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Abstract

Articulated and flexible objects constitute a challenge for robot manipula-

tion tasks, but are present in different real-world settings, including home and

industrial environments. Approaches to the manipulation of such objects em-

ploy ad hoc strategies to sequence and perform actions on them depending on

their physical or geometrical features, and on a priori target object configura-

tions, whereas principled strategies to sequence basic manipulation actions for

these objects have not been fully explored in the literature.

In this paper, we propose a novel action planning and execution framework

for the manipulation of articulated objects, which (i) employs action planning

to sequence a set of actions leading to a target articulated object configuration,

and (ii) allows humans to collaboratively carry out the plan with the robot, also

interrupting its execution if needed.

The framework adopts a formally defined representation of articulated ob-

jects. A link exists between the way articulated objects are perceived by the

robot, how they are formally represented in the action planning and execution

framework, and the complexity of the planning process.

Results related to planning performance, and examples with a Baxter dual-

arm manipulator operating on articulated objects with humans are shown.
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1. Introduction

The Industry 4.0 paradigm is expected to redefine the nature of shop-floor

environments, including the role played by robots in the manufacturing process

[1, 2]. One of its main tenets is the increased customer satisfaction via product

personalization and just-in-time delivery. A higher level of flexibility in man-5

ufacturing processes is needed to cope with diversified demands, especially in

low-automation tasks. Collaborative robots are regarded as a valuable aid to

shop-floor operators, who can supervise robots’ work and intervene when needed

[3], whereas robots can be tasked with difficult or stressful operations.

Human-robot cooperation (HRC) in the shop-floor is a specific form of10

human-robot interaction (HRI) with two important specificities. The first is

the fact that cooperation is targeted to a well-defined objective (e.g., an as-

semblage, a unit test, a cable harnessing operation), which must be typically

achieved in a short amount of time. The second has to do with the fact that

humans need to feel in control [4, 5]: human behaviour could be unpredictable15

in specific cases, with obvious concerns about safety [6, 7], humans may not fully

understand robot goals [8], and robot actions may not be considered appropriate

for the peculiar cooperation objectives [9, 5].

As far as the cooperation process is concerned, two high-level directives must

be considered:20

D1 it is necessary to adopt human-robot cooperation models and the asso-

ciated robot action planning techniques to meet cooperation objectives

[10, 11];

D2 robots must be flexible enough to adapt to human actions while (i) ful-

filling the overall cooperation objectives [12, 13], and (ii) to make their25

intentions clear to human operators [14, 15].
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Figure 1: Two examples of a cable harnessing operation.

These directives lead to three functional requirements for a HRC architecture.

Collaborative robots must be able to:

R1 recognize the effects of human operator actions [16];

R2 adapt their behaviour considering human actions and the whole coopera-30

tion objectives;

R3 employ planning techniques allowing for an appropriate action re-planning

when needed, e.g., when planned actions cannot be executed for sudden

changes in the environment or inaccurate modelling assumptions [17].

Among typically shop-floor tasks, the manipulation of articulated or flexible35

objects, e.g., cable harnessing operations, is particularly challenging [18, 19, 20,

21], as can be seen in Figure 1. In this example, it is required to plan the ex-

pected cable configurations on the harnessing table in advance, thus confirming

requirement R3. Furthermore, it is necessary to keep a cable firm using more

than two grasping points and to re-route the wiring pattern, which – when done40

collaboratively with a robot, for instance to place bundle retainers or junction

fixtures – leads to requirements R1 and R2 above.

In the literature, the problem of determining the 2D or 3D configuration

of articulated or flexible objects has received much attention in the past few

years [22, 23], whereas the problem of obtaining a target configuration via ma-45

nipulation has been explored in motion planning [24, 25, 26]. In the context of

HRC, perception and manipulation are only part of the challenges to address.
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Conceptually, the outcome of such approaches is a continuous mapping from an

initial to a target object’s configuration [27, 28, 25, 29], subject to simplifying

hypotheses related to object models [30, 31, 32, 33, 34]. This remark leads to50

two further requirements. Collaborative robots must be able to:

R4 adopt a representation to be used by action planners, and segment the

whole manipulation problem in simpler actions, each action leading to a

new intermediate configuration;

R5 represent actions using a formalism allowing for plan executions that are55

robust with respect to unexpected events (e.g., the human operator sud-

denly intervenes), and modelling errors (e.g., not modelled objects to be

removed from the workspace).

In this paper, we focus on the human-robot cooperative manipulation of

articulated objects [24], and we contribute to the literature as follows: (i) the60

design and development of two representation and planning models for the classi-

fication of articulated object configurations and the sequencing of manipulation

actions; to that aim, we build an OWL-DL ontology to represent articulated

objects and the actions on them, and we use Planning Domain Definition Lan-

guage (PDDL) to define such planning models [35]; we employ two state-of-the-65

art PDDL planners, namely Probe [36] and Madagascar [37] as well as the VAL

plan validator [38], to generate manipulation plans using such models; to the

best of our knowledge, such a modelling approach for articulated objects has no

comparison with existing literature; (ii) the design and development of a novel

reactive/deliberative architecture for HRC, which we call planHRC, allowing70

human operators to intervene as they wish during the cooperation process, and

implemented on top of the ROSPlan [39] and MoveIt! [40] frameworks, thereby

extending ROSPlan to HRC scenarios; and (iii) a discussion about how robot

perception and object representation impact on action planning and execution

in HRC scenarios, which is peculiar for the use case we consider. The planHRC75

architecture has been validated on a dual-arm Baxter manipulator.

The paper is organised as follows. Section 2 discusses relevant approaches in

4



the literature. Section 3 introduces more formally the problem and the scenario

we consider. The planHRC’s architecture is described in Section 4, where the

overall information flow, the representation and reasoning processes, and the80

planning models are discussed. Experiments to validate the architecture are

described in Section 5. Conclusions follow.

2. Background

A number of studies have been conducted to investigate the role and the ac-

ceptability of automated planning techniques in HRC scenarios. Gombolay and85

colleagues highlight two factors as important to maximise human satisfaction

in HRC [41]: (i) humans should be allowed to choose their own tasks freely, i.e.,

not assigned by an algorithm, subject to the fact that the cooperation is success-

ful; (ii) the overall human-robot team’s performance must be at high standards.

These two factors may conflict in case of a lazy or not focused human operator’s90

attitude. However, when required to trade-off between them, humans show a

strong preference for team’s performance over their own freedom. This study

well fits with the requirements R1, R2 and R3 outlined above, and opens up to

an idea of collaborative robots as devices not only able to aid human workers,

but also capable of keeping them in focus and steering the cooperation towards95

its objectives if deviations occur.

As a follow-up of the work discussed in [41], a study about the actual amount

of control a human operator would like to have when collaborating with a robot

has been reported in [42]: human workers tend not to prefer a total control of the

cooperation process, rather they opt for partial control. This is confirmed by the100

fact that the overall team’s performance seems higher when the robot determines

what actions must be carried out by the human operator. A key factor for the

acceptance of collaborative robots is finding a sensible – yet efficient – trade-off

between performance and human control.

In order to determine such trade-off one possibility is to encode human oper-105

ator preferences in the planning process [43]. In a first series of experiments, the
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use of human preferences in the planning algorithm led to an overall decrease in

performance, correlated with human subjective perception of robots not in line

with the main cooperation objectives. This suggests that a subjective assess-

ment of the HRC process tends to attribute major inefficiencies to robots, and110

confirms that this is a crucial aspect for the applicability of collaborative robots

in industrial scenarios. Techniques for HRC available in the literature target

these issues only to a partial extent, and in limited contexts. In particular, it is

possible to identify two relevant activity trends our approach is related to.

Approaches in the first class aim at defining cooperation models, i.e., data115

structures modelling the task to be jointly carried out, and algorithms operating

on such data structures for the cooperation process to unfold, while keeping

flexibility and human preferences into account [44, 45, 3, 10, 15, 46, 11].

A probabilistic planner is used in [44] to sequence available partial plans,

which include indications about human preferred actions. Once determined,120

the sequence of partial plans cannot be changed, therefore no flexibility for the

human is allowed. Such a limitation is partially overcome by the approach de-

scribed in [45], where an algorithm to adapt on-line both the action sequence

and the number of action parameters is described. This is achieved using a

temporal formulation making use of preferences among actions, and using opti-125

mization techniques to identify the sequence best coping with preferences and

constraints. The algorithm weighs more plan optimality (in terms of a reduced

number of actions, or the time to complete the plan), and uses human prefer-

ences as soft constraints. The approach by Tsarouchi and colleagues [3] assumes

that a human and a robot co-worker operate in different workspaces. The focus130

is on allocating tasks to the human or the robot depending on their preferences,

suitability and availability, and the cooperation model is represented using an

AND/OR graph. Although human preferences are taken into account, task allo-

cation is a priori fixed and cannot be changed at run-time. A similar approach

is considered in [10], where the assumption about the separate workspaces is135

relaxed. Hierarchical Task Models (HTMs) are used in [15], where the robot

is given control on task allocation and execution is modelled using Partially
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Observable Markov Decision Processes (POMDPs). However, the focus of this

approach is on robot communication actions to enhance trust in the human

counterpart and to share a mutual understanding about the cooperation objec-140

tives. A similar approach is adopted in [46], where HTMs are substituted by

Hierarchical Agent-based Task Planners (HATPs) and POMDPs are replaced

by Petri Network Plans (PNPs). However, differently from the approach in

[15], the work by Sebastiani and colleagues support on-line changes during plan

execution. Finally, the work by Darvish and colleagues represents cooperation145

models using AND/OR graphs, and allows for a switch among different coop-

eration sequences at runtime [11], therefore allowing humans to redefine the

sequence of tasks among a predefined set of choices. The human operator does

not have to explicitly signal the switch to the robot, whereas the robot adapts

to the new cooperation context reactively.150

The second class includes techniques focused on understanding, anticipating

or learning human behaviours on-line [47, 48, 49, 50, 51, 52].

The work by Agostini and colleagues adopts classical planning approaches to

determine an appropriate sequence of actions, given a model of the cooperation

defined as a domain and a specific problem to solve [47]. At runtime, the system155

ranks a predefined series of cause-effect events, e.g., observing their frequency as

outcomes of human activities, and updates the cooperation model accordingly.

Markov Decision Processes (MDPs) are used in [48] to model the cooperation.

In particular, the human and the robot are part of a Markov decision game,

and must cooperatively conclude the game, i.e., carrying out the cooperation160

process. Human actions are detected on-line, which influences robot’s behaviour

at run-time. A similar approach, which takes into account temporal constraints

among tasks, is discussed in [49]. Statistical techniques to recognise human

actions and to adapt an already available plan accordingly are presented in

[50]. Human deviations from the plan are detected. When this happens, re-165

planning (including task allocation) occurs to achieve the cooperation objectives.

While the approaches discussed so far are quite conservative as far as robot’s

autonomy in the cooperation process is concerned, the work discussed in [51]
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exploits Bayesian networks to predict the occurrence and the timing of human

actions. Such a prediction is used to perform preparatory actions before an170

event even occurs. While the overall system’s performance is greatly improved,

humans tend to be confused by the seemingly anticipative robot’s behaviour.

Hierarchical Task Networks (HTNs) are used in [52] to embed communication

actions in the cooperation process. When specific deviations from the plan are

detected, such communication actions enforce the adherence to the plan.175

From this analysis of the literature, it is possible to frame our contributions

and the main features of planHRC with respect to existing literature: (i)

while the majority of cooperation models described in the literature do not

allow human operators to decide what actions to carry out, or they do so only

to a very limited extent, planHRC foresees a cooperation process informed180

by optimality in the planning process (therefore adhering to the first findings

of Gombolay and colleagues), but allows humans to intervene freely, up to the

limit situation where all the plan is executed by the human operator as he or

she wishes (i.e., humans are given partial or total control); (ii) in planHRC

the robot does not have to explicitly recognise human operator actions, as it185

is prescribed by approaches in the literature, but it focuses on their effects in

the planning model, and treats any perturbation as violations with respect to

the normal plan unfolding. In particular, planHRC takes inspiration from the

findings in [41, 42, 43] to devise a cooperation model and an interaction model

with the human operator with the following characteristics:190

• similarly to the work in [47], the robot plans an appropriate, optimal,

sequence of actions to determine relevant intermediate configurations for

an articulated object (considered as a simplified model for a flexible object

like a cable), in order to determine a final target configuration, therefore

coping with requirement R4;195

• during plan execution, the robot always monitors the outcome of each

action, and compares it with the target configuration to achieve, therefore

limiting the burden on the human side [42];
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• normally, the human can supervise robot actions: when a robot action is

not successful, or a plan cannot be found, the human can intervene on the200

robot’s behalf performing her/his preferred action sequence [43], therefore

meeting R1 and R2;

• at any time, the human can intervene (e.g., performing an action the

robot was tasked with, or changing the articulated object’s configuration),

and the robot adapts to the new situation, in accordance with [43] and205

requirements R3 and R5.

3. Problem Statement and Reference Scenario

The problem we consider in this paper is three-fold: (i) given a target artic-

ulated object’s configuration, determining a plan to attain such configuration

as an ordered set of actions:

a = {a1, . . . , ai, . . . , aN ;≺}, (1)

where each action ai involves one or more manipulation operations to be exe-

cuted by a dual-arm robot, (ii) designing a planning and execution architecture

for the manipulation of articulated objects, which is efficient and flexible in210

terms of perceptual features, their representation and action planning, and (iii)

seamlessly integrating human actions in the loop, allowing the robot to adapt

to novel, not planned beforehand, object’s configurations on-line.

In order to provide planHRC with such a features, we pose a number of

assumptions:215

A1 articulated objects (Figure 2) are characterised by an inertial behaviour,

i.e., rotating one link causes the movement of all upstream or downstream

links, depending on the rotation joint;

A2 the effects of gravity on the articulated object’s configurations are not

considered, and the object is located on a table during all operations;220
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A3 we do not assume any specific grasping or manipulation strategies to ob-

tain a target object’s configuration starting from another configuration;

however, we do consider when an action ai cannot be completed because

of unexpected events or modelling omissions;

A4 perception of articulated objects is affected by noise, but the symbol225

grounding problem, i.e., the association between perceptual features and

the corresponding symbols in the robot’s knowledge representation system

[53], is assumed to be given.

As anticipated above, we need to represent articulated object’s configura-

tions. We define an articulated object as a 2-ple α = (L,J ), where L is the230

ordered set of its |L| links, i.e., L = {l1, . . . , lj , . . . , l|L|;≺}, and J is the or-

dered set of its |J | joints, i.e., J = {j1, . . . , jj , . . . , j|J|;≺}. Each link lj ∈ L

is characterized by two parameters, namely a length λl and an orientation θl.

We allow only for a limited number of possible orientations. This induces an

ordered set O of |O| allowed orientation values, i.e., O = {o1, . . . , o|O|;≺}, such235

that an orientation θl can assume values in O. Given a link lj , we define two

sets, namely up(lj) and down(lj), such that the former is made of upstream

links, i.e., from l1 to lj−1, whereas the latter includes downstream links from

lj+1 to l|J|.

Orientations can be expressed with respect to an absolute, possibly robot-240

centred reference frame, or – less intuitively – relative to each other, for instance

θli can represent the rotation with respect to θli−1 . At a first glance, the ab-

solute representation seems preferable because it leads to the direct perception

of links and their orientations with respect to a robot-centred reference frame,

whereas the set of absolute orientations constitute the overall object’s config-245

uration. When a sequence of manipulation actions are planned, changing one

absolute orientation requires – in principle – the propagation of such change

upstream or downstream the object via joint connections, which (hypothesis

H1) is expected to increase the computational burden on the reasoner and (H2)

may lead to suboptimal or redundant action sequences, because the propagation250
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Figure 2: Two possible representations: absolute (top) and relative (bottom).

may jeopardise the effects of previous actions in the plan, or to sequences which

cannot be fully understood by the human operator. On the contrary, the less

intuitive relative approach assumes the direct perception of the relative orienta-

tions between pairwise links, and thus the overall object’s configuration is made

up of incremental rotations. In this case, (H3) computation is expected to be255

less demanding, since there is no need to propagate one change in orientation to

upstream or downstream links, and therefore (H4) actions on different links tend

to be planned sequentially. This has obvious advantages since it leads to shorter

plans (on average), which could be further shortened by combining together ac-

tion sub-sequences (e.g., two subsequent reorientations of 45 deg consolidated260

as one 90 deg single action), and to easy-to-understand plans.

If an articulated object is represented using absolute orientations (Figure 2

on the top), then its configuration is a |L|-ple:

Cα,absolute =
(
θa1 , . . . , θ

a
l , . . . , θ

a
|L|

)
, (2)

where it is intended that the generic element θal is expressed with respect to an

absolute reference frame. Otherwise, if relative angles are used (Figure 2 on the

bottom), then the configuration must be augmented with an initial virtual link

l0 in order to define a reference frame, and therefore:

Cα,relative =
(
θr0,virtual, θ

r
1, . . . , θ

r
l , . . . , θ

r
|L|

)
. (3)
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Figure 3: The experimental scenario: a Baxter dual-arm manipulator operating on an artic-

ulated object.

In principle, while the relative representation could model an object’s configu-

ration with one joint less compared to the absolute representation, the resulting

configuration would not be unique (indeed there were infinitely many), since

the object would maintain pairwise relative orientations between its links even265

when rotated as a whole. Therefore, an initial virtual reference link is added to

the chain.

In order to comply with assumption A2, we set up an experimental scenario

where a Baxter dual-arm manipulator operates on articulated objects located

on a table in front of it (Figure 3). Rotation operations occur only around axes270

centred on the object’s joints and perpendicular to the table where the object is

located. We have crafted a wooden articulated object made up of |L| = 5 15.5

cm long links, connected by |J | = 4 joints. Links are 3 cm thick. The object

can be easily manipulated by the Baxter’s standard grippers, which complies

with assumption A3. To this aim, we adopt the MoveIt! framework. The275

robot is equipped with an RGB-D device located on top of its head pointing

downward to the table. Only RGB information is used. QR tags are fixed to
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Figure 4: The information flow in planHRC.

each object’s link, which is aimed at meeting assumption A4. Each QR code

provides a 6D link pose, which directly maps to an absolute link orientation θal .

Finally, if relative orientations are employed, we compute them by performing280

an algebraic sum between the two absolute poses of two consequent links, e.g.,

θr1 = |θa2 − θa1 |. A human can supervise robot operations and intervene when

necessary from the other side of the table2.

4. planHRC’s Architecture

4.1. Information Flow285

planHRC is organised as a number of parallel loops orchestrating the be-

haviour of different modules (Figure 4). Assuming that an articulated object

α is located on the table in front of the robot, we want to modify its current

configuration ccα to obtain a goal configuration cgα, which can be expressed using

(2) or (3).290

The goal configuration cgα is encoded as assertional knowledge in an OWL-

based Ontology module [54]. When this happens, the Perception module is

2An example video is available at https://www.youtube.com/watch?v=dMdzCB5FBMI.
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activated, and the Baxter’s camera acquires an image of the workspace3, which

is fed to the Scene Analysis module. A perceived configuration cpα (i.e., the

current configuration ccα) is extracted from the image, and a representation

of it stored in the Ontology module. Both ccα and cgα are represented using

conjunctions of class instances, which model such predicates as Connected, to

indicate whether two links are connected by a Joint, or HasOrientation, to define

angle orientations. If ccα and cgα are different then a planning process occurs.

In order to determine such a difference, we assume the availability of a logic

operator D that, given an element in the ontology, returns its description in

OWL formalism. If the description of ccα is not subsumed by the description of

cgα, i.e., it does not hold that D(ccα) v D(cgα), the Planner module is activated,

which requires the definition of relevant predicates P1, . . . ,P|P |, and possible

action types A1, . . . ,Aj , . . . ,A|A| in the form:

Aj =
(
pre(Aj), eff−(Aj), eff+(Aj)

)
, (4)

where pre(Aj) is the set of preconditions (in the form of predicates) for the

action to be executable, eff−(Aj) is the set of negative effects, i.e., predicates

becoming false after action execution and eff+(Aj) is the set of positive effects,

i.e., predicates becoming true after execution. For certain domains, it is useful

to extend (4) to allow for additional positive or negative effects, i.e., predicates

becoming true or false in case certain additional conditions hold. A conditional

action can be modelled as:

Aj =
(
pre(Aj), eff−(Aj), eff+(Aj), prea(Aj), eff−a (Aj), eff+a (Aj)

)
, (5)

where pre(Aj), eff−(Aj) and eff+(Aj) are defined as before, prea(Aj) is

the set of additional preconditions, whereas and eff−a (Aj) and eff+a (Aj) are

the sets of additional effects subject to the validity of predicates in prea(Aj).

Furthermore, the Planner requires a suitable description of the current state sc

3The Perception module acquires images continuously, but for the sake of simplicity we

treat each acquisition as if it were synchronous with action execution.
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Figure 5: The planning and execution pipeline.

(including a description of ccα) and the goal state sg (including cgα), described295

using an appropriate set of ground predicates p1, . . . , p|p|. This information,

encoded partly in the terminological section and partly in the assertional section

of the Ontology module, is translated in a format the Planner module can use,

namely the Planning Domain Definition Language (PDDL) [55].

A plan, as formally described in (1), is an ordered sequence of N actions300

whose execution changes the current state from sc to sg through a set of in-

termediate states. In a plan, each action corresponds to one or more scripted

robot behaviours. For example, rotating a link lj+1 requires the robot to (i)

keep the upstream link lj steady with its left gripper, and (ii) rotate lj+1 of

a certain amount with the right gripper. Such sequence shall not be encoded305

in the planning process, thereby reducing planning cost, but demanded to an

action execution module. If a plan is found, each action is encoded in the ontol-

ogy, along with all the expected intermediate states sc = se1, s
e
2, . . . , s

g = seN+1,

which result from actions. The Execution module executes action by action ac-

tivating the proper modules in the architecture, e.g., such behaviours as motion310

planning, motion execution, obstacle avoidance or grasping.

Each action aj in a plan is assumed to transform a state sej into a state sej+1,

such that:

sej+1 =
(
sej \ eff

−(aj)
)
∪ eff+(aj). (6)
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If aj has additional conditions, then (6) is modified as:

sej+1 =
(
sej \

(
eff−(aj) ∪ C−(prea(aj))

))
∪
(
eff+(aj) ∪ C+(prea(aj))

)
, (7)

where conditions C− and C+ return the sets eff−a (aj) and eff+a (aj), respec-

tively, if the conditions in prea(aj) hold, and ∅ otherwise. Before the action

is executed, the Ontology module activates Perception to acquire a new image.

Again, this induces a new perceived, current configuration ccα. Every time this315

happens, two situations can happen: if ccα corresponds to a current perceived

state sc whose description is subsumed by the description of a state sej−1 possibly

generated applying an action aj−1 or as a consequence of human intervention,

i.e., D(sc) v D(sej−1), then the execution continues with action aj until a state is

reached which is subsumed by D(sg); otherwise, a new planning process occurs,320

considering the current state sc as a new initial state and keeping the previous

goal state sg.

A few remarks can be made. When an action aj is executed, the expected

intermediate state sej is treated as a set of normative ground predicates, i.e., it

defines the normal, expected state for aj to be feasible. Whether sej is obtained325

as a result of a previous action, or with the help of the human operator is not

relevant for aj . On the contrary, deviations from it are treated as violations

and therefore the system tries to re-plan in order to reach a state compatible

with sg starting from the current state. As discussed above, violations can be of

two kinds: on the one hand, human interventions (i.e., object manipulations on330

robot’s behalf) may lead to a current state sc not compatible with the expected

intermediate state sej , and therefore the robot should adapt by re-planning; on

the other hand, a robot may not be able to complete action aj , e.g., due to

a cluttered workspace [17] or the obstructing presence of the human operator

[7]. In the second case, if such an event were detected, the robot would re-335

plan starting from the current state, and possibly ask for the human operator’s

help to achieve a workable object’s configuration. As a consequence, planHRC

implements a policy according to which the overall system’s performance is

ensured by the use of state-of-the-art planning techniques, but it allows at any
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time the human operator to intervene and forces the robot to adapt its plan340

accordingly.

Figure 5 shows a graphical model of the information flow from the perspec-

tive of the planning process.

4.2. Reasoning in the Ontology, or the Cooperation Model

In planHRC, the Ontology module is used both off-line and on-line for345

different purposes4. The off-line use is related to modelling the domain of ar-

ticulated objects manipulation, in terms of types, predicates, operators, states,

problems and plans. The on-line use serves two purposes: on the one hand, to

represent relevant object’s configurations, such as the current ccα and the goal

cgα configurations, as well as specific actions to perform using classes and rela-350

tionships defined in the ontology; on the other hand, to apply such reasoning

techniques as instance checking to the representation, e.g., to determine whether

an action aj assumes an expected planning state sej which is compatible with

the perceived current state sc, as described in Figure 5.

As anticipated in Section 3, and in accordance with the findings in [41, 42,355

43], the human-robot cooperation model implemented in planHRC foresees

that: (i) the robot determines a plan maximising some performance indicator

in terms of number of actions and/or time-to-completion; (ii) the robot executes

and monitors each action in the plan; (iii) during normal work flow, the human

operator supervises robot actions; and (iv) the human operator can intervene360

to cope with robot’s failures in action planning or execution, or to perform

tasks asynchronously and in parallel to robot activities. The model unfolding

is based on monitoring the state transitions in (6) and (7) and their failures.

Independently of the presence of conditional effects in an action aj , two cases

are possible after the action is submitted to the Execution module: it cannot365

be executed (or it is executed only in part) or it is carried out successfully.

4A more detailed description of the ontology is present in Appendix 1, whereas the full

OWL ontology is available at [56].
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The first case originates from motion planning or execution issues, e.g., be-

cause of a cluttered workspace [17] or to prevent any harm to the human operator

[6, 7, 11]. If motion issues occur, planHRC does not generate a state compat-

ible with sej+1. However, this does not necessarily mean that the current state370

sc is still compatible with the previous assessed state sej , i.e., D(sc) v D(sej)

may not hold, because the robot may have completed only part of the action.

In this case, a new current state sc is acquired. If there is an intermediate ex-

pected state sei comparable with sc, then execution resumes from action ai+1;

otherwise, it is necessary to invoke again the Planner module using sc and sg,375

and obtain a new plan.

In the second case, action aj is considered to be successful from the point of

view of motion execution. Still, the outcome may or may not be compatible with

the expected state sej+1, e.g., due to not modelled effects. This state is observable

as the current state sc. However, although D(sc) v D(sej+1) does not hold, it380

may happen that sc could be appropriate for the next action aj+1 to occur. In

particular, for aj+1 to be executable, it must hold that D(sc) v D(pre(aj+1)).

We treat the set of predicates in pre(aj+1) as normative conditions for aj+1,

regardless whether the expected state sej+1 is generated as the outcome of the

previous action aj . If D(sc) v D(pre(aj+1)) does not hold, we must check385

whether there is any intermediate expected state sei comparable with sc: if

it is the case, execution resumes from action ai+1; otherwise, re-planning is

necessary.

In summary, human intervention is strictly necessary when a plan cannot

be found. However, any human action is implicitly considered every time the390

current state does not comply with normative predicates.

4.3. Planning Models

As anticipated in Section 3, orientations can be expressed using an absolute

or relative reference frame. These two possibilities lead to two planning models,

which are characterized by different properties as far as (i) obtained plan, (ii)395

computational load of the planning process, and (iii) ease of execution for the
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robot, are concerned.

For the sake of description, we present the relative formulation first, and

then the absolute one. The relative formulation employs the :STRIPS subset of

PDDL, extended with :equalities and :negative-preconditions, whereas400

the absolute version requires also the use of :conditional-effects. Notably,

the problem we are interested in induces a sort of granularity discretization

of angular orientations, hence there is no practical necessity for continuous or

hybrid planning models [57]. Therefore, PDDL constitutes an appropriate level

of abstraction5.405

As discussed when introducing assumption A1, our model assumes inertial

behaviour, i.e., rotating one link affects the orientation of upstream or down-

stream links as well. Given a link lj to rotate (clockwise or anticlockwise),

two rotation actions are possible: (i) if link lj−1 is kept still and lj is rotated

(clockwise or anticlockwise), then all links in down(lj) rotate (clockwise or an-410

ticlockwise) and are displaced as well; (ii) if link lj+1 is kept still, all links in

up(lj) are rotated (clockwise or anticlockwise) and displaced.

Each rotation action (either clockwise or anticlockwise) changing an angle θrj

referring to a relative orientation does not affect any other orientations of links

in up(lj) or down(lj), since all of them are relative to each other, and therefore415

the planning process is computationally less demanding. However, since actions

are expected to be based on link orientations grounded with respect to a robot-

centred reference frame, i.e., absolute in terms of pairwise link orientations, a

conversion must be performed, which may be greatly affected by perceptual

noise, therefore leading to inaccurate or even inconsistent representations. In420

the absolute formulation, θaj is considered absolute, and therefore it can be

associated directly with robot actions. Unfortunately, this means that each

action changing θaj does affect numerically all other orientations of links in up(lj)

or down(lj) in the representation, which must be kept track of using conditional

effects in the planning domain.425

5Examples of planning domains and problems can be found at [58].
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(:action RotateClockwise

:parameters (?l1 ?l2 - Link

?j1 - Joint ?o1 ?o2 - Orientation)

:precondition (and

(Connected ?j1 ?l1)

(Connected ?j1 ?l2)

(not (= ?l1 ?l2))

(HasOrientation ?o1 ?j1)

(OrientationOrd ?o1 ?o2))

:effect (and

(not (HasOrientation ?o1 ?j1))

(HasOrientation ?o2 ?j1))

)

Figure 6: The relative version of RotateClockwise in PDDL.

Relative formulation. As described in Section 3, an articulated object α is

represented using two ordered sets of links and joints. We use a Connected

predicate modelled as described in (8) to describe the sequence of links in terms

of binary relationships each one involving a link lj and a joint jj+1, which

induces a pairwise connection between two links, namely lj and lj+1, since they430

share the same joint jj+1. The orientation of a link lj is associated with the

corresponding joint jj and corresponds to an angle θrj , which ranges between

0 and 359 deg, using the predicate HasOrientation as specified in (9). This

formulation assumes that link orientations are expressed incrementally relative

to each other, and it implies that the robot’s perception system is expected435

to provide the Ontology module with the set of relative link orientations as

primitive information. If absolute link orientations are not available, the object’s

configuration Cα,absolute can be computed applying forward kinematics formulas

using relative orientations and link lengths. If noise affects the perception of link

orientations, as it typically does, the reconstruction of the object’s configuration440

may differ from the real one, and this worsens with link lengths. However, this
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model significantly simplifies the planning model’s complexity: from a planner’s

perspective, the modification of any link orientations does not impact on other

relative joint angles, and therefore rotation actions can be sequenced in any

order the planner deems fit.445

Angles are specified using constants, and are ordered using the predicate

OrientationOrd as described by (10). The difference between constant values

is the granularity of the resolution associated with modelled orientations. For

example, if 30 and 45 are used as constants representing, respectively, a 30 and

a 45 deg angle, then a predicate (OrientationOrd 30 45) is used to encode450

the fact that 30 precedes 45 in the orientation granularity, and corresponds to

the description in (11).

Independently of what part of the articulated object is rotated, the do-

main model includes two actions, namely RotateClockwise (Figure 6) and

RotateAntiClockwise. In the definition of RotateClockwise, ?l1 and ?l2455

represent any two links lj and lj+1, ?j1 is the joint jj+1 connecting them,

whereas ?o1 and ?o2 are the current and the obtained link orientations, re-

spectively. If ?j1 connected two different links ?l1 and ?l2, the angle ?o1 of

?l1 associated with ?j1 would be increased of a certain step (depending on the

next orientation value) therefore leading to ?o2. A similar description can be460

provided for RotateAntiClockwise.

A problem is defined by specifying the initial and final states. The former

includes the topology of the articulated object in terms of Connected predi-

cates, and its initial configuration using HasOrientation predicates; the latter

describes its goal configuration using relevant HasOrientation predicates.465

Absolute formulation. The absolute formulation differs from the relative

one in that link orientations are expressed with respect to a unique, typically

robot-centred, reference frame. If a rotation action modifies a given link ori-

entation θaj , all orientations of links in up(lj) or down(lj) must be consistently

updated as well, i.e., it is necessary to propagate such change upstream or470

downstream. Such a representation increases the complexity of the planning

task but it is more robust to errors: perceiving independent link orientations
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(:action RotateClockwise

:parameters (?l1 ?l2 - Link

?j1 - Joint ?o1 ?o2 - Orientation)

:precondition (and

(Connected ?j1 ?l1)

(Connected ?j1 ?l2)

(not (= ?l1 ?l2))

(HasOrientation ?o1 ?j1)

(OrientationOrd ?o1 ?o2))

:effect

(and

(not (HasOrientation ?o1 ?j1))

(OrientationOrd ?o2 ?j1)

(forall (?j2 - Joint ?o3 ?o4 - Orientation)

(when (and

(Affected ?j2 ?l1 ?j1)

(not (= ?j2 ?j1))

(HasOrientation ?o3 ?j2)

(OrientationOrd ?o3 ?o4))

(and

(not (HasOrientation ?o3 ?j2))

(HasOrientation ?o4 ?j2)))

)

)

Figure 7: The conditional version of RotateClockwise in PDDL.

induces an upper bound on the error associated with their inner angle. The

Connected, HasOrientation and OrientationOrd predicates are the same as

in the relative formulation, subject to the different semantics associated with475

link orientations. However, with respect to the relative formulation, the effects

of the actions differ. In particular, the model assumes that we can represent

which joints are affected when a link is rotated around one of the correspond-

ing joints. This is done using the Affected predicate, i.e., a ternary predicate

(Affected ?j2 ?l1 ?j1), where ?l1 is the rotated link, ?j1 is the joint around480
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which ?l1 rotates, and ?j2 is a joint affected by this rotation. Therefore, if ?j2

were affected, the angle of the corresponding link would be modified as well

in the conditional statement and, as such, it would affect other joints via the

corresponding links. For each couple ?l1, ?j1, the list of joints affected by

the corresponding movement should be provided under the form of multiple485

Affected predicates. With reference to the action described in Figure 7, as in

the previous case, the joint ?j1, located between ?l1 and ?l2, is increased by

a quantity defined by a specific granularity, according to the OrientationOrd

predicate. If rotating ?l2 around ?j1 affects ?j2, the latter is updated, as well

as all other joints upstream or downstream. This is encoded by the forall part490

of the PDDL encoding. Following the semantics of the language, the forall

statement requires the planner to update the state of all joints ?j2 that are

affected by the performed action – checked conditions are specified via the when

statement. The HasOrientation predicate of identified affected joints is then

updated accordingly. A similar definition for RotateAntiClockwise can be495

easily given.

In terms of problem definition, beside Connected and HasOrientation pred-

icates, it is necessary to include the list of appropriately defined Affected pred-

icates.

It is noteworthy that the two action definitions, namely RotateClockwise500

and RotateAntiClockwise, are functionally equivalent. Furthermore, any prob-

lem we target here could be solved – in principle – with just one action, as long

as discretized angles were ring-connected. We decided to introduce two different

actions for two reasons: on the one hand, it is rare that joints can rotate freely

for 360 deg or more; on the other hand, this model leads to shorter plans (on505

average) in terms of number of actions and cleaner, more natural executions, at

the expense of a slightly longer planning time.
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5. Experimental Validation and Discussion

5.1. System Design

planHRC has been implemented integrating existing modules and novel ad510

hoc solutions. All experiments have been carried out using a dual-arm Baxter

manipulator. The Perception and Scene Analysis modules are custom nodes

developed using the Robot Operating System (ROS) framework. They inte-

grates the Alvar tracker library to read QR codes [59]. Different solutions are

equally legitimate, and the use of QR codes is not a fundamental features of the515

proposed framework. Images are collected using the standard RGB camera of

a Kinect device, which is mounted on the Baxter’s head and points downward

to capture what happens on a table in front of the robot. The Ontology and

Planning modules have been implemented on top of ROSPlan [39]. A custom

ontology describing the domain of articulated object manipulation has been520

developed and validated. Ontology management is done using the ARMOR

framework [60], which has been integrated with ROSPlan. Two existing plan-

ners have been interfaced with the system and evaluated, namely Probe [36]

and Madagascar [37]. In principle, any existing PDDL-based planner with the

features discussed above could be used. The two planners have been selected525

on the basis of their performance in the agile track of the 2014 International

Planning Competition, as well as following a computational assessment of their

performance with respect to other planners with similar features [61]. The Ex-

ecution module and the various activated behaviours have been implemented

using the well-known MoveIt! framework.530

On-line, the architecture runs on a 8× Intel Core i7-4790 CPU 3.60 GHz

processors workstation, with 8 GB of RAM, running a Linux Ubuntu 14.04.5

LTS operating system. Off-line performance tests about the planning process

have been carried out on a workstation equipped with 2.5 GHz Intel Core 2 Quad

processor, 4 GB of RAM, running a Linux 2.6.32 kernel operating system.535

Problem formulations, as well as all generated instances, including domain,

problems and plans, are freely available [58].
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Figure 8: Means and variances of solution times for different problem instances using the

absolute formulation and Probe: on the x-axis, the first value indicates the number of links,

the second the number of allowed orientations. Runtime is reported in seconds.

5.2. Planning Performance

Tests with synthetic problem instances have been performed to stress the

two planning formulations. For the tests, we varied the number of links |L|540

from 4 to 20 and the number of allowed orientations |O| a link can take from 4

(i.e., with a resolution of 90 deg) to 12 (i.e., with a resolution of 30 deg). As

outlined above, such a resolution has a different meaning depending on whether

we employ the absolute or relative formulations.

Figures 8 to 11 represent means and variances, in seconds, for different545

problem instances, for all the combinations of formulation and planner. Problem

instances are labelled as x− y, where x ≤ |L| defines the number of links and

y ≤ |O| specifies the orientation resolution. For each instance, planners have

been executed 10 times to take into account the randomness associated with the

employed heuristics. A 300 sec upper bound to the solution time has been set.550

If a planner is unable to find a solution before such time limit is reached, it is

stopped. Figures only contain data related to problems solved within the time
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Figure 9: Means and variances of solution times for different problem instances using the

absolute formulation and Madagascar: on the x-axis, the first value indicates the number of

links, the second the number of allowed orientations. Runtime is reported in seconds.

Figure 10: Means and variances of solution times for different problem instances using the

relative formulation and Probe: on the x-axis, the first value indicates the number of links,

the second the number of allowed orientations. Runtime is reported in seconds.
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Figure 11: Means and variances of solution times for different problem instances using the

relative formulation and Madagascar: on the x-axis, the first value indicates the number of

links, the second the number of allowed orientations. Runtime is reported in seconds.

limit.

As it can be seen in Figure 8, when we use the absolute formulation and

Probe, 73.5% of the instances are solved, i.e., 125 out of 170. It is possible555

to observe that problem instances with up to x ≤ 10 and y ≤ 4 are solved in

roughly less than 1 sec, with a relatively small variance. When the number

of links increase, planning time significantly increases as well, and thus the

variance. In the same situation, as depicted in Figure 9, Madagascar shows a

more unpredictable behaviour: for small problem instances, it can quickly find a560

solution, and with a small temporal variance; however, the employed heuristics

may cause large variances in specific cases, e.g., the instance labelled 8− 4. It

is worthy to note that larger instances are rarely solved and, in general, the

number of solved instances is lower when compared to Probe, i.e., only 53.5%

(91 out of 170). As it will be also showed in the next Section, these results seem565

to confirm hypothesis H1, i.e., the more intuitive absolute formulation leads to

more complex reasoning processes. This is due to the fact that planners need to
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propagate the effects of each action to upstream or downstream links, which can

be done only by employing a complex formulation involving conditional effects.

If we consider the relative formulation, approach, then both Probe (Figure570

10) and Madagascar (Figure 11) are very efficient, with Madagascar outper-

forming Probe to a small extent. Both planners are capable of solving all the

instances (170 out of 170) in less that 0.2 sec, and exhibit a very good scala-

bility, as well as a very limited variance. These results support hypothesis H3,

i.e., the reduced planning effort is reflected by the simpler formulation.575

5.3. Examples

In this Section, we provide examples of plans generated by Probe and Mada-

gascar using the two formulations introduced above. Furthermore, we show and

discuss what happens in a number of human-robot cooperation use cases.

In order to discuss how the different planners deal with the absolute and580

the relative formulation, we focus the discussion on a specific instance with 3

links and 3 joints. Figure 12 shows two possible solutions, obtained respectively

using Probe (first two rows) and Madagascar (last two rows), when the absolute

formulation is adopted. In each solution, the top-leftmost configuration is the

initial one, whereas the bottom-rightmost configuration is final one. It can be585

observed that both plans are characterized by a number of seemingly unneces-

sary actions, since the planners must continuously maintain the representation

consistency. The plan obtained using Madagascar (on the bottom) also loops

over two configurations, which is probably due to the employed heuristics. This

example seems to confirm H2, i.e., the absolute approach leads to suboptimal590

plans, or plans which may not easily understood by human co-workers.

Figure 13 shows how Probe (top) and Madagascar (bottom) solve the same

problem when a relative formulation is adopted. Both planners generate solu-

tions that are shorter than those obtained using the the absolute formulation,

and no seemingly unnecessary actions are planned. In the plan generated by595

Madagascar, it is possible to observe that actions involving the same link tend

to be performed sequentially, i.e., H4 seems to be verified. This holds for other
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Figure 12: A sequence of configurations for a 3 − 3 problem, using the absolute formulation

with Probe (first two rows, from left to right and top to bottom) and Madagascar (second

two rows, from left to right and top to bottom).

solutions as well.

As anticipated above, planHRC has been deployed on a dual-arm Baxter

manipulator to enable the robot to autonomously manipulate articulated ob-600

jects. The Baxter operates on a 3-link articulated object, assuming that the

angle resolution is 90 deg, i.e., a 3− 4 problem according to the definition intro-

duced above. Figure 14 shows a sequence of configurations, including the initial

one in the top-leftmost position, and the goal one in the bottom-rightmost

position, from left to right and top to bottom, whereas Figure 15 shows the cor-605
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Figure 13: A sequence of configurations for a 3 − 3 problem, using the relative formulation

with Probe (first row, from left to right) and Madagascar (second row, from left to right).

Figure 14: A sequence of configurations for a 3 − 4 problem, from left to right and top to

bottom, as seen from the robot’s perspective.

responding relevant instants during the execution of the plan by the robot. It

is worth noting that, each time a RotateClockwise or RotateAntiClockwise action
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Figure 15: The sequence of Figure 14 as executed by Baxter without human intervention.

is executed, the actual robot behaviour is made up of three steps: the first is to

firmly grasp the link associated with the interested joint that must be kept still,

the second is to grasp the link that must be rotated, the third is the actual rota-610

tion of the proper amount. In planHRC, this can be done indifferently by the

left or right robot arms, according to a simple heuristics related to which arm

is closer to the link to operate on. Grasping actions in Figure 14 are indicated

with grasping signs close to the interested link, plus an R sign to indicate that

the action is performed with the right arm, or L otherwise. We decided not to615

model grasping actions at the planning level for two reasons: on the one hand,

they would have increased the burden of the planning process; on the other

hand, each rotation must be preceded by a grasping operation, and therefore

this sequence can be easily serialized in the execution phase.

Figure 16 and Figure 17 show two examples of plans where human inter-620

vention occurs to successfully accomplish the whole cooperation process. In the
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Figure 16: A series of manipulation actions executed with the help of a human operator.

figures, the two sequences must be analysed from top to bottom and left to

right.

In Figure 16, it is possible to see that the human operator performs an ac-

tion while the robot is executing a rotation action on other links (top-right and625

mid-left snapshot). The action performed by the human operator leads to a sit-

uation compatible with the object’s target configuration. As a consequence, the

final configuration is reached in snapshot mid-centre. Afterwards, the operator

modifies again the status of the first link (mid-right snapshot), thereby lead-

ing to a configuration not compatible with the goal one. As a consequence, the630

robot intervenes to restore it (bottom-centre and bottom-right snapshots). This

sequence demonstrates two important features of planHRC: first, the freedom

human operators have in performing actions asynchronously with robot actions;

second, the robot capabilities in keeping the cooperation on track coping with

possible human mistakes.635

Figure 17 shows an example where a human operator helps the robot com-
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Figure 17: Another series of manipulation actions executed with the help of a human operator.

plete an action, which was not performed in its entirety. The robot starts exe-

cuting a plan (top-left and top-centre snapshots). However, a rotation action is

not completed, leading the object’s configuration to a state not compatible with

the expected one (mid-right snapshot). Then, the human operator intervenes640

with an action aimed at completing the intended rotation and, at the same time,

performing an additional rotation on the last link in the chain (mid-right snap-

shot). From that moment on, the robot autonomously completes the plan. This

sequence shows how a plan can be successfully recovered by human intervention,

and the fact that the robot can seamlessly continue plan execution.645

5.4. Discussion and Comparison with Other Approaches

On the basis of the requirements outlined above and the experimental anal-

ysis carried out to evaluate the whole planHRC architecture, it is possible to

make a few interesting remarks, perform a comparison with other approaches

in the literature, and draw some conclusions. In particular, the discussion that650
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follows is focused on three aspects, namely planning performance, the genera-

tion of natural sequences of manipulation actions and the resulting cooperation

process according to which human operators interact with the robot.

Planning performance. The absolute and the relative formulations are char-

acterized by different performance results.655

When using the absolute formulation, both Probe and Madagascar are capa-

ble of solving problem instances with a limited number of links and orientations

in less than 1 secs, which is a reasonable upper bound for the reasoning time of a

collaborative robot interacting with a human operator, with Probe outperform-

ing Madagascar on bigger problem instances. With around 10 links, the time660

required to obtain a plan (if it exists) significantly increases, due to the large

number of possible orientations, with solution times up to an average of 100 secs

and beyond. When using Probe, solution times for the same problem instance

have a certain variance, which is almost uniform for different numbers of links

and possible orientations. If Madagascar is used, such variance generally de-665

creases, but sometimes it may become significantly large, as shown for example

in the problem instance 8− 4. By carefully analysing cases where Madagascar

shows significantly high runtimes, we observed that the planner finds problem

instances where subsequent connected joints need to be rotated in opposite ways

(e.g., the angle of one joint has to be decreased, while the angle of the other670

joint has to be increased) particularly challenging to solve. In that cases, the

planner keeps looping between a very small number of configurations, trying to

fix the orientation of a joint at a time, ignoring the effect of such actions on

the rest of the articulated object. As far as human-robot cooperation processes

are concerned, if an absolute formalization were used, then Probe would rep-675

resent the best trade-off between complexity and solution times. In principle,

Madagascar would be a better choice for problems with a reduced number of

links and possible orientations, but the occasional presence of large variances

in solution times would seriously jeopardize the human-robot cooperation pro-

cess. The two planners behave differently when using a relative formulation.680

Both Probe and Madagascar prove capable of solving large problem instances
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(i.e., with up to 20 links and up to 12 possible orientations) in less than 0.2

secs. Solution times are exponential also in this case, but the very low time

scale makes such trend relevant only to a limited extent. Differently from the

case with the absolute formulation, Probe behaves quite deterministically, and685

the same holds for Madagascar. When dealing with human-robot cooperation,

both planners are suitable to be used if a relative formulation is adopted, with

a slight preference for Probe.

The relative formulation proves to be essential when the robot must deal

with the directive D2 discussed in the Introduction, and in particular to allow690

for a fast action re-planning when needed, as required by R3.

Differently from those approaches encoding human operator preferences in

the planning model, typically using heuristics [43], when using a relative formu-

lation planHRC tends to find minimum-length plans (in terms of number of

actions), i.e., the plan as devised by the robot is efficient. Human operator pref-695

erences are then taken into account on-line. As a matter of fact, interventions of

human operators are treated by planHRC as perturbations with respect to the

execution of the efficient plan. However, sometimes these perturbations may be

helpful (i.e., the human operator helps the robot perform an action), whereas

in other cases they constitute detours with respect to the original plan, which700

is tolerated because such detours express human operator preferences. Differ-

ently from the approaches presented in [15, 44, 45], planHRC does not model

human preferences in the planning models, but accommodates for them on-line.

Only to a limited extent, the approach presented in [11] goes in the direction

pursued by planHRC. The use of AND/OR graphs to model a limited number705

of alternative cooperation models allows human operators to select on the fly

which one they want to follow. However, the AND/OR graph encodes models

which have been a priori defined, and this is different from the approach of

planHRC where (i) there is no need for such an encoding, and (ii) in principle,

the cooperation is not limited to a given number of alternatives.710

Natural action sequences. In general, the two formulations lead to qualita-

tively different plans, i.e., plans with different actions.
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Independently of the employed planner, the absolute formulation originates

plans longer than those obtained using the relative formulation. In the abso-

lute case, the solution may contain apparently unnecessary actions, as well as715

repeated sequences of actions. This is due to the fact that when working on

orientations of links located downstream in the chain, such orientations may be

later modified as a side-effect when the algorithm operates on links upstream,

therefore requiring reworking on downstream links. Such plans are the result

of certain planner heuristics. However, they are often unnatural for humans720

to understand, which is of the utmost importance in human-robot cooperation

processes.

Plans obtained starting from the relative formulation are shorter and – in

a generic sense – more understandable by humans. Since the representation of

orientations is relative for pairwise links, the planner does not need to modify725

orientations of downstream links multiple times, and solutions tend to include

sequences of actions operating on the same link. This makes plans easy to

follow, irrespectively whether they are generated using Probe or Madagascar.

Thus, as far as naturalness is concerned, the relative formulation must be

preferred over the absolute formulation. Shorter and easy-to-understand plans730

are supposed to strengthen a human operator’s ability to supervise robot actions

in compliance with directive D2 and to intervene when required, as prescribed by

requirement R5. However, it is noteworthy that planHRC has not been tested

in real-world conditions yet. As a consequence, there are still to-be-validated

hypotheses requiring us to conduct a specifically designed study, also related to735

the role of context-aware planning in human-robot cooperation [62].

According to the studies discussed in [41, 42], human operators tend to pre-

fer a partial control on the cooperation process, with the aim of maximising the

overall human-robot team’s performance. The approach pursued by planHRC

goes in this direction in that it enables the robot to generate an efficient plan,740

but it allows humans to intervene when required. If compared to those ap-

proaches explicitly or implicitly encoding human preferences in the cooperation

process [10, 11, 15, 44, 45], planHRC does not offer any formal guarantee about
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the naturalness of the generated plan, that is to say in terms of an easy under-

standing of the sequence of basic manipulation actions by human operators.745

However, when a relative formulation is adopted, the planner tends to produce

natural, easy-to-understand plans without prior knowledge being encoded in

the system, which is a clear advantage should the system be extended to other

use cases.

The cooperation process. In absence of errors related to action execution,750

once a plan is available planHRC should be able to carry it out in its entirety.

This is in agreement with directive D1 discussed in the Introduction. However,

when either one action is not executed successfully or it has been carried out

only partially, a human operator can intervene to obtain an object configuration

that the robot can operate upon. These two facts support requirement R2.755

As described above, before any action is executed, the robot checks whether

a number of expected normative predicates hold in the current planning state.

Implicitly, this means that any error in action execution or human intervention

is synchronously assessed before the next planned action can start. Obviously

enough, this represents a limiting factor for planHRC, and originates from the760

focus on planning sequences of states to be reached rather than actions. A more

flexible reactive system may make use of human actions to determine causes of

faults on the fly, instead of being limited in assessing their outcomes at discrete

intervals. However, it also enforces the fact that humans are in control at any

time: the robot simply waits for human intervention to finish and then plans a765

course of action from that moment on.

This approach makes planHRC different from a number of human-robot co-

operation frameworks described in the literature [47, 48, 49, 50, 51, 52]. While

in [47] a predefined set of possible cause-effect events are considered, planHRC

consider each predicate in the ontology as normative information that must770

be validated on-line, independently of the cause that may have generated a

norm violation. planHRC does not explicitly detect human operator actions

[48, 50, 51], and therefore it is not able to perform action-dependent behaviour,

but only state-dependent behaviour. In virtue of this, planHRC may be em-
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ployed to perform anticipative behaviours like done in [50], where a Bayesian775

network is employed to that aim, but using only the current cooperation state

(i.e., adopting a sort of Markov assumption). It is noteworthy that planHRC

explicitly does not consider temporal aspects in planning execution. Whilst –

in principle – temporal PDDL-based planners may be used to generate plans

adhering with well defined temporal constraints, at run time planHRC may780

support the use of temporal-based constraints validation as done, for instance,

in [49].

Also in this case, the benefits of this approach should be validated with

human operators. Current work is devoted to investigate these matters.

6. Conclusions785

The paper proposes a hybrid reactive/deliberative architecture for collabo-

rative robots in industrial scenarios, and it shows a use case where a human and

a robot collaboratively manipulate articulated objects.

The paper contributes to the literature in two respects: (i) it shows how

two different representation and planning models for articulated objects impact790

on planning performance and plan quality, in terms of number of actions and

simplicity of the plan; (ii) it demonstrates the feasibility of an approach to

human-robot cooperation where actions by human operators are automatically

managed in virtue of their effects as perceived by the robot.

The developed architecture is evaluated on the basis of a number of func-795

tional and non functional requirements: the possibility for the system to implic-

itly recognise the effects of human actions, the robot’s capabilities in adapting

to those actions, and a fast (re-)planning process when needed, just to name

the most important ones.

Current work is planned to address three aspects: the first is related to a800

more detailed, computationally efficient, representation of articulated objects

and the corresponding planning models. The second focuses on the investi-

gation of planning models represented using more expressive languages than
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PDDL, such as the PDDL+ language [57]. Finally, the third requires a system-

atic evaluation of the employed human-robot cooperation process with human805

volunteers.
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Appendix 1: Representation Models in the Ontology

An ontology Σ = (TBox,ABox) is a 2-ple where the TBox is a terminolog-1010

ical taxonomy of axioms storing definitions of classes and relationships within

a domain, and the ABox is an assertional taxonomy representing the related

factual knowledge. In planHRC, both TBox and ABox are described using

the Description Logic formalism [63] through its computational variant Web

Ontology Language (OWL), and in particular OWL-DL [64], plus SWRL rules1015

for deductive reasoning [65].

The taxonomy in the TBox models types used by the Planner module to

process PDDL descriptions as primitive classes derived from Type v >, e.g.,
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Link v Type, Joint v Type, Orientation v Integer. Relevant predicates are

modelled as classes derived from Predicate v >. For instance, Connected is used

to relate a Joint to a Link, as:

Connected vPredicateu

∃arg1.Joint u =1arg1u

∃arg2.Link u =1arg2.

(8)

Arguments arg1 and arg2 relate one Joint with one Link. Intermediate links

are modelled using two Connected predicates, for the downstream and upstream

links, respectively. It is necessary to specify the orientation associated with a

Link with respect to a Joint:

HasOrientation vPredicateu

∃arg1.Joint u =1arg1u

∃arg2.Orientation u =1arg2,

(9)

where the semantics of arg2 depends on whether we adopt absolute or relative

angles. In the planning process, an orientation can take values in the set O,

with the aim of reducing the state space involved in the planning process. The

set O is represented as a collection of predicates relating pairwise values:

OrientationOrd vPredicateu

∃arg1.Orientation u =1arg1u

∃arg2.Orientation u =1arg2.

(10)

For instance, if only two possible orientations are allowed, namely 30 deg and

45 deg, O can be modelled using only one predicate OrientationOrd(ord 30 45)

such that:

arg1(ord 30 45, 30),

arg2(ord 30 45, 45),
(11)

where it is intended that orientations 30 deg and 45 deg are associated with

arg1 and arg2, respectively. Other predicates are described in a similar way.
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Conditional operators in PDDL are modelled in the TBox using conditional

predicates to be mapped to PDDL operators:

CondPredicate vPredicateu

∃forall.Type u ≥1forallu

∃when.Predicate u ≥1whenu

∃eff− a.Predicate u ≥1eff− a, u

∃eff+ a.Predicate u ≥1eff+ a,

(12)

where the intuitive meaning is that for all Type individuals specified in the

relationship, when specific Predicate individuals hold, the additional effects must

be considered.

We define Action v > as:

Action v>u

∃params.Type u ≥1paramsu

∃pre.Predicate u ≥1preu

∃eff−.Predicate u ≥1eff−u

∃eff+.Predicate u ≥1eff+u

∃condEff.CondPredicate.

(13)

In (13), we do not assume the presence of a relationship condEff to the aim1020

of modelling both actions and conditional actions using the same definition.

In our TBox, two actions are defined, namely RotateClockwise v Action, and

RotateAntiClockwise v Action.

One predicate used as part of conditional effects is Affected, which models

how changing a link orientation propagates via connected upstream or down-

stream joints:

Affected vPredicateu

∃arg1.Joint u =1arg1u

∃arg2.Link u =1arg2u

∃arg3.Joint u =1arg3,

(14)
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which states that a change in orientation related to the joint in arg1 is affected

by rotations of joints specified in arg3, as obtained when operating on the link1025

in arg2.

A state s (perceived, current, predicted or expected) is represented as a set

of predicates:

State v>u

∃madeof.Predicate u ≥1madeof,
(15)

through the relationship madeof, which must include at least one Predicate for

the state to be formally expressed. A planning problem is modelled as having

an initial and a goal State:

Problem v>u

∃init.State u =1initu

∃goal.State u =1goal.

(16)

Finally, a Plan v > is made up of actions:

Plan v>u

∃madeof.Action u ≥1madeof.
(17)

On-line, the ABox is updated each time a new image is acquired by the

Perception module, and maintains descriptions in the form of assertions. Let us

describe what happens at each iteration with an example. If the robot perceived

an object configuration like the one in Figure 2 on the top, four Link instances:

Link(l1) Link(l2) Link(l3) Link(l4) (18)

and four Joint instances:

Joint(j1) Joint(j2) Joint(j3) Joint(j4) (19)

are used to represent it. The object’s structure is modelled as a description
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including the set of predicate instances:

Connected(connected j1 l1)

Connected(connected j2 l1)

Connected(connected j2 l2)

. . .

Connected(connected j4 l4).

(20)

where connected j1 l1 is such that:

arg1(connected j1 l1, j1)

arg2(connected j1 l1, l1),
(21)

as specified in (8). Other Predicate instances can be generated in a similar way.

Assuming that θa1 = 45 deg, θa2 = 330 deg, θa3 = 30 deg and θa4 = 315 deg,

orientations are represented as:

HasOrientation(has orientation j1 45)

HasOrientation(has orientation j2 330)

HasOrientation(has orientation j3 30)

HasOrientation(has orientation j4 315),

(22)

where, focusing on arg2 only:

arg2(has orientation j1 45, 45)

arg2(has orientation j2 330, 330)

arg2(has orientation j3 30, 30)

arg2(has orientation j4 315, 315),

(23)

All such Connected and HasOrientation instances contribute to the definition of

the current state State(state c) by means of a set of assertions like:

madeof(state c, connected j1 l1)

madeof(state c, connected j2 l1)

. . .

madeof(state c, has orientation j4 315, 315),

(24)
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as foreseen by (15). Similar descriptions for problems and, after the planning

process occurs, plans, can be introduced as well.

When a new goal state State(state g) is encoded in the ontology, a new

Problem(problem c) is created, such that, according to (16):

init(problem c, state c)

goal(problem c, state g),
(25)

and the Planner module is activated. A translation process generates the proper

PDDL formulation by querying the TBox (to generate the PDDL domain) and1030

the ABox (to generate the PDDL problem). Each class in the TBox roughly

corresponds to a section of the domain, whereas state c and state g in the ABox

define the initialisation and goal sections of a problem.

After a plan has been found and validated (see Section 4.3), each action is

encoded back in the ontology as an instance of Action, and therefore all rela-

tionships param, pre, eff− and eff+ are specified in terms of Type and Predicate

instances. If an action has conditional effects, also condEff is determined. As a

consequence, a set of intermediate expected states is create as:

State(state e 1)

State(state e 2)

. . .

State(state e n + 1)

(26)

as described in Section 4.1. In particular, state e 1 ≡ state c, state e n + 1 ≡

state g, and the intermediate expected states are generated using (6) and (7).1035

When State individuals are generated, the Execution module is activated and

the human-robot cooperation process can start.
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