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Objective:  Modelling  the associations  from  high-throughput  experimental  molecular  data  has  provided
unprecedented  insights  into  biological  pathways  and  signalling  mechanisms.  Graphical  models  and
networks  have  especially  proven  to be useful  abstractions  in  this  regard.  Ad  hoc  thresholds  are  often
used  in  conjunction  with  structure  learning  algorithms  to determine  significant  associations.  The  present
study  overcomes  this limitation  by  proposing  a statistically  motivated  approach  for  identifying  significant
associations  in a network.
Methods and materials:  A  new method  that  identifies  significant  associations  in graphical  models  by
estimating  the  threshold  minimising  the  L1 norm  between  the  cumulative  distribution  function  (CDF)
of  the observed  edge  confidences  and  those  of its asymptotic  counterpart  is  proposed.  The  effectiveness
of  the  proposed  method  is  demonstrated  on  popular  synthetic  data  sets  as  well  as  publicly  available
experimental  molecular  data  corresponding  to  gene  and  protein  expression  profiles.
Results: The  improved  performance  of the  proposed  approach  is  demonstrated  across  the  synthetic  data
sets  using  sensitivity,  specificity  and  accuracy  as  performance  metrics.  The  results  are  also  demon-
strated  across  varying  sample  sizes  and  three  different  structure  learning  algorithms  with  widely  varying
assumptions.  In  all cases,  the  proposed  approach  has  specificity  and  accuracy  close  to  1,  while sensitivity
increases  linearly  in  the  logarithm  of  the  sample  size.  The  estimated  threshold  systematically  outper-
forms  common  ad  hoc  ones  in  terms  of  sensitivity  while  maintaining  comparable  levels  of  specificity  and
accuracy.  Networks  from  experimental  data  sets  are reconstructed  accurately  with  respect  to the  results
from  the original  papers.
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provided by UCL
Conclusion: Current  studies  use structure  learning  algorithms  in conjunction  with  ad  hoc thresholds
for  identifying  significant  associations  in  graphical  abstractions  of biological  pathways  and  signalling
mechanisms.  Such  an  ad hoc  choice  can  have  pronounced  effect  on attributing  biological  significance  to
the  associations  in the resulting  network  and  possible  downstream  analysis.  The  statistically  motivated
approach  presented  in  this  study  has  been  shown  to outperform  ad  hoc  thresholds  and  is  expected  to

sions
alleviate  spurious  conclu

. Introduction and background

Graphical models [1,2] are a class of statistical models which
ombine the rigour of a probabilistic approach with the intuitive
epresentation of relationships given by graphs. They are composed
y a set X = {X1, X2, . . .,  XN} of random variables describing the quan-
ities of interest and a graph G = (V, E) in which each node or vertex

 ∈ V is associated with one of the random variables in X (they

re usually referred to interchangeably). The edges e ∈ E are used
o express the dependence relationships among the variables in X.
he set of these relationships is often referred to as the dependence
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 of  significant  associations  in  such  graphical  abstractions.
© 2012 Elsevier B.V. 

structure of the graph. Different classes of graphs express these
relationships with different semantics, which have in common the
principle that graphical separation of two vertices implies the con-
ditional independence of the corresponding random variables [2].
The two  examples most commonly found in literature are Markov
networks [3,4], which use undirected graphs, and Bayesian networks
(BNs) [5,6], which use directed acyclic graphs.

In principle, there are many possible choices for the joint dis-
tribution of X, depending on the nature of the data. However,
literature has focused mostly on two cases: the discrete case [3,7],
in which both X and the Xi are multinomial random variables, and
the continuous case [3,8], in which X is multivariate normal and

Open access under CC BY license. 
the Xi are univariate normal random variables. In the former, the
parameters of interest are the conditional probabilities associated
with each variable, usually represented as conditional probabil-
ity tables; in the latter, the parameters of interest are the partial
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orrelation coefficients between each variable and its neighbours
i.e. the adjacent nodes in G).

The estimation of the structure of the graph G is called structure
earning [1,4], and involves determining the graph structure that
ncodes the conditional independencies present in the data. Ideally
t should coincide with the dependence structure of X, or it should
t least identify a distribution as close as possible to the correct one
n the probability space. Several algorithms have been presented in
he literature for this problem, thanks to the application of many
esults from probability, information and optimisation theory.
espite differences in theoretical backgrounds and terminology,

hey can all be grouped into only three classes: constraint-based
lgorithms, that are based on conditional independence tests; score-
ased algorithms, that are based on goodness-of-fit scores; and
ybrid algorithms, that combine the previous two  approaches. For
ome examples see Bromberg et al. [9], Castelo and Roverato [10],
riedman et al. [11], Larrañaga et al. [12] and Tsamardinos et al.
13].

On the other hand, the development of techniques for assessing
he statistical robustness of network structures learned from data
e.g. the presence of artefacts arising from noisy data) has been
imited. Structure learning algorithms are commonly studied mea-
uring differences from the true (known) structure of a small
umber of reference data sets [14,15]. The usefulness of such an
pproach in investigating networks learned from real-world data
ets is limited, since the true structure of their probability distribu-
ion is unknown.

A  more systematic approach to model assessment, and in partic-
lar to the problem of identifying statistically significant features

n a network, has been developed by Friedman et al. [16] using
ootstrap resampling [17] and model averaging [18]. It can be
ummarised as follows:

.  For b = 1, 2, . . .,  m:
(a) sample a new data set X∗

b from the original data X using either
parametric or nonparametric bootstrap;

(b)  learn the structure of the graphical model Gb = (V, Eb) from
X∗

b.
. Estimate the probability that each possible edge ei, i = 1, . . .,  k is

present  in the true network structure G0 = (V, E0) as

P̂(ei) = 1
m

m∑
b=1

1{ei∈Eb}, (1)

where 1{ei∈Eb} is the indicator function of the event {ei ∈ Eb} (i.e.
it  is equal to 1 if ei ∈ Eb and 0 otherwise).

he  empirical probabilities P̂(ei) are known as edge intensities or
rc strengths, and can be interpreted as the degree of confidence
hat ei is present in the network structure G0 describing the true
ependence structure of X .1 However, they are difficult to evaluate,
ecause the probability distribution of the networks Gb in the space
f the network structures is unknown. As a result, the value of the
onfidence threshold (i.e. the minimum degree of confidence for an
dge to be significant and therefore accepted as an edge of G0) is an
nknown function of both the data and the structure learning algo-
ithm. This is a serious limitation in the identification of significant
dges and has led to the use of ad hoc, pre-defined thresholds in

pite of the impact on model assessment evidenced by several stud-
es [16,19]. An exception is Nagarajan et al. [20], whose approach

ill be discussed below.

1 The probabilities P̂(ei) are in fact an estimator of the expected value of the {0,
}  random vector describing the presence of each possible edge in G0. As such, they
o not sum to one and are dependent on one another in a nontrivial way.
nce in Medicine 57 (2013) 207– 217

Apart from this limitation, Friedman’s approach is very general
and can be used in a wide range of settings. First of all, it can be
applied to any kind of graphical model with only minor adjust-
ments (for example, accounting for the direction of the edges in
BNs, see Section 4). No distributional assumption on the data is
required in addition to the ones needed by the structure learn-
ing algorithm. No assumption is made on the latter, either, so any
score-based, constraint-based or hybrid algorithm can be used.
Furthermore, parallel computing can easily be used to offset the
additional computational complexity introduced by model averag-
ing, because bootstrap is embarrassingly parallel.

In this paper, we  propose a statistically motivated estimator
for the confidence threshold minimising the L1 norm between the
cumulative distribution function (CDF) of the observed confidence
levels and the CDF of the confidence levels of the unknown net-
work G0. Subsequently, we  demonstrate the effectiveness of the
proposed approach by re-investigating two  experimental data sets
from Nagarajan et al. [20] and Sachs et al. [21].

2. Selecting significant edges

Consider the empirical probabilities P̂(ei) defined in Eq. (1), and
denote them with p̂ = {p̂i, i = 1, . . . , k}. For a graph with N nodes,
k = N(N − 1)/2. Furthermore, consider the order statistic

p̂( · ) = (p̂(1), p̂(2), . . . , p̂(k)) with p̂(1) � p̂(2) � · · · � p̂(k) (2)

derived from p̂. It is intuitively clear that the first elements of p̂( · )
are more likely to be associated with non-significant edges, and
that the last elements of p̂( · ) are more likely to be associated with
significant edges. The ideal configuration p̃( · ) of p̂( · ) would be

p̃(i) =
{

1 if e(i) ∈ E0

0 otherwise
,  (3)

that is the set of probabilities that characterises any edge as either
significant or non-significant without any uncertainty. In other
words,

p̃( · ) = {0, . . . , 0, 1, . . . , 1}. (4)

Such a configuration arises from the limit case in which all the
networks Gb have exactly the same structure. This may happen in
practice with a consistent structure learning algorithm when the
sample size is large [22,23].

A useful characterisation of p̂( · ) and p̃( · ) can be obtained through
the empirical CDFs of the respective elements,

Fp̂( · )
(x) = 1

k

k∑
i=1

1{p̂(i)<x} (5)

and

Fp̃( · )
(x) =

⎧⎨
⎩

0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1, +∞)

.  (6)

In particular, t corresponds to the fraction of elements of p̃( · ) equal
to zero and is a measure of the fraction of non-significant edges. At
the same time, t provides a threshold for separating the elements
of p̃( · ), namely

e(i) ∈ E0 ⇔ p̃(i) > F−1
p̃( · )

(t) (7)

−1
where Fp̃( ·  )
(t) = inf

x∈R
{Fp̃( ·  )

(x) � t} is the quantile function [24].

More importantly, estimating t from data provides a statisti-
cally motivated threshold for separating significant edges from
non-significant ones. In practice, this amounts to approximating
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Fig. 1. The empirical CDF Fp̂(  · )
(left), the CDF Fp̃(  · )

(cent

he ideal, asymptotic empirical CDF Fp̃( · )
with its finite sample

stimate Fp̂( · )
. Such an approximation can be computed in many

ifferent ways, depending on the norm used to measure the dis-
ance between Fp̂( · )

and Fp̃( ·  )
as a function of t. Common choices are

he Lp family of norms [25], which includes the Euclidean norm,
nd Csiszar’s f-divergences [26], which include Kullback–Leibler
ivergence.

The L1 norm

1(t; p̂( ·  )) =
∫

|Fp̂(  · )
(x) − Fp̃( · )

(x; t)|dx (8)

ppears to be particularly suited to this problem; an example is
hown in Fig. 1. First of all, note that Fp̂(  · )

is piecewise constant,

hanging value only at the points p̂(i); this descends from the defi-
ition of empirical CDF. Therefore, for the problem at hand Eq. (8)
implifies to

1(t; p̂( ·  )) =
∑

xi∈{{0}∪p̂( · )∪{1}}
|Fp̂(  · )

(xi) − t|(xi+1 − xi), (9)

hich can be computed in linear time from p̂( · ). Its minimisation is
lso straightforward using linear programming [27]. Furthermore,
ompared to the more common L2 norm

2(t; p̂( ·  )) =
∫

[Fp̂( · )
(x) − Fp̃( · )

(x; t)]2dx (10)

r the L∞ norm

∞(t; p̂( · )) = max
x∈[0,1]

{|Fp̂( · )
(x) − Fp̃( · )

(x; t)|}, (11)

he L1 norm does not place as much weight on large deviations
ompared to small ones, making it robust against a wide variety of
onfigurations of p̂( ·  ).

Then the identification of significant edges can be thought of
ither as a least absolute deviations estimation or an L1 approximation
f the form

 = argmin
t∈[0,1]

L1(t; p̂( ·  )) (12)

ollowed by the application of the following rule:

(i) ∈ E0 ⇔ p̂(i) > F−1
p̂( · )

(t̂). (13)

ote that, even though edges are individually identified as signif-
cant or non-significant, they are not identified independently of
ach other because t̂ is a function of the whole p̂( · ).

A  simple example is illustrated below.
xample 1. Consider a graphical model based on an undirected
raph G with node set V = {A, B, C, D}. The set of possible edges of

 contains 6 elements: (A, B), (A, C), (A, D), (B, C), (B, D) and (C, D).
uppose that we have estimated the following confidence values:
d the L1 norm between the two (right), shaded in grey.

p̂AB = 0.2242, p̂AC = 0.0460, p̂AD = 0.8935, p̂BC = 0.3921,

p̂BD = 0.7689, p̂CD = 0.9439. (14)

Then p̂( · ) = {0.0460, 0.2242, 0.3921, 0.7689, 0.8935, 0.9439} and

Fp̂(  · )
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ (−∞, 0.0460)
1
6

if x ∈ [0.0460, 0.2242)

2
6

if x ∈ [0.2242, 0.3921)

3
6

if x ∈ [0.3921, 0.7689)

4
6

if x ∈ [0.7689, 0.8935)

5
6

if x ∈ [0.8935, 0.9439)

1  if x ∈ [0.9439, +∞)

.  (15)

The L1 norm takes the form

L1(t; p̂( · )) = |0 − t|(0.0460 − 0) +
∣∣∣1

6
−  t

∣∣∣ (0.2242 − 0.0460)

+
∣∣∣2

6
−  t

∣∣∣ (0.3921 − 0.2242)

+
∣∣∣3

6
−  t

∣∣∣ (0.7689 − 0.3921)

+
∣∣∣4

6
−  t

∣∣∣ (0.8935 − 0.7689)

+
∣∣∣5

6
−  t

∣∣∣ (0.9439 − 0.8935)

+|1 − t|(1 − 0.9439) (16)

and is minimised for t̂ = 0.4999816. Therefore, an edge is
deemed significant if its confidence is strictly greater than
F−1

p̂(  · )
(0.4999816) = 0.3921, or, equivalently, if it has confidence of

at least 0.7689; only (A, D), (B, D) and (C, D) satisfy this condition
(Fig. 2).

3.  Simulation results

We  tested the proposed approach on synthetic data sets using
three established performance measures: sensitivity, specificity and
accuracy. Sensitivity is given by the proportion of edges of the true
network structure that have been correctly identified as significant.

Specificity is given by the proportion of the edges missing from the
true network structure that have been correctly identified as non-
significant. Accuracy is given by the proportion of edges correctly
identified as either significant or non-significant over the set of all
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Fig. 2. The CDFs Fp̂(  ·  )
and Fp̃(  ·  )

(t̂), respectively in black a

ossible edges. To that end, we generated 400 data sets of varying
izes (100, 200, 500, 1000, 2000, 5000, 10,000 and 20,000) from
hree discrete BNs commonly used as benchmarks:

the  ALARM network [28], a network designed to provide an alarm
message  system for intensive care unit patient monitoring. Its
true  structure is composed by 37 nodes and 46 edges (of 666
possible  edges), and its probability distribution has 509 parame-
ters;
the  HAILFINDER network [29], a network designed to forecast
severe  summer hail in northeastern Colorado. Its true structure
is  composed by 56 nodes and 66 edges (of 1540 possible edges),
and  its probability distribution has 2656 parameters;
the  INSURANCE network [30], a network designed to evaluate car
insurance risks. Its true structure is composed by 27 nodes and
52  edges (of 351 possible edges), and its probability distribution
has  984 parameters.

hree different structure learning algorithms were considered:

the  Incremental Association Markov Blanket (IAMB) constraint-
based  algorithm [31]. IAMB was used to learn the Markov blanket
of  each node as a preliminary step to reduce the number of its
candidate  parents and children; a network structure satisfying
these  constraints is then identified as in the Grow–Shrink algo-
rithm  [32]. Conditional independence tests were performed using
a shrinkage mutual information test [33] with  ̨ = 0.05. Such a test,
unlike the more common asymptotic �2 mutual information test,
is valid and has been shown to work reliably even on small sam-
ples.  An  ̨ = 0.01 was also considered; however, the results were
not  significantly different from  ̨ = 0.05 and will not be discussed
separately in this paper;
the  Hill Climbing (HC) score-based algorithm with the Bayesian
Dirichlet  equivalent uniform (BDeu) score function, the posterior
distribution  of the network structure arising from a uniform prior
distribution [7]. The equivalent sample size was set to 10. This is
the same approach detailed in Friedman et al. [16], although they
considered  only 100 (instead of 500) bootstrap samples for each
scenario;
the  Max–Min Hill Climbing (MMHC) hybrid algorithm [13], which
combines  the Max–Min Parents and Children (MMPC) and HC.
The  conditional independence test used in MMPC  and the score
functions  used in HC are the ones illustrated in the previous

points.

he performance measures were estimated for each combination of
etwork, sample size and structure learning algorithm as follows:
y (left), and the L1(t; p̂( · )) norm (right) from Example 1.

1. a sample of the appropriate size was generated from either the
ALARM,  the HAILFINDER or the INSURANCE network;

2. we  estimated the confidence values p̂ for  all possible edges from
200  and 500 nonparametric bootstrap samples. Since results are
very  similar, they will be discussed together;

3.  we  estimated the confidence threshold t̂,  and identified sig-
nificant  and non-significant edges in the network. Note that
the  direction of the edges present in the network structure is
effectively  ignored, because the proposed approach focuses only
those edges’ presence. Significant edges were then used to build
an  averaged network structure;

4. we  computed sensitivity, specificity and accuracy comparing the
averaged network structure to the true one, which is known from
the  literature.

These steps were repeated 50 times in order to estimate both the
performance measures and their variability.

All the simulations and the thresholds estimation were per-
formed with the bnlearn package [34,35] for R [36], which
implements several methods for structure learning, parameter esti-
mation and inference on BNs (including the approach proposed in
Section 2).

The average values of sensitivity, specificity, accuracy and t̂ for
the  networks across various sample sizes (n) are shown in Figs. 3
(IAMB), 4 (HC) and 5 (MMHC). Since the number of parameters is
non-constant across the networks, a normalised ratio of the size of
the generated sample to the number of parameters of the network
(i.e. n/p) is used as a reference instead of the raw sample size (i.e. n).
Intuitively, a sample of size of n = 1000 may  be large enough to esti-
mate reliably a small network with few parameters, say p = 100, but
it may  be too small for a larger network with p = 10, 000. On a related
note, denser networks (i.e. networks with a large number of edges
compared to the number of nodes) usually have a higher number
of parameters than sparser ones (i.e. networks with few edges).

Several  interesting trends emerge from the estimated quanti-
ties. As expected, sensitivity increases as the sample size grows.
This provides an empirical verification that the combination of HC
and BDe is indeed consistent, as proved by Chickering [23]. No anal-
ogous result exists for IAMB or MMHC, although intuitively their
sensitivity should improve as well with the sample size due to the
consistency of the conditional independence tests used by those
algorithms. Moreover, even when n/p is extremely low a substan-
tial proportion of the network structure can be correctly identified.
When n/p is at least 0.2 (i.e. 1 observation every 5 parameters), HC
successfully recovers from about 50% (for ALARM and INSURANCE)

to 75% (for HAILFINDER) of the true network structure. In contrast,
IAMB and MMHC  successfully recover from about 45% to 50% of
HAILFINDER, but only about 26% to 40% of ALARM and 19% to 30%
of INSURANCE. This difference in performance can be attributed to
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ig. 3. Average sensitivity, specificity and accuracy of IAMB for the ALARM, HAILF
he  dotted vertical line is n = p.

he sparsity-inducing effect of shrinkage tests [37], which increase
pecificity at the cost of sensitivity. For values of n/p greater than 1
i.e. more observations than parameters) the increase in sensitiv-
ty slows down for all combinations of networks and algorithms,
eaching a plateau.

Overall,  sensitivity seems to have an hyperbolic behaviour,
rowing very rapidly for n/p � 1 and then converging asymptoti-
ally  to 1 for n/p > 1. Thus we expect it to increase linearly on a
og(n/p) scale. The slower convergence rate observed for the INSUR-
NCE network compared to the other two networks is likely to be a
onsequence of its high edge density (1.92 edges per node) relative
o ALARM (1.24) and HAILFINDER (1.17). Slower convergence may

lso be an outcome of inherent limitations of structure learning
lgorithms in the case of dense networks [1,38].

Furthermore, both specificity and accuracy are close to 1 for all
he networks and the sample sizes considered in the analysis, even
 and INSURANCE networks over n/p. Bars represent 95% confidence intervals, and

at very low n/p ratios. Such high values are a result of the low num-
ber of true edges in ALARM, HAILFINDER and INSURANCE compared
to the respective numbers of possible edges. This is true in partic-
ular for the ALARM and HAILFINDER networks. The lower values
observed for the INSURANCE network can be attributed again to the
inherent limitations of structure learning algorithms in modelling
dense networks. The sparsity-inducing effect of shrinkage tests is
again evident for both IAMB and MMHC; both specificity and accu-
racy actually decrease slightly as n/p grows and the influence of
shrinkage decreases.

It  is also important to note that, as shown in Fig. 6, the average
value of the confidence threshold t̂ does not exhibit any appar-

ent trend as a function of n/p. In addition, its variability does not
appear to decrease as n/p grows. This suggests that the optimal t̂
depends strongly on the specific sample used in the estimation of
the confidence values p̂,  even for relatively large samples. However,
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ig. 4. Average sensitivity, specificity and accuracy of HC for the ALARM, HAILFIND
otted  vertical line is n = p.

pecificity, sensitivity and accuracy estimates appear on the other
and to be very stable (all confidence intervals shown in Figs. 3–5
re very small).

From  Fig. 6, it is also apparent that the threshold estimate
 can be significantly lower than 1 even for high values of n/p.
his behaviour is observed consistently across the three networks
ALARM, HAILFINDER, INSURANCE). These results are in sharp con-
rast with ad hoc thresholds commonly found in the literature,
hich are usually large [e.g. 0.8 in 16]. A large threshold can cer-

ainly be useful in excluding noisy edges, which may  result from
rtefacts at the measurement and dynamical levels and from finite
ample-size effects. However, while a large ad hoc threshold can

ertainly minimise false positives, it is also expected to accentuate
alse negatives. Such a conservative choice can have a profound
mpact on the network topology, resulting in artificially sparse
etworks. The threshold estimator introduced in Section 2 achieves
d INSURANCE networks over n/p. Bars represent 95% confidence intervals, and the

a  good trade-off between incorrectly identifying noisy edges as
significant and disregarding significant ones. As an example, the
difference in sensitivity, specificity and accuracy between the esti-
mated threshold t̂  and several large, ad hoc ones (t = 0.70, 0.80, 0.90,
0.95) for HC is shown in Fig. 7 (the corresponding plots for IAMB
and MMHC  are similar, and are omitted for brevity). The thresh-
old t̂ systematically outperforms the ad hoc thresholds in terms of
sensitivity, in particular for low values of n/p. The difference pro-
gressively vanishes as n/p grows. All thresholds have comparable
levels of specificity and accuracy.

On a related note, false negatives across ad hoc thresholds may
also be attributed to the fact that edges are considered as separate,

independent entities as far as the choice of the threshold is con-
cerned – i.e. a 0.99 threshold is expected to identify as significant
about 1 in 100 edges in the network. However, in a biological setting
the structure of the network is an abstraction for the underlying
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Fig. 5. Average sensitivity, specificity and accuracy of MMHC for the ALARM, HAILFINDER and INSURANCE networks over n/p. Bars represent 95% confidence intervals, and
the  dotted vertical line is n = p.
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unctional mechanisms; as an example, consider the signalling
athways in a transcriptional network. In such a context, edges
re clearly not independent, but appear in concert along signalling
athways. This interdependence is accounted for in the proposed
pproach (that is based on the full set p̂  of estimated confidence
alues), but it is not commonly considered in choosing ad hoc
hresholds. For instance, edges appearing with individual confi-
ence values far below the [0.80, 1] range may  not necessarily be

dentified as significant by an ad hoc threshold. However, the pro-
osed approach recognises their interplay and correctly identifies

hem as significant. This aspect, along with the strong dependence
etween the optimal t̂  and the actual sample the network is learned
rom, may  discourage the use of an a priori or ad hoc confidence
hreshold in favour of more statistically motivated alternatives.
4. Applications to molecular expression profiles

In order to demonstrate the effectiveness of the proposed
approach on experimental data sets, we will examine two gene
expression data sets from Nagarajan et al. [20] and Sachs et al. [21].
All the analyses will be performed again with the bnlearn package.
Following Imoto et al. [39], we will consider the edges of the BNs
disregarding their direction when determining their significance.
Edges identified as significant will then be oriented according to the
direction observed with the highest frequency in the bootstrapped

networks Gb. While simplistic, this combined approach allows the
proposed estimator to handle the edges whose direction cannot
be determined by the structure learning algorithm possibly due to
score equivalent structures [40].
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Fig. 6. Average estimated significance threshold (t̂) for the ALARM, HAILFIN

.1. Differentiation potential of aged myogenic progenitors

In  a recent study [20] the interplay between crucial myogenic
Myogenin, Myf-5, Myo-D1), adipogenic (C/EBP˛, DDIT3, FoxC2,
PAR�), and Wnt-related genes (Lrp5, Wnt5a) orchestrating aged
yogenic progenitor differentiation was investigated by Nagara-

an et al. using clonal gene expression profiles in conjunction with
N structure learning techniques. The objective was to investigate
ossible functional relationships between these diverse differen-
iation programs reflected by the edges in the resulting networks.
he clonal expression profiles were generated from RNA isolated
cross 34 clones of myogenic progenitors obtained across 24-
onth-old mice and real-time RT-PCR was used to quantify the

ene expression. Such an approach implicitly accommodates inher-

nt uncertainty in gene expression profiles and justified the choice
f probabilistic models.

In  the same study, the authors proposed a non-parametric
esampling approach to identify significant functional
p

nd INSURANCE networks over n/p. Bars represent 95% confidence intervals.

relationships. Starting from Friedman’s definition of confi-
dence levels (Eq. (1)), they computed the noise floor distribution
f̂ = {f̂1, f̂2, . . . , f̂k} of the edges by randomly permuting the expres-
sion of each gene and performing BN structure learning on the
resulting data sets. An edge ei was deemed significant if p̂i > max

{f̂l∈f̂}
f̂l .

In addition to revealing several functional relationships docu-
mented in literature, the study also revealed new relationships that
were immune to the choice of the structure learning techniques.
These results were established across clonal expression data nor-
malised using three different housekeeping genes and networks
learned with three different structure learning algorithms.

The  approach presented in [20] has two  important limitations.
First, the computational cost of generating the noise floor distri-

bution may  discourage its application to large data sets. In fact,
the generation of the required permutations of the data and the
subsequent structure learning (in addition to the bootstrap resam-
pling and the subsequent learning required for the estimation of
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Fig. 7. Difference in sensitivity, specificity and accuracy between the estima

ˆ) essentially doubles the computational complexity of Friedman’s
pproach. Second, a large sample size may  result in an extremely
ow value of max(f̂), and therefore in a large number of false posi-
ives.

In the present study, we re-investigate the myogenic progen-
tor clonal expression data normalised using housekeeping gene
APDH with the approach outlined in Section 2 and the IAMB algo-

ithm. It is important to note that this strategy was also used in
he original study [20], hence its choice. The order statistic p̂( · ) was
omputed from 500 bootstrap samples. The empirical CDF Fp̂( · )

, the
stimated threshold and the network with the significant edges are
hown in Fig. 8.

All  edges identified as significant in the earlier study [20] across

he various structure learning techniques and normalisation tech-
iques were also identified by the proposed approach (see Fig. 3D

n [20]). In contrast to Fig. 8, the original study using IAMB and nor-
alisation with respect to GAPDH alone detected a considerable
p

reshold t̂ and several ad hoc ones (t = 0.70, 0.80, 0.90, 0.95) for HC over n/p.

number  of additional edges (see Fig. 3A in [20]). Thus it is quite
possible that the approach proposed in this paper reduces the num-
ber of false positives and spurious functional relationships between
the genes. Furthermore, the application of the proposed approach
in conjunction with the algorithm from Imoto et al. [39] reveals
directionality of the edges, in contrast to the undirected network
reported by Nagarajan et al. [20].

4.2. Protein signalling in flow cytometry data

In a landmark study, Sachs et al. [21] used BNs for identifying
causal influences in cellular signalling networks from simulta-
neous measurement of multiple phosphorylated proteins and

phospholipids across single cells. The authors used a battery of per-
turbations in addition to the unperturbed data to arrive at the final
network representation. A greedy search score-based algorithm
that maximises the posterior probability of the network [7] and
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Fig. 8. The empirical CDF Fp̂(  ·  )
for the myogenic progenitors data from Nagarajan et al. [20] (on the left), and the network structure resulting from the selection of the

significant edges (on the right). The vertical dashed line in the plot of Fp̂(  · )
represents the threshold F−1

p̃( ·  )
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ig. 9. The empirical CDF of p̂( · ) for the flow cytometry data from Sachs et al. [21] (o
on  the right). The vertical dashed line in the plot of Fp̂(  ·  )

represents the threshold F

ccommodates for variations in the joint probability distribution
cross the unperturbed and perturbed data sets was  used to identify
he edges [41]. More importantly, significant edges were selected
sing an arbitrary significance threshold of 0.85 (see Fig. 3, [21]). A
etailed comparison between the learned network and functional
elationships documented in the literature was presented in the
ame study.

We  investigated the performance of the proposed approach
n identifying significant functional relationships from the same
xperimental data. However, we limit ourselves to the data
ecorded without applying any molecular intervention, which
mount to 854 observations for 11 variables. We  compare and con-
rast our results to those obtained using an arbitrary threshold
f 0.85. The combination of perturbed and non-perturbed obser-
ations studied in Sachs et al. [21] cannot be analysed with our
pproach, because each subset of the data follows a different prob-
bility distribution and therefore there is no single “true” network
0. Analysis of the unperturbed data using the approach presented

n Section 2 reveals the edges reported in the original study. The
esulting network is shown in Fig. 9 along with Fp̂(  · )

and the esti-
ated threshold. From the plot of Fp̂( ·  )

we can clearly see that
ignificant and non-significant edges present widely different lev-
ls of confidence, to the point that any threshold between 0.4 and
.9 results in the same network structure. This, along with the value

f the estimated threshold (p̂(i) � 0.93), shows that the noisiness of
he data relative to the sample size is low. In other words, the sam-
le is big enough for the structure learning algorithm to reliably
elect the significant edges. The edges identified by the proposed
left), and the network structure resulting from the selection of the significant edges
.

method  were the same as those identified by [21] using general
stimulatory cues excluding the data with interventions (see Fig.
4A in [21], Supplementary information). In contrast to [21], using
Imoto et al. [39] approach in conjunction with the proposed thresh-
olding method we were able to identify the directions of the edges
in the network. The directions correlated with the functional rela-
tionships documented in literature (Table 3, [21], Supplementary
information) as well as with the directions of the edges in the net-
work learned from both perturbed and unperturbed data (Fig. 3,
[21]).

5. Conclusions

Graphical models and network abstractions have enjoyed con-
siderable attention across the biological and medical communities.
Such abstractions are especially useful in deciphering the inter-
actions between the entities of interest from high-throughput
observational data. Classical techniques for identifying significant
edges in the resulting graph rely on ad hoc thresholding of the
edge confidence estimated from across multiple independent real-
isations of networks learned from the given data. Large ad hoc
threshold values are particularly common, and are chosen in an
effort to minimise noisy edges in the resulting network. While
useful in minimising false positives, such a choice can accentuate

false negatives with pronounced effect on the network topology.
The present study overcomes this caveat by proposing a more
straightforward and statistically motivated approach for identify-
ing significant edges in a graphical model. The proposed estimator
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