCAx4) ϕ→ [R](¬〈R〉ϕ� 〈R〉ϕ)

are valid in F . We call such a frame a Boolean contact algebra frame (BCA-frame).

Please note that we will use C instead of R for any BCA-frame in the remainder of this
thesis.

Chapter 3

Natural Deduction

Natural deduction is a logic calculus to derive valid formulas. It is constructed so that proofs
use rules similar to the natural way of reasoning. A proof in natural deduction constructed
as a tree and there are three components, premises or initial assumptions, rules of inference
and conclusion.

For example, in Figure 3.1 the outer most nodes denote initial assumptions, the interme-
diate nodes denote intermediate formulas generated after applying some rules and the
bottom-most node denote the conclusion i.e., the formula to be proven.

Figure 3.1: Natural Deduction Proof Tree

In our version of natural deduction used in this thesis, we consider two types of assumptions.
One is an open assumption, and another one is discarded assumption. Open assumptions
represent those are yet to use in the proof subtree after the rule is applied. Whereas
discard assumptions represent those used by a certain rule applied in the proof tree. Then
ϕ1, . . . , ϕn ` ψ denotes the fact that there is a proof tree with open assumptions among
ϕ1, . . . , ϕn and conclusion ψ.

35

CHAPTER 3. NATURAL DEDUCTION 36

Let assume {ϕ1, . . . , ϕn} are the set of formulas are given, and in the first step after applying
a rules on the premises a new formula ψ1 is generated as a intermediate output and it is
denoted by:

ϕ1, ϕ2, . . . , ϕn ` ψ1.

In the next step, let assume another rule is applied and it generate another new formula ψ2

and it is denoted by:

ϕ1, ϕ2, . . . , ϕn, ψ1 ` ψ2.

Let assume the proof tree grows after applying few more rules and we reach to intermediate
formulas ψ3 and ψ4 before the conclusion ψ and it is denoted by

ϕ1, ϕ2, . . . , ϕn, ψ1, ψ2, ψ3, ψ4 ` ψ.

It is worth mentioning that natural deduction used in this thesis works with annotated
formulas, i.e., formulas of the form ϕt where ϕ is an MRL-formula and t is a term. Also,
note that also we call t the index of the formula ϕ written as ϕt. In the following definitions,
we define the term environment and evaluation of term of natural deduction formally.

Definition 28. (Term) Let F be a BMRL-frame, X be a set of variables. Then the set Term

is recursively defined by:

1. x ∈ X is a term. i.e., X ⊆ Term,

2. α, β ∈ Term, then

(a) α + β ∈ Term, i.e., n[α + β] = n[α] + n[β],

(b) α · β ∈ Term, i.e., n[α · β] = n[α] · n[β] and

(c) α∗ ∈ Term for all α ∈ Term.

It is worth mentioning that we will use x, y, z, . . . to denote variables and α, β, γ, . . . to denote
terms in the remainder of this thesis.

Definition 29. (Environment) Let F be a BMRL-frame and X be a set of variables. An

environment n : X → W is a function from X to W.

CHAPTER 3. NATURAL DEDUCTION 37

It is worth mentioning that in our version of the natural deduction calculus we have three
kinds of formulas in the proof tree: (a) annotated formulas, (b) equation of the form α = β

for terms α and β and (c) contact relation αCβ for terms α and β. Now, we are going to
define the evalution of term as follows:

Definition 30. (Evaluation of term) Let F be a BMRL-frame and X a set of variables, and

n an environment. Then the evaluation n[α] of a term α in the environment n is recursively

defined by:

1. n[x] = n(x) for all x ∈ X,

2. If α, β ∈ Term, then

(a) n[α + β] = n[α] + n[β],

(b) n[α · β] = n[α] · n[β] and

(c) n[α∗] = n[α]∗

3. If α, β ∈ Term, then

(a) n[α] = n[β] = α = β and

(b) n[αCβ] = n[α]Cn[β].

It is worth mentioning that we will call ϕ a formula if it is either one of the above. Also note
that an annotated formula is a formula in MRL indexed by a term. Now, we are going to
define the validity of annotated formulas as follow:

Definition 31. (Validity evaluation) LetM be a model, ϕ ∈ MRL, α ∈ Term and Γ a set of

annotated formulas. Then we have:

1. M, n |= ϕα ⇐⇒ M, n[α] |= ϕ,

2. M, n |= α = β ⇐⇒ n[α] = n[β],

3. M, n |= αCβ ⇐⇒ n[α]Cn[β],

4. M |= ϕα ⇐⇒ M, n |= ϕα for all n,

5. |= ϕα ⇐⇒ M |= ϕα for allM, and

6. Γ |= ϕα ⇐⇒ for allM, n we have thatM, n |= χβ

⇐⇒ for all χβ ∈ Γ impliesM, n |= ϕα

⇐⇒ M, n |= χβ impliesM, n |= ϕα for allM and n.

CHAPTER 3. NATURAL DEDUCTION 38

In the remainder of this thesis we will use index for all formulas except for ⊥, because for
all α, β ∈ Term we have

M, n |= ⊥α ⇔M, n[α] |=M, n[β] |= ⊥ ⇐⇒ M, n |= ⊥β

In the following lemma, we want to show the property of the extended environment.

Lemma 29. Let α ∈ Term, ϕ ∈ BMRL be a formula andM be a model. Then we have:

1. If n1 and n2 coincide on all variables in α, then n1[α] = n2[α],

2. If n1 and n2 coincide on all variables in α, thenM, n1 |= ϕα iffM, n2 |= ϕα.

Proof.

(1) The proof is done by induction on the definition of a term (Definition 28).

(a) Assume α = x is a variable, then we get
n1[α] = n1(x) = n2(x) = n2[α].

(b) Assume α = β + γ is a term, then we get

n1[α] = n1[β + γ] = n1[β] + n1[γ] by Definition 28

= n2[β] + n2[γ] = n2[β + γ] = n2[α] by Definition 28

(c) Assume α = β · γ is a term, then we get

n1[α] = n1[β · γ] = n1[β] · n1[γ] by Definition 28

= n2[β] · n2[γ] = n2[β · γ] = n2[α] by Definition 28

(d) Assume α = x∗ is a variable, then we get

n1[α] = n1(x∗) by Definition 28

= n2(x∗) = n2[α] by Definition 28

(e) Assume α and β terms are equal, then we get

n1[α] = n1[β] by Definition 28

= n2[α] = n2[β] by Definition 28

CHAPTER 3. NATURAL DEDUCTION 39

(f) Assume α and β terms are in contact, then we get
n1[αCβ] = n2[αCβ].

(2) Using (1) this follows immediately from

M, n1 |= ϕα ⇐⇒ M, n1[α] |= ϕ by Definition 31

⇐⇒ M, n2[α] |= ϕ by (1)

M, n2 |= ϕα by Definition 31

�

3.1 Rules of Natural Deduction

Our version of natural deduction has some axioms, i.e., rules that do not have any subtrees,
or equivalently, Leaves that are not assumption and do not need to be discarded. Those
axioms are instantiations of the BA axioms, i.e., that equation where the variables have been
instantiated with certain terms.

The inference rules of a natural deduction system are based on the logical operators described
in Chapter 2. Therefore, we consider rules for the abbreviations as well. In total, we have
18 logical operators of two types. One is basic logical operators, and another one is negation
style operators, they are as follows:

1. Basic logical operators are =,→,∧,∨,↔,�,

Î

, Î,(, >◦,

>
◦ , E,U, [C], 〈C〉 and

2. Negation style operators are ¬,v,N.

For each basic logical operator, there are two rules. One is introduction rule and the other
one is an elimination rule. Inference rules that introduce the logical operator in the proof
tree is called introduction rule, usually denoted by I. Whereas elimination rules eliminate the
logical operator in the proof tree, usually denoted by E. For the negation operators there is
an extra PBC (proof by contradiction) rule that is neither an introduction nor an elimination
rule. Furthermore, we have five rules that correspond to BCA0 - BCA4 for contact that are
also neither introduction nor elimination rules.

In this thesis assumptions we will denote the fact that the assumption ϕα is discarded by
[ϕα]. Please note that certain rules such as→ I (see below) will discard certain assumptions

CHAPTER 3. NATURAL DEDUCTION 40

in the proof tree, i.e., there are not considered assumption of the proof tree after the rule has
been applied.

3.1.1 Rules for the Equality

The rules are listed in Table 3.1.

Table 3.1: Rules for Equality

Name Rule Condition

= I
α = α (= I)

= E

α = β ϕα
ϕβ

(= E)

3.1.2 Rules for the Propositional Operators

The proof rules for the propositional operators are exactly same as they are defined in any
standard literature on propositional logic. However, we have used an index with the formula
to fit the purpose of this thesis. Please note that all of these rules will always assume that all
indices are equal, and they will never change any index. The rules are listed in Table 3.2.

Table 3.2: Rules for the Propositional Operators

Name Rule Condition

¬ I

[ϕα]....
⊥

(¬ϕ)α
(¬I)

¬ E
¬ϕα ϕα
⊥

(¬E)

¬ PBC

[(¬ϕ)α]....
⊥
ϕα

(¬PBC)

→ I

[ϕα]....
ψα

(ϕ→ ψ)α
(→ I)

CHAPTER 3. NATURAL DEDUCTION 41

Name Rule Condition

→ E
(ϕ→ ψ)α ϕα

ψα
(→ E)

∧ I
ϕα ψα
(ϕ ∧ ψ)α

(∧I)

∧ E
(ϕ ∧ ψ)α
ϕα

(∧E1)
(ϕ ∧ ψ)α
ψα

(∧E2)

∨ I
ϕα

(ϕ ∨ ψ)α
(∨I1)

ψα
(ϕ ∨ ψ)α

(∨I2)

∨ E (ϕ ∨ ψ)α

[ϕα]....
χα

[ψα]....
χα

χα
(∨E)

↔ I
(ϕ→ ψ)α (ψ→ ϕ)α

(ϕ↔ ψ)α
(↔ I)

↔ E
(ϕ↔ ψ)α
(ϕ→ ψ)α

(↔ E1)
(ϕ↔ ψ)α
(ψ→ ϕ)α

(↔ E2)

3.1.3 Rules for the Modal Operators

Similarly, the rules for the modal operators are exactly same as they are defined in any
standard literature of modal logic. However, our representation is slightly different. Firstly
we have used an index with the formula. Secondly we have used the notation C instead of
the usual notation R. Finally, instead of introducing proof boxes labelled by a world we have
introduced a new variable y as an index of certain formulas. By a new variable we mean a
variable y ∈ X that does not occur in any term of an open assumption of the corresponding
tree expect the place where it is explicitly mentioned. For example, in the rule [C]I the
variable y is not allowed to occur in any term, including α, of any open assumption of the
tree with root ϕy. The rules are listed in Table 3.3.

CHAPTER 3. NATURAL DEDUCTION 42

Table 3.3: Rules for the Modal Operators

Name Rule Condition

[C] I

[αCy]....
ϕy

([C]ϕ)α
([C]I) y is new

[C] E
([C]ϕ)α αCβ

ϕβ
([C]E)

〈C〉 I
αCβ ϕβ
(〈C〉ϕ)α

(〈C〉I)

〈C〉 E (〈C〉ϕ)α

[αCy] [ϕy]....
ψβ

ψβ
(〈C〉E)

y is new in the
right subtree and
does not occur in
β

3.1.4 Rules for the Basic Relevance Operators

In this section, we want to define the rules for the relevance operators based on the semantics
defined in Chapter 2. The rules are listed in Table 3.4.

Table 3.4: Rules for the Basic Relevance Operators

Name Rule Condition

� I

[ϕx] [α = x + y]....
ψy

(ϕ� ψ)α
(� I)

x, y are new

� E
(ϕ� ψ)α ϕβ α = β + γ

ψγ
(� E)

v I

[ϕα]....
⊥

(v ϕ)α∗
(v I)

v E
(v ϕ)α ϕβ α = β∗

⊥
(v E)

CHAPTER 3. NATURAL DEDUCTION 43

Name Rule Condition

v PBC

[(v ϕ)α]....
⊥
ϕα∗

(v PBC)

3.1.5 Rules for the Derived Relevance Operators

Within our natural deduction system we want to treat the operators originally introduced as
abbreviations as basic operators. Therefore, we will provide rules for them based on their
semantic description from Chapter 2. The rules are listed in Table 3.5.

Table 3.5: Rules for the Derived Relevance Operators

Name Rule Condition

Î

I
ϕβ ψγ α = β + γ

(ϕ
Î

ψ)α
(

Î

I)

Î

E (ϕ
Î

ψ)α

[ϕx] [ψy] [α = x + y]....
χβ

χβ
(

Î

E)

x, y are new in the
right subtree

Î I

[(¬ψ)y] [α = x + y]....
ϕx

(ϕ Î ψ)α
(ÎI1)

[(¬ϕ)x] [α = x + y]....
ψy

(ϕ Î ψ)α
(ÎI2)

x,y are new

Î E (ϕ Î ψ)α

[ϕβ]....
χδ

[ψγ]....
χδ α = β + γ

χδ
(ÎE)

N I

[(¬ϕ)α]....
⊥

(Nϕ)α∗
(NI)

N E
(Nϕ)α∗ (¬ϕ)β α = β∗

⊥
(NE)

CHAPTER 3. NATURAL DEDUCTION 44

Name Rule Condition

N PBC

[(N¬ϕ)α]....
⊥
ϕα∗

(NPBC)

(I

[ϕx] [α = x · y]....
ψy

(ϕ(ψ)α
((I)

x, y are new

(E
(ϕ(ψ)α ϕβ α = β · γ

ψγ
((E)

>◦ I
ϕβ ψγ α = β · γ

(ϕ >◦ ψ)α
(>◦I)

>◦ E (ϕ >◦ ψ)α

[ϕx] [ψy] [α = x · y]....
χβ

χβ
(>◦E)

x, y are new in the
right subtree

>
◦ I

[(¬ψ)y] [α = x · y]....
ϕx

(ϕ

>
◦ ψ)α

(

>
◦ I1)

[(¬ψ)x] [α = x · y]....
ϕy

(ϕ

>
◦ ψ)α

(

>
◦ I2)

x, y are new

>
◦ E (ϕ

>
◦ ψ)α

[ϕβ]....
χδ

[ψγ]....
χδ α = β · γ

χδ
(

>
◦ E)

3.1.6 Rules for the Constant E and U

Similar to the abbreviations above we want to treat E and U as basic formulas. The rules for
these formulas are listed in Table 3.6.

Table 3.6: Rules for the Constant E and U

Name Rule Condition

E I
x = x + α

Eα
(EI)

x is new

CHAPTER 3. NATURAL DEDUCTION 45

Name Rule Condition

E E
Eα

β = β + α
(EE)

U I
x = x · α

Uα
(UI)

x is new

U E
Uα

β = β · α
(UE)

3.1.7 Rules for Contact

Finally, we want to define rules that forces the relation to be a contact relation. The rules
are obviously based on Theorem 2. It is worth mentioning that those rules are neither
introduction nor elimination rules. The rules are listed in Table 3.7.

Table 3.7: Rules for Contact

Name Rule Condition

BCA0

αCβ
(¬E)α

(BCA0g)

BCA1

(¬E)α
αCα

(BCA1g)

BCA2

βCα
αCβ

(BCA2g)

BCA3

αCβ β = β · γ

αCγ
(BCA3g)

BCA4 αC(β + γ)

[αCβ]....
ϕδ

[αCγ]....
ϕδ

ϕδ
(BCA4)

3.2 Soundness of Natural Deduction Rules

In this section of this thesis, we want to investigate the theoretical properties of our nat-
ural deduction calculus. In particular, we are interested in soundness and completeness.
Soundness of a calculus is the property that every formula that can be derived is also valid.
Completeness is the opposite implication. Please note that completeness is out of the

CHAPTER 3. NATURAL DEDUCTION 46

scope of the thesis and will be considered in future work. We are going to formally define
soundness as follows:

Theorem 3. (Soundness) Let ϕ1, ϕ2, . . . ϕn and ψα to be formulas of any three types (an-

nonated formulas, equations and contact relation). If

ϕ1, ϕ2, . . . , ϕn ` ψα, then

ϕ1, ϕ2, . . . , ϕn � ψα.

Proof.

The proof is done by induction on the derivation ϕ1, ϕ2, . . . ϕn ` ψα.

Base case:
In this case, the proof is simply an assumption, i.e., ψα ∈ {ϕ1, ϕ2, . . . ϕn}.

Induction step:
In this case, in the proof tree, each derivation step's outcome must be the conclusion
the of the natural deduction rules. Thus, we will investigate the validation of applied
rules including the side conditions defined for the rules in this thesis. We will begin
with distinguishing the conclusion for all three types of the formula, a) if it is of the
form α = β then we will use the axioms of BA and the rules = I, = E, EE, and UE,
b) Secondly, if it is of the form αCβ then we will use the rules = I and = E, c) we
will do the cases for an annotated formula. In the next subsections, we are going to
state the proofs of the rules mentioned in the same order they are defined above.

3.2.1 Equality Operator

= I: AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � α = β. Since we don’t have any assumptions in this case,
we can concludeM, n � α = β.

= E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` α = β and

ϕ1, ϕ2, . . . , ϕn ` ϕα.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ψβ. We obtain from the induction hypothesisM, n � ψα

CHAPTER 3. NATURAL DEDUCTION 47

i.e.,M, n[α] � ψ and α = β. Therefore, we can concludeM, n[β] � ψ, and, hence,
M, n |= ψβ.

3.2.2 Propositional Operators

In this section, we want to discuss the soundness of the propositional logic natural deduction
rules defined in the Table 3.2.

¬ I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, ψα ` ⊥.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � (¬ψ)α, or equivalently that M, n[α] � ¬ψ. Assume
M, n � ψα i.e.,M, n[α] � ψ. From the induction hypothesis we getM, n � ⊥. Since
the last statement is a contradiction, this impliesM, n[α] 6|= ψ, and, therefore we can
concludeM, n[α] � ¬ψ, this is equivalent toM, n � (¬ψ)α.

¬ E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (¬ψ)α and

ϕ1, ϕ2, . . . , ϕn ` ψα.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ⊥. We obtain from induction hypothesis M, n � ψα
i.e., M, n[α] � ψ, and M, n � (¬ψ)α i.e., M, n[α] � ¬ψ. Since the statement is a
contradiction, we can concludeM, n[α] � ⊥, this is equivalent toM, n � ⊥.

¬ PBC: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (¬ψ)α ` ⊥.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ψα, or equivalently thatM, n[α] � ψ. AssumeM, n �

(¬ψ)α i.e.,M, n[α] � ¬ψ. From the induction hypothesis we getM, n � ⊥. Since the
last statement is a contradiction, we can concludeM, n[α] � ψ, this is equivalent to
M, n � ψα.

CHAPTER 3. NATURAL DEDUCTION 48

→ I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (ψ1)α ` (ψ2)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 → ψ2)α, or equivalently thatM, n[α] � ψ1 → ψ2.
Therefore, assumeM, n[α] |= ψ1, i.e.,M, n |= (ψ1)α. From the induction hypothesis
we obtainM, n |= (ψ1)α, and, hence,M, n[α] |= ψ2.

→ E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 → ψ2)α and

ϕ1, ϕ2, . . . , ϕn ` (ψ1)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ2)α, or equivalently thatM, n[α] � ψ2. We obtain
from induction hypothesisM, n � (ψ1)α i.e.,M, n[α] � ψ1, and,M, n � (ψ1 → ψ2)α
i.e.,M, n[α] � ψ1 → ψ2. Therefore we can concludeM, n[α] � ψ2, this is equivalent
toM, n[α] � ψ2.

∧ I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1)α and

ϕ1, ϕ2, . . . , ϕn ` (ψ2)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 ∧ ψ2)α, or equivalently thatM, n[α] � ψ1 ∧ ψ2. We
obtain from the induction hypothesisM, n � (ψ1)α i.e.,M, n[α] � ψ1 andM, n � (ψ2)α
i.e.,M, n[α] � ψ2. Therefore we can concludeM, n[α] � ψ1 ∧ ψ2, this is equivalent
toM, n � (ψ1 ∧ ψ2)α.

∧ E1: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` (ψ1 ∧ ψ2)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1)α, or equivalently thatM, n[α] � ψ1. We obtain
from induction hypothesisM, n � (ψ1 ∧ ψ2)α i.e.,M, n[α] � ψ1 ∧ ψ2. Therefore we

CHAPTER 3. NATURAL DEDUCTION 49

can concludeM, n[α] � ψ1, this is equivalent toM, n � (ψ1)α.

∧ E2: Analogously to ∧E1.

∨ I1: In this case have a derivation

ϕ1, ϕ2, . . . , ϕn ` (ψ1)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 ∨ ψ2)α, or equivalently thatM, n[α] � ψ1 ∨ ψ2. We
obtain from induction hypothesisM, n � (ψ1)α i.e.,M, n[α] � ψ1. Therefore we can
concludeM, n[α] � ψ1 ∨ ψ2, this is equivalent toM, n � (ψ1 ∨ ψ2)α.

∨ I2: Analogously to ∨I1.

∨ E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 ∨ ψ2)α,

ϕ1, ϕ2, . . . , ϕn, (ψ1)α ` χα and

ϕ1, ϕ2, . . . , ϕn(ψ2)α ` χα.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � χα, or equivalently that M, n[α] � χ. We obtain
from the induction hypothesisM, n � (ψ1 ∨ ψ2)α i.e.,M, n[α] � ψ1 ∨ ψ2, i.e., either
M, n[α] � ψ1 orM, n[α] � ψ2. If we haveM, n[α] � ψ1 i.e.,M, n � (ψ1)α, then the
induction hypothesis showsM, n � χα i.e., M, n[α] � χ. The second case follows
analogously.

↔ I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 → ψ2)α and

ϕ1, ϕ2, . . . , ϕn ` (ψ2 → ψ1)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 ↔ ψ2)α, or equivalently thatM, n[α] � ψ1 ↔ ψ2.
We obtain from the induction hypothesisM, n � (ψ1 → ψ2)α i.e.,M, n[α] � ψ1 → ψ2

and M, n � (ψ2 → ψ1)α i.e., M, n[α] � ψ2 → ψ1. Therefore we can conclude
M, n[α] � ψ1 ↔ ψ2, this is equivalent toM, n � (ψ1 ↔ ψ2)α.

CHAPTER 3. NATURAL DEDUCTION 50

↔ E1: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` (ψ1 ↔ ψ2)α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 → ψ2)α, or equivalently thatM, n[α] � ψ1 → ψ2.
We obtain from induction hypothesisM, n � (ψ1 ↔ ψ2)α i.e.,M, n[α] � ψ1 ↔ ψ2.
Therefore we can concludeM, n[α] � ψ1 → ψ2, this is equivalent toM, n � (ψ1 →

ψ2)α.

↔ E2: Analogously to↔ E1.

3.2.3 Modal Operators

Similarly, in this section, we want to discuss the soundness of the modal logic natural
deduction rules defined in the Table 3.3.

[C] I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, αCy ` ψy.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ([C]ψ)α, or equivalently thatM, n[α] � [C]ψ. Therefore,
assume n[α]C a so that we have to showM, a |= ψ. Let n

′

be the environment defined
by:

n′(x) =

n(x) : x , y

a : x = y

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

M, n′ |= αCy⇔ n′[α]Cn′[y]

⇔ n′[α]Ca n′[y] = n′(y) = a by Definition

⇔ n[α]Ca by Lemma 29 and

side condition of the rule,

CHAPTER 3. NATURAL DEDUCTION 51

i.e.,M, n′ |= αCy. From the induction hypothesis we obtainM, n′ |= ψy. We compute

M, n
′

� ψy ⇔M, n
′

[y] � ψ

⇔M, a � ψ

[C] E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` ([C]ϕ)α and

ϕ1, ϕ2, . . . , ϕn ` αCβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ψβ, or equivalently thatM, n[β] � ψ. We obtain from
the induction hypothesisM, n � ([C]ψ)α i.e.,M, n[α] � [C]ψ andM, n � αCβ i.e.,
n[α]Cn[β]. Therefore by the definition of [C], we can concludeM, n[β] � ψ, this is
equivalent toM, n � ψβ.

〈C〉 I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` αCβ and

ϕ1, ϕ2, . . . , ϕn ` ψβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � (〈C〉ψ)α, or equivalently that M, n[α] � 〈C〉ψ. We
obtain from the induction hypothesisM, n � ψβ i.e.,M, n[β] � ψ andM, n � αCβ i.e.,
n[α]Cn[β]. Therefore by the definition of 〈C〉, we can concludeM, n[α] � 〈C〉ψ, this
is equivalent toM, n � (〈C〉ψ)α.

〈C〉 E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (〈C〉ψ)α and

ϕ1, ϕ2, . . . , ϕn, αCy, ψy ` χβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � χβ, or equivalently thatM, n[β] � χ. We obtain from the
induction hypothesisM, n � (〈C〉ψ)α i.e.,M, n[α] � 〈C〉ψ. Therefore by the definition
of 〈C〉, there is an a with n[α]Ca andM, a � ψ. Let n

′

be the environment defined by:

CHAPTER 3. NATURAL DEDUCTION 52

n′(x) =

n(x) : x , y

a : x = y

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1)

M, n′ |= αCy⇔ n′[α]Cn′[y]

⇔ n′[α]Ca n′[y] = n′(y) = a by Definition

⇔ n[α]Ca By Lemma 29 and

side condition of the rule

(2) M, n′ � ψy since n′[y] = n′(y) = a

By the induction hypothesis and (1) and (2) we getM, n
′

� χβ, i.e., M, n � χβ since
n′[β] = n[β] by the side condition. Therefore, we haveM, n[β] � χ.

3.2.4 Relevance Basic Operators

Similarly, in this section, we want to discuss the soundness of the relevance logic natural
deduction rules defined in the Table 3.4.

� I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (ψ1)x, α = x + y ` (ψ2)y.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 � ψ2)α, or equivalently thatM, n[α] � ψ1 � ψ2.
Therefore, assume n[α] = a + b withM, a |= ψ1 so that we have to showM, b |= ψ2.
Let n

′

be the environment defined by:

n′(z) =


a : z = x

b : z = y

n(z) otherwise

CHAPTER 3. NATURAL DEDUCTION 53

By Lemma 29 and the side condition of the rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] = a + b = n[α] by the side condition of the rule,

(2) M, n′[x] � ψ1 since n
′

[x] = n′(x) = a.

By the induction hypothesis and (2) we get M, b � ψ2, i.e., M, n[y] � ψ2 since
n′[y] = n′(y) = b.

� E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 � ψ2)α,

ϕ1, ϕ2, . . . , ϕn ` (ψ1)β and

ϕ1, ϕ2, . . . , ϕn ` α = β + γ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ2)γ, or equivalently thatM, n[γ] � ψ2. We obtain from
the induction hypothesisM, n � (ψ1 � ψ2)α i.e.,M, n[α] � ψ1 � ψ2,M, n � (ψ1)β
i.e.,M, n[β] � ψ1 and n[α] = n[β + γ] = n[β] + n[γ]. Therefore, we can conclude
M, n[γ] � ψ2, this is equivalent toM, n � (ψ2)γ.

v I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, ψα ` ⊥.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (v ψ)α∗ , or equivalently thatM, n[α∗] �v ψ. Assume
M, n � ψα. The induction hypothesis leads to a contradiction so that we conclude
M, n 6|= ψα. This implies

M, n 6|= ψα ⇔M, n[α] 6|= ψ

⇔M, n[α∗] �v ψ by Definition

Therefore we concludeM, n[α∗] �v ψ, this is equivalent toM, n � (v ψ)α∗ .

v E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (v ψ)α,

ϕ1, ϕ2, . . . , ϕn ` ψβ and

CHAPTER 3. NATURAL DEDUCTION 54

ϕ1, ϕ2, . . . , ϕn ` α = β∗.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n[α] � ⊥ or equivalently thatM, n � ⊥.

From 1st derivation we have:

M, n � (v ψ)α ⇔M, n[α] �v ψ

⇔M, n[α∗] 6|= ψ by Definition

From 2nd derivation we have:

M, n � ψβ ⇔M, n[β] � ψ

⇔M, n[α∗] � ψ since α = β∗

Since the last two statements contradict, therefore we concludeM, n[α] � ⊥, this is
equivalent toM, n � ⊥.

v PBC: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (v ψ)α ` ⊥.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ψα∗ , or equivalently thatM, n[α∗] � ψ.

AssumeM, n � (v ψ)α, but since the result is a contradiction this implies

M, n 6|= (v ψ)α ⇔M, n[α] 6|=v ψ

⇔M, n[α∗] � ψ by Definition

Therefore we can concludeM, n[α∗] � ψ this is equivalent toM, n � ψα∗ .

3.2.5 Relevance Derived Operators

Similarly, in this section, we want to discuss the soundness of the propositional relevance
logic natural deduction rules defined in the Table 3.5.

Î

I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1)β,

CHAPTER 3. NATURAL DEDUCTION 55

ϕ1, ϕ2, . . . , ϕn ` (ψ1)γ and

ϕ1, ϕ2, . . . , ϕn ` α = β + γ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1

Î

ψ2)α, or equivalently thatM, n[α] � ψ1

Î

ψ2. We
obtain from the induction hypothesisM, n � (ψ1)β i.e.,M, n[β] � ψ1,M, n � (ψ2)γ
i.e.,M, n[γ] � ψ2 and n[α] = n[β + γ] = n[β] + n[γ]. This impliesM, n[α] � ψ1

Î

ψ2,
which is equivalent toM, n � (ψ1

Î

ψ2)α.

Î

E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1

Î

ψ2)α and

ϕ1, ϕ2, . . . , ϕn, (ψ1)x, (ψ2)y, α = x + y ` χβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � χβ, or equivalently thatM, n[β] � χ. From the induction
hypothesis we getM, n[α] � ψ1

Î

ψ2. Then there are a, b so that n[α] = a + b and
M, a |= ψ1 andM, b |= ψ2. Let n

′

be the environment defined by:

n′(z) =


a : z = x

b : z = y

n(z) otherwise

By Lemma 29 and the side condition of the rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] = n[α] = a + b = n′[x] + n′[y] by the side condition of the rule

(2) M, n′[x] � ψ1 since n
′

[x] = a and

(3) M, n′[y] � ψ2 since n
′

[y] = b.

By the induction hypothesis and (1), (2) and (3) we getM, n
′

[β] � χ i.e.,M, n � χβ
since n′[β] = n[β], this is equivalent toM, n � χβ.

Î I1: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (¬ψ2)y, α = x + y ` (ψ1)x.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.

CHAPTER 3. NATURAL DEDUCTION 56

We have to show thatM, n � (ψ1 Î ψ2)α, or equivalently thatM, n[α] � (ψ1 Î ψ2).
Therefore, assume that n[α] = n[a + b] = n[a] + n[b] with M, n[a] � ψ1 and
M, n[b] 6|= ψ2. Let n

′

be the environment defined by:

n′(m) =


a : z = x

b : z = y

n(z) otherwise

By Lemma 29 and the side condition of the rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] = n[α] = a + b = n′[x] + n′[y] by the side condition of the rule

(2) M, n′[x] � ψ1 since n
′

[x] = a,

(3) M, n′[y] 6|= ψ2 since n
′

[y] = b.

By the induction hypothesis and (1), (2) and (3) we getM, n[α] � ψ1 Î ψ2, i.e., either
M, n[α] � ψ1 orM, n[α] � ψ2. Therefore, we can concludeM, n[α] � ψ1 Î ψ2, this is
equivalent toM, n � (ψ1 Î ψ2)α.

Î I2: Analogously to ÎI1.

Î E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 Î ψ2)α,

ϕ1, ϕ2, . . . , ϕn, (ψ1)β ` χδ,

ϕ1, ϕ2, . . . , ϕn, (ψ2)γ ` χδ and

ϕ1, ϕ2, . . . , ϕn ` α = β + γ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � χδ, or equivalently that M, n[δ] � χ. We obtain
from the induction hypothesis M, n � (ψ1 Î ψ2)α i.e., M, n[α] � ψ1 Î ψ2 with
n[α] = n[β + γ] = n[β] + m[γ], i.e., either M, n[β] � ψ1 or M, n[γ] � ψ2. If we
haveM, n[β] � ψ1 i.e.,M, n � (ψ1)β, then induction hypothesis showsM, n � χδ i.e.,
M, n[δ] � χ. The second case follows analogously.

N I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (¬ψ)α ` ⊥.

CHAPTER 3. NATURAL DEDUCTION 57

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (Nψ)α∗ , or equivalently thatM, n[α∗] � Nψ. Therefore,
assumeM, n � (¬ψ)α, but since the result is a contradiction this implies

M, n 6|= (¬ψ)α ⇔M, n[α] 6|= ¬ψ

⇔M, n[α∗] �v ¬ψ by Definition

⇔M, n[α∗] � Nψ by Definition

Therefore we can concludeM, n[α∗] � Nψ this is equivalent toM, n � (Nψ)α∗ .

N E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (Nψ)α∗ ,

ϕ1, ϕ2, . . . , ϕn ` (¬ψ)β and

ϕ1, ϕ2, . . . , ϕn ` α = β∗.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n[α] � ⊥ or equivalently thatM, n � ⊥.

From 1st derivation we have:

M, n � (Nψ)α∗ ⇔M, n[α∗] � Nψ

⇔M, n[α∗] �v ¬ψ by Definition

From 2nd derivation we have:

M, n � (¬ψ)β ⇔M, n[β] � ¬ψ

⇔M, n[α∗] � ¬ψ Since α = β∗

⇔M, n[α] 6|=v ¬ψ by Definition

Since the last two statements contradict, therefore we can concludeM, n[α] � ⊥, this
is equivalent toM, n � ⊥.

N PBC: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (N¬ψ)α ` ⊥.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.

CHAPTER 3. NATURAL DEDUCTION 58

We have to show thatM, n |= ψα∗ , or equivalently thatM, n[α∗] |= ψ.

AssumeM, n � (N¬ψ)α, but since the result is a contradiction this implies

M, n 6|= (N¬ψ)α ⇔M, n[α] 6|= N¬ψ

⇔M, n[α] 6|=v ¬¬ψ

⇔M, n[α] 6|=v ψ

⇔M, n[α∗] � ψ by Definition

Therefore we concludeM, n[α∗] � ψ, this is equivalent toM, n � ψα∗ .

(I: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (ψ1)x, α = x · y ` (ψ2)y.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1 (ψ2)α, or equivalently thatM, n[α] � ψ1 (ψ2.
Therefore, assume n[α] = a · b withM, a |= ψ1 so that we have to showM, b |= ψ2.
Let n

′

be the environment defined by:

n′(z) =


a : z = x

b : z = y

n(z) otherwise

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] = a · b = n[α],

(2) M, n′[x] � ψ1 since n
′

[x] = a.

By the induction hypothesis and from (2) we getM, n′[y] � ψ2 i.e.,M, b � ψ2 since
n′[y] = n(y) = b.

(E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 (ψ2)α,

ϕ1, ϕ2, . . . , ϕn ` (ψ1)β and

ϕ1, ϕ2, . . . , ϕn ` α = β · γ.

CHAPTER 3. NATURAL DEDUCTION 59

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ2)γ, or equivalently thatM, n[γ] � ψ2. We obtain from
the induction hypothesisM, n � (ψ1 (ψ2)α i.e.,M, n[α] � ψ1 (ψ2,M, n � (ψ1)β
i.e., M, n[β] � ψ1 and n[α] = n[β · γ] = n[β] · n[γ]. Therefore, we can conclude
M, n[γ] � ψ2, this is equivalent toM, n � (ψ2)γ.

>◦ I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1)β,

ϕ1, ϕ2, . . . , ϕn ` (ψ1)γ and

ϕ1, ϕ2, . . . , ϕn ` α = β · γ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � (ψ1

Î
ψ2)α, or equivalently thatM, n[α] � ψ1

Î

ψ2. We
obtain from the induction hypothesisM, n � (ψ1)β i.e.,M, n[β] � ψ1,M, n � (ψ2)γ
i.e.,M, n[γ] � ψ2 and n[α] = n[β · γ] = n[β] · n[γ]. This impliesM, n[α] � ψ1

Î

ψ2,
which is equivalent toM, n � (ψ1

Î

ψ2)α.

>◦ E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1 >◦ ψ2)α and

ϕ1, ϕ2, . . . , ϕn, (ψ1)x, (ψ1)y, α = x · y ` χβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � χβ, or equivalently thatM, n[β] � χ. From the induction
hypothesis we getM, n[α] � ψ1 >◦ ψ2. Then there are a, b so that n[α] = a · b and
M, a |= ψ1 andM, b |= ψ2. Let n

′

be the environment defined by:

n′(z) =


a : z = x

b : z = y

n(z) otherwise

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] == n[α] = a · b = n′[x] · n′[y] by the side condition of the rule,

(2) M, n′[x] � ψ1 since n
′

[x] = a,

CHAPTER 3. NATURAL DEDUCTION 60

(3) M, n′[y] � ψ2 since n
′

[y] = b.

By the induction hypothesis and from (1), (2) and (3) we get M, n
′

[β] � χ i.e.,
M, n[β] � χ since n′[β] = n[β], this is equivalent toM, n � χβ.

>
◦ I1: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn, (¬ψ2)y, α = x · y ` (ψ1)x.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � (ψ1

>
◦ ψ2)α, or equivalently that M, n[α] � (ψ1

>
◦ ψ2).

Therefore, assume that n[α] = n[a · b] = n[a] · n[b] withM, n[a] � ψ1,M, n[b] 6|= ψ2

and n[α] = n[a · b]. Let n
′

be the environment defined by:

n′(m) =


a : m ∈ x

b : m ∈ y

n(m) otherwise

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
Furthermore we have:

(1) n′[α] = n[α] = a · b = n′[x] · n′[y] by the side condition of the rule

(2) M, n′[x] � ψ1 since n
′

[x] = a,

(3) M, n′[y] 6|= ψ2 since n
′

[y] = b.

By the induction hypothesis and from (1), (2) and (3) we getM, n[α] � ψ1

>
◦ ψ2, i.e.,

eitherM, n[α] � ψ1 orM, n[α] � ψ2. Therefore, we can concludeM, n[α] � ψ1

>
◦ ψ2,

this is equivalent toM, n � (ψ1

>
◦ ψ2)α.

>
◦ I2: Analogously to

>
◦ I1.

>
◦ E: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` (ψ1

>
◦ ψ2)α,

ϕ1, ϕ2, . . . , ϕn, (ψ1)β ` χδ,

ϕ1, ϕ2, . . . , ϕn, (ψ2)γ ` χδ and

ϕ1, ϕ2, . . . , ϕn ` α = β · γ.

CHAPTER 3. NATURAL DEDUCTION 61

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � χδ, or equivalently thatM, n[δ] � χ. We obtain from
induction hypothesisM, n � (ψ1

>
◦ ψ2)α i.e.,M, n[α] � ψ1

>
◦ ψ2 with n[α] = n[β · γ] =

n[β] · n[γ], i.e., eitherM, n[β] � ψ1 orM, n[γ] � ψ2. If we haveM, n[β] � ψ1 i.e.,
M, n � (ψ1)β, then induction hypothesis shows M, n � χδ i.e., M, n[δ] � χ. The
second case follows analogously..

3.2.6 Constant E and U

Similarly, in this section, we want to discuss the soundness of the propositional relevance
logic with E natural deduction rules defined in the Table 3.6.

E I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` x = x + α.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � Eα, or equivalently that M, n[α] � E. Let n′ be the
environment defined by

n′(y) =

n(y) : y , x

0 : y = x

By Lemma 29 and the side condition of this rule we getM, n � ϕi iffM, n′ � ϕi. The
induction hypothesis implies n′[x] = n′[x] + n′[α], and, hence, n′[α] = 0 + n[α] =

n′[x] + n′[α] = n′[x] = 0. This shows M, n
′

[α] � E, i.e., M, n[α] � E since
n′[x] = n[x], this is equivalent toM, n � Eα.

E E: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` Eα.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that β = β + α. We obtain from the induction hypothesisM, n � Eα

i.e., M, n[α] � E resp. n[α] = 0. Therefore, we can conclude n[β] = n[β] + 0 =

n[β] + n[α] = n[α + β], and, hence,M, n |= β = β + α..

U I: In this case we have the following derivations

ϕ1, ϕ2, . . . , ϕn ` x = x · α.

CHAPTER 3. NATURAL DEDUCTION 62

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � Uα, or equivalently that M, n[α] � U. Let n

′

be the
environment defined by:

n′(y) =

n(y) : y , x

1 : y = x

By Lemma 29 and the side condition of this rule we get M, n � ϕi iff M, n′ � ϕi.
The induction hypothesis implies n′[x] = n′[x] · n′[α], and, hence, n′[α] = 1 · n[α] =

n′[x] · n′[α] = n′[x] = 1. This shows M, n
′

[α] � U, i.e., M, n[α] � U since
n′[x] = n[x]. Therefore, we can concludeM, n � Uα.

U E: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` Uα.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that β = β · α. We obtain from the induction hypothesisM, n � Uα

i.e., M, n[α] � U resp. n[α] = 1. Therefore, we can conclude n[β] = n[β] · 1 =

n[β] · n[α] = n[α · β], and, hence,M, n |= β = β · α.

3.2.7 Contact Axioms

Similarly, in this section, we want to discuss the soundness of the modal relevance logic
natural deduction rules defined in the Table 3.3.

BCA0g: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` αCβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show that M, n � (¬E)α. We obtain from the induction hypothesis
M, n � αCβ i.e., n[α]Cn[β]. Therefore according the axiom C0 and the definition of
E we can conclude, we can concludeM, n � (¬E)α.

BCA1g: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` (¬E)α.

CHAPTER 3. NATURAL DEDUCTION 63

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � αCα. We obtain from the induction hypothesisM, n �

(¬E)α. Therefore according the axiom C1 and the definition of E, we can conclude
M, n � αCα.

BCA2g: In this case we have a derivation

ϕ1, ϕ2, . . . , ϕn ` αCβ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � βCα. We obtain from the induction hypothesisM, n �

αCβ i.e., n[α]Cn[β]. Therefore according the axiom C2, we can concludeM, n � βCα.

BCA3g: In this case we have following derivations

ϕ1, ϕ2, . . . , ϕn ` αCβ and

ϕ1, ϕ2, . . . , ϕn ` β = β · γ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � αCγ. We obtain from the induction hypothesisM, n �

αCβ i.e., and M, n |= β = β · γ, i.e., n[α]Cn[β] and n[β] = n[β] · n[γ]. The latter
is equivalent to n[β] ≤ n[γ]. Therefore according the axiom C3, we can conclude
M, n � αCγ.

BCA4: In this case we have following derivations

ϕ1, ϕ2, . . . , ϕn ` αC(β + γ),

ϕ1, ϕ2, . . . , ϕn, αCβ ` ψδ and

ϕ1, ϕ2, . . . , ϕn, αCγ ` ψδ.

AssumeM is a model and n be an environment so thatM, n � ϕi for i ∈ {1, 2, . . . , n}.
We have to show thatM, n � ψδ or equivalently thatM, n[δ] � ψ. We obtain from the
induction hypothesisM, n � αC(β + γ) i.e., n[α]Cn[β] + n[γ]. From axiom C4 we get
n[α]Cn[β]or n[α]Cn[γ]. If we have n[α]Cn[β], then the induction hypothesis shows
M, n |= ψδ. The second case follows analogously.

�

Chapter 4

Proofs in Natural Deduction

In this chapter, we are going to provide derivations in our calculus that show that the formu-
las used in the abbreviations of Chapter 2 are indeed equivalent.

The abbreviations used in propositional logic and modal logic are standard, thus we are
not going to prove the corresponding equivalence in this thesis. At first, we will focus on
the abbreviations defined in this thesis for propositional relevance logic and propositional
relevance logic with E. Then we will show that the axioms used in Chapter 2 to force a
frame to be a Boolean algebra can be derived in our calculus.

Please note that in the proof tree the superscript numbers on the rules name (→ I1) denote
the applications of the rules sequences and the corresponding assumptions ([ψz]1) generated
by the rule will have the same superscript. Also, the Boolean algebra axioms listed in
Lemma 1 are used as axioms on the proof tree.

64

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
65

4.1 Propositional Relevance Logic

In this section, we will be providing the natural deduction derivations for the abbreviations (PRLAbbr1 - PRLAbbr6) introduced in
propositional relevance logic.

1. (PRLAbbr1) let ϕ, ψ ∈ BMRL, then we have ` ϕ

Î

ψ↔ ¬(ϕ� ¬ψ).

Proof.

[(ϕ

Î

ψ)z]1

[(ϕ� ¬ψ)z]2 [ϕx]3 [z = x + y]3

(¬ψ)y
(� E5) [ψy]3

⊥ (¬E4)

⊥ (

Î

E3)
¬(ϕ� ¬ψ)z

(¬I2)

((ϕ

Î

ψ)→ ¬(ϕ� ¬ψ))z
(→ I1)

Please note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[¬(ϕ� ¬ψ)z]1

[¬(ϕ
Î

ψ)z]2
[ϕx]4 [ψy]5 [z = x + y]4

(ϕ

Î

ψ)z
(

Î

I7)

⊥ (¬E6)
(¬ψ)y

(¬I5)

(ϕ� ¬ψ)z
(� I4)

⊥ (¬E3)
(ϕ

Î

ψ)z
(¬PBC2)

(¬(ϕ� ¬ψ)→ (ϕ

Î

ψ))z
(→ I1)

Also, note that the side-condition in the application of the (� I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
66

2. (PRLAbbr2) let ϕ, ψ ∈ BMRL, then we have ` ϕ Î ψ↔ ¬ϕ� ψ.

Proof.

[(ϕ Î ψ)z]1
[(¬ϕ)x]2 [ϕx]4

⊥ (¬E5)
[(¬ψ)y]3 [ψy]4

⊥ (¬E6) [z = x + y]2

⊥ (ÎE4)
ψy

(¬PBC3)

(¬ϕ� ψ)z
(� I2)

(ϕ Î ψ→ (¬ϕ� ψ))z
(→ I1)

Please note that the side-condition in the application of the (� I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[(¬ψ)y]2
[(¬ϕ� ψ)z]1 [¬ϕx]3 [z = x + y]2

ψy
(� E5)

⊥ (¬E4)
ϕx

(¬PBC3)

(ϕ Î ψ)z
(ÎI12)

(¬ϕ� ψ→ ϕ Î ψ)z
(→ I1)

Also, note that the side-condition in the application of the (Î I1) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
67

3. (PRLAbbr3) let ϕ ∈ BMRL, then we have ` Nϕ↔v ¬ϕ.

Proof.

[(Nϕ)z]1 [(¬ϕ)z∗]2
DNg

z = z∗∗
⊥ (NE3)

(v ¬ϕ)z
(v I2)

(Nϕ→v ¬ϕ)z
(→ I1)

Please note that the proof has no open assumption so that its conclusion is valid by the correctness theorem.

[(v ¬ϕ)z]1 [(¬ϕ)z∗]2
DNg

z = z∗∗
⊥ (v E3)

(Nϕ)z
(NI2)

(v ¬ϕ→ Nϕ)z
(→ I1)

Also, note that the proof has no open assumption so that its conclusion is valid by the correctness theorem. �

4. (PRLAbbr4) let ϕ, ψ ∈ BMRL, then we have ` ϕ(ψ↔ N(Nϕ� Nψ).

Proof.

DMg2

x∗∗ + y∗∗ = (x∗ · y∗)∗

DNg
x = x∗∗

DNg
y = y∗∗ [z∗ = x + y]4

z∗ = x∗∗ + y∗∗ (= E)

z∗ = (x∗ · y∗)∗ (= E)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
68

[(¬ψ)y∗]7
[(ϕ(ψ)z]1 [ϕx∗]9

...
z∗ = (x∗ · y∗)∗

z = x∗ · y∗ (by Lemma 2)

ψy∗
((E11)

⊥ (¬E10)
(¬ϕ)x∗

(¬I9)

[(¬(Nϕ� Nψ))z∗]2

[(¬ψ)y∗]5

[(Nϕ)x]4

...
(¬ϕ)x∗

(¬I9)
DNg

x = x∗∗
⊥ (NE8)
ψy∗

(¬PBC7)

⊥ (¬E6)
(Nψ)y

(NI5)

(Nϕ� Nψ)z∗
(� I4)

⊥ (¬E3)
N(Nϕ� Nψ)z

(NI2)

(ϕ(ψ→ N(Nϕ� Nψ))z
(→ I1)

Please note that the side-condition in the application of the (� I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

DMg1

x∗∗ · y∗∗ = (x∗ + y∗)∗

DNg
x = x∗∗

DNg
y = y∗∗ [z = x · y]6

z = x∗∗ · y∗∗ (= E)

z = (x∗ + y∗)∗ (= E)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
69

[(Nϕ� Nψ)z∗]4

DNg
x∗∗ = x [(¬ψ)x∗∗]10

(¬ϕ)x
(= E) [ϕx]6

⊥ (¬E11)
(Nϕ)x∗

(NI10)
...

z∗ = x∗ + y∗ (by Lemma 2)

(Nψ)y∗
(� E9)

[(N(Nϕ� Nψ))z]1

[¬(ϕ(ψ)z]2

...
(Nψ)y∗

(� E9)

DNg
y = y∗∗ [(¬ψ)y]7

(¬ψ)y∗∗
(= E)

DNg
y∗ = y∗∗∗

⊥ (NE8)
ψy

(¬PBC7)

(ϕ(ψ)z
((I6)

⊥ (¬E5)
(¬(Nϕ� Nψ))z∗

(¬I4)
DNg

z = z∗∗
⊥ (NE3)

(ϕ(ψ)z
(¬PBC2)

(N(Nϕ� Nψ)→ ϕ(ψ)z
(→ I1)

Also, note that the side-condition in the application of the ((I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
70

5. (PRLAbbr5) let ϕ, ψ ∈ BMRL, then we have ` ϕ >◦ ψ↔ ¬(ϕ(¬ψ).

Proof.

[(ϕ >◦ ψ)z]
1

[(ϕ(¬ψ)z]2 [ϕx]3 [z = x · y]3

(¬ψ)y
((E5) [ψy]3

⊥ (¬E4)

⊥
(>◦E3)

¬(ϕ(¬ψ)z
(¬I2)

((ϕ >◦ ψ)→ ¬(ϕ(¬ψ))z
(→ I1)

Please note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[¬(ϕ(¬ψ)z]1

[¬(ϕ >◦ ψ)z]2

[ϕx]4 [ψy]5 [z = x · y]4

(ϕ >◦ ψ)z
(>◦I7)

⊥ (¬E6)
(¬ψ)y

(¬I5)

(ϕ(¬ψ)z
((I4)

⊥ (¬E3)

(ϕ >◦ ψ)z
(¬PBC2)

(¬(ϕ(¬ψ)→ (ϕ >◦ ψ))z
(→ I1)

Also, note that the side-condition in the application of the ((I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
71

6. (PRLAbbr6) let ϕ, ψ ∈ BMRL, then we have ` ϕ

>
◦ ψ↔ ¬ϕ(ψ.

Proof.

[(ϕ

>
◦ ψ)z]1

[(¬ϕ)x]2 [ϕx]4

⊥ (¬E5)
[(¬ψ)y]3 [ψy]4

⊥ (¬E6) [z = x · y]2

⊥
(

>
◦ E4)

ψy
(¬PBC3)

(¬ϕ(ψ)z
((I2)

(ϕ

>
◦ ψ→ (¬ϕ(ψ))z

(→ I1)

Please note that the side-condition in the application of the ((I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[(¬ψ)y]2
[(¬ϕ(ψ)z]1 [¬ϕx]3 [z = x · y]2

ψy
((E5)

⊥ (¬E4)
ϕx

(¬PBC3)

(ϕ

>
◦ ψ)z

(

>
◦ I12)

(¬ϕ(ψ→ ϕ

>
◦ ψ)z

(→ I1)

Also, note that the side-condition in the application of the (
>
◦ I1) rule is satisfied. Furthermore, the proof has no open assumption so

that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
72

4.2 Propositional Relevance Logic with E

In this section, we will be providing the natural deduction derivations of the abbreviation PRLEAbbr1 used in propositional relevance
logic with E.

1. (PRLEAbbr1) let U, E ∈ BMRL, then we have ` U ↔ NE.

Proof.

[(¬E)z∗]2

DNg
x∗∗ = x

DMg2

(x∗ · z)∗ = x∗∗ + z∗

[Uz]1

x∗ = x∗ · z (UE5) x∗∗ = x∗∗ (= I)

x∗∗ = (x∗ · z)∗ (= E)

x∗∗ = x∗∗ + z∗ (= E)

x = x + z∗ (= E)

Ez∗
(EI4)

⊥ (¬E3)
(NE)z

(NI2)

(U → NE)z
(→ I1)

Please note that the side-condition in the application of the (E I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

DNg
x∗∗ = x

DNg
z∗∗ = z

DMg1

(x∗ + z∗)∗ = x∗∗ · z∗∗

[Ez∗]4

x∗ = x∗ + z∗ (EE6) x∗∗ = x∗∗ (= I)

x∗∗ = (x∗ + z∗)∗ (= E)

x∗∗ = x∗∗ · z∗∗ (= E)
x = x · z (= E)

Uz
(UI5)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
73

[(NE)z]1

[(¬U)z]2

...
Uz

(UI5)

⊥ (¬E5)
¬Ez∗

(¬I4)
DNg

z = z∗∗
⊥ (NE3)
Uz

(¬PBC2)

(NE → U)z
(→ I1)

Also, note that the side-condition in the application of the (U I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

In addition to the proof above, now we are going to natural deduction proof of the E ↔ NU as well.

2. let U, E ∈ BMRL, then we have ` E ↔ NU.

Proof.

[(¬U)z∗]2

DNg
x∗∗ = x

DMg1

(x∗ + z)∗ = x∗∗ · z∗

[Ez]1

x∗ = x∗ + z (EE5) x∗∗ = x∗∗ (= I)

x∗∗ = (x∗ + z)∗ (= E)

x∗∗ = x∗∗ · z∗ (= E)

x = x · z∗ (= E)

Uz∗
(UI4)

⊥ (¬E3)
(NU)z

(NI2)

(E → NU)z
(→ I1)

Please note that the side-condition in the application of the (U I) rule is satisfied. Furthermore, the proof has no open assumption so

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
74

that its conclusion is valid by the correctness theorem.

DNg
x∗∗ = x

DNg
z∗∗ = z

DMg2

(x∗ · z∗)∗ = x∗∗ + z∗∗

[Uz∗]4

x∗ = x∗ · z∗ (UE7) x∗∗ = x∗∗ (= I)

x∗∗ = (x∗ · z∗)∗ (= E)

x∗∗ = x∗∗ + z∗∗ (= E)

x = x + z (= E)

Ez
(EI6)

[(NU)z]1

[(¬E)z]2

...
Ez

(EI6)

⊥ (¬E5)
¬Uz∗

(¬I4)
DNg

z = z∗∗
⊥ (NE3)
Ez

(¬PBC2)

(NU → E)z
(→ I1)

Also, note that the side-condition in the application of the (E I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

4.3 Boolean Algebra Axioms in PRLE-frame

In this section, we are going to present the natural deduction derivations for the Boolean algebra axioms mentioned in Theorem 1. For
Commutativity of

Î

, Commutativity of Î, Identity for

Î

and Identity for >◦ axioms we have shown that the axioms are valid for both side.
We will start with the derivation of the Lemma 6.

1. (Lemma 6) let ϕ ∈ BMRL, then we have ` ϕ↔vv ϕ.

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
75

Proof.

[(v ϕ)z∗]2

DNg
z = z∗∗ [ϕz]1

ϕz∗∗
(= E)

DNg
z∗ = z∗∗∗

⊥ (v E3)
vv ϕz

(v I2)

(ϕ→vv ϕ)z
(→ I1)

Please note that the proof has no open assumption so that its conclusion is valid by the correctness theorem.

[vv ϕz]1 [v ϕz∗]2
DNg

z = z∗∗
⊥ (v E3)
ϕz

(v PBC2)

(vv ϕ→ ϕ)z
(→ I1)

Also, note that the proof has no open assumption so that its conclusion is valid by the correctness theorem. �

2. (Commutativity of

Î

) let ϕ, ψ ∈ BMRL, then we have ` ϕ

Î

ψ↔ ψ
Î

ϕ.

Proof.

[(ϕ

Î

ψ)z]1
[ψy]2 [ϕx]2

Commutativity o f +
x + y = y + x [z = x + y]2

z = y + x (= E)

(ψ

Î

ϕ)z
(

Î

I3)

(ψ
Î

ϕ)z
(

Î

E2)

(ϕ
Î

ψ→ ψ

Î

ϕ)z
(→ I1)

Please note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
76

that its conclusion is valid by the correctness theorem.

[(ψ

Î

ϕ)z]1
[ϕx]2 [ψy]2

Commutativity o f +
y + x = x + y [z = y + x]2

z = x + y (= E)

(ϕ

Î

ψ)z
(

Î

I3)

(ϕ

Î

ψ)z
(

Î

E2)

(ψ

Î

ϕ→ ϕ

Î

ψ)z
(→ I1)

Also, note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

3. (Commutativity of Î) let ϕ, ψ ∈ BMRL, then we have ` ϕ Î ψ↔ ψ Î ϕ.

Proof.

[(ϕ Î ψ)z]1 [ϕx]3

[(¬ψ)y]2 [ψy]3

⊥ (¬E5)
ϕx

(¬PBC4)

Commutativity o f +
y + x = x + y [z = y + x]2

z = x + y (= E)
ϕx

(ÎE3)

(ψ Î ϕ)z
(ÎI22)

(ϕ Î ψ→ ψ Î ϕ)z
(→ I1)

Please note that the side-condition in the application of the (Î I2) rule is satisfied. Furthermore, the proof has no open assumption

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
77

so that its conclusion is valid by the correctness theorem.

[(ψ Î ϕ)z]1 [ψy]3

[(¬ϕ)x]2 [ϕx]3

⊥ (¬E5)
ψy

(¬PBC4)

Commutativity o f +
y + x = x + y [z = y + x]2

z = x + y (= E)

ψy
(ÎE3)

(ϕ Î ψ)z
(ÎI22)

(ψ Î ϕ→ ϕ Î ψ)z
(→ I1)

Also, note that the side-condition in the application of the (Î I2) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

�

4. (Identity for

Î

) let ϕ, E ∈ BMRL, then we have ` ϕ↔ ϕ

Î

E.

Proof.

[ϕz]1

Complements f or ·
0 = z · z∗

Identity f or +

x = x + 0 x = x (= I)
x = x + 0 (= E)

x = x + z · z∗ (= E)

Ez·z∗
(EI3)

Complements f or ·
0 = z · z∗

Identity f or +

z = z + 0 z = z (= I)
z = z + 0 (= E)

z = z + z · z∗ (= E)

(ϕ

Î

E)z
(

Î

I2)

(ϕ→ ϕ

Î

E)z
(→ I1)

Please note that the side-condition in the application of the (E I) rule is satisfied. Furthermore, the proof has no open assumption so

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
78

that its conclusion is valid by the correctness theorem.

[(ϕ

Î

E)z]1

[Ey]3

x = x + y (EE5)
x + y = x (= E)

[z = x + y]3

x + y = z (= E)
z = x (= E)

z∗ = x∗ (by Lemma 2) [(v ϕ)z∗]2

(v ϕ)x∗
(= E)

DNg
x = x∗∗ [ϕx]3

ϕx∗∗
(= E)

DNg
x∗ = x∗∗∗

⊥ (v E4)

⊥ (

Î

E3)
ϕz

(v PBC2)

(ϕ

Î

E → ϕ)z
(→ I1)

Also, note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
79

�

5. (Identity for >◦) let ϕ,U ∈ BMRL, then we have ` ϕ↔ ϕ >◦ U.

Proof.

[ϕz]1

Complements f or +

1 = z + z∗

Identity f or ·
x = x · 1 x = x (= I)

x = x · 1 (= E)

x = x · (z + z∗) (= E)

Uz+z∗
(UI3)

Complements f or +

1 = z + z∗

Identity f or ·
z = z · 1 z = z (= I)

z = z · 1 (= E)

z = z · (z + z∗) (= E)

(ϕ >◦ U)z
(>◦I2)

(ϕ→ ϕ >◦ U)z
(→ I1)

Please note that the side-condition in the application of the (U I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[(ϕ >◦ U)z]1

[Uy]3

x = x · y (UE5)
x · y = x (= E)

[z = x · y]3

x · y = z (= E)
z = x (= E)

z∗ = x∗ (by Lemma 2) [(v ϕ)z∗]2

(v ϕ)x∗
(= E)

DNg
x = x∗∗ [ϕx]3

ϕx∗∗
(= E)

DNg
x∗ = x∗∗∗

⊥ (v E4)

⊥
(>◦E3)

ϕz
(v PBC2)

(ϕ >◦ U → ϕ)z
(→ I1)

Also, note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
80

�

6. (Distributivity of

Î

on >◦) let ϕ, ψ, χ ∈ BMRL, then we have ` ϕ

Î

(ψ >◦ χ)→ (ϕ

Î

ψ) >◦ (ϕ

Î

χ).

Proof.
Distributivity o f + over ·
x + (y · z) = (x + y) · (x + z)

[q = y · z]3 [p = x + q]2

p = x + (y · z) (= E)

p = (x + y) · (x + z) (= E)

[ϕx]2 [ψy]3 x + y = x + y (= I)

(ϕ

Î

ψ)x+y
(

Î

I5)
[ϕx]2 [χz]3 x + z = x + z (= I)

(ϕ

Î

χ)x+z
(

Î

I6)
...

p = (x + y) · (x + z) (= E)

((ϕ

Î

ψ) >◦ (ϕ

Î

χ))p
(

Î

I4)

[(ϕ

Î

(ψ >◦ χ))p]1

[(ψ >◦ χ)q]3

...
((ϕ

Î

ψ) >◦ (ϕ

Î

χ))p
(

Î

I4)

((ϕ

Î

ψ) >◦ (ϕ
Î

χ))p
(>◦E3)

((ϕ

Î

ψ) >◦ (ϕ

Î

χ))p
(

Î

E2)

(ϕ

Î

(ψ >◦ χ)→ (ϕ

Î

ψ) >◦ (ϕ

Î

χ))p
(→ I1)

Please note that the side-condition in the application of the (
Î
E and >◦ E) rules are satisfied. Furthermore, the proof has no open

assumption so that its conclusion is valid by the correctness theorem. �

7. (Distributivity of >◦ on

Î

) let ϕ, ψ, χ ∈ BMRL, then we have ` ϕ >◦ (ψ

Î

χ)→ (ϕ >◦ ψ)

Î

(ϕ >◦ χ).

Proof.
Distributivity o f + over ·
x · (y + z) = (x · y) + (x · z)

[q = y + z]3 [p = x · q]2

p = x · (y + z) (= E)

p = (x · y) + (x · z) (= E)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
81

[ϕx]2 [ψy]3 x + y = x + y (= I)

(ϕ >◦ ψ)x·y
(>◦I5)

[ϕx]2 [χz]3 x + z = x + z (= I)

(ϕ >◦ χ)x·z
(>◦I6)

...
p = (x · y) + (x · z) (= E)

((ϕ >◦ ψ)

Î

(ϕ >◦ χ))p
(

Î

I4)

[(ϕ >◦ (ψ

Î

χ))p]1

[(ψ

Î

χ)q]3

...
((ϕ >◦ ψ)

Î

(ϕ >◦ χ))p
(

Î

I4)

((ϕ >◦ ψ)

Î

(ϕ >◦ χ))p
(

Î

E3)

((ϕ >◦ ψ)

Î

(ϕ >◦ χ))p
(>◦E2)

(ϕ >◦ (ψ

Î

χ)→ (ϕ >◦ ψ)

Î

(ϕ >◦ χ))p
(→ I1)

Please note that the side-condition in the application of the (>◦ E and

Î

E) rules are satisfied. Furthermore, the proof has no open
assumption so that its conclusion is valid by the correctness theorem. �

8. (Complements for

Î

) let ϕ, E ∈ BMRL, then we have ` ϕ→ > >◦ (U ∧ (ϕ
Î

Nϕ)).

Proof.

Complements f or +

1 = z + z∗

Identity f or ·
x = x · 1 x = x (= I)

x = x · 1 (= E)

x = x · (z + z∗) (= E)

Uz+z∗
(UI4)

[ϕz]1

[ϕz]1

DNg
z∗∗ = z [(¬ϕ)z∗∗]6

(¬ϕ)z
(= E)

⊥ (¬E7)
(Nϕ)z∗

(NI6) z + z∗ = z + z∗ (= I)

(ϕ

Î

Nϕ)z+z∗
(

Î

I5)

(U ∧ (ϕ

Î

Nϕ))z+z∗
(∧I3)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
82

...
(U ∧ (ϕ

Î

Nϕ))z+z∗
(∧I3)

Complements f or +

1 = z + z∗

Identity f or ·
z = 1 · z z = z (= I)

z = 1 · z (= E)

z = (z + z∗) · z (= E)

(> >◦ (U ∧ (ϕ

Î

Nϕ)))z
(>◦I2)

(ϕ→ > >◦ (U ∧ (ϕ

Î

Nϕ)))z
(→ I1)

Please note that the side-condition in the application of the (U I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

9. (Complements for >◦) let ϕ,U ∈ BMRL, then we have ` ϕ→ >

Î

(E ∧ (ϕ >◦ Nϕ)).

Proof.

Complements f or ·
0 = z · z∗

Identity f or +

x = x + 0 x = x (= I)
x = x + 0 (= E)

x = x + (z · z∗) (= E)

Ez·z∗
(EI4)

[ϕz]1

[ϕz]1

DNg
z∗∗ = z [(¬ϕ)z∗∗]6

(¬ϕ)z
(= E)

⊥ (¬E7)
(Nϕ)z∗

(NI6) z · z∗ = z · z∗ (= I)

(ϕ >◦ Nϕ)z·z∗
(>◦I5)

(E ∧ (ϕ >◦ Nϕ))z·z∗
(∧I3)

...
(E ∧ (ϕ >◦ Nϕ))z·z∗

(∧I3)

Complements f or ·
0 = z · z∗

Identity f or +

z = z + 0 z = z (= I)
z = z + 0 (= E)

z = z + (z · z∗) (= E)

(>

Î

(E ∧ (ϕ >◦ Nϕ)))z
(

Î

I2)

(ϕ→ >

Î

(E ∧ (ϕ >◦ Nϕ)))z
(→ I1)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
83

Please note that the side-condition in the application of the (E I) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

4.4 Additional Boolean Algebra Axioms in PRLE-frame

In this section, we are going to present some additional properties such as Commutativity of >◦,

>
◦ , and Associativity for

Î

, Î, >◦,

>
◦ of

Boolean algebra as follows:

1. (Commutativity of >◦) let ϕ, ψ ∈ BMRL, then we have ` ϕ >◦ ψ↔ ψ >◦ ϕ.

Proof.

[(ϕ >◦ ψ)z]1

[ψy]2 [ϕx]2

Commutativity o f ·
x · y = y · x [z = x · y]2

z = y · x (= E)

(ψ >◦ ϕ)z
(>◦I3)

(ψ >◦ ϕ)z
(>◦E2)

(ϕ >◦ ψ→ ψ >◦ ϕ)z
(→ I1)

Please note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

[(ψ >◦ ϕ)z]1

[ϕx]2 [ψy]2

Commutativity o f ·
y · x = x · y [z = y · x]2

z = x · y (= E)

(ϕ >◦ ψ)z
(>◦I3)

(ϕ >◦ ψ)z
(>◦E2)

(ψ >◦ ϕ→ ϕ >◦ ψ)z
(→ I1)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
84

Also, note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

2. (Commutativity of

>
◦) let ϕ, ψ ∈ BMRL, then we have ` ϕ

>
◦ ψ↔ ψ

>
◦ ϕ.

Proof.

[(ϕ

>
◦ ψ)z]1 [ϕy]3

[(¬ψ)x]2 [ψx]3

⊥ (¬E5)
ϕy

(¬PBC4)

Commutativity o f ·
x · y = y · x [z = x · y]2

z = y · x (= E)
ϕy

(
>
◦ E3)

(ψ

>
◦ ϕ)z

(

>
◦ I22)

(ϕ

>
◦ ψ→ ψ

>
◦ ϕ)z

(→ I1)

Please note that the side-condition in the application of the (

>
◦ I2) rule is satisfied. Furthermore, the proof has no open assumption so

that its conclusion is valid by the correctness theorem.

[(ψ

>
◦ ϕ)z]1 [ψy]3

[(¬ϕ)x]2 [ϕx]3

⊥ (¬E5)
ψy

(¬PBC4)

Commutativity o f ·
x · y = y · x [z = x · y]2

z = y · x (= E)

ψy
(

>
◦ E3)

(ϕ
>
◦ ψ)z

(

>
◦ I22)

(ψ
>
◦ ϕ→ ϕ

>
◦ ψ)z

(→ I1)

Also, note that the side-condition in the application of the (

>
◦ I2) rule is satisfied. Furthermore, the proof has no open assumption so

that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
85

3. (Associativity for

Î

) let ϕ, ψ, χ ∈ BMRL, then we have ` (ϕ

Î

ψ)

Î

χ↔ ϕ

Î

(ψ

Î

χ).

Proof.
Ass1

(x + y) + z = x + (y + z)
[q = x + y]3 [p = q + z]2

p = (x + y) + z (= E)

p = x + (y + z) (= E)

[((ϕ

Î

ψ)

Î

χ)p]1
[(ϕ

Î

ψ)q]2
[ϕx]3

[ψy]3 [χz]2 y + z = y + z (= I)

(ψ

Î

χ)y+z
(

Î

I5)
...

p = x + (y + z) (= E)

(ϕ

Î

(ψ

Î

χ))p
(

Î

I4)

(ϕ

Î

(ψ

Î

χ))p
(

Î
E3)

(ϕ

Î

(ψ

Î

χ))p
(

Î

E2)

((ϕ

Î

ψ)

Î

χ→ ϕ

Î

(ψ

Î

χ))p
(→ I1)

Please note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

Ass1

x + (y + z) = (x + y) + z
[q = y + z]3 [p = x + q]2

p = x + (y + z) (= E)

p = (x + y) + z (= E)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
86

[(ϕ

Î

(ψ

Î

χ))p]1
[(ψ

Î

χ)q]2
[χz]3

[ψy]3 [ϕx]2 y + x = y + x (= I)

(ϕ

Î

ψ)x+y
(

Î

I5)
...

p = (x + y) + z (= E)

((ϕ

Î

ψ)

Î

χ)p
(

Î
I4)

((ϕ

Î

ψ)

Î

χ)p
(

Î

E3)

((ϕ

Î

ψ)

Î

χ)p
(

Î

E2)

(ϕ

Î

(ψ

Î

χ)→ (ϕ

Î

ψ)

Î

χ)p
(→ I1)

Also, note that the side-condition in the application of the (

Î

E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

4. (Associativity for Î) let ϕ, ψ, χ ∈ BMRL, then we have ` (ϕ Î ψ) Î χ↔ ϕ Î (ψ Î χ).

Proof.

[(ϕ Î ψ)x+y]4

[(¬ϕ)x]2 [ϕx]5

⊥ (¬E7)
χz

(¬PBC6)

[(¬ψ)y]3 [ψy]5

⊥ (¬E9)
χz

(¬PBC8) x + y = x + y (= I)

χz
(ÎE5)

[((ϕ Î ψ) Î χ)p]1

...
χz

(ÎE5) [χz]4

Ass1

x + (y + z) = (x + y) + z
[q = y + z]3 [p = x + q]2

p = x + (y + z) (= E)

p = (x + y) + z (= E)

χz
(ÎE4)

(ψ Î χ)q
(ÎI13)

(ϕ Î (ψ Î χ))p
(ÎI12)

((ϕ Î ψ) Î χ→ ϕ Î (ψ Î χ))p
(→ I1)

Please note that the side-condition in the application of the (Î I1) rule is satisfied. Furthermore, the proof has no open assumption

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
87

so that its conclusion is valid by the correctness theorem.

[(ψ Î χ)y+z]4

[(¬ψ)y]3 [ψy]5

⊥ (¬E7)
ϕx

(¬PBC6)

[(¬χ)z]2 [χz]5

⊥ (¬E9)
ϕx

(¬PBC8) y + z = y + z (= I)

ϕx
(ÎE5)

[(ϕ Î (ψ Î χ))p]1

...
ϕx

(ÎE5) [ϕx]4

Ass1

(x + y) + z = x + (y + z)
[q = x + y]3 [p = q + z]2

p = (x + y) + z (= E)

p = x + (y + z) (= E)

ϕx
(ÎE4)

(ϕ Î ψ)q
(ÎI13)

((ϕ Î ψ) Î χ)p
(ÎI12)

(ϕ Î (ψ Î χ)→ (ϕ Î ψ) Î χ)p
(→ I1)

Also, note that the side-condition in the application of the (Î I1) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

5. (Associativity for >◦) let ϕ, ψ, χ ∈ BMRL, then we have ` (ϕ >◦ ψ) >◦ χ↔ ϕ >◦ (ψ >◦ χ).

Proof.
Ass2

(x · y) · z = x · (y · z)
[q = x · y]3 [p = q · z]2

p = (x · y) · z (= E)

p = x · (y · z) (= E)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
88

[((ϕ >◦ ψ) >◦ χ)p]1
[(ϕ >◦ ψ)q]2

[ϕx]3

[ψy]3 [χz]2 y + z = y + z (= I)

(ψ >◦ χ)y·z
(>◦I5)

...
p = x · (y · z) (= E)

(ϕ >◦ (ψ >◦ χ))p
(>◦I4)

(ϕ >◦ (ψ >◦ χ))p
(>◦E3)

(ϕ >◦ (ψ >◦ χ))p
(>◦E2)

((ϕ >◦ ψ) >◦ χ→ ϕ >◦ (ψ >◦ χ))p
(→ I1)

Please note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem.

Ass2

x · (y · z) = (x · y) · z
[q = y · z]3 [p = x · q]2

p = x · (y · z) (= E)

p = (x · y) · z (= E)

[(ϕ >◦ (ψ >◦ χ))p]1
[(ψ >◦ χ)q]2

[χz]3

[ϕx]2 [ψy]3 y + x = y + x (= I)

(ϕ >◦ ψ)x·y
(>◦I5)

...
p = (x · y) · z (= E)

((ϕ >◦ ψ) >◦ χ)p
(>◦I4)

((ϕ >◦ ψ) >◦ χ)p
(>◦E3)

((ϕ >◦ ψ) >◦ χ)p
(>◦E2)

(ϕ >◦ (ψ >◦ χ)→ (ϕ >◦ ψ) >◦ χ)p
(→ I1)

Also, note that the side-condition in the application of the (>◦ E) rule is satisfied. Furthermore, the proof has no open assumption so
that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
89

6. (Associativity for

>
◦) let ϕ, ψ, χ ∈ BMRL, then we have ` (ϕ

>
◦ ψ)

>
◦ χ↔ ϕ

>
◦ (ψ

>
◦ χ).

Proof.

[(ϕ

>
◦ ψ)x·y]4

[(¬ϕ)x]2 [ϕx]5

⊥ (¬E7)
χz

(¬PBC6)

[(¬ψ)y]3 [ψy]5

⊥ (¬E9)
χz

(¬PBC8) x · y = x · y (= I)
χz

(
>
◦ E5)

[((ϕ

>
◦ ψ)

>
◦ χ)p]1

...
χz

(

>
◦ E5) [χz]4

Ass2

x · (y · z) = (x · y) · z
[q = y · z]3 [p = x · q]2

p = x · (y · z) (= E)

p = (x · y) · z (= E)

χz
(

>
◦ E4)

(ψ

>
◦ χ)q

(

>
◦ I23)

(ϕ

>
◦ (ψ

>
◦ χ))p

(

>
◦ I22)

((ϕ

>
◦ ψ)

>
◦ χ→ ϕ

>
◦ (ψ

>
◦ χ))p

(→ I1)

Please note that the side-condition in the application of the (

>
◦ I2) rule is satisfied. Furthermore, the proof has no open assumption so

that its conclusion is valid by the correctness theorem.

[(ψ

>
◦ χ)y·z]4

[(¬ψ)y]3 [ψy]5

⊥ (¬E7)
ϕx

(¬PBC6)

[(¬χ)z]2 [χz]5

⊥ (¬E9)
ϕx

(¬PBC8)
Commutativity o f ·

y · z = y · z
ϕx

(

>
◦ E5)

[(ϕ

>
◦ (ψ

>
◦ χ))p]1

...
ϕx

(
>
◦ E5) [ϕx]4

Ass2

(x · y) · z = x · (y · z)
[q = x · y]3 [p = q · z]2

p = (x · y) · z (= E)

p = x · (y · z) (= E)

ϕx
(

>
◦ E4)

(ϕ

>
◦ ψ)q

(

>
◦ I13)

((ϕ

>
◦ ψ)

>
◦ χ)p

(

>
◦ I12)

(ϕ

>
◦ (ψ

>
◦ χ)→ (ϕ

>
◦ ψ)

>
◦ χ)p

(→ I1)

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
90

Also, note that the side-condition in the application of the (

>
◦ I1) rule is satisfied. Furthermore, the proof has no open assumption so

that its conclusion is valid by the correctness theorem. �

4.5 Boolean Contact Algebra Axioms in MRL-frame

Now we are going provide the natural deduction derivations of the Boolean contact algebra axioms mentioned in Theorem 2.

1. (BCAx0) let E ∈ BMRL, then we have [C]¬E.

Proof.
[zCy]1

(¬E)y
(BCA0g

2)

([C]¬E)z
([C]I1)

Please note that the side-condition in the application of the ([C] I) rule is satisfied. Furthermore, the proof has no open assumption
so that its conclusion is valid by the correctness theorem. �

2. (BCAx1) let E, ϕ ∈ BMRL, then we have ¬E → ([C]ϕ→ ϕ).

Proof.

[([C]ϕ)z]2
[(¬E)z]1

zCz (BCA1g
4)

ϕz
([C]E3)

([C]ϕ→ ϕ)z
(→ I2)

(¬E → ([C]ϕ→ ϕ))z
(→ I1)

Please note that the proof has no open assumption so that its conclusion is valid by the correctness theorem. �

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
91

3. (BCAx2) let ϕ ∈ BMRL, then we have ϕ→ [C]〈C〉ϕ.

Proof.
[zCy]2

yCz (BCA2g
4) [ϕz]1

(〈C〉ϕ)z
(〈C〉I3)

([C]〈C〉ϕ)z
([C]I2)

(ϕ→ [C]〈C〉ϕ)z
(→ I1)

Please note that the side-condition in the application of the ([C] I) rule is satisfied. Furthermore, the proof has no open assumption
so that its conclusion is valid by the correctness theorem. �

4. (BCAx3) let >, ϕ ∈ BMRL, then we have [C]ϕ→ [C](>(ϕ).

Proof.

[([C]ϕ)z]1
[zCy]2

[y = x · u]3

x · u = y (= E)

Ass2

x · (u · u) = x · u · u

Idm2
u = u · u x · u = x · u (= I)

x · u = x · (u · u) (= E)

x · u = x · u · u (= E)
y = y · u (= E)

zCu (BCA3g
5)

ϕu
([C]E4)

(>(ϕ)y
((I3)

([C](>(ϕ))z
([C]I2)

([C]ϕ→ [C](>(ϕ))z
(→ I1)

Please note that the side-condition in the application of the ([C] I and(I) rules are satisfied. Furthermore, the proof has no open
assumption so that its conclusion is valid by the correctness theorem. �

5. (BCAx4) let ϕ ∈ BMRL, then we have ϕ→ [C](¬〈C〉ϕ� 〈C〉ϕ).

C
H

A
PT

E
R

4.
PR

O
O

FS
IN

N
A

T
U

R
A

L
D

E
D

U
C

T
IO

N
92

Proof.

[y = u + v]3 [zCy]2

zC(u + v) (= E)

[(¬〈C〉ϕ)u]3

[zCu]4

uCz (BCA2g
8) [ϕz]1

(〈C〉ϕ)u
(〈C〉I7)

⊥ (¬E6)
(〈C〉ϕ)v

(¬PBC5)

[zCv]4

vCz (BCA2g
10) [ϕz]1

(〈C〉ϕ)v
(〈C〉I9)

(〈C〉ϕ)v
(BCA4

4)

(¬〈C〉ϕ� 〈C〉ϕ)y
(� I3)

([C](¬〈C〉ϕ� 〈C〉ϕ))z
([C]I2)

(ϕ→ [C](¬〈C〉ϕ� 〈C〉ϕ))z
(→ I1)

Please note that the side-condition in the application of the ([C] I and� I) rules are satisfied. Furthermore, the proof has no open
assumption so that its conclusion is valid by the correctness theorem. �

Chapter 5

The Coq Proof Assistant

In this chapter, we will discuss the features of Coq used in this thesis. Coq is an interactive
theorem prover, and a typed functional programming language. GALLINA is the specifi-
cation language of Coq, based on the Calculus of Inductive Constructions (CIC). CIC is a
higher order logic and typed functional programming language. Mathematical equations,
theories, axioms, and examples can be proven formally in Coq. The Coq type checking
algorithm validates the correctness of definitions and the proofs. Coq enriches with inbuilt
tactics for mathematical proofs, advanced notations, proof search, and modular function
development to design a framework. It also supports to write user-defined tactics in Ltac
language. More details can be found in [10, 21].

5.1 Sort

Coq object like terms, functions, proofs, and types has its own type, also referred as sorts.
It classifies sorts into three categories, i.e., set, prop, and type. Type hierarchical scope of
those sorts is like the hierarchy of the universe. Coq commands Check, and Print are used
to display the type of each Coq object, and its definition. In the following subsections, we
provide a brief description of these three sorts.

5.1.1 Set

In Coq set is the universe of all programs, it is the sub-universe of the type universe. It also
includes natural number type (nat), and Boolean types (bool).

Check Set. Set

: Type

93

CHAPTER 5. THE COQ PROOF ASSISTANT 94

The natural number nat definition is an inductive definition in Coq, while it define 0, but
others are the successors of zero (0) denoted by S . Therefore, one denotes by S (0).

Check nat.

Print nat.

Check 0.

Check S(0).

nat

: Set

Inductive nat : Set := O : nat | S : nat ->
nat

0
: nat

1

: nat

The boolean type bool definition is an inductive definition in Coq, with two constants true,
and false.

Check bool.

Print bool.

bool

: Set

Inductive bool : Set := true : bool | false

: bool

It is worth mentioning that every Coq statement ends with a period.

5.1.2 Prop

In Coq, prop is the type of all propositions, and every proof, is a prop. It is the sub-universe
of the type universe.

Check Prop. Prop

: Type

For example, binary function less than (lt) takes two natural numbers, and return type prop

i.e., the witness. A shorthand notation (<) denotes lt function.

Check lt.

Check lt 1 2.

Check 1 < 2.

lt

: nat -> nat -> Prop

1 < 2

: Prop

1 < 2

: Prop

CHAPTER 5. THE COQ PROOF ASSISTANT 95

5.1.3 Type

In Coq, type is the topmost universe that includes set, and prop sub-universes. It is the
abstract type.

Check Type. Type

: Type

For example, binary function less than (lt) return an abstract type.

Check (nat -> nat -> Prop). nat -> nat -> Prop

: Type

It is worth mentioning that we use only type, and prop sorts in this thesis. Thus, we
concentrate only on type, and prop in the remainder of this chapter.

5.2 Logical Operators

Now that we have seen some primitive features of Coq, at this point we want to concentrate
on inbuilt logical operators such as conjunction (∧), disjunction (∨), not (v), implication
(→), and material equivalence (↔). Coq command Locate is used to display the definition
of any notations.

Conjunction operator on two props is defined by the binary function and in Coq. A shorthand
notation (∧) denote the operator.

Locate "/\". Notation

"A /\ B" := and A B : type_scope (default

interpretation)

The disjunction operator on two props is defined by the binary function or in Coq. A
shorthand notation (∨) denote the operator.

Locate "\/". Notation

"A \/ B" := or A B : type_scope (default

interpretation)

Negation operator on a prop is defined by the unary function not in Coq. A shorthand
notation (v) denote the operator.

CHAPTER 5. THE COQ PROOF ASSISTANT 96

Locate "v". Notation

"v x":= not x : type_scope (default

interpretation)

Implication operator relates two props is defined by forall keyword in Coq. A shorthand
notation (→) denote the operator.

Locate "->". Notation

"A -> B" := forall _ : A, B : type_scope

(default interpretation)

Material equivalence operator relates two props is defined by iff keyword in Coq. A short-
hand notation (↔) denote the operator.

Locate "<->". Notation

"A <-> B" := iff A B : type_scope (default

interpretation)

Please note we will be using these logical operators extensively in the implementation of
our logic in Coq.

5.3 Classes

Coq type overloading allows defining a class object of an abstract type with its properties and
then to create an instance of a particular type. It also allows creating type class hierarchies.
Consider the class definition as follows:

Class SigName (α1 : τ1) (α2 : τ2) . . . (αN : τN):= {

P1 : Φ1;

P2 : Φ2;...

PN : ΦN

}.

Here S igName is the class name, and it takes properties P1, P2, . . . PN of abstract types τ1,
τ2, . . . τN , and Φ1, Φ2, . . . ΦN are the formulas. Now to demonstrate the overloading feature
we consider S igName as the superclass.

Now, we want to declare a class inheriting the properties from the superclass S igName. The

CHAPTER 5. THE COQ PROOF ASSISTANT 97

syntax of subclass Name definition is as follows:

Class Name (β1 : τ1) (β2 : τ2) . . . (βN : τN):= {

Sig : > SigName α1, α2, . . . αn;

Q1 : Ψ1;

Q2 : Ψ2;...

QN : ΨN

}.

Please note that, property S ig holds inherited properties of the superclass S igName. How-
ever, class Name has additional properties Q1, Q2, . . . QN , and Ψ1, Ψ2, . . . ΨN are the
formulas.

Coq instances have not used this thesis; thus, we want to conclude this section with the
syntax of instance definition. Coq syntax of instance definition for superclass, and subclass
are as follows:

Instance ISigName : SigName t1, t2, . . . tN := {

p1 : ϕ1;

p2 : ϕ2;...

pN : ϕN

}.

Instance IName : Name t1, t2, . . . tN := {

Sig : > ISigName;

q1 : ψ1;

q2 : ψ2;...

qN : ψN

}.

More details on Coq classes, and instances are available in [20].

5.4 Tactic and Proof

Proofs are the mathematically proven fact, often written as lemma or a theorem in Coq.
Proof steps in Coq are similar to the handwritten proof steps; thus, it is called an interactive
theorem prover. Tactics are the Coq commands used to manipulate the state of a proof. The

CHAPTER 5. THE COQ PROOF ASSISTANT 98

Coq library is enriched with many inbuilt tactics. In this thesis, we have used only a few of
them. The full list of tactics is available in [21].

An illustration of Coq proof, and applications of inbuilt tactics is as follows:

Lemma DNG : forall P : Prop, P ->

vvP.

Proof.

1 subgoal

______________________________________(1/1)

forall P : Prop, P -> v v P

Please consider the Coq code above, the left-hand side is the program window, and the
right-hand side is the output window of CoqIde. The first line declare the lemma named
DNG, and Coq immediately generates the goal on the output window. Now, we begin
assuming an arbitrary assumption P using the tactic intro.

intro p. 1 subgoal

p : Prop

______________________________________(1/1)

p -> v v p

The new goal is an implication. Now, we use the tactic intro to introduce an arbitrary
hypothesis H0.

intro H0. 1 subgoal

p : Prop

H0 : p

______________________________________(1/1)

v v p

The goal has two not (v) in front of the proposition P. We use the tactic un f old to unfold
the definition of both the not (v) in the goal.

unfold not. 1 subgoal

p : Prop

H0 : p

______________________________________(1/1)

(p -> False) -> False

Again the goal is an implication we use the same tactic intro to introduce another arbitrary
hypothesis H1.

CHAPTER 5. THE COQ PROOF ASSISTANT 99

intro H1. 1 subgoal

p : Prop

H0 : p

H1 : p -> False

______________________________________(1/1)

False

As of now, we introduce all the propositions, and hypotheses. The current goal is the same as
the conclusion of the hypothesis H1. Thus, we use the tactic apply to apply the hypothesis
H1.

apply H1. 1 subgoal

p : Prop

H0 : p

H1 : p -> False

______________________________________(1/1)

p

The goal is the same as one of the assumptions. So we can use the tactic trivial to complete
the proof. This will check the goal with all the assumptions as well as hypotheses.

trivial. No more subgoals.

Finally, there is no more goal to proof. We save the proof in Coq using Qed tactic.

Qed. DNG is defined

The illustration of the tactic application described so far is sufficient to understand the imple-
mentation of this thesis. But we have defined customized Ltac tactics in our implementation.
In the following section, we discuss the customized Ltac tactic definition as well as its
application in the proofs.

5.5 Proof with Ltac

Coq provides the flexibility to write a customized tactic using Ltac language. Usually, Ltac
uses the match tactic to compare the pattern either with a goal or hypothesis. Among others,
one of the significant advantages of the Ltac tactics is to shorten the proof steps as well as
makes the proof well organized. Additionally, a tactic notation may be introduced to shorten
the Ltac tactic name.

CHAPTER 5. THE COQ PROOF ASSISTANT 100

To demonstrate the proof by customized Ltac tactic, we prove the same lemma proved in the
previous section, but with the customized tactics. At first, we define a tactic Ltac DNG.

Ltac Ltac_DNG :=

match goal with

| |- v v ?P

=> let H := fresh "H" in assert (H : forall a:Prop, a -> v v a); [let a :=

fresh "a" in intro a; let H0 := fresh "H" in intro H0;unfold not; let H1

:= fresh "H" in intro H1;apply H1;trivial|trivial];apply H;clear H

| _ => fail 1 "Goal is not a DNG formula"

end.

The first line declare the name of the tactic as Ltac DNG and the second, and third line
restrict the pattern match with the goal only. Then command let is used to assert a formula
H; subsequently, we provide the proof steps for the formula H. At the end of the proof, H

moved up to the hypothesis, and then we apply H to the goal. Finally, we use the tactic
clear to remove the hypothesis H i.e., the asserted formula.

Now, we illustrate the proof using Ltac tactic Ltac DNG. The first three steps remain same
as above, since we want to match the goal with the defined pattern in the Ltac tactic.

Lemma DNG : forall P : Prop, P ->

v v P.

Proof.

intro p.

intro H0.

1 subgoal

p : Prop

H0 : p

______________________________________(1/1)

v v p

The current goal matches the pattern defined in the Ltac tactic. Therefore, we use the tactic
Ltac DNG at this point.

Ltac_DNG. 1 subgoal

p : Prop

H0 : p

______________________________________(1/1)

p

The goal is the same as one of the assumption. We can use the tactic trivial to complete the
proof.

CHAPTER 5. THE COQ PROOF ASSISTANT 101

trivial. No more subgoals.

Finally, no more goal to proof. We save the proof in Coq using Qed tactic.

Qed. DNG is defined

More details on Coq Ltac tactics are available in [21].

Chapter 6

Implementation in Coq

This chapter includes the implementation of our calculus in Coq, start with the definition
of the structure of Boolean algebra. Then, to prove Boolean algebra axioms, the duality
principle is applied. After that, we define Boolean contact algebra properties using the class
overloading feature of Coq.

The implementation of our calculus in Coq begin with the customized Ltac tactics definition
of the natural deduction rules defined in Chapter 3 for the operators, and abbreviations of
modal relevance logic. Then, we introduce all the abbreviations as lemmas and prove them
as well. To conclude the implementation, we again declare, and prove each Boolean algebra,
and Boolean contact algebra axioms as a lemma. Our complete source will be available in
the online or digital appendix.

6.1 Implementation of Boolean algebra

We begin with the abstract structure of Boolean algebra, application of duality to prove the
Boolean algebra axioms, and order relations on Boolean algebra in Coq.

6.1.1 Abstract Structure of Boolean algebra

To begin with, Coq class [10, 20] is used to introduce the theory of Boolean algebras. We
declare the signature class with appropriate syntactical notation.

Class BASig (A : Type) := {

join : A -> A -> A;

meet : A -> A -> A;

zero : A;

102

CHAPTER 6. IMPLEMENTATION IN COQ 103

one : A;

comp : A -> A

}.

Here A represent the underlying type or a set of the algebra, join, and meet are two binary
operators, comp is the unary operator, zero, and one are two elements of A. As mentioned
before, we define appropriate notations for the structure.

Infix "+" := (join).

Infix "*" := (meet).

Notation "0" := zero.

Notation "1" := one.

Notation "x '^*'" := (comp x) (at level 30).

Finally, we conclude the definition of the theory of Boolean algebra by combining the
signature of BASig class, and the axioms listed in the Definition 5.

Class BA (A : Type) := {

sig : > BASig A;

join_comm : forall x y, x + y = y + x;

zero_ident : forall x, x + 0 = x;

join_distr : forall x y z, x + y * z = (x + y) * (x + z);

join_comp : forall x, x + x^* = 1;

meet_comm : forall x y, x * y = y * x;

one_ident : forall x, x * 1 = x;

meet_distr : forall x y z, x * (y + z) = x * y + x * z;

meet_comp : forall x, x * x^* = 0

}.

In the subsequent section, we want to focus on the proof of Boolean algebra axioms. Proofs
steps in Coq are similar to the [9], but we use the duality principle.

6.1.2 Duality of Boolean algebra

Our effort is to simplify the Boolean algebra axioms proof steps by introducing the duality
principle in this thesis. Our aim is to use the duality principal such that Coq compiler will
proof the axioms automatically using the proven property of the other axioms that is proven
if only the operators are exchanged, i.e., join operator is replaced by the meet operator or
vice versa. We start with the dualBASig definition.

CHAPTER 6. IMPLEMENTATION IN COQ 104

Definition dualBASig {A : Type} (baSig : BASig A) : BASig A := {|

join := @meet A baSig;

meet := @join A baSig;

zero := @one A baSig;

one := @zero A baSig;

comp := @comp A baSig

|}.

Finally, we conclude the definition of the theory of Boolean algebra duality principle com-
bining the signature of dualBASig, and the axioms listed in the Definition 5.

Definition dualBA {A : Type} (ba : BA A) : BA A := {|

sig := dualBASig (@sig A ba);

join_comm := @meet_comm A ba;

zero_ident := @one_ident A ba;

join_distr := @meet_distr A ba;

join_comp := @meet_comp A ba;

meet_comm := @join_comm A ba;

one_ident := @zero_ident A ba;

meet_distr := @join_distr A ba;

meet_comp := @join_comp A ba

|}.

Now, to use the duality principle, we prove the dualize lemma.

Lemma dualize {P : forall (A : Type), BA A -> Prop} (Lem : forall (A : Type) (ba

: BA A), P A ba) {A : Type} {BA : BA A} : P A (dualBA ba).

Proof.

apply Lem.

Qed.

We define an Ltac tactic to apply the dualize lemma.

Ltac dual x := apply (dualize x).

Please note that we will omit the proofs of all the axioms mentioned in the Lemma 1. Proofs
are available in the Coq code included in this thesis. To illustrate the proof steps that are
applying the duality principle we only mention the proofs of join assoc, and meet assoc

axioms.

CHAPTER 6. IMPLEMENTATION IN COQ 105

Lemma join_assoc {A : Type} {ba : BA A} : forall x y z, x + (y + z) = (x + y) + z.

Proof.

intros.

assert (H := UNg _ _ (K1 x y z) (L1 x y z)).

apply (f_equal comp) in H.

rewrite <- 2?DNg in H.

symmetry.

trivial.

Qed.

Finally, we are ready to demonstrate the benefit of the dualized principle to proof the
meet assoc lemma. meet assoc lemma is proven by appling the proven property of join assoc

lemma.

Lemma meet_assoc {A : Type} {ba : BA A} : forall x y z, x * (y * z) = (x * y) * z.

Proof.

dual @join_assoc.

Qed.

6.1.3 Order Relations on Boolean algebra

Besides the operators mentioned in the previous section, we include two more order relation
operators (less equal, and greater equal) in our implementation. It is worth mentioning that
the less equal operator will be used to define the BCA3 contact relation Ltac rule later on in
this thesis.

We begin with the definition of less equal operator, and its notation.

Definition leBA {A : Type} {ba : BA A} : A -> A -> Prop := fun x y => x * y = x.

Infix "<=" := leBA.

Now, we define the greater equal operator, and its notation.

Definition geBA {A : Type} {ba : BA A} : A -> A -> Prop := fun x y => x + y = x.

Infix ">=" := geBA.

Finally, we want to prove the equivalence relation between less equal, and greater equal in
the form of a lemma.

CHAPTER 6. IMPLEMENTATION IN COQ 106

Lemma OrdConsistent {A : Type} {ba : BA A} : forall x y, x <= y <-> y >= x.

Proof.

intros; split; intros.

unfold geBA; unfold leBA in H.

rewrite <- H; rewrite meet_comm; apply join_absorp.

unfold geBA in H; unfold leBA.

rewrite <- H; rewrite join_comm; apply meet_absorp.

Qed.

6.2 Implementation of Boolean contact algebra

In this section, we want to introduce the theory of Boolean contact algebra by extending the
class of Boolean algebra, and adding the binary contact relation, and its axioms mentioned
in the Definition 6.

Class BCA (A : Type) := {

ba :> BA A;

C : relation A;

c0 : forall x y, C x y -> x<>0 /\ y<>0;

c1 : forall x, x<>0 -> C x x;

c2 : forall x y, C x y <-> C y x;

c3 : forall x y z, (C x y /\ y <= z) -> C x z;

c4 : forall x y z, C x (y+z) -> (C x y \/ C x z)

}.

6.3 Implementation of MRL Proposition and Model

This section includes the preliminaries of our calculus implementation in Coq. The following
subsections define modal relevance logic proposition, model, and evaluation function. Please
note that our idea is the same as [2].

6.3.1 MRL Proposition

Propositions in logic are same as type prop in Coq, but our versions of propositions are
not the same. Our MRL propositions (or formule) becomes a proposition on the underlying
Boolean algebra.

Definition MRLProp := forall (A : Type) (bca : BCA A), A -> Prop.

CHAPTER 6. IMPLEMENTATION IN COQ 107

6.3.2 MRL Model

In this section, we want to explain the implementation of the evaluation function, and the
model for our modal relevance logic. We start with the definition of the evaluation function.

The evaluation function of modal relevance logic applies on an MRL-formula to a specific
element, and becomes a proposition.

Definition V (p : MRLProp) (A : Type) (bca : BCA A) (x : A) : Prop := p A bca x.

Model of modal relevance logic is valid iff it is true for all elements, and all Boolean algebra.
We define the model as a function.

Definition MRLValid (p : MRLProp) : Prop := forall (A : Type) (bca : BCA A) (x :

A), V p A bca x.

Now, we introduce a notation for MRLValid.

Notation "[p] x" := (V p _ _ x) (at level 70).

We define an Ltac tactic to convert an MRL-formula into an annotated formula, and start the
proof immediately.

Ltac start := unfold MRLValid; let A:= fresh "A" in intro A;let bca:= fresh "bca"

in intro bca;let z:= fresh "z" in intro z.

6.4 Implementation of Natural Deduction Rules

This section includes the implementation of modal relevance logic operator’s rules in Coq.
We begin by defining the logical operators, their notations, and the Ltac tactic of the rules. It
is worth mentioning that all logical operators are defined as a function on MRLProp, and
we have given appropriate names for the Ltac tactics. Please note that we will omit the
implementation of the equality rules in Table 3.1. Because inbuilt Coq tactic trivial is used
for equality introduction rule (= I), and rewrite tactic is used for equality elimination rule
(= E).

CHAPTER 6. IMPLEMENTATION IN COQ 108

In the upcoming subsections, all logical operators are implemented in the same order as the
natural deduction rules that are defined in Chapter 3.

6.4.1 Implementation of Propositional Operators

We will explain the implementation of propositional logic operators in the same order as
they are defined in Table 3.2.

6.4.1.1 Propositional Logic False

The propositional logic formula false (⊥) is defined as follows:

Definition Bot : MRLProp := fun (A : Type) (bca : BCA A) x => False.

Notation "⊥" := (V Bot _ _ _).

Please note there are no rules required for f alse.

6.4.1.2 Propositional Logic Implication

The propositional logic operator implication (→) is defined as follows:

Definition MRL_P_Impl (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> V p A bca x -> V q A bca x.

Infix "->" := (MRL_P_Impl).

Ltac MRL_P_Impl_Intro :=

match goal with

| |- V (?p -> ?q) ?A ?bca ?z

=> replace (V (p -> q) A bca z) with (forall _ : V p A bca z, V q A bca z)

by (unfold V; unfold MRL_P_Impl; trivial); let H := fresh "H" in intro H

| _ => fail 1 "Goal is not an MRL_P_Impl formula"

end.

Ltac MRL_P_Impl_Elim H0 H1 :=

match type of H0 with

| V (?p -> ?q) ?A ?bca ?z

=> match type of H1 with

| V p A bca z

=> replace (V (p -> q) A bca z) with (forall _ : V p A bca z, V q A bca z)

by (unfold V; unfold MRL_P_Impl in H0; trivial); let H2 := fresh "H" in

assert (H2 := H1); apply H0 in H2;repeat assumption

CHAPTER 6. IMPLEMENTATION IN COQ 109

| _ => fail 2 "2nd hypothesis does not match the assumption of the first

hypothesis"

end

| _ => fail 1 "1st hypothesis is not an MRL_P_Impl formula"

end.

6.4.1.3 Propositional Logic Not

The propositional logic operator not (¬) is defined as follows:

Definition MRL_P_Not (p : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> v V p A bca x.

Notation "¬ x" := (MRLProp x) (at level 30).

Ltac MRL_P_Not_Intro :=

match goal with

| |- V (¬?p) ?A ?bca ?z

=> replace (V (¬p) A bca z) with (MRL_P_Not p A bca z) by (unfold V; unfold

MRL_P_Not; trivial);let H := fresh "H" in intro H;replace False with (V Bot A

bca z) by (unfold V; unfold Bot; trivial);repeat assumption

| _ => fail 1 "Goal is not an MRL_P_Not formula"

end.

Ltac MRL_P_Not_Elim H0 H1 :=

match type of H0 with

| V (¬?p) ?A ?bca ?z

=> match type of H1 with

| V p A bca z

=> replace (V (¬p) A bca z) with (MRL_P_Not p A bca z) by (unfold V; unfold

MRL_P_Not in H0; trivial); let H2 := fresh "H" in assert (H2 := H1); apply H0

in H2;repeat assumption

| _ => fail 2 "2nd hypothesis does not match the body of the first hypothesis"

end

| _ => fail 1 "1st hypothesis is not a MRL_P_Not formula"

end.

Now, we define the PBC rule.

Ltac MRL_P_PBC :=

match goal with

| |- V ?p ?A ?bca ?z

=> let H := fresh "H" in apply NNPP; intro H; replace (not ([p] z)) with

([¬p] z) in H by (unfold V; unfold MRL_P_Not; trivial); replace False with

(V Bot A bca z) by (unfold V; unfold Bot; trivial);repeat assumption

CHAPTER 6. IMPLEMENTATION IN COQ 110

end.

6.4.1.4 Propositional Logic And

The propositional logic operator and (∧) is defined as follows:

Definition MRL_P_And (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> V p A bca x /\ V q A bca x.

Infix "/\" := (MRL_P_And).

Ltac MRL_P_And_Intro :=

match goal with

| |- V (?p /\ ?q) ?A ?bca ?z

=> replace (V (p /\ q) A bca z) with (and (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_And; trivial); split;repeat assumption

| _ => fail 1 "Goal is not an MRL_P_And formula"

end.

Ltac MRL_P_And_Elim_1 H :=

match type of H with

|V (?p /\ ?q) ?A ?bca ?z

=> replace (V (p /\ q) A bca z) with (and (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_And in H; trivial); let H0 := fresh "H" in let H1 := fresh

"H" in assert (H0 := H); destruct H0 as [H0 H1]; clear H1;repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_P_And formula"

end.

Ltac MRL_P_And_Elim_2 H :=

match type of H with

| V (?p /\ ?q) ?A ?bca ?z

=> replace (V (p /\ q) A bca z) with (and (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_And in H; trivial); let H0 := fresh "H" in let H1 := fresh

"H" in assert (H0 := H); destruct H0 as [H1 H0]; clear H1;repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_P_And formula"

end.

Now, we define a Ltac tactic for all eliminations as well as its notation.

Ltac MRL_P_And_Elim' H :=

match type of H with

| V (?p /\ ?q) ?A ?bca ?z

=> replace (V (p /\ q) A bca z) with (and (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_And in H; trivial); let H0 := fresh "H" in destruct H as [H

H0];MRL_P_And_Elim' H; MRL_P_And_Elim' H0;repeat assumption

CHAPTER 6. IMPLEMENTATION IN COQ 111

| _ => fail 1 "Hypothesis is not an MRL_P_And formula"

end.

Tactic Notation "MRL_P_And_Elim" hyp(H) := MRL_P_And_Elim' H.

6.4.1.5 Propositional Logic Or

The propositional logic operator or (∨) is defined as follows:

Definition MRL_P_Or (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> forall y z, x = y * z -> V p A bca y \/ V q A bca z.

Infix "\/" := (MRL_P_Or).

Ltac MRL_P_Or_Intro_1 :=

match goal with

| |- V (?p \/ ?q) ?A ?bca ?z

=> replace (V (p \/ q) A bca z) with (or (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_Or; trivial); left;repeat assumption

| _ => fail 1 "Goal is not an MRL_P_Or formula"

end.

Ltac MRL_P_Or_Intro_2 :=

match goal with

| |- V (?p \/ ?q) ?A ?bca ?z

=> replace (V (p \/ q) A bca z) with (or (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_Or; trivial); right;repeat assumption

| _ => fail 1 "Goal is not an MRL_P_Or formula"

end.

Ltac MRL_P_Or_Elim H :=

match type of H with

| V (?p \/ ?q) ?A ?bca ?z

=> replace (V (p \/ q) A bca z) with (or (V p A bca z) (V q A bca z)) by (unfold

V; unfold MRL_P_Or in H; trivial); destruct H;repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_P_Or formula"

end.

6.4.1.6 Propositional Logic Equivalence

The propositional logic operator equivalence (↔) is defined as follows:

Definition MRL_P_Equal (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A)

x =>V p A bca x <-> V q A bca x.

CHAPTER 6. IMPLEMENTATION IN COQ 112

Infix "<->" := (MRL_P_Equal).

Ltac MRL_P_Equal_Intro :=

match goal with

| [|- V (?p <-> ?q) ?A ?bca ?x]

=> replace (V (p <-> q) A bca x) with (and (V (p -> q) A bca x) (V (q -> p) A bca

x)) by (unfold V; unfold MRL_P_Equal; split); split

| _ => fail 1 "Goal is not an MRL_P_Equal formula"

end.

Ltac MRL_P_Equal_Elim H :=

match type of H with

| V (?p <-> ?q) ?A ?bca ?x

=> replace (V (p <-> q) A bca x) with (and (V (p -> q) A bca x) (V (q -> p) A bca

x)) in H by (unfold V; unfold MRL_P_Equal; split); let H0 := fresh "H" in

destruct H as [H H0];repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_P_And formula"

end.

6.4.1.7 Propositional Logic True

The propositional logic formula true (>) is defined as follows:

Definition Top : MRLProp := fun (A : Type) (bca : BCA A) x => True.

Notation ">" := (V Top _ _ _).

Please note no rules required for true.

6.4.2 Implementation of Modal Operators

Now, we will explain the implementation of modal logic operators in the same order as they
are defined in Table 3.3. Please note that our implementation idea of modal logic is same as
[2].

6.4.2.1 Modal Logic Box

The modal logic operator box ([]) is defined as follows:

Definition MRL_K_BoxC (p: MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> forall y, (forall _ :(C x y), (V p A bca y)).

Notation "[C]ϕ":= (MRL_K_BoxC ϕ) (at level 15).

CHAPTER 6. IMPLEMENTATION IN COQ 113

Ltac MRL_K_BoxC_Intro :=

match goal with

| |- V ([C]?p) ?A ?bca ?z

=> replace (V ([C] p) A bca z) with (MRL_K_BoxC p A bca z) by (unfold V; unfold

MRL_K_BoxC; trivial); let y:= fresh "y" in intro y; let H:= fresh "H" in

intro H

| _ => fail 1 "Goal is not an MRL_K_BoxC formula"

end.

Please note that the side-condition of ([C] I) rule is automatically taken care of by using the
fresh command that introduced a new variable.

Ltac MRL_K_BoxC_Elim H0 H1:=

match type of H0 with

| V ([C]?p) ?A ?bca ?z =>

match type of H1 with

| C z ?y

=> replace (V ([C] p) A bca z) with (forall y : A, forall _ : C z y , [p] y) in

H0 by (unfold V; unfold MRL_K_BoxC; trivial); specialize H0 with y;let H2 :=

fresh "H" in assert (H2 := H1); apply H0 in H1; repeat assumption

| _ => fail 2 "2nd hypothesis does not match the body of the first hypothesis"

end

| _ => fail 1 "1st hypothesis is not an MRL_K_BoxS formula"

end.

6.4.2.2 Modal Logic Diamond

The modal logic operator diamond (〈〉) is defined as follows:

Definition MRL_K_DiamondC (p: MRLProp) : MRLProp := fun (A : Type) (bca : BCA A)

x => exists y, and (C x y) (V p A bca y).

Notation "<C>ϕ":= (MRL_K_DiamondC ϕ) (at level 15).

Ltac MRL_K_DiamondC_Intro x :=

match goal with

| |- V (<C>?p) ?A ?bca ?z

=> replace (V (<C> p) A bca z) with (MRL_K_DiamondC p A bca z) by (unfold V;

unfold MRL_K_DiamondC; trivial); exists x; split

| _ => fail 1 "Goal is not an MRL_K_DiamondC formula"

end.

Ltac MRL_K_DiamondC_Elim H0 :=

match type of H0 with

CHAPTER 6. IMPLEMENTATION IN COQ 114

| V (<C>?p) ?A ?bca ?z

=> replace (V (<C> p) A bca z) with (MRL_K_DiamondC p A bca z) in H0 by (unfold

V; unfold MRL_K_DiamondC; trivial); let x:= fresh "x" in destruct H0 as [x

H0]; let H1:= fresh "H" in destruct H0 as [H1 H0]; repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_K_DiamondC formula"

end.

Please note that the side-condition of (〈C〉 E) rule is automatically taken care of by using
the fresh command that introduced a new variable.

6.4.3 Implementation of Basic Relevance Operators

At this point, we will explain the implementation of relevance logic operators in the same
order as they are defined in Table 3.4.

6.4.3.1 Relevance Logic Implication

The relevance logic operator implication (�) is defined as follows:

Definition MRL_RJ_Impl (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A)

x => forall y z, x = y + z -> V p A bca y -> V q A bca z.

Infix "->>" := (MRL_RJ_Impl) (at level 60).

Ltac MRL_RJ_Impl_Intro :=

match goal with

| |- V (?p ->> ?q) ?A ?bca ?z

=> replace (V (p ->> q) A bca z) with (MRL_RJ_Impl p q A bca z) by (unfold V;

unfold MRL_RJ_Impl; trivial); let x := fresh "x" in intro x; let y := fresh

"y" in intro y; let H := fresh "H" in intro H; let H := fresh "H" in intro

H;repeat assumption

| _ => fail 1 "Goal is not an MRL_RJ_Impl formula"

end.

Please note that the side-condition of (� I) rule is automatically taken care of by using the
fresh command that introduced two new variables.

Ltac MRL_RJ_Impl_Elim H0 H1 H2:=

match type of H0 with

| V (?p ->> ?q) ?A ?bca ?z =>

match type of H2 with

| z = ?x + ?y =>

CHAPTER 6. IMPLEMENTATION IN COQ 115

match type of H1 with

| V p A bca x

=> replace (V (p ->> q) A bca z) with (MRL_RJ_Impl p q A bca z) by (unfold V;

unfold MRL_RJ_Impl in H0; trivial); let H3 := fresh "H" in assert (H3 :=

H2);apply H0 in H2;apply H2 in H1;repeat assumption

| _ => fail 3 "3rd hypothesis does not match the assumption of the first

hypothesis"

end

| _ => fail 2 "2nd hypothesis does not match the assumption of the first

hypothesis"

end

| _ => fail 1 "1st hypothesis is not an MRL_RJ_Impl formula"

end.

6.4.3.2 Relevance Logic Not

The relevance logic operator not (v) is defined as follows:

Definition MRL_R_Not (p : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> v V p A bca (x^*).

Notation "v x" := (MRL_R_Not x).

Ltac MRL_R_Not_Intro :=

match goal with

| |- V (v(?p)) ?A ?bca ?z

=> replace (V (vp) A bca z) with (MRL_R_Not p A bca z) by (unfold V; unfold

MRL_R_Not; trivial); let H := fresh "H" in intro H; replace False with (V Bot

A bca z) by (unfold V; unfold Bot; trivial);repeat assumption

| _ => fail 1 "Goal is not an MRL_R_Not formula"

end.

Ltac MRL_R_Not_Elim H0 H1 H2 :=

match type of H0 with

| V (v (?p)) ?A ?bca ?z =>

match type of H1 with

| V p A bca ?z0 =>

match type of H2 with

| z=z0^*

=> replace (V (v(p)) A bca z) with (MRL_R_Not p A bca z) by (unfold V; unfold

MRL_R_Not in H0; trivial); let H3 := fresh "H" in assert (H3 := H1);apply H0

in H1; repeat assumption

| _ => fail 3 "3rd hypothesis does not match the body of the first hypothesis"

end

| _ => fail 2 "2nd hypothesis does not match the body of the first hypothesis"

end

CHAPTER 6. IMPLEMENTATION IN COQ 116

| _ => fail 1 "1st hypothesis is not a MRL_R_Not formula"

end.

Now, we define the PBC rule.

Ltac MRL_R_Not_PBC :=

match goal with

| |- V ?p ?A ?bca ?z

=> let H := fresh "H" in apply NNPP; intro H; replace (not (V p A bca z)) with (V

(~p) A bca (z^*)) in H by (unfold V; unfold MRL_R_Not; rewrite <- DNg;

trivial); replace False with (V Bot A bca z) by (unfold V; unfold Bot;

trivial);repeat assumption

end.

6.4.4 Implementation of Derived Relevance Operators

Now, we will explain the implementation of the derived relevance logic operators in the
same order as they are defined in Table 3.5.

6.4.4.1 Derived Relevance Operator And for Join

The derived relevance operator and for join (

Î

) is defined as follows:

Definition MRL_RJ_And (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> exists y z, x = y + z /\ V p A bca y /\ V q A bca z.

Infix "//\\":= (MRL_RJ_And) (at level 60).

Ltac MRL_RJ_And_Intro x y :=

match goal with

| |- V (?p //\\ ?q) ?A ?bca ?z => replace (V (p //\\ q) A bca z) with (

MRL_RJ_And p q A bca z) by (unfold V; unfold MRL_RJ_And; trivial); exists x;

exists y;repeat split;repeat assumption

| _ => fail 1 "Goal is not an MRL_RJ_And formula"

end.

Ltac MRL_RJ_And_Elim H0 :=

match type of H0 with

| V (?p //\\ ?q) ?A ?bca ?z

=> replace (V (p //\\ q) A bca z) with (MRL_RJ_And p q A bca z) by (unfold V;

unfold MRL_RJ_And in H0; trivial); let x := fresh "x" in destruct H0 as [x

H0]; let y := fresh "y" in destruct H0 as [y H0]; let H1 := fresh "H" in

destruct H0 as [H1 H0]; let H2 := fresh "H" in destruct H0 as [H2 H0];repeat

assumption

CHAPTER 6. IMPLEMENTATION IN COQ 117

| _ => fail 1 "Hypothesis is not an MRL_RJ_And formula"

end.

Please note that the side-condition of (

Î

E) rule is automatically taken care of by using the
fresh command that introduced two new variables.

6.4.4.2 Derived Relevance Operator Or for Join

The derived relevance operator or for join (Î) is defined as follows:

Definition MRL_RJ_Or (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> forall y z, x = y + z -> V p A bca y \/ V q A bca z.

Infix "\\//":= (MRL_RJ_Or) (at level 60).

Ltac MRL_RJ_Or_Intro1:=

match goal with

| |- V (?p \\// ?q) ?A ?bca ?z => replace (V (p \\// q) A bca z) with

(MRL_RJ_Or p q A bca z) by (unfold V; unfold MRL_RJ_Or; trivial); unfold

V;let x := fresh "x" in intro x; let y := fresh "y" in intro y; let H :=

fresh "H" in intro H; let H := fresh "H" in assert (H : forall p, p <-> vvp);

[intro; split; intro; [intro; contradiction | apply NNPP; trivial] |

rewrite (H ([p] x))]; clear H; apply imply_to_or; replace (not ([p] x)) with

([¬p] x) by (unfold V; unfold MRL_P_Not; trivial); let H := fresh "H" in

intro;repeat assumption

| _ => fail 1 "Goal is not an MRL_RJ_Or formula"

end.

Ltac MRL_RJ_Or_Intro2:=

match goal with

| |- V (?p \\// ?q) ?A ?bca ?z => replace (V (p \\// q) A bca z) with

(MRL_RJ_Or p q A bca z) by (unfold V; unfold MRL_RJ_Or; trivial); unfold

V;let x:= fresh "x" in intro x; let y:= fresh "y" in intro y; let H := fresh

"H" in intro H; apply or_comm; let H := fresh "H" in assert (H : forall q, q

<-> vvq); [intro; split; intro; [intro; contradiction | apply NNPP; trivial

] | rewrite (H ([q] y))]; clear H; apply imply_to_or; replace (not ([q] y))

with ([¬q] y) by (unfold V; unfold MRL_P_Not; trivial); let H := fresh "H" in

intro;repeat assumption

| _ => fail 1 "Goal is not an MRL_RJ_Or formula"

end.

Please note that the side-condition of (Î I) rule is automatically taken care of by using the
fresh command that introduced two new variables.

CHAPTER 6. IMPLEMENTATION IN COQ 118

Ltac MRL_RJ_Or_Elim H0 H1:=

match type of H0 with

| V (?p \\// ?q) ?A ?bca ?z => replace (V (p \\// q) A bca z) with (MRL_RJ_Or

p q A bca z) by (unfold V; unfold MRL_RJ_Or in H0; trivial); let H2 := fresh

"H" in assert (H2 := H1);apply H0 in H1; destruct H1;repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_RJ_Or formula"

end.

6.4.4.3 Derived Relevance Operator N

The derived relevance operator N is defined as follows:

Definition MRL_R_NNot (p : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> V p A bca (x^*).

Notation "'N' x":= (MRL_R_NNot x) (at level 30).

Ltac MRL_R_NNot_Intro :=

match goal with

| |- V (N ?p) ?A ?bca ?z

=> replace (V (N p) A bca z) with (MRL_R_NNot p A bca z) by (unfold V; unfold

MRL_R_NNot; trivial); unfold MRL_R_NNot at 1; MRL_P_PBC;repeat assumption

| _ => fail 1 "Goal is not an MRL_R_NNot formula"

end.

Ltac MRL_R_NNot_Elim H0 H1 H2:=

match type of H0 with

| V (N ?p) ?A ?bca ?z =>

match type of H1 with

| V (¬p) A bca ?z0 =>

match type of H2 with

| z=z0^*

=> replace (V (N(p)) A bca z) with (MRL_R_NNot p A bca z) by (unfold V; unfold

MRL_R_NNot in H0; trivial); let H2 := fresh "H" in assert (H2 := H0);apply H1

in H0;repeat assumption

| _ => fail 3 "3rd hypothesis does not match the body of the first hypothesis"

end

| _ => fail 2 "2nd hypothesis does not match the body of the first hypothesis"

end

| _ => fail 1 "1st hypothesis is not a MRL_R_NNot formula"

end.

Now, we define the PBC rule.

Ltac MRL_R_NNot_PBC :=

match goal with

CHAPTER 6. IMPLEMENTATION IN COQ 119

| |- V ?p ?A ?bca ?z

=> let H := fresh "H" in apply NNPP; intro H;replace (not ([p] z)) with ([N ¬ p]

z^*) in H by (unfold V; unfold MRL_R_NNot;rewrite <- DNg; trivial); False

with (V Bot A bca z) by (unfold V; unfold Bot; trivial);repeat assumption

end.

6.4.4.4 Derived Relevance Operator Implication for Meet

The derived relevance operator implication for meet (() is defined as follows:

Definition MRL_RM_Impl (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A)

x => forall y z, x = y * z -> V p A bca y -> V q A bca z.

Infix "->o" := (MRL_RM_Impl) (at level 60).

Ltac MRL_RM_Impl_Intro :=

match goal with

| [|- V (?p ->o ?q) ?A ?bca ?z]

=> replace (V (p ->o q) A bca z) with (MRL_RM_Impl p q A bca z) by (unfold V;

unfold MRL_RM_Impl; trivial); let x := fresh "x" in intro x;let y := fresh

"y" in intro y; let H := fresh "H" in intro H;let H := fresh "H" in intro

H;repeat assumption

| _ => fail 1 "Goal is not an MRL_RM_Impl formula"

end.

Please note that the side-condition of ((I) rule is automatically taken care of by using the
fresh command that introduced two new variables.

Ltac MRL_RM_Impl_Elim H0 H1 H2:=

match type of H0 with

| V (?p ->o ?q) ?A ?bca ?z =>

match type of H2 with

| z = ?x * ?y =>

match type of H1 with

| V p A bca x

=> replace (V (p ->o q) A bca z) with (MRL_RM_Impl p q A bca z) by (unfold V;

unfold MRL_RM_Impl in H0; trivial); let H3 := fresh "H" in assert (H3 :=

H2);apply H0 in H2;apply H2 in H1;repeat assumption

| _ => fail 3 "3rd hypothesis does not match the assumption of the first

hypothesis"

end

| _ => fail 2 "2nd hypothesis does not match the assumption of the first

hypothesis"

end

CHAPTER 6. IMPLEMENTATION IN COQ 120

| _ => fail 1 "1st hypothesis is not an MRL_RM_Impl formula"

end.

6.4.4.5 Derived Relevance Operator And for Meet

The derived relevance operator and for meet (>◦) is defined as follows:

Definition MRL_RM_And (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> exists y z, x = y * z /\ V p A bca y /\ V q A bca z.

Infix "/\o" := (MRL_RM_And) (at level 60).

Ltac MRL_RM_And_Intro x y :=

match goal with

| |- V (?p /\o ?q) ?A ?bca ?z

=> replace (V (p /\o q) A bca z) with (MRL_RM_And p q A bca z) by (unfold V;

unfold MRL_RM_And; trivial); exists x; exists y;repeat split;repeat assumption

| _ => fail 1 "Goal is not an MRL_RJ_And formula"

end.

Ltac MRL_RM_And_Elim H0 :=

match type of H0 with

| V (?p /\o ?q) ?A ?bca ?z

=> replace (V (p /\o q) A bca z) with (MRL_RM_And p q A bca z) by (unfold V;

unfold MRL_RM_And in H0; trivial); let x := fresh "x" in destruct H0 as [x

H0]; let y := fresh "y" in destruct H0 as [y H0]; let H1 := fresh "H" in

destruct H0 as [H1 H0]; let H2 := fresh "H" in destruct H0 as [H2 H0];repeat

assumption

| _ => fail 1 "Hypothesis is not an MRL_RM_And formula"

end.

Please note that the side-condition of (>◦ E) rule is automatically taken care of by using the
fresh command that introduced two new variables.

6.4.4.6 Derived Relevance Operator Or for Meet

The derived relevance operator or for meet (

>
◦) is defined as follows:

Definition MRL_RM_Or (p q : MRLProp) : MRLProp := fun (A : Type) (bca : BCA A) x

=> forall y z, x = y * z -> V p A bca y \/ V q A bca z.

Infix "\/o" := (MRL_RM_Or) (at level 60).

CHAPTER 6. IMPLEMENTATION IN COQ 121

Ltac MRL_RM_Or_Intro1:=

match goal with

| |- V (?p \/o ?q) ?A ?bca ?z

=> replace (V (p \/o q) A bca z) with (MRL_RM_Or p q A bca z) by (unfold V;

unfold MRL_RM_Or; trivial); unfold V;let x := fresh "x" in intro x; let y :=

fresh "y" in intro y; let H := fresh "H" in intro H; let H := fresh "H" in

assert (H : forall p, p <-> vvp); [intro; split; intro; [intro;

contradiction | apply NNPP; trivial] | rewrite (H ([p] x))]; clear H; apply

imply_to_or; replace (not ([p] x)) with ([¬p] x) by (unfold V; unfold

MRL_P_Not; trivial); let H := fresh "H" in intro;repeat assumption

| _ => fail 1 "Goal is not an MRL_RM_Or formula"

end.

Ltac MRL_RM_Or_Intro2:=

match goal with

| |- V (?p \/o ?q) ?A ?bca ?z

=> replace (V (p \/o q) A bca z) with (MRL_RM_Or; p q A bca z) by (unfold V;

unfold MRL_RM_Or; trivial); unfold V;let x:= fresh "x" in intro x; let y:=

fresh "z" in intro y; let H := fresh "H" in intro H; apply or_comm; let H :=

fresh "H" in assert (H : forall q, q <-> vvq); [intro; split; intro; [

intro; contradiction | apply NNPP; trivial] | rewrite (H ([q] y))]; clear H;

apply imply_to_or; replace (not ([q] y)) with ([¬q] y) by (unfold V; unfold

MRL_P_Not; trivial); let H := fresh "H" in intro;repeat assumption

| _ => fail 1 "Goal is not an MRL_RM_Or formula"

end.

Please note that the side-condition of (

>
◦ I) rule is automatically taken care of by using the

fresh command that introduced two new variables.

Ltac MRL_RM_Or_Elim H0 H1:=

match type of H0 with

| V (?p \/o ?q) ?A ?bca ?z

=> replace (V (p \/o q) A bca z) with (MRL_RM_Or p q A bca z) by (unfold V;

unfold MRL_RM_Or in H0; trivial); let H2 := fresh "H" in assert (H2 :=

H1);apply H0 in H1;destruct H1;repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_RJ_Or formula"

end.

6.4.5 Implementation of Constant E and U

In this section, we will conclude the implementation of the rules definitions with the constant
E, and U in the same order as they are defined in Table 3.6.

CHAPTER 6. IMPLEMENTATION IN COQ 122

6.4.5.1 Constant E

The constant E is defined as follows:

Definition E : MRLProp := fun (A : Type) (bca : BCA A) x => forall α, α = α + x.

Ltac MRL_R_E_Intro :=

match goal with

| |- V E ?A ?bca ?z

=> let x:= fresh "x" in intro x;repeat assumption

| _ => fail 1 "Goal is not an MRL_R_E formula"

end.

Please note that the side-condition of (E I) rule is automatically taken care of by using the
fresh command that introduced a new variable.

Ltac MRL_R_E_Elim H0 x:=

match type of H0 with

| V E ?A ?bca ?z

=> unfold V in H0;unfold E in H0; specialize H0 with x; repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_R_E formula"

end.

6.4.5.2 Constant U

The constant U is defined as follows:

Definition U : MRLProp := fun (A : Type) (bca : BCA A) x => forall α, α = α * x.

Ltac MRL_R_U_Intro :=

match goal with

| |- V U ?A ?bca ?z

=> let x:= fresh "x" in intro x;repeat assumption

| _ => fail 1 "Goal is not an MRL_R_U formula"

end.

Please note that the side-condition of (U I) rule is automatically taken care of by using the
fresh command that introduced a new variable.

Ltac MRL_R_U_Elim H0 x:=

match type of H0 with

CHAPTER 6. IMPLEMENTATION IN COQ 123

| V U ?A ?bca ?z

=> unfold V in H0;unfold U in H0;specialize H0 with x; repeat assumption

| _ => fail 1 "Hypothesis is not an MRL_R_U formula"

end.

6.4.6 Implementation of Contact

In this section, we will explain the implementation contact rules in the same order as they
are defined in Table 3.7. Please note we have defined the contact axiom (BCA0) - (BCA3) to
be applied both on goal, and the hypothesis as well.

6.4.6.1 Contact (BCA0)

The contact rule (BCA0) is defined as follows:

Ltac MRL_K_C_BCA0g z:=

match goal with

| |- V (¬ E) ?A ?bca ?x

=> let H := fresh "H" in assert (H : forall a b, (C a b) -> [¬ E] b); [let a :=

fresh "a" in intro a;let b := fresh "b" in intro b;let H1 := fresh "H" in

intro H1;apply c0 in H1; let H2 := fresh "H" in destruct H1 as [H2 H1];

unfold V, MRL_P_Not, E, V;contradict H1; let H3 := fresh "H" in assert (H3 :=

H1 0);rewrite join_comm, zero_ident in H3; symmetry;trivial|trivial];apply H

with z;trivial;clear H

| _ => fail 1 "Goal is not an [¬ E] ?x formula"

end.

Ltac MRL_K_C_BCA0h H0:=

match type of H0 with

| C ?x ?y

=> let H := fresh "H" in assert (H : forall a b, (C a b) -> [¬ E] b); [let a :=

fresh "a" in intro a;let b := fresh "b" in intro b;let H1 := fresh "H" in

intro H1;apply c0 in H1; let H2 := fresh "H" in destruct H1 as [H2 H1];

unfold V, MRL_P_Not, E, V;contradict H1; let H3 := fresh "H" in assert (H3 :=

H1 0);rewrite join_comm, zero_ident in H3; symmetry;trivial|trivial];apply H

in H0;trivial;clear H

| _ => fail 1 "Hypothesis is not in C ?x ?y form"

end.

6.4.6.2 Contact (BCA1)

The contact rule (BCA1) is defined as follows:

CHAPTER 6. IMPLEMENTATION IN COQ 124

Ltac MRL_K_C_BCA1g :=

match goal with

| |- C ?x ?x

=> let H := fresh "H" in assert (H : forall a, [¬ E] a -> (C a a)); [let x0 :=

fresh "x" in intro x0;let H1 := fresh "H" in intro H1;apply c1; unfold V,

MRL_P_Not, E in H1;contradict H1;unfold V;intro;rewrite H1; rewrite

zero_ident;trivial|trivial]; apply H;clear H

| _ => fail 1 "Goal is not in C ?x ?x form"

end.

Ltac MRL_K_C_BCA1h H0:=

match type of H0 with

| V (¬ E) ?A ?bca ?x

=> let H := fresh "H" in assert (H : forall a, [¬ E] a -> (C a a)); [let a :=

fresh "a" in intro a;let H1 := fresh "H" in intro H1;apply c1; unfold V,

MRL_P_Not, E in H1;contradict H1;unfold V;intro;rewrite H1; rewrite

zero_ident;trivial|trivial]; apply H in H0;clear H

| _ => fail 1 "Hypothesis is not in [¬ E] x form"

end.

6.4.6.3 Contact (BCA2)

The contact rule (BCA2) is defined as follows:

Ltac MRL_K_C_BCA2g :=

match goal with

| |- C ?x ?y

=> apply c2

| _ => fail 1 "Goal is not in C ?x ?x form"

end.

Ltac MRL_K_C_BCA2h H0:=

match type of H0 with

| C ?x ?y

=> let H1:= fresh "H" in assert (H1 := H0); apply c2 in H1

| _ => fail 1 "Hypothesis is not in C ?x ?x form"

end.

6.4.6.4 Contact (BCA3)

The contact rule (BCA3) is defined as follows:

Ltac MRL_K_C_BCA3g y:=

match goal with

CHAPTER 6. IMPLEMENTATION IN COQ 125

|- C ?x ?z

=> let H := fresh "H" in assert (H : forall a b c, (C a b) /\ b=b * c -> C a c);

[let a := fresh "a" in intro a; let b := fresh "b" in intro b; let c := fresh

"c" in intro c; let H1 := fresh "H" in intro H1;apply c3 with b;unfold

leBA;destruct H1;split;trivial;symmetry;trivial|trivial];apply H with y;clear

H

| _ => fail 1 "Goal is not in C ?x ?z form"

end.

Ltac MRL_K_C_BCA3h H0 H1:=

match type of H0 with

| C ?x ?y

=> match type of H1 with

| y = y * ?z

=> let H := fresh "H" in assert (H : forall a b c, (C a b) /\ b=b * c -> C a c);

[let a := fresh "a" in intro a; let b := fresh "b" in intro b; let c := fresh

"c" in intro c; let H1 := fresh "H" in intro H1;apply c3 with b;unfold

leBA;destruct H1;split;trivial;symmetry;trivial|trivial]; assert(H2 := conj

H0 H1); apply H in H2;clear H

| _ => fail 2 "2nd hypothesis doesn't match with the body of the 1st hypothesis"

end

| _ => fail 1 "1st hypothesis is not an MRL_K_C_BCA3 formula"

end.

6.4.6.5 Contact (BCA4)

The contact rule (BCA4) is defined as follows:

Ltac MRL_K_C_BCA4 H0:=

match type of H0 with

| C ?x (?y + ?z)

=> let H1 := fresh "H" in assert (H1 := H0); apply c4 in H1; repeat destruct H1

| _ => fail 1 "Hypothesis is not an MRL_K_C_BCA4 formula"

end.

6.5 Proofs in Coq

In this section, we present the proofs of the abbreviations, and axioms mentioned in Chapter
4. Please note that Coq proofs are a one-to-one translation of the proof trees mentioned in
Chapter 4.

CHAPTER 6. IMPLEMENTATION IN COQ 126

6.5.1 Propositional Logic

Now, we will mention the proofs of the abbreviations (PLAbbr1 - PLAbbr5). In the follow-
ing lemma, we provide the proof of the abbreviation PLAbbr1.

Lemma PLAbbr1 (ϕ : MRLProp) : MRLValid (¬ ϕ <-> (ϕ -> Bot)).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_P_Impl_Intro.

MRL_P_Not_Elim H H0.

MRL_P_Impl_Intro.

MRL_P_Not_Intro.

MRL_P_Impl_Elim H H0.

Qed.

Please note that we will omit the proofs of the abbreviations (PLAbbr2 - PLAbbr5). Proofs
are available in the Coq provided in this thesis.

Lemma PLAbbr2 (ϕ ψ : MRLProp) : MRLValid ((ϕ /\ ψ) <-> (¬(ϕ -> ¬ ψ))).

Lemma PLAbbr3 (ϕ ψ : MRLProp) : MRLValid ((ϕ \/ ψ) <-> (¬ ϕ -> ψ)).

Lemma PLAbbr4 (ϕ ψ : MRLProp) : MRLValid ((ϕ <-> ψ) <-> ((ϕ -> ψ) /\ (ψ -> ϕ))).

Lemma PLAbbr5 : MRLValid (Top <-> ¬ Bot).

6.5.2 Modal Logic

Now, we will mention the proof of the abbreviation (MLAbbr1). In the following lemma,
we provide the proof of the abbreviation MLAbbr1.

Lemma MLAbbr1 (ϕ : MRLProp) : MRLValid (<C>ϕ <-> ¬[C]¬ϕ).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_P_Not_Intro.

MRL_K_DiamondC_Elim H.

MRL_K_BoxC_Elim H0 H3.

MRL_P_Not_Elim H3 H.

MRL_P_Impl_Intro.

CHAPTER 6. IMPLEMENTATION IN COQ 127

MRL_P_PBC.

assume ([[C] (¬ ϕ)] z).

MRL_P_Not_Elim H H3.

MRL_K_BoxC_Intro.

MRL_P_Not_Intro.

assume ([<C> ϕ] z).

MRL_P_Not_Elim H0 H5.

MRL_K_DiamondC_Intro y.

assumption.

assumption.

Qed.

Please note that the assume tactic in the above proof is similar to a cut in sequent calculus.
The assume tactic adds the formula as an assumption, and at the same time it generates a
proof evidence of the formula as a goal. This is used to combine the separated proof trees
together.

6.5.3 Propositional Relevance Logic

At this point we will mention the proofs of the abbreviations (PRLAbbr1 - PRLAbbr6). In
the following lemma, we provide the proof of the abbreviation PRLAbbr1.

Lemma PRLAbbra1 (ϕ ψ : MRLProp) : MRLValid (ϕ //\\ ψ <-> ¬ (ϕ ->> ¬ ψ)).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_P_Not_Intro.

MRL_RJ_And_Elim H.

assume ([¬ ψ] y).

MRL_P_Not_Elim H5 H.

MRL_RJ_Impl_Elim H0 H4 H3.

MRL_P_Impl_Intro.

MRL_P_PBC.

assume ([(ϕ ->> ¬ ψ)] z).

MRL_P_Not_Elim H H3.

MRL_RJ_Impl_Intro.

MRL_P_Not_Intro.

assume ([(ϕ //\\ ψ)] z).

MRL_P_Not_Elim H0 H6.

MRL_RJ_And_Intro x y.

Qed.

CHAPTER 6. IMPLEMENTATION IN COQ 128

Please note that we will omit the proofs of the abbreviations (PRLAbbr2 - PRLAbbr6).
Proofs are available in the Coq provided in this thesis.

Lemma PRLAbbra2 (ϕ ψ : MRLProp) : MRLValid (ϕ \\// ψ <-> ¬ ϕ ->> ψ).

Lemma PRLAbbra3 (ϕ : MRLProp) : MRLValid (N ϕ <-> v ¬ ϕ).

Lemma PRLAbbra4 (ϕ ψ : MRLProp) : MRLValid (ϕ ->o ψ <-> N (N ϕ ->> N ψ)).

Lemma PRLAbbra5 (ϕ ψ : MRLProp) : MRLValid (ϕ /\o ψ <-> ¬ (ϕ ->o ¬ ψ)).

Lemma PRLAbbra6 (ϕ ψ : MRLProp) : MRLValid (ϕ \/o ψ <-> ¬ ϕ ->o ψ).

6.5.4 Propositional Relevance Logic with E

In the following lemma, we will mention the proof of the abbreviation (PRLEAbbr1).

Lemma PRLEAbbr1 : MRLValid (U <-> N E).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_R_NNot_Intro.

assume ([E] z^*).

MRL_P_Not_Elim H0 H3.

MRL_R_E_Intro.

MRL_R_U_Elim H (x^*).

rewrite (DNg x).

rewrite <- DMg2.

rewrite <- H.

trivial.

MRL_P_Impl_Intro.

MRL_P_PBC.

assume ([¬ E] (z^*)).

assume (z=(z^*)^*).

MRL_R_NNot_Elim H H3 H4.

apply DNg.

MRL_P_Not_Intro.

assume ([U] z).

MRL_P_Not_Elim H0 H4.

MRL_R_U_Intro.

rewrite (DNg x).

rewrite (DNg z).

rewrite <- DMg1.

MRL_R_E_Elim H3 (x ^*).

CHAPTER 6. IMPLEMENTATION IN COQ 129

rewrite <- H3.

trivial.

Qed.

Please note we will omit the extra abbreviation (PRLEAbbr2) proof. Proof is available in
the Coq code included in this thesis.

Lemma PRLEAbbr2 : MRLValid (E <-> N U).

6.5.5 Boolean Algebra Axioms

Now, we want to prove the Boolean algebra axioms defined in Theorem 1 in Coq. We begin
with the proof of Lemma 7.

Lemma lemma2.7.2 (ϕ : MRLProp) : MRLValid (ϕ <-> vv ϕ).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_R_Not_Intro.

assume (z^*=((z^*)^*)^*).

rewrite DNg in H.

MRL_R_Not_Elim H0 H H3.

apply DNg.

MRL_P_Impl_Intro.

MRL_R_Not_PBC.

assume (z=(z^*)^*).

MRL_R_Not_Elim H H0 H3.

apply DNg.

Qed.

In the following lemma, we prove the Commutativity of

Î

axiom from Theorem 1.

Lemma Commutativity1 (ϕ ψ : MRLProp) : MRLValid (ϕ //\\ ψ <-> ψ //\\ ϕ).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_RJ_And_Elim H.

MRL_RJ_And_Intro y x.

rewrite join_comm in H0.

CHAPTER 6. IMPLEMENTATION IN COQ 130

assumption.

MRL_P_Impl_Intro.

MRL_RJ_And_Elim H.

MRL_RJ_And_Intro y x.

rewrite join_comm in H0.

assumption.

Qed.

Please note that the side-condition of the rule (

Î

E) is automatically taken care of by the
tactic MRL RJ And Elim. We will omit Commutativity2 lemma proof. It is available in the
Coq code included in this thesis.

Lemma Commutativity2 (ϕ ψ : MRLProp) : MRLValid (ϕ \\// ψ <-> ψ \\// ϕ).

In the following lemma, we prove the Identity1 for

Î

axiom from Theorem 1.

Lemma Identity1 (ϕ : MRLProp) : MRLValid (ϕ <-> ϕ //\\ E).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_RJ_And_Intro z (z*(z^*)).

rewrite meet_comp.

rewrite zero_ident.

trivial.

MRL_R_E_Intro.

rewrite meet_comp.

rewrite zero_ident.

trivial.

MRL_P_Impl_Intro.

MRL_R_Not_PBC.

MRL_RJ_And_Elim H.

MRL_R_E_Elim H x.

rewrite <- H in H3.

rewrite H3 in H0.

assume (x^*=((x^*)^*)^*).

rewrite DNg in H4.

MRL_R_Not_Elim H0 H4 H5.

apply DNg.

Qed.

Please note that the side-condition of the rule (

Î

E) is automatically taken care of by the

CHAPTER 6. IMPLEMENTATION IN COQ 131

tactic MRL RJ And Elim. We will omit Identity2 lemma proof, but it is available in the Coq
code submitted in this thesis.

Lemma Identity2 (ϕ : MRLProp) : MRLValid (ϕ <-> ϕ /\o U).

In the following lemma, we prove the Distributivity1 of

Î

on >◦ axiom from Theorem 1.

Lemma Distributivity1 (ϕ ψ χ : MRLProp) : MRLValid (ϕ //\\ (ψ /\o χ) ->

(ϕ //\\ ψ) /\o (ϕ //\\ χ)).

Proof.

start.

MRL_P_Impl_Intro.

MRL_RJ_And_Elim H.

MRL_RM_And_Elim H.

MRL_RM_And_Intro (x + x0) (x + y0).

rewrite H4 in H0.

rewrite join_distr in H0.

assumption.

MRL_RJ_And_Intro x x0.

MRL_RJ_And_Intro x y0.

Qed.

Please note that the side-condition of the rules (

Î

E and >◦ E) is automatically taken care
of by the tactics MRL RJ And Elim, and MRL RM And Elim. We will omit Distributivity2

lemma proof. It is available in the Coq code included in this thesis.

Lemma Distributivity2 (ϕ ψ χ : MRLProp) : MRLValid (ϕ /\o (ψ //\\ χ) ->

(ϕ /\o ψ) //\\ (ϕ /\o χ)).

In the following lemma, we prove the Complements for

Î

axiom from Theorem 1.

Lemma Complement1 (ϕ : MRLProp) : MRLValid (ϕ ->

Top /\o (U /\ (ϕ //\\ N ϕ))).

Proof.

start.

MRL_P_Impl_Intro.

MRL_RM_And_Intro z (z+z^*).

rewrite join_comp.

rewrite one_ident.

trivial.

MRL_R_U_Intro.

CHAPTER 6. IMPLEMENTATION IN COQ 132

rewrite join_comp.

rewrite one_ident.

trivial.

MRL_RJ_And_Intro z (z^*).

MRL_R_NNot_Intro.

rewrite <- DNg in H0.

MRL_P_Not_Elim H0 H.

Qed.

Please note that the side-condition of the rule (U I) is automatically taken care of by the
tactic MRL R U Intro. We will omit Distributivity2 lemma proof. It is available in the Coq
code included in this thesis.

Lemma Complement2 (ϕ : MRLProp) : MRLValid (ϕ ->

Top //\\ (E /\ (ϕ /\o N ϕ))).

6.5.6 Additional Boolean Algebra Axioms

In this section, we want to explain the additional Boolean algebra axioms we have proven in
this thesis. In the following lemma, we have proven the associativity law for the derived
relevance logic and for join operator.

Lemma Extra_Associativity1 (ϕ ψ χ: MRLProp) : MRLValid ((ϕ //\\ ψ) //\\ χ

<-> ϕ //\\ (ψ //\\ χ)).

Proof.

start.

MRL_P_Equal_Intro.

MRL_P_Impl_Intro.

MRL_RJ_And_Elim H.

MRL_RJ_And_Elim H3.

rewrite H4 in H0.

rewrite <- join_assoc in H0.

MRL_RJ_And_Intro x0 (y0+y).

MRL_RJ_And_Intro y0 y.

MRL_P_Impl_Intro.

MRL_RJ_And_Elim H.

MRL_RJ_And_Elim H.

rewrite H4 in H0.

rewrite join_assoc in H0.

MRL_RJ_And_Intro (x+x0) y0.

MRL_RJ_And_Intro x x0.

Qed.

CHAPTER 6. IMPLEMENTATION IN COQ 133

Please note we will omit other axiom’s proofs. They are available in the Coq code included
in this thesis.

Lemma Extra_Commutativity1 (ϕ ψ : MRLProp) : MRLValid (ϕ /\o ψ <-> ψ /\o ϕ).

Lemma Extra_Commutativity2 (ϕ ψ : MRLProp) : MRLValid (ϕ \/o ψ <-> ψ \/o ϕ).

Lemma Extra_Associativity2 (ϕ ψ χ: MRLProp) : MRLValid ((ϕ \\// ψ) \\// χ

<-> ϕ \\// (ψ \\// χ)).

Lemma Extra_Associativity3 (ϕ ψ χ: MRLProp) : MRLValid ((ϕ /\o ψ) /\o χ

<-> ϕ /\o (ψ /\o χ)).

Lemma Extra_Associativity4 (ϕ ψ χ: MRLProp) : MRLValid ((ϕ \/o ψ) \/o χ

<-> ϕ \/o (ψ \/o χ)).

6.5.7 Boolean Contact Algebra Axioms

The implementation concludes with the proof of Boolean contact algebra axioms defined in
Theorem 2 in Coq. In the following lemma, we prove the Null disconnected (BCAx0) axiom
from Theorem 2.

Lemma BCAx0 : MRLValid ([C]¬ E).

Proof.

start.

MRL_K_BoxC_Intro.

MRL_K_C_BCA0h H.

Qed.

In the following lemma, we prove the Reflexivity (BCAx1) axiom from Theorem 2.

Lemma BCAx1 (ϕ : MRLProp) : MRLValid (¬ E -> ([C]ϕ -> ϕ)).

Proof.

start.

MRL_P_Impl_Intro.

MRL_P_Impl_Intro.

MRL_K_C_BCA1h H.

MRL_K_BoxC_Elim H0 H.

Qed.

CHAPTER 6. IMPLEMENTATION IN COQ 134

In the following lemma, we prove the Symmetry (BCAx2) axiom from Theorem 2.

Lemma BCAx2 (ϕ : MRLProp) : MRLValid (ϕ -> ([C]<C>ϕ)).

Proof.

start.

MRL_P_Impl_Intro.

MRL_K_BoxC_Intro.

MRL_K_DiamondC_Intro z.

MRL_K_C_BCA2h H0.

assumption.

assumption.

Qed.

In the following lemma, we prove the Compatibility (BCAx3) axiom from Theorem 2.

Lemma BCAx3 (ϕ : MRLProp) : MRLValid ([C]ϕ -> [C] (Top ->o ϕ)).

Proof.

start.

MRL_P_Impl_Intro.

MRL_K_BoxC_Intro.

MRL_RM_Impl_Intro.

assume (x * y0 = x * y0).

rewrite (Idm2 y0) in H5 at 2.

rewrite meet_assoc in H5.

rewrite <- H3 in H5.

MRL_K_C_BCA3h H0 H5.

MRL_K_BoxC_Elim H H6.

trivial.

Qed.

In the following lemma, we prove the Summation (BCAx4) axiom from Theorem 2.

Lemma BCAx4 (ϕ : MRLProp) : MRLValid (ϕ -> [C](¬ <C> ϕ ->> <C> ϕ)).

Proof.

start.

MRL_P_Impl_Intro.

MRL_K_BoxC_Intro.

MRL_RJ_Impl_Intro.

rewrite H3 in H0.

MRL_K_C_BCA4 H0.

MRL_P_PBC.

assume ([<C> ϕ] x).

CHAPTER 6. IMPLEMENTATION IN COQ 135

MRL_P_Not_Elim H4 H7.

MRL_K_DiamondC_Intro z.

MRL_K_C_BCA2h H5.

trivial.

trivial.

MRL_K_DiamondC_Intro z.

MRL_K_C_BCA2h H5.

trivial.

trivial.

Qed.

Chapter 7

Conclusion and Future Work

In this thesis, we have introduced a new logic namely modal relevance logic for mereotopol-
ogy. This logic is used to reason the application related to QSR. In this logic, we have the
modal operators to reason about the topological aspects and relevance operators to reason
about mereological aspects. For this all to be possible we have specified a set of axioms
for the applications based on QSR. We have also used a natural deduction calculus for our
logic for a soundness proof. Furthermore, we have implemented the calculus in functional
programming language and interactive theorem prover Coq.

In future work, firstly, we want to focus on the completeness proof of our calculus using
standard techniques. Secondly, we will concentrate on the decidability of our logic using the
filtration theorem. Thirdly, we would like to extend our logic by introducing other axioms
of the Boolean contact algebra. Furthermore, for the sake of automation, we would like to
introduce automated Ltac tactics for the proof of Boolean algebra derivations.

136

Bibliography

[1] Anderson, A.R., Belnap, N., Dunn, J.: Entailment: The Logic of Relevance and

Necessity (Vol. 1). Princeton University Press (1976).

[2] Benzmüller, C., Paleo, B.W.: Interacting with Modal Logics in the Coq Proof Assistant.
Springer, LNCS 9139, pp. 398-411 (2015).

[3] Van, B.J., Bezhanishvili, G.: Modal Logics of Space. Springer, pp. 217-298 (2007).

[4] Blackburn, P., Van, B.J, Wolter, F. Handbook of Modal Logic. Studies in Logic and
Practical Reasoning 3 (2007).

[5] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science 8 (2002).

[6] Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications.

LNM 2032 (2011).

[7] Baum, J.D.: Elements of Point Set Topology. Dover (1991).

[8] Bennett, B.: Modal Logics for Qualitative Spatial Reasoning. Logic Journal of the
IGPL 4(1), pp. 23-45 (1996).

[9] Boolean Algebra (structure). https://en.wikipedia.org/wiki/Boolean_
algebra_(structure), Last accessed 8-July-2018.

[10] Chlipala, A.: An Introduction to Programming and Proving with Dependent Types in

Coq. Journal of Formalized Reasoning 3(2), pp. 1-93 (2010).

[11] Dunn, J.M., Restall, G.: Relevance logic. In Gabbay, G., Guenthner, F. (eds.): Hand-
book of Philosophical Logic. pp. 1-128 (2002).

[12] Düntsch, I., Winter, M.:. Algebraization and Representation of Mereotopological

Structures. Journal on Relational Methods in Computer Science,(Vol. 1), pp. 161-180
(2004).

137

https://en.wikipedia.org/wiki/Boolean_algebra_(structure)
https://en.wikipedia.org/wiki/Boolean_algebra_(structure)

BIBLIOGRAPHY 138

[13] Düntsch, I., Winter, M.: A Representation Theorem for Boolean Contact Algebras.

TCS 347(3), pp. 498-512 (2005).

[14] Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer (2009).

[15] Halmos, P.: Lectures on Boolean Algebras. Van Nostrand (1963).

[16] Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About

Systems. Cambridge University Press (2004).

[17] Munkres, J,R,: Topology: A First Course. Prentice-Hall (1974).

[18] Read, S.: Relevant Logic: A Philosophical Examination of Inference. Basil Blackwell
(1989).

[19] Renz, J.: Qualitative Spatial Reasoning with Topological Information. Springer, LNAI
2293 (2002).

[20] Sozeau, M., Oury, N.: First-class Type Classes. Springer, LNCS 5170, pp. 278-293
(2008).

[21] The Coq Proof Assistant. https://coq.inria.fr/, Last accessed 8-July-2018.

https://coq.inria.fr/

	Introduction
	Mathematical Preliminaries
	Topology
	Boolean Algebras
	Boolean Contact Algebras
	Propositional Logic (PL)
	Syntax
	Semantics

	Modal Logic (ML)
	Syntax
	Semantics

	Relevance Logic (RL)
	Syntax
	Semantics

	Propositional Relevance Logic (PRL)
	Syntax
	Semantics
	Semantics of PRL-frame Abbreviations
	Additional Properties of PRL-frame

	Propositional Relevance Logic with E (PRLE)
	Syntax
	Semantics
	PRLE-frame Axioms
	Boolean Algebras in Original PRLE Language
	Commutativity Axiom
	Identity Axiom
	Distributivity Axiom
	Complement Axiom

	Modal Relevance Logic (MRL)
	Syntax
	Semantics
	BMRL-frame Axioms

	Natural Deduction
	Rules of Natural Deduction
	Rules for the Equality
	Rules for the Propositional Operators
	Rules for the Modal Operators
	Rules for the Basic Relevance Operators
	Rules for the Derived Relevance Operators
	Rules for the Constant E and U
	Rules for Contact

	Soundness of Natural Deduction Rules
	Equality Operator
	Propositional Operators
	Modal Operators
	Relevance Basic Operators
	Relevance Derived Operators
	Constant E and U
	Contact Axioms

	Proofs in Natural Deduction
	Propositional Relevance Logic
	Propositional Relevance Logic with E
	Boolean Algebra Axioms in PRLE-frame
	Additional Boolean Algebra Axioms in PRLE-frame
	Boolean Contact Algebra Axioms in MRL-frame

	The Coq Proof Assistant
	Sort
	Set
	Prop
	Type

	Logical Operators
	Classes
	Tactic and Proof
	Proof with Ltac

	Implementation in Coq
	Implementation of Boolean algebra
	Abstract Structure of Boolean algebra
	Duality of Boolean algebra
	Order Relations on Boolean algebra

	Implementation of Boolean contact algebra
	Implementation of MRL Proposition and Model
	MRL Proposition
	MRL Model

	Implementation of Natural Deduction Rules
	Implementation of Propositional Operators
	Propositional Logic False
	Propositional Logic Implication
	Propositional Logic Not
	Propositional Logic And
	Propositional Logic Or
	Propositional Logic Equivalence
	Propositional Logic True

	Implementation of Modal Operators
	Modal Logic Box
	Modal Logic Diamond

	Implementation of Basic Relevance Operators
	Relevance Logic Implication
	Relevance Logic Not

	Implementation of Derived Relevance Operators
	Derived Relevance Operator And for Join
	Derived Relevance Operator Or for Join
	Derived Relevance Operator N
	Derived Relevance Operator Implication for Meet
	Derived Relevance Operator And for Meet
	Derived Relevance Operator Or for Meet

	Implementation of Constant E and U
	Constant E
	Constant U

	Implementation of Contact
	Contact (BCA0)
	Contact (BCA1)
	Contact (BCA2)
	Contact (BCA3)
	Contact (BCA4)

	Proofs in Coq
	Propositional Logic
	Modal Logic
	Propositional Relevance Logic
	Propositional Relevance Logic with E
	Boolean Algebra Axioms
	Additional Boolean Algebra Axioms
	Boolean Contact Algebra Axioms

	Conclusion and Future Work

