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Abstract. Disjunctive Temporal Problems (DTPs) with Preferences (DTPPs)
extend DTPs with piece-wise constant preference functions associated to
each constraint of the form l ≤ x − y ≤ u, where x, y are (real or in-
teger) variables, and l, u are numeric constants. The goal is to find an
assignment to the variables of the problem that maximizes the sum of
the preference values of satisfied DTP constraints, where such values are
obtained by aggregating the preference functions of the satisfied con-
straints in it under a “max” semantic. The state-of-the-art approach in
the field, implemented in the native DTPP solver Maxilitis, extends
the approach of the native DTP solver Epilitis.
In this paper we present alternative approaches that translate DTPPs
to Maximum Satisfiability of a set of Boolean combination of constraints
of the form l ./ x− y ./ u, ./∈ {<,≤}, that extend previous work deal-
ing with constant preference functions only. We prove correctness and
completeness of the approaches. Results obtained with the Satisfiabil-
ity Modulo Theories (SMT) solvers Yices and MathSAT on randomly
generated DTPPs and DTPPs built from real-world benchmarks, show
that one of our translation is competitive to, and can be faster than,
Maxilitis.3

1 Introduction

Temporal constraint networks [2] provide a convenient formal framework for
representing and processing temporal knowledge. Over the years, a number of
extensions to the framework have been presented. Disjunctive Temporal Prob-
lems (DTPs) with Preferences (DTPPs) is one of such extensions. DTPPs extend
DTPs, i.e. conjunctions of disjunctions of constraints of the form l ≤ x− y ≤ u,
where x, y are (real or integer) variables, and l, u are numeric constants, with
piece-wise constant preference functions associated to each constraint. The goal
is to find an assignment to the variables of the problem that maximizes the
sum of the preference values of satisfied disjunctions of constraints (called DTP
constraints), where such values are obtained by aggregating the preference func-
tions of the satisfied constraints in it. The DTPP has been employed in a number

3 This is a an extended and revised version of [1].



of real-world applications, including scheduling meeting requests and the prob-
lem of building automatic assistants (see, e.g. [3–5]). We consider an utilitarian
aggregation of such DTP constraints values, and a “max” semantic for aggregat-
ing preference values within DTP constraints: given a (candidate) solution of a
DTPP, the preference value of each DTP constraint is defined to be the maximum
value achieved by any of its satisfied disjuncts (see, e.g. [6]). The current state-
of-the-art approach that considers such aggregation methods is implemented in
the native DTPP solver Maxilitis, and is based on an extension of the DTP
solver Epilitis [7] to deal with piece-wise constant preference functions. Various
other approaches have been designed in the literature to deal with DTPPs [6, 8–
10], possibly relying on alternative preference aggregation methods (see, e.g. [11,
12]).

In this paper we present alternative approaches that translate DTPPs to
Maximum Satisfiability of a set of Boolean combination of constraints of the
form l ./ x − y ./ u, where ./∈ {<,≤}. In case of unsatisfiable DTPs, our ap-
proaches provide a “Max-SAT optimal” solution (defined precisely later), rather
than just reporting the problem to be unsatisfiable as done by Maxilitis. The
first approach relies on a very natural modeling of the problem where, for each
soft DTP constraint, the generated constraints are mutually exclusive, and each
is weighted by a preference value: the set is constructed in order to maximize
the degree of satisfaction of the DTP constraint. The second solution we pro-
pose is, instead, obtained by extending previous work that dealt with constant
preference functions only [13], and reduces each soft DTP constraint to a set of
disjunction of constraints, and a non-trivial interplay among their preference val-
ues to maximize, as before, the preference value of the DTP constraint. Then, we
prove that these translations are correct. In order to test the effectiveness of our
proposals, we have randomly generated DTPPs, following the method originally
developed by Peintner and Pollack [11], and then employed in all other papers
on DTPPs. Moreover, we have also generated non-random benchmarks starting
from Job Shop Scheduling problems already employed in [13]. In our framework,
each translated problem is represented as a Satisfiability Modulo Theory (SMT)
formula in the QF RDL or QF IDL logics (depending on the domain of inter-
pretation of variables) plus optimization, and the Yices and MathSAT SMT
solvers, that are able to deal with these logics and optimization issues, are em-
ployed. An experimental analysis conducted on a wide set of benchmarks, using
also the same benchmarks setting already employed in past papers, shows that
our second proposal is competitive to, and can be faster than, Maxilitis. More-
over, the experiments further show that Yices performs better then MathSAT
on these benchmarks.

To sum up, the main contributions of this paper are the following:

• We design new approaches for solving DTPPs that employ translations to
Maximum Satisfiability of a set of Boolean combination of constraints of the
form l ./ x− y ./ u, ./∈ {<,≤}.
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• We prove that the translations are correct.
• We implement the translations, by expressing the resulting formulas in the

SMT logics QF RDL or QF IDL plus optimization.
• We run a wide experimental analysis that shows that one of our encoding,

employing state-of-the-art SMT solvers, can be faster than Maxilitis.

The rest of the paper is structured as follows. Section 2 introduces prelim-
inaries about DTPs, DTPPs and Maximum Satisfiability. Then, in Section 3
we present our translations from DTPPs to Maximum Satisfiability of Boolean
combination of constraints. In Section 4 we prove correctness and completeness
of the approaches, while the experimental analysis is reported in Section 5. The
paper ends by providing a discussion about related work in Section 6 and some
conclusions in Section 7.

2 Formal Background

Problems involving disjunction of temporal constraints have been introduced by
Stergious and Koubarakis [14], as an extension of the Simple Temporal Problem
(STP) [2], which consists of finite conjunction of constraints. The problem was
referred for the first time as Disjunctive Temporal Problem (DTP) by Armando
et. al [15], and is presented in the first subsection. The remaining subsections
introduce DTPPs and Maximum Satisfiability of DTPs.

2.1 DTP

Let V be a set of variables. A constraint is an expression of the form l ≤ x −
y ≤ u, where x, y ∈ V, and l, u are numeric constants. A DTP constraint is a
finite disjunction of constraints. A DTP formula, or simply formula, is a finite
conjunction of DTP constraints. A DTP formula (resp. DTP constraint) can be
equivalently seen as a conjunctively (resp. disjunctively) intended set of DTP
constraints (resp. constraints).

The semantics of DTP formulas is defined as follows. Let the domain of
interpretation D be either the set of the real numbers R or the set of integers
Z. An assignment σ is a total function mapping variables to D; σ |= φ, i.e. σ
satisfies a formula φ, is defined as follows

– σ |= l ≤ x− y ≤ u if and only if l ≤ σ(x)− σ(y) ≤ u;
– σ |= ¬φ if and only if it is not the case that σ |= φ;
– σ |= (∧ni=1φi) if and only if for each i ∈ [1, n], σ |= φi (n ≥ 0); and
– σ |= (∨ni=1φi) if and only if for some i ∈ [1, n], σ |= φi (n ≥ 0).

If σ |= φ then σ is also called a model, or a satisfying assignment of φ. We also
say that a formula φ is satisfiable if and only if there exists a model for φ. The
DTP is the problem of deciding whether a formula φ is satisfiable or not in the
given domain of interpretation D.
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Example 1. The following formula, where D is Z

(5 ≤ x− y ≤ 7 ∨ −30 ≤ z − x ≤ −20) ∧ (5 ≤ z − y ≤ 10)

is satisfiable, and a model σ for it assigns, e.g. x = 8, y = 2 and z = 10.

Notice that the satisfiability of a formula may depend on D, e.g. the formula

x− y > 0 ∧ x− y < 1

is satisfiable if D is R but unsatisfiable if D is Z. However, the problems of
checking satisfiability in Z and in R are closely related and will be treated
uniformly in the following.

2.2 DTPP

We now define our problem of interest, the DTPP. We first extend the concept
of DTP constraint, considering that a DTP constraint can be either hard, i.e.
its satisfaction is mandatory, or soft, i.e. its satisfaction is not necessary but
preferred, and in case of satisfaction it contributes to the generation of high
quality solutions according to the aggregation methods employed and defined
later.

A DTPP is defined as a pair 〈φ,wpc〉, where

• φ := 〈φh, φs〉 is a DTP formula partitioned into a set of hard DTP constraints
(denoted φh) and a set of soft DTP constraints (denoted φs), and
• wpc is a function that maps the constraints appearing in soft DTP constraints

in φs to piece-wise constant preference functions.

As for the semantics, we start by defining how weights, corresponding to
values in the preference functions, are aggregated within a soft DTP constraint
d to define the weight of d. In our work, we consider a prominent semantic for
this purpose: the max semantic. Consider a constraint dc := l ≤ x − y ≤ u,
its preference function wpc(dc) is a piece-wise constant function that can be
specified by

– partitioning the interval [l,u] into a finite set of convex interval I1, . . . , In ⊆
[l, u] (n ≥ 1), called preference intervals of dc, and

– associating a positive integer (the preference value) to each interval Ii, 1 ≤
i ≤ n.

The max semantic [9, 6] defines the weight wc(d) of a satisfied soft DTP
constraint d as the maximum among the possible preference values of satisfied
constraints in d, i.e. given an assignment σ′

wc(d) = max{wpc(σ′(x)− σ′(y)) : dc ∈ d, σ′ |= dc}.
The semantics of the whole DTPP is based on an utilitarian method for

aggregating soft DTP constraints weights. More formally, given a function wc
that maps each soft DTP constraint in φs to a positive integer number, the goal
is to find an assignment σ′ for φ that
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• satisfies φh, and
• maximizes the sum of weights associated to the satisfied soft DTP constraints

in φs, i.e. maximizes the following linear objective function

f =
∑

d∈φs,σ′|=d

wc(d). (1)

Example 2. Consider a simple formula consisting of one soft DTP constraint
d := dc1 ∨ dc2, where dc1 : 1 ≤ x − y ≤ 10 and dc2 : 5 ≤ z − q ≤ 15. The
piece-wise constant preference function associated to dc1 is

wpc(dc1) =

 1 1 ≤ x− y ≤ 3
2 3 < x− y ≤ 7
1 7 < x− y ≤ 10

(2)

while, regarding dc2, its preference function is

wpc(dc2) =

 2 5 ≤ z − q ≤ 8
4 8 < z − q ≤ 10
2 10 < z − q ≤ 15

(3)

Of course both difference constraints can be satisfied at the highest preference
value, e.g. consider a model σ′ that assigns x = 30, y = 25, z = 10 and q = 1,
the optimal value wc(d) for the satisfaction of the only soft DTP constraint d in
the formula is 4.

2.3 Max-DTP

The idea of our paper is to translate DTPPs to Maximum Satisfiability of for-
mulas composed by hard and soft DTP constraints. The translation requires
the extension of the syntax and semantics of DTP formulas in order to allow for
arbitrary Boolean combination of constraints allowing also for strict inequalities.

An Arbitrary DTP constraint, denoted DTPA, is a Boolean combination
of constraints of the form l ./ x − y ./ u, ./∈ {<,≤}, and a DTPA formula
φ′ = 〈φh, φ′s〉 consists of two sets φh and φ′s of hard and arbitrary soft DTPA

constraints, respectively.
The Partial Weighted Maximum Satisfiability problem of a DTPA formula

is formally defined as a pair 〈φ′, wc〉. In this case, the goal is to find a satisfying
assignment σ′ to the variables in φ′ that

• satisfies φh, and
• maximizes the sum of the weights associated to satisfied soft DTPA con-

straints in φ′s, i.e. maximizes a linear objective function with the form (1).

In the following, for simplicity we will use Max-DTP to refer to the Par-
tial Weighted Maximum Satisfiability problem of mixed (hard) DTP and (soft)
DTPA constraints as defined above.
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Example 3. The following formula φ, where D is Z

d1 : (x− y ≤ 7 ∨ z − x ≤ −20) ∧
d2 : x− y ≥ 10 ∧
d3 : z − x ≥ 0

is not satisfiable if each constraint is hard.

If the DTP constraints are, instead, soft with wc(d1)=3, wc(d2)=1 and wc(d3)=1,
σ of Example 1 is an optimal solution for φ as well as, e.g. σ′ that assigns x = 30,
y = 2 and z = 10, given that for both assignments the corresponding value of f
is 4.

3 Translating DTPPs to Max-DTPs

As we said before, our main idea is to reduce the problem of solving DTPPs to
solving Max-DTPs, for which we can rely on efficient solvers, e.g. SMT solvers.
Hard DTP constraints remain unchanged in our translation, while soft DTP
constraints need special treatment. In the following, given an interval I = [l, u],
we write x−y ∈ I as a shorthand for the constraint l ≤ x−y ≤ u (and similarly
for the related open, left-open and right-open intervals) with preference function
wpc, and preference intervals Idc1 , . . . , Idcn (n ≥ 1).

Given a soft DTP constraint d, we partition each constraint dc of the form
l ≤ x − y ≤ u in d into a set of maximal sub-intervals having the same prefer-
ence value. More formally, let ldc be the number of different preferences values
v1 . . . vldc appearing in the preference function of dc, we partition dc into ldc sets
defined through the following function

f(dc, v) = {x− y ∈ Idci : wpc(I
dc
i ) = v, 1 ≤ i ≤ n}.

If there is only one preference interval, i.e. the preference function is a con-
stant v′, only one pair f(dc, v′) is defined consisting of the interval [l, u], i.e. it
represents the constraint l ≤ x− y ≤ u, and its preference value is v′.

We now need to “aggregate” the preference values corresponding to different
levels of the piece-wise constant functions in the various constraints in order to
implement our translation. The idea is to “merge” sets f(dc, v) in the same soft
DTP constraint; intuitively, this means that, if the candidate solution satisfies at
least one of the constraints in f(dc, v), then a possible preference value for d is v.

More formally, consider a soft DTP constraint

d := dc1 ∨ ... ∨ dck. (4)

Let v1 . . . vld be the different preference values appearing in the preference
functions of d (of course, ld ≥ ldci , 1 ≤ i ≤ k). Then, d and its preference
functions are represented by ld sets defined by the following function
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g(d, vj) =
⋃
dc∈d

f(dc, vj) (5)

1 ≤ j ≤ ld.

In the remaining part of the section we present, in separate subsections,
the two encodings that we considered. The first corresponds to a very natural
modeling of the problem, while the second extends previous work that dealt with
constant preference functions only [13].

For simplicity, in the following if we write g(d, vi) and g(d, vj) with i < j, we
assume vi < vj .

3.1 The first translation

The first solution we considered for our encoding is to express a soft DTP con-
straint d using soft DTPA constraints that force the highest preference value
associated to satisfied constraints in d to be assigned as weight for d.

A soft DTP constraint d and its preference value are expressed by a set of ld
soft DTPA constraints: for each z = 1 . . . ld

cz(d) : ∧z−1i=1¬(∨p∈g(d,vi) p) ∧ (∨p∈g(d,vz) p) (6)

where p is an interval, and

wc(cz(d)) = vz (7)

is the weight associated to cz(d).

The set of constraints is mutually exclusive: considering an assignment, at
most one of the constraints in the set is satisfied, and the relative weight is as-
signed to d. If a constraint in (6) is satisfied, this is the constraint leading to the
maximum value (according to the candidate solution considered), whose weight
is defined in (7).

Example 4. Consider the soft DTP constraint of Example 2. wpc(dc1) is repre-
sented with

f(dc1, 1) = {1 ≤ x− y ≤ 3, 7 < x− y ≤ 10}

f(dc1, 2) = {3 < x− y ≤ 7}.

Regarding dc2, its preference function is represented with

f(dc2, 2) = {5 ≤ z − q ≤ 8, 10 < z − q ≤ 15}

f(dc2, 4) = {8 < z − q ≤ 10}.

We now “merge” the sets (on the three existing levels), whose result is
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g(d, 1) = {1 ≤ x− y ≤ 3, 7 < x− y ≤ 10}

g(d, 2) = {3 < x− y ≤ 7, 5 ≤ z − q ≤ 8, 10 < z − q ≤ 15}

g(d, 4) = {8 < z − q ≤ 10}.

Following (6), the reduction is

c1(d) : 8 < z − q ≤ 10

c2(d) : ¬c1 ∧ ((3 < x− y ≤ 7) ∨ (5 ≤ z − q ≤ 8) ∨ (10 < z − q ≤ 15))

c3(d) : ¬c1 ∧ ¬c2 ∧ (1 ≤ x− y ≤ 3 ∨ 7 < x− y ≤ 10)

with

wc(c1(d)) = 4,

wc(c2(d)) = 2,

wc(c3(d)) = 1.

3.2 The second translation

A second translation transforms each soft DTP constraint d to a set of ld soft
DTPA constraints as follows: for each z = 1 . . . ld

c′z(d) : ∨zi=z−1 ∨p∈g(d,vi) p (8)

(we assume that g(d, v0) is empty). The problem is now to define what are
the weights associated to each newly defined soft DTPA constraint, in order to
reflect the semantic of our problem. In the previous translation (4), the DTPA

constraints were mutually exclusive; now, instead, the dependencies between
them influence constraints weights adaptation and definition. Our solution starts
from the following fact: if the constraint c′ld is satisfied, it is safe to consider that it
contributes for at least the minimum preference value vld , i.e. the one associated
to the set g(d, vld), from which c′ld is constructed. Satisfying the constraint c′ld−1
further contributes for vld−1 − vld , and given that a constraint c′z implies all
constraints c′z′ , z

′ > z, these two soft DTPA constraints together contribute for
vld−1. This method is recursively applied up to the set of constraints in g(d, v1),
i.e. c′1, whose preference value is v1 − v2 and, given that c′1 implies all other
introduced soft DTPA constraints, satisfying c′1 correctly corresponds to assign
a weight v1 to d.

More formally, for each z = 1 . . . ld

wc(c
′
z(d)) =

{
vld z = ld
vz − vz+1 1 ≤ z < ld

(9)

and, given an assignment σ, wc(d) =
∑
z∈{1,...,ld},σ′|=c′z

vz.
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Example 5. Concerning the second translation, the soft DTPA constraints that
express the constraint d with the preference functions in Example 4 are

c′1(d) : 8 < z − q ≤ 10

c′2(d) : c′1 ∨ (3 < x− y ≤ 7 ∨ 5 ≤ z − q ≤ 8 ∨ 10 < z − q ≤ 15)

c′3(d) : c′2 ∨ (1 ≤ x− y ≤ 3 ∨ 7 < x− y ≤ 10)

where wc(c
′
1(d)) = 2, wc(c

′
2(d)) = 1 and wc(c

′
3(d)) = 1.

Let us now define the whole translation: given a DTPP 〈φ,wpc〉, with φ :=
〈φh, φs〉, and let reduct(d,wpc) being the translation of a single soft DTP
constraint d presented in (6) (called reduct1 in the following), with weights
definition in (7), or (8) (called reduct2 in the following), with weights definition
in (9), the resulting Max-DTP formula has

• φh as hard formula,
•
⋃
d∈φs

reduct(d,wpc) as soft DTPA formula, and
• wc defined as in (7) or (9).

Such translation works correctly if, considering a formula φ, no repeated
DTPA constraints appear in the translated formula φ′. If this happens, intu-
itively, we want each single occurrence in φ′ to count “separately”, given that
they take into account different contributions from different soft DTP constraints
in φ. A solution is to consider a single occurrence of the resulting soft DTPA

constraint in φ′ whose weight is the sum of the weights of the various occurrences.

4 Correctness and completeness of the reductions

This section deals with correctness and completeness of the introduced reduc-
tions, i.e. the original DTPP formula 〈〈φh, φs〉, wpc〉, and the reduced DTPA

formula have the same solution space of “optimal” assignments.
We first show that the underlying DTPs φ := φh ∪ φs and φ′ := φh ∪⋃

d∈φs
reduct(d,wpc) have the same satisfying assignments4, i.e. that this holds

for φs and
⋃
d∈φs

reduct(d,wpc), given that φh remains unchanged during both
reductions.

We assume that no repeated soft DTPA constraints are in the reduced for-
mula: with this hypothesis, it is enough to prove that the property holds for a
single soft DTP constraint d.

At first we deal with the reduction in Section 3.1.

Proposition 1. Given an assignment σ, σ satisfies d iff σ satisfies reduct1(d,wpc).

4 Note that in the case of the second reduction this corresponds to a model, while for
the first reduction, where the constraints are mutually exclusive, this is according to
the semantic of a Max-SAT solution.
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Proof. To prove the thesis, we need to show that an assignment σ that satisfies
d also satisfies reduct1(d,wpc), an vice-versa.

(left-to-right) If σ satisfies d, this means that at least a constraint dc ∈ d is
satisfied. Consider now the dc which is satisfied at the highest preference value
by σ. We know by construction that dc can occur in more DTPA constraints
of reduct1(d,wpc), in this case divided in preference intervals. We are guar-
anteed that at least one of its preference intervals satisfies a DTPA constraint
in reduct1(d,wpc): in fact, if it satisfies c1(d), then the thesis holds, otherwise
this means that a preference interval at lower preference value is satisfied, and
we know that it satisfies the respective DTPA constraint ci(d).

(right-to-left) If σ satisfies reduct1(d,wpc), this means that exactly one
DTPA constraint in reduct1(d,wpc) is satisfied. Such DTPA constraint is sat-
isfied because of a preference interval of a constraint dc in d, and thus σ satisfies
also d.

We now state that, given a satisfying assignment of the underlying DTPs of
the two formulas, the two optimal solutions have the same values.

Proposition 2. Given a satisfying assignment σ of φ and φ′, for each d ∈ φs

wc(d) =
∑

σ satisfies ci(d),ci(d)∈reduct1(d,wpc),1≤i≤z

wc(ci(d))

Proof. From Proposition 1 we also know that if ci(d) is satisfied, by construc-
tion no DTPA constraint cj(d) in reduct1(d,wpc) with both j < i or j > i is
satisfied, thus the thesis follows immediately.

Thus, one DTPA constraint in reduct1(d,wpc) is satisfied, and corresponds
to the DTPA constraint having the maximum possible preference value, which
corresponds to the semantic of our problem.

Now, we deal with the reduction in Section 3.2.

Proposition 3. Given an assignment σ, σ satisfies d iff σ satisfies reduct2(d,wpc).

Proof. To prove the thesis, we need to show that an assignment σ that satisfies
d also satisfies reduct2(d,wpc), an vice-versa.

(left-to-right) If σ satisfies d, this means that at least one constraint dc ∈ d is
satisfied. From (8), we know by construction that dc will occur, possibly divided
into its preference intervals, in reduct2(d,wpc); at least one of its preference
interval is satisfied, thus also reduct2(d,wpc) is satisfied by σ.

(right-to-left) If σ satisfies reduct2(d,wpc), this means that at least one
DTPA constraint in (8) is satisfied, thus at least one preference interval in it is
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satisfied. Take this preference interval, by construction we know that it is (part
of) a constraint occurring in d, thus also d is satisfied by σ.

Proposition 4. Given a satisfying assignment σ of φ and φ′, for each d ∈ φs

wc(d) =
∑

σ satisfies ci(d),ci(d)∈reduct2(d,wpc),1≤i≤z

wc(ci(d))

This proposition follows from the construction of the encoding, and from (9).

5 Experimental Analysis

In this section we present benchmarks and solvers involved in our analysis, as
well as the results of our experiments.

5.1 Benchmarks

Randomly generated benchmarks. These benchmarks aim at comparing the con-
sidered solvers on two dimensions, namely (i) the size of the benchmarks, and (ii)
the number of preference levels in the piece-wise constant preference function,
all used in past papers on DTPPs – see, e.g. [6].

In order to generate the benchmarks, the main parameters considered are:

1. the number k of disjuncts per DTP constraint;
2. the number n of arithmetic variables;
3. the number m of DTP constraints;
4. the number l of levels in the preference functions.

Furthermore, we also investigated the performance of the solvers considering
two different settings related to the preference values of the preference functions.
The preference functions considered are semi-convex piece-wise constant: start-
ing from the lower and upper bounds of the constraints, intervals corresponding
to higher preference levels are randomly put within the interval of the immedi-
ate lower level, with a reduction factor, up to an highest level. For details see,
e.g. [6].

In particular, we consider

– a setting where, given the i-th level l, w(l) = i, i.e. the setting used by Moffitt
for evaluating Maxilitis [6] (“Model A” in the following);

– a setting where w(l) is randomly generated in the range [1, 100], still ensur-
ing to maintain the same shape for preference functions (“Model B” in the
following).

Finally,

– the domain of interpretation for all benchmarks is Z, given that Maxilitis
can not deal with real numbers, and
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– all generated DTP constraints are soft, i.e. experiments are focused on this
challenge setting.

For each tuple of values of the parameters, 25 instances have been generated.
Concerning the first dimension, we randomly generated benchmarks by vary-

ing the total amount of DTP constraints, with the following parameters: k={2, 3},
m ∈ {10, . . . , 80}, n=0.8 ×m, l=5, lower and upper bounds of each constraint
taken in [−50, 100].5

Regarding the second dimension, we randomly generated benchmarks by
varying the number of levels l in the preference functions in the interval [2, . . . , 8].
The remaining parameters has been set as follows. In the case of k = 2, n and
m have been set to 24 and 30, respectively. In the case of k = 3, n is equal to
32, while m = 40. Finally, lower and upper bounds of each constraint is taken
again in [−50, 100].

Real-world benchmarks. For these kind of benchmarks we analyze the Job Shop
Scheduling problems already employed for DTPPs in [13]. The benchmarks eval-
uated in [13] are composed of 10 groups, each made of 4 problems, whose pref-
erence functions are constant.

We have considered one problem for the smallest group, having n = 5, m =
10, and k ∈ {1, 2} as parameters, and generated instances having piece-wise
constant preference functions with Model A and B. We varied the number l
of levels in the interval [2, . . . , 5], and generated 10 instances for each setting,
for a total of 80 instances. Problems in the other groups have very challenge
parameters such as k up to 4 and m up to 500, and result in very big and hard
DTPPs.

5.2 Solvers evaluated

We have implemented our translations and expressed the resulting formulas as
SMT formulas with optimization. We called our system DTPP2MaxSMT, and
it can be coupled, in principle, with any MaxSMT solver as back-engine. In
particular, we evaluated its performance involving two state-of-the-art MaxSMT
solvers, namely MathSAT (ver. 5.2.11) [16, 17] and Yices (ver. 1.0.38) [18, 19].
In the following, we will refer to the systems DTPP2MaxSMT+MathSAT and
DTPP2MaxSMT+Yices with dtppMathSAT and dtppYices, respectively.

In the experimental analysis, we compare the systems mentioned above with
the solver Maxilitis, an implementation by Moffitt of the approach presented
in [6]. To the best of our knowledge, Maxilitis is the state-of-the-art system
for solving DTPPs, and it subsumes other previous systems, such as ario [8]
and gapd [20]. Maxilitis works as follows: a DTPP is represented as a con-
straints system named Valued DTP (VDTP), that can express the same solution
space of the DTPP. The VDTP is then solved by generalizing meta-CSP ap-
proach employed by Epilitis for DTP solving. Known optimization techniques

5 These benchmarks have been generated using the program provided by Michael D.
Moffitt, author of Maxilitis.
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in DTP solving, i.e. removal of subsumed variables and semantic branching, are
also lifted to VDTP in order to reduce the explored search space. We included
in our analysis two variants of Maxilitis (as provided by its author), namely
Maxilitis-IW and Maxilitis-BB. Maxilitis-IW (IW standing for Iterative
Weakening) searches for solutions with a progressively increasing number of vi-
olated constraints; Maxilitis-BB uses, instead, branch-and-bound for reaching
the optimal solution.

The executable of our solver, together with the benchmarks analyzed, can be
found at

http://www.star.dist.unige.it/~marco/DTPPYices/.

5.3 Experimental results

The experiments described in this subsection ran on PCs equipped with a pro-
cessor Intel Core i5 at 3.20 GHz, with 4 GB of RAM, and running GNU Linux
Ubuntu 12.04. The timeout for each instance has been set to 300s. All instances
have been evaluated considering integer-valued variables.6

Randomly generated benchmarks. We first preliminary tested the two transla-
tions on the smallest benchmarks generated with Model A. For instance, consid-
ering the performance of dtppYices (that will prove to be our best option) on
benchmarks generated on dimension (i), we notice that, by employing the first
translation, it was able to solve only the ones with m = 10. In particular, dtp-
pYices solves all 25 instances generated with Model A in (cumulative time of)
141.92 seconds, while it solves only 14 out of 25 instances generated with Model
B in 1749.28 seconds. At the same time, dtppYices on the second translation
solves all 50 instances in 0.1 seconds and 0.26 seconds, respectively.

Thus, the first translation looks impractical from a performance point of
view. For this reason, in the following we report only the results related to the
second translation.

Considering the second translation, the results obtained in the experiments
for k = 2 are shown in Figure 1, which is organized as follows. Concerning the
top-most plots, in the x-axis we show the total amount of DTP constraints, while
in the plots in the bottom, the total amount of levels of the piece-wise constant
preference function is reported. In the y-axis (in log scale), it is shown the related
median CPU time (in seconds). Maxilitis-BB’s performance is depicted by a
dotted line with blue triangles, Maxilitis-IW’s by using a dashed line with
orange upside down triangles, while dtppMathSAT’s performance is depicted
by a dashed green line with boxes; finally, dtppYices performance is denoted

6 We have tested our solvers on the biggest formulas we could solve but employing
real-valued variables, and results are very similar to those when variables are integers.
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Fig. 1. Results of the evaluated solvers on random DTPPs with k = 2 considering
the size of the benchmarks (top-most plots) and number of preference levels (bottom).
Left-most plots are related to Model A, while right-most plots depict the results related
to Model B.

by a solid line with black circles. Plots in the left-most column are related to
Model A, while plots in the right-most column are related to Model B.

Looking at Figure 1, and considering the top-left plot, we can see that
Maxilitis-IW is the solver with the best performance, and it is one order of
magnitude of CPU time faster than dtppYices and dtppMathSAT. Consid-
ering the same analysis in the case of Model B, we can see (top-right plot) that
the picture changes in a noticeable way. Benchmarks are harder than previously:
Maxilitis-BB and Maxilitis-IW are not able to efficiently cope with bench-
marks with m > 30, while dtppMathSAT stops at m = 10. In this case, dtp-
pYices is the best solver, and we report that it is able to deal with benchmarks
up to m = 60.

Looking at the bottom-left plot of Figure 1, we can see that Maxilitis-IW
is the best solver up to l = 7, while for l = 8, we report that dtppYices is
slightly faster. Also in this case Maxilitis-BB does not efficiently deal with the
most difficult benchmarks in the suite. Looking now at the plot in the bottom-
right, we can see that the performance of both versions of Maxilitis are very
similar, while dtppYices is the fastest solver: the median CPU time of both
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Fig. 2. Results of the evaluated solvers on random DTPPs with k = 3 considering the
size of the benchmarks (top-most plots) and number of preference levels (bottom). As
in Figure 1, left-most plots are related to Model A, while right-most plots depict the
results related to Model B.

Maxilitis-BB and Maxilitis-IW runs in timeout for l > 5, while dtppYices
solves the majority of the benchmarks within the time limit for all levels.

Detailed results related to the plots in Figure 1 are reported in the Appendix,
cf. Tables 3 and 4.

Considering the results related to k = 3, looking at Figure 2 (which has the
same organization of Figure 1), top-left plot, we report for both versions of Max-
ilitis the very same performance, and they are one order of magnitude faster
than both dtppMathSAT and dtppYices. Concerning DTPPs generated with
Model B, by looking at the top-right plot of Figure 2, we report that the best
solver turned out to be dtppYices, while both versions of Maxilitis stop at
m = 40, while dtppMathSAT stops at m = 20.

Finally, concerning the analysis on preference levels, we can report a picture
similar to the one related to k = 2. Both versions of Maxilitis outperform
both dtppMathSAT and dtppYices on benchmarks generated with Model A
(with the exception of Maxilitis-BB for l = 8), while dtppYices is by far the
best solver on benchmarks generated with Model B (with the exception of the
smallest instances having l = 2).
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Detailed results related to the plots in Figure 2 are reported in the Appendix,
cf. Tables 5 and 6.

Real-world benchmarks. Table 1 reports the results of the Job Shop Schedul-
ing problems enhanced with preference functions generated with Model A and
B. The table is structured as follow. The first column gives information about
the benchmark, where jobshop lN means the selected problem whose preference
functions have N levels. The second column is the number of instances gener-
ated, while the third and fourth columns report the results for dtppMathSAT
and dtppYices, respectively. The last two columns are then divided into two
sub-columns reporting results for the two generation models, each sub-column
being further divided into number of instances solved and cumulative time for
solved instances, respectively. maxilitis is not included in this analysis given it
returns some incorrect answers.

Results confirm the trends observed so far: dtppYices is much faster than
dtppMathSAT, solving all 80 instances; formulas generated with Model B are
much more difficult for MathSAT, while all instances are relatively easy for
Yices; and performance decreases while the number of level increases.

Benchmark N dtppMathSAT dtppYices
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

jobshop l2 10 8 0.18 3 0.53 10 0.01 10 0.01

jobshop l3 10 10 3.26 – – 10 0.04 10 0.05

jobshop l4 10 6 43.68 – – 10 0.14 10 0.12

jobshop l5 10 – – – – 10 0.38 10 0.25
Table 1. Results of dtppYices and dtppMathSAT on Job Shop Scheduling problems.

5.4 Discussion

In this subsection we give insights in order to more deeply understand the results
we have shown in the previous subsection. To this aim, we often employ number
of conflicts encoutered during search as a CPU-time independent measure for
measuring the workload of a solver.7 The concept of “conflict” is central in every
part of the search, e.g. backtracking, learning, and decision, for a CDCL solver.
Our analysis follows a number of direction, devoting one paragraph to each.

First vs. second translation. We focused on the setting where the two translations
solve the same set of istances, i.e. the 25 instances built under dimention (i) with
m = 10, Model A. In the following table we report, for both translations, the
5 numbers (minimum, first quartile, median, third quartile, maximum) of the
number of conflicts (dtpp)yices encoutered during search.

7 We consider number of conflicts yices outputs by running it in verbose mode; Math-
SAT does not look to output such number.
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Translation Min Q1 Median Q3 Max

First 96619 113809 175417 184762 241149

Second 0 3 6 14 58
Table 2. Five-number summary for the number of conflicts of dtppYices on formulas
arising from the two translations.

As it is clear from Table 2, with the first translation dtppYices encounters
a number of conflicts bigger by orders of magnitude in comparison to those
encountered with the second translation.

A property of the second translation that can contribute to these results is
the following: by construction, as soon as a DTPA constraint gets satisfied, say,
c′z, all DTPA constraints c′z′ coming from the translation of the same soft DTP
constraint, and such that z′ > z wrt (8), are satisfied as well.

Results on different random models. Model B brings in general to harder formu-
las for all solvers, given that the weights are not uniform. As far as the specific
performance of solvers is concerned, on random benchmarks Maxilitis in gen-
eral performs better than our solution on Model A, while this is the opposite on
Model B. Unfortunately, we could not rely on CPU time independent measures
for Maxilitis given that it does not output measures of this kind (other than
the cost). A possible explanation for this behavior is that Maxilitis is likely to
be optimized on formulas generated with Model A, given that this is the only
type of formulas analyzed in its paper [6].

Instead, in order to corroborate the results on Model A vs. Model B in our
setting, we did a similar analysis to the paragraph above, by comparing the
distributions of number of conflicts, employing the same setting. Results are
now showed using a boxplot depicted in Figure 3. In this case we can note that
the number of conflicts on benchmarks generated with Model B is much higher
than the same number of those generated with Model A.

yices vs. MathSAT. We saw that yices consistently outperforms MathSAT
on our formulas. Our results are consistent with the state of the art of the com-
petition, e.g. Yices won the SMT Competition from 2014 to 2017 on the logics
QF RDL and QF IDL, which are the basis for our formulas (see the webpage of
the (last) SMT Competition at http://smtcomp.sourceforge.net).

6 Related Work

We have seen in the introduction that DTPPs have been used in applications.
We briefly describe here some of these applications. In [5], a preference model
designed to capture user scheduling preferences for over-constrained meeting
requests between multiple people has been presented. Solving is done by a con-
strained scheduling problem with preferences, which is modeled as a DTPP.
In [4], instead, DTPP is used in the context of one component of an automatic
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Fig. 3. Distributions of the number of conflicts of dtppYices on benchmarks generated
with different models.

personal assistant, the Personalized Time Manager (PTIME), i.e. the PTIME
constraint reasoner, to reason on temporal constraints and preferences that may
arise in this context. The usage of Artificial Intelligent techniques, including
DTPs, in the context of intelligent technology for assisting elders with cognitive
decline with an Autominder’s Plan Manager is overviewed by Pollack [3], where
it is described the further advatanges that DTPPs bring. This is connected to
the previous mentioned application, but with a specific target on elders.

Maxilitis [6, 9], WeightWatcher [10] and ARIO [8] implement different
approaches for solving DTPPs as defined in [11]. Maxilitis is a direct exten-
sion of the DTP solver Epilitis [7], while WeightWatcher uses a similar (as
mentioned in, e.g. [10]) approach based on Weighted Constraints Satisfaction
problems, but is less efficient. ARIO, instead, relies on an approach based on
Mixed Logical Linear Programming (MLLP) problems. In our analysis we have
used Maxilitis because previous results, e.g. in [6], clearly indicate its superior
performance.

About the comparison to Maxilitis, our solution is easy, yet efficient, and
has a number of advantages. On the modeling side, it allows to consider (with
no modifications) both integer and real variables, while Maxilitis can deal
with integer variables only. Then, in case of unsatisfiable DTPs, our approaches
provide a Max-SAT optimal solution, rather than just reporting the problem
to be unsatisfiable as done by Maxilitis. Moreover, our implementation pro-
vides an unique framework for solving DTPPs, while the techniques proposed by
Moffitt [6] are implemented in two separate versions of Maxilitis. Finally, our
solution is modular, i.e. it is easy to rely on different back-end solvers (or, on a
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new version of Yices or MathSAT), thus taking advantages on new algorithms
and tools for solving our formulas of interest.

7 Conclusions

In this paper we have introduced translation-based approaches for solving DTPPs,
that reduce these problems to Maximum Satisfiability of DTPs as defined in the
paper. An experimental analysis performed with SMT solvers on randomly gen-
erated and real-world DTPPs shows that our approach, in particular when Yices
is employed as SMT solver, is competitive to, and sometimes faster than, the
specific implementations of the Maxilitis solver. A possible direction for future
research is to consider different aggregation functions.
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Appendix

n m dtppMathSAT dtppYices
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.55 18 2.68 25 0.10 25 0.26

16 20 25 1.04 9 0.75 25 0.31 25 0.80

24 30 25 1.58 4 22.63 25 0.50 25 4.45

32 40 25 2.92 2 64.61 25 0.78 25 23.44

40 50 25 3.05 1 0.15 25 1.48 24 245.32

48 60 25 4.90 – – 25 2.41 21 403.39

56 70 25 6.28 – – 25 3.58 12 1355.01

64 80 25 8.50 – – 25 4.75 6 414.62

n m Maxilitis-BB Maxilitis-IW
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.00 25 0.04 25 0.00 25 0.31

16 20 25 0.17 25 16.28 25 0.01 25 60.84

24 30 25 5.61 18 588.56 25 0.02 21 913.16

32 40 24 67.60 3 80.83 25 0.06 9 905.42

40 50 22 27.53 1 105.45 25 0.29 3 327.23

48 60 17 247.24 – – 25 4.24 – –

56 70 21 57.79 – – 25 0.71 – –

64 80 16 151.82 – – 25 7.13 – –
Table 3. Performance of the selected solvers on random DTPPs with k = 2 with
different sizes. The first columns (“n”) reports the total amount of variables for each
pool of DTPPs, while the second one (“m”) reports the total amount of constraints. It
is followed by two groups of columns, and the label is the solver name. Each group is
composed of four columns, reporting the total amount of instances solved within the
time limit (“#”) and the total CPU time in seconds (“Time”) spent, in the case of
model A and B (groups “Mod. A” and “Mod. B”, respectively). In case a solver does
not solve any instance, “–” is reported. Finally, best performance are denoted in bold.
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l dtppMathSAT dtppYices
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 0.54 23 0.64 25 0.10 25 0.20

3 25 0.81 18 1.01 25 0.20 25 0.38

4 25 1.14 12 211.14 25 0.32 25 0.87

5 25 1.58 4 22.61 25 0.50 25 4.44

6 25 28.54 – – 25 1.82 25 17.28

7 22 238.73 – – 23 56.05 21 528.05

8 10 56.82 – – 15 228.16 13 487.39

l Maxilitis-BB Maxilitis-IW
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 0.01 25 1.68 25 0.01 25 2.84

3 25 0.01 25 7.05 25 0.01 25 47.26

4 25 0.01 21 395.00 25 0.01 25 203.52

5 25 5.62 18 589.33 25 0.04 21 914.45

6 24 32.66 10 673.87 25 4.80 10 608.04

7 21 230.50 2 68.01 23 129.72 2 59.57

8 12 434.55 2 216.89 17 598.42 2 303.08
Table 4. Performance of the selected solvers on random DTPPs having k = 2, with
different levels. In column “l” we report the total amount of levels, while the rest of
the table is organized similarly to Table 3.
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n m dtppMathSAT dtppYices
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.73 23 77.80 25 0.20 25 0.52

16 20 25 1.51 19 158.56 25 0.47 25 1.22

24 30 25 2.60 9 28.58 25 0.96 25 2.42

32 40 25 4.85 6 173.39 25 1.95 25 10.21

40 50 25 9.36 1 189.91 25 6.02 25 54.78

48 60 24 13.43 2 0.84 25 9.19 25 70.18

56 70 25 30.75 – – 25 11.25 24 299.66

64 80 25 40.41 – – 25 20.92 18 844.75

n m Maxilitis-BB Maxilitis-IW
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

8 10 25 0.01 25 0.04 25 0.01 25 0.09

16 20 25 0.01 25 2.48 25 0.01 25 5.53

24 30 25 0.02 25 231.18 25 0.04 25 209.74

32 40 25 0.12 17 838.47 25 0.11 18 974.13

40 50 25 0.15 6 671.02 25 0.13 9 703.24

48 60 25 0.28 2 144.48 25 0.15 3 380.24

56 70 25 0.64 – – 25 0.24 1 22.22

64 80 25 0.33 – – 25 0.30 – –
Table 5. Performance of the selected solvers on random DTPPs with k = 3 with
different sizes. The table is organized as Table 3.
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l dtppMathSAT dtppYices
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 1.18 23 1.54 25 0.52 25 0.83

3 25 1.91 21 38.65 25 0.87 25 1.40

4 25 2.74 20 4.35 25 1.32 25 2.21

5 25 4.97 6 160.81 25 2.18 25 10.51

6 25 7.19 1 0.30 25 4.06 25 185.18

7 25 13.85 – – 25 8.32 22 391.73

8 25 15.19 – – 25 11.23 7 352.83

l Maxilitis-BB Maxilitis-IW
Mod. A Mod. B Mod. A Mod. B

# Time # Time # Time # Time

2 25 0.13 25 2.52 25 0.13 25 8.39

3 25 0.15 24 14.92 25 0.15 25 80.92

4 25 0.16 25 197.68 25 0.17 25 180.88

5 25 0.20 17 838.47 25 0.19 18 974.05

6 25 0.76 8 1071.03 25 0.23 10 1064.63

7 25 180.89 1 163.84 25 0.37 – –

8 20 943.89 – – 25 1.17 – –
Table 6. Performance of the selected solvers on random DTPPs with k = 3 with
different levels. The table is organized as Table 4.
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