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Abstract
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Doctor of Philosophy

Inverse Problems in data-driven multi-scale Systems Medicine:
application to cancer physiology

by Mara SCUSSOLINI

Systems Medicine is an interdisciplinary framework involving reciprocal feed-
back between clinical investigation and mathematical modeling/analysis. Its aim is
to improve the understanding of complex diseases by integrating knowledge and
data across multiple levels of biological organization. This Thesis focuses on three
inverse problems, arising from three kinds of data and related to cancer physiology,
at different scales: tissues, cells, molecules.

The general assumption of this piece of research is that cancer is associated to
a pathological glucose consumption and, in fact, its functional behavior can be as-
sessed by nuclear medicine experiments using [18F]-fluorodeoxyglucose (FDG) as
a radioactive tracer mimicking the glucose properties. At tissue-scale, this Thesis
considers the Positron Emission Tomography (PET) imaging technique, and deals
with two distinct issues within compartmental analysis. First, this Thesis presents
a compartmental approach, referred to as reference tissue model, for the estimation
of FDG kinetics inside cancer tissues when the arterial blood input of the system is
unknown. Then, this Thesis proposes an efficient and reliable method for recover-
ing the compartmental kinetic parameters for each PET image pixel in the context of
parametric imaging, exploiting information on the tissue physiology.

Standard models in compartmental analysis assume that phosphorylation and
dephosphorylation of FDG occur in the same intracellular cytosolic volume. Ad-
vances in cell biochemistry have shown that the appropriate location of dephos-
phorylation is the endoplasmic reticulum (ER). Therefore, at cell-scale, this Thesis
formalizes a biochemically-driven compartmental model accounting for the specific
role played by the ER, and applies it to the analysis of in vitro experiments on FDG
uptake by cancer cell cultures obtained with a LigandTracer (LT) device.

Finally, at molecule-scale, this Thesis provides a preliminary mathematical in-
vestigation of a chemical reaction network (CRN), represented by a huge Molecular
Interaction Map (MIM), describing the biochemical interactions occurring between
signaling proteins in specific pathways within a cancer cell. The main issue ad-
dressed in this case is the network parameterization problem, i.e. how to determine
the reaction rate coefficients from protein concentration data.

HTTPS://UNIGE.IT
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Introduction

Systems Medicine is a new approach to healthcare that draws from the principle of
Systems Science and Systems Biology: the whole is greater than the sum of the parts. Ev-
ery day modern medicine moves forward, but in over the 50% of all medical cases
the chosen treatment does not benefit the individual patient. The main reason is
the traditional fragmented approach to a patient’s system, focusing on a single-scale
perspective that limits the understanding of the overall clinical situation. Systems
Medicine strives for measurable improvements of patient health through compre-
hensive systems-based approaches and practice.

The starting idea of Systems Medicine is that the structures constituting the whole
of living organisms are more than the collection of their single components. This
viewpoint recognizes the human body as a unified system of biochemical, physio-
logical, and environmental interactions. Indeed, on a biological level, the human
body is a complex machine made up of many networks that are integrated at mul-
tiple communicating scales, i.e. a network of networks. Organelles inside each cell
interact with each other through chemical reactions to maintain the cell in a healthy
functioning state, able to move, differentiate and die. These sub-cellular organelles
and their processes govern cell signaling mechanisms to connect neighboring cells,
and form multi-cellular systems called tissues. Different types of tissues join to form
an organ that performs a specific duty, and different organs cooperate to compose
organ systems that carry out complicated functions. All these organ systems to-
gether enable a living organism. The aim of Systems Medicine is to decipher the
complexity of this human network system for improving the understanding, pre-
vention, and treatment of diseases, through the integration of knowledge and data
across multiple levels of biological organization.

Solving biomedical problems requires the development of cutting-edge compu-
tational technologies in order to explore undiscovered dimensions of data space,
and new data types require innovative analytical tools tackling such vast amounts
of information and making sense of all this. The latter cycle defines the funda-
mental interplay between medicine, technology, and computation supporting Sys-
tems Medicine. It is therefore straightforward to notice that the tasks of Systems
Medicine can be achieved only in a multidisciplinary framework where clinicians,
biologists, chemists, computer scientists, engineers, mathematicians, physicists, and
others, work together. The collaboration of these many scientific profiles involves
iterative and reciprocal feedback, and asks scientists to step beyond the borders of
their field and engage for an interdisciplinary environment in which complementary
skills and different attitudes allow to face the biological challenges and to get share-
able insights more quickly. The team cooperates to combine the biomedical data
into mathematical models describing the biological systems, to predict how these
systems change over time and under varying conditions, and to develop solutions
to the world’s most urgent health issues.

The potential benefits of Systems Medicine are profound. In the long term, this
methodology can (i) track diseases on various levels, from the human body down to
organs, and to cellular and sub-cellular layers, (ii) provide a detailed portrait of the
human physiology, based on multi-scale data and models, and (iii) deliver individ-
ual treatments for patients opening the way to personalized medicine.
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This Thesis takes its inspiration from the world of Systems Medicine and pur-
sues the idea that integration of information is more effective than reductionist ap-
proaches. A reasonable question is: what’s the role of Mathematics within this
framework? The relation between Mathematics and Systems Medicine has been so
far mainly focused on the development and study of dynamical systems describ-
ing biological processes. This is a crucial point: bioinformatics addresses biological
problems (almost) without the use of a preliminary mathematical model character-
izing the system structure and equations, since, in some sense, the models are in-
ferred from the available biological data; the application of Mathematics to Systems
Medicine requires the formulation of mathematical models mimicking the biologi-
cal processes, but is much less involved in the use of experimental data for assessing
the reliability of the models. This Thesis follows an inverse problem approach to
Systems Medicine: once the dynamical (forward) model is designed, the attention
is shifted on what unknowns and measurements mean for clinicians and biologists,
and therefore on the formulation of the inverse problem; then, a study on the iden-
tifiability of the unknowns with respect to the measurements is performed; after-
wards, there is the need to develop suitable numerical methods able to determine
the unknowns from the measurements in a reliable (numerically stable) way; finally,
the algorithms are applied to both synthetic and experimental data, and the results
are provided together with their biological interpretation.

The procedure adopted in this Thesis is data-driven and multi-scale. Three in-
verse problems are addressed, classified according to the level-type of data and de-
scribed with a top-down strategy: from Positron Emission Tomography (PET) im-
ages at tissue-scale, down to LigandTracer (LT) signals at cell-scale, and eventually
chemical reaction networks (CRNs) for protein-protein interactions within a cell at
molecule-scale. At all levels, the main attention is devoted to cancer physiology.
Roughly speaking, one of the primary effects visible in cancer tissues is an aug-
mented pathological consumption of glucose, which is a consequence of altered en-
zymatic mechanisms processing glucose inside the diseased cells. The deep cause of
this abnormal behavior is an uncontrolled proliferation, which essentially requires a
lot of energy, due to genetic mutations affecting specific regulating proteins within
the cell signaling network. In this scenario, the PET can image glucose metabolism
by tissues, LT can collect signals of glucose uptake by cells, and a CRN can describe
the network of the cell signaling chemical reactions. But, how is it possible to look
into the specific characteristics of cancer starting from the available data? The an-
swer is in a proper mathematical model.

The PET is a functional nuclear medicine imaging technique providing dynam-
ical images of the metabolism under study. The PET acquisition can be performed
after the injection of a radioactive tracer into the living organism. Then, the PET
is able to detect the time-dependent spatial distribution of the decay of radioiso-
topes of the labeled tracer bound to known molecules. The raw PET data consist
in the measured radioactivity, collected in a set of projections called sinograms; the
PET images of tracer distribution are obtained by solving a well-known image re-
construction inverse problem involving the inversion of the Radon transform. If
the study focuses on glucose metabolism, the most popular glucose analog tracer is
the [18F]-fluorodeoxyglucose (FDG), with a radioactivity elimination half-life of 110
minutes which makes PET with FDG widely exploitable from a clinical viewpoint.
The distribution of FDG is a marker for the glucose uptake by tissues. Nevertheless,
the FDG-PET dynamic images of tracer concentration are total signals which result
from the superposition of multiple tracer sources arising from different metabolic
states of the radioactive molecules. Compartmental analysis is the mathematical tool
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dealing with the problem of reconstructing both the single tracer emitters and the
flow of tracer between them, as indexes of the efficiency of tracer metabolism. Com-
partmental models are properly designed to include compartments, for representing
the functional states of the basic radioactive molecules within a specific physiologi-
cal system, and kinetic parameters, for representing the tracer flow as input/output
rates of tracer for each compartment. The kinetics of the compartmental structure
is described by a linear system of ordinary differential equations (ODEs), where the
time-dependent concentrations of tracer in each compartment constitute the state
variables, and the kinetic parameters are the system constant coefficients. The aim in
compartmental analysis is to determine the unknown rate parameters assessing the
system metabolism from PET measurements, and thus solving the compartmental
inverse problem, which is non-linear and ill-posed. In this Thesis, two tissue-scale
compartmental issues are addressed. First, the reference tissue model deals with the
problem of estimating the kinetic parameters for tracer metabolism in a given target
tissue when the blood input function that triggers the tracer kinetics of the system
cannot be determined in a reliable manner, or is simply unknown. For overcoming
this obstacle, a reference tissue is selected in order to replace the input. Here, a con-
sistently reference tissue procedure is proposed, validated, and tested on FDG-PET
data of cancer tissues. Second, the parametric imaging approach reconstructs the set
of model parameters for every pixel of the PET images, and hence reproduces the
spatial distribution of each exchange rate. This Thesis puts forward a computation-
ally efficient imaging method capable of handling complex physiological systems,
e.g. the renal system.

A nuclear medicine device looking at a thinner level than PET is LT, adopted for
tracking in time specific enzymatic interactions within a group of isolated cells. LT
comprises a detector, a rotating support, and a Petri dish in which the cell cultures
are opportunely positioned. The cells are immersed in a prepared liquid medium
containing the active substance to be monitored. LT counts the radioactivity emitted
by the cell sources and provides a time-dependent signal which directly reflects the
total substance consumption. In oncology, the LT coupled with the FDG radioactive
tracer can be used to evaluate glucose uptake by different cultured cancer cells in
several environmental conditions. This context allows for the application of com-
partmental analysis. Standard current models for FDG kinetics assume that both
phosphorylation and dephosphorylation of FDG occur in the cell cytosol. Never-
theless, recent progresses in cell biology and biochemistry identify the endoplasmic
reticulum (ER) as the correct location for the dephosphorylation process. In this
Thesis, the true biochemical path of FDG inside a cell is analyzed and a cell-scale
biochemically-driven model for FDG metabolism is finalized: the structure of a state-
of-the-art model with two compartments is complicated to a three-compartment re-
design accounting for a new pool, namely the ER compartment. Therefore, the novel
compartmental outline is employed on FDG-LT cancer data, bringing out remark-
able insights on the processing of FDG/glucose from cancer cells.

Within Systems Biology, CRNs are comprehensive mathematical models schema-
tizing the chemical interactions between proteins and other molecules inside a cell.
The kinetics of the network follows the law of mass action, for which the rate of a
chemical reaction is proportional to the product of the concentrations of the reagents
involved. This rule gives rise to a non-linear (polynomial) parameter-dependent
system of ODEs: the concentrations of the chemical species constitute the state vari-
ables, and the reaction rate constants are the system constant coefficients. This Thesis
considers a molecule-scale Molecular Interaction Map (MIM), as a graphical rep-
resentation of a huge CRN, describing the protein-protein interactions occurring
within the signaling network of a colorectal cancer cell. The CRN inverse problem
is a parameterization problem: the measurable quantities are the concentrations of
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the chemical species (all, or some of them) at a limited number of time points, while
the rates of the chemical reactions (all, or some of them) are unknowns. This The-
sis carries on a first test for solving the parameterization of a limited portion of the
MIM, in particular the TGFβ-pathway. More time and more efforts are required to
investigate in a deeper way the MIM parameterization, from both a qualitative and
a quantitative point of view. In some sense, this is an open problem which uncovers
the beginning of a next research challenge, rather than the end of a closed roadmap.

The mathematical ingredients needed and used for the accomplishment of this
Thesis are: ODEs for the design of the dynamical models, functional analysis for
the study of uniqueness of the model parameters with respect to the available data,
regularization theory for the formulation of inversion methods undertaking the ill-
posedness of the inverse problems and reducing the numerical instability, and nu-
merical optimization for the implementation of the inversion procedures. However,
the methodological peculiarity of the Thesis is in the fact that its general approach
is systematic: regardless of the biological scale considered, the underlying strategy
follows the entire chain that from the experimental data (PET images, LT signals,
protein concentrations) leads to a reliable estimation of the model parameters fully
characterizing the dynamical systems, and to the interpretation of the calibrated
models within the specific biological frameworks. Therefore, the realization of this
piece of research has been possible thanks to a continuous interaction with clinicians
and biologists, for both recording the biomedical and biological data, setting up the
mathematical models, and examining the results.

The Thesis is structured as follows. In Part I, the state-of-the-art mathematical
models are presented. Chapter 1 defines the compartmental analysis in general
terms, providing the modeling assumptions and equations, the formalization of the
compartmental inverse problem, the discussion on the identifiability issues, and the
description of the Newton-type method applied for the model reduction. Chapter 2
introduces the theory of CRNs and their modeling, starting from the basic principles
and then deducing the CRN system in a matrix compact form useful to state some
results on CRN equilibria and stability. Part II focuses on the tissue-scale. Chapter 3
describes the PET data formation and the PET image reconstruction problem. Chap-
ter 4 concerns the reference tissue model, and Chapter 5 is devoted to the parametric
imaging approach. For both problems, the specific compartmental models are de-
lineated, then the methods are validated against simulated data, and finally applied
on real FDG-PET measurements. Part III regards the cell-scale. Chapter 6 shows the
LT technology, addresses the LT calibration routine, and characterizes the type of LT
data. Chapter 7 proposes the new biochemically-driven compartmental model for
the evaluation of FDG metabolism in cells, together with its properties and connec-
tions with standard models. Chapter 8 reports the results on FDG kinetics obtained
from the application of the models on FDG-LT data of cancer cell cultures. Part IV
considers the molecule-scale. Chapter 9 comments on the MIM model and supplies
the chemical structure underneath the network. Chapter 10 deals with the MIM
parameterization. After some generalities on the complexity of the problem, the pa-
rameterization of a specific part of the MIM, namely the TGFβ-pathway, by means
of a Bayesian approach, is given as a first assessment on the solution feasibility. The
conclusions, as open issues, are offered in Chapter 11.

A few rather technical contents are discussed in the appendices. Appendix A,
Appendix B, and Appendix C provide the proofs of identifiability of the compart-
mental models for the reference tissue, renal system and biochemically-driven model,
respectively. Appendix C details the lists of all chemical components of the TGFβ-
pathway, the related system of ODEs and its dynamical properties.
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Part I

Mathematical models:
state-of-the-art
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Chapter 1

Compartmental Analysis

This chapter is devoted to the description of compartmental analysis, to be regarded
as the mathematical framework providing a quantitative description of a family of
biological phenomena, occurring within a given biological system. In general, com-
partmental models are used in many fields including pharmacokinetics, epidemiol-
ogy, biomedicine, systems theory, complexity theory, engineering, physics, informa-
tion science and social science. In particular, compartmental design finds its natural
application in nuclear medicine being a tool for the description and evaluation of
tracer kinetics. Indeed, a typical nuclear medicine experiment consists in estimating
glucose metabolism in a pathological system, e.g. in presence of cancer or diabetes;
this issue is addressed by means of the diffusion of a glucose analog tracer and the
employment of compartmental analysis.

Nuclear medicine datum is a composite of various superimposed signals emit-
ted by tracer sources, reproducing different metabolic states of the radiolabeled
molecules. Compartmental modeling identifies distinct homogeneous compartments
in the biological system of interest, each one representing a specific functional state
of the basic radioactive molecules. The radioactivity concentrations in the various
compartments are the natural state variables of the system; tracer flow, resulting
from interchange of radioactive molecules between compartments, is modeled by
a Cauchy problem for a linear system of ordinary differential equations (ODEs) for
concentrations; the constant coefficients, also called rate constants or kinetic param-
eters, represent first-order process tracer kinetics. From the collection of the dynamic
distribution of tracer in the overall biological system by means of nuclear medicine
techniques, the aim of compartmental analysis is to resolve the single emitters and
to get information on the radioactive tracer exchange rates between compartments.

In the first section, the basic principles of compartmental modeling and the for-
mal description of the model equations are illustrated. In the second section, the
compartmental problem of retrieving the kinetic parameters from available nuclear
medicine measurements is addressed using inverse problem theory and numerical
optimization.

1.1 Compartmental modeling

Nuclear medicine studies analyze dynamic data of functional processes related to a
specific metabolic activity. Nuclear medicine data are acquired by means of devices
that detect the product of the decay of radioisotopes in a radioactive tracer, which is
bound to molecules with known biological properties and diffused in a living organ-
ism. Within nuclear medicine imaging techniques, Positron Emission Tomography
(PET) (Bailey et al., 2005; Ollinger and Fessler, 1997) is the most modern and sensi-
tive modality, which permits to quantitatively and non-invasively measure regional
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radioactivity concentration, and to produce high-quality images of tracer distribu-
tion by applying an appropriate image reconstruction algorithm. With an under-
standing of the biological fate of the tracer in the system of interest, it is possible to
construct a mathematical model with a set of parameters that can be used to explain
the observed time-dependent distribution of tracer.

1.1.1 Modeling assumptions

In general, tracers consist in labeled molecules, also known as radiotracers or radio-
pharmaceuticals, and are designed to provide information about a particular phys-
iological function of interest. Basic characteristics of radioactive tracers are the fol-
lowing (Cherry, Sorenson, and Phelps, 2012).

• The behavior of the tracer should be identical or related in a known and pre-
dictable manner to that of the natural substance.

• The mass of tracer used should not alter the underlying physiological process
being studied.

• The specific activity of the tracer should be sufficiently high to permit imaging
and blood or plasma activity assays.

• There are no isotope effects, meaning that the act of labeling the tracer molecule
with a radionuclide does not alter its properties.

A tracer may be either a direct radiolabeled version of a naturally occurring com-
pound, an analog of a natural compound, or a unique compound, perhaps a radi-
olabeled drug (Carson, 2005). In particular, the analog tracer is a compound that
possesses many of the properties of the natural compound to which it is related
but with differences, e.g. chemical properties, that change the way the analog in-
teracts with biological systems. In many cases, analog tracers are deliberately cre-
ated to simplify the analysis of a biological function. The most common analog
tracer in nuclear medicine is the glucose analog 2-deoxy-2-[18F]-fluoro-D-glucose or
[18F]-fluorodeoxyglucose (FDG), produced to evaluate glucose metabolism. FDG
and glucose enter cells by the same transport enzymes (GLUTs) and are both phos-
phorylated by the enzyme hexokinase (HK). However, FDG is not a substrate for
the next enzyme in the glycolytic pathway; as a consequence, FDG-6-phosphate
(FDG6P) accumulates in the biological system. In this way, the radioactive signal
directly reflects the rate of glucose intake and uptake, since there is little clearance
of metabolized tracer. FDG is one of the most utilized tracers for PET applications to
oncology. In fact, FDG-PET experiments allow to detect and stage diseases related to
pathological glucose consumption, such as cancer (Annibaldi and Widmann, 2010;
Cairns, Harris, and Mak, 2011; Warburg, 1927) or diabetes (Basu et al., 2000; Iozzo
et al., 2003).

Once a radioactive tracer has been selected for evaluation, there are a number
of steps involved in developing a useful model and a model-based method. Com-
partmental modeling (Carson, 2005) is the most commonly used method for describ-
ing the flow and storage of radioactive tracers in biological tissues. Compartmental
models assume that at any given time all molecules of tracer injected into the system
will belong to one of possibly many compartments. Each compartment defines one
possible state of the tracer, specifically its physical location (e.g. intravascular space,
extracellular space, intracellular space, etc.) and its chemical state (i.e. its current
metabolic form or its binding state to different biological elements, such as plasma
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proteins, receptors, etc.). A single compartment may represent a number of these
states lumped together. The compartmental model describes the possible transfor-
mations that can occur to the tracer, allowing it to “move” between compartments.
The model defines the fraction or proportion of tracer molecules that will “move” to
a different compartment within a specified time. This fractional rate of change of the
tracer concentration in one compartment is called a rate constant, usually expressed
as k, and has units of inverse time for first-order processes. The physiological in-
terpretation of the source and destination compartments defines the meaning of the
rate constants for movement of tracer between them.

For the applicability of compartmental analysis, some key assumptions must be
satisfied (Morris et al., 2004).

• Any compartmental system requires an input to drive it.

• Each model compartment is well-mixed, i.e. there are no spatial concentration
gradients within a single compartment (but only gradients in time).

• The amount of tracer injected is a trace amount; that is, the radioactive content
exists at a negligible concentration with respect to the non-radioactive natural
biological substrates and the presence of tracer causes no change in the physi-
ology of the organism.

• The tracer is in steady state with the endogenous molecule that the tracer seeks
to emulate.

• The parameters of the model are time-invariant, at least over the duration of
the study.

1.1.2 Model equations

In a typical nuclear medicine experiment, the tracer is injected into the system with a
concentration mathematically modeled by the input function (IF), usually assumed
to be known. In FDG-PET measurements, the IF coincides with the time-dependent
FDG concentration in the bloodstream. After injection, the tracer is carried by blood
and perfuses the living biological system (e.g. an organ, a tissue, a system of cells).
Then, compartmental analysis identifies different functional compartments in the
physiological system of interest. The time-dependent concentrations of tracer in
each compartment constitute the state variables. The net flux of tracer into each com-
partment is equal to the rate of change of the compartment concentration and can be
defined as the sum of all the inflows minus the sum of all the outflows. Each of these
components is symbolized by an arrow into or out of the compartment, and the mag-
nitude of each flux is the product of the rate constant and the concentration in the
related source compartment. Therefore, the time evolution of the state variables (i.e.
the kinetics of the system) is modeled by a linear system of ODEs with constant co-
efficients, expressing the conservation of tracer during flow between compartments.
The coefficients, identified with the rate constants, are real positive numbers and
the plus or minus signs against them characterize incoming and outgoing fluxes,
respectively.

Denote with Cn the concentration of the compartment n, and with knm the ki-
netic parameter describing the tracer exchange to the target compartment n from the
source compartment m. Let R+ = {x ∈ R : x > 0} be the strictly positive real num-
bers, and R∗+ = {x ∈ R : x ≥ 0} be the non-negative real numbers. Accordingly,
Rn

+ = {x ∈ Rn : xi > 0 ∀i = 1, . . . , n}, and R∗n+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}.
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In general, for a compartmental system of N compartments and input compart-
ment i, the differential equation for a non-specific compartment concentration is

dCn

dt
= Ċn = −Jout

n + Jin
n , (1.1)

where Jout
n and Jin

n indicate the net outflow and inflow of the compartment n, respec-
tively, and are defined as

Jout
n = ∑

l∈Iout
n

klnCn , Jin
n = ∑

l∈Iin
n

knlCl , (1.2)

with Iout
n = {l ∈ {1, . . . , N}⋃{i} s.t. ∃kln ∈ R+} and Iin

n = {l ∈ {1, . . . , N}⋃{i} s.t.
∃knl ∈ R+} the sets of the labels of the compartments connected to n. Note that, the
inflow Jin

n may contain also the contribution due to the external input of tracer.
The system of ODEs for the generic N-compartment model with single IF Ci can

be written in compact form:
Ċ = MC + W , (1.3)

with C and W N-dimensional vectors, M a N × N matrix, defined as

C =


C1
C2
...

CN

 , Mn,m =


−∑l∈Iout

n
kln if n = m

knm if m ∈ Iin
n \ {i}

0 if m /∈ Iin
n \ {i}

, Wn =

{
kniCi if i ∈ Iin

n

0 if i /∈ Iin
n

.

Example of simple compartmental model configurations and the related systems
of ODEs are shown in Figure 1.1.

We now report some state-of-the-art properties of a compartmental model.
The matrix M is a column weakly diagonally dominant matrix. Moreover, a

general result holds for the matrix M of the N-compartment system (Hearon, 1963).

Theorem 1.1.1. Let knm ∈ R+, ∀n, m ∈ {1, . . . , N}⋃{i}. Then, the eigenvalues of the
matrix M have a non-positive real part, and if an eigenvalue has a zero real part then the
eigenvalue is 0. Moreover, dim(ker(M)) = m0, where m0 is the multiplicity of 0.

A compartmental model is supposed to be a connected system for which it is
possible for the tracer to reach every compartment from every other compartment.
Nevertheless, a compartmental system with no cycle is a system for which it is not
possible for the tracer to pass from a given compartment through two or more other
compartments back to the starting compartment. A particular case of compartmen-
tal model with no cycle is the catenary compartmental system, whose definition is
the following.

Definition 1.1.1. A N-compartment catenary system is a N-compartment system s.t.

knm ≥ 0 n, m ∈ {1, . . . , N}
knm > 0 n, m ∈ {1, . . . , N} , |n−m| = 1
knm = 0 n, m ∈ {1, . . . , N} , |n−m| > 1 .

For the matrix M of a catenary compartmental model, we have the following
result.
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(a) One-compartment model.

Ċ1 = −ki1C1 + k1iCi

(b) Two-compartment model.

{
Ċ1 = −(ki1 + k21)C1 + k12C2 + k1iCi

Ċ2 = −k12C2 + k21C1

(c) Three-compartment model.


Ċ1 = −(ki1 + k21 + k31)C1 + k12C2 + k13C3 + k1iCi

Ċ2 = −k12C2 + k21C1

Ċ3 = −k13C3 + k31C1

FIGURE 1.1: Example of compartmental models and corresponding
model equations: Ci is the concentration of the input compartment i,
considered as known, C1, C2, and C3 are the concentrations in com-
partments 1–3, and knm for n, m ∈ {1, 2, 3}⋃{i} are the rate constants

that define the rate of tracer movement between compartments.

Theorem 1.1.2. The matrix M of a N-compartment catenary system is diagonalizable and
its eigenvalues are real, non-positive and simple. Moreover, 0 is an eigenvalue of M if and
only if the system with no input is closed, that is kin = 0, ∀n ∈ {1, . . . , N}.

More general properties and results concerning N-compartment systems can be
found in Delbary, Garbarino, and Vivaldi, 2016.

The analytical solution of the system of ODEs (1.3) with the initial conditions
C(t0) = Ct0 = (C1(t0) . . . CN(t0))T ∈ R∗N

+ is

C(t; Ci, k) =
∫ t

t0

e(t−τ)MW(τ) dτ + e(t−t0)MCt0 , (1.4)

with t ∈ R+ the time variable, and k ∈ RP
+ (P ≤ N2 + N) the vector of rate con-

stants. Under the hypothesis W : R+ → RN
+ , or simply Ci : R+ → R+, the solution

C verifies Cn ≥ 0 ∀n ∈ {1, . . . , N} and t ∈ R+; the positiveness of C agrees with the
fact that physical concentrations are positive quantities. In standard application of
compartmental analysis, the initial conditions are C(0) = C0 = (0 . . . 0)T, meaning
that the nuclear medicine experiment starts at time t = 0 when there is no available
tracer into the biological system. Equation (1.4) formally expresses the compartmen-
tal forward problem of evaluating the compartment concentrations C from the set of
kinetic parameters k.
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1.2 Compartmental inverse problem

Compartmental analysis requires the determination of the tracer kinetic parameters,
by utilizing measurements of tracer concentration provided by nuclear medicine.
Given the forward model equation, as the analytical solution to the compartmental
system of ODEs, the rate constants are regarded as unknown to be estimated. Hence
we have to solve a compartmental inverse problem by applying an optimization
scheme.

1.2.1 Measurement equation

Nuclear medicine data supply information on the IF Ci and provide an estimate of
a linear combination of the concentrations of the different model compartments, at
each time point of the acquisition. Denote by C the experimental total concentration
of tracer in the biological system under consideration; the following equation con-
necting the data to the compartmental model holds:

C (t; Ci, k) =
N

∑
n=1

VnCn(t; Ci, k) + ViCi(t) , ∀t ∈ R+ , (1.5)

or, equivalently, in compact form

C (t; Ci, k) = αTC(t; Ci, k) + ViCi(t) , ∀t ∈ R+ , α =

V1
...

VN

 . (1.6)

The constant weight Vn, n ∈ {1, . . . , N}, s.t. Vn ∈ [0, 1], is a physiological parameter
usually considered as a known quantity and identified with the volume fraction oc-
cupied by the compartment n. The parameter Vi ∈ [0, 1] is the input volume fraction
accounting for the direct contribution of the input tracer to the biological system,
e.g. blood perfusion in PET-tissue analysis. Equation (1.6) is the basic equation for
the formulation of the inverse problem of determining the rate constants, in that it
relates measured quantities to formal expressions of the unknown vector k given by
the analytical solution (1.4).

1.2.2 Identifiability issues

Before dealing with the optimization process for the solution of the compartmental
inverse problem, the formal identifiability of compartmental models has to be dis-
cussed. The identifiability analysis wonders if the model parameters are uniquely
determined by the given available data, under the assumption that they are not con-
taminated by noise (Miao et al., 2011; Yates, 2006). The proof of uniqueness may be
regarded as an a priori test on the compartmental model, assuring that it is effective
in providing a unique description of tracer kinetics, independently of the numerical
values of the data.

The identifiability problem consists in theoretically establishing whether, given
the model structure and a certain configuration of inputs and outputs, it is possible
to univocally determine the unknown parameters, before attempting to actually es-
timate them. Obviously, only if the model is identifiable the procedure of parameter
evaluation makes sense. If the model is unidentifiable, then, whatever the quality of
the measurements may be, the same model with different parameter values would
represent the observed quantities fairly well. In the case of non-identifiability, the
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model complexity can be reduced by shrinking the number of compartments and
rate constants or by adding some physical and biological constraints.

The basic definition of identifiability of a compartmental system is the following
(Miao et al., 2011).

Definition 1.2.1. The N-compartment system of equations (1.4) and (1.6) is identi-
fiable if k can be uniquely determined from the given system input Ci(t) and the
measurable system output C (t; Ci, k); otherwise, it is said to be unidentifiable.

The identifiability property of a system can be further subdivided, as first intro-
duced by Ljung and Glad, 1994. Denote by Ω ⊂ RP the parameter space.

Definition 1.2.2. The N-compartment system of equations (1.4) and (1.6) is:

(i) globally identifiable if for any admissible input Ci(t) and any two parameter
vectors k1, k2 ∈ Ω, C (t; Ci, k1) = C (t; Ci, k2) holds if and only if k1 = k2;

(ii) locally identifiable if for any k within an open neighborhood of some k∗ ∈ Ω ,
C (t; Ci, k1) = C (t; Ci, k2) holds if and only if k1 = k2.

Both definitions use the concept of one-to-one mapping between parameters and
system input/output. More in general, the notion of structural identifiability can be
formulated, as Xia and Moog, 2003 proposed.

Definition 1.2.3. The N-compartment system of equations (1.4) and (1.6) is:

(i) structurally globally identifiable if it is globally identifiable for all k ∈ Ω;

(ii) structurally locally identifiable if it is locally identifiable for all k ∈ Ω.

It is hard to find a characterization for identifiability of a general N-compartment
system, and it is convenient to analyze each model case-by-case. Some weak results,
leading, in particular cases, to more precise identifiability results, are reported in
Delbary, Garbarino, and Vivaldi, 2016. In particular, a uniqueness theorem for the
general two-compartment catenary system (Figure 1.1(b)) is proven to hold.

Theorem 1.2.1. The two-compartment catenary system, with given IF Ci ∈ C0(R+, R+),
of equations (

Ċ1
Ċ2

)
=

(
−(ki1 + k21) k12

k21 −k12

)(
C1
C2

)
+

(
k1iCi

0

)
, (1.7)

with C1, C2 ∈ C1(R+, R+), C1(0) = C2(0) = 0, and

C (t; Ci, k) =
(

V1
V2

)T (C1(t; Ci, k)
C2(t; Ci, k)

)
+ ViCi(t) , ∀t ∈ R+ , (1.8)

with k = (k1i, ki1, k21, k12)
T ∈ R4

+, V1, V2, Vi ∈ [0, 1], is structurally globally identifiable.

1.2.3 Regularized Gauss-Newton method

For the solution of the compartmental inverse problem, we make use of the Gauss-
Newton method supplied with a regularizing term (Bauer, Hohage, and Munk, 2009;
Nocedal and Wright, 2006; Vogel, 2002). It has been shown in Delbary and Gar-
barino, 2018 that Gauss-Newton regularization in the compartmental framework
provides reconstructions of the kinetic parameters that are more stable with respect
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to state-of-the-art Levenberg-Marquardt method (see Tables 1-3 in that paper). Fur-
ther, the matrix differentiation step required at some stage of the optimization anal-
ysis is in this method performed analytically, thus avoiding time consuming numer-
ical differentiation, and tackling one standard drawback of Newton methods. Also,
by searching for zeroes of non-linear functionals, Newton methods do not need to a
priori select a topology in the data space, as in the case of least squares approaches.
On the other hand, this class of methods, as compared to standard optimization-
through-minimization techniques, may lack in convergence if the starting point is
taken too far away from the ground truth.

We rewrite equation (1.6) for the unknown vector of parameters k ∈ RP
+ in the

form
αTC(t; Ci, k) + ViCi(t)− C (t) := Ft(k) = 0 , (1.9)

where Ft : RP
+ → C1(R+, R) is a non-linear operator parameterized by the time

variable t ∈ R+, and C is defined as in (1.4). The non-linear zero-finding problem of
equation (1.9) is solved by means of the Gauss-Newton method. If we consider the
first-order Taylor expansion of Ft at k, it is possible to write

Ft(k + δ) = Ft(k) +
dFt

dk
(k; δ) , (1.10)

where dFt/dk is the Fréchet derivative ofFt, and δ is the step-size. By assuming that
Ft(k + δ) = 0, we can find the multi-dimensional root as k + δ, where the step-size
δ ∈ RP is the solution of

dFt

dk
(k; δ) = −Ft(k) . (1.11)

The operatorFt is differentiable and even analytic, therefore it is possible to compute
analytically its Fréchet derivative, which is the bounded and linear operator

dFt

dk
(k) : RP → C1(R+, R)

δ 7→
[

t 7→ ∇kFt(k) · δ
]

.

Denote with ǩ ∈ RP̌
+ (P̌ ≤ N) the components of k contained in the forcing vector

W , and with k̂ ∈ RP̂
+ (P̂ ≤ N2) the components of k contained in the system matrix

M. For all t ∈ R+, the gradient of Ft with respect to k is given by

∇kFt =

(
∇ǩFt
∇k̂Ft

)
,

where ∇ǩ indicates the gradient with respect to ǩ, and ∇k̂ the gradient with respect
to k̂. Therefore, explicitly, the Fréchet derivative of Ft, for all t ∈ R+, is

dFt

dk
(k; δ) = ∇kFt(k) · δ =



(
αT
∫ t

t0

e(t−τ)Me1 dτ

)
· δ

...(
αT
∫ t

t0

e(t−τ)MeP̌ dτ

)
· δ

αT
∫ t

t0

e(t−τ)M M(δ̂)C(τ) dτ


, (1.12)
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where ep is the N-dimensional unit vector s.t. ep,p = 1 and ep,j = 0 j 6= p, for
p, j ∈ {1, . . . , P̌}.

In real applications, only noisy versions of C (t) and Ci(t) for a finite number
of sampling time points t1, . . . , tT ∈ R+ are available. Therefore, equation (1.11)
becomes the discretized linear system

Fδ = Y , (1.13)

where

F =

∇kFt1(k)
T

...
∇kFtT (k)

T

 , Y =

 C (t1)−ViCi(t1)− αTC(t1; Ci, k)
...

C (tT)−ViCi(tT)− αTC(tT; Ci, k)

 . (1.14)

The system (1.13), with the step-size vector δ as unknown, constitutes a classic linear
ill-posed inverse problem, since the solution may not exist, may not be unique, and
may not be stable. Regularization is needed in order to find a unique stable solution
of (1.13). We consider a Tikhonov-type regularization (Tikhonov, Goncharsky, and
Yagola, 1995), with the Tikhonov penalty on the step-size vector, which leads to the
regularized system

(rIP + FT F)δ = FTY , (1.15)

where IP is the P × P identity matrix, and r ∈ R+ is the regularization parameter
which may be fixed a priori or selected with a proper method, e.g. the Generalized
Cross Validation (GCV) method (Golub, Heath, and Wahba, 1979; O’Sullivan, 1999).
The advantages in using the GCV are mainly that it can be applied without any a pri-
ori information on the error on the data or on peculiar properties of the solution, and
that it requires just the computation of the SVD of the matrix of the problem. The
step-size δ is the least-square solution of (1.15). Note that solving the problem by
means of Tikhonov regularization is equivalent to asking for the solution of the orig-
inal system (1.13) with a small norm, i.e. limiting the step-size length. This property
allows to avoid divergence of the iterative algorithm. The role of the regularization
parameter is crucial, since in general it supervises the importance of the regulariza-
tion term, and in particular it defines the direction along which look for the solution.
For example, for large values of the regularization parameter the step-size is taken
approximately in the direction of the gradient.

The regularized Gauss-Newton (reg-GN) optimization algorithm performs the
following iterative scheme.

Algorithm 1.1. [reg-GN]

Step 1. Choose the initial guess k(0) ∈ RP
+.

Step 2. Compute F(0) and Y (0), defined as in (1.14) and evaluated in k(0).

Step 3. Solve for δ(0) ∈ RP

(r(0)IP + F(0)T
F(0))δ(0) = F(0)T

Y (0) ,

with the regularization parameter r(0) allowed to change at every iteration.
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Step 4. Project onto zero the components of the step-size vector δ(0) that make neg-
ative the components of the parameter vector k(0), by means of the P× P pro-
jection matrix P(0) s.t.

P(0)(q, r) =


0 if q 6= r
0 if q = r and k(0)

q + δ
(0)
q < 0

1 if q = r and k(0)
q + δ

(0)
q > 0

.

Step 5. Update k(0) with the projected step-size

k(1) = k(0) + P(0)δ(0) .

Step 6. Iterate.

The iterative scheme is stopped when the relative error between the given exper-
imental dynamic concentration and the model-predicted one is less than an appro-
priate threshold, i.e. at a generic iteration h

||C (t)−ViCi(t)− αTC(t; Ci, k(h))||2
||C (t)||2

≤ ε , (1.16)

where ε depends on the noise level on data.
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Chapter 2

Chemical Reaction Networks

This chapter introduces the mathematical formulation describing the modeling and
dynamics of chemical reaction networks (CRNs for short), to be regarded as com-
positions of interconnected chemical reactions occurring between chemical species.
CRNs are a special form of compartmental systems, which involve mass- and energy-
balance relations.

Typical reaction networks in living cells involve several hundreds of chemical
species and reactions. According to the functions carried out inside the cells, dif-
ferent networks can be modeled, such as regulatory interaction networks, metabolic
networks, signaling networks, and protein-protein interaction networks. These large-
scale CRNs arise abundantly in systems biology and bioengineering, being a tool to
decipher the molecular basis of biological processes and diseases. In fact, CRNs pro-
vide a systems-level understanding of the mechanisms underlying biological pro-
cesses, by serving as a model for data integration and analysis. They have been used
to gain insight into disease mechanisms, study comorbidities, analyze therapeutic
drugs and their targets, and discover novel network-based biomarkers.

The most basic law prescribing the dynamics of the concentrations of the vari-
ous species in the CRNs is the law of mass action, stating that the rate of a chemi-
cal reaction is proportional to the product of the concentrations of the reactants in-
volved. The proportionality constant is the reaction rate constant, defining the speed
at which the reaction occurs. Therefore, the mass action kinetics allows the formula-
tion of the CRN dynamics by means of polynomial parameter-dependent systems of
ordinary differential equations (ODEs), in which the species concentrations are the
state variables and the reaction rate constants are the system constant coefficients.

In the first section, the chemical reactions are introduced and illustrated by means
of well-known state-of-the-art examples, and the CRNs are formalized in mathemat-
ical terms as direct graphs provided by a suitable kinetics. In the second section, the
non-linear system of ODEs associated with the CRN is rewritten in a matrix com-
pact form, as done for standard linear systems, and some important results on CRN
equilibria and stability are provided.

2.1 CRN modeling

The structural theory of CRNs finds its foundation in the pioneering works of Horn,
Jackson, and Feinberg in the 1970s. The starting point of, e.g., Horn and Jackson,
1972, Horn, 1972, Feinberg, 1972, is the definition of a graph structure for CRNs
based on the chemical complexes, i.e. the combination of chemical species appear-
ing on the left-hand (reactant) and right-hand (product) sides of every reaction, as
the vertices of a graph and the reactions as its edges. This enables the formulation of
the dynamics of the reaction network as a dynamical system on the graph of com-
plexes. The reaction rates of CRNs are modeled through the law of mass action, and
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therefore CRN dynamics is characterized by an intrinsic nonlinearity. Note that the
CRN as graph of complexes is not the only possible choice; indeed, CRNs can be
interpreted by various graphs, as described in Domijan and Kirkilionis, 2008.

In this section we survey the notion of a chemical reaction, the basic topological
structure of the CRN, and the characterization of the CRN kinetics.

2.1.1 Basics of chemical reactions

Molecules inside the cell undergo various transformations, e.g. a molecule can trans-
form from one kind to another, two molecules of the same or different kinds can
combine to form another molecule of a third kind, and so on. At the basic level these
transformations are known as chemical reactions (Ullah, 2011).

A chemical reaction is described schematically by an arrow with reactants on the
left and products on the right. The molecules involved in the chemical reaction are
chemical species, and a single molecule of a species A is referred to as an A-molecule.
The chemical complexes are the objects that appear before and after the reaction
arrows (Horn and Jackson, 1972). Three elementary and irreversible reactions can
be identified, as follows.

• Conversion (or modification, isomerization):

A→ B ,

an A-molecule transforms to a B-molecule.

• Association (or synthesis):
A + B→ C ,

an A-molecule associates with a B-molecule to form a non-covalently-bound
complex C.

• Dissociation (or decomposition):

C → A + B ,

the complex C-molecule dissociates into an A- and a B-molecule.

Note that the plus sign between the species is a standard chemical notation for indi-
cating the combination of them as binding of molecules.

Every chemical reaction can always be broken down into a mechanism that con-
sists of combinations of these three elementary processes (conversion, association,
dissociation). For example, the probable mechanism of the chemical reaction

A + B � C

would be
A + B � AB→ C ,

where C is a covalent modification of AB. Each single arrow denotes one of the
elementary reactions.

A species that is not of interest (e.g., because its abundance does not change
over time) is represented by the symbol ∅, and referred to as the null species or zero
complex. The reaction

A→ ∅
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represents the degradation of an A-molecule to a form not of interest; similarly,

∅→ B

indicates the production of a B-molecule when the reactants are disregarded.
Different rate functions for a chemical reaction can be chosen; the most used and

standard one is the law of mass action (Waage and Gulberg, 1986):

“when two reactants, A and B, react together at a given temperature in a
substitution reaction, the affinity, or chemical force between them, is directly

proportional to the product of the active masses of the reactants k[A][B]”.

The active mass was defined as “the amount of substance in the sphere of action”,
and for a species in solution active mass is equal to concentration. The proportional-
ity constant k was called affinity constant, actually named rate constant, and was re-
garded as an empirical constant to be determined by experiments. The law evolved
from the work of the French chemist C.L. Berthollet (Berthollet, 1803), was first for-
mulated by C.M. Guldberg and P. Waage in the 1860’s (Waage and Gulberg, 1986),
and later clarified by the Dutch chemist J. van’t Hoff (van’t Hoff, 1877).

Essentially, the law of mass action is a semi-empirical law, and find its phe-
nomenological justification as a macroscopic version of collision theory. In fact, re-
actions happen because molecules collide with each other, forming and destroying
chemical bonds. Constraints to the law of mass action validity are:

• constant temperature;

• compartment in which the reactions occur must be well-mixed;

• the number of molecules must be high (' 1023 Avogadro number).

2.1.2 Literature examples of CRNs

Academic examples of biochemical networks (Ullah, 2011) are now presented. These
well-known CRNs are very simple, but relevant to molecular and cell biology.

Example 1. The Lotka-Volterra predator-prey model was initially proposed by A.J. Lotka
in the theory of autocatalytic chemical reactions (Lotka, 1909), and then inves-
tigated in the context of population biology by both A.J. Lotka (Lotka, 1925)
and V. Volterra (Volterra, 1928). The reaction scheme is the following:

X1 + A
k1−→ 2X1

X1 + X2
k2−→ 2X2

X2
k3−→ ∅

.

The model involves two interacting species, X1 (the prey) and X2 (the preda-
tor); the substrate (food) A is assumed to be constantly replenished and it is
available for X1, which reproduces, with rate coefficient k1, after consuming
one unit of A. An encounter between the two species, with rate coefficient k2,
results in the disappearance of X1 and the replication of X2. This is the only
way X1 degrades (dies), whereas X2 has a natural degradation (death) with
rate coefficient k3. This reaction scheme was proposed as a simple mechanism
of oscillating reactions.
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Example 2. A basic chemical reaction occurring within a cell environment is the en-
zyme kinetic reaction, depicted in Figure 2.1. The conversion of a substrate to
a product is made easier by specialized proteins called enzymes that bind to
the substrate and lower the activation energy required for conversion to the
product. The reaction scheme is composed by three elementary steps:

FIGURE 2.1: Enzyme-catalyzed conversion of a substrate to a prod-
uct: the enzyme binds to the substrate to make its conversion to prod-

uct energetically favorable (from Ullah, 2011).

E + S
k1
�
k2

ES
k1−→ E + P ,

in which the enzyme E catalyzes a substrate S into a product P that involves
an intermediary complex ES.

Example 3. A simplified regulatory mechanism for gene regulation is illustrated in
Figure 2.2, as a feedback loop regulatory network. The protein product from
gene expression binds to a regulatory region on the DNA and represses tran-
scription. The regulatory mechanism is simplified by not showing the contri-
butions of RNA polymerase and any cofactors. The reaction scheme for the
system is

FIGURE 2.2: A simplified model for gene regulation: on the left-hand
side a pictorial representation, on the right-hand side the reaction

scheme (from Ullah, 2011).

G km−→ G + M (transcription)

M
kp−→ M + P (translation)

G + P
kb
�
ku

GP (binding/unbinding)

M
k−m−→ ∅ , P

k−p−→ ∅ (degradation)
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where the gene G is transcribed to the mRNA M with rate constant km, the
mRNA is translated to the protein P with rate constant kp, and the protein
binds to (and represses) the gene with rate constant kb and unbinds back with
rate constant ku. The mRNA and protein are degraded with respective rate
constants k−m and k−p .

2.1.3 CRN formalization

Consider a homogeneous, well-stirred, isothermal reactor of constant volume, i.e.
a reactor in which its content remains spatially homogeneous for all time and is
maintained at fixed temperature and total volume. This of course does not mean
that the chemical composition of the mixture will remain constant in time, for the
occurrence of chemical reactions will serve to consume certain species and generate
others. Suppose that the chemistry within the reactor is reasonably well-modeled by
a reaction network. Then, following Feinberg, 1979, Feinberg, 1987, and Arceo et al.,
2015, the networks of chemical reactions can be formalized as follows.

Definition 2.1.1. A chemical reaction network (CRN) consists of a list of three finite
sets (S , C,R):

• S the set of species undergoing the chemical reactions;

• C the set of complexes as finite non-negative integer combinations of species,
used and produced in all reactions, s.t.⋃

c∈C
supp c = S ,

where supp c ⊂ S is the set of species appearing in the complex c, i.e. each
element of S appears in at least one complex;

• R the set of reactions between complexes,R ⊂ C × C s.t.

(a) (c, c) 6∈ R ∀c ∈ C, i.e. no complex reacts to itself;

(b) for each c ∈ C there exists c′ ∈ C s.t. (c, c′) ∈ R or (c′, c) ∈ R, i.e. no
complex is isolated.

For a reaction (c, c′) = c→ c′, c is called the reactant complex and c′ the product
complex. A reaction c → c′ is reversible if its reverse reaction c′ → c is also in
R; these reactions may be depicted as c � c′.

The complexes can be characterized in different equivalent ways.

Definition 2.1.2. A complex c ∈ C is a formal weighted sum of species, where the
weights are non-negative integer numbers:

c = ∑
s∈S

css ,

with cs ∈ N, ∀s ∈ S . Each non-negative integer coefficient cs is called stoichiometric
coefficient of species s in complex c.

Remark 2.1.1. Note that a complex c ∈ C is uniquely identified by a vector in Nm,
with m ∈ N \ {0} the finite dimension of S , whose elements are the stoichiometric
coefficients cs, ∀s ∈ S . Further, a complex c can be seen as a function S → N,
associating at each species its stoichiometric coefficient.
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Definition 2.1.3. Let (S , C,R) be a CRN. The reaction vector of reaction c → c′ ∈ R
is the vector c′ − c s.t the component of c′ − c corresponding to species s ∈ S is
c′s − cs, i.e. the difference between the stoichiometric coefficient of s in the product
complex c′ and in the reactant complex c. The integer value c′s − cs is the net number
of molecules of s produced with each occurrence of the reaction c→ c′.

The network structure of a CRN cannot be directly captured by a graph involving
the chemical species, since generally there are more than two species involved in a
reaction. Instead, the graph originating from the CRN reactions can be modeled by
means of the complexes.

Definition 2.1.4. A CRN can be viewed as a directed graph whose nodes are com-
plexes and whose edges correspond to the reactions, called graph of complexes. A
linkage class is a connected component of the CRN directed graph: the complexes c
and c′ belong to the same linkage class if and only if there is a sequences of com-
plexes c(0) = c, c(1), . . . , c(l−1), c(l) = c′ such that either c(j) → c(j+1) or c(j+1) → c(j)

is a reaction for all 0 ≤ j ≤ l − 1. A CRN is said to be weakly reversible if every
connected component of the network is strongly connected.

We need to clarify some notations. Let R+ = {x ∈ R : x > 0} be the strictly
positive real numbers, and R∗+ = {x ∈ R : x ≥ 0} be the non-negative real numbers.
Accordingly, Rn

+ = {x ∈ Rn : xi > 0 ∀i = 1, . . . , n}, and R∗n+ = {x ∈ Rn : xi ≥
0 ∀i = 1, . . . , n}. If I is a finite set, RI denotes the space of real-valued functions
with domain I . If x ∈ RI , then the symbol xi indicates the number that x assigns to
i ∈ I . The support of x ∈ RI is the subset of I assigned non-zero values by x, i.e.
supp x = {i ∈ I : xi 6= 0}.

Many characteristics and relationships of CRNs can be expressed in terms of
the associated finite-dimensional spaces RS , RC , and RR, simply called the spaces
of species compositions, complex compositions and reaction compositions, respec-
tively (Arceo et al., 2015). These spaces can be viewed as the spaces of functions
from each set to R. For example, complexes are elements of NS ⊂ RS .

With each species in the CRN there is associated a non-negative molar concen-
tration, indicating the instantaneous amount of that species presents in the reactor.

Definition 2.1.5. A composition state for a CRN is a function x : S → R∗+, i.e. x ∈ R∗S+ ,
assigning to each species s ∈ S its instantaneous non-negative molar concentration
xs.

To formulate differential equations describing how the various species concen-
trations evolve in time, we must first specify how the instantaneous occurrence rates
of the individual reactions in the network depend upon the instantaneous composi-
tion state of the reactor (Feinberg, 1987).

Definition 2.1.6. A kinetics κ for a CRN (S , C,R) is an assignment to each reaction
c → c′ ∈ R of a continuous rate function κc→c′ : R∗S+ → R∗+ s.t. κc→c′(x) > 0 if and
only if supp c = {s ∈ S : cs 6= 0} ⊂ supp x = {s ∈ S : xs 6= 0}.

Remark 2.1.2. Note that for strictly positive x, that is x ∈ RS+, it holds supp c ⊂ supp x
∀c ∈ C. Thus, for x ∈ RS+, it holds κc→c′(x) > 0 for all c→ c′ ∈ R.

Remark 2.1.3. Given a kinetics κ, each rate function κc→c′ , with c→ c′ ∈ R, is an ele-
ment of R∗+

(R∗S+ ). Since a kinetics is an assignment to each reaction of a rate function,
then a kinetics κ is itself a function κ : R → R∗+

(R∗S+ ).

Definition 2.1.7. A reaction system (S , C,R, κ) is a CRN endowed with a kinetics κ.
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Our interest is in reaction systems for which the rate functions are of the standard
mass action form.

Definition 2.1.8. A kinetics κ for a CRN (S , C,R) is mass action if for each c → c′ ∈
R, there exist a positive number kc→c′ s.t.

κc→c′(x) = kc→c′ ∏
s∈S

(xs)
cs .

The positive number kc→c′ is called rate constant for the reaction c→ c′.

Definition 2.1.9. A reaction system for which the kinetics is mass action is called
mass action system.

With mass action kinetics the rate of each reaction is proportional to the product
of all the molar species concentrations of the reactants, each raised to a power given
by the corresponding stoichiometric coefficient in the reactant complex. A mass ac-
tion kinetics for a CRN is completely specified by an assignment to each reaction
c→ c′ ∈ R of a positive constant kc→c′ . Therefore, a mass action kinetics is specified
by an element k ∈ RR+ .

Definition 2.1.10. In a mass action system, the rate of forward reactions are called
forward rate constants and are denoted by k f , the rate for reverse reactions are called
reverse rate constants and are denoted by kr.

Now it is possible to describe the time evolution of the composition state, i.e. of
the species molar concentrations, and therefore to define the differential equations
for a CRN.

Definition 2.1.11. Given a reaction system (S , C,R, κ), the vector differential equation
for the composition state is

dx
dt

= ẋ = ∑
c→c′∈R

κc→c′(x)(c′ − c) , (2.1)

where x ∈ R∗S+ , and t is the time variable. The scalar differential equation for a single
species is simply given by

ẋs = ∑
c→c′∈R

κc→c′(x)(c′s − cs) , ∀s ∈ S . (2.2)

For a mass action system, the vector differential equation takes the form:

ẋ = ∑
c→c′∈R

kc→c′

(
∏
s∈S

(xs)
cs

)
(c′ − c) . (2.3)

Finally, a steady state of a reaction system is a composition state x̄ ∈ R∗S+ s.t.

0 = ∑
c→c′∈R

κc→c′(x̄)(c′ − c) , (2.4)

and a steady state is positive if x̄ ∈ RS+, i.e. all species concentrations are positive.

In Figure 2.3, we report an example of CRN with its formal set of species, set
of complexes, set of reactions, and the differential equations of mass action form
for the kinetics of the network. The CRN counts four species, four complexes and
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five elementary reactions, each one associated with a rate constant. The differential
equations in terms of the species concentrations are non-linear with respect to the
concentrations, and linear with respect to the rate constants. Each formal expression
indicates how the concentration change over time when the related species under-
goes specified CRN reactions.

S = {X1 , X2 , X3 , X4} = {s1, s2, s3, s4}
C = {X1 + 2X2 , X3 , 2X1 + X2 , X4} = {c1, c2, c3, c4}

R = {c1

k1 f

�
k1r

c2 , c2
k2 f−→ c3 , c3

k3 f−→ c4 , c4
k4 f−→ c2}

κ = {k1 f , k1r, k2 f , k3 f , k4 f }

ẋ1 = −k1 f x1x2
2 + k1rx3 + 2k2 f x3 − 2k3 f x2

1x2

ẋ2 = −2k1 f x1x2
2 + 2k1rx3 + k2 f x3 − k3 f x2

1x2

ẋ3 = k1 f x1x2
2 − k1rx3 − k2 f x3 + k4 f x4

ẋ4 = k3 f x2
1x2 − k4 f x4

FIGURE 2.3: Example of CRN and its formalization.

2.2 CRN kinetics

A CRN, taken together with a specification of reaction rate functions, gives rise to
a system of ODEs, non-linear in case of mass action kinetics. The CRN mass ac-
tion system is then well described by a polynomial system of ODEs with the molar
species concentrations as state variables and the reaction rate constants as system
constant coefficients. The CRN dynamical system can be qualitative characterized
by looking at both its stoichiometry and its associated direct graph of complexes.

In the following, let R+ = {x ∈ R : x > 0} be the strictly positive real numbers,
and R∗+ = {x ∈ R : x ≥ 0} be the non-negative real numbers. Accordingly, Rn

+ =
{x ∈ Rn : xi > 0 ∀i = 1, . . . , n}, and R∗n+ = {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n}.

2.2.1 CRN system

Following van der Schaft, Rao, and Jayawardhana, 2013; van der Schaft, Rao, and
Jayawardhana, 2016; Rao, Schaft, and Jayawardhana, 2013, it is possible to write the
system of ODEs of the mass action CRN in a matrix compact form.

Consider a CRN with m ∈N \ {0} species, n ∈N \ {0} complexes, and r ∈N \
{0} reactions. Let x ∈ Rm

+ be the vector of species concentrations xi, for i = 1, . . . , m,
and k ∈ Rr

+ be the vector of reaction rate constants. The ODEs for the CRN takes
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the form
dx
dt

= ẋ = Sv(x, k) , (2.5)

where S is a m× r matrix, called stoichiometric matrix, whose elements in Z are the
reaction vectors, and v(x, k) ∈ Rr

+ is the vector of reaction fluxes containing the prod-
ucts of species concentrations and rate constants, as governed by the law of mass ac-
tion. The system of ODEs (2.5) is equivalent to the vector differential equation (2.3)
of Definition 2.1.11.

The stoichiometric matrix embodies the topology of a CRN, and describes the
contribution of each reaction to the rate of each species concentration. The rows of
S correspond to the chemical species and the columns correspond to the reactions.
If we look at S column-wise, there is a minus sign in front of the stoichiometric
coefficients of the substrates, and a plus sign in case of products. Row-wise, the non-
zero entries of the i-th row of S correspond to the reactions in which xi is involved
either as substrate (with a minus sign) or as a product (with a plus sign).

The formalization of the complexes allows to split the stoichiometric matrix into
the product of two matrices, encoding the information from species to complexes
and from complexes to reactions. The expression of the complexes as non-negative
integer combinations of species is formalized by a m× n complex stoichiometric matrix
Z: each element Z(i, j) ∈ N indicates how many times the i−th species appears in
the j−th complex. Essentially, each element of Z is a stoichiometric coefficient. As
detailed in subsection 2.1.3, a CRN leads to a graph of complexes where the nodes
are the complexes and the edges are the reactions. The CRN graph with n nodes
and r edges, as any other directed graph, is defined by a n × r incidence matrix B:
each element B(i, j) ∈ {−1, 0, 1} indicates if the i−th complex is a reactant (−1),
product (+1), or does not appear (0), in the j−th reaction. Therefore, the relationship
between the complex stoichiometric matrix Z and the standard stoichiometric matrix
S is expressed as

S = ZB . (2.6)

In general, the mass action reaction rate of the j−th reaction of a CRN, from a
substrate complex Sj to a product complex Pj (i.e. Sj → Pj), is given as (Rao, Schaft,
and Jayawardhana, 2013)

vj(x, k j) = k j

m

∏
i=1

x
zi,Sj
i , (2.7)

where zi,Sj = Z(i, Sj), i.e. the element of row index i and column index Sj of the
complex stoichiometric matrix Z, and k j the rate constant of the j−th reaction. With-
out loss of generality, we will throughout assume that, for every j = 1, . . . , r, the
constant k j is strictly positive (since otherwise the j−th reaction does not occur).

Define the mapping

Ln : Rm
+ → Rm , s.t. (Ln(x))i = ln(xi) ,
x 7→ Ln(x)

and, similarly,

Exp : Rm → Rm
+ , s.t. (Exp(x))i = exp(xi) .

x 7→ Exp(x)
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Let ZSj be the column of Z corresponding to the substrate complex Sj of the j−th
reaction. Then, equation (2.7), can be rewritten as

vj(x, k j) = k j exp
(
ZT

Sj
Ln(x)

)
. (2.8)

Define the r × n matrix K, s.t. K(j, i) = k j if the i−th complex is the substrate
complex for the j−th reaction, and K(j, i) = 0 otherwise. The matrix K is called out-
going co-incidence matrix, since the i−th column of K specifies the weighted outgoing
edges from vertex i. Then, it holds (van der Schaft, Rao, and Jayawardhana, 2016)

v(x, k) = KExp(ZTLn(x)) . (2.9)

Note that, essentially, the vector Exp(ZT Ln(x)) ∈ Rn
+ contains the products of the

species concentrations composing the complexes, properly sorted.
Therefore, by means of equations (2.6) and (2.9), the CRN system of ODEs (2.5)

can be rewritten as
ẋ = ZBKExp(ZTLn(x)) . (2.10)

Moreover, by defining the n× n matrix

L = −BK , (2.11)

the system (2.10) becomes

ẋ = −ZLExp(ZTLn(x)) . (2.12)

It can be verified that the matrix L has non-negative diagonal elements and non-
positive off-diagonal elements. Moreover, the column sums of L are all zero. Hence,
L defines (a transposed version of) a weighted Laplacian matrix, simply called Lapla-
cian matrix of the graph of complexes (van der Schaft, Rao, and Jayawardhana, 2016).
Figure 2.4 shows an example of CRN, the same network of subsection 2.1.3 reported
in Figure 2.3, with the system of ODEs for the dynamics of the CRN species concen-
trations expressed in compact form.

2.2.2 CRN equilibria and stability

One of the most widespread research area on CRNs deals with the study of the re-
lationship between the structure of a CRN and properties of the induced system of
differential equations, regardless of the numerical values of the species concentra-
tions or of the rate constants. Qualitative properties and general results concerning
the CRNs, e.g. the deficiency of a network, the existence and uniqueness of positive
equilibria, the stability of positive equilibria, can be found in Feinberg, 1972; Fein-
berg, 1987; Feinberg, 1995; Arceo et al., 2015; Rao, Schaft, and Jayawardhana, 2013;
van der Schaft, Rao, and Jayawardhana, 2013; van der Schaft, Rao, and Jayaward-
hana, 2016. Here we report the most important results on the CRN system dynamics,
concerning equilibria and stability for a particular class of CRNs exhibiting the same
type of dynamics. The proofs are not reported.

Remark 2.2.1. Note that for all possible fluxes, the solutions of the system of ODEs (2.5),
starting from an initial state x0 = x(0), will always remain within the affine space

Sx0 = {x ∈ Rm
+ : x− x0 ∈ Im(S)} , (2.13)

referred to as positive stoichiometric compatibility class (corresponding to x0).
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ẋ = Sv(x, k)


ẋ1
ẋ2
ẋ3
ẋ4

 =


−1 1 2 −2 0
−2 2 1 −1 0
1 −1 −1 0 1
0 0 0 1 −1




k f
1 x1x2

2
kr

1x3

k f
2 x3

k f
3 x2

1x2

k f
4 x4


ẋ = ZBKExp(ZT Ln(x))


ẋ1
ẋ2
ẋ3
ẋ4

 =


1 0 2 0
2 0 1 0
0 1 0 0
0 0 0 1



−1 1 0 0 0
1 −1 −1 0 1
0 0 1 −1 0
0 0 0 1 −1




k f
1 0 0 0

0 kr
1 0 0

0 k f
2 0 0

0 0 k f
3 0

0 0 0 k f
4




x1x2
2

x3
x2

1x2
x4


ẋ = −ZLExp(ZTLn(x))

ẋ1
ẋ2
ẋ3
ẋ4

 = −


1 0 2 0
2 0 1 0
0 1 0 0
0 0 0 1




k1 f −k1r 0 0
−k1 f k1r + k2 f 0 −k4 f

0 −k2 f k3 f 0
0 0 −k3 f k4 f




x1x2
2

x3
x2

1x2
x4


FIGURE 2.4: Example of CRN and its system of ODEs in compact

form.

Since the vector x represents the species concentrations, it must be and remain
non-negative.

Theorem 2.2.1. Consider a CRN with with m species, n complexes, and r reactions. If the
initial conditions for the species concentrations is s.t. x(0) ∈ R∗m+ , then the solution of the
system of ODEs (2.5) satisfies x(t) ∈ R∗m+ , ∀t ∈ R+ and ∀k ∈ Rr

+.

Special classes of CRNs can be identified, by looking at the system at equilibrium.

Definition 2.2.1. Consider a CRN with dynamics given by equation (2.5). A vector
of concentrations x̄ ∈ Rm

+ is called complex-equilibrium if Bv(x̄, k) = 0. Furthermore,
a CRN is called complex-balanced if it admits a complex-equilibrium.

Remark 2.2.2. Note that any complex-equilibrium is an equilibrium for the network,
but the other way round need not be true (since in general Z is not injective). At a
complex-equilibrium, the combined rate of outgoing reactions from any complex is
equal to the combined rate of incoming reactions to the complex. In other words, at a
complex-equilibrium, not only the chemical species but also every complex involved
in the network is at equilibrium.



Chapter 2. Chemical Reaction Networks 27

Definition 2.2.2. Consider a CRN with dynamics given by equation (2.5). A vector
of concentrations x̄ ∈ Rm

+ is called thermodynamic equilibrium if v(x̄, k) = 0. Fur-
thermore, a CRN is called thermodynamically balanced or detailed-balanced if it admits
a thermodynamic equilibrium.

Remark 2.2.3. Note that detailed-balanced networks are necessarily reversible (van
der Schaft, Rao, and Jayawardhana, 2013). Moreover, every thermodynamically bal-
anced network is complex-balanced.

In order to derive stability properties, we rewrite the dynamical equations (2.12)
for complex-balanced networks in terms of a known complex-equilibrium x̄ ∈ Rm

+

(Rao, Schaft, and Jayawardhana, 2013). Define the n× n matrix

Θ(x̄) = diag
(

exp(ZT
i Ln(x̄)

)
i=1,...,n ,

where Zi denotes the i−th column of Z, and thus the n× n matrix

L(x̄) = LΘ(x̄) ,

called weighted Laplacian matrix of the graph of complexes, associated with the given
complex-balanced network. Both the row and column sums of the weighted Lapla-
cian L(x̄) are equal to zero. As shown in Rao, Schaft, and Jayawardhana, 2013, the
matrix L(x̄) is independent of the choice of the complex-balanced equilibrium x̄ up
to a multiplicative factor for every connected component of the CRN direct graph.
The system of ODEs (2.12) for the complex-balanced network can be written as

ẋ = −ZL(x̄)Exp(ZTLn(x/x̄)) . (2.14)

Theorem 2.2.2. Consider a complex-balanced network governed by mass action kinetics.
Let S denote the stoichiometric matrix and assume that x̄ ∈ Rm

+ is a complex-equilibrium for
the network. The following hold:

1. ¯̄x ∈ Rm
+ is another equilibrium for the network if and only if STLn( ¯̄x/x̄) = 0;

2. every positive equilibrium of the network is a complex-equilibrium.

We now define the notion of deficiency of a CRN and of zero-deficient CRN, first
introduced in Feinberg, 1972 in order to relate the stoichiometry of a given network
to the structure of the associated graph of complexes.

Definition 2.2.3. The deficiency δ of a CRN with complex stoichiometric matrix Z,
incidence matrix B and stoichiometric matrix S is defined as

δ = rank(B)− rank(ZB) = rank(B)− rank(S) ≥ 0 .

A CRN has zero-deficiency if δ = 0, and is called zero-deficient CRN.

Remark 2.2.4. Note that zero-deficiency is equivalent to Ker(Z)∩ Im(B) = 0, or with
the mapping Z : Im(B) ⊂ Rn → Rm being injective.

Remark 2.2.5. In the work Feinberg, 1972, the deficiency of a CRN has been defined
in a different way. Denote by l the number of linkage classes of a given CRN. Note
that l = n− rank(B). Then, the deficiency δ was defined as

δ = n− l − rank(S) .
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Hence, in the zero-deficiency case there is a one-to-one correspondence between
the rate vector ẋ ∈ Im(S) ⊂ Rm of chemical species x ∈ Rm

+ and the rate vector
ċ ∈ Im(B) ⊂ Rn of complexes c ∈ Rn. Many CRNs are zero-deficient, although with
growing complexity deficiency greater than zero is likely to occur. The deficiency of
a reaction mechanism can be considered as a measure for the linear independence
of necessary reactions: if a reaction is a linear combination of other reactions in the
system, but cannot be eliminated to simplify the reaction mechanism, then the defi-
ciency of the mechanism will be greater than zero.

The characterization of the possible equilibria for a CRNs strictly connected with
the deficiency property is contained in two famous theorems, the deficiency zero
theorem and the deficiency one theorem, formulated in Feinberg, 1987; Feinberg,
1995. Both theorems are based on the concept of weak reversibility of the CRN
graph of complexes. A reaction mechanism is said to be weakly reversible if for
any two complexes in a graph component which are connected by a directed path,
there exists a directed path connecting the two complexes in the reverse direction.
The zero-deficiency theorem assert two properties of zero-deficient CRNs that hold
for any arbitrary choice of rate constants (Feinberg, 1995): (i) if the CRN is weakly
reversible, it possesses a single steady state which is asymptotically stable. (ii) If the
CRN is not weakly reversible, there exists neither a steady state where all species
concentrations are greater than zero, nor is there a periodic trajectory in which all
species concentrations are positive. Essentially, the theorem states that only reaction
networks with δ > 0 may show non-linear dynamics such as oscillations.

What is possible to prove is that every zero-deficient CRN that admits an equi-
librium is complex-balanced. Consequently, all the results holding for a complex-
balanced network also apply for a zero-deficient CRN that admits an equilibrium
(Rao, Schaft, and Jayawardhana, 2013).

Theorem 2.2.3. If a CRN is zero-deficient and admits an equilibrium, then it is complex-
balanced.

In order to establish the asymptotic stability of a complex-balanced CRN, in the
following a Lyapunov function for the system (2.14) is defined, together with the
related properties.

Theorem 2.2.4. Consider a complex-balanced CRN with stoichiometric matrix S, an equi-
librium x̄ ∈ Rm

+ and dynamics given by equation (2.14). Define

G(x) = xTLn
(

x
x̄

)
+ (x̄− x)T1m , (2.15)

where 1m denotes a vector of dimension m with all entries equal to 1. Then G has a strict
minimum at x̄, and for x ∈ Rm

+ it holds

Ġ(x) ≤ 0 , Ġ(x) = 0 if and only if x ∈ E ,

where
E = { ¯̄x ∈ Rm

+ : STLn( ¯̄x) = STLn(x̄)} . (2.16)

Remark 2.2.6. The Lyapunov function G is in R∗m+ , then the fact that Ġ(x) ≤ 0 implies
that the state trajectory x(·) is bounded in Rm

+.

Theorem 2.2.4 does not directly prevent the solution trajectories of the dynamical
system (2.14) to approach the boundary equilibria of (2.14) for t→ ∞.
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Theorem 2.2.5. Consider the complex-balanced CRN with dynamics given by equation (2.14)
and equilibrium set E given by (2.16). Then, for every x0 ∈ Rm

+ there exists a unique
x1 ∈ E ∪ Sx0 , with Sx0 given by (2.13). The equilibrium x1 is (locally) asymptotically stable
with respect to all initial conditions in Sx0 nearby x1. Furthermore, if the network is persis-
tent, i.e. for every x0 ∈ Rm

+ the w-limit set w(x0) does not intersect the boundary of R∗m+ ,
then x1 is globally asymptotically stable with respect to all initial conditions in Sx0 .

Essentially, the dynamics of complex-balanced CRNs is characterized by the prop-
erty that for every initial condition of the concentrations there exists a unique posi-
tive equilibrium to which the system will converge. Other dynamics, such as multi-
stability or presence of oscillations, can therefore only occur within CRNs violating
these conditions. For an overview of results on CRNs and current research in this
direction see Angeli, Leenheer, and Sontag, 2010; Joshi and Shiu, 2015 and the refer-
ences therein cited.
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Part II

Tissue-scale
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Chapter 3

Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear medicine imaging technique which
allows the diagnosis and monitoring of various diseases through the production of
functional images of biochemical processes occurring in the organism under exam-
ination, i.e. providing physiological information. These images are acquired by
diffusing a radioactive tracer in the biological system and by mapping the decay of
radioisotopes bound to molecules with specific metabolic properties. The PET has
an important application in oncology: the distribution of the glucose analog radioac-
tive tracer [18F]-fluorodeoxyglucose (FDG) may show pathological glucose uptake in
the presence of tumors. Often functional medical imaging techniques are combined
with morphological methods, such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI), which provide anatomical information, in order to ob-
tain dynamic images of tracer metabolism anatomically well defined.

In this chapter a PET experiment is described. In the first section, the PET phys-
ical principles and the process of data formation are illustrated. The second section
deals with the well-known inverse problem of image reconstruction, for whose so-
lution two distinct approaches are presented: the analytical method Filtered Back-
Projection (FBP), based on the inversion of the Radon transform, and the statistical
method Maximum Likelihood Expectation Maximization (MLEM), utilizing itera-
tive techniques for the estimation of the solution.

3.1 PET data formation

PET (Bailey et al., 2005; Ollinger and Fessler, 1997) is an imaging technique that can
detect the spatial and temporal distribution of pico-molar quantities of a radioactive
tracer, which is diffused in a living body or in one of its parts, such as an organ or a
tissue. The PET study begins after the injection of a radiopharmaceutical (composed
of a substrate, added to a radioisotope, easily metabolized by the cells) and a delay
ranging from seconds to minutes needed for the tracer to distribute uniformly in
the body under examination. When the radiopharmaceutical reaches the cells, the
substrate is metabolized causing the release of the radioisotope, a non-stable atom
that naturally decays into another stable atom. In the case of PET, the radioisotopes
decay emitting a positron (β+), which travels for a short distance (typically 1mm)
before interacting with an electron (e−) of the body. The interaction determines the
annihilation of both particles, with conversion into energy of the masses and the pro-
duction of two high-energy gamma photons (511 keV) which propagate in opposite
direction along a line called line of response (LOR). This physical process is illus-
trated in Figure 3.1.
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FIGURE 3.1: Scheme of the PET annihilation process: the β+ emit-
ted positron interacts with an electron e− producing two gamma-
photons of 511 keV energy that propagate along opposite directions

(from Radiology Cafe website).

The gamma rays reach the scintillation crystals inside the PET scanner and are
subsequently detected by the photomultiplier tubes. Basically, the photon interact-
ing with the crystal releases, partially or totally, its energy, which is then converted
into visible light and directed towards the photomultiplier tube to be transformed
into an electrical impulse. The scintillation crystals and the photomultiplier tubes
constitute a single block called detector; more detectors are combined to form cylin-
drical rings placed next to each other and composing the scanner, which surrounds
the body during the PET study (Figure 3.2).

FIGURE 3.2: PET detector ring in a cylindrical geometry scanner:
each block consists of the scintillation crystals and the photomulti-

plier tubes (PMTs) (from Radiology Cafe website).

The PET scanner has the task of detecting the emitted gamma rays and recon-
structing the precise location of the emission source, but not all the produced pho-
ton pairs can be acquired. Photons not reaching the detector within a time frame of
a few nanoseconds are not taken into account. If, on the other hand, the two pho-
tons are received in a short predefined timing window (about 10 nsec), an event is
recorded along the line connecting the two detectors that have detected the gamma
rays. Summing many such events results in quantities that approximate the line in-
tegrals through the radioisotope distribution. Obviously, the number and the quality
of the recorded counts can have a significant influence on the validity of this approx-
imation: the more reliable counts one is able to collect, the more accurate approxi-
mation of the line integrals is obtained, which leads to a better reconstruction of the
radioisotope distribution. For this reason, in addition to a timing window, an en-
ergy window is added, in order to collect photons in a small energy interval around

https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/pet-imaging
https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/pet-imaging
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511 keV (about 350-650 keV). In this energy range there is a possible photon-electron
scattering phenomenon: the Compton effect. In a Compton interaction, a photon in-
teracts with a free electron that that deflects its path, causing a loss of energy. In
PET, most scattered photons are deflected out of the field of view (FOV) of the scan-
ner and are lost. The effect of these interactions is called attenuation; the probability
of a photon not to interact with an electron along its LOR is called narrow-beam atten-
uation. Because of the large number of scattered photons, it happens that for many
annihilation processes only one of the two photons is actually detected. These events
are called singles.

An emission signal correctly recorded is called coincidence event. Figure 3.3
shows the different types of coincidence events occurring in the PET scanner:

• a true coincidence is an event that originates from a single positron-electron an-
nihilation in which the generated photons do not undergo any interaction be-
fore being detected;

• an accidental coincidence is recorded when two photons originating in two dis-
tinct annihilations (e.g. two singles) are considered to be a single event, as
they are simultaneously detected; the system will identify as origin point a
non-existent point placed halfway between the two original annihilations;

• a scattered coincidence occurs when one or both of the emitted photons under-
went a Compton interaction before reaching the detector; the system will iden-
tify a virtual origin point.

FIGURE 3.3: The different types of coincidence events occurring in
the PET scanner.

For the accuracy of the measurements it is essential that each registered LOR re-
flects a real event so as to obtain a reliable estimate of the tracer distribution and
not to add noise to the final image. Accidental coincidences and scattered coinci-
dences give rise to LORs not containing the emission source. Therefore, these types
of events have to be identified and then corrected; suitable techniques able to ad-
dress such problems can be consulted in Bailey et al., 2005.

The counting rate of a PET scanner is also dependent on the detector deadtime. In
fact, the time required for the scanner to process an event influences the collection
of the events: each event processing begins with the detection a photon impulse by
the detector involved, then the impulse is integrated for some time interval, and
finally the scanner performs position calculations and energy discrimination. The
involved detector is dead to new events during this time, and it is not able to detect
and measure any of the photons that collide its crystal.

If statistical effects are ignored, all the previous physical factors can be incorpo-
rated into a model for the total number of recorded events, leading to the following
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equation of PET data formation (Ollinger and Fessler, 1997):

Y(s,φ) = γd
(s,φ)(η

t
(s,φ)η

a
(s,φ)M(s,φ) + ηr

(s,φ)r(s,φ) + η
f
(s,φ) f(s,φ)) , (3.1)

where, for each LOR, identified with the couple (s, φ), Y(s,φ) is the total number of
recorded events, M(s,φ) is the number of annihilations with photons emitted along
the LOR, ηt

(s,φ) is the probability of detection for true events, ηa
(s,φ) is the narrow-

beam attenuation, ηr
(s,φ) is the probability of detection for accidental coincidences,

r(s,φ) is the number of accidental coincidences, η
f
(s,φ) is the probability of detection

for scattered events, f(s,φ) is the number of scattered events, γd
(s,φ) is the probability

of an event not being lost due to the deadtime of the PET scanner.

3.2 PET image reconstruction

The aim of PET image reconstruction is to obtain the dynamic distribution of radio-
tracer concentration from the PET measurements collected in the PET sinograms.
This type of inverse problem is well-known and for its solution there exist essen-
tially two different approaches: analytical inverse formula and statistical iterative
techniques.

The values of PET data can be modeled through both deterministic and stochas-
tic variables. If we assume that the datum is deterministic, then the noise introduced
by the measurement is a deterministic number and, if known, we can find the ex-
act solution of the image reconstruction problem. To tackle this problem, methods
involving the inversion of the Radon transform (Natterer, 2001) are used, e.g. FBP.

Actually, the data values are intrinsically stochastic, due to the physical effects
involved in the measurement procedure: the positron decay process, the effects
of attenuation, the addition of scattered and random events, and the photon de-
tection process. Therefore, the noise is well described by a random process. As
a consequence, the exact solution for the problem cannot be found and estima-
tion techniques are needed, leading to a good approximate solution only through
some form of regularization. In the field of tomographic reconstruction, these meth-
ods consist of statistical iterative algorithms (Lalush and Wernick, 2004), requiring
specific assumption on data noise (Gaussian or Poisson), e.g. MLEM (Shepp and
Vardi, 1982) and its accelerated version Ordered Subsets Expectation Maximization
(OSEM) (Hudson and Larkin, 1994).

3.2.1 PET imaging system

The PET scanner consists of multiple rings placed one next to each other composed
of detectors. During a PET acquisition, it may happen that a coincidence event in-
volves the same ring or two distinct rings. This difference gives rise to the two
possible ways of acquiring PET data (Figure 3.4):

• 2D imaging collects direct LORs (direct planes), belonging to the same detector
ring, and crossed LORs (crossed planes), connecting adjacent rings; to image a
volumetric object it is necessary to repeat the 2D acquisition for multiple axial
slices;

• 3D imaging records both direct LORs and oblique LORs (oblique planes), lying
on planes that are oblique with respect to the detector rings and placed within
a predefined volume.
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FIGURE 3.4: Comparison of 2D and 3D PET imaging systems. In the
2D measurements, the direct planes and the crossed planes are col-
lected; in 3D measurements, also the oblique planes are considered.

The 3D PET scanner collects a greater number of LORs with a substantial gain in
terms of sensitivity, and thus lowers the photon counting noise, compared to 2D
acquisition. However, 3D measurements require more storage of data, and involve a
significant increase in accidental and scattered events, which must be corrected with
an elevated computational cost in the management of data.

Let consider the 2D PET mode. The acquired data are collocated along LORs
through the object f (x, y) (Figure 3.5). The LORs are organized into sets of projec-
tions, i.e. line integrals for all s for a fixed direction φ. The collection of all projec-
tions p(s, φ) forms the two-dimensional sinogram of the object f (x, y): in the case
of a point source, s varies sinusoidally with φ when it is stored in an array with
columns indexed by s and the rows by φ. A sinogram for a general object will be
the superposition of all sinusoids corresponding to each point of activity in the ob-
ject (Figure 3.6). The volumetric object f (x, y, z) is formed by stacking together the
two-dimensional images obtained for multiple axial slices z.

FIGURE 3.5: A projection p(s, φ) formed from integration along all
parallel LORs at an angle φ crossing the object f (x, y). The projections

are organized into a sinogram.

In general, the PET imaging system is represented by the linear equation

p = R f + n , (3.2)

where p is the datum (the set of projections or the sinogram),R is the known system
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model, f is the unknown image, and n is the noise introduced by the measurement
process. The reconstruction of PET images aims at determining the image f from the
projections p obtained with the imaging system, by solving an inverse problem.

FIGURE 3.6: During the 2D PET acquisition, the object emitting ra-
dioactivity on the left-hand side provides the sinogram on the right-

hand side.

3.2.2 Analytical inverse formula

By assuming a deterministic datum, we are able to find the exact solution f of the
PET imaging inverse problem, defined by equation p = R f , where the additive
deterministic noise is omitted. We first introduce some definition and notation.

Definition 3.2.1. The Schwartz space S(Rn) is defined as

S(Rn) := { f ∈ C∞(Rn) : sup
x∈Rn
|xl∂k f (x)| < +∞, ∀l, k ∈ Zn

+} ,

where l and k are multi-indexes in Zn
+.

Definition 3.2.2. Let Cn := {(θ, s) : θ ∈ Sn−1, s ∈ R} be the cylinder in Rn, where
Sn−1 is the sphere in Rn−1. The Schwartz space on the cylinder S(Cn) is defined as

S(Cn) := { f ∈ C∞(Cn) : sup
θ∈Sn−1,s∈R

∣∣∣∣sl ∂k∂j f (θ, s)
∂θk∂sj

∣∣∣∣ < +∞, ∀l, j ∈ Z+, ∀k ∈ Zn−1
+ } .

Definition 3.2.3. Let f ∈ L1(Rn). The Fourier transform of f is defined as

f̂ (ξ) := (2π)−n/2
∫

Rn
f (x)e−ix·ξ dx .

Remark 3.2.1. If f ∈ S(Rn), then f̂ ∈ S(Rn). Furthermore, it is possible to define the
inverse Fourier transform

f̃ (x) := (2π)−n/2
∫

Rn
f̂ (ξ)eix·ξ dξ ,

s.t. f̃ ∈ S(Rn) and ˆ̃f = ˜̂f = f , i.e. the Fourier transform on S(Rn) is bijective.

Definition 3.2.4. Let H(θ, s) := {x ∈ Rn : x · θ = s} be the hyperplane in Rn

perpendicular to θ ∈ Sn−1 with distance s from the origin. The Radon transform R is
the bounded integral operator defined as

R : S(Rn)→ S(Cn)

f 7→
∫

H(θ,s)
f (x) dx =

∫
θ⊥

f (sθ + y) dy .
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Definition 3.2.5. A projection of f at direction θ ∈ [0, π) is the integral operator
Rθ : S(Rn)→ S(R) s.t. (Rθ f )(s) = R f (θ, s).

The following result states a fundamental property that links the Fourier trans-
form with the Radon transform of suitable functions, and essential in order to prove
that there exists the inverse of the Radon transform (Bertero and Boccacci, 1998).

Theorem 3.2.1 (Fourier Slice Theorem). If f ∈ S(Rn), then ˆ(Rθ f )(σ) = (2π)
n−1

2 f̂ (σθ).

An essential step in image reconstruction is the backprojection, which is the ad-
joint to forward projection process that forms the projections of the object.

Definition 3.2.6. The adjoint of the projection is the backprojection R#
θ : S(R) →

S(Rn) s.t. (R#
θ p)(x) = p(x · θ). Therefore, the backprojection of the Radon transform

R# is defined as

R# : S(Cn)→ S(Rn)

p 7→ R# p ,

where (R# p)(x) :=
∫

Sn−1 p(θ, x · θ) dθ .

Theorem 3.2.2 (Inversion of the Radon transform). If f ∈ S(Rn) and p = R f , then

f (x) =
1
2
(2π)1−n(I−αR#Iα+1−n p)(x) , (3.3)

where Iα is the linear Riesz potential s.t. ˆ(Iα f )(ξ) = |ξ|−α f̂ (ξ), for f ∈ S(Rn) and α ∈ R

s.t. α < n.

Remark 3.2.2. We point out some remarks.

• Since α < n, then Îα ∈ L1(Rn). Therefore, it is possible to perform the in-
verse Fourier transform and define the inverse of the Riesz potential as I−α,
s.t. I−αIα f = f .

• The formula for the inversion of the Radon transform (3.3) is a one-parameter
family of formulas, varying for α ∈ R s.t. α < n.

• If α = 0, then f (x) = 1
2 (2π)1−n(R#I1−n p)(x), where I1−n acts on a function

of R. For a function g ∈ S(R), define the Hilbert transformH as

(Hg)(x) :=
1
π

∫
R

g(y)
x− y

dy ,

and its Fourier transform

ˆ(Hg)(ξ) = −i sign(ξ)ĝ(ξ) .

Then, it holds

ˆ(I1−ng)(ξ) = |ξ|n−1 ĝ(ξ) = sign(ξ)n−1ξn−1 ĝ(ξ) ,

and thus,
I1−ng = Hn−1g(n−1) ,
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with g(n−1) the (n − 1)th derivative of g. By applying this property in the
inverse formula for f , we get

f (x) =
1
2
(2π)1−n(R#Hn−1 p(n−1))(x) , (3.4)

where the (n− 1)th derivative is taken with respect to the first argument. The
Hilbert transform has the following property

Hn−1 =

{
(−1)(n−2)/2H if n even
(−1)(n−1)/2 if n odd

,

equation (3.4) can be rewritten as

f (x) =
1
2
(2π)1−n

{
(−1)(n−2)/2

∫
Sn−1 Hp(n−1)(θ, x · θ) dθ if n even

(−1)(n−1)/2
∫

Sn−1 p(n−1)(θ, x · θ) dθ if n odd
. (3.5)

The fact that H appears only in the even cases has an important consequence.
Since p(θ, x · θ) is the integral of f over the hyperplane perpendicular to θ that
contains x, the reconstruction of f is local in the odd cases: the evaluation of
equation (3.5) at some point x requires the integrals of f along all hyperplanes
meeting a neighbor of x. On the contrary, if n is even, the problem of recon-
structing f is not local since H is not local: equation (3.5) is evaluated at some
point x by computing the integrals along all hyperplanes meeting the support
of the function.

• In the framework of PET reconstruction problem, the Radon transform is a
compact operator; therefore, the inverse of the Radon transform is not bounded
and in order to reconstruct the image f a form of regularization is needed.

Theorem 3.2.3 (Filtered backprojection). If f ∈ S(Rn) and p = R f , then

f (x) =
1
2
(2π)1−n(I−αR#Iα+1−n(wc ∗ p))(x) , (3.6)

where ∗ denotes the convolution operation, and wc is a ramp filter that filters the projections
before applying the backprojection operator.

This result ensures that it is possible to filter the projections p before the back-
projection step and obtain again the objective function f , yielding an exploitable
inversion formula for the Radon transform, that could be used in practice. Regular-
ization is obtained by means of an optimal choice of the cut-off frequency c of the
filter wc (Bertero and Boccacci, 1998).

2D FBP method

The 2D PET image reconstruction problem consists in finding f ∈ S(R2) s.t. p =
R f , where p ∈ S(C2) is the known set of projections measured by the PET system
and R is the Radon transform. In order to obtain the image f , it is necessary to
invert the Radon transform. In this context, the Radon transform defines a compact
operator between (weighted) L2-spaces, and therefore its inverse is not bounded.
Then the solution does not depend continuously on the data, generating an intrinsic
numerical instability which, in the presence of noise on the data, amplifies the noise
on the solution.
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Suppose that the body under examination lies at the center of a LOR connect-
ing two detectors, and consider only direct planes. We introduce a system of coor-
dinates x = (x1, x2) with origin in the positron annihilation point, and a variable
coordinate system θ = (cos(φ), sin(φ)) indicating the LOR direction. Then, the two-
dimensional backprojection (BP) is given by

f (x) =
1

4π

∫ 2π

0
(2π)−1/2

∫ +∞

−∞
ˆ(Rθ f )(ξ)|ξ|eiξθ·x dξ dφ . (3.7)

Given the Radon projections pθ = Rθ f , f can be reconstructed by filtering the Radon
transform by means of the ramp filter |ξ|, by inverting its filtered Fourier transform,
and then by backprojecting it by means of the two-dimensional backprojection op-
erator (R# pθ)(x) =

∫ 2π
0 pθ(x · θ) dφ.

In presence of noise on the data, the BP is modified into the FBP by introducing
the additional low-pass filter wc, which attenuates the signal with frequencies higher
than the cutoff frequency c. Equation (3.7) becomes

f (x) =
1

4π

∫ 2π

0
(2π)−1/2

∫ +∞

−∞
ˆ(Rθ f )(ξ)|ξ|wc(ξ)eiξθ·x dξ dφ . (3.8)

A typical low-pass filter used in tomography is the Hamming filter:

wham
c (ξ) =

{
1/2(1 + cos(πξ/c)) if |ξ| < c
0 if |ξ| ≥ c

.

By summarizing, the FBP algorithm for the 2D PET image reconstruction prob-
lem is the following (Natterer, 2001).

Algorithm 3.1. [2D-FBP]

Step 1. Given the 2D PET projections pθ = Rθ f , compute p̂θ.

Step 2. Multiply p̂θ(ξ) by the ramp filter |ξ|.

Step 3. Multiply by the low-pass filter wc.

Step 4. Compute the one-dimensional inverse Fourier transform.

Step 5. Apply the backprojectionR#.

Step 6. Multiply by 1/4π.

3.2.3 Statistical iterative technique

By assuming that the data can be modeled through stochastic variables, then statis-
tical iterative reconstruction techniques can be used, accounting for the structure of
the noise on the data and thus able to describe the model of the problem with more
reliability. However, the improvement in the quality of the reconstruction comes at
the cost of an increased complexity in the mathematical formulation and a loss of
speed in the reconstruction algorithm.

Unlike the analytical inversion formula of the deterministic case, applying a sta-
tistical technique to the PET image reconstruction problem does not provide an exact
solution but relies on the estimation of the solution. The iterative reconstruction al-
gorithms are based on the discrete representation of both the data and the image, in
contrast to analytical methods that introduce the discrete character of the problem
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a posteriori. Furthermore, the development of iterative algorithms is completely in-
dependent of the geometry of the imaging system and is therefore applicable in an
equivalent way to the acquisition of the 2D and 3D PET data.

MLEM method

The Maximum Likelihood (ML) approach estimates the object f from noisy data p,
satisfying p = R f + n. The method is based on the assumption that the data p
are observed values of a random process P with mean R f . The density function of
P is given by the joint probability density function Pη(p,R f ), where η indicates a
generic random process. When this density is thought of as a function of f given p,
we call it the likelihood

Lp( f ) = Pη(p,R f ) . (3.9)

Once the operator R and the data p are given, ML obtains the estimation of the so-
lution f when the likelihood reaches its maximum value. The nature of the problem
implies the physical constraint of non-negative estimate; therefore, the constrained
ML estimator is

f̃ = arg max
f≥0
Lp( f ) . (3.10)

Usually, it is more convenient to minimize the negative logarithm of the likelihood
instead of maximizing it; then, the constrained ML problem (3.10) is equivalent to

f̃ = arg min
f≥0

(− log(Lp( f ))) . (3.11)

In general, when both the likelihood function and the constraint are convex, the
necessary and sufficient conditions for f to be the constrained ML estimator are the
Karush-Khun-Tucker (KKT) conditions (Boyd and Vandenberghe, 2004), which take
the form

f∇(− log(Lp( f ))) = 0 , f ≥ 0 . (3.12)

The statistical model to be adopted follows the type of measurement. In the
case of PET, data are obtained by collecting the photos of annihilation in a finite
time interval and thus PET measurements consist in a counting process with Poisson
noise. Then, PET data are modeled by independent random variables with Poisson
distribution. When η is a vector of independent and identically distributed Poisson
variables with rate parameter R f , the negative logarithm of the likelihood is the
Kullback Leibler divergence

− log(Lp( f )) = p log
(

p
R f

)
+R f − p . (3.13)

Hence, the constrained ML problem (3.11) is equivalent to the minimization of the
divergence (3.13) under the non-negativity constraint. In the Poisson case, the KKT
conditions lead to the Expectation Maximization (EM) iterative algorithm (Carson
and Lange, 1985; Lalush and Wernick, 2004), that reads:

f (i+1) =
f (i)

RT1
RT p
R f (i)

, (3.14)

where i represents the iteration step in the estimation procedure, and f (i) is the i-th
estimate of f .
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The PET image reconstruction problem is to determine a non-negative f , given
the projections p affected by Poisson noise, s.t. p = R f . The MLEM iterative pro-
cedure for the estimation of f as the maximum-likelihood solution is the following
(Shepp and Vardi, 1982).

Algorithm 3.2. [MLEM]

Step 1. Choose the initial guess f (0).

Step 2. Project forwardly f (0) into the projection domain by computingR f (0).

Step 3. Compare with the given projections p as p/R f (0).

Step 4. Backproject into the image domain throughRT.

Step 5. Multiply by f (0), normalized by a weighting term.

Step 6. A new mage estimate f (1) is obtained; iterate.

With the purpose of reducing the reconstruction time of MLEM for applications
in clinical practice, OSEM was introduced by Hudson and Larkin, 1994. The OSEM
iterative algorithm is based on equation

f (i+1) =
f (i)

(R|Sa)
T1

(R|Sa)
T p
R f (i)

, (3.15)

where the backprojection step sum only over a subset Sa of a total of A projection
subset. OSEM is a computationally convenient method, A times faster than MLEM,
but it does not ensures convergence to the ML solution.
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Chapter 4

Reference Tissue Model

In general, compartmental analysis aims at the determination of the rate constants
from the time concentration curves of tracer in a specific target tissue (TT) and in
the arterial blood. The time-dependent concentrations are recovered by drawing re-
gions of interest (ROIs) on the reconstructed Positron Emission Tomography (PET)
images of tracer distribution. In principle, the blood input function (IF) can be de-
termined by computing the image content of a ROI positioned over a sufficiently
large blood pool, such as the left ventricle. However, the procedure is subject to
systematic errors arising from, e.g., partial volume effects, spillover, cardiac motion,
and the low resolution of PET cameras (see Zanotti-Fregonara et al., 2011 and the
references therein cited).

To avoid direct reference to the IF, alternative approaches have been developed
which have been referred to as reference tissue models (RTMs). The idea is that
a time concentration curve measured over a ROI belonging to a suitably chosen
reference tissue (RT) may be used to provide an estimate of the IF (Schmidt and
Turkheimer, 2002). Reference tissue approaches are reported to provide robust esti-
mates of the unknown parameters if the RT can be modeled as a one-compartment
system, e.g., in the case of a radiotracer with reasonably fast kinetics or negligi-
ble specific binding (Lammertsma and Hume, 1996; Schmidt and Turkheimer, 2002;
Tichauer et al., 2012a; Zhou et al., 2003; Zhou et al., 2007; Ginovart et al., 2001).
Rather similar approaches (dual-tracer models) have also been developed such that,
in place of considering the RT, a second untargeted tracer is injected and diffused in-
side the TT (Tichauer et al., 2012a; Tichauer et al., 2012b; Tichauer et al., 2014; Tomasi
et al., 2012).

The procedure proposed (Scussolini et al., 2018c) may be regarded as a revisi-
tation of reference tissue approaches. We consider a RTM for the analysis of [18F]-
fluorodeoxyglucose (FDG) kinetics, which is composed by a two-compartment TT, a
one-compartment RT, and six kinetic parameters. It is shown that the RTM is identi-
fiable, i.e. the rate constants are uniquely retrievable, provided that a selection crite-
rion for one of the coefficients is introduced. The RTM together with the procedure
for the solution of the compartmental inverse problem are validated on synthetic
data and applied to a group of micro-PET experimental data of murine models with
murine cancer cell lines CT26.

The first section provides the mathematical setup of the RTM and discusses the
model identifiability. The second section deals with the numerical validation of the
computational method for the reduction of the RTM, while the third section applies
the method against the experimental datasets.
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4.1 Mathematical models

A RTM is a compartmental approach to the estimation of the kinetic parameters of
the tracer flow in a given TT without explicit knowledge of the blood IF as the time
concentration curve of the arterial blood. The idea of reference tissue approaches is
to utilize the time-dependent tracer concentration of a suitably chosen RT providing
an indirect measure of arterial concentration. The RTM is formed by the RT and
the TT. We assume that the conditions for applicability of compartmental analysis
are satisfied (for details see subsection 1.1.1), and we adopt the usual notations of
compartmental analysis (as in Chapter 1).

FIGURE 4.1: The RTM accounting for a two-compartment TT, a one-
compartment RT, and six rate constants connecting the TT and RT

through the blood IF.

We consider an RTM (Figure 4.1) comprising:

• a two-compartment TT for both free ( f ) and metabolized (m) tracer;

• a one-compartment RT (R), supposed to be free of tracer receptors;

• six kinetic parameters, k f b, kb f , km f , k f m for the TT, and kRb, kbR for the RT.

The blood (b) compartment is formally introduced in order to describe the tracer
kinetics in the TT and RT. The arterial blood concentration Cb supplies the IF. The
time concentration curves of the TT and the RT are reconstructed from suitable ROIs
on PET image data. No a priori restrictions on rate coefficients are introduced; in
particular, we do not require any equality of volume distributions for TT and RT, a
rather strong assumption which has been subject to criticism (Tichauer et al., 2012a;
Tichauer et al., 2012b).

4.1.1 One-compartment reference tissue

The concentration of bound tracer in the RT is taken as significantly low to be ne-
glected (Lammertsma and Hume, 1996; Schmidt and Turkheimer, 2002; Tichauer et
al., 2012a; Zhou et al., 2003; Zhou et al., 2007; Ginovart et al., 2001). Thus the RT is
modeled as a single compartment (R) of tracer concentration CR. As a consequence
of the balance equation for tracer, it is found that CR solves the Cauchy problem

ĊR = −kbRCR + kRbCb , CR(0) = 0 , (4.1)

where kRb and kbR (min−1) are the rate constants for tracer exchange from arterial
blood to reference tissue, and conversely. The analytical solution of the Cauchy
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problem (4.1) is

CR(t; Cb, kR) = kRb

∫ t

0
e−kbR(t−τ)Cb(τ) dτ , (4.2)

where t ∈ R+, and kR = (kRb, kbR)
T ∈ R2

+.
We assume that the volume fraction occupied by blood in RT VbR can be esti-

mated or measured a priori. Thus the total radioactivity concentration in RT CR is
given by

CR(t; Cb, kR) = (1−VbR)CR(t; Cb, kR) + VbRCb(t) . (4.3)

We let
kbR = λkRb . (4.4)

The interpretation of the constant adimensional parameter λ follows from the obser-
vation that

λ =
kbR

kRb
=

1
DVRT

, (4.5)

where DVRT is the distribution volume of the RT (Zhou et al., 2003).
It is found from (4.1), (4.3), and the definition of λ (4.5) that∫ t

t0

CR(τ) dτ = β1

∫ t

t0

Cb(τ) dτ +
(1−VbR)

kbR
(CR(t0)− CR(t)) ,

where
β1 = (1−VbR)

1
λ
+ VbR , (4.6)

and t0 < t. Division by CR leads to equation

Y = β1X + β2 , (4.7)

with

Y =

∫ t
t0

CR

CR
, X =

∫ t
t0

Cb

CR
, β2 =

(1−VbR)

kbR

(
CR(t0)− CR(t)

CR

)
, (4.8)

known as asymptotic Logan plot of the RT. In the plane referred to Cartesian axes
(X, Y), equation (4.7) represents a curve parameterized by t. If we assume that t0 is
sufficiently large that CR(t0) is close to the asymptotic equilibrium value, then the
curve (4.7) is well approximated by a line of slope β1. Therefore, we can determine β1
by means of a polynomial curve (of degree one) fitting procedure on (4.7), utilizing
the measured asymptotic values of CR and Cb. From the knowledge of β1 and VbR,
is straightforward to obtain λ through equation (4.6); therefore, from now on the
parameter λ is regarded as known.

Since the concentration CR can be measured with more accuracy than Cb, in the
following analysis we replace Cb with its expression in terms of CR. By time-deriving
equation (4.3) and by substituting ĊR through the RT balance equation (4.1), we find

Ċb = −γkRbCb +
1

VbR
( ˙CR + λkRbCR) , (4.9)

where
γ = (V−1

bR − 1) + λ ,
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is a known parameter. Now, equation (4.9) is regarded as a differential equation in
Cb, whose solution (when Cb(0) = 0) is

Cb(t; CR, kRb) =
1

VbR

∫ t

0
e−γkRb(t−τ)(ĊR(τ) + λkRbCR(τ)) dτ , (4.10)

also expressed as

Cb(t; CR, kRb) =
1

VbR

(
CR(t)− (V−1

bR − 1)kRb

∫ t

0
e−γkRb(t−τ)CR(τ) dτ

)
. (4.11)

Here kRb is regarded as a free parameter. By (4.11), we will get rid of explicit refer-
ence to the blood IF Cb in the analysis of the TT.

4.1.2 Two-compartment target tissue

The TT consists of a compartment of tracer concentration C f , accounting for free
tracer, and a compartment of concentration Cm, accounting for metabolized tracer.
The state variables C f and Cm satisfy the Cauchy problem for a linear system of
ordinary differential equations (ODEs)

Ċ = MC + k f be1Cb , C(0) = 0 , (4.12)

where

C =

(
C f
Cm

)
, M =

(
−(kb f + km f ) k f m

km f −k f m

)
, e1 =

(
1
0

)
. (4.13)

The rate constants k f b, kb f (min−1) describe transfer from arterial blood to free tracer,
and conversely; similarly, km f and k f m (min−1) refer to transfer from free to metab-
olized tracer, and conversely. The analytical solution of the Cauchy problem (4.12)–
(4.13) is

C(t; Cb, kT) = k f b

∫ t

0
e(t−τ)MCb(τ)e1 dτ , (4.14)

where t ∈ R+, and kT = (k f b, kb f , km f , k f m)
T ∈ R4

+.
By denoting with VbT the fraction of blood volume occupying the TT, the total

radioactivity concentration in TT CT satisfies

CT(t; Cb, kT) = αTC(t; Cb, kT) + VbTCb(t) , (4.15)

where

α =

(
1−VbT
1−VbT

)
, (4.16)

and C is the analytical solution (4.14).

4.1.3 RTM

The previous models of RT and TT are put together to define the RTM. Replacement
of Cb by its expression in terms of CR (4.11) in equation (4.12) gives

Ċ = MC +
k f be1

VbR

(
CR(t)− (V−1

bR − 1)kRb

∫ t

0
e−γkRb(t−τ)CR(τ) dτ

)
. (4.17)
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Equation (4.17) shows the connection between the TT state variables and the rate
constants of TT and RT. It may be regarded as the differential formulation of the
RTM mathematical model.

Consider the differential equation (4.17), with the initial condition C(0) = 0. The
solution C in terms of CR is given by

C(t; CR, kRTM) =
k f b

VbR

∫ t

0
eM(t−τ)e1

(
CR(τ)− (V−1

bR − 1)kRb

∫ τ

0
e−γkRb(τ−σ)CR(σ) dσ

)
dτ ,

(4.18)
where t ∈ R+, and kRTM = (kRb, k f b, kb f , km f , k f m)

T ∈ R5
+ is the vector of RTM rate

constants. Equation (4.18) is the integral form of the RTM mathematical model.
In principle, the RT and the TT involve six rate coefficients, but the condition

that λ is known reduces the total number of parameters to five. All of them enter
equations (4.17) and (4.18), characterizing the RTM. A simplified formulation of the
RTM is obtained under the assumption that km f = k f m = 0, which means that the
TT contributes only to two rate constants, instead of the four considered here. This
case is known as simplified reference tissue model (SRTM, as in Lammertsma and
Hume, 1996).

We also remark that in a number of approaches to reference tissue modeling
(Schmidt and Turkheimer, 2002; Zhou et al., 2003; Zhou et al., 2007) the total num-
ber of the unknown parameters for the RTM is reduced by the assumption that the
distribution volumes of tracer of the two tissues are equal. In our notations, this
means that

k f b

kb f
=

kRb

kbR
, (4.19)

in the simplest cases. Due to recent criticism on this assumption (Tichauer et al.,
2012a; Tomasi et al., 2012) especially in the framework of tumor modeling, we have
simply considered the ratio kRb/kbR = DVRT as experimentally determined by the
asymptotic Logan plot of the RT.

The total radioactivity concentration CR in RT and CT in TT are measured by
drawing ROIs on the overall tissues selected to work as a reference and as a target,
respectively. Therefore, the equation connecting the data with the RTM follows from
equation (4.15), after substitution of the IF in terms of the RT:

CT(t; CR, kRTM) = αTC(t; CR, kRTM) + VbTCb(t; CR, kRb) , (4.20)

where Cb(t; CR, kRb) is defined as in (4.11), and C(t; CR, kRTM) is given by (4.18). In
an explicit form, equation (4.20) can be rewritten as

αT
(

k f b

∫ t

0
eM(t−τ)e1

(
CR(τ)− (V−1

bR − 1)kRb

∫ τ

0
e−γkRb(τ−σ)CR(σ) dσ

)
dτ

)
−VbT(V−1

bR − 1)kRb

∫ t

0
e−γkRb (t−τ)CR(τ) dτ

+ VbTCR(t)−VbRCT(t) = 0 .

(4.21)

Equation (4.21) is the starting point for the compartmental inverse problem of find-
ing the exchange coefficients kRb, k f b, kb f , km f , and k f m when the total concentra-
tions of the reference tissue CR, the target tissue CT, and the blood volume fractions
VbT, VbR are known. The zero-finding problem (4.21) is solved by means of the reg-
ularized Gauss-Newton (reg-GN) iterative procedure (Algorithm 1.1, described in
subsection 1.2.3).
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4.1.4 RTM identifiability

Before proceeding to the numerical evaluation of the rate coefficients, we need to
discuss the formal identifiability of the RTM problem, namely whether the rate coef-
ficients kRTM = (kRb, k f b, kb f , km f , k f m)

T ∈ R5
+ are uniquely determined by the given

RT datum CR and TT datum CT, under the assumption that they are not contami-
nated by noise. For the RTM, we can state the following result.

Theorem 4.1.1. Assume that the polynomials

Q(s; kRTM) = s3 + (k̄ f b + λkRb + kb f + km f + k f m)s2

+ (λkRb(k̄ f b + kb f + km f + k f m) + k̄ f b(km f + k f m) + kb f k f m)s

+ λkRb(k̄ f b(km f + k f m) + kb f k f m) ,

and

D(s; kRTM) = s3 + (k̄Rb + λkRb + kb f + km f + k f m)s2

+ ((k̄Rb + λkRb)(kb f + km f + k f m) + kb f k f m)s

+ (k̄Rb + λkRb)kb f k f m ,

where
k̄ f b = (V−1

bT − 1)k f b , k̄Rb = (V−1
bR − 1)kRb ,

are coprime. If kRTM = (kRb, k f b, kb f , km f , k f m)
T ∈ R5

+ is generic, then kRTM is uniquely
determined by CR and CT, and the RTM of equations (4.17) and (4.20) is globally identifiable.

Theorem 4.1.1 ensures uniqueness for the RTM when the rate coefficient kbR is
constrained as λkRb, and λ is estimated thanks to the asymptotic Logan plot ap-
proach and equation (4.6). The proof of Theorem 4.1.1 follows the procedure used in
Delbary, Garbarino, and Vivaldi, 2016, and is reported in Appendix A.

We point out some remarks characterizing RTM identifiability under special cases.
Remark 4.1.1. We observe that if one of the blood volume fractions VbR or VbT is neg-
ligible, then we still have uniqueness. On the contrary, uniqueness does not hold if
both blood volume fractions are set to zero (VbR = VbT = 0), and under these condi-
tions the RTM is not identifiable. Indeed, suppose that hRTM = (h1R, h1, h2, h3, h4)

T ∈
R5

+ is an alternative choice of rate coefficients consistent with the data of the prob-
lem; then it may be shown that two different sets of rate constants satisfy the RTM
problem:

hRTM
(1) = kRTM ,

and

h(2)
RTM =

(
km f + k f m

λ
,

k f b

kRb
h1R, kb f + km f + k f m − λkRb, λkRb −

kb f k f m

h2
,

kb f k f m

h2

)
.

In this case, uniqueness is ensured only if the value of kRb is a priori fixed. Although
the kinetic coefficients are not generally identifiable, some macro-parameters of clin-
ical interest, such as the total volumes of distribution, are here shown to be identi-
fiable. Indeed, the total volume of distribution for RT is DVRT = 1/λ as in equa-
tion (4.5), that in our framework is estimated by means of the asymptotic Logan plot
(and therefore is obviously identifiable). The total volume of distribution for TT is

DVTT(kRTM) =
k f b

kb f

(
1 +

km f

k f m

)
;
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if hRTM = h(1)
RTM, then clearly DVTT(hRTM) = DVTT(kRTM) holds. If hRTM = h(2)

RTM,
then

DVTT(hRTM) =
h(2)1

h(2)2

(
1 +

h(2)3

h(2)4

)
=

k f b(km f + k f m)

λkRb(kb f + km f + k f m − λkRb)

λkRb(kb f + km f + k f m − λkRb)

kb f k f m

=
k f b

kb f

(
1 +

km f

k f m

)
.

(4.22)

Therefore, DVTT is identifiable. The distribution volume ratio (with respect to the
reference tissue) is also identifiable, being DVTT/DVRT.

Remark 4.1.2. The asymptotic Logan plot step to estimate λ is necessary; indeed, if
we consider the RTM with six free parameters (i.e. kbR free) then identifiability does
not hold.

Remark 4.1.3. Identifiability of the RTM is ensured if the dephosphorylation inside
the TT is assumed to be negligible, i.e. if k f m = 0.

Remark 4.1.4. The SRTM, corresponding to the case km f = k f m = 0, is identifiable.

4.2 Numerical validation

In this section we describe the performance of our approach to reference tissue com-
partmental analysis in the case of synthetic data simulated by mimicking the behav-
ior of a real micro-PET system. We remark that all the computational part has been
implemented in the Matlab programming environment.

The first simulation is presented to test the reliability of our proposed reg-GN it-
erative procedure (Algorithm 1.1) against the state-of-the-art Levenberg-Marquardt
(LM) algorithm (Levenberg, 1944; Marquardt, 1962). The second simulation is set up
in order to test the robustness of our model when the assumption of a priori knowl-
edge of the blood volume fractions is broken. Indeed, in this case, we simulate many
data with varying blood volume fractions (for both RT and TT) and then reconstruct
the kinetic parameters by imposing known blood volume fractions, different from
the one used to generate the data. The obtained kinetic parameters are almost un-
affected by errors on the blood fractions up to a 40% factor. Further, we show the
sensitivity of standard RTM (std-RTM) (Zhou et al., 2003) when the assumption of
equal distribution volumes (4.19) is broken. Under this condition, the std-RTM fails
in returning fair values of the kinetic coefficients. The results are compared with a
full compartmental model (full-CM) for the TT with known IF Cb.

In all the scenarios, in order to produce the synthetic data, we initially choose
realistic ground truth values for the adimensional parameter λ and the tracer kinetic
parameters kRb, k f b, kb f , km f , k f m. We select VbR = 0.025 and VbT = 0.15 to be the
realistic values for the blood volume fractions of the RT and the TT, respectively.

The synthetic IF Cb is created by fitting with a gamma variate function (Golish
et al., 2001) a set of real measurements acquired from a healthy mouse in a controlled
experiment. We recall that the IF is not directly involved in the numerical reduction
except for its asymptotic values, but in this framework the whole IF is needed for the
construction of the reference and target tissue synthetic data. The RT concentration
is obtained by computing first equation (4.2) for CR with the given parameters kRb,
kbR = λkRb, and then equation (4.3) for CR with the given VbR. Next, equation (4.17)
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is solved for C. The total TT concentration CT is computed by equation (4.20) with
the given VbT. Finally, the data are affected by white Gaussian noise, by means of
the Matlab function awgn with a signal-to-noise ratio of 30 dB, to produce realistic
signals for the activity of the radiotracer in tissues.

The synthetic data for CR and CT are used to estimate the RTM parameters. The
angular coefficient β1 is obtained from the asymptotic values of CR and Cb by means
of equation (4.7), where t0 is identified with a time point where the concentrations
started being almost constant. Consequently, by equation (4.6) with the selected
value for VbR, an estimate of λ is obtained, and inserted into the subsequent inver-
sion procedure.

The full-CM is built by considering the synthetic IF Cb, i.e. by computing equa-
tions (4.14)–(4.15). For the std-RTM, we generate the synthetic data without assump-
tion of equal volumes of distribution, and reconstruct the coefficients by imposing
the condition k f b/kb f = εkRb/kbR, with ε ∈ U1 (a neighbor of 1). The case ε = 1
obviously corresponds to the std-RTM assumption, ε < 1 to some weaker std-RTM
assumption, and ε > 1 to some stronger one, testing the limit of sensitivity of the
model. For both the std-RTM and the full-CM, the kinetic parameters are estimated
by means of the state-of-the-art LM algorithm.

The reg-GN scheme is applied to synthetic data in order to reconstruct the RTM
rate constants kRb, k f b, kb f , km f , k f m. The starting point of the method is randomly
chosen in the interval (0, 1). To stop the iterative algorithm we check the relative er-
ror between the original noisy TT concentration (the datum in the real data context)
and the model-reconstructed one, using a threshold of order O(10−2) as a stopping
criterion. The regularization parameter is optimized at each iteration through the
Generalized Cross Validation (GCV) method (Golub, Heath, and Wahba, 1979), by
the requirement of a predefined range of variability (between 104 and 106).

Table 4.1 shows the comparison between the ground truth and the estimated
values of the parameters retrieved with reg-GN, providing information about the
reliability of the inversion procedure. It is apparent that the means provide a good
approximation of the ground truth values while the standard deviations are system-
atically small, thus showing the notable numerical stability of the iterative recon-
struction scheme with respect to noise. Moreover, the observation that the complete
inversion procedure has been based on an approximate value of λ shows that the
algorithm is very robust. The reg-GN algorithm is also clearly compatible with the
state-of-the-art LM algorithm, by producing the same mean values and comparable
standard deviations. It has indeed the advantage of being faster, given that in reg-
GN it is possible to compute the gradient of the functional to be minimized in an
analytical form, thus avoiding time-consuming numerical differentiation step. The
computational burden is about 10 seconds for one run of LM and about 2 seconds
for one run of reg-GN (on an Intel Core i7, 3.1GHz).

In order to test the sensitivity of our RTM to a non-precise estimation of blood
volume fractions, we choose different VbR = {0.015, 0.020, 0.025, 0.030, 0.035} and
VbT = {0.05, 0.10, 0.15, 0.20, 0.25} to be the values in order to compute the RT and TT
data. The proposed RTM shows a good robustness with respect to mis-estimation
(up to a 40%) of both volume fractions. In fact, Table 4.2 shows that the reconstruc-
tion of the RTM kinetic parameters is unaffected by errors on VbR and VbT.

The std-RTM exhibits a lower stability, as shown in Table 4.3. In this case, data
are built imposing the condition ε = 0.6, and the reconstruction is performed with
varying ε. We can observe that the reconstruction fails for ε = 1, meaning that the
std-RTM assumptions is not reliable when there is a 40% mis-estimation. For weaker
std-RTM conditions (ε < 1) the reconstructions gradually approach the true values,
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while going beyond (ε > 1) the reconstructions get worse. This result shows that the
std-RTM assumption is very sensitive to the model hypothesis of equal volumes of
distribution.

λ kRb k f b kb f km f k f m

g.t. 2.5 0.08 0.1 0.4 0.2 0.05

reg-GN 2.261 0.082± 0.005 0.106± 0.014 0.383± 0.084 0.211± 0.044 0.053± 0.009
LM 2.261 0.084± 0.011 0.121± 0.061 0.447± 0.271 0.202± 0.049 0.051± 0.010

TABLE 4.1: Algorithm validation: ground truth (g.t.) and recon-
structed values for the adimensional parameter λ, with the asymp-
totic Logan plot approach, and for the tracer kinetic parameters, with
the reg-GN and LM methods. Means and standard deviations are
computed over 50 different runs of the algorithm, with 50 different

random initialization values. Here VbR = 0.025 and VbT = 0.15.

λ kRb k f b kb f km f k f m

g.t. 2 0.1 0.3 0.2 0.05 0.02

RTM (VbR = 0.015 VbT = 0.15) 1.917 0.097± 0.009 0.311± 0.036 0.208± 0.033 0.061± 0.015 0.019± 0.009
RTM (VbR = 0.020 VbT = 0.15) 1.826 0.101± 0.008 0.316± 0.028 0.200± 0.030 0.058± 0.016 0.023± 0.011
RTM (VbR = 0.025 VbT = 0.15) 1.811 0.099± 0.009 0.300± 0.033 0.181± 0.031 0.055± 0.015 0.023± 0.010
RTM (VbR = 0.030 VbT = 0.15) 1.802 0.102± 0.008 0.300± 0.029 0.184± 0.028 0.055± 0.016 0.022± 0.011
RTM (VbR = 0.035 VbT = 0.15) 1.793 0.105± 0.010 0.293± 0.031 0.187± 0.033 0.061± 0.019 0.026± 0.011

RTM (VbR = 0.025 VbT = 0.05) 1.811 0.106± 0.007 0.293± 0.025 0.158± 0.031 0.052± 0.017 0.021± 0.011
RTM (VbR = 0.025 VbT = 0.10) 1.811 0.108± 0.008 0.289± 0.023 0.169± 0.022 0.058± 0.015 0.026± 0.011
RTM (VbR = 0.025 VbT = 0.15) 1.811 0.103± 0.008 0.311± 0.027 0.193± 0.027 0.058± 0.014 0.026± 0.012
RTM (VbR = 0.025 VbT = 0.20) 1.811 0.099± 0.009 0.329± 0.038 0.218± 0.037 0.061± 0.021 0.027± 0.013
RTM (VbR = 0.025 VbT = 0.25) 1.811 0.096± 0.008 0.327± 0.033 0.236± 0.029 0.065± 0.015 0.029± 0.008

full-CM − − 0.301± 0.009 0.204± 0.019 0.052± 0.012 0.021± 0.011

TABLE 4.2: Proposed RTM validation: ground truth (g.t.) and recon-
structed values for the adimensional parameter λ, with the asymp-
totic Logan plot approach, and for the tracer kinetic parameters, with
the reg-GN method, in the case of data generated with varying blood
volume fractions (for both RT and TT). For the inversion procedure,
VbR = 0.025 and VbT = 0.15. The full-CM model is optimized through
the LM method and VbT = 0.15 fixed. Means and standard deviations
are computed over 50 different runs of the algorithm, with 50 differ-

ent random initialization values.

4.3 Application to FDG-PET cancer data

The micro-PET system Albira (Bruker, 2012) produced by Carestream Health is cur-
rently operational at the Nuclear Medicine Department, IRCCS San Martino IST,
Genova (Italy), and experiments with mice are performed by using different trac-
ers, mainly for applications to oncology. In this section, we show the results of our
reference tissue compartmental approach for the tumor environment on real experi-
ments, concerning murine models and FDG-PET acquisitions.
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λ kRb k f b kb f km f k f m

g.t. 4 0.05 0.5 1.2 0.1 0.04

std-RTM (ε = 0.6) 3.613 0.054± 0.001 0.538± 0.028 1.166± 0.061 0.102± 0.005 0.041± 0.004
std-RTM (ε = 0.7) 3.613 0.047± 0.002 0.478± 0.031 1.208± 0.078 0.137± 0.007 0.046± 0.005
std-RTM (ε = 0.8) 3.613 0.043± 0.001 0.438± 0.023 1.266± 0.065 0.165± 0.008 0.047± 0.005
std-RTM (ε = 0.9) 3.613 0.039± 0.001 0.414± 0.026 1.345± 0.085 0.193± 0.008 0.047± 0.004
std-RTM (ε = 1.0) 3.613 0.037± 0.001 0.393± 0.025 1.421± 0.089 0.220± 0.011 0.047± 0.005
std-RTM (ε = 1.1) 3.613 0.035± 0.001 0.383± 0.026 1.521± 0.102 0.244± 0.011 0.046± 0.004
std-RTM (ε = 1.2) 3.613 0.033± 0.001 0.376± 0.026 1.631± 0.111 0.269± 0.009 0.046± 0.003
std-RTM (ε = 1.3) 3.613 0.032± 0.001 0.369± 0.024 1.736± 0.113 0.288± 0.012 0.044± 0.003
std-RTM (ε = 1.4) 3.613 0.031± 0.001 0.363± 0.027 1.835± 0.135 0.311± 0.015 0.043± 0.004

full-CM − − 0.498± 0.020 1.188± 0.081 0.097± 0.009 0.038± 0.005

TABLE 4.3: Standard RTM (std-RTM) validation: ground truth (g.t.)
and reconstructed values for the adimensional parameter λ, with the
asymptotic Logan plot approach, and for the tracer kinetic param-
eters, with the LM method, in the case of synthetic data generated
without assumption of equal distribution volumes. For the inver-
sion procedure, the condition k f b/kb f = εkRb/kbR, with varying ε, is
imposed. The full-CM model is optimized through the LM method.
Means and standard deviations are computed over 50 different runs
of the algorithm, with 50 different random initialization values. Here

VbR = 0.025 and VbT = 0.15.

All animals were studied after a fasting period of six hours to ensure a steady
state of substrate and hormones governing glucose metabolism. Animals were po-
sitioned on the bed of Albira micro-PET system whose two-ring configuration per-
mits to cover the whole animal body in a single bed position. A dose of 3 to 4 MBq
of FDG was injected through a tail vein, soon after the start of a dynamic list mode
acquisition lasting 40 minutes. The acquisition was reconstructed using the follow-
ing framing rate: 10 × 15s + 1 × 22s + 4 × 30s + 5 × 60s + 2 × 150s + 5 × 300s
and PET data were reconstructed using a Maximum Likelihood Expectation Maxi-
mization (MLEM) method (Algorithm 3.2, described in subsection 3.2.3). Animals
were inoculated subcutaneously in the dorsal hip muscles with 2× 105 murine can-
cer cell lines CT26 (colon carcinoma cell lines). In this context, the tumor is the TT.
We choose a leg muscle to work as RT, since under resting conditions muscles ex-
hibit a negligible hexokinase activity (Lackner et al., 1984) and thus a negligible FDG
metabolism. More information on the sex, weight, and glycaemia of the animals are
reported in Table 4.4.

In order to obtain the experimental concentrations (kBq/ml), each image dataset
was reviewed by an experienced observer who drew three ROIs: one over the cancer
lesion, one around the resting thigh muscle, and one over the left ventricle in order
to compute the IF. The determination of the IF is a challenging task in the case of
mice. To accomplish it, for each animal model the tracer first pass was viewed in cine
mode. Then a ROI was drawn in the aortic arc, in a frame where the left ventricle
was particularly visible, and maintained it for all time points. An example of micro-
PET data of a mouse model and related time-dependent tracer concentrations of the
ROIs around the TT and RT is represented in Figure 4.2. The blood volume fractions
are set to VbT = 0.15 and VbR = 0.025 for the TT and the RT, respectively, according
to Montet et al., 2007 (for tumor in CT26-tumor bearing mice), Bertoldo et al., 2001
and Hindel et al., 2017 (for the muscle).

The experimental data obtained for a group of four mice are processed by the



Chapter 4. Reference Tissue Model 52

proposed RTM approach. Estimates of the parameters obtained for each member of
the group are shown in Table 4.5. Means and standard deviations are computed by
using 50 runs of the code for the reg-GN method (Algorithm 1.1), where the initial-
ization of the kinetic parameters is performed by picking up numbers in the interval
(0, 1) with uniform distribution, and the regularization parameter is determined at
each iteration through the GCV method (with a confidence interval ranging between
105 and 107). The starting time point for the graphical analysis is chosen as the time
point at which the IF curve reaches a plateau, that is, becomes approximately asymp-
totic (and thus stable) to the time axis.

Table 4.5 clearly shows that the proposed RTM is able to effectively reconstruct
the kinetic coefficients, with good agreement with the ones reconstructed by means
of the gold-standard full-CM comprising the IF. Moreover, in Figure 4.3 it is possi-
ble to observe that the IF generated by the reconstructed parameters through equa-
tion (4.11) provides a good approximation of the experimental IF, measured on the
ROI around the left ventricle, for all mice considered in our analysis. The red points
describe the experimental IF curve, together with its standard deviation (computed
according to the experimental noise level), while the black points represent the re-
constructed IF curve, computed with the averaged value of the kRb parameter result-
ing from the 50 different runs of the algorithm, together with its standard deviation.
It is also possible to observe that the reconstructed IF curves tend to be smoother
than the measured ones, as expectable, given that they are model-based; this effect
is particularly visible when the measured IF has some oscillations (as, for instance,
times 7min-17min of Figure 4.3(b) for m2).

In general, the inter-animal variability of the estimated rate constants for the TT
is quite low, meaning that the inter-tumor variability is not significant since in all an-
imals the inoculated cancer cell lines are of the same type. Although, the third model
(m3) appears to slightly underestimate all the parameters. This effect is visible in Fig-
ure 4.3(c), where the comparison between the reconstructed IF and the experimental
one shows a subtle underestimation of the first points, that we hypothesize is the
reason for the underestimation of k f b and consequently of the other coefficients. Fi-
nally, we observe that the second mouse model (m2) appears to have a lower λ and a
higher kRb with respect to the values reconstructed for the other murine models. This
could be due to the quite low blood sugar levels of m2 (the glycaemia is 30 mg/dl,
see Table 4.4): when glycaemia is low, the FDG is highly absorbed by the cells, due
the shortage of sugar in blood. This appears to cause a higher absorption rate in
the RT and therefore an increase in kRb. This effect is not visible in the parameters
concerning the target tissue kinetics, which instead are consistent with the values for
the other mice. This can be considered a consequence of the fact that the tumor is
a pathological tissue less affected by the environment conditions than physiological
tissues.

Cell line type Weight [g] Sex Glycaemia [mg/dl]

m1 CT26 17.2 F 84
m2 CT26 16.8 F 30
m3 CT26 15.9 F 53
m4 CT26 16.1 F 81

TABLE 4.4: Cell line type, weight, sex and glycaemia information for
the four murine models.
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FIGURE 4.2: Left panel: last frame of the FDG-micro-PET acquisition
of a murine model with ROIs around the CT26 tumor (green color)
and the thigh muscle (light blue color). Right panel: time-dependent
tracer concentrations of the CT26 tumor as TT (green color) and of the

thigh muscle as RT (light blue color).

λ kRb k f b kb f km f k f m

m1 RTM 4.373 0.039± 0.003 0.206± 0.034 0.426± 0.097 0.099± 0.022 0.032± 0.009
m1 full-CM − − 0.213± 0.001 0.441± 0.007 0.101± 0.003 0.033± 0.001

m2 RTM 1.858 0.433± 0.024 0.292± 0.033 0.468± 0.117 0.091± 0.035 0.033± 0.014
m2 full-CM − − 0.229± 0.004 0.481± 0.022 0.096± 0.006 0.017± 0.002

m3 RTM 5.049 0.111± 0.002 0.223± 0.025 0.493± 0.071 0.069± 0.019 0.023± 0.011
m3 full-CM − − 0.279± 0.004 0.586± 0.017 0.112± 0.004 0.031± 0.001

m4 RTM 5.844 0.036± 0.003 0.238± 0.029 0.350± 0.075 0.161± 0.035 0.054± 0.015
m4 full-CM − − 0.231± 0.003 0.435± 0.011 0.151± 0.003 0.035± 0.001

TABLE 4.5: Real data validation: reconstructed values for the dimen-
sionless parameter λ and for the tracer kinetic parameters of FDG-
PET experiments involving four mice. Both the RTM and the full-CM
models are optimized through the reg-GN method. The uncertainties
are computed as standard deviations over 50 runs of the algorithm
with 50 different random initialization values. Here VbR = 0.025 and

VbT = 0.15.
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FIGURE 4.3: Experimental IF (red curve) together with RTM recon-
structed IF (black curve) and their standard deviations, for the four

murine models.
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Chapter 5

Physiology-based parametric
imaging

Compartmental analysis can be mainly subdivided in two classes (Figure 5.1): re-
gion of interest (ROI) kinetic modeling and parametric imaging. ROI-based meth-
ods (Carson, 2005; Vanzi et al., 2004) return a single set of tracer kinetic parameters
for a homogeneous region of tissue, whose time concentration curve is obtained av-
eraging the Positron Emission Tomography (PET) measurements over the region at
each time frame. On the other hand, parametric imaging (Reader and Verhaeghe,
2014) aims at evaluating the set of model rate constants for every pixel of the PET
images, thus providing the spatial distribution of each model parameter. This ap-
proach is particularly useful when the tissue under examination cannot be effec-
tively segmented into homogeneous regions that could be modeled with a single
kinetic parameter set.

FIGURE 5.1: Parametric imaging versus ROI-based approaches in
compartmental analysis.

There exist indirect and direct approaches to parametric imaging. Indirect meth-
ods work by first reconstructing the dynamic PET images and then estimating the
kinetic parameters at each pixel (Zhou, Huang, and Bergsneider, 2001; Zhou et
al., 2002). Direct methods estimate directly the space-varying kinetic parameters
from the measured PET sinograms (Wang and Qi, 2013). The direct approach has
been proven to reduce the signal-to-noise ratio with respect to indirect techniques
(O’Sullivan, 1999), although strongly relies on the implementation of an efficient in-
version algorithm capable of reconstructing the parameters on a dense set of pixels
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(Kamasak et al., 2005). However, most parametric imaging methods (both direct
and indirect) rely on linearized compartmental models and/or provide parametric
images of algebraic combinations of the kinetic coefficients (Logan et al., 1990; Lo-
gan, 2003; Patlak, Blasberg, and Fenstermacher, 1983; Thie, Smith, and Hubner, 1997;
Tsoumpas, Turkheimer, and Thielemans, 2008). Rather few methods are able to re-
construct maps of each single parameter, and most of them consider simple one- and
two- compartment models (Carson and Lange, 1985; Huesman et al., 1998; Kamasak
et al., 2005; Limber et al., 1995).

We want to exploit recent advances in ROI-based analysis (Garbarino et al., 2014;
Garbarino et al., 2015; Watabe et al., 2006) in order to realize a novel and computa-
tionally efficient imaging procedure that can be used for parametric imaging in the
case of complex physiological systems (Scussolini et al., 2017). We consider [18F]-
fluorodeoxyglucose (FDG) PET data and analyze the two-compartment catenary
model, describing the standard FDG metabolism in an homogeneous tissue, and
the three-compartment non-catenary model, representing the renal physiology. We
provide a uniqueness theorem for the three-compartment non-catenary system, by
exploiting physiological constraints. The proposed imaging method starts from the
reconstructed FDG-PET images of tracer concentration, and preliminarily applies
image processing algorithms for noise reduction and image segmentation. The opti-
mization procedure solves pixel-wise the non-linear compartmental inverse problem
of determining the kinetic parameters from dynamic concentration data through the
regularized Gauss-Newton iterative algorithm. The reliability of the proposed imag-
ing method is validated on synthetic data mimicking a standard two-compartment
system for a generic homogeneous tissue, and is applied against micro-PET exper-
imental measurements concerning the three-compartment renal system of murine
models.

In the first section, the mathematical background of both the two-compartment
and the three-compartment models is presented, concerning the compartmental for-
ward and inverse problems and the discussion of identifiability. The second sec-
tion describes the proposed parametric imaging method. The third section pro-
vides the numerical validation of the computational method in the case of the two-
compartment catenary model. The fourth section shows the results obtained from
the application against experimental murine data for the analysis of the renal three-
compartment non-catenary system.

5.1 Mathematical models

Compartmental analysis identifies different functional compartments in the physio-
logical system of interest, each one associated with a specific metabolic state of the
tracer. The tracer typically is injected into the blood and the tracer concentration in
the blood is the input function (IF) of the compartmental system. The blood IF is
assumed to be known as it can be obtained by drawing ROIs on reconstructed PET
images in correspondence with the left ventricle. When the IF is not given, suitable
reference tissue models have to be taken into account (as described in Chapter 4).

This section is devoted to the description of the standard two-compartment cate-
nary model and a three-compartment non-catenary model developed for the renal
physiology (Garbarino et al., 2014). We assume that the conditions for applicabil-
ity of compartmental analysis are satisfied (for details see subsection 1.1.1), and we
adopt the usual notations of compartmental analysis (as in Chapter 1).
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Note that, in the following analysis, the spatial dependence on the pixel index
in the compartment concentrations and in the kinetic parameters is omitted but im-
plied. We indicate a generic ROI compartment concentration with the apex ROI.

5.1.1 Two-compartment catenary system

The compartmental model describing the FDG metabolism of phosphorylation and
dephosphorylation is the two-compartment catenary model shown in Figure 5.2
(Sokoloff et al., 1977). This model represents standard FDG kinetics within a liv-
ing tissue, such as the tumor.

FIGURE 5.2: The compartmental model for the two-compartment
catenary system describing the FDG kinetics in a generic tissue.

The two-compartment catenary model consists of:

• a blood compartment b;

• two functional compartments: compartment f , accounting for free FDG, and
compartment m, accounting for metabolized FDG;

• four exchange coefficients: k f b and kb f (min−1) between the blood and the free
compartment, km f and k f m (min−1) between the free and the metabolized ones.

Balance of tracer concentrations leads to the following Cauchy problem for a linear
system of ordinary differential equations (ODEs):

Ċ = MC + W , C(0) = 0 , (5.1)

where

C =

(
C f
Cm

)
, M =

(
−(kb f + km f ) k f m

km f −k f m

)
,

W = k f bCROI
b e1 =

(
k f bCROI

b
0

)
, e1 =

(
1
0

)
.

(5.2)

The blood ROI compartment concentration CROI
b plays the role of the ROI IF of the

two-compartment model. The analytical solution of (5.1)–(5.2), formally expressing
the forward problem of evaluating the concentrations from the kinetic parameters
kT = (k f b, kb f , km f , k f m)

T ∈ R4
+, is given by

C(t; CROI
b , kT) =

∫ t

0
e(t−τ)MW(τ) dτ = k f b

∫ t

0
e(t−τ)MCROI

b (τ)e1 dτ , (5.3)

with the time variable t ∈ R+, and the blood IF CROI
b a known function.

Denote by CT the pixel-dependent PET experimental concentration within a spe-
cific tissue, and by VbT the volume fraction of the tissue occupied by blood. In prin-
ciple, VbT may depend on the position within the tissue but, with a good approxi-
mation, it can be considered constant since the blood perfusion, under physiological
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conditions, is homogeneous inside the same organ. Therefore, the compartmental
inverse problem equation connecting the two-compartment catenary model and the
data is

CT(t; CROI
b , kT) = αTC(t; CROI

b , kT) + VbTCROI
b (t) , α =

(
1−VbT
1−VbT

)
, (5.4)

where C is given by equation (5.3), and VbT is assumed to be a known quantity.
As shown in Delbary, Garbarino, and Vivaldi, 2016 and as reported in Theo-

rem 1.2.1, the two-compartment catenary systems describing the basic FDG metabolism
is always identifiable, i.e. the following result holds.

Theorem 5.1.1. The kinetic parameters kT = (k f b, kb f , km f , k f m)
T ∈ R4

+ are uniquely
determined by CROI

b and CT, and the two-compartment catenary model of equations (5.1)–
(5.2) and (5.4) is structurally globally identifiable.

5.1.2 Three-compartment non-catenary system

FIGURE 5.3: The compartmental model for the three-compartment
non-catenary system describing the FDG kinetics inside the kidney.

The FDG availability within a living organism is influenced by several variables,
among which kidney function plays a relevant role as, differently from glucose, FDG
is poorly reabsorbed in the renal tubule and is largely excreted in the urine, with
accumulation in the bladder, as reported by Shreve, Anzai, and Wahl, 1999. Indeed,
urinary loss of glucose and of FDG might modify the diagnostic interpretation of
PET studies in diabetic patients with cancer. In order to study FDG kinetics in the
kidney, the model represented in Figure 5.3 is designed (Garbarino et al., 2014; Qiao
et al., 2007).

Once injected into the system, the tracer reaches the kidneys and infuses the or-
gans via the blood stream through the renal artery (a). Here, we consider the usual
two-compartment model describing the FDG phosphorylation/dephosphorylation
processes, obtaining the free tracer ( f ) and the metabolized tracer (m), both located
in the extravascular kidney tissue. However, in order to study the role of the mecha-
nisms carrying glucose back to the metabolism, we need to include the reabsorption
compartment (t), anatomically identified with the renal tubule. Moreover, we add
the external urine compartment (u), anatomically identified with the bladder, ac-
counting for the tracer there accumulated, thanks to the excretion mechanism.
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The resulting three-compartment non-catenary model has the following kinetic
parameters (min−1):

• k f a and ka f between the arterial IF and the free FDG compartment;

• kma from the arterial compartment to the metabolized FDG one (filtration);

• k f m and km f between the free FDG and the metabolized FDG compartments
(phosphorylation and dephosphorylation);

• ktm from the metabolized FDG compartment to the tubule (reabsorption);

• kut from the tubule compartment to the bladder pool (excretion).

The state variables C f , Cm, and Ct satisfy the Cauchy problem for a linear system of
ODEs

Ċ = MC + W , C(0) = 0 , (5.5)

where

C =

C f
Cm
Ct

 , M =

−(ka f + km f ) k f m 0
km f −(k f m + ktm) 0

0 ktm −kut

 ,

W = k f aCROI
a e1 + kmaCROI

a e2 =

k f aCROI
a

kmaCROI
a

0

 , e1 =

1
0
0

 , e2 =

0
1
0

 .

(5.6)

The ROI compartment concentration of arterial blood CROI
a is the IF of the renal com-

partmental model. The analytical solution of (5.5)–(5.6) for C in terms of the kinetic
coefficients kK = (k f a, kma, ka f , km f , k f m, ktm, kut)T ∈ R7

+ is given by

C(t; CROI
a , kK) =

∫ t

0
e(t−τ)MW(τ) dτ =

= k f a

∫ t

0
e(t−τ)MCROI

a (τ)e1 dτ + kma

∫ t

0
e(t−τ)MCROI

a (τ)e2 dτ ,
(5.7)

with the time variable t ∈ R+, and the arterial IF CROI
a a known function.

Denote by CK the pixel-dependent PET experimental concentration within the
tissue of the kidney, and by VbK the position-independent fraction of renal volume
occupied by arterial blood. The compartmental inverse problem equation connect-
ing the three-compartment non-catenary renal model and the data is

CK(t; CROI
a , kK) = αTC(t; CROI

a , kK) + VbKCROI
a (t) , α =

1−VbK
1−VbK
1−VbK

 , (5.8)

where C is given by equation (5.7), and VbK is assumed to be a known quantity.

Renal model identifiability.

We expect that in general the three-compartment system is not identifiable in that
it is a non-catenary model involving seven unknown rate constants. Identifiability
is achieved by reducing the number of unknowns through the introduction of con-
straints coming from renal physiology. It is shown in the course of the discussion
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that the constraints are used effectively in the discussion of uniqueness but they
cannot be applied in the procedure for the solution of the inverse problem.

To introduce the restrictions, we first consider tracer kinetics within the ROI-
based framework, by looking at the overall bulk flow of tracer between the ROI
compartments tubule and bladder. The pertinent properties are then extended to
the pixel framework, in analogy with the extension of ROI-based features of other
compartments, e.g. the dynamical system of tracer exchange between model com-
partments. Specifically, we have to reconsider the role of the bladder, which accu-
mulates urine and tracer in the course of the experiment. The bladder is connected
to the kidneys but is not part of the kidneys, and is related to a strictly global behav-
ior of the renal system. The influence of bladder in tracer kinetics has to be inserted
into the description of the characteristic features of the pixel constituents of the re-
nal compartment system, although pixels are not physically connected to the blad-
der. The following points describe a few aspects of bladder involvement in tracer
kinetics that are relevant to parametric modeling and are applied in the subsequent
analysis of identifiability. We assume that the volume and the activity of bladder are
known, although we do not need the corresponding explicit values.

1. The bladder compartment of tracer density CROI
u is the only compartment whose

volume significantly changes (specifically increases) in time. The condition of
tracer balance for bladder is expressed by equation

d
dt
(VuCROI

u ) = FROI
ut CROI

t , CROI
u (0) = 0 , (5.9)

where Vu (ml) indicates the bladder volume, and FROI
ut (ml min−1) is the bulk

flow entering the bladder from the tubule region. In words, equation (5.9)
states that the (positive) time rate of the tracer content of bladder equals the
amount of tracer carried inward by the flux of urine.

2. We assume that the accumulation rate of urine is constant, consistently with
the assumption of stationarity and the condition of resting state of the sub-
ject during PET acquisition. Therefore, the growth of the bladder volume Vu
during time is linear and hence the flux rate of urine into bladder satisfies (Gar-
barino et al., 2014)

FROI
ut =

Vu(t f )−Vu(t̄)
t f − t̄

, (5.10)

where t f is the end time point and t̄ is a generic time instant. In principle, an
estimate of FROI

ut is obtained from experimental values of Vu at different time
points. As a consequence, we find that

CROI
t =

1
FROI

ut

d
dt
(VuCROI

u ) , (5.11)

showing that CROI
t can be estimated from measurements performed on blad-

der.

3. Consider the renal tubule ROI compartment. We regard as a result from phys-
iology the existence of a direct proportionality between the bulk ingoing flow
FROI

tm (ml min−1), entering the renal tubule system from the metabolized com-
partment, and the bulk outgoing flow FROI

ut , directed towards bladder. Accord-
ingly, we can write

FROI
tm = γFROI

ut , (5.12)
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where γ is a constant factor establishing the order of magnitude of the bulk
quantity passing from the tubule to the bladder. For example, for the mouse
model the value of γ is typically equal to 102 (Meneton et al., 2000). Substitu-
tion of (5.10) into (5.12) provides FROI

tm in terms of data.

4. The balance of tracer flow inside the overall tubule system is given by (Gar-
barino et al., 2014)

d
dt
(VKVtCROI

t ) = FROI
tm CROI

m − FROI
ut CROI

t , (5.13)

where VK (ml) is the renal volume, Vt the fraction of the tubule volume, and
thus VKVt (ml) is the total volume of the tubule. Equation (5.13) may be written
in the equivalent form

ĊROI
t = kROI

tm CROI
m − kROI

ut CROI
t , (5.14)

where the ROI parameters kROI
tm and kROI

ut are defined by

kROI
tm =

FROI
tm

VKVt
, kROI

ut =
FROI

ut
VKVt

, (5.15)

with
kROI

tm = γkROI
ut . (5.16)

The last equality follows from equation (5.12). Also kROI
tm and kROI

ut are deter-
mined by data through FROI

tm , FROI
ut , VK, and Vt.

We now come to the parametric formulation. As already observed, we reproduce
at the pixel level a few relevant features of the ROI approach; in particular, each pixel
is regarded as capable of interchanging carrier fluid and tracer with bladder. In line
with equation (5.11), we assume that, at each pixel,

Ct =
1

Fut

d
dt
(VuCROI

u ) , (5.17)

where Fut describes the contribution to bladder volume change per unit time arising
from the flux of fluid through the single pixel. The coefficient Fut is dependent on
the position within the renal tissue and is considered as fixed, in analogy with (5.11).
The correspondent of equation (5.14) is postulated as

Ċt = ktmCm − kutCt , (5.18)

accounting for the dynamic of the pixel tubule compartment. As expected, equa-
tion (5.18) coincides with the third differential equation of the system (5.5). The rate
coefficient ktm and kut are position-dependent, as in (5.5), and are regarded as fixed.

To summarize, for the pixel-dependent tubule concentration and rate coefficients,
we have obtained from physiology the conditions that Ct, ktm, kut are fixed, and that
ktm = γkut. These modeling assumptions are essential to prove identifiability of the
renal three-compartment non-catenary system, for which we can state the following
result.

Theorem 5.1.2. Let Ct, ktm, and kut be fixed. By assuming that the polynomials

P(s; kK) = kma(s + ka f + km f ) + k f akm f
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and
Q(s; kK) = k f a(s + k f m + ktm) + kmak f m

are both coprime with the polynomial

D(s; kK) = (s + ka f + km f )(s + k f m + ktm)− km f k f m ,

the kinetic parameters kK = (k f a, kma, ka f , km f , k f m, ktm, kut)T ∈ R7
+ are uniquely deter-

mined by CROI
a and CK, and the three-compartment non-catenary model of equations (5.5)–

(5.6) and (5.8) is structurally globally identifiable.

The proof of Theorem 5.1.2 follows the idea presented in (Delbary, Garbarino,
and Vivaldi, 2016), and is reported in Appendix B.

It is important to remark that, although Ct, ktm, and kut are fixed by physiology,
the corresponding time dependence and values are not known explicitly. This means
that they are still to be determined through optimization.

5.2 Imaging method

We present a parametric imaging method which relies upon the application of im-
age pre-processing algorithms and of a rather general optimization scheme based
on the regularized Gauss-Newton (reg-GN) method (Algorithm 1.1, described in
subsection 1.2.3) able to solve the compartmental inverse problem pixel-wise. The
proposed method is general enough to work for both two- and three- compartment
models, effective enough to provide maps of all the kinetic coefficients involved,
and in principle can be extended to envisage more than one model for a single PET
image and physiologies described by more than three compartments. Therefore, our
method is potentially applicable to any generic compartmental model, provided an
ad hoc identifiability study and taking into account the compartment-dependent in-
crease of the computational cost.

We start from the set of N reconstructed dynamic FDG-PET images:

( f (t)1 , f (t)2 , . . . , f (t)N ) for t = 1, . . . , T , (5.19)

where f (t)n is the n−th PET image at t−th time point of tracer concentration C , i.e.

f (t)n (i, j) = C(i,j)(t) for i = 1, . . . , I, j = 1, . . . , J , (5.20)

and I, J are the image dimensions.
We select the tissue of interest and the compartmental model reliable for its func-

tional description. For each dynamic PET image ( f (1)n̄ , . . . , f (T)n̄ ), n̄ ∈ {1, . . . , N}, i.e.
a PET slice, our imaging method follows the steps described below.

Step 1. Gaussian smoothing. In order to reduce the noise due to data acquisition, we
apply a truncated Gaussian smoothing filter through the convolution opera-
tion

f̃ (t)n̄ = f (t)n̄ ∗G0,σ ∀t = 1, . . . , T , (5.21)

where

G0,σ(i, j) =
1

2πσ2 e−
x(i,j)2+y(i,j)2

2σ2 ,

x(i, j), y(i, j) ∈ {−L− 1
2

, . . . ,
L− 1

2
} × {−L− 1

2
, . . . ,

L− 1
2
} ,
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and L is the (odd) dimension of the window. In all our applications, we use a
Gaussian convolution matrix G0,σ with zero mean, standard deviation σ = 1
and dimension L = 3.

Step 2. Image segmentation. We model the outer region of the organ of interest with
a standard two-compartment model; the ROI A delimiting the organ of physi-
ologic interest is described by the most reliable compartmental model (accord-
ing to the organ physiology). To extract the ROI A we apply the following
image segmentation method.

1. Compute the PET image averaged in time: f̃ n̄ =
1
T

T

∑
t=1

f̃ (t)n̄ .

2. Consider the pixel with maximum intensity: (ī, j̄) = maxi,j f̃ n̄(i, j).

3. Approximate the profile of the ī−th matrix row with a family of one–
dimensional Gaussian functions Gj̄,σ of mean j̄, variable variance σ, and
s.t. Gj̄,σ( j̄) = f̃ n̄(ī, j̄), by means of a curve fitting process. This consists in
computing

σ̄ī = arg min
σ
|| f̃ n̄(ī, j)− Gj̄,σ(j)||2 . (5.22)

4. Determine the activity’s lower bound in the ROI as the value c̄ at which
the two curves f̃ n̄(ī, j) and Gj̄,σ̄ī

(j) separate from each other. Formally, this
consists in evaluatingj∗ = arg max

j∈( j̄−γ, j̄+γ)

| f̃ n̄(ī, j)− Gj̄,σ̄ī
(j)|

c̄ = f̃ n̄(ī, j∗)
, (5.23)

in a suitably chosen neighborhood of j̄ (i.e. for a suitable choice of γ > 0).
The ROI encompassing the organ is thus defined as

A(i, j) =

{
0 if f̃ n̄(i, j) < c̄
1 if f̃ n̄(i, j) ≥ c̄

. (5.24)

Step 3. Parameter estimation. We apply the reg-GN algorithm pixel-by-pixel, con-
sidering each pixel with its specific compartmental model. In general, for a
compartmental model with P arbitrary kinetic parameters k ∈ RP

+, for a im-
age pixel (i, j) ∈ {1, . . . , I} × {1, . . . , J}, the reconstruction iterative algorithm
reads as follows.

1. Check whether the measured radioactivity is significant: fix a constant
value τ > 0 discriminating between background noise and tissue activity.

• If ||C(i,j)(t)||2 ≤ τ, then assign k = 0 and stop;
• if ||C(i,j)(t)||2 > τ, then continue.

2. Choose the initial guess: k(0)
(i,j) ∈ RP

+.

3. Solve for δ
(0)
(i,j) ∈ RP

(r(0)I [P] + F(0)
(i,j)

T
F(0)
(i,j))δ

(0)
(i,j) = F(0)

(i,j)

T
Y (0)
(i,j) , (5.25)
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where F(0)
(i,j) encodes the Frèchet derivatives with respect to the kinetic

parameters, Y (0)
(i,j) is the discrepancy between the measured datum C(i,j)

and the model-predicted total concentration, IP ∈ MP({0, 1}) is the P×
P identity matrix, and r(0) ∈ R+ is the regularization parameter auto-
matically selected by means of the Generalized Cross Validation (GCV)
method (Golub, Heath, and Wahba, 1979; O’Sullivan, 1999). The advan-
tages in using the GCV are mainly that it can be applied without any a
priori information on the error on the data or on peculiar properties of
the solution, and that it requires just the computation of the SVD of the
matrix of the problem.

4. Update k(0)
(i,j) with the projected step-size:

k(1)
(i,j) = k(0)

(i,j) + P(0)
(i,j)δ

(0)
(i,j) , (5.26)

where the projection matrix P(0)
(i,j) ∈ MP({0, 1}) is defined as

P(0)
(i,j)(q, r) =


0 if q 6= r
0 if q = r and (k(0)

(i,j))q + (δ
(0)
(i,j))q < 0

1 if q = r and (k(0)
(i,j))q + (δ

(0)
(i,j))q > 0

, (5.27)

and iterate.

The iterative scheme is stopped when the relative error between the exper-
imental dynamic concentration and the model-predicted one is less than an
appropriate threshold, i.e. at a generic iteration h

||C(i,j)(t)−VbCROI
b (t)− αTC(i,j)(t; CROI

b , k(h)
(i,j))||2

||C(i,j)(t)||2
≤ ε , (5.28)

where CROI
b is the generic given blood IF of the system, Vb is the known con-

stant blood volume fraction for the selected region, and ε depends on the noise
level on data.

Step 4. Parametric images. Once we obtain the set of exchange coefficients of the
model for each image pixel, we build up the parametric images K1, . . . , KP:

K1(i, j) = k(i,j)(1), . . . , KP(i, j) = k(i,j)(P) . (5.29)

Regarding Step 1. and Step 2., other imaging processing methods can be used
to smooth and segment PET images; the impact of other approaches on the accu-
racy of compartmental analysis is under investigation. However, simple Gaussian
smoothing, as in Step 1., and our ad hoc image segmentation process, as in Step 2.,
provide good results regardless of the limited resolution of PET images involved in
the analysis.

5.3 Numerical validation

The proposed parametric imaging method is validated against synthetic FDG-PET
images constructed by simulating the two-compartment catenary model, described
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in subsection 5.1.1. We remark that all the computational part has been implemented
in the Matlab programming environment.

Synthetic data are created mimicking a real FDG-micro-PET acquisition: first we
choose a phantom (Figure 5.4(a)) encompassing four homogeneous regions; for ev-
ery region, a set of realistic kinetic parameters of a two-compartmental problem is
assigned as ground truth, and a realistic value for the blood volume fraction VbT is
selected (Table 5.1). We obtain four synthetic parametric images K f b, Kb f , Km f , K f m,
each one characterized by a specific set of kinetic parameters. The ground truth
parametric images are displayed in Figure 5.5.

k f b kb f km f k f m VbT

region 1 0.80 0.60 0.07 0.07 0.10
region 2 1.00 1.00 0.20 0.20 0.20
region 3 1.10 0.90 0.50 0.40 0.05
region 4 0.50 0.50 0.10 0.01 0.30

TABLE 5.1: Ground truth numerical values of the kinetic parameters
k f b, kb f , km f , k f m (min−1), and of the blood volume fraction VbT , for

each one of the four homogeneous regions.

The dynamic PET images of tracer concentration are generated following the
scheme below. For each pixel:

1. compute the values of the integral (5.3) using the ground truth values of the pa-
rameters and a simulated blood IF (Figure 5.4(b)), the latter obtained by fitting
with a gamma variate function (Golish et al., 2001) a set of real measurements
acquired from a healthy mouse in a controlled experiment;

2. evaluate the synthetic concentration by means of equation (5.4), with the nu-
merical value of VbT related to the homogeneous region at which the pixel
belongs;

3. sample on time interval [t1; tT] of 27 time frames equivalent to the typical total
acquisition time of the FDG experiments performed with the micro-PET scan-
ner Albira (Bruker, 2012), produced by Carestream Health, Genova, and in
agreement with usual time points of the experiments (10× 15s, 1× 22s, 4× 30s,
5× 60s, 2× 150s and 5× 300s).

Once the noise-free dynamic PET images are obtained:

4. project the images into the sinogram space by means of the Radon transform,
yielding projected noise-free sinogram data;

5. add mixed Poisson-Gaussian noise (Luisier, Blu, and Unser, 2011; Santarelli,
Positano, and Landini, 2017) to the projected data: apply Poisson noise to ac-
count for the stochastic nature of the photon counting process at the detectors,
and then corrupt the Poisson model with additive Gaussian noise to account
for the intrinsic thermal and electronic fluctuations of the acquisition device.
Note that errors arising from instrumental and physical effects, such as atten-
uation, scattered events, decay and accidental coincidences, are not simulated;

6. reconstruct the noisy dynamic PET images of tracer concentration by means
of the Filtered Back Projection (FBP) applied on the two-dimensional noisy
sinogram data (Algorithm 3.1, described in subsection 3.2.2).
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FIGURE 5.4: The FDG-PET simulation setting. (a) Phantom com-
posed by four homogeneous regions. (b) Simulated blood IF. (c) Char-
acteristic noise-free time concentration curves for the four regions.
(d-g) Noisy time concentration curves for each region: the error bars
identify the variability on the concentrations introduced by the noise.
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(a) K f b (b) Kb f (c) Km f (d) K f m

FIGURE 5.5: The ground truth parametric images K f b, Kb f , Km f , K f m
of the two-compartment catenary system.

We create fifty independent identically-distributed noisy datasets. Characteristic
noise-free TACs of the four regions are shown in Figure 5.4(c), whereas the noisy
TACs are reported in Figure 5.4(d)–5.4(g). The Poisson noise is applied by using
the Matlab function poissrnd, and the white Gaussian noise by means of the Matlab
function awgn with a signal-to-noise ratio of 20 dB.

For each dataset, we follow the reconstruction steps of Section 5.2, i.e. we apply
the Gaussian smoothing filter (σ = 1, window 3× 3) on the dynamic PET images
and solve pixel-wise the compartmental inverse problem by means of the reg-GN it-
erative procedure (Algorithm 1.1). For each pixel, the starting point of our method is
randomly chosen in the interval (0, 1) and the regularization parameter is optimized
at each iteration through the GCV method, by the requirement of a predefined range
of variability (between 104 and 106). We do not need to apply the image segmenta-
tion step because in this simulation we model the same two-compartment scheme
for all the pixels.

Once the entire set of kinetic parameters k f b, kb f , km f , k f m for each pixel are re-
trieved, we build up the parametric images K f b, Kb f , Km f , K f m. Figure 5.6 shows the
mean images (first row) and the standard deviation images (second row), computed
over the fifty reconstructions. The mean images provide a reliable approximation
of the ground truth parametric images, demonstrating the consistency of the para-
metric inversion procedure. Note that the artifacts occurring at the edges of the
homogeneous regions, observable especially around the first and second regions,
are consequences of the application of the Gaussian filter. The standard deviation
images keep systematically small values, proving that the iterative reconstruction
scheme is numerically stable with respect to noise. Table 5.2 reports the mean and
the standard deviation of the kinetic parameters over the four homogeneous regions.
Comparison between the ground truth values of Table 5.1 and the reconstructed val-
ues of Table 5.2 clearly shows the reliability of our approach.

From the computational viewpoint, the parametric reconstruction takes almost
45 minutes. Please note that the algorithm was implemented in the Matlab program-
ming environment and the algorithm was executed on a computer with a processor
Intel core i5. Despite that, for a single pixel, the reg-GN iterative scheme requires
about 5-10 iterations before it converges and the operations carried out in a single
iteration for computing the Newton step-size are not computationally demanding
(the matrices in the game have small size). Therefore, the high computational cost
of the method depends only on the application of the reduction scheme on a dense
set of pixels. Nevertheless, the computational complexity of our parametric imaging
method is consistent with standard parametric methods.
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(a) K f b (b) Kb f (c) Km f (d) K f m

(e) K f b (f) Kb f (g) Km f (h) K f m

FIGURE 5.6: Mean images (first row) and standard deviation images
(second row) of K f b, Kb f , Km f , K f m, computed over the fifty paramet-

ric reconstructions.

k f b kb f km f k f m

region 1 0.75± 0.02 0.59± 0.03 0.07± 0.01 0.07± 0.01
region 2 0.93± 0.03 0.87± 0.06 0.16± 0.02 0.16± 0.01
region 3 1.04± 0.03 0.79± 0.08 0.33± 0.06 0.31± 0.02
region 4 0.58± 0.02 0.51± 0.03 0.08± 0.01 0.02± 0.01

TABLE 5.2: Mean and standard deviation of the kinetic parameters
k f b, kb f , km f , k f m (min−1), for each one of the four homogeneous re-

gion, computed over the fifty parametric reconstructions.

5.4 Application to FDG-PET renal data

We test the proposed parametric imaging method on real FDG-PET experiments in
the case of the three-compartment non-catenary model representing the renal phys-
iology, described in subsection 5.1.2.

We analyze FDG-PET real data of murine models obtained by means of the ded-
icated Albira micro-PET system (Bruker, 2012) currently operational at our lab (Nu-
clear Medicine Department, IRCCS San Martino IST, Genova, Italy). Following the
experimental protocol for FDG-PET experiments, utilized during a study on the
metabolic effects of metformin (Massollo et al., 2013), the animals were studied af-
ter a fasting period of six hours to ensure a steady state of substrate and hormones
governing glucose metabolism. Then, the animals were properly anesthetized and
positioned on the bed of the micro-PET system whose two-ring configuration cov-
ers the whole animal body in a single bed position. A dose of 3 to 4 MBq of FDG
was injected through the tail vein, soon after the start of a dynamic list mode ac-
quisition lasting 40 minutes. The acquisition was reconstructed using the following
framing rate: 10× 15s, 1× 22s, 4× 30s, 5× 60s, 2× 150s and 5× 300s. The dynamic
PET images of tracer concentration (kBq/ml) were reconstructed using a Maximum
Likelihood Expectation Maximization (MLEM) method (Algorithm 3.2, described in
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subsection 3.2.3). The complete dataset is composed by 100 images of 80× 80 pix-
els, each one reproducing an axial section, by the total number of time points of the
experiment. For this test, we consider a mouse in a control (CTR) condition and a
mouse in a starved (STS) condition (food deprivation, with free access to water, for
48 hours). We focus on the analysis of the renal physiology and select a single PET
slice containing an axial section of the right kidney, the same slice for both animals.
The entire FDG kinetic process is initialized by the arterial IF. The determination of
the IF is a challenging task in the case of mice. To accomplish it, for each animal
model the tracer first pass was viewed in cine mode. Then a ROI was drawn in the
aortic arc by an experienced observer, in a frame where the left ventricle was par-
ticularly visible, and maintained it for all time points. For both analysis, the blood
volume fraction is assumed to be equal to VbK = 0.2, a typical value for the kidney
of the mouse (Garbarino et al., 2014).

We apply our imaging method on the selected dynamic PET slice of the CTR
mouse and of the STS mouse. More specifically, we smooth the data by means of a
Gaussian filter of standard deviation σ = 1 and size 3× 3; we select the ROI within
the axial section of the kidney through the image segmentation process determin-
ing the minimum value of activity recorded inside the organ, and reconstruct the
kinetic parameters k f a, kma, ka f , km f , k f m, ktm, kut of the three-compartment system for
each pixel by means of the reg-GN method (Algorithm 1.1). The initial guesses are
randomly selected in the interval (0, 1) and the regularization parameter is chosen
by the GCV method (with a confidence interval ranging between 104 and 106). The
reconstructed parametric images K f a, Kma, Ka f , Km f , K f m, Ktm, Kut for the renal com-
partmental model are presented in Figure 5.7 and Figure 5.8: in each figure, the first
row shows the parametric images for the CTR mouse, the second row for the STS
mouse.

It should be pointed out that in general patient’s motion during PET measure-
ments contaminates the acquired data; this holds even true for rodents in anesthesia
as the scans are rather long. Obviously, these motion artifacts affect the pixel-by-
pixel analysis. Note that in our parametric reconstruction the effects of motion can
be excluded and are not investigated.

All parametric images, of both the CTR mouse and the STS mouse, show values
of the parameters that vary quite largely from pixel to pixel, bringing out the lack
of homogeneity of the renal tissue. Indeed, the parametric images point out the
different structures composing the kidney and characterizing the distinct functions
of the organ (Meneton et al., 2000). This is consistent with the architecture of the
renal compartmental model we have designed (subsection 5.1.2). The higher activity
of the parameters is located in a specific part of the outer portion of the axial section
of the kidney, which is attributable to the renal cortex, in which most of the renal
processes are carried out. Moreover, for both the CTR and STS conditions, we can
observe that the parametric images Ktm and Kut linked to the tubule compartment
have a very similar distribution while the physiologically sound condition ktm '
102kut is maintained pixel-wise (without any constraint in the inversion procedure).
Instead, the fundamental difference between the CTR and the STS parametric images
relies on the numerical values of the parameters. In particular, the values of the
exchange coefficients associated with the blood input, that are k f a, kma, ka f , exhibit a
different behavior with respect to the two conditions. From the CTR mouse to the
STS mouse: the input parameter from the blood k f a increases (almost duplicates), the
filtration process described by kma decreases (is almost reduced by a factor of three),
and the output parameter to the blood ka f remains approximately equal. This trend
reflects the response of the kidney to the different physiological conditions of the
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two mice analyzed, coherently with what already observed (Garbarino et al., 2014).
Finally, we notice that the parameters linked to FDG metabolism, km f and k f m, and
the parameters representing the reabsorption and excretion processes, ktm and kut
respectively, remain basically unchanged in the two conditions.

(a) K f a (b) Kma (c) Ka f

(d) K f a (e) Kma (f) Ka f

FIGURE 5.7: Parametric images K f a, Kma, Ka f : first row for the CTR
mouse, second row for the STS mouse.

(a) Km f (b) K f m (c) Ktm (d) Kut

(e) Km f (f) K f m (g) Ktm (h) Kut

FIGURE 5.8: Parametric images Km f , K f m, Ktm, Kut: first row for the
CTR mouse, second row for the STS mouse.
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Part III

Cell-scale
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Chapter 6

LigandTracer technology

The LigandTracer (LT) technology (Ridgeview Instruments AB, Uppsala, Sweden) is
devoted to real-time monitoring molecular interactions on cells, and a LT prototype
is currently operational at our lab (Nuclear Medicine Department, IRCCS San Mar-
tino IST, Genova, Italy). The device measures the affinity of radiolabeled ligands
interacting with cell-surface receptors, which is a common measurement in differ-
ent fields of biology and biochemistry, including cancer research. The provided dy-
namic data of bound ligand amount can be processed to obtain kinetic parameters
describing reliably the cell-ligand interaction.

Standard LT applications focus on the study of protein-cell interaction processes
in vitro, in particular cellular uptake and cellular retention. In the area of biotech-
nology for the development of therapeutic agents (such as proteins, monoclonal an-
tibodies, and antibody fragments in the pharmaceutical industry), assessing the rate
of uptake may be of importance for the prediction of dosage of a therapeutic protein,
and the retention time is a probable predictor of the duration of the effect caused by
the protein.

We lead a novel application involving the LT device, in which the glucose ana-
log radioactive tracer [18F]-fluorodeoxyglucose (FDG) is used to evaluate the glu-
cose uptake by cultured cancer cells (Scussolini et al., 2018b). LT measurements in
vitro offer a quick and inexpensive method with less assay variability compared
to in vivo studies: LT allows for repeated experiments under constant conditions,
whereas experiments on tracer uptake in vivo may be influenced by absorption by
other organs, specific tissue environment, blood perfusion, and so on. Moreover, LT
measurements ensure a direct estimate of FDG consumption, and thus of glucose
consumption, without any distortion introduced by physical corrections or signal
reconstruction algorithms, which are essential steps to be made in, e.g., Positron
Emission Tomography.

In this chapter we provide a detailed description of the LT experimental setting.
In the first section, the operating principles of the device are outlined, concerning
the LT technical characteristics and its geometrical properties. The second section
describes the LT calibration procedure. In the third section, we formalize the time-
dependent activity curves defining the LT data.

6.1 LT acquisition

The LT prototype (Figure 6.1) was previously described in Björke and Andersson,
2006a and Björke and Andersson, 2006b. It essentially consists in a circular Petri dish
(PD) placed on a tilted rotating support of the instrument, and a detector. The PD
contains a suitably prepared incubation liquid medium with the radioligand, and
the seeded cell culture. The detector is capable of performing repeated radioactivity
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FIGURE 6.1: Measurement principles of the LT device: the Petri dish
containing attached target cells is placed on an tilted and rotating sup-
port; the incubation medium with the radioligand occupies the lower
part of the dish, due to the dish inclination; the detector points to-
wards the upper part of the dish. The measurement of the cell-ligand

interaction is performed once per rotation in the upper position.

measurements at predefined time points and positions. We make use of the LT White
device, and we consider the glucose analog radiotracer FDG.

The LT has a solid state radioactivity detector (5CXS-S80, Crystal GmbH, Ger-
many) capable of detecting gamma radiation in the energy range 10–69 keV. In the
LT White device, the sensor is a photodiode, rectangular in shape with area 80 mm2

(8 by 10 mm), encapsulated with a detection window made of 25 µm thick titanium
foil. The sensor can register the beta particles emitted by the radionuclide fluorine-
18 in the range of 38 keV to 1200 keV, with correct counting up to 3 · 104 Counts Per
Seconds (CPS). The sensor sends TTL compatible pulses to a counter in the internal
electronics of the instrument.

The cell culture to be analyzed is cultured prior to each experiment on a 100
mm diameter PD inclined at 30 degrees from the horizontal plane, so as to limit the
presence of cells to a specific area of the PD. The PD is then placed in the LT, tilted
at the same angle, and contains the incubation liquid medium of volume 3 mL in
the lowest part of the dish. The radioligand is added to the medium right before the
beginning of the experiment. The detector is inclined at an angle of 20 degrees to the
plane of the PD and points at the top of the dish. In this configuration, the tilt of the
detector ensures that radioactivity emitted by the medium in the lower part of the
dish does not significantly contribute to counts.

The LT device rotates periodically around the axis inclined at an angle of 30 de-
grees from the vertical. By allowing the LT to rotate the PD continuously, the level of
radioactivity accumulated by the cells can be measured in real-time with high tem-
poral resolution. Each rotation cycle is divided into four time intervals, that for our
experiments have been fixed as follows:

(a) 25 seconds with cell culture in the rotation nadir and hence fully immersed in
the radioactive medium;

(b) 5 seconds for a counter-clockwise rotation of 180 degrees;

(c) 25 seconds with cell culture in the rotation zenith and thus under the detector;

(d) 5 seconds for another counter-clockwise rotation of 180 degrees, leading to
cycle restart.
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The detector collects the counts in phases (a) and (c) in order to measure the counting
rates of the background area (devoid of cells) and the target area (with cells). For
each t-th cycle, lasting one minute, the background counts Bc and the target counts T c

are defined as the normalized counts (CPS)

Bc(t) =
nB(t)
25 sec

, T c(t) =
nT (t)
25 sec

,

where n specifies the total number of counts detected in the time window of record-
ing (in our case, 25 seconds). The apex c refers systematically to CPS.

Counts of the target region result from emission by cells and the residual of the
liquid medium stuck to the dish. Therefore, the effective LT counts Ac

LT coming only
from the cells under the detection window are determined as the difference between
the target counts and the background counts at each measurement cycle, i.e.

Ac
LT(t) = T c(t)−Bc(t) . (6.1)

The counts are corrected for physical decay through multiplication by the expo-
nential factor eλt, where λ is the 18F decay constant of the FDG radioactive tracer
(λ = ln 2/110 min−1).

6.2 LT calibration

(a) Front view. (b) Lateral view.

FIGURE 6.2: LT geometry: (a) R = 43.5 mm; r = 23 mm; cells are
attached to the circular segment of central angle 2 cos−1(r/R) which
is wet by the incubation medium; (b) height of the wet lateral surface

h = 11.85 mm.

The amount of FDG added to the medium at each experiment is measured in Bq,
while the time curves of counts provided by the LT are given in CPS. A calibration
factor is thus needed in order to convert observed counting rates for the available
FDG dose. The connection between Bq put into the medium and CPS measured by
the detector is found as a consequence of the conservation law of the activity, which
can be applied because LT represents a closed system: at each time, tracer molecules
of the dose injected in the PD distribute exhaustively in the incubation medium, in
the wet subsurface of the PD, and in the cells. Therefore, we apply a tracer conserva-
tion condition, formulated as follows: the total activity uptake from the incubation
medium in the time interval of the experiment duration (in Bq) is proportional to
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the total activity content external to the incubation medium (in CPS) at the end time.
The proportionality constant provides the calibration factor allowing the conversion
from Bq to CPS, and vice versa.

As described in Scussolini et al., 2018b, the LT calibration is performed by con-
ducting controlled experiments in the absence of attached cells, in order to avoid
uncontrolled variations in the measurements resulting from tracer uptake by cells,
following essentially the same procedure of cell experiments. Input vial containing
four mL of incubation medium is enriched with FDG; three mL of this radioactive
fluid are spilled in the PD lodged in the LT, and measurements are performed for a
time interval of 60 minutes, at most.

Radioactivity external to the incubation medium is emitted only from the total
background area, which, because of periodic immersions of the PD due to LT ro-
tations, consists of the surface of the circular ring of radii R and r, plus the lateral
surface of the cylinder of radius R and height h (see Figure 6.2). This subsurface of
the PD contaminated by radioactive molecules, i.e. the wet region, reflects the fluid
adhesion to the plastic structure of the PD, which may be considered with fixed
properties within the same experimental setting. Elementary geometric considera-
tions, based on Figure 6.2, lead to estimate the total emitting area of the wet region
as SW ' 7.5 · 103 mm2.

The background counts Bc measured by the LT reaches instantly (in the first
minute of the experiment) its maximum value, which is maintained constant in time.
Moreover, the background counting is independent of the position on the PD sur-
face, as verified with repeated experiments made with more than one background
counting (i.e. with several pauses for each LT cycle in different positions). Therefore,
the radioactive tracer is assumed to be uniformly distributed over the wet region.
Accordingly, positrons received by the detector are regarded as coming from the or-
thogonal projection of the detection window over the PD surface. The LT detection
window of area 80 mm2 points toward the PD with an angle of 20 degrees with re-
spect to the normal, accounting for an area of the projected detection window (pdw)
on the PD surface of Spdw ' 75 mm2. Thus, we associate with Spdw the measured
value Bc in CPS. Owing to the uniform distribution, we estimate the radioactivity
contaminating the wet region of the PD of area SW by applying the law of direct
proportionality between CPS and areas. The wet counts Ac

W associated with the wet
region is found from the proportion

Ac
W

SW
=
Bc

Spdw
,

which leads to
Ac

W =
SW

Spdw
Bc ' 102Bc . (6.2)

At the end of the experiment, the incubation medium is accurately removed from
the PD, in order to evaluate the sequestration of tracer radioactivity by the wet re-
gion. Both the initial amount of tracer injected in the PD D and the final radioac-
tivity content in the medium D f are measured in Bq through a sodium iodide (NaI)
scintillation counters (dose calibrator). The decay corrected difference in fluid ra-
dioactivity D−D f in Bq is thus compared with the counted radioactivity of the wet
region in CPS.

The conservation law of activity for the closed LT system is expressed by the
linear equation

D −D f = eAc
W , (6.3)
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which is regarded as the definition of the efficiency coefficient e to be applied in the
conversion from CPS to Bq.

Twelve cell-free experiments have been performed, denoted by qi, with i ∈
{1, . . . , 12}, at variable FDG amounts, either without glucose or with glucose con-
centration set at 5.5 mM (1 g/L) and 11.1 mM (2 g/L). Figure 6.3 shows the counting
rates of the measured background BC of one experiment for each different medium
composition, namely q3 (no glucose), q7 (glucose concentration at 5.5 mM), and q11
(glucose concentration at 11.1 mM). Since these three experiments are carried out
at comparable initial amount of FDG, the difference in the counts registered by LT
depends on the glucose concentration. More precisely, the presence of glucose in-
fluences, or better increases, the tracer adhesion to the PD. In Table 6.1, for each
experiment, we report glucose concentration, initial FDG dose D, final value of ra-
dioactivity in the medium D f , estimated wet counts Ac

W , and percentage of FDG
removal off the medium (computed as the difference D −D f over D).

We consider the data set consisting of the twelve couples {(Ac
W ,D − D f )i}12

i=1.
In support of the assumption of linearity of equation (6.3), the Pearson correlation
coefficient evaluating the linear correlation between the variables D − D f and Ac

W
assumes the value 0.95 with a p-value of 3 · 10−6, showing a tight linear correlation
regardless either glucose or radioactivity concentrations in the spilled fluid. There-
fore, we determine the efficiency coefficient e through simple linear regression ap-
plied to the experimental set, as shown in Figure 6.4. We find the value e = 3 Bq/CPS
combined with a standard error of the estimate of 0.24 and a coefficient of determi-
nation r2 equal to 76%, which proves the goodness of fit and therefore the reliability
of the estimated value of e.

We assume that the efficiency value e is maintained for experiments conducted
with cell cultures.

Glucose [mM] D [MBq] D f [MBq] Ac
W [CPS] % removal

q1 0 6.79 6.78 1.57 · 104 0.11
q2 0 5.17 4.95 6.45 · 104 4.42
q3 0 4.41 4.40 9.63 · 103 0.18
q4 0 4.25 4.08 5.33 · 104 3.96

q5 5.5 5.83 5.74 4.49 · 104 1.62
q6 5.5 4.40 4.35 3.31 · 104 1.21
q7 5.5 3.01 2.99 2.33 · 104 0.48
q8 5.5 1.49 1.44 1.18 · 104 2.90

q9 11 6.56 6.37 5.84 · 104 2.94
q10 11 4.67 4.55 3.71 · 104 2.54
q11 11 3.93 3.84 3.24 · 104 2.25
q12 11 2.15 2.11 1.76 · 104 1.75

TABLE 6.1: Experimental values for each LT cell-free experiment qi,
i ∈ {1, . . . , 12}: glucose concentration, administered FDG activity D,
final FDG activity D f , wet activity Ac

W , and percentage of FDG re-
moval off the medium (computed as the difference D −D f over D).
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FIGURE 6.3: Counting rates of the measured background Bc for three
selected LT cell-free experiments: q3 at zero glucose (black line), q7 at
glucose concentration 5.5 mM (blue line), and q11 at glucose concen-

tration 11.1 mM (red line).
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FIGURE 6.4: Simple linear regression on the data set {(Ac
W ,D −

D f )i}12
i=1 for the LT cell-free experiments qi, i ∈ {1, . . . , 12}, made at

glucose concentration zero (black points), 5.5 mM (blue points) and
11.1 mM (red points).

6.3 LT data

For each experiment, the available LT data consist of the time-dependent counts of
radioactive emission by the cells under the detection window Ac

LT, and the injected
FDG activity D. The time activity curve (TAC) of tracer uptake by the whole cell
culture in the PD, and the time curse of tracer activity in the incubation medium, are
then reconstructed in terms of the LT data.

6.3.1 TAC of tracer inside cells

Starting from the LT measure Ac
LT, counting the radiation emitted by only the cells

under the detection window, we need to reconstruct the time curse of the activity
emitted by the entire cell culture seeded in the PD.
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We assume that cells in the culture cannot be distinguished between each other,
and that they are uniformly distributed over the surface covered by the incubation
medium, represented by the circular segment in Figure 6.2(a) covering the area SC '
1.1 · 103 mm2. The LT device provides the counts Ac

LT associated with the area Spdw
of the projected detection window. Owing to uniformity, we apply a proportionality
law between measured CPS and areas to find

A c
T =

SC

Spdw
Ac

LT ' 0.14 · 102Ac
LT , (6.4)

with the cell culture counts A c
T representing the estimated time-dependent radioac-

tivity counts to be associated with all cells.
In Bq, the TAC of tracer inside the cell culture, i.e. the cell culture activity AT, is

simply obtained by applying the efficiency coefficient e to the counts:

AT = eA c
T , (6.5)

where e = 3 Bq/CPS is estimated as shown in Section 6.2.

6.3.2 TAC of tracer inside the medium

Consider a typical LT experiment of tracer uptake by a cell culture. During the up-
take phase, tracer molecules initially in the incubation medium are partially dis-
persed over the wet surfaces of the PD and partially adsorbed by cells. As a conse-
quence, the decay corrected activity in the medium decreases with time. The TAC
of tracer in the medium is unknown, and it can be reconstructed by exploiting the
conservation principle of the diffusion process of radioactive molecules in the closed
LT system.

First we examine tracer distribution at the very beginning of the LT experiment.
As already observed, the tracer dose D injected into the PD is distributed, without
loss, among incubation medium, wet background area, and cells. The counts of the
background Bc reach the (maximum) stationary value in a very short time interval;
in the meanwhile, the radiation content inside cells, which is zero at the time t = 0,
does not grow significantly, since cell uptake is a much slower process. Denote by
Ai(t) (Bq) the time course of activity in the medium. Then, the initial value at t = 0,
Ai0 = Ai(0), can be expressed as

Ai0 = D − eAc
W , (6.6)

where the wet activity Ac
W is defined by equation (6.2). In words, the process of

distribution of radioactivity over the wet background area is regarded as instanta-
neous with respect to cell uptake, so that the initial value Ai0 of the activity inside
the medium available for cells is given by the difference between the injected dose
and the wet area sequestration.

The conservation of the decay corrected activities for the closed LT system leads
to the following equation:

D = Ai(t) + e
SW

Spdw
Bc(t) + e

SC

Spdw
Ac

LT ,

or, equivalently, with the definitions of the wet activity (6.2) and the cell culture
activity (6.4),

D = Ai(t) + eAc
W + eA c

T . (6.7)
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Indeed, the first term in the right-hand side is the medium activity Ai; the second term
estimates the total contribution from the wet region (in Bq); the third term accounts
for the contribution due to the cell culture (in Bq).

From the definition of the initial value of the medium activity (6.6) and the LT
conservation principle (6.7), the TAC of tracer inside the incubation medium is re-
constructed as

Ai(t) = Ai0 −AT(t) . (6.8)
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Chapter 7

Biochemically-driven models

The glucose analog radioactive tracer [18F]-fluorodeoxyglucose (FDG) is widely used
in nuclear medicine to reconstruct glucose metabolism in cells and tissues. Fol-
lowing glucose path, FDG is first transported through cell membranes and is then
trapped inside cells by phosphorylation. However, unlike phosphorylated glucose,
phosphorylated FDG tends to accumulate in cells. For this reason, the measurable
radioactive amount of FDG is considered an accurate marker of overall glucose up-
take and consumption by cells and tissues (Cherry, Sorenson, and Phelps, 2012;
Schmidt and Turkheimer, 2002; Morris et al., 2004). In addition, FDG assumption by
cancer cells is increased by the Warburg effects for glucose (Vander-Heiden, Cantley,
and Thompson, 2009); consequently, FDG is used in cancer detection and staging,
and to assess the effectiveness of medical treatments.

The analysis of data on the time course of FDG tracer distribution is performed
by the use of compartmental analysis. Classical compartmental models have been
developed under the assumption that phosphorylation and dephosphorylation of
FDG occur in the same intracellular cytosolic volume, as described by Sokoloff et al.,
1977 and Morris et al., 2004. Recent progresses in cell biochemistry have shown that
the appropriate location of dephosphorylation is the endoplasmic reticulum (ER),
which is spatially separated from cytosol. Following this pattern for FDG kinetics in
the cell, we describe and formalize a new model composed of three compartments,
accounting for free FDG in cytosol, phosphorylated FDG in cytosol, and phospho-
rylated FDG in ER. The new biochemically-driven compartmental model is referred
to as BCM (Scussolini et al., 2018a); the classical simplified compartmental model
(SCM) is recovered from the proposed model under the assumption that the ER is
removed from consideration. The introduction of the SCM is motivated by the need
for comparison.

In order to test the effectiveness of the BCM in the description of FDG kinetics in
cancer, we consider the time-dependent activity curves of FDG uptake by cancer cell
cultures in vitro, obtained by the use of the LigandTracer (LT) device. Application
of the BCM to cell cultures is in natural relation with the biochemical origin of the
model. Note that the BCM can be adapted for analyzing FDG-PET tissue data (see
Scussolini et al., 2018a).

In the first section, we illustrate the role of the ER in glucose metabolism and FDG
uptake within a cell. The second section deals with the mathematical formulation of
the compartmental models, namely the BCM and the SCM: the model equations are
illustrated, together with the inverse problem of determining the model parameters
from available LT data and the related identifiability results. Moreover, a general
relation between the BCM and SCM kinetic parameters is shown. Finally, we for-
mally study the influence of the LT calibration on the model rate constants, in order
to assess the magnitude of potential errors arising from inaccurate estimation of the
LT efficiency coefficient.
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7.1 The role of the endoplasmic reticulum

Although measuring the continuous flux of glucose molecules through lesion pop-
ulating cells is extremely difficult, this paradigm became a clinical standard to dis-
tinguish tumor from healthy tissues, to stage tumor burden and to assess treatment
effectiveness. The task is possible due to the peculiar kinetic features of the radioac-
tive glucose analog FDG.

Cancer imaging with FDG is based on two key concepts: 1) FDG competes with
glucose for transmembrane transport and phosphorylation, and 2) differently from
glucose, intracellular tracer cannot be degraded to diffusible radioactive product,
and once trapped, it cannot be lost. Indeed, FDG is transported through cell mem-
branes by the same glucose transporter membrane proteins (GLUT) as glucose, and
it is trapped into the cytosol by phosphorylation catalyzed by the same enzyme hex-
okinase (HK). Differently from glucose-6-phosphate (G6P), the radioactive analog
FDG-6-phosphate (FDG6P) is a false substrate for downstream enzymes channeling
G6P to glycolysis (G6P-isomerase) or pentose-phosphate pathway (G6P-dehydrogenase).
Nevertheless, FDG6P can be partially dephosphorylated by the enzyme glucose-6-
phosphatase (G6Pase), and thus can be released from the cell.

The slow radioactivity loss from the tumor is generally attributed to low levels of
G6Pase, and FDG accumulation is therefore considered an accurate marker of overall
cell glucose consumption. This perspective has been formalized by Sokoloff et al.,
1977 in a seminal paper that represents the theoretical basis for the experimental use
of 14C-2DG and for the clinical value of FDG uptake.

(a) ER micrograph. (b) ER picture.

FIGURE 7.1: The ER. (a) A colored transmission electron micrograph
(from University of Edinburgh/Wellcome Collection) of mitochon-
dria (red) and both rough and smooth endoplasmic reticulum (blue).
The rough endoplasmic reticulum appears darker due to the ribo-
somes (dark blue) dotted on its surface. (b) Pictorial representation

of the ER.

Recent findings in biochemistry documented that G6Pase is compartmentalized
within the endoplasmic reticulum (ER) (Ghosh et al., 2002). The ER was first ob-
served with light microscopy by Garnier, 1897, who coined the term “ergastoplasm”.
With electron microscopy, the lacy membranes of the ER were first seen by Porter,
Claude, and Fullam, 1945. Later, the word “reticulum”, which means network, was
applied by K.R. Porter in 1953 to describe this fabric of membranes. The ER (Fig-
ure 7.1) is a continuous membrane system that forms an interconnected network of
flattened sacs and tubes within the cytoplasm of every nucleated cell, and serves
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multiple functions, being important particularly in the synthesis, folding, modifica-
tion, and transport of proteins and lipids. Its internal part, the ER lumen, is com-
pletely separated from the cytosol. Indeed, abundant biochemical, pharmacological,
clinical and genetic data indicate that the barrier function of the lipid bilayer and
specific transport activities in the membrane make the ER a distinct metabolic com-
partment (Csala, Bánhegyi, and Benedetti, 2006). However, the luminal enzyme
activities are integrated in the cellular metabolism, and strongly connected to the
cytosolic processes.

The ER can be classified in two functionally distinct forms: the rough endoplas-
mic reticulum and the smooth endoplasmic reticulum. Rough ER, a series of flat-
tened sacs, is named for its rough appearance, which is due to the ribosomes at-
tached to its outer cytoplasmic surface. Rough ER lies immediately adjacent to the
cell nucleus, and its membrane is continuous with the outer membrane of the nu-
clear envelope. The ribosomes on rough ER specialize in the synthesis of proteins,
mostly glycoproteins, that possess a signal sequence that directs them specifically to
the ER for processing. Smooth ER, a meshwork of fine tubular membrane vesicles, is
involved in the synthesis of lipids, including cholesterol and phospholipids, which
are used in the production of new cellular membrane.

The transport of selected substrates across the ER membrane is an additional
point where the enzyme activity can be potentially regulated (Csala et al., 2007).
Glucose-6-phosphate transporter (G6PT) is the transmembrane protein providing a
selective channel between the ER lumen and the cytosol. This important enzyme
complex is located within the membrane of the ER, and catalyzes the terminal re-
actions in both glycogenolysis and gluconeogenesis. In particular, G6PT transports
G6P from the cytosol into the lumen of the ER, where it is hydrolyzed by the catalytic
subunit of G6Pase. Defective G6P transport leads to insufficient substrate supply to
G6Pase in gluconeogenic tissues; therefore, G6PT mimics the true enzyme deficiency
(Csala et al., 2007).

FIGURE 7.2: Biochemical path of glucose inside the cell (from Chou,
Jun, and Mansfield, 2010).

Inside a cell, the biochemical path of glucose (schematized in Figure 7.2) and of
its radioactive analog FDG may be characterized according to the scheme below.
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1. Glucose and FDG are transported into the cytosol, and back, by GLUT pro-
teins.

2. Inside the cell, glucose and FDG are phosphorylated by HK to G6P and FDG6P,
respectively.

3. Once phosphorylated, glucose continues along the metabolic pathway of gly-
colysis and pentose-phosphate pathway or participates to glycogen synthesis;
instead, FDG cannot follow the same channels and accumulates intracellularly
as FDG6P.

4. G6P and FDG6P are substrates for G6Pase, which is anchored to the ER, so
that its action of hydrolysis, resulting in the creation of a phosphate group
and free glucose and tracer, occurs after the phosphorylated forms have been
transported into the ER lumen by G6PT.

5. Free glucose and free FDG are released into the cytosol.

In general, the presence of a measurable, though limited, hydrolysis of FDG6P in
virtually all tissues intrinsically implies a specific mechanism for its transport across
the ER membrane. Indeed, FDG release is found to be related to the expression of
the reticular G6PT more than that of G6Pase. This concept might explain the ap-
parent disagreement of FDG accumulation kinetics despite the high G6Pase activity
observed in cancer (Marini et al., 2016).

7.2 Mathematical models

The radioactive tracer FDG provides an analog of glucose metabolism, and allows a
quantification of functions in living cells, such as rates of activity of enzymes. Start-
ing from local measurements on the diffusion of the FDG radioactive molecules, the
aim is to reconstruct FDG kinetics. Therefore, by means of compartmental analysis, a
suitable set of different functional compartments is identified in the assigned target,
where each compartment is associated with a specific metabolic state of the tracer,
possibly contained in a predefined physiological volume. Tracer flow corresponds
to exchange of radioactive molecules between compartments.

In this section we describe the compartmental models formalizing the biochem-
ical path of FDG inside the cell. In particular, the biochemically-driven compart-
mental model accounting for the role of the ER, and its simplified form considering
only the cytosolic pool. The simplified model is examined for the ease of compari-
son with most diffused existing models. We assume that standard assumptions for
application of compartmental analysis are satisfied (for details see subsection 1.1.1),
and we adopt the usual notations of compartmental analysis (as in Chapter 1).

Since available data on the time course of radioactivity for a cell culture are given
by the LT device in terms of total activities, we provide the forward model equations
for the compartment activities, instead of the usual compartmental formulation for
concentrations. Next, we write the compartmental inverse problem for the deter-
mination of the kinetic parameters from LT data, and we discuss the identifiability
properties of the models. By observing asymptotic characteristics of the BCM and
SCM systems, consistent with the same LT data, we find a general relation between
the BCM and SCM rate constants, and we analyze the dependence of the model rate
constants on LT calibration.
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7.2.1 Three-compartment BCM

(a) FDG biochemical path. (b) BCM.

FIGURE 7.3: The biochemically-driven model for FDG metabolism
inside a cell: (a) the ER-accounting biochemical FDG path, and
(b) its compartmental representation. The model schematizes the
three functional/metabolic states of the tracer: free, cytosolic-
phosphorylated, ER-phosphorylated. The arrows connecting the
compartments represent the enzyme actions and the model kinetic

parameters.

Consider a cell which is in contact with a liquid containing glucose at physiolog-
ical concentration and FDG at a smaller concentration, so that FDG may be regarded
as a perturbation of glucose. This general situation is representative of any cells com-
ing into contact with glucose and FDG, both in vitro and in vivo. As schematized
in Figure 7.3(a), the FDG moves in and out the cell environment thanks to GLUT
transporters; once inside the cytosol of the cell, free FDG is phosphorylated by HK,
and the phosphorylated FDG can enter the ER transported by G6PT; only inside the
ER, FDG6P can be dephosphorylated by G6Pase, after which the FDG turns back
in a free status and is released out into the cytosol. This pattern is reflected in the
three-compartment biochemically-driven model of Figure 7.3(b), referred to as BCM
(Scussolini et al., 2018a), composed by:

• the pool i for tracer outside the cell environment, acting as input of the system;

• a compartment f for free tracer in free status in the cytosol of the cell;

• a compartment p for phosphorylated tracer in the cytosol of the cell;

• a compartment r for phosphorylated tracer in the ER;

• five kinetic parameters k f i, ki f , kp f , krp, k f r (min−1).

The rate constants represent the rate of the action of the enzymes processing the
tracer: k f i and ki f reflect the transport by GLUT of FDG across the cell membrane;
kp f is the HK phosphorylation rate of FDG; krp represents FDG6P transport by G6PT
from cytosol to ER; k f r refers to the G6Pase dephosphorylation rate of FDG6P to
FDG.

In principle, a pool for free tracer in ER could also be considered, which receives
tracer also from the free compartment in cytosol; here we assume that its equilibrium
value is reached almost instantaneously at the beginning of the tracer flow process
and represents a small fraction of tracer contained in ER, so that it is discarded.
Moreover, since the dephosphorylation occurs only inside the ER, a parameter k f p,
corresponding to an arrow from p to f , is not considered.



Chapter 7. Biochemically-driven models 85

The crucial point is the remark that, usually, a single cell is not accessible to mea-
surements of radiation emitted in time. Indeed, applications are based on observa-
tion of the time course of radiation emitted by cell cultures in vitro. Thus the model
in Figure 7.3(b) has to be adapted to applications on a higher scale. If we consider
a colony of N cells, reasonably of the same type and with the same characteristics,
it is natural to define the volume of the colony as N-times the volume of the single
cell, and the activity for the colony as N-times the activity of the single cell. Ac-
cordingly, with a good approximation, tracer concentration of the colony equals the
tracer concentration of the single cell.

We introduce the state variables C f , Cp, and Cr which describe the time-dependent
and decay corrected concentrations for a cell culture of free tracer, phosphorylated
tracer in cytosol, and phosphorylated tracer ER, respectively. The concentration of
tracer in the external liquid medium, Ci, is the given input function of the system.
The linear system of ordinary differential equations (ODEs) in terms of concentra-
tions for the BCM is 

Ċ f = −(ki f + kp f )C f + k f rCr + k f iCi

Ċp = kp f C f − krpCp

Ċr = krpCp − k f rCr

, (7.1)

with initial conditions C f (0) = Cp(0) = Cr(0) = 0, which mean that there is no
tracer amount in the cells at the beginning of the experiment. The rate constants
describe the first-order process of tracer transfer between compartments.

Available data on the time course of radioactivity for a cell culture are given in
terms of total activity. In principle, rephrasing of the data in concentrations was al-
lowed but this required, at least, the knowledge of parameters such as the total num-
ber of cells, and the volumes of cytosol and ER. These parameters are only roughly
known. Besides other advantages, the reformulation of the system (7.1) in activities
allows to reduce the number of external parameters to one, precisely, the ratio be-
tween the volumes of the ER and cytosol, which can be estimated and is independent
of the number of cells.

Concentrations and corresponding activities of the cell culture are related by

C f =
A f

Vcyt
, Cp =

Ap

Vcyt
, Cr =

Ar

Ver
, Ci =

Ai

Vi
, (7.2)

where Vcyt, Ver, and Vi are the volumes of the total cytosolic region, ER, and external
liquid, respectively. Substitution of the activities into the system (7.1) leads to the
formulation of the Cauchy problem

Ȧ = MA + k̄ f i Aie1 , A(0) = 0 , (7.3)

where

A =

A f
Ap
Ār

 , M =

−(ki f + kp f ) 0 k f r
kp f −krp 0
0 krp −k f r

 , e1 =

1
0
0


Ār = Ar

Vcyt

Ver
, k̄ f i = k f i

Vcyt

Vi
,

(7.4)

and where Ai is the given input function, representing in our case the total activity of
the incubation medium in which cells are immersed. The coefficient k̄ f i = k f iVcyt/Vi
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provides the rate constant adapted to the description in terms of activities and plays
the same role as k f i. The other coefficients ki f , kp f , krp, and k f r are left unchanged by
the transformation of the state variables from concentrations to activities, and thus
preserve their interpretation as rate constants and the numerical values pertaining
to the system (7.1). The auxiliary variable Ār is related to the “natural” activity Ar of
the ER through the adimensional ratio Vcyt/Ver, which is independent of the number
of cells. Accordingly, we find

Ar = vĀr , v =
Ver

Vcyt
, (7.5)

where in particular v < 1 (Milo and Phillips, 2015), since the ER is contained into the
cytosol and the ER volume is smaller than the cytosol volume.

The analytic solution of the Cauchy problem (7.3) takes the form

A(t; Ai, k̄BCM) = k̄ f i

∫ t

0
eM(t−τ)e1Ai(τ) dτ , (7.6)

where, by a slight abuse of language, we let k̄BCM = (k̄ f i, ki f , kp f , krp, k f r)
T ∈ R5

+.
Denote as AT the measured time-dependent total activity of the cell culture.

Then, AT equals the sum of activities of the model compartments, and we have

AT = A f + Ap + Ar = A f + Ap + vĀr . (7.7)

Equation (7.7) may be written in compact form as

AT(t) = αT A(t; Ai, k̄BCM) , α =

1
1
v

 . (7.8)

Equation (7.9) constitutes the compartmental inverse problem of finding the BCM
rate constants k̄BCM starting from the known LT data, namely the activity of the
medium and the total activity of the cell culture. By rewriting (7.9) as the zero-
finding problem

αT A(t; Ai, k̄BCM)−AT(t) = 0 , (7.9)

we can solve it by means of the regularized Gauss-Newton iterative procedure (reg-
GN algorithm 1.1, described in subsection 1.2.3).

Concerning the identifiability problem, we state the following result ensuring
uniqueness of the BCM rate constants.

Theorem 7.2.1. Assume that the polynomials

Q(s; k̄BCM) = s2 + (kp f + krp + k f r) s + (kp f + krp) k f r + v kp f krp

and

D(s; k̄BCM) = s3 +(ki f + kp f + krp + k f r) s2 +[(ki f + kp f ) (krp + k f r)+ krp k f r] s+ ki f krp k f r

are coprime. If k̄BCM = (k̄ f i, ki f , kp f , krp, k f r)
T ∈ R5

+ is generic, then k̄BCM is uniquely
determined by Ai and AT, and the BCM of equations (7.3)–(7.4) and (7.9) is globally iden-
tifiable.

The proof of Theorem 7.2.1 follows the procedure used in Delbary, Garbarino,
and Vivaldi, 2016 and is reported in Appendix C.
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7.2.2 Two-compartment SCM

(a) Simplified FDG biochemical path. (b) SCM.

FIGURE 7.4: The simplified model for FDG metabolism inside a cell:
(a) the cytosolic biochemical FDG path, and (b) its compartmental
representation. The model schematizes the two functional/metabolic
states of the tracer: free, cytosolic-phosphorylated. The arrows con-
necting the compartments represent the enzyme actions and the

model kinetic parameters.

When not considering the role of the ER in the cell-processing of FDG, we deal
with a simplified biochemical path for FDG, as in Figure 7.4(a), which account only
for the cytosol. The simplified compartmental model, referred to as SCM, is the
two-compartment model shown in Figure 7.4(b). Similarly to the BCM, tracer is first
exchanged between the input compartment and the compartment for free tracer,
with rate coefficients k∗f i and k∗i f (min−1). Unlike the BCM, there is only one cytosolic
pool for phosphorylated FDG. The kinetic parameters k∗p f and k∗f p (min−1), provid-
ing phosphorylation and dephosphorylation rates, can be regarded as the functional
correspondent of kp f and k f r, respectively. The SCM is known conventionally as the
Sokoloff model, first introduced by Sokoloff et al., 1977. Note that the apex star is
used systematically to refer to quantities pertaining to the simplified model.

By denoting with C∗f and C∗p the time-dependent and decay corrected concentra-
tions for a cell culture of free and phosphorylated tracer in cytosol, respectively, we
can write the following system of ODEs for the SCM:{

Ċ∗f = −(k∗i f + k∗p f )C
∗
f + k∗f pC∗p + k∗f iCi

Ċ∗p = k∗p f C∗f − k∗f pC∗p
, (7.10)

with initial conditions C∗f (0) = C∗p(0) = 0, and given tracer concentration in the
external liquid Ci.

In the modeling of a cell culture, we consider as state variables A∗f and A∗p, the
time-dependent and decay corrected activities for the cell culture of free and phos-
phorylated tracer in the cytosol, respectively. The system of ODEs in terms of ac-
tivities is obtained by starting from the ODEs (7.10) for the concentrations and then
substituting the relations between concentrations and activities, i.e. C∗f = A∗f /Vcyt

and C∗p = A∗p/Vcyt. The Cauchy problem in terms of activities for the SCM takes the
form

Ȧ∗ = M∗A∗ + k̄∗f i Aie1 , A∗(0) = 0 , (7.11)

where

A∗ =

(
A∗f
A∗p

)
, M∗ =

(
−(k∗i f + k∗p f ) k∗f p

k∗p f −k∗f p

)
, e1 =

(
1
0

)
, (7.12)

with k̄∗f i = k∗f iVcyt/Vi, and given input function Ai.
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We denote by k̄∗SCM = (k̄∗f i, k∗i f , k∗p f , k∗f p)
T ∈ R4

+ the vector of parameters of the
simplified formulation. The analytic solution of the Cauchy problem (7.11) is

A∗(t; Ai, k̄∗SCM) = k̄∗f i

∫ t

0
eM∗(t−τ)e1Ai(τ) dτ . (7.13)

The connection between the cell culture datum AT and the state variables is given
by

AT = A∗f + A∗p = αT A∗(t; Ai, k̄∗SCM) , α =

(
1
1

)
. (7.14)

Equation (7.14) is the starting point for the compartmental inverse problem of find-
ing the SCM rate constants k̄∗SCM from LT data AT and Ai, which is solved by means
of the regularized Gauss-Newton (reg-GN) iterative procedure (Algorithm 1.1, de-
scribed in subsection 1.2.3).

The two-compartment SCM is known to be identifiable (see Theorem 1.2.1 of
subsection 1.2.2). Differently from usual formulations, here the SCM is modified
in terms of activities in order to describe the cell culture system. Nevertheless, the
identifiability property is not affected from such reformulation, and the following
result holds.

Theorem 7.2.2. The kinetic parameters k̄∗SCM = (k̄∗f i, k∗i f , k∗p f , k∗f p)
T ∈ R4

+ are uniquely
determined by Ai and AT, and the SCM of equations (7.11)–(7.12) and (7.14) is structurally
globally identifiable.

7.2.3 Connection between BCM and SCM

With the aim of performing a qualitative analysis on the two models BCM and SCM,
the following considerations are in order. It is well-known that the dephosphory-
lation rate is rather small (Sokoloff et al., 1977); therefore, we assume that k f r and
k∗f p are small with respect to the other coefficients, so that their contribution can be
neglected. Next, we suppose that the concentrations Ci, C f , Cp, and C∗f are almost
constant at large time values, and that Cr and C∗p grow over time as the concentra-
tions of the pools where tracer accumulates. Under these hypotheses, the systems of
ODEs (7.1) and (7.10) reduce to the algebraic conditions

(ki f + kp f )Ĉ f = k f iĈi

kp f Ĉ f = krpĈp

Ċr = krp Ĉp

, (7.15)

and {
(k∗i f + k∗p f ) Ĉ∗f = k∗f i Ĉi

Ċ∗p = k∗p f Ĉ∗f
, (7.16)

where the superposed hat refers to the constant values of the concentrations and Ĉi
is the common forcing contribution, independent of the model. The constant rates
of growth of phosphorylated FDG are given by

Ċr =
k f i kp f

ki f + kp f
Ĉi , (7.17)
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Ċ∗p =
k∗f ik

∗
p f

k∗i f + k∗p f
Ĉi . (7.18)

Consider the case of a cell culture, and suppose that the two models BCM and
SCM are consistent with the same data. Comparison of equations (7.7) and (7.14) for
the total activity shows that

AT = A f + Ap + Ar = A∗f + A∗p . (7.19)

In view of the assumptions, also the activities A f , Ap, and A∗f are almost constant
at large time values. Therefore, evaluation of the time derivative of (7.19) leads to
Ȧr = Ȧ∗p, which, after comparison with (7.2), is written in the equivalent form

VerĊr = VcytĊ∗p . (7.20)

Substitution into (7.20) of (7.17) and (7.18), and the definition of k̄ f i, lead to

v
k̄ f ikp f

ki f + kp f
=

k̄∗f ik
∗
p f

k∗i f + k∗p f
, (7.21)

where we recall that v = Ver/Vcyt. The general relation (7.21) arises as direct conse-
quence of the modeling assumptions, and may be used as a check on the effective-
ness of the numerical reconstructions. Moreover, If

k̄ f i ' k̄∗f i

ki f ' k∗i f

kp f ≤ ki f

k∗p f ≤ k∗i f

, (7.22)

then equation (7.21) simplifies to

vkp f ≈ k∗p f . (7.23)

This shows that the factor v connects the reconstructed phosphorylation rates of
BCM and SCM.

7.2.4 Model dependence on LT calibration

The calibration procedure for the LT, discussed in Section 6.2, was needed in order
to convert measured counting rates (CPS) in activity (Bq), and thus to write dimen-
sionally consistent equations. Despite an apparent reliability of the estimated effi-
ciency coefficient e, several errors might have been caused by inaccurate evaluations
of initial and final medium activities, non-uniform FDG distribution on the wet sur-
face, or non-orthogonal emission from the surface under the detector. Moreover, the
relatively poor correlation between the points in Figure 6.4 might have altered the
value of e, with a subsequent impact on the accuracy of all downstream measure-
ments. Accordingly, in order to further test consequences arising from errors on e,
we formally investigate the dependence of the model rate constants on the calibra-
tion procedure, starting from the model equations and the definition of e.

We consider the system of ODEs (7.3)–(7.4) for the activities of the BCM. We
assume a dephosphorylation rate k f r small enough to discard the contribution k f r Ār,
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and an asymptotic condition where A f , Ap, and Ai assume almost constant values.
It follows that

˙̄Ar = krp Âp =
kp f

ki f + kp f
k̄ f i Âi , (7.24)

where the superposed hat refers to the constant values of the activities. Under the
assumptions, the time derivative of (7.7) reduces to ˙AT = v ˙̄Ar, where both ˙AT and
˙̄Ar are constant. Combination of this result with (7.24) leads to

k̄ f i
kp f

ki f + kp f
=

˙AT

v
1
Âi

, (7.25)

with v = Ver/Vcyt the known physiological parameter. We approximate the constant
value of the medium activity with its starting value, i.e. Âi ' Ai0 = D − eAc

W , and
we consider the total activity AT = eA c

T . Then, equation (7.25) becomes

k̄ f i
kp f

ki f + kp f
=

˙A c
T

v
1

D/e−Ac
W

. (7.26)

The relation (7.26) implies the equality between a non-linear combination of kinetic
parameters, at the left-hand side, and a constant quantity dependent on LT data and
e, at the right-hand side. The fraction kp f /(ki f + kp f ) = 1/(ki f /kp f + 1) is a positive
number smaller than one, and even if ki f or kp f may depend on e, the ratio ki f /kp f
may not. Therefore, equation (7.26) can be rewritten as

k̄ f i =
ki f + kp f

kp f

˙A c
T

v
1

D/e−Ac
W

=
γ

D/e−Ac
W

, (7.27)

with γ, D, and Ai0 constant quantities independent of e. According to (7.27), the
input parameter k̄ f i is highly influenced by the value assigned to the LT efficiency
coefficient e, more precisely, growth of e implies necessarily increase in the value of
k̄ f i and conversely.

The same procedure can be made for the SCM, by considering the system of
ODEs (7.11)–(7.12), negligible dephosphorylation flux k f p Ap, and asymptotic con-
stant values of A∗f and Ai. The final result (7.27) holds also for the SCM, i.e. in
details,

k̄∗f i =
k∗i f + k∗p f

k∗p f

˙A c
T

1
D/e−Ac

W
=

γ∗

D/e−Ac
W

. (7.28)
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Chapter 8

Application to FDG-LT cancer data

Once the LigandTracer (LT) device for measurement of [18F]-fluorodeoxyglucose
(FDG) uptake by cell cultures has been described, and the compartmental schemes
for FDG path at cell-scale have been formalized, we can perform experiments with
cultured cancer cells and analyze the data to characterize FDG kinetics. Similar re-
sults can be found in Scussolini et al., 2018a and Scussolini et al., 2018b.

Our application involves murine 4T1 breast cancer cells. Two groups of exper-
iments are considered, with glucose concentration in the liquid medium of 1 g/L
and 2 g/L, and with variable amount of FDG. The aim is to (i) assess the compe-
tition between glucose and its non-degradable analog, (ii) verify whether glucose-
6-phosphatase (G6Pase) sequestration in the endoplasmic reticulum (ER) lumen is
compatible with the accumulation kinetics of FDG, and (iii) compare the different
descriptions of FDG transformations arising from reduction of LT data by means of
the biochemically-driven compartmental model (BCM) and the simplified compart-
mental model (SCM). In the analysis, we test the sensitivity of our compartmental
approach with respect to mis-estimation of the LT calibration coefficient.

The results show that the rate of phosphorylation predicted by the BCM is higher
than the one produced by the classical SCM, and that tracer tends to accumulate in
the ER, rather than cytosol. This latter phenomenon is also confirmed by directly
imaging the fluorescent FDG analog 2NBDG.

The first section presents the experimental setting: how the cancer cells are cul-
tured prior to LT measurements, and the type of experiments carried out. In the
second section, we describe the application of the two competing compartmental
models, namely the BCM and SCM, to the data obtained from the two sets of exper-
iments, and we show the results on FDG kinetics.

8.1 LT experimental setting

Murine 4T1 breast cancer cells are cultured in standard Petri dishes (PDs) with 100
mm diameter, inclined at 30 degrees from the horizontal plane so as to limit cell pres-
ence to the lowest segment of the circular ring. Once seeded, cells are maintained in
DMEM1 with glucose concentration set at 11.1 mM (2 g/L) enriched with 10% fetal
bovine serum, for at least twenty-four hours. For each experiment, a pair of twin
cultures is prepared, one for cell counting and one for radioactivity counting. The
PD with the cell culture intended for the measurements is placed on the platform

1DMEM (Dulbecco’s Modified Eagle Medium) is a widely used basal medium for supporting the
growth of many different mammalian cells. DMEM is a modification of Basal Medium Eagle (BME)
that contains a four-fold higher concentration of amino acids and vitamins, as well as additional sup-
plementary components. The original DMEM formula contains 1 g/L of glucose and was first reported
for culturing embryonic mouse cells.
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of the LT instrument, as illustrated in Section 6.1. Cultures are washed with PBS2

before the administration of 3 mLs of incubation medium, containing both FDG and
glucose. In general, administered FDG concentration varies from 1 to 2 MBq/mL,
while glucose is set at two distinct concentrations, 5.5 mM (1 g/L) or 11.1 mM (2
g/L), to evaluate the competition FDG/glucose in different environment situations.

By the use of the LT device sixteen experiments on 4T1 cell cultures are per-
formed, with acquisitions lasting 180 minutes. The experiments are grouped into
two sets, according to the glucose concentration in the medium:

• group Gl1includes experiments ei[1], with i = 1, . . . , 8, at glucose concentration
1 g/L, approximating normal blood sugar levels in vivo;

• group Gl2 includes experiments ei[2], with i = 1, . . . , 8, at glucose concentra-
tion 2 g/L, approximating sugar level of diabetic disease.

For each experiment, the injected initial dose D of FDG is of the order of 106 Bq;
therefore, the amount of FDG is negligible with respect to that of glucose, i.e., FDG
is to be regarded as a perturbation of glucose.

The data obtained with the LT are the background and target counts, counting
cell-free area and cell area radioactivities under the detector. First, the collected
counts (CPS) are transformed in activities (Bq) by applying the efficiency coefficients
e = 3 Bq/CPS, estimated in Section 6.2; then, following the procedures outlined in
Section 6.3, the time-dependent total activity in the incubation medium Ai and the
time-dependent activity of the entire cell culture AT are reconstructed. For all exper-
iments, Table 8.1 reports the number of cells Nc, the administered FDG dose D, the
initial amount of FDG in the medium Ai0, the end-time total activity of the cell cul-
ture AT, and the slope of the line approximating AT (by means of linear regression,
with a coefficient of determination r2 oscillating between 0.97 and 0.99), as an esti-
mate of the growth rate of the activity of cells. All the time activity curves (TACs) of
the cell cultures AT are shown in Figure 8.1(a) for the Gl1 group and in Figure 8.1(b)
for the Gl2 group.

In general, the graph of AT exhibits a certain degree of variability among the ex-
periments because of the different experimental setup, e.g. different values of the
initial FDG dose and different number of cells seeded at each experiment. Nev-
ertheless, the qualitative behavior of the uptake curves is relatively well defined:
at each experiment AT grows almost linearly, with small random oscillations that
should be due to experimental errors. A similar behavior has already been observed
both in vitro and in vivo (see, e.g., Mertens et al., 2012 and references cited therein).
Moreover, tracer uptake is highly influenced by the concentration of glucose in the
medium. The growth rate is a first index of the FDG/glucose competition in FDG
uptake by cells: as glucose concentration doubles, the growth rate decreases of at
least one order of magnitude. This effect is directly visible by looking at the TACs
in Figure 8.2(a), comparing AT of experiments e3[1] and e2[2], performed at similar
injected dose D and number of cells Nc but owing to the two different Gl groups.
More precisely, it is evident an inverse correlation between FDG uptake and glucose
concentration, whereby AT is notably higher and grows at a higher rate in the group
Gl1 with respect to the group Gl2.

2PBS (phosphate buffered saline) is a balanced water-based salt solution used for a variety of cell
culture applications, such as washing cells before dissociation, transporting cells or tissue, diluting
cells for counting, and preparing reagents. The purpose of PBS is to maintain the constant pH and the
osmolarity of the cells. PBS washing is needed to remove the serum of media, before the administration
of substances under analysis.
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Nc [M] D [MBq] Ai0 [MBq] AT(180) [Bq] Growth rate [Bq min−1]

e1[1] 0.80 8.37 8.05 1.73 · 105 911
e2[1] 0.45 6.00 5.63 1.46 · 105 759
e3[1] 0.50 5.34 5.04 1.11 · 105 585
e4[1] 0.80 6.94 6.39 1.01 · 105 545
e5[1] 0.80 9.11 8.37 9.16 · 104 412
e6[1] 0.20 7.75 7.44 8.88 · 104 440
e7[1] 0.96 5.77 5.46 7.72 · 104 348
e8[1] 0.40 5.80 5.46 6.61 · 104 305

e1[2] 0.60 5.65 5.32 2.30 · 104 86
e2[2] 0.35 5.22 4.90 2.29 · 104 106
e3[2] 0.80 4.40 4.05 2.16 · 104 74
e4[2] 0.30 4.73 4.45 2.14 · 104 89
e5[2] 0.30 5.50 5.20 2.10 · 104 81
e6[2] 0.35 5.04 4.74 2.03 · 104 75
e7[2] 0.60 4.70 4.31 1.10 · 104 27
e8[2] 0.80 1.70 1.56 7.11 · 103 21

TABLE 8.1: Experimental values of the number of cells Nc, the admin-
istered FDG dose D, the initial FDG activity in the medium Ai0, the
final total activity of cells AT(180), and the growth rate of AT as the
slope of the line approximating the curve, for each LT experiment at

Gl1 and Gl2. Note that [M] refers to multiplication by 106.

An example of total activity in the incubation medium can be seen in Figure 8.2(b),
where we report Ai for the experiments e3[1] and e2[2], belonging to group Gl1 and
Gl2, respectively. In all cases, the graph of Ai is almost constant, in that the relative
loss of tracer from the medium with respect to the initial amount, in the total time-
interval of 180 minutes, is about 1%; in other terms, the cell culture uptake of tracer
from the incubation medium is small with respect to the total amount of tracer in
the medium. Moreover, the medium activity decreases with time almost linearly,
since, according to the definition (6.8) of Ai given in subsection 6.3.2, the cell culture
activity AT itself is almost linear. The difference in the medium activity of the Gl1
experiment with respect to the Gl2 one is in the decrease rate, which is more rapid
in the Gl1 curve than the Gl2 curve, reflecting the fact that the uptake of tracer from
the medium is greater in the case of lower glucose concentration. Note that, even if
e3[1] and e2[2] were conducted at almost equal initial dose D, there is a slight differ-
ence in the initial values of the two Ai curves, depending on the subtraction of the
wet activity at t = 0 (see definition (6.6) of Ai0 in subsection 6.3.2) which appears
different in the two experiments.

8.2 FDG kinetics

Direct inspection of the collected LT data, namely the cell culture activity AT and
medium activity Ai, does not answer questions concerning, e.g., the amount of tracer
contained in cells in a free form, or the efficiency of the phosphorylation process. To
investigate in quantitative terms the details of FDG kinetics, we analyze LT data
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FIGURE 8.1: TACs of FDG uptake by the cell cultures for: (a) all Gl1
group, (b) all Gl2 group.
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FIGURE 8.2: Example of TACs for two selected experiments, e3[1] in
Gl1 and e2[2] in Gl2, of (a) cell culture activity AT , and (b) medium

activity Ai.

by application of two compartmental model approaches: the new BCM (see sub-
section 7.2.1) accounting for the presence of the ER (described in Section 7.1), and
the standard SCM (see subsection 7.2.2) considering only cytosolic pools. In both
cases, the related compartmental inverse problem is solved through the regularized
Gauss-Newton (reg-GN) computational method (Algorithm 1.1, described in sub-
section 1.2.3), and we determine the model rate coefficients, representing the rate of
the action of the enzymes processing the FDG, and the corresponding compartment
activities, indicating the amount of tracer contained in each pool. In our analysis,
we also test the effects of a wrong estimate of the LT calibration coefficient on the
reconstructed values of the rate constants.

In order to apply the BCM, we need to fix the value of the intracellular relative
size of the ER with respect to the cytosol; following Milo and Phillips, 2015, we have
chosen v = 0.17, which holds for a rough ER in a liver hepatocyte cell and can be
considered a good approximation for a cancer cell.
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8.2.1 BCM and SCM rate constants

We analyze 4T1 cell culture data of the Gl1 and Gl2 experiments with both the BCM
and SCM. In general, the reconstructed values of the rate coefficients depend on the
available data, the mathematical model applied for their reduction, and the specific
conditions of each experiment (information reported in Table 8.1). As already ob-
served, experiments differ slightly from each other as to the value of the injected
FDG dose and the number of cells. Accordingly, we expect a reasonable variability
in the values of the rate constants among the experiments of the same Gl group.

The reconstructed rate constants of the Gl1 group are reported in Table 8.2 for the
BCM and in Table 8.3 for the SCM; the results of the Gl2 group are shown in Table 8.4
for the BCM and in Table 8.5 for the SCM. For each experiment, means and standard
deviations are computed over fifty runs of the reg-GN iterative algorithm, with dif-
ferent initialization of the kinetic parameters, randomly chosen in the interval (0, 1)
with uniform distribution. The reg-GN algorithm is rather robust with respect to the
choice of the regularization parameter, as shown in Delbary and Garbarino, 2018; in
this application the regularization parameter is fixed for each iteration at the value
of 106. The iterative algorithm is stopped when the relative error between the ex-
perimental cell culture activity and the model-predicted one, computed with the L2

norm, is lower than a threshold of the order of 10−2. Note that the standard devia-
tion of each rate constant keeps systematically small with respect to the mean value,
showing the robustness of the Newton-based inversion procedure. The BCM shows
a variation of the estimates relatively greater than the SCM, which can be ascribed
to the increase in the model complexity.

Before commenting on the results characterizing FDG kinetics, we focus on a
test on the model dependence on LT calibration by considering errors on the esti-
mated value of the efficiency coefficient e = 3 Bq/CPS. To this purpose, we analyze
each experiment with two more e values, namely e = 1.8 Bq/CPS as minimum, and
e = 4.2 Bq/CPS as maximum, thus accounting for a variability up to 40%. Figure 8.3
shows, as bar plots, the reconstructed rate constants of the Gl1 and Gl2 groups by
means of both the BCM and SCM: the mean values are referred to e = 3 Bq/CPS
and are computed over the experiments of the same Gl group, while the standard
deviations indicate the estimates variability with respect to 40% of changes on e. In-
dependently of the glucose concentration in the medium, increasing or decreasing
e value actually modified significantly k̄ f i and k̄∗f i, with standard deviations about
50% with respect to the averages. The high variability of the input parameters of the
two models inherently depends on the modeling assumptions, as shown in subsec-
tion 7.2.4. On the contrary, the uncertainty of the efficiency coefficient does not affect
estimated rate constants of intracellular processes. The output parameters ki f and k∗i f
are sufficiently stable with respect to changes in e showing a 10% of variability, while
the BCM ER-input parameter krp presents a standard deviation of 15%. Finally, it is
evident that kp f and k f r of the BCM, k∗p f and k∗f p of the SCM, are almost unaltered
by errors on e, since the standard deviations are smaller than 4% of the coefficients
mean values.

To summarize the outcomes on FDG kinetics given by the two models, we can
observe that the results show a systematic difference in the rate coefficients of the
groups Gl1 and Gl2, both in the case of BCM and SCM. In general, each rate constant
is higher in group Gl1 than Gl2, showing an inverse correlation with glucose concen-
tration in the medium. As to comparison between models, the values of (k̄ f i,k̄∗f i) and
(ki f ,k∗i f ) are essentially coincident, which means that they cannot be used to discrim-
inate, and the same holds for k f r and its equivalent k∗f p. The values of (kp f ,k∗p f ) are
highly dependent on the model, while krp has a unique representation in the BCM.
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k̄ f i ki f kp f krp k f r

e1[1] 0.0055± 0.0001 4.5202± 0.1203 0.7183± 0.0057 4.5278± 0.3462 0.0015± 0.0000
e2[1] 0.0080± 0.0003 4.5295± 0.2208 0.6450± 0.0824 4.2957± 0.7072 0.0033± 0.0027
e3[1] 0.0042± 0.0003 3.3684± 0.3673 0.8670± 0.0053 3.4819± 0.0694 0.0033± 0.0001
e4[1] 0.0152± 0.0018 6.3674± 0.8135 0.2586± 0.0009 3.8728± 0.2840 0.0021± 0.0000
e5[1] 0.0153± 0.0012 7.1280± 0.5583 0.1510± 0.0002 4.5027± 0.1900 0.0009± 0.0000
e6[1] 0.0070± 0.0001 4.4340± 0.0597 0.3169± 0.0007 3.5029± 0.1061 0.0035± 0.0000
e7[1] 0.0083± 0.0007 2.8722± 0.2710 0.1340± 0.0021 2.0803± 0.3009 0.0001± 0.0000
e8[1] 0.0050± 0.0006 2.4056± 0.3527 0.1939± 0.0030 2.2454± 0.6789 0.0014± 0.0000

mean 0.0086 4.4532 0.4106 3.5637 0.0020
std 0.0044 1.6344 0.2880 0.9555 0.0013

TABLE 8.2: Reconstructed BCM rate constants (min−1) for the 4T1
cell cultures of the Gl1 group, as means and standard deviations over
50 runs of the reg-GN algorithm. The last two lines report mean and
standard deviation of each parameter computed over the mean esti-

mates of the eight experiments.

k̄∗f i k∗i f k∗p f k∗f p

e1[1] 0.0060± 0.0000 4.9263± 0.0229 0.1080± 0.0000 0.0013± 0.0000
e2[1] 0.0084± 0.0003 4.7329± 0.1855 0.0995± 0.0001 0.0026± 0.0000
e3[1] 0.0047± 0.0003 3.7799± 0.2512 0.1226± 0.0002 0.0027± 0.0000
e4[1] 0.0144± 0.0001 5.8915± 0.0450 0.0417± 0.0000 0.0020± 0.0000
e5[1] 0.0150± 0.0002 6.9155± 0.0966 0.0250± 0.0000 0.0010± 0.0000
e6[1] 0.0069± 0.0000 4.3281± 0.0167 0.0503± 0.0000 0.0033± 0.0000
e7[1] 0.0078± 0.0011 2.6919± 0.3771 0.0222± 0.0006 0.0001± 0.0000
e8[1] 0.0048± 0.0008 2.3039± 0.3913 0.0307± 0.0001 0.0013± 0.0000

mean 0.0085 4.4462 0.0625 0.0018
std 0.0041 1.5411 0.0408 0.0011

TABLE 8.3: Reconstructed SCM rate constants (min−1) for the 4T1 cell
cultures of the Gl1 group, as means and standard deviations over 50
runs of the reg-GN algorithm. The last two lines report mean and
standard deviation of each parameter computed over the mean esti-

mates of the eight experiments.

In details, the following comments to the BCM and SCM results of Table 8.2 and
Table 8.3 of the Gl1 group, Table 8.4 and Table 8.5 of the Gl2 group, are now in order.

• Input rates. The reconstructed values of k̄ f i and k̄∗f i are very small, with order
of magnitude of 10−2 for Gl1 and of 10−3 for Gl2. We recall that k̄ f i is defined
as k̄ f i = ki f Vcyt/Vi, with Vcyt � Vi, which implies that the smallness of k̄ f i
is ultimately related to the choice of activities as state variables. Of course,
the contribution k̄ f i Ai cannot be discarded because it is of the order of 104

Bq min−1. Similar remarks apply to k̄∗f i. The medium values of k̄ f i and k̄∗f i in
group Gl1 are more than twice the corresponding values in group Gl2. This is
consistent with the expected competition between FDG and glucose molecules
during cell uptake from the medium. Finally, by looking at a fixed Gl group,
for each experiment k̄ f i and k̄∗f i are almost equal, showing that the input pa-
rameter is independent of the model chosen for the reduction of LT data.
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k̄ f i ki f kp f krp k f r

e1[2] 0.0007± 0.0000 0.4478± 0.0014 0.0762± 0.0002 0.7419± 0.0314 0.0011± 0.0000
e2[2] 0.0037± 0.0002 4.1000± 0.2389 0.1648± 0.0005 2.7640± 0.1737 0.0012± 0.0000
e3[2] 0.0067± 0.0001 4.9148± 0.0709 0.0915± 0.0002 2.8580± 0.2507 0.0011± 0.0000
e4[2] 0.0050± 0.0001 3.7226± 0.1081 0.1030± 0.0005 2.0989± 0.2556 0.0014± 0.0000
e5[2] 0.0004± 0.0001 0.3755± 0.1708 0.0901± 0.0072 0.5544± 0.1159 0.0001± 0.0000
e6[2] 0.0060± 0.0001 3.8472± 0.0915 0.0863± 0.0002 2.0873± 0.1871 0.0039± 0.0000
e7[2] 0.0033± 0.0000 2.5805± 0.0189 0.0305± 0.0001 1.7343± 0.3394 0.0003± 0.0000
e8[2] 0.0028± 0.0001 2.5695± 0.1682 0.0848± 0.0004 1.4337± 0.2013 0.0011± 0.0000

mean 0.0036 2.8197 0.0909 1.7841 0.0013
std 0.0023 1.6741 0.0369 0.8475 0.0012

TABLE 8.4: Reconstructed BCM rate constants (min−1) for the 4T1
cell cultures of the Gl2 group, as means and standard deviations over
50 runs of the reg-GN algorithm. The last two lines report mean and
standard deviation of each parameter computed over the mean esti-

mates of the eight experiments.

k̄∗f i k∗i f k∗p f k∗f p

e1[2] 0.0007± 0.0000 0.4862± 0.0000 0.0121± 0.0000 0.0009± 0.0000
e2[2] 0.0037± 0.0000 4.0784± 0.0237 0.0268± 0.0000 0.0012± 0.0000
e3[2] 0.0068± 0.0000 4.9247± 0.0251 0.0152± 0.0000 0.0011± 0.0000
e4[2] 0.0050± 0.0001 3.6819± 0.0273 0.0169± 0.0000 0.0014± 0.0000
e5[2] 0.0004± 0.0000 0.3802± 0.0075 0.0133± 0.0002 0.0001± 0.0001
e6[2] 0.0060± 0.0000 3.7841± 0.0260 0.0143± 0.0000 0.0039± 0.0000
e7[2] 0.0033± 0.0000 2.5509± 0.0011 0.0051± 0.0000 0.0003± 0.0000
e8[2] 0.0028± 0.0001 2.5560± 0.0894 0.0138± 0.0000 0.0011± 0.0000

mean 0.0036 2.8053 0.0147 0.0012
std 0.0023 1.6572 0.0060 0.0012

TABLE 8.5: Reconstructed SCM rate constants (min−1) for the 4T1 cell
cultures of the Gl2 group, as means and standard deviations over 50
runs of the reg-GN algorithm. The last two lines report mean and
standard deviation of each parameter computed over the mean esti-

mates of the eight experiments.

• Output rates. The estimated ki f and k∗i f are almost equal in the same Gl ex-
periment, and are of order of unity in both Gl1 and Gl2. The obtained values
are higher than expected from comparison with results obtained in normal
and cancer tissues (Ishibashi et al., 2016; Reivich et al., 1985; Røe et al., 2010;
Rusten et al., 2013). In addition, the group Gl1 shows a mean value of the
output parameter almost twice the one of Gl2, which seems to indicate an out-
going transfer of tracer from cells to medium inversely correlated with glucose
concentration in the medium. The apparent paradox is explained by the evalu-
ation of the net contribution−ki f A f + k̄ f i Ai to the time rate Ȧ f (or, for the SCM,
−k∗i f A∗f + k̄∗f i Ai in Ȧ∗f ), due to FDG exchange between incubation medium and
cytosol, which is strictly positive and greater in Gl1 than in Gl2 (as expected),
but rather small. This is consistent with the small decrease rate in time of the
medium activity Ai (see Figure 8.2(b)), and the expectation that only a small
fraction of the FDG in the medium is consumed by the system of cells.
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(b) Output rates (GLUT).

kpf k∗pf

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[m
in

−
1
]

×10−1

Gl1
Gl2

(c) Phosphorylation (HK).
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(d) BCM ER-input (G6PT).
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(e) Dephosphorylation (G6Pase).

FIGURE 8.3: Bar plot of the reconstructed rate constants for both
the BCM (k̄ f i, ki f , kp f , krp, k f r) and SCM (k̄∗f i, k∗i f , k∗p f , k∗f p) and for both
groups Gl1 (blue bars) and Gl2 (red bars). Each bar refers to the mean
value of the parameter computed over the experiments of the same
group, and the error bar identifies the variability of the parameter
value with respect to 40% of error on the LT efficiency coefficient

(e = 3± 1.2 Bq/CPS).

• The result that k̄ f i ' k̄∗f i and ki f ' k∗i f with respect to the same Gl experiments,
shows that the two rate constants cannot be used to discriminate between the
two models BCM and SCM. This also implies that the reconstructed tracer ex-
change between cells and incubation medium is independent of the model ap-
plied.

• Dephosphorylation rates. Both coefficients k f r and k∗f p refer to dephosphorylation
(G6Pase enzyme action), according to the BCM and the SCM, respectively, so
that they can be examined together. The estimated values are independent of
the model, since k f r and k∗f p are almost coincident for each experiment, and are
of the order of 10−3 with slightly lower values in Gl2 than Gl1. The correspond-
ing contribution to the rates of change of the activities may be disregarded, as
it is often done, following Sokoloff et al., 1977.

• Phosphorylation rates. The rate coefficients kp f and k∗p f are related to the process
of phosphorylation inside the cytosol (HK enzyme action). Phosphorylation
is the mechanism of entrapment of glucose substrate carried out by the cell
for energy needs. By looking at the reconstructed values at fixed model, the
FDG phosphorylation rate is almost four times faster in Gl1 than Gl2, consis-
tently with the corresponding half of glucose amount available in the medium
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and thus the lower competition FDG/glucose. Moreover, the phosphorylation
rate is the only kinetic parameter that differs between the reconstructed values
of the BCM and of the SCM. Indeed kp f (order of magnitude of 10−1) is sys-
tematically greater than k∗p f (order of magnitude of 10−2). The distinct charac-
terization of the phosphorylation process predicted by the competing models
is a consequence of the modeling designs: as shown in subsection 7.2.3, un-
der certain assumptions (e.g. conditions (7.22)) which can be considered as
satisfied by the parameters and compartment activities obtained, the relation
k∗p f ' vkp f , with v = 0.17, holds. The value of k∗p f of the SCM is comparable
with well-known results obtained through the Sokoloff model (Reivich et al.,
1985; Røe et al., 2010; Rusten et al., 2013; Sokoloff et al., 1977); the value of kp f
of the BCM agrees with results of direct measurements of HK enzyme action
reconstructed from the literature (Wang et al., 2015; Muzi et al., 2001). This
shows that the phosphorylation rate has been underestimated, and that the
proposed BCM gives rise to realistic results.

• ER-input rate. The parameter krp for the transfer of FDG6P from cytosol to ER
(G6PT enzyme action) is present only in the BCM, and has no equivalent in
the SCM. It assumes values of order of unity in both Gl1 and Gl2, showing a
relatively fast G6PT action. Moreover, it doubles when glucose concentration
in the medium halves, as direct consequence of the competition between the
two substrates.

8.2.2 BCM and SCM compartment activities

The difference between models is best evidenced by looking at the time curves of
activities in intracellular compartments. Substitution of the reconstructed rate con-
stants and the IF Ai into the analytical solution of the compartmental system of
ODEs provides the time-dependent compartment activities: for the BCM, by means
of equation (7.6) with the estimated k̄BCM, we obtain A f , Ap, and Ar, where the
latter comes from equation (7.5) as Ar = vĀr = 0.17Ār; for the SCM, through equa-
tion (7.13) with the estimated k̄∗SCM, we get A∗f and A∗p.

Figure 8.4 and Figure 8.5 show the model-predicted compartment TACs for ex-
periment e3[1] of the Gl1 group and experiment e2[2] of the Gl2 group, respectively,
with the BCM in panel (a) and the SCM in panel (b). The same curves are reported
in Figure 8.6 and Figure 8.7 for the BCM and the SCM, respectively, but they are
grouped as to compare the Gl1 and Gl2 reconstructed activities in each compart-
ment. Note that experiments e3[1] and e2[2] are obtained at similar injected dose D
and number of cells Nc, and we consider their TACs as representative of all experi-
ments conducted for the related Gl group.

The following considerations on the reconstructed activities indicating FDG lo-
calization in the compartments of the BCM and the SCM, for the Gl1 and Gl2 situa-
tions, are now in order.

• Free tracer. The activities A f and A∗f are almost equal at fixed Gl amount, and
are nearly constant, with the stationary value reached in the first few min-
utes of the experiment in both groups. In general, the constant value depends
on the experimental situation, and in particular on the glucose concentration
in the medium; indeed, as visible in Figure 8.6(a) and Figure 8.7(a), for both
models the free FDG amount is found higher in the Gl1 experiment than Gl2,
as a consequence of competition with glucose.
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• Phosphorylated tracer. The activity of phosphorylated tracer in the cytosol pre-
dicted by the two competing models is deeply different. The BCM provides a
curve Ap which is approximately constant, and almost one order of magnitude
smaller than A f , showing that a small (constant) amount of phosphorylated
FDG occupies the cytosol, where the free form of the tracer prevails over the
phosphorylated form; however, this also indicates a high efficiency of the pro-
cess of transfer of tracer molecules from cytosol to ER (i.e. an high krp rate). In
the SCM, the activity A∗p is almost linear and monotonically increasing; indeed,
the phosphorylated compartment contains the greater amount of radioactive
molecules and represents the pool where the FDG is accumulated intracellu-
larly. Again, at fixed model, the Gl1 curve is over the Gl2 one (Figure 8.6(b) for
the BCM, and Figure 8.7(b) for the SCM).

• ER tracer. The ER compartment represents the pool where FDG accumulates
for the BCM, as described by the TACs Ar in Figure 8.6(c), which increase in
time almost linearly and reach the maximum value at the end-time point. The
high value of krp, seen in both Gl groups, is consistent with the very small
(and almost constant) value of the activity Ap, so that the rate of transfer of
tracer from the cytosolic-phosphorylated compartment to the ER-localized-
phosphorylated compartment, that is krp Ap, is capable of sustaining the growth
of Ar. The notable difference in the Ar curves of the Gl groups is coherent: the
Gl1 experimental curve of total activity of the cell culture presents a growth
rate much greater than the Gl2 one, and the ER activities reflect such uptake
trend.

• The activity Ar can be naturally related with the activity A∗p, as they are the
activities of the two pools where tracer accumulates in time, with respect to
the two different models. They are quantitatively comparable, although the
ER compartment in BCM occupies a different volume with respect to the cy-
tosolic phosphorylated compartment in SCM, specifically a smaller volume
(Ver < Vcyt). Indeed, the related concentrations would be different, and in par-
ticular Cr bigger than C∗p. Moreover, the curves Ar and A∗p mimic the growth of
the total cell culture activity AT, since the other compartments present almost
constant activities.

• As to compare the two models, it can be shown that A∗p ' Ap + Ar, as direct
consequence of the fact that the BCM and SCM are used to explain the same LT
data, i.e. AT = A f + Ap + Ar = A∗f + A∗p (see subsection 7.2.3), with A f ' A∗f .

Altogether accounting for the documented sequestration of G6Pase in the ER
shifts the compartmental description of intracellular FDG kinetics from a standard
SCM towards a novel BCM, the latter configuring the same ER as the radioactivity
accumulation site. To overcome the limited spatial resolution of radionuclide detec-
tion and to corroborate this theoretical finding, we extend our study by verifying
whether this same ER fate also applies to the fluorescent 2DG analog 2NBDG (Scus-
solini et al., 2018b). To this purpose, three cell cultures are exposed to a solution
containing glibenclamide as a vital ER probe as well as glucose and 2NBDG at the
concentration of 5.5 mM and 50 µM, respectively. Incubation lasts 20, 50 or 90 min-
utes, before imaging with confocal microscopy with a spatial resolution of 400 nm.
Images are analyzed using a dedicated routine of ImageJ and document a progres-
sive increase in the colocalization between the hexose fluorescence and ER signal
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(Figure 8.8). Therefore, the BCM prediction of FDG accumulation in the ER is con-
firmed by independent imaging experiments showing a progressive ER accrual of
the fluorescent FDG analog 2NBDG.

A further comment on the BCM characterization of FDG path in cancer cells
concerns the ER pool. First, the BCM automatically depicts intracellular FDG ac-
cumulation in phosphorylated form inside the ER, as soon as the existence of the
ER compartment is admitted, without any forcing contribution. Second, the BCM
prediction is confirmed by independent imaging experiments showing a progres-
sive ER accrual of the fluorescent FDG analog 2NBDG (Figure 8.8). Finally, the BCM
configuration implies necessarily specific values for the rate constants, and thus for
the efficiency of the action of the enzymes processing FDG, which can be different
from state-of-the-art values used so far to describe FDG kinetics in cancer tissues.
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FIGURE 8.4: Model-predicted time curves of the compartment activ-
ities for the experiment e3[1] of the Gl1 group: (a) A f , Ap, and Ar of

the BCM; (b) A∗f and A∗p of the SCM.
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FIGURE 8.5: Model-predicted time curves of the compartment activ-
ities for the experiment e2[2] of the Gl2 group: (a) A f , Ap, and Ar of

the BCM; (b) A∗f and A∗p of the SCM.
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FIGURE 8.6: Reconstructed TACs of the BCM compartments for ex-
periments e3[1] (Gl1) and e2[2] (Gl2).
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FIGURE 8.7: Reconstructed TACs of the SCM compartments for ex-
periments e3[1] (Gl1) and e2[2] (Gl2).

FIGURE 8.8: Imaging confirmation of radioactivity accumulation in
ER: column A reports the images obtained with the vital ER staining
glybenclamide; column B shows the simultaneous distribution of the
fluorescent 2DG analog 2NBDG; the white color in column C identi-
fies the colocalization of ER and 2NBDG signal at a spatial resolution
of 250 nm, and column D is the Costes representation of the same

images. Images are obtained at 20, 50 and 90 minutes.
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Part IV

Molecule-scale



104

Chapter 9

Molecular Interaction Map for the
cell signaling network

Molecular Systems Biology is a cross-disciplinary field of research which aims at ex-
plaining cell behavior and function at the level of chemical interactions. Here, the
application of chemical reaction networks (CRNs) is required and extensive. In fact,
most biological characteristics arise from complex interactions between the cell’s nu-
merous constituents, such as proteins, DNA, RNA and small molecules. Hence,
there is a need to investigate the chaotic network underlying these processes in or-
der to understand human diseases. A key challenge for biology in the twenty-first
century is to model and study complex intracellular biochemical system networks
that contribute to the function of a living cell and that underline specific disease
mechanisms (Barabási and Oltvai, 2004).

Among the several disorders arising from aberrations in cell regulatory mecha-
nisms, cancer is the most examined, due to its high incidence on the human popu-
lation. Cancer cell behavior is driven by alterations in the processes, i.e. chemical
interactions, that cells use to sense and respond to diverse stimuli. The development
of suitable models schematizing the structure and dynamics of cellular biochemical
organization can provide some unique insights and predictions into how regulatory
and metabolic processes give rise to cancer formation and progression, and can sug-
gest novel strategies for prevention and treatment of malignancy. With this aims,
a huge Molecular Interaction Map (MIM) for the colorectal cancer (CRC) has been
designed in Tortolina et al., 2015. A MIM is essentially a unambiguous graphical
representation of a CRN, used to depict molecular interactions of interest occurring
within a cell.

The CRC MIM is probably the largest ever constructed and modeled, at least to
our knowledge, and contains an interconnected network of chemical reactions re-
lated to the G0-G1-S cell cycle transition, grouped into pathways downstream of the
TGFβ, WNT and EGF families of receptor ligands, playing an important role in the
CRC pathogenesis. In chemical terms, the MIM is a huge CRN governed by the law
of mass action, and therefore, in mathematical terms, a huge non-linear (quadratic)
system of ordinary differential equations (ODEs). Using the MIM it is possible to
simulate the cancer state by introducing alterations of specific chemical reactions,
known as mutations, and to test the effects of targeted drugs, called inhibitors, for
the treatment of cancer.

The first section illustrates the biochemical mechanisms by which cell functions
are regulated, i.e. the processes underpin the cell signaling, and provides the fun-
damental chemical notions for the understanding of the intracellular biochemical
system networks. In the second section, the features of the MIM model are de-
scribed. The third section goes deeper in the MIM chemistry by specifying the chem-
ical species interplay, the occurrence of chemical reactions, and the characterization
of mutations/inhibitors.
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9.1 Cell signaling network

Cell signaling is part of any communication process that governs basic activities of
cells and coordinates all cell actions. The mechanism by which stimuli are transmit-
ted through a cell in order to produce a cell response is an intracellular signaling
cascade, i.e. a series of chemical reactions within the cell. A signaling pathway de-
scribes a group of molecules in a cell that work together to control one or more cell
functions: after the first molecule in a pathway receives a signal, it activates another
molecule, and so on, until the last molecule is activated and the cell function is car-
ried out. Cell signaling research involves studying the spatial distribution and the
temporal dynamics of the components of signaling pathways that are activated by
extracellular signals in various cell types.

The basic mechanism involving the conversion of a signal from outside the cell
to a functional change within the cell is signal transduction, by which a chemical or
physical signal is transmitted through a cell as a series of molecular events, which ul-
timately results in a cell response. The chief actors carrying out the duties within the
cell are the proteins, which perform as structural and motor components, enzymes,
signaling molecules, and more in general regulatory molecules. Protein-protein in-
teractions and signal transduction pathways are involved in biological processes at
almost every level of cell function.

FIGURE 9.1: The signal transduction process for a cell.

The signal transduction process works as in Figure 9.1, and pursues the following
steps.

1. The molecules responsible for detecting extracellular chemical signals are cell
surface proteins termed receptors (signal transducers). Each receptor is linked
to a specific cell signaling pathway. When a signaling molecule, known as
ligand (primary messenger), binds to its corresponding receptor, it activates or
inhibits the receptor’s associated biochemical pathway.

2. For many cell surface receptors, ligand-receptor interactions are not directly
linked to the cell response. The activated receptor must first interact with an-
other protein, called primary effector. Such effectors are often linked to second
messengers, which can activate secondary effectors, and so on. The changes
elicited by ligand binding in a receptor give rise to a chain of biochemical
events along a signaling pathway.

3. The signaling cascade ends with the cell response, as the ultimate physiological
effect of the ligand on the cell behavior.
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4. The cell responses imply changes in the transcription or translation of genes,
and post-translational and conformational changes in proteins, as well as changes
in their location.

Each component (or node) of a signaling pathway is classified according to the role
it plays with respect to the initial stimulus. When signaling pathways interact with
one another they form networks, which allow cell responses to be coordinated, often
by combinatorial signaling events.

FIGURE 9.2: Schematic representation of the cell cycle phases G0, G1,
S, G2, and M (from Myriad myPlan, Salt Lake City, USA).

The signaling pathways are the basic mechanisms controlling cell growth, pro-
liferation, metabolism and many other processes. In other words, cell signaling con-
trols the cell cycle, in which a cell grows, replicates its DNA and divides. The cell
cycle, represented in Figure 9.2, consists of four distinct phases: G1 phase in which
cell increases in size, S phase (synthesis) for DNA replication, G2 phase in which
cell continues to grow, and M phase (mitosis or meiosis) for cell division into two
daughter cells. The phase G0 is a resting phase where the cell has left the cycle and
has stopped dividing.

Signaling pathways also include mechanisms which ensure that errors therein
are corrected, and if not, the cell commits suicide in a systematic cell process known
as programmed cell death, or apoptosis. Cancer cells differ from normal body cells
in their ability to divide indefinitely and to evade programmed cell death. As a
result of genetic mutations, in cancer cells the signaling pathways are abnormally
activated and the cell regulatory process malfunctions, resulting in uncontrolled cell
proliferation. Identification of key factors involved in both apoptosis and cell cycle
regulation may help to develop targeted drugs, and drug combinations, able to block
the mutated pathways in cancer pathologies.

9.2 The MIM model

At the biochemical level, we may consider a normally differentiated cell as a very
complex network of signaling pathways, and a cancer cell as a cell bearing in the or-
der of two dozen mutated pathways (Wood et al., 2007). With the aim of generating
a model of signaling mechanisms, we focused on a functionally relevant sub-region
of the cell signaling network, in particular the G0-G1-S cell cycle transition (Tortolina
et al., 2015), a crucial decisional moment for cell replication, and we modeled an in-
terconnected network downstream three relevant cancer pathways in the CRC: the
TGFβ, WNT and EGF pathways.

https://myplanlungcancer.com/what-does-myplan-lung-cancer-measure/
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The signaling network is graphically presented as a MIM. The MIM graphic no-
tation provides a standardized method to draw diagrams for cellular bio-regulatory
networks. The first formulation of this kinds of maps was made in Kohn, 1999 for
the description of the mammalian cell cycle control and DNA repair systems. The
MIM diagram convention “was designed capable of unambiguous representation of
networks containing multi-protein complexes, protein modifications, and enzymes
that are substrates of other enzymes” (Kohn, 1999). The potential of the MIMs is
the ability of showing all of the many interactions in which a given molecule may
be involved. Our MIM has been created using the symbol table originally proposed
by Aladjem et al., 2004 and Kohn et al., 2006, slightly adapted to fit to some new
semantic requirement (Castagnino et al., 2010). The implementation of the MIM fol-
lowed two phases: a training phase based on fitting the molecular results of more
than one hundred, high Impact Factor, pertinent papers; a validation phase for the
direct validation on experiments.

The CRC MIM, shown in Figure 9.3, represent a broad structure with a complex
connectivity: it includes multiple overlapping pathways, which in turn consider sev-
eral chemical species involved in a huge number of chemical reactions. Pathways,
i.e. paths as simple sequences of molecules that transmit information, are the basic
multi-molecular structures of the MIM, through which knowledge of biochemical
interactions among proteins and other molecules is organized.

Basically, the MIM model combines three different features.

• The MIM as diagram (see Figure 9.3):

– each colored boxed node is a chemical species defined as basic, i.e. a
species belonging to the set of proteins originating the chain of chemi-
cal reactions in which other composed species, bounded-forms of basic
species, are chemically created;

– each arrow with an added node in-between represents a chemical reaction
and the complexes involved;

– a node surrounded by an oval in light yellow indicates a species poten-
tially affected by a mutation;

– the underlined blue names indicates the targeted inhibitor drugs, relevant
in colorectal cancer.

• The MIM as CRN provided by mass action kinetics (see Chapter 2):

– 447 chemical species (85 basic and 362 composed);

– 870 chemical reactions (348 reversible and 174 non-reversible reactions),
and thus 870 reaction rate constants.

The CRN graph robustness/sensitivity to random perturbations has been ex-
plored in Ambrosi et al., 2013. The intent of the study was to test the degree of
tolerance of the network to parameter uncertainty, and the CRC MIM resulted
to be a non-isomorphic directed graph: there are privileged directions of prop-
agation of the information, and these privileged directions are recognized at
the biological level as the signaling pathways. The CRN dynamics is well-
modeled by a non-linear system of ODEs: the CRC MIM system is quadratic
with respect to the molar species concentrations, and linear with respect to the
reaction rate constants.
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FIGURE 9.3: MIM referring to the TGFβ, WNT and EGF pathways,
and the syntactic rules adopted for its construction (from Tortolina et

al., 2015).
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• The MIM as transcription region controlling the expression of two key onco-
genes, MYC (c-myc) and CCND1 (cyclin D1) mRNAs. The function for MYC
and CCND1 are reconstructed by using thermo-statistical derivation of a tran-
scription rate (Frank, Carmody, and Kholodenko, 2012), relating the transcrip-
tion rates of the genes to the concentrations of their upstream transcriptional
activator and repressor complexes.

The MIM, applied to CRC, is a huge network but still incomplete with respect
to all the possible signaling pathways and chemical interactions supplementing the
cell bio-regulatory network. Nevertheless, it can be considered a good starting point.
In fact, the CRC MIM can be adapted to represent different types of cancer, and its
capabilities go beyond the simple representation of cell signaling network. Start-
ing from an initial physiological condition, the model can be adapted to (i) simu-
late individual pathologic cancer conditions, implementing individual set of alter-
ations/mutations in relevant oncoproteins, and (ii) test the effects of targeted in-
hibitor drugs on different cancer mutation profiles in a personalized medicine ap-
proach.

9.3 MIM chemistry

At the biochemical level, how does the MIM network works? In order to answer
to this question, we need to consider the chemical components involved in the map
and account for possible mutations and inhibitors.

9.3.1 MIM chemical components

The CRC MIM, as modeled in Tortolina et al., 2015, considers the signaling network
made of three pathways, namely the TGFβ, WNT and EGF pathways.

The TGFβ, WNT and EGF are members of families of ligands, present in the
extracellular medium. In particular, the TGFβ and EGF are growth factors, naturally
occurring substances capable of stimulating cellular growth, proliferation, healing,
and cellular differentiation, and WNT is a signaling glycoprotein. The MIM ligands
bind to specific transmembrane receptors: the TGFβR-I/TGFβR-II are type I and
type II receptors for the TGFβ ligands, FRZ are receptors for WNT ligands, and the
ErbB family receptors receive the EGF signal. The chain of biochemical events along
the three different signaling pathways involve specific types of chemical species:
signaling molecules, kinases, phosphatases, transcription factors, small molecules,
and phospholipases.

The list of all CRC MIM chemical components can be found in Tortolina et al.,
2015. Here, we describe the basic types of chemical species and chemical reactions
present in the CRC MIM. Note that each MIM reaction involves at most two species
in the reactant and product complexes.

• In general, suppose to have a simple conversion reaction in which the chemical
species A transforms into the species B at reaction rate k f :

A
k f→ B . (9.1)

If the concentration of the species A is constant in time, then the reaction can
be rewritten equivalently as

∅
k f xA→ B , (9.2)
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where the null species ∅ takes the place of A, and the rate constant becomes
k f xA, with xA the constant concentration of A.

• The interaction between a ligand L and a receptor R is the reversible reaction

L + R
k f

�
kr

LR , (9.3)

with rate constants k f (forward) and kr (reverse). Since the concentration of the
ligand can be considered not consumable, i.e. constant in time, the receptor-
ligand reaction is rewritten as

R
k f xL

�
kr

LR , (9.4)

where xL denotes the concentration of the ligand L, and thus the forward reac-
tion rate is modified into the constant product k f xL.

• The homodimerization is a chemical reaction in which two identical molecules
join to form a homodimer. If A is a chemical species, the homodimerization of
A is given by

A + A � 2A . (9.5)

• The phosphorylation of a protein is the major molecular mechanism through
which protein function is regulated in response to extracellular stimuli. The
phosphorylation state of a molecule can affect its activity, reactivity, and its
ability to bind other molecules. All types of extracellular signals produce most
of their diverse effects by regulating phosphorylation of specific proteins, i.e.
the signals are propagated through the cell by chains of phosphorylations. A
kinase is the enzyme responsible for the protein phosphorylation: kinases cat-
alyze the transfer of phosphate groups from high-energy, phosphate-donating
molecules, to specific substrates. Let A be a protein, and K a kinase; then the
phosphorylation chain of reactions is

A + K � AK → AP + K , (9.6)

where P indicated the phosphate group. The phosphorylation process consists
of two steps: one reversible reaction for the creation of the AK complex, and
one non-reversible reaction in which the kinase K binds a phosphate group to
A and unbinds the phosphorylated protein AP.

• The counterpart of phosphorylation is the dephosphorylation process, by which
the phosphate group is removed from a phosphorylated protein as a result
of the enzyme phosphatase. Let AP be a phosphorylated protein, and Pase a
generic phosphatase; then the dephosphorylation chain of reactions is

AP + Pase � AP_Pase→ A + Pase . (9.7)

The dephosphorylation process involves a first reversible reaction for the bind-
ing of the phosphatase Pase to the phosphorylated protein AP, and a second
non-reversible reaction in which the complex AP_Pase dissociates into the de-
phosphorylated protein A and the phosphatase Pase.
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• A transcription factor is a protein that controls the rate of transcription of genetic
information from DNA to mRNA, by binding to a specific DNA sequence. The
function of transcription factors is to regulate genes in order to make sure that
they are expressed in the right cell at the right time and in the right amount
throughout the life of the cell and the organism. Groups of transcription factors
function in a coordinated fashion to direct cell division, cell growth, and cell
death throughout life.

9.3.2 MIM mutations and inhibitors

The cancer state of a cell can be inserted into the MIM as a set of mutations affect-
ing one or more pathways. Potential mutations belonging to the same pathway are
hypothesized as being mutually exclusive (Yeang, McCormick, and Levine, 2008),
especially if very close along the pathway. Each pathway might contain a dozen sig-
naling molecules, and, in principle, one of them could be mutated/altered through
gain or loss of function. A mutation is the permanent alteration of the nucleotide
sequence of the genome, resulting from damages to DNA, as errors during DNA
replication. Mutations can result in many different types of change in sequences:
mutations in genes can either have no effect, alter the product of a gene, or prevent
the gene from functioning properly or completely. One direct effect of a mutation is
to change a protein produced by a gene, in such a way that the mutant protein results
with a single amino acid change or wide-range amino acid changes in the chains of
amino acid constituting the protein.

One simple way of modeling a mutation in a signaling pathway is to alter the
physiological concentration of the extracellular ligand, as to simulate the transmis-
sion to the cell of an abnormal signal, and thus to generate a non-physiological
amount of specific phosphorylated proteins. Another typical example of mutation
is the one in which the behavior of a mutant protein follows a modification of its de-
phosphorylation reaction: once the mutant protein is phosphorylated, the related
phosphatase does not identify the target phosphorylated molecule and therefore
does not bind to the phosphorylated mutant protein. The consequence is an altered
production of phosphorylated forms of the mutant protein: the mutant protein is all
phosphorylated and the amount of protein in free-form is negligible.

Let denote with Â the mutated version of the protein A, and with ÂP its phos-
phorylated form. Let Pase be the associated phospahatase. Then, the species ÂP and
Pase do not interact and the dephosphorylation reaction does not occur:

���
���

���
���

ÂP + Pase
k̂ f

�
k̂r

ÂP_Pase→ Â + Pase . (9.8)

This means that the complex ÂP_Pase is not created and thus Â is not released.
The dephosphorylation reaction is canceled simply by imposing that the forward
reaction rate of binding between the phosphorylated mutant protein and the phos-
phatase is negligible, i.e. k̂ f = 0. Following this idea, a set of mutations character-
izing a cancer cell coincides mathematically to a suitable mask modifying the set of
rate constants, in such a way that the forward reaction rates of interaction between
phosphorylated mutant proteins and phosphatases are set to zero.

The MIM considers several inhibitors as molecular targeted drugs for the treat-
ment of the colorectal cancer. In general, there exists inhibitor molecules, usually
enzymes, with the peculiar function of binding to a protein in order to decrease its
activity. Inhibitors can occur naturally in the regulation of metabolism, or can be
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implemented as artificial medicinal molecules, simply drugs, with the aim of treat-
ing diseases. Targeted cancer therapies aim at blocking the growth of cancer cells by
interfering with specific molecules (targets) involved in carcinogenesis and tumor
proliferation, rather than by simply acting on all rapidly dividing cells, both normal
and cancerous cells, as done by chemotherapy. The advantages of targeted therapies,
with respect to standard chemotherapy, rely on the specificity of targeted drugs, de-
signed to interact with their target and not to kill cells, and on the non-cytotoxicity
but cytostatic property of blocking tumor cell proliferation.

The development of targeted therapies requires the identification of good tar-
gets. One approach to identify potential targets is to determine whether cancer cells
produce mutant proteins that drive cancer progression. Once a candidate target has
been selected, the next step is to develop a therapy that affects the target by inter-
fering with its ability to promote cancer cell growth or survival. A targeted therapy
could both reduce the activity of the target or prevent it from binding to a receptor
that it normally activates.

The inhibitors inserted in the MIM act on the chains of chemical reactions in
which mutations occur, in order to regulate the transcription of the oncogenes at the
end of the signaling cascade. The inhibitors can affect directly the mutant protein or
can act on the proteins connected to the mutant one. Let ÂP be the phosphorylated
mutant protein, and B a protein that ÂP activates by phosphorylation:

ÂP + B � ÂP_B→ ÂP + BP . (9.9)

If I is an inhibitor, then two possible chemical reactions can be implemented.

1. The targeted molecule is the phosphorylated mutant protein ÂP:

ÂP + I � ÂP_I . (9.10)

As a result, the inhibitor decreases the activity of the mutant protein by bind-
ing to it, and consequently reduces the amount of downstream phosphorylated
proteins activated by ÂP. Nevertheless, this approach acts directly on the mu-
tation source, but does not prevent the occurrence of drug resistances which
may emerge from mutations in downstream proteins.

2. The targeted molecule is the downstream phosphorylated protein BP:

BP + I � BP_I . (9.11)

The inhibitor binds to BP and prevent its interaction with other proteins.

Obviously, the choice on the type of targets depends on the available inhibitors
produced by the pharmaceutical companies. The inhibitor amount to be used should
be chosen as to restore the physiological concentration of the phosphorylated pro-
teins. Since the reaction rate constant for the inhibitor-target affinity is known, and
fixed, from the pharmacological production, the only way to regulate the inhibitor
action is through its concentration. In the case of drug resistances, the solution may
be a suitable combination of inhibitors.
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Chapter 10

MIM parameterization

The Molecular Interaction Map (MIM) for the colorectal cancer (CRC), as designed
in Tortolina et al., 2015, is a huge chemical reaction network (CRN) mathematically
modeled by means of non-linear parameter-dependent system of ordinary differen-
tial equations (ODEs). The state variables of the system are the concentrations of the
chemical species, and the parameters are the reaction rate constants. In a real experi-
mental setting, the measurable quantities are the concentrations of specific chemical
species, while the rates of the chemical reactions are unknowns. The reaction rates
indicate the chemical affinities between the species and represent the real informa-
tion source on how the network works. The uncertain knowledge of the reaction
parameters makes the need for (i) a mathematical model relating the available data
with the unknowns, and this is given by a suitable CRN, and (ii) qualitative and
quantitative tools able to estimate reliably the values of the reaction rates.

The estimation of CRN parameters is a non-linear ill-posed inverse problem. In
the context of computational systems biology, a lot of methods have been devel-
oped for the solution of the network parameterization problem, and several recent
research articles deal with this issue. Nevertheless, most of them are simply theo-
retical, or apply the proposed methods on simple low-dimensional networks. The
complexity of our MIM, due to its high dimensionality and its dynamical properties
not conforming with well established results on equilibria and stability of CRNs,
makes state-of-the-art methods not efficient in reconstructing the model parameters.
In fact, the optimization problem of finding the best set of reaction parameters fitting
the data on species concentrations is a non-convex problem suffering of many local
minima. Moreover, the MIM network seems to suffer from a non-identifiability of
the rate constants with respect to the available data. As a preliminary application,
we address the problem of parameterizing a single MIM pathway, in particular the
TGFβ-pathway, in a simulation setting.

The first section introduces the general problem of estimating the parameters
in the computational systems biology framework, providing literature references
on methods applicable for the solution of the CRN parameterization. The second
section considers the application on the TGFβ-pathway: first, the direct problem
is described, and then a first test for estimating the parameters of the associated
network is carried out by means of a Bayesian approach.

It should be noticed that the objective of this chapter is just to provide some hints
about the kind of mathematics and computational analysis that can be undertaken
within this inverse problem framework for systems biology. The systematic investi-
gation of these research paths will be the objective of a further scientific activity out
of the one performed during the three years of my PhD program.
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10.1 The parameterization inverse problem: generalities

FIGURE 10.1: Computational Systems Biology: biology driving tech-
nology driving computation (from Institute for Systems Biology,

Seattle, USA).

Computational systems biology is the framework in which biology, technology,
and computational methods are integrated with the aim of gaining a better under-
stating of biological phenomena (Figure 10.1). Computational systems biology has
two distinct branches: knowledge discovery, or data-mining, which extracts the hid-
den patterns from huge quantities of experimental data forming hypotheses as a
result, and simulation-based analysis, which tests hypotheses with in silico experi-
ments providing predictions to be tested by in vitro and in vivo studies.

A central challenge in computational modeling of biological systems is the de-
termination of the model parameters. The interaction properties and the dynam-
ics of biological systems are described by a mathematical model, fixing the system
structure and comprising ODEs with constant parameters. The knowledge of the
parameter values is crucial whenever one wants to obtain quantitative, or even qual-
itative, information from the models. Parameter values may be inaccessible via ex-
periments, or simply unknown. Other variables involved in the model can be as-
sessed: the technology role in computational biology is accomplished by modern
high-throughput techniques (e.g., PCR, immunoblotting assays, fluorescent mark-
ers, mass spectrometry-based quantitative proteomics) able to provide time-series
quantifications of genes, proteins, or metabolites on a cellular level. However, the
measurements tend to be very noisy and taken at a limited number of time points.
Moreover, the information on model parameters contained in the available data is
only implicit and has to be extracted by using efficient and robust computational
methods. The solution of this inverse problem is a key issue in computational sys-
tems biology.

In general, two different classes of problems can be identified (Engl et al., 2009):
(i) parameter estimation from experimental data sets, aiming at determining the
parameter values or at least upper and lower bounds, and (ii) qualitative inverse
problems, devised to explore the areas in parameter space that give rise to a given
qualitative behavior, e.g., multiple steady-state solutions, oscillations, deterministic
chaos, etc.

https://systemsbiology.org/about/what-is-systems-biology/
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The parameter estimation problem in systems biology is generally formulated
as a non-linear optimization problem that minimizes an objective function (Reali,
Priami, and Marchetti, 2017; Ashyraliyev et al., 2008), representing the discrepancy
between experimental data and model predictions, which are obtained from sim-
ulations using the forward model with the estimated parameters. The underlying
premise is that the optimal parameter set is the one which gives rise to simulated
data matching the experimental observations as well as possible. Computation-
ally, the minimization of the objective function may involve a combination of local
(gradient-based) and global (mostly stochastic) methods. Since even the order of
magnitude of the parameters may be unknown, it is important to complement the
rapid convergence of local optimization algorithms with the comprehensive nature
of global search techniques. A general review of local, global, and hybrid methods
for parameter estimation in systems biology can be found in Ashyraliyev et al., 2008.

We focus on the parameter estimation inverse problem in biochemical networks,
a problem we refer to as parameterization. The biochemical networks are mathemati-
cally modeled by CRNs, intrinsically characterized by non-linear dynamical systems
where the unknown parameters are the reaction rate constants. Parameter estima-
tion in non-linear dynamics is extremely hard. In fact, a large class of CRNs exhibits
a wide spectrum of parameter sensitivities, evenly distributed over many orders of
magnitude: if a model is highly sensitive to changes in the parameter values, small
experimental errors may lead to large deviations in the best fit parameters, even
though large differences in experimental outcomes are not observed; if a model is in-
sensitive to alterations in the parameter values, then the experimental outcome may
not be appreciably altered by those parameters. An example of sensitivity analysis
for parameter estimation in large scale biochemical reaction networks can be found
in Fröhlich et al., 2017. The latter remark indicates the ill-posedness of the param-
eterization inverse problem. Clearly, size and complexity of the network increase
the difficulty of parameter identification. When the number of unknown parame-
ters is very large, it is often impossible to find a unique solution to this problem, and
the model is non-identifiable. In this case, one finds several sets of parameters, or
ranges of values, that are all equally likely to give a good fit with the experimental
data. The definitions of a priori and a posteriori identifiability in the context of com-
putational systems biology are illustrated in Ashyraliyev et al., 2008. A comparison
of general approaches for testing the parameter identifiability of biological networks
in systems biology can be found in Raue et al., 2014. These remarks suggest that the
search for the exact individual values of the parameters could be a hopeless task in
most cases (Ashyraliyev, Jaeger, and Blom, 2008).

The development of efficient strategies for determining the parameters in a reli-
able manner is an important mathematical problem with significant practical impli-
cations. Various deterministic and stochastic optimization methods have been used
to solve the parameterization ill-posed non-linear inverse problem. Examples are
linear and non-linear least-squares fitting (Mendes and Kell, 1998), simulated an-
nealing (Kirkpatrick, Gelatt, and Vecchi, 1983), genetic algorithms (Srinivas and Pat-
naik, 1994), and evolutionary computation (Moles, Mendes, and Banga, 2003). An-
other considerable class of methods applied to biological systems makes use of the
Bayesian approach, especially Monte Carlo techniques, usually in the case of lower-
dimensional problems and/or availability of a relatively high number of data sam-
ples (Ballnus et al., 2017; Busetto and Buhmann, 2009; Toni et al., 2009). Maximum-
likelihood estimation has also been utilized (Bortz and Nelson, 2006; Müller et al.,
2004). More recently, the parameter estimation problem for computational biology
has been revisited in the framework of control theory, by considering approaches
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based on Luenberger-like (Hulhoven, Wouwer, and Bogaerts, 2006), Kalman filter
(Lillacci and Khammash, 2010; Sun, Jin, and Xiong, 2008), and high-gain observers
(Bullinger and Allgower, 1997).

A recent paper by Reali, Priami, and Marchetti, 2017, reviews the most frequently
used methodologies for global optimization that have been successfully applied
in computational systems biology. In particular, focusing on a problem with non-
linear non-convex objective function and with multiple possible solutions, three al-
gorithms are described: the multi-start non-linear least-squares method based on
a Gauss-Newton approach, the random walk Markov Chain Monte Carlo method,
and simple Genetic Algorithm. Besides a number of success, the non-linear opti-
mization approach shows a number of limitations. First, the computational cost is
very high. Second, although measurement errors can be incorporated into the ob-
servation equations, it is difficult to integrate system noise into system equations.
Third, due to the high nonlinearity of the dynamics, non-linear optimization for the
parameter estimation of CRNs is often multi-modal. Therefore, its solutions may not
reach global optimum and often converge to a local optimum.

10.2 Application to the TGFβ-pathway

For the ease of comprehension and handling of both the system equations and the
parameterization inverse problem, we consider a single pathway of the MIM devel-
oped in Tortolina et al., 2015, namely the TGFβ-pathway.

In this section, we provide the TGFβ-pathway forward model, i.e. the set of
chemical components and the system of ODEs composing the associated CRN. More-
over, we analyze the TGFβ-CRN kinetics in qualitative terms, by exploiting the state-
of-the-art properties of CRNs illustrated in Section 2.2. Then, we address the prob-
lem of parameterizing the TGFβ-CRN: starting from simulated data of dynamic con-
centrations of the chemical species, we reconstruct a subset of reaction rate constants
(precisely, the reverse parameters) by means of a Monte Carlo method, known as sin-
gle component Metropolis Hastings algorithm, and we show the results with respect
to different noise levels on the concentration data. We remark that all the computa-
tional part has been implemented in the Matlab programming environment.

10.2.1 TGFβ-pathway direct problem

The TGFβ-pathway contains the signaling cascade downstream the TGFβ family of
extracellular ligands. The entire MIM considers highly interconnected pathways,
and the complete isolation of one of them is not possible. Hence, a minor part of the
adjacent WNT-pathway is also taken into account.

The temporal sequence of the TGFβ-pathway chemical reactions may be de-
scribed as follows. The TGFβ ligand forms a homodimer, and, simultaneously, the
TGFβR-I and TGFβR-II receptors follow a homodimerization. The TGFβ homodimer
binds the TGFβR-II homodimer, which in turn binds the TGFβR-I homodimer, phos-
phorylating it and generating a hexamer. This phosphorylated hexamer binds to the
downstream signaling proteins and gives rise to a sequence of phosphorylation re-
actions. In this way, the extracellular signal is propagated through the pathway.

The MIM for the TGFβ-pathway is represented in Figure 10.2:

• the boxed nodes are the basic species;

• the black dots indicate the composed species;



Chapter 10. MIM parameterization 117

FIGURE 10.2: MIM referring to the TGFβ-pathway.

• the black arrows denote the chemical reactions;

• the green lines stand for phosphorylation;

• the blue parallel lines identify the phosphorylated species;

• the red lines connect the phosphatases and the phosphorylated species for de-
phosphorylations.

The TGFβ-pathway, together with a small portion of the WNT-pathway, counts for:

• 2 ligands (TGFβ and WNT);

• 50 chemical species (18 basic and 32 composed);

• 65 chemical reactions (26 reversible and 13 non-reversible), and thus 65 reac-
tion rate constants (39 forward and 26 reverse).

The ligands are considered not consumable quantities, and therefore as species which
maintain constant concentrations in time. The ligand-receptor interactions for TGFβ
and WNT follow the conventions described in subsection 9.3.1: the ligand con-
stant concentration is shifted in multiplying the forward rate constant of the ligand-
receptor reaction. The non-reversible reactions appear only in the phosphorylation
and dephosphorylation schemes of reactions (illustrated in subsection 9.3.1), and
include seven phosphorylations and six dephosphorylations.

In mathematical terms, the CRN associated with the TGFβ-pathway is the list
(S , C,R), where S contains the m = 50 chemical species, C is the set of n = 63
chemical complexes used and produced in all reactions, and R collects the r = 65
chemical reactions. The ligands are not included in the CRN set of species and not
counted as system state variables, since they are inserted in the CRN as known con-
stants.



Chapter 10. MIM parameterization 118

The CRN kinetics follows the law of mass action, and the network dynamics
is well-modeled by a system of ODEs, quadratic in the species concentrations and
linear in the reaction rate constants. Following the formalization made in Section 2.2,
the TGFβ-CRN system of ODEs can be written as

dx
dt

= ẋ = Sv(x, k)

= ZBv(x, k) ,
(10.1)

where x ∈ R50
+ is the vector of species concentrations, k ∈ R65

+ is the vector of re-
action rate constants, v(x, k) ∈ R65

+ is the vector of reaction fluxes, S is the 50× 65
stoichiometric matrix with elements in Z, Z is the 50× 63 complex stoichiometric
matrix with elements in N, and B is the 63× 65 incidence matrix with elements in
{−1, 0, 1}. Note that the forward rates are associated with the quadratic part of the
system and the non-reversible linear part, while the reverse rates settle the reversible
linear part.

The initial conditions of system (10.1) are x(0) ∈ R∗50
+ s.t.

x(0) = (x1(0), . . . , xm(0))T , with xi(0) =

{
xi0 6= 0 if i basic species
0 if i composed species

,

(10.2)
meaning that only basic species have non-zero initial conditions. The total concen-
trations of the unbounded basic species are needed in order to run the scheme of
chemical reactions, and, in some sense, represent the inputs of the system. As time
goes by, the species chemical interactions get activated and the initial molecules of
basic species are redistributed between the corresponding composed-forms.

The system (10.1) is characterized by conserved cycles, defined as vanishing linear
combinations of specific differential equations and indicating conserved quantities.
The number of conserved cycles coincides with that of the basic species. Indeed,
basic species are primary variables initializing the system: at time t = 0, the total
amount of active substance is retained by the basic species, and at each time point
this quantity gets conserved.

The structure of the system of ODEs (10.1) is described by the matrices S, Z, and
B. For the TGFβ-CRN system, the linear algebra properties of these matrices are the
following:

• rank(S) = min{m, n} − θ = 50 − 18 = 32, where m = 50 the number of
species, n = 65 the number of reactions, and θ the number of conserved cycles;

• rank(Z) = 50, and hence Z is a full rank matrix;

• rank(B) = 39, i.e. the rank of the incidence matrix equals the number of for-
ward reactions.

The deficiency δ of the TGFβ-CRN can be computed as

δ = rank(B)− rank(S) = 7 .

Therefore, the network is not zero-deficient, and all the results on equilibria and
stability stated in subsection 2.2.2 cannot be applied. In other words, the deficiency
zero theorem, ensuring at most one asymptotically stable positive steady state for a
CRN with deficiency zero, does not hold. For networks with deficiency non-zero,
there exists the possibility of multiple positive steady states and also oscillations.
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The direct problem of the network consists in determining the time-dependent
concentrations of the species for given sets of initial conditions and rate constants.
Analytical solutions to non-linear ODEs, as system (10.1), are rarely possible to ob-
tain, and numerical formulas are used. Moreover, the numerical solutions of CRN
systems exhibit stiffness, that is, the dynamic step-size adjustments of the explicit
Runge-Kutta solver needs to be made smaller in order to achieve stability. Within
the software package Matlab, ode15s is a variable-step, variable-order solver based
on the numerical differentiation formulas of orders 1 to 5, able to solve stiff differen-
tial equations. To give an idea of the type of dynamics retained by the TGFβ-CRN
system, Figure 10.3 shows the time-dependent curves of the species concentrations,
for given sets of initial conditions and rate constants (the values are chosen as in
Tortolina et al., 2015), obtained with the ode15s solver applied to system (10.1).
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FIGURE 10.3: Time-dependent curves of the species concentrations of
the TGFβ-CRN.

In general, by performing different simulations with varying initial values, we
have observed that within the dynamics of the MIM-type CRN it is possible to iden-
tify a time point t̄ ∈ (0, t) s.t.

• in [0, t̄) the concentration curves are in a transitional phase;

• in [t̄, t) the totality of concentration curves are almost constant, i.e. the system
equilibrium has been reached.

The time interval [0, t̄) in which the concentration curves are still varying, provides
information on the speeds of the chemical reactions; the equilibrium interval [t̄, t)
fixes the equilibrium constants of the chemical reactions, as ratios of the forward-
reverse speeds. In other words, by solving the direct problem, the values of the rate
constants, i.e. the speeds, decide the time t̄ needed to reach the system equilibrium.
Conversely, by formally writing the system (10.1) at equilibrium, ẋ = Sv = 0, it
is found that the ratios between linear combinations of rate constants are explicitly
determined by the species concentrations corresponding to equilibrium. This fact
implies that the equilibrium condition selects a family of rate constants for a given
equilibrium point, and all the parameter values satisfying the equilibrium equations
return the same equilibrium point (under the same initial conditions). Clearly, the
equilibrium of the system does not allow to discriminate the values of each single
rate constant.
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Appendix D reports all the chemical species, chemical complexes, chemical reac-
tions of the TGFβ-pathway, the system of ODEs of the associated CRN, the expres-
sion of the conserved cycles, and the system at equilibrium.

10.2.2 TGFβ-pathway parameterization

The parameterization problem for the TGFβ-pathway is here presented as an opti-
mization problem in which:

• the available data are the time-dependent concentrations of all chemical species
of the network X (t) (nmol), given at predefined time points,

X (t) = (x1(t), . . . , x50(t))T ∈ R50
+ , for t = t1, . . . , tT ∈ R+ ;

• the unknowns are the reverse reaction rate constants kr (sec−1),

k = (k f , kr) ∈ R65
+ , with k f ∈ R39

+ , kr ∈ R26
+ .

In some sense, we are characterizing the algebraic structure of the ODEs: the ki-
netics of the quadratic part of the system, defined by the forward reaction rates k f ,
is regarded as known and fixed; the kinetics of the linear part of the system, de-
fined by the reverse reaction rates kr, needs to be determined. The set of forward
rates includes also the rate constants of the non-reversible reactions, called turnover
numbers (i.e. number of substrate molecules converted into a product molecule),
which in the MIM case are associated with the phosphorylation/dephosphorylation
schemes of reactions and hence with the non-reversible linear part of the system.
Then, the forward rates have two distinct units of measure, since the quadratic for-
ward rates are quantified as nmol−1 sec−1, and the linear forward rates as sec−1.

We make some remarks before proceeding. Concerning the data, the CRN is con-
sidered in a physiological condition, which means that no mutations are taken into
account. The idea is to perform a test for parameterizing a healthy network. Nev-
ertheless, in a real experimental framework, measurements over chemical species
concentrations are available only for cancer cell lines with specific mutation profiles,
and for a limited number of species (usually, non-bounded forms and phosphory-
lated proteins). Concerning the unknowns, the set of reaction rates is reduced to
only the reverse, but this is not an unrealistic hypothesis. Chemically speaking,
the value of a forward rate constant is highly stable with respect to the cell sig-
naling, because it represents the probability of encounter of the reactant molecules
of a chemical reaction, and these molecules follow a Brownian motion in a viscous
continuum fluid (the intracellular matrix is a gel), as stated by the collision theory.
Therefore, given the types of molecules involved in a chemical reaction, their prob-
ability of association can be regarded as a known variable, and the forward rate is
a diffusion rate. Considering the very crowded cellular environment, the very large
size of many multi-protein complexes, the fact that only a fraction of protein-protein
encounters will be productive, reasonable default values could be a median second-
order forward rate constant in the order of 10−1-10−3 nmol−1 sec−1, and a median
first-order forward rate constant in the order of 10−1-100 sec−1 (see Castagnino et
al., 2010). On the other hand, assessing the value of a reverse rate constant is more
difficult. Once the reactants of a chemical reaction collide to form the product, the
disruption of their binding follows the Maxwell-Boltzmann distribution, for which
the speed of unbinding depends on the level of energy required to separate the
bounded molecules. Variations on the speed values can be very large, according
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to the strength of binding of the reactants. For example, a strong bound between
reactant molecules requires a high energy to be broken and the related speed will be
low. The reverse rate is the speed of binding disruption and contains the effective
information on the affinity of the chemical species.

The parameterization problem is formulated in the form of least-squares:

min
kr
F (kr) = min

kr
||X (t)− x(t; x0, k f , kr)||22 . (10.3)

We search for the valued vector kr ∈ R26
+ that minimizes the residual objective func-

tion F (kr), expressing the discrepancy between the dynamic data of species concen-
trations X (t) and the forward model predictions x(t; x0, k f , kr), as solutions of the
system of ODEs (10.1) depending on the initial conditions x0 = x(0) ∈ R∗50

+ and
the rate constants (k f , kr) ∈ R39

+ ×R26
+ . The inverse problem of equation (10.3) is

clearly non-linear, since the functional F (kr) depends nonlinearly on the unknowns
kr. The optimization process to estimate the optimal parameters may be subject to
constraints, concerning the values that each parameter can assume, or functional
relations among the parameters. In our case, the reverse rate constants cannot be
negative.

For the solution of (10.3), we make use of a random walk Markov Chain Monte
Carlo (MCMC) method (Brooks et al., 2011), called single component Metropolis
Hastings (SCMH) algorithm, first formulated by Metropolis et al., 1953 and then re-
sumed by Hastings, 1970. For a detailed description of stochastic processes, Markov
Chains, and Monte Carlo methods refer to Gilks, Richardson, and Spiegelhalter, 1995
and Kaipio and Somersalo, 2006.

In general, Metropolis-Hastings algorithms update all components of the chain
of values for unknown parameters at the same time, based on an acceptance/rejection
rule, while in the SCMH algorithm the chain is updated component by component
(i.e. parameter by parameter). The one-dimensional proposal distributions (one for
each parameter) are Gaussian distributions with the present point as the center point
and with a variance that has to be decided. Indeed, one crucial issue in Bayesian ap-
proaches is how to choose the variance of the proposal distribution: if the selected
value is too small then the chain will move too slowly, and virtually all proposed
moves will be accepted; if the value is too large then most moves will be rejected,
and the chain will usually not move at all. What is needed is a value of the variance
between the two extremes, allowing for reasonable-sized proposal moves together
with a reasonably acceptance probability. Optimal values for the variance have been
analyzed by Gelman, Roberts, and Gilks, 1996 and Roberts and Rosenthal, 2001, fol-
lowing the idea of searching for the optimal acceptance rate (Roberts, Gelman, and
Gilks, 1997).

Here we present the SCMH algorithm with a Gaussian proposal distribution for
the solution of the CRN parameterization problem (10.3).

Algorithm 10.1. [SCMH]

Step 1. Initialization.

• Randomly select a starting point k(0)
r ∈ R+.

• Choose the variance σ2 of the Gaussian distribution.

• Fix the length N of the chain of parameter realizations.
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Step 2. Direct problem.

• Set kold = k(0)
r .

• Compute the forward model xold(t) = x(t; x0, k f , kold).

• Set the iteration number i = 1.

Step 3. Single component Metropolis step.
For j = 1, . . . , p, with p the number of parameters.

• Sample a new candidate knew
j from the normal distribution N(kold

j , σ2).

• Pick a random number u from the uniform distribution U([0, 1]).

• Set knew s.t

knew
l =

{
kold

l if l 6= j
knew

l if l = j
.

• Compute the forward model xnew(t) = x(t; x0, k f , knew).

• Evaluate the residuals of the old and new realizations, and the ratio be-
tween their likelihoods:

Sold = F (kold) = ||X (t)− xold(t)||22
Snew = F (knew) = ||X (t)− xnew(t)||22

S = exp
(
− (Snew − Sold)

2σ2

)
.

• Acceptance/rejection rule:{
if Snew < Sold or u < S , then keep knew

j

otherwise set knew
j = kold

j
.

• Iterate j = j + 1.

Step 4. Update.

• Store the new realization chain(i) = knew.

• If i < N then iterate i = i + 1 and go to Step 3, otherwise stop.

In general terms, this optimization strategy begins by selecting a random set of
parameters (Step 1.), and then evaluating the related model-predicted data (Step 2.).
Component by component (Step 3.), this initial (old) set of parameters is updated
to a new a set of parameters. Each new candidate is obtained by perturbing the
old one through random normally distributed coefficients. When the new set of
parameters is generated, its forward model is evaluated. Then, both residuals for the
old and new set of parameters are computed. If the new residual is smaller then the
previous, the new set of parameters is always accepted. If not, the ratio between the
likelihoods of the old and new realizations is compared with a uniformly distributed
random number: if the random number is smaller than the ratio of the likelihoods
then the new set of parameters is accepted. The latter rule allows the method to
randomly accept values that are not better in terms of residual and to escape local
minima. In the long run, the method will return back to the previous value if it was
the global solution, otherwise it continues the exploration of the space of parameters.
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The accepted parameters are stored at each iteration in the chain of realizations (Step
4.), representing the posterior distributions of parameter estimates. The convergence
of SCMH is slow, since it is not guaranteed that the optimization process escapes
quickly from local solutions. Consequently, the method is stopped after a predefined
number of iterations.

In our implementation of the SCMH algorithm, we set the subsequent options.

• The initial random guesses of parameter values are selected within a prede-
fined range of orders of magnitude.

• The variance of the Gaussian distribution is chosen as the optimal value σ2 =
(2.38)2, as proposed by Gelman, Roberts, and Gilks, 1996 for an optimal accep-
tance rate of 0.234.

• The maximum number of iterations is fixed at N = 103.

• The single component Metropolis steps are not performed with a prescribed
order, but are carried out with random directions obtained by permuting the
indexed vector (1, . . . , p).

The test on the parameterization of the TGFβ-pathway follows the scheme below.

1. Select ground truth values for the reverse rate constants kr ∈ R26
+ .

2. Given the known values of the forward rate constants k f ∈ R39
+ , and the initial

conditions x0 = x(0) ∈ R∗50
+ for the species concentrations, numerically solve

the system of ODEs (10.1) by means of the Matlab solver ode15s, and get the
continuous dynamic data X (t) ∈ R50

+ .

3. Select discrete time points t1, . . . , tT ∈ R+, in particular T = 11 points chosen
as t1 = 5, t2 = 10, t3 = 20, t4 = 30, t5 = 60, t6 = 90, t7 = 120, t8 = 180,
t9 = 240, t10 = 360, t11 = 480 minutes, and collect the related concentration
data X = (X (t1), . . . , X (tT)), s.t. X (ti) ∈ R50

+ ∀i = 1, . . . , T.

4. Add white Gaussian noise to the discrete data, by means of the Matlab function
awgn with a specific signal-to-noise ratio, to obtain the noisy data.

5. Solve the parameterization inverse problem (10.3) by means of the SCMH op-
timization procedure (Algorithm 10.1)

6. The optimal set of reverse parameters returned by the SCMH algorithm is the
best in terms of residual.

We perform different simulations, based on the level of noise on the discrete data;
in particular, we consider Gaussian noise with a signal-to-noise ratio from 90 dB to
50 dB. The results are reported in Table 10.1, where means and standard deviations
for each parameter are computed over different reconstructions obtained by vary-
ing the starting point of the SCMH algorithm. We recall that the list of reaction rate
constants for the TGFβ-CRN is reported in Table D.3 of Appendix D. In general, in-
creasing the noise level on the concentration data obviously returns worst estimates
and higher standard deviations. However, a subset of parameters does not follow
this trend, and are equally well reconstructed regardless of the noise. On the con-
trary, other parameters widely suffer the perturbations on the data. This distinct
attitude indicates the multiple parameter sensitivities of the TGFβ-CRN.
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g.t. 90 dB 80 dB 70 dB 60 dB 50 dB

k1r 0.010 0.019± 0.029 0.017± 0.021 0.032± 0.011 0.026± 0.017 0.026± 0.023
k2r 0.030 0.055± 0.010 0.054± 0.030 0.040± 0.016 0.049± 0.018 0.064± 0.031
k3r 0.010 0.032± 0.012 0.033± 0.006 0.019± 0.019 0.021± 0.024 0.027± 0.038
k5r 0.100 0.152± 0.196 0.063± 0.076 0.109± 0.127 0.068± 0.059 0.114± 0.122
k6r 0.100 0.100± 0.000 0.101± 0.002 0.099± 0.001 0.100± 0.000 0.099± 0.001
k7r 0.100 0.100± 0.000 0.100± 0.000 0.100± 0.000 0.100± 0.000 0.100± 0.001
k9r 0.100 0.425± 0.353 0.353± 0.254 0.269± 0.192 0.203± 0.092 0.314± 0.289
k11r 0.100 0.656± 0.412 0.676± 0.265 0.574± 0.402 0.689± 0.177 0.607± 0.498
k13r 1.000 1.746± 0.828 3.407± 2.339 3.963± 2.029 5.327± 4.335 7.861± 2.204
k15r 1.000 1.951± 0.689 2.508± 1.852 1.406± 0.965 3.889± 1.270 3.915± 2.219
k17r 1.000 1.398± 0.845 1.257± 0.142 1.431± 0.927 1.314± 0.663 1.637± 0.559
k19r 1.000 1.117± 0.305 0.851± 0.080 1.256± 0.450 3.080± 4.644 4.393± 3.653
k21r 0.010 0.010± 0.000 0.010± 0.000 0.009± 0.009 0.009± 0.001 0.009± 0.002
k22r 0.010 0.009± 0.002 0.007± 0.005 0.006± 0.004 0.008± 0.003 0.012± 0.013
k23r 10.00 13.12± 12.55 22.01± 8.067 17.45± 4.144 24.79± 4.535 24.94± 1.754
k25r 10.00 13.01± 13.99 21.59± 7.339 14.82± 10.96 23.83± 7.628 15.76± 12.38
k27r 0.100 0.095± 0.117 0.144± 0.109 0.043± 0.024 0.063± 0.038 0.062± 0.047
k28r 1.000 1.946± 1.574 7.239± 2.548 2.870± 4.214 2.668± 1.740 4.146± 0.899
k30r 0.040 0.040± 0.000 0.039± 0.000 0.041± 0.001 0.043± 0.009 0.040± 0.008
k31r 0.040 0.039± 0.000 0.040± 0.000 0.039± 0.001 0.038± 0.007 0.041± 0.009
k32r 0.040 0.040± 0.000 0.040± 0.000 0.040± 0.000 0.040± 0.001 0.039± 0.002
k33r 10.00 14.92± 8.209 11.51± 2.206 13.63± 8.159 12.19± 5.609 16.41± 5.189
k35r 10.00 18.39± 9.047 10.14± 3.677 11.24± 4.336 17.75± 4.973 14.19± 7.925
k36r 10.00 10.69± 8.892 10.52± 4.103 7.286± 4.421 15.39± 11.76 18.67± 15.05
k38r 10.00 13.59± 4.842 14.80± 3.873 15.54± 7.356 10.04± 1.769 13.03± 1.285
k39r 1.000 0.985± 0.018 0.959± 0.060 0.971± 0.011 0.989± 0.014 0.969± 0.021

TABLE 10.1: Ground truth (g.t.) and reconstructed reverse rate con-
stants (sec−1) of the TGFβ-CRN from noisy dynamic data of species
concentrations, affected by Gaussian noise with a signal-to-noise ratio
from 90 dB to 50 dB, by means of the SCMH algorithm. Means and
standard deviations are computed over different SCMH runs with

varying starting point.
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Open issues

This final chapter aims to briefly outline the many open issues raised by the data-
driven multi-scale inverse problems for Systems Medicine discussed in this Thesis.

The tissue-scale reference tissue model (RTM) is a powerful tool in the analy-
sis of [18F]-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) data.
Comparison of tracer uptake between the reference tissue (RT) and the target tis-
sue (TT) avoids explicit determination of the time concentration curve of arterial
blood, working as input function (IF) for the compartmental system. In addition,
correlation of tracer kinetics in two nearby tissues is capable of reducing distortions
in the interpretation of FDG uptake, influenced by physiological or pharmacologi-
cal conditions and uptake by different organs. In this Thesis, the RTM based on a
one-compartment RT and a two-compartment TT, with given non-vanishing blood
volume fractions, was considered. The developed method for the reduction of the
RTM led to a unique, stable, and robust determination of the kinetic parameters.
Further developments can extend the RTM to pixel-wise applications, which means
that dependence of the rate constants on PET image positions can be explicitly ac-
counted. Moreover, in view of availability of human PET data, the RTM approach
can be used when the RT and TT signals are evaluated only on asymptotic values.

Tissue-scale parametric imaging methods improve the quality of information
achievable from PET images, since they are capable of showing the tracer metabolism
at local level, i.e. pixel-wise. Starting from the design of compartmental models suit-
able to describe the tracer kinetics in a predefined physiological system, parametric
imaging techniques process dynamic PET images and estimate the spatial distribu-
tion of the kinetic parameters identified by the model. This Thesis implemented
a parametric imaging tool integrating pre-processing methods, for noise reduction
and image segmentation, and optimization of non-linear inverse problems for the
reduction of multi-compartment models. The resulted imaging procedure realized
an automatic pipeline, whose main advantages are in (i) its notable degree of gener-
ality, since in principle it may be applied to models made of several compartments,
(ii) providing maps of all model parameters, (iii) reconstructing a large set of kinetic
parameters, and (iv) accounting for different models in non-overlapping regions of
the same image. Further developments of the proposed parametric imaging method
are concerned with several issues. From the numerical viewpoint, the computa-
tional burden can be reduced by means of ad hoc designed implementations that
will allow a technological platform able to deal not only with dynamic 2D images
but also with full dynamic 3D data, in a context closer to the clinical application.
From the modeling viewpoint, this approach can be extended to the direct paramet-
ric imaging problem, whereby the input data are the PET count sinograms and not
the reconstructed PET images. Finally, from the clinical viewpoint, the imaging pro-
cedure can be adopted for applications to a notable quantity of data, coming from
animal and human measurements.
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For the analysis of FDG and glucose uptake by cultured cancer cells from Lig-
andTracer (LT) data, this Thesis proposed a cell-scale biochemically-driven compart-
mental model (BCM). The BCM originated from an effort of reproducing basic fea-
tures of FDG kinetics in a single cell, and emphasized the role of the endoplasmic
reticulum (ER), where dephosphorylation of tracer occurs, which was not consid-
ered in previous models. To this aim, an additional compartment for phosphory-
lated tracer in ER was introduced in the model, besides the two standard compart-
ments for free and phosphorylated tracer in cytosol. The BCM was adopted for the
reduction of LT data, under varying FDG and glucose concentrations in the liquid
medium where cancer cells were seeded. As a result, the predictions of the BCM
revealed an accumulation of FDG in phosphorylated form in the ER compartment,
and a relatively small amount of phosphorylated tracer outside the ER. As to cell
biology, an immediate next application of the BCM is obtained when the composi-
tion of the medium is changed through the injection of pharmacological molecules
in order to examine effects induced on FDG (and perhaps glucose) consumption. As
to diverse employment of the BCM, tissue PET data can be considered. The BCM
may be modified to handle specific complex physiologies, and may be inserted in
tissue-scale approaches, such as reference tissue formulations and parametric imag-
ing analysis. Although endowed with new realistic features, the BCM has to be
regarded as a simplification with respect to the effective biochemical path followed
by FDG inside cells, and further refinements are still possible. Nevertheless, as to
the mathematical formulation, the BCM may represent the starting point for the de-
velopment of a finer and more detailed model able to depict faithfully the FDG and
glucose destiny in cancer cells.

Within the filed of Molecular Systems Biology, this Thesis presented a molecule-
scale Molecular Interaction Map (MIM) for the signaling network of a colorectal can-
cer cell. As a first application, the parameterization a limited portion of the MIM
chemical reaction network (CRN), for the estimation of the reaction rates from pro-
tein concentration data, was discussed. The potentiality of the MIM are consider-
able. The CRN given by the MIM is actually huge, but can be widened to include
more signaling pathways and to represent the interaction mechanisms of a generic
cell. Indeed, the MIM can embody a virtual cell, by which specific conditions are re-
alized: a cancer state of the cell can be generated through the imposition of peculiar
genetic mutations, and the effects of therapies can be evaluated through the addition
of inhibitor targeted drugs. In this scenario, the MIM constitutes a concrete effort to-
wards personalized medicine. From the mathematical viewpoint, there is still a lot
to do. In order to estimate reliably the reaction rate constants, in a unique and stable
way, from partial data on different cancer cell lines, even affected by a large amount
of noise, robust computational methods need to be developed. Besides, from a tech-
nological viewpoint, a pipeline for the simulation of the pharmacological action is
required: given an individual cancer profile, provided by its set of mutations, au-
tomatically determine the set of inhibitor drugs, in combined forms, and their con-
centrations, to re-establish the optimal physiological condition. The MIM open the
way for a new research direction, both for clinical medicine, biology, and applied
mathematics.
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Appendix A

Proof of identifiability of RTM

We formally prove Theorem 4.1.1 for the identifiability of the reference tissue model
(RTM). Identifiability of the RTM corresponds to uniqueness of the vector of rate
constants kRTM = (kRb, k f b, kb f , km f , k f m)

T ∈ R5
+, given the data of tracer concentra-

tion CT in the target tissue (TT) and CR in the reference tissue (RT), and the related
blood volume fractions VbT and VbR. The blood input function (IF) Cb is introduced
in order to connect the RT and the TT.

We recall the model equations needed for the subsequent analysis:

Ċ = MC + k f be1Cb , C(0) = 0

C =

(
C f
Cm

)
, M =

(
−(kb f + km f ) k f m

km f −k f m

)
, e1 =

(
1
0

)
;

(A.1)

Ċb = −γkRbCb +
1

VbR
( ˙CR + λkRbCR) , γ = (V−1

bR − 1) + λ ; (A.2)

CT(t; CR, kRTM) = αTC(t; CR, kRTM) + VbTCb(t; CR, kRb) , α =

(
1−VbT
1−VbT

)
. (A.3)

The parameter λ is known from the asymptotic Logan plot approach on the RT.
The discussion on uniqueness is based on the differential form (A.1) and the

equation connecting the model to the data (A.3). We consider the Laplace transform
of (A.1) and (A.3) in order to reduce our identifiability problem to the identification
of the coefficients of a rational fraction.

Denote by L( f ) the Laplace transform of the function f . Under suitable assump-
tions of regularity, the Laplace transform of system (A.1) takes the form

(sI2 −M)L(C) = k f be1L(Cb) , (A.4)

where
L(Cb) =

1
VbR

s + λkRb

s + γkRb
L(CR) (A.5)

thanks to (A.2), and where I2 ∈ M2({0, 1}) is the 2× 2 identity matrix. Left mul-
tiplication by the inverse of (sI2 − M) provides L(C). Replacing L(C) and L(Cb)
into the Laplace transform of (A.3), which relates the measured data to the solution
C, gives

L(CT) =
VbT

VbR

(
k f b

VbT
α(sI2 −M)−1e1 + 1

)
s + λkRb

s + γkRb
L(CR) . (A.6)

After substitution of the definitions of α, e1, and M, equation (A.6) may be expressed
in the equivalent form

VbR

VbT

L(CT)

L(CR)
=

Q(s; kRTM)

D(s; kRTM)
, (A.7)
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where D(s; kRTM) and Q(s; kRTM) are polynomials in s, parameterized by the com-
ponents of kRTM, defined as

Q(s; kRTM) = s3 + (k̄ f b + λkRb + kb f + km f + k f m)s2

+ (λkRb(k̄ f b + kb f + km f + k f m) + k̄ f b(km f + k f m) + kb f k f m)s

+ λkRb(k̄ f b(km f + k f m) + kb f k f m) ,

(A.8)

and

D(s; kRTM) = s3 + (k̄Rb + λkRb + kb f + km f + k f m)s2

+ ((k̄Rb + λkRb)(kb f + km f + k f m) + kb f k f m)s

+ (k̄Rb + λkRb)kb f k f m ,

(A.9)

where D is also the characteristic polynomial of M, and

k̄ f b = (V−1
bT − 1)k f b , k̄Rb = (V−1

bR − 1)kRb . (A.10)

We recall that λ is a fixed, known parameter and we also note explicitly that the
left-hand side of (A.7) is only dependent on measurable given data.

Suppose hRTM = (hRb, h f b, hb f , hm f , h f m)
T ∈ R5

+ is an alternative choice of RTM
rate coefficients consistent with the data of the problem. This means that an equation
of the form (A.7) is necessarily satisfied, which implies that

VbR

VbT

L(CT)

L(CR)
=

Q(s; kRTM)

D(s; kRTM)
=

Q(s; hRTM)

D(s; hRTM)
. (A.11)

The discussion of uniqueness for the RTM is based on (A.11); specifically, it is shown
that (A.11) does imply hRTM = kRTM.

Assume that the rational fraction (A.11) is irreducible, i.e. the polynomials D
and Q are coprime; therefore, the rational fraction Q/D is irreducible. Next we
observe that D(s; kRTM) and D(s; hRTM) have the same leading coefficient, and the
same condition holds for the polynomials Q(s; kRTM) and Q(s; hRTM). This implies
that equation (A.11) is verified if and only if

D(s; hRTM) = D(s; kRTM) , Q(s; hRTM) = Q(s; kRTM) , (A.12)

and equations (A.12) are equivalent to the following system:

h̄Rb + λhRb + φh = k̄Rb + λkRb + φk (A.13a)

(h̄Rb + λhRb)φh + hb f h f m = (k̄Rb + λkRb)φk + kb f k f m (A.13b)

(h̄Rb + λhRb)hb f h f m = (k̄Rb + λkRb)kb f k f m (A.13c)

h̄ f b + λhRb + φh = k̄ f b + λkRb + φk (A.13d)

λhRb(h̄ f b + φh) + h̄ f b(hm f + h f m) + hb f h f m = λkRb(k̄ f b + φk) + k̄ f b(km f + k f m) + kb f k f m (A.13e)

λhRb(h̄ f b(hm f + h f m) + hb f h f m) = λkRb(k̄ f b(km f + k f m) + kb f k f m) (A.13f)

for hRTM in terms of kRTM, where φh = hb f + hm f + h f m and φk = kb f + km f + k f m.
By comparison with (A.13a), equation (A.13d) can be replaced by

h̄ f b − h̄Rb = k̄ f b − k̄Rb . (A.14)
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First, let us solve the sub-system (A.13a)–(A.13c) with respect to h̄Rb + λhRb = γhRb.
We find three solutions:

γh(1)Rb = γkRb ,

γh(2,3)
Rb =

φk ±
√

φ2
k − 4kb f k f m

2
.

(A.15)

Solution h(1)Rb leads to h(1)
RTM = kRTM. Solutions h(2,3)

Rb a priori define two distinct sets
of solution. Nevertheless, we can observe that, by replacing (A.13d) in (A.13e) and
comparing to (A.13f), we obtain

(kRb − hRb)

(
(λhRb)

2 − (k̄ f b + φk)λhRb + k̄ f b(km f + k f m) + kb f k f m

)
= 0 . (A.16)

Therefore, to be solutions of the system (A.13a)–(A.13f), the three solutions defined
in (A.15) have to satisfy (A.16). For h(1)Rb = kRb, equation (A.16) is easily satisfied. For

h(2,3)
Rb , equation (A.16) becomes

(λh(2,3)
Rb )2 − (k̄ f b + φk)λh(2,3)

Rb + k̄ f b(km f + k f m) + kb f k f m = 0 . (A.17)

This equation (once k̄ f b and φk are explicated), represents a constraint on the compo-
nents of kRTM, that, in general (i.e. if kRTM is generic), is not satisfied.
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Appendix B

Proof of identifiability of renal
model

Theorem 5.1.2 ensures identifiability of the renal three-compartment non-catenary
model, under the hypothesis Ct, ktm, and kut fixed. These modeling assumptions are
obtained from physiological properties holding for the kidneys, and are essential in
order to prove uniqueness of kK = (k f a, kma, ka f , km f , k f m, ktm, kut)T ∈ R7

+ given the
pixel-wise renal tracer concentration CK, the arterial region of interest (ROI) input
function (IF) CROI

a , and the constant renal blood volume fraction VbK.
We recall the model equations needed for the subsequent analysis:

Ċ = MC + W , C(0) = 0 ,

C =

C f
Cm
Ct

 , M =

−(ka f + km f ) k f m 0
km f −(k f m + ktm) 0

0 ktm −kut

 ,

W = k f aCROI
a e1 + kmaCROI

a e2 , e1 =

1
0
0

 , e2 =

0
1
0

 ;

(B.1)

CK(t; CROI
a , kK) = αTC(t; CROI

a , kK) + VbKCROI
a (t) , α =

1−VbK
1−VbK
1−VbK

 . (B.2)

Since ktm and kut are assumed to be fixed, we have to prove uniqueness of the re-
maining five coefficients (k f a, kma, ka f , km f , k f m)

T ∈ R5
+. In explicit form, the system

of ODEs (B.1) takes the form
Ċ f = −(ka f + km f )C f + k f mCm + k f aCROI

a

Ċm = km f C f − (k f m + α)Cm + kmaCROI
a

Ċt = ktmCm − kutCt

. (B.3)

Assuming that the concentrations are sufficiently regular, we take the Laplace
transform of the differential equations (B.3):

(s + ka f + km f )L(C f )− k f mL(Cm) = k f aL(CROI
a )

−km fL(C f ) + (s + k f m + ktm)L(Cm) = kmaL(CROI
a )

(s + kut)L(Ct)− ktmL(Cm) = 0

, (B.4)
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where L( f ) denotes the Laplace transform of the function f . Solving (B.4) with
respect to L(C f ), L(Cm), and L(Ct), we get

L(C f ) =
k f a(s + k f m + ktm) + kmak f m

D(s; kK)
L(CROI

a ) , (B.5a)

L(Cm) =
kma(s + ka f + km f ) + k f akm f

D(s; kK)
L(CROI

a ) , (B.5b)

L(Ct) =
ktm

s + kut
L(Cm) , (B.5c)

where
D(s; kK) = (s + ka f + km f )(s + k f m + ktm)− km f k f m (B.6)

is the characteristic polynomial of M. Moreover, by comparing (B.5b) and (B.5c), we
get

L(Ct) =
ktm

s + kut

kma(s + ka f + km f ) + k f akm f

D(s; kK)
L(CROI

a ) . (B.7)

Then, we take the Laplace transform of equation (B.2):

L(CK)−VbKL(CROI
a )

1−VbK
= L(C f ) + L(Cm) + L(Ct) , (B.8)

where the left-hand side is a known function of s, independent of the constants kK.
Now, suppose hK = (h f a, hma, ha f , hm f , h f m, htm, hut)T ∈ R7

+, s.t. htm = ktm and
hut = kut, is an alternative choice of rate coefficients consistent with the data of the
problem. We make explicit the dependence of the compartment concentrations on
the rate constants kK or hK. The condition Ct fixed implies that Ct(kK) = Ct(hK),
whence it follows that

L(Ct(kK)) = L(Ct(hK)) . (B.9)

Equation (B.5c) implies

L(Cm) =
s + kut

ktm
L(Ct) ,

and, since ktm and kut are fixed, and equation (B.9) holds, it follows also that

L(Cm(kK)) = L(Cm(hK)) . (B.10)

From equation (B.8), it is found that

L(C f (kK)) + L(Cm(kK)) + L(Ct(kK)) = L(C f (hK)) + L(Cm(hK)) + L(Ct(hK)) .
(B.11)

Therefore, because of (B.9) and (B.10), equation (B.11) reduces to

L(C f (kK)) = L(C f (hK)) . (B.12)

Now, substitution of (B.7) into (B.9) leads to

kma(s + ka f + km f ) + k f akm f

D(s; kK)
=

hma(s + ha f + hm f ) + h f ahm f

D(s; hK)
, (B.13)
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and substitution of (B.5a) into (B.12) gives

k f a(s + k f m + ktm) + kmak f m

D(s; kK)
=

h f a(s + h f m + ktm) + hmah f m

D(s; hK)
. (B.14)

Assume that the two rational fractions (B.13) and (B.14) are irreducible, i.e. the
polynomials

P(s; kK) = kma(s + ka f + km f ) + k f akm f (B.15)

Q(s; kK) = k f a(s + k f m + ktm) + kmak f m (B.16)

are both coprime with D(s; kK). Moreover, the leading coefficients of D(s; kK) and
D(s; hK) are identical, as well as those of P(s; kK) and P(s; hK), Q(s; kK) and Q(s; hK).
Therefore, equations (B.13)–(B.14) holds if and only if

D(s; hK) = D(s; kK) , P(s; hK) = P(s; hK) , Q(s; hK) = Q(s; hK) . (B.17)

We obtain the links between the two sets of parameters, i.e. the system

ha f + hm f + h f m + ktm = ka f + km f + k f m + ktm

ha f h f m + (ha f + hm f )ktm = ka f k f m + (ka f + km f )ktm

hma = kma

hma(ha f + hm f ) + h f ahm f = kma(ka f + km f ) + k f akm f

h f a = k f a

h f a(h f m + ktm) + hmah f m = k f a(k f m + ktm) + kmak f m

which holds if and only if

k f a = h f a , kma = hma , ka f = ha f , km f = hm f , k f m = h f m .
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Appendix C

Proof of identifiability of BCM

We want to prove Theorem 7.2.1 for the identifiability of the biochemically-driven
compartmental model (BCM) applied to LigandTracer (LT) data of cultured cells.
The aim is to ensure uniqueness of the rate constants k̄BCM = (k̄ f i, ki f , kp f , krp, k f r)

T ∈
R5

+, given the data of total tracer activity in the cell culture AT and in the incubation
liquid medium Ai.

We recall the model equations needed for the subsequent analysis:

Ȧ = MA + k̄ f i Aie1 , A(0) = 0 ,

A =

A f
Ap
Ār

 , M =

−(ki f + kp f ) 0 k f r
kp f −krp 0
0 krp −k f r

 , e1 =

1
0
0


Ār =

1
v

Ar , v =
Ver

Vcyt
, k̄ f i = k f i

Vcyt

Vi
;

(C.1)

AT(t) = αT A(t; Ai, k̄BCM) , α =

1
1
v

 . (C.2)

The discussion of uniqueness is based on the analysis of the Laplace transform
of the differential equations (C.1), and equation (C.2) stating the connection between
formal expression of the solutions and LT data.

We denote by L( f ) the Laplace transform of the function f . Assuming that suit-
able regularity conditions are satisfied, the Laplace transform of system (C.1) leads
to the linear system

(s + ki f + kp f )L(A f )− k f rL(Ār) = k̄ f iL(Ai)

−kp fL(A f ) + (s + krp)L(Ap) = 0
−krpL(Ap) + (s + k f r)L(Ār) = 0

, (C.3)

and the Laplace transform of equation (C.2) gives

L(AT) = L(A f ) + L(Ap) + vL(Ār) . (C.4)
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The solution of the linear system (C.3) is

L(A f ) =
k̄ f i

D(s; k̄BCM)
(s + krp)(s + k f r)L(Ai) , (C.5)

L(Ap) =
k̄ f i

D(s; k̄BCM)
kp f (s + k f r)L(Ai) , (C.6)

L(Ār) =
k̄ f i

D(s; k̄BCM)
kp f krpL(Ai) , (C.7)

where

D(s; k̄BCM) = s3 +(ki f + kp f + krp + k f r)s2 +[(ki f + kp f )(krp + k f r)+ krpk f r]s+ ki f krpk f r ,
(C.8)

is the characteristic polynomial of M. Substitution of the expressions (C.5)–(C.7) of
L(A f ), L(Ap), and L(Ār) into equation (C.4) yields the necessary condition

L(AT)

L(Ai)
=

k̄ f iQ(s; k̄BCM)

D(s; k̄BCM)
, (C.9)

where

Q(s; k̄BCM) = s2 + (kp f + krp + k f r) s + (kp f + krp) k f r + v kp f krp . (C.10)

If h̄BCM = (h̄ f i, hi f , hp f , hrp, h f r)
T ∈ R5

+ is another vector of rate coefficients con-
sistent with the same LT data, it follows that the right-hand side of (C.9) in terms of
k̄BCM and in terms of h̄BCM are equal. With obvious meaning of symbols, we have

k̄ f i Q(s; k̄BCM)

D(s; k̄BCM)
=

h̄ f iQ(s; h̄BCM)

D(s; h̄BCM)
. (C.11)

Assume that D and Q are coprime. Moreover, the leading coefficients of D(s; k̄BCM)
and D(s; h̄BCM) are identical, as well as those of Q(s; k̄BCM) and Q(s; h̄BCM). Then,
equation (C.11) holds if and only if

h̄ f i = k̄ f i , D(s; h̄BCM) = D(s; k̄BCM) , Q(s; h̄BCM) = Q(s; k̄BCM) , (C.12)

equivalent to the system

h̄ f i = k̄ f i (C.13a)

hi f + hp f + hrp + h f r = ki f + kp f + krp + k f r (C.13b)

(hi f + hp f )(hrp + h f r) + hrph f r = (ki f + kp f )(krp + k f r) + krpk f r (C.13c)

hi f hrph f r = ki f krpk f r (C.13d)

hp f + hrp + h f r = kp f + krp + k f r (C.13e)

(hp f + hrp)h f r + vhp f hrp = (kp f + krp)k f r + vkp f krp (C.13f)

for h̄BCM in terms of k̄BCM.
Comparison between (C.13b) and (C.13e) shows that hi f = ki f . As a consequence,

(C.13d) reduces to hrph f r = krpk f r.
Next hrp + h f r is determined from (C.13e) in terms of hp f , and substituted into

equation (C.13c), which takes the form of a vanishing polynomial of degree two, in
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the unknown hp f . The corresponding solutions are:

h(1)p f = kp f , h(2)p f = −ki f + krp + k f r .

If h(1)p f = kp f , it is easily shown that h(1)rp = krp and h(1)f r = k f r, which implies

h̄(1)
BCM = k̄BCM.

If h(2)p f ≤ 0 this solution is not admissible. If h(2)p f > 0, then equations (C.13e)

and (C.13f) reduce to a linear system for the unknowns h(2)rp and h(2)f r . The solution is

h(2)rp =
1

1− v
(
ki f − kp f

k f r + vkrp

−ki f + krp + k f r

)
, h(2)f r = ki f − h(2)rp .

If at least one between h(2)rp and h(2)f r is negative or vanishing, then h(2)p f gives rise to a

vector solution which not admissible. If h(2)rp and h(2)f r are positive then the compati-
bility condition

h(2)rp (ki f − h(2)rp ) = krpk f r (C.14)

must be satisfied. Thus we conclude that the solution reconstructed from h(2)p f is not
admissible, unless the data satisfy equation (C.14). In other words, equation (C.14)
is a constraint on the components of the parameter vector k̄BCM that, in general (i.e.
if k̄BCM is generic), is not satisfied.
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Appendix D

TGFβ-pathway CRN

We provide the chemical structure of the TGFβ-pathway chemical reaction network
(CRN), as list of chemical species, chemical complexes, chemical reactions, and as
system of ordinary differential equations (ODEs) characterized by conserved cycles.
Moreover, we show the equations of the TGFβ-CRN system at equilibrium to give
evidence of a priori restrictions on the reaction rate constants.

We recall the TGFβ system dimensions: 50 chemical species (18 basic and 32
composed), 63 chemical complexes, 65 chemical reactions (26 reversible and 13 non-
reversible), and thus 65 reaction rate constants (39 forward and 26 reverse). Before
reporting the details of the TGFβ-CRN, we make some remarks.

• The conserved cycles equal the number of basic chemical species, and each
basic species concentration appears in one and only one cycle.

• The equations of the conserved cycles may be used to reduce the number of
state variables of the CRN system: (1) each equation sets to zero a weighted
sum of time derivatives of the species concentrations; (2) this equation can be
integrated in time to obtain a formal expression in which the concentration of
the only basic species is written as function of other species concentrations; (3)
this explicit expression can be substituted in the system of ODEs.

• The integrated equations of the conserved cycles express the time-dependent
concentration of each basic species as its initial non-negligible value at time
t = 0 minus the time-dependent species concentrations involved in its cycle.

• The system of ODEs at equilibrium ẋ = Sv = 0 counts for a total number of 50
equations, of which only 32 (= rank(S)) are linearly independent.

• The equilibrium equations allow to fix the ratios between linear combinations
of rate constants, as determined from the species concentrations at equilib-
rium. Alternatively, the equilibrium equations establish constraints on a subset
of rate constants:

– the 26 reverse parameters can be written as functions of the 39 forward;

– 6 equations fix 6 forward parameters of the 13 non-reversible reactions.

There remains a total of 33 free (non-constrained) forward parameters.

• The equilibrium equations select a family of rate constants for a given equilib-
rium point. In other words, all the parameter values satisfying the equilibrium
equations return the same equilibrium point (with the same initial conditions).
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D.1 Chemical species

Name Variable Type

TGF xi1 basic (ligand - constant)
WNT xi2 basic (ligand - constant)
2TGF x1 composed
2TBR2 x2 composed
2TGF_2TBR2 x3 composed
2TBR1 x4 composed
2TGF_2TBR2_2TBR1 x5 composed
2TGF_2TBR2_2TBR1P x6 composed (P)
PP1C x7 basic (phosphatase)
SMAD2 x8 basic
2TGF_2TBR2_2TBR1P_SMAD2 x9 composed
TBR1 x10 basic (receptor)
TBR2 x11 basic (receptor)
SMAD2P x12 composed (P)
SMAD3 x13 basic
2TGF_2TBR2_2TBR1P_SMAD3 x14 composed
SMAD3P x15 composed (P)
TAK x16 basic
2TGF_2TBR2_2TBR1P_TAK x17 composed
TAKP x18 composed (P)
NLK x19 basic
NLKP x20 composed (P)
TCFLEF x21 basic
NLKP_TCFLEF x22 composed
TCFLEFP x23 composed (P)
P8 x24 basic (phosphatase)
TCFLEFP_P8 x25 composed
P9 x26 basic (phosphatase)
TAKP_P9 x27 composed
NLKP_P10 x28 composed
P10 x29 basic (phosphatase)
SMAD4 x30 basic
SMAD2P_SMAD4 x31 composed
SMAD3P_SMAD4 x32 composed
PP1A x33 basic (phosphatase)
SMAD3P_PP1A x34 composed
SMAD2P_PP1A x35 composed
2TBR1P x36 composed (P)
2TBR1P_PP1C x37 composed
FRZ x38 basic (receptor)
WNT_FRZ x39 composed
LRP6 x40 basic
WNT_FRZ_LRP6 x41 composed
DVL x42 basic
WNT_FRZ_LRP6_DVL x43 composed
WNT_FRZ_LRP6_TAK x44 composed
TAB x45 basic
TAKP_TAB x46 composed
TAKP_TAB_NLK x47 composed
GROUCHO x48 basic
GROUCHO_TCFLEF x49 composed
SMAD4_TCFLEF x50 composed

TABLE D.1: List of TGFβ-pathway chemical species: chemical name,
variable as concentration, and type of chemical species.
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D.2 Chemical complexes

Name Variable Value

���
�TGF + TGF ∅ − x2

i1
2TGF C1 x1
2TGF + 2TBR2 C2 x1x2
2TGF_2TBR2 C3 x3
2TGF_2TBR2 + 2TBR1 C4 x3x4
2TGF_2TBR2_2TBR1 C5 x5
2TGF_2TBR2_2TBR1P C6 x6
2TGF_2TBR2_2TBR1P + SMAD2 C7 x6x8
2TGF_2TBR2_2TBR1P_SMAD2 C8 x9
TBR1 + TBR1 C9 x2

10
2TBR1 C10 x4
TBR2 + TBR2 C11 x2

11
2TBR2 C12 x2
2TGF_2TBR2_2TBR1P + SMAD2P C13 x6x12
2TGF_2TBR2_2TBR1P + SMAD3 C14 x6x13
2TGF_2TBR2_2TBR1P_SMAD3 C15 x14
2TGF_2TBR2_2TBR1P + SMAD3P C16 x6x15
2TGF_2TBR2_2TBR1P + TAK C17 x6x16
2TGF_2TBR2_2TBR1P_TAK C18 x17
2TGF_2TBR2_2TBR1P + TAKP C19 x6x18
NLKP + TCFLEF C20 x20x21
NLKP_TCFLEF C21 x22
NLKP + TCFLEFP C22 x20x23
TCFLEFP + P8 C23 x23x24
TCFLEFP_P8 C24 x25
TCFLEF + P8 C25 x21x24
TAKP + P9 C26 x18x26
TAKP_P9 C27 x27
TAK + P9 C28 x16x26
NLKP + P10 C29 x20x29
NLKP_P10 C30 x28
NLK + P10 C31 x19x29
SMAD2P + SMAD4 C32 x12x30
SMAD2P_SMAD4 C33 x31
SMAD3P + SMAD4 C34 x15x30
SMAD3P_SMAD4 C35 x32
SMAD3P + PP1A C36 x15x33
SMAD3P_PP1A C37 x34
SMAD3 + PP1A C38 x13x33
SMAD2P + PP1A C39 x12x33
SMAD2P_PP1A C40 x35
SMAD2 + PP1A C41 x8x33
2TGF_2TBR2 + 2TBR1P C42 x3x36
2TBR1P + PP1C C43 x36x7
2TBR1P_PP1C C44 x37
2TBR1 + PP1C C45 x4x7

((((WNT + FRZ FRZ C46 xi2x38
WNT_FRZ C47 x39
WNT_FRZ + LRP6 C48 x39x40
WNT_FRZ_LRP6 C49 x41
WNT_FRZ_LRP6 + DVL C50 x41x42
WNT_FRZ_LRP6_DVL C51 x43
WNT_FRZ_LRP6 + TAK C52 x41x16
WNT_FRZ_LRP6_TAK C53 x44
WNT_FRZ_LRP6 + TAKP C54 x41x18
TAKP + TAB C55 x18x45
TAKP_TAB C56 x46
TAKP_TAB + NLK C57 x46x19
TAKP_TAB_NLK C58 x47
TAKP_TAB + NLKP C59 x46x20
GROUCHO + TCFLEF C60 x48x21
GROUCHO_TCFLEF C61 x49
SMAD4 + TCFLEF C62 x30x21
SMAD4_TCFLEF C63 x50

TABLE D.2: List of TGFβ-pathway chemical complexes: chemical
form, variable as complex involved in a reaction, and value as prod-

uct of species concentrations.
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D.3 Chemical reactions

Reaction Variable Flux

���
���TGF + TGF

k1 f
�
k1r

2TGF ∅
k1 f x2

i1

�
k1r

2TGF R1 f : ∅→ C1 v1 f = k1 f x2
i1

R1r : C1 → ∅ v1r = k1rx1

2TGF + 2TBR2
k2 f

�
k2r

2TGF_2TBR2 R2 f : C2 → C3 v2 f = k2 f x1x2

R2r : C3 → C2 v2r = k2rx3

2TGF_2TBR2 + 2TBR1
k3 f

�
k3r

2TGF_2TBR2_2TBR1 R3 f : C4 → C5 v3 f = k3 f x3x4

R3r : C5 → C4 v3r = k3rx5

2TGF_2TBR2_2TBR1
k4 f→ 2TGF_2TBR2_2TBR1P R4 f : C5 → C6 v4 f = k4 f x5

2TGF_2TBR2_2TBR1P + SMAD2
k5 f

�
k5r

2TGF_2TBR2_2TBR1P_SMAD2 R5 f : C7 → C8 v5 f = k5 f x6x8

R5r : C8 → C7 v5r = k5rx9

TBR1 + TBR1
k6 f

�
k6r

2TBR1 R6 f : C9 → C10 v6 f = k6 f x2
10

R6r : C10 → C9 v6r = k6rx4

TBR2 + TBR2
k7 f

�
k7r

2TBR2 R7 f : C11 → C12 v7 f = k7 f x2
11

R7r : C12 → C11 v7r = k7rx2

2TGF_2TBR2_2TBR1P_SMAD2
k8 f→ 2TGF_2TBR2_2TBR1P + SMAD2P R8 f : C8 → C13 v8 f = k8 f x9

2TGF_2TBR2_2TBR1P + SMAD3
k9 f

�
k9r

2TGF_2TBR2_2TBR1P_SMAD3 R9 f : C14 → C15 v9 f = k9 f x6x13

R9r : C15 → C14 v9r = k9rx14

2TGF_2TBR2_2TBR1P_SMAD3
k10 f→ 2TGF_2TBR2_2TBR1P + SMAD3P R10 f : C15 → C16 v10 f = k10 f x14

2TGF_2TBR2_2TBR1P + TAK
k11 f

�
k11r

2TGF_2TBR2_2TBR1P_TAK R11 f : C17 → C18 v11 f = k11 f x6x16

R11r : C18 → C17 v11r = k11rx17

2TGF_2TBR2_2TBR1P_TAK
k12 f→ 2TGF_2TBR2_2TBR1P + TAKP R12 f : C18 → C19 v12 f = k12 f x17

NLKP + TCFLEF
k13 f

�
k13r

NLKP_TCFLEF R13 f : C20 → C21 v13 f = k13 f x20x21

R13r : C21 → C20 v13r = k13rx22

NLKP_TCFLEF
k14 f→ NLKP + TCFLEFP R14 f : C21 → C22 v14 f = k14 f x22

TCFLEFP + P8
k15 f

�
k15r

TCFLEFP_P8 R15 f : C23 → C24 v15 f = k15 f x23x24

R15r : C24 → C23 v15r = k15rx25

TCFLEFP_P8
k16 f→ TCFLEF + P8 R16 f : C24 → C25 v16 f = k16 f x25

TAKP + P9
k17 f

�
k17r

TAKP_P9 R17 f : C26 → C27 v17 f = k17 f x18x26

R17r : C27 → C26 v17r = k17rx27

TAKP_P9
k18 f→ TAK + P9 R18 f : C27 → C28 v18 f = k18 f x27

NLKP + P10
k19 f

�
k19r

NLKP_P10 R19 f : C29 → C30 v19 f = k19 f x20x29

R19r : C30 → C29 v19r = k19rx28

NLKP_P10
k20 f→ NLK + P10 R20 f : C30 → C31 v20 f = k20 f x28

SMAD2P + SMAD4
k21 f

�
k21r

SMAD2P_SMAD4 R21 f : C32 → C33 v21 f = k21 f x12x30

R21r : C33 → C32 v21r = k21rx31

SMAD3P + SMAD4
k22 f

�
k22r

SMAD3P_SMAD4 R22 f : C34 → C35 v22 f = k22 f x15x30

R22r : C35 → C34 v22r = k22rx32



Appendix D. TGFβ-pathway CRN 140

Reaction Variable Flux

SMAD3P + PP1A
k23 f

�
k23r

SMAD3P_PP1A R23 f : C36 → C37 v23 f = k23 f x15x33

R23r : C37 → C36 v23r = k23rx34

SMAD3P_PP1A
k24 f→ SMAD3 + PP1A R24 f : C37 → C38 v24 f = k24 f x34

SMAD2P + PP1A
k25 f

�
k25r

SMAD2P_PP1A R25 f : C39 → C40 v25 f = k25 f x12x33

R25r : C40 → C39 v25r = k25rx35

SMAD2P_PP1A
k26 f→ SMAD2 + PP1A R26 f : C40 → C41 v26 f = k26 f x35

2TGF_2TBR2 + 2TBR1P
k27 f

�
k27r

2TGF_2TBR2_2TBR1P R27 f : C42 → C6 v27 f = k27 f x3x36

R27r : C6 → C42 v27r = k27rx6

2TBR1P + PP1C
k28 f

�
k28r

2TBR1P_PP1C R28 f : C43 → C44 v28 f = k28 f x36x7

R28r : C44 → C43 v28r = k28rx37

2TBR1P_PP1C
k29 f→ 2TBR1 + PP1C R29 f : C44 → C45 v29 f = k29 f x37

���
���

��
WNT + FRZ

k30 f
�

k30r
WNT_FRZ FRZ

k30 f xi2

�
k30r

WNT_FRZ R30 f : C46 → C47 v30 f = k30 f xi2x38

R30r : C47 → C46 v30r = k30rx39

WNT_FRZ + LRP6
k31 f

�
k31r

WNT_FRZ_LRP6 R31 f : C48 → C49 v31 f = k31 f x39x40

R31r : C49 → C48 v31r = k31rx41

WNT_FRZ_LRP6 + DVL
k32 f

�
k32r

WNT_FRZ_LRP6_DVL R32 f : C50 → C51 v32 f = k32 f x41x42

R32r : C51 → C50 v32r = k32rx43

WNT_FRZ_LRP6 + TAK
k33 f

�
k33r

WNT_FRZ_LRP6_TAK R33 f : C52 → C53 v33 f = k33 f x41x16

R33r : C53 → C52 v33r = k33rx44

WNT_FRZ_LRP6_TAK
k34 f→ WNT_FRZ_LRP6+ TAKP R34 f : C53 → C54 v34 f = k34 f x44

TAKP + TAB
k35 f

�
k35r

TAKP_TAB R35 f : C55 → C56 v35 f = k35 f x18x45

R35r : C56 → C55 v35r = k35rx46

TAKP_TAB + NLK
k36 f

�
k36r

TAKP_TAB_NLK R36 f : C57 → C58 v36 f = k36 f x46x19

R36r : C58 → C57 v36r = k36rx47

TAKP_TAB_NLK
k37 f→ TAKP_TAB + NLKP R37 f : C58 → C59 v37 f = k37 f x47

GROUCHO + TCFLEF
k38 f

�
k38r

GROUCHO_TCFLEF R38 f : C60 → C61 v38 f = k38 f x48x21

R38r : C61 → C60 v38r = k38rx49

SMAD4 + TCFLEF
k39 f

�
k39r

SMAD4_TCFLEF R39 f : C62 → C63 v39 f = k39 f x30x21

R39r : C63 → C62 v39r = k39rx50

TABLE D.3: List of TGFβ-pathway chemical reactions: reaction in
chemical form, variable as function between chemical complexes, and
flux as product of reaction rate constants and species concentrations.
The notations follow the convention of f for forward and r for re-
verse, both in the reaction, flux, and rate constant variables. Coupled

forward-reverse components have the same index number.
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D.4 System of ODEs: ẋ = Sv

ẋ1 = v1 f − v1r − v2 f + v2r (D.4.1)

ẋ2 = −v2 f + v2r + v7 f − v7r (D.4.2)

ẋ3 = v2 f − v2r − v3 f + v3r − v27 f + v27r (D.4.3)

ẋ4 = −v3 f + v3r + v6 f − v6r + v29 f (D.4.4)

ẋ5 = v3 f − v3r − v4 f (D.4.5)

ẋ6 = v4 f − v5 f + v5r + v8 f − v9 f + v9r + v10 f − v11 f + v11r + v12 f + v27 f − v27r (D.4.6)

ẋ7 = −v28 f + v28r + v29 f (D.4.7)

ẋ8 = −v5 f + v5r + v26 f (D.4.8)

ẋ9 = v5 f − v5r − v8 f (D.4.9)

˙x10 = −2v6 f + 2v6r (D.4.10)

˙x11 = −2v7 f + 2v7r (D.4.11)

˙x12 = v8 f − v21 f + v21r − v25 f + v25r (D.4.12)

˙x13 = −v9 f + v9r + v24 f (D.4.13)

˙x14 = v9 f − v9r − v10 f (D.4.14)

˙x15 = v10 f − v22 f + v22r − v23 f + v23r (D.4.15)

˙x16 = −v11 f + v11r + v18 f − v33 f + v33r (D.4.16)

˙x17 = v11 f − v11r − v12 f (D.4.17)

˙x18 = v12 f − v17 f + v17r + v34 f − v35 f + v35r (D.4.18)

˙x19 = v20 f − v36 f + v36r (D.4.19)

˙x20 = −v13 f + v13r + v14 f − v19 f + v19r + v37 f (D.4.20)

˙x21 = −v13 f + v13r + v16 f − v38 f + v38r − v39 f + v39r (D.4.21)

˙x22 = v13 f − v13r − v14 f (D.4.22)

˙x23 = v14 f − v15 f + v15r (D.4.23)

˙x24 = −v15 f + v15r + v16 f (D.4.24)

˙x25 = v15 f − v15r − v16 f (D.4.25)

˙x26 = −v17 f + v17r + v18 f (D.4.26)

˙x27 = v17 f − v17r − v18 f (D.4.27)

˙x28 = v19 f − v19r − v20 f (D.4.28)

˙x29 = −v19 f + v19r + v20 f (D.4.29)

˙x30 = −v21 f + v21r − v22 f + v22r − v39 f + v39r (D.4.30)

˙x31 = v21 f − v21r (D.4.31)

˙x32 = v22 f − v22r (D.4.32)

˙x33 = −v23 f + v23r + v24 f − v25 f + v25r + v26 f (D.4.33)

˙x34 = v23 f − v23r − v24 f (D.4.34)

˙x35 = v25 f − v25r − v26 f (D.4.35)

˙x36 = −v27 f + v27r − v28 f + v28r (D.4.36)

˙x37 = v28 f − v28r − v29 f (D.4.37)

˙x38 = −v30 f + v30r (D.4.38)

˙x39 = v30 f − v30r − v31 f + v31r (D.4.39)

˙x40 = −v31 f + v31r (D.4.40)

˙x41 = v31 f − v31r − v32 f + v32r − v33 f + v33r + v34 f (D.4.41)

˙x42 = −v32 f + v32r (D.4.42)

˙x43 = v32 f − v32r (D.4.43)

˙x44 = v33 f − v33r − v34 f (D.4.44)

˙x45 = −v35 f + v35r (D.4.45)

˙x46 = v35 f − v35r − v36 f + v36r + v37 f (D.4.46)

˙x47 = v36 f − v36r − v37 f (D.4.47)

˙x48 = −v38 f + v38r (D.4.48)

˙x49 = v38 f − v38r (D.4.49)

˙x50 = v39 f − v39r (D.4.50)
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D.5 Conserved cycles

The conserved cycles are linear combinations of specific differential equations equal
to zero, and indicate conserved quantities.

ẋ7 + ˙x37 = 0 (D.5.1)

ẋ8 + ẋ9 + ˙x12 + ˙x31 + ˙x35 = 0 (D.5.2)

2 · ẋ4 + 2 · ẋ5 + 2 · ẋ6 + 2 · ẋ9 + ˙x10 + 2 · ˙x14 + 2 · ˙x17 + 2 · ˙x36 + 2 · ˙x37 = 0 (D.5.3)

2 · ẋ2 + 2 · ẋ3 + 2 · ẋ5 + 2 · ẋ6 + 2 · ẋ9 + ˙x11 + 2 · ˙x14 + 2 · ˙x17 = 0 (D.5.4)

˙x13 + ˙x14 + ˙x15 + ˙x32 + ˙x34 = 0 (D.5.5)

˙x16 + ˙x17 + ˙x18 + ˙x27 + ˙x44 + ˙x46 + ˙x47 = 0 (D.5.6)

˙x19 + ˙x20 + ˙x22 + ˙x28 + ˙x47 = 0 (D.5.7)

˙x21 + ˙x22 + ˙x23 + ˙x25 + ˙x49 + ˙x50 = 0 (D.5.8)

˙x24 + ˙x25 = 0 (D.5.9)

˙x26 + ˙x27 = 0 (D.5.10)

˙x29 + ˙x28 = 0 (D.5.11)

˙x30 + ˙x31 + ˙x32 + ˙x50 = 0 (D.5.12)

˙x33 + ˙x34 + ˙x35 = 0 (D.5.13)

˙x38 + ˙x39 + ˙x41 + ˙x43 + ˙x44 = 0 (D.5.14)

˙x40 + ˙x41 + ˙x43 + ˙x44 = 0 (D.5.15)

˙x42 + ˙x43 = 0 (D.5.16)

˙x45 + ˙x46 + ˙x47 = 0 (D.5.17)

˙x48 + ˙x49 = 0 (D.5.18)

By integrating in time the conserved cycle equations, the following formal explicit
expressions for the concentrations of the basic species are obtained. The dependence
on the time variable is omitted but implied.

x7 = x7(0)− x37 (D.5.19)

x8 = x8(0)− (x9 + x12 + x31 + x35) (D.5.20)

x10 = x10(0)− 2 · (x4 + x5 + x6 + x9 + x14 + x17 + x36 + x37) (D.5.21)

x11 = x11(0)− 2 · (x2 + x3 + x5 + x6 + x9 + x14 + x17) (D.5.22)

x13 = x13(0)− (x14 + x15 + x32 + x34) (D.5.23)

x16 = x16(0)− (x17 + x18 + x27 + x44 + x46 + x47) (D.5.24)

x19 = x19(0)− (x20 + x22 + x28 + x47) (D.5.25)

x21 = x21(0)− (x22 + x23 + x25 + x49 + x50) (D.5.26)

x24 = x24(0)− x25 (D.5.27)

x26 = x26(0)− x27 (D.5.28)

x29 = x29(0)− x28 (D.5.29)

x30 = x30(0)− (x31 + x32 + x50) (D.5.30)

x33 = x33(0)− (x34 + x35) (D.5.31)

x38 = x38(0)− (x39 + x41 + x43 + x44) (D.5.32)

x40 = x40(0)− (x41 + x43 + x44) (D.5.33)

x42 = x42(0)− x43 (D.5.34)

x45 = x45(0)− (x46 + x47) (D.5.35)

x48 = x48(0)− x49 (D.5.36)
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D.6 System at equilibrium: ẋ = Sv = 0

v1 f − v1r = 0
k1r

k1 f
=

x2
i1

x1
k1r = k1 f

x2
i1

x1
(D.6.1)

v2 f − v2r = 0
k2r

k2 f
=

x1x2

x3
k2r = k2 f

x1x2

x3
(D.6.2)

v3 f − v3r − v4 f = 0
k3r + k4 f

k3 f
=

x3x4

x5
k3r = k3 f

x3x4

x5
− k4 f > 0 (D.6.3)

v5 f − v5r − v8 f = 0
k5r + k8 f

k5 f
=

x6x8

x9
k5r = k5 f

x6x8

x9
− k8 f > 0 (D.6.4)

v6 f − v6r = 0
k6r

k6 f
=

x2
10

x4
k6r = k6 f

x2
10

x4
(D.6.5)

v7 f − v7r = 0
k7r

k7 f
=

x2
11

x2
k7r = k7 f

x2
11

x2
(D.6.6)

v9 f − v9r − v10 f = 0
k9r + k10 f

k9 f
=

x6x13

x14
k9r = k9 f

x6x13

x14
− k10 f > 0 (D.6.7)

v11 f − v11r − v12 f = 0
k11r + k12 f

k11 f
=

x6x16

x17
k11r = k11 f

x6x16

x17
− k12 f > 0 (D.6.8)

v13 f − v13r − v14 f = 0
k13r + k14 f

k13 f
=

x20x21

x22
k13r = k13 f

x20x21

x22
− k14 f > 0 (D.6.9)

v15 f − v15r − v16 f = 0
k15r + k16 f

k15 f
=

x23x24

x25
k15r = k15 f

x23x24

x25
− k16 f > 0 (D.6.10)

v17 f − v17r − v18 f = 0
k17r + k18 f

k17 f
=

x18x26

x27
k17r = k17 f

x18x26

x27
− k18 f > 0 (D.6.11)

v19 f − v19r − v20 f = 0
k19r + k20 f

k19 f
=

x20x29

x28
k19r = k19 f

x20x29

x28
− k20 f > 0 (D.6.12)

v21 f − v21r = 0
k21r

k21 f
=

x12x30

x31
k21r = k21 f

x12x30

x31
(D.6.13)

v22 f − v22r = 0
k22r

k22 f
=

x15x30

x32
k22r = k22 f

x15x30

x32
(D.6.14)

v23 f − v23r − v24 f = 0
k23r + k24 f

k23 f
=

x15x33

x34
k23r = k23 f

x15x33

x34
− k24 f > 0 (D.6.15)

v25 f − v25r − v26 f = 0
k25r + k26 f

k25 f
=

x12x33

x35
k25r = k25 f

x12x33

x35
− k26 f > 0 (D.6.16)

v27 f − v27r + v4 f = 0 k27r =
k27 f x3x36 + k4 f x5

x6
(D.6.17)

v28 f − v28r − v29 f = 0
k28r + k29 f

k28 f
=

x36x7

x37
k28r = k28 f

x36x7

x37
− k29 f > 0 (D.6.18)

v30 f − v30r = 0
k30r

k30 f
=

xi2x38

x39
k30r = k30 f

xi2x38

x39
(D.6.19)

v31 f − v31r = 0
k31r

k31 f
=

x39x40

x41
k31r = k31 f

x39x40

x41
(D.6.20)

v32 f − v32r = 0
k32r

k32 f
=

x41x42

x43
k32r = k32 f

x41x42

x43
(D.6.21)

v33 f − v33r − v34 f = 0
k33r + k34 f

k33 f
=

x41x16

x44
k33r = k33 f

x41x16

x44
− k34 f > 0 (D.6.22)

v35 f − v35r = 0
k35r

k35 f
=

x18x45

x46
k35r = k35 f

x18x45

x46
(D.6.23)

v36 f − v36r − v37 f = 0
k36r + k37 f

k36 f
=

x46x19

x47
k36r = k36 f

x46x19

x47
− k37 f > 0 (D.6.24)

v38 f − v38r = 0
k38r

k38 f
=

x48x21

x49
k38r = k38 f

x48x21

x49
(D.6.25)

v39 f − v39r = 0
k39r

k39 f
=

x30x21

x50
k39r = k39 f

x30x21

x50
(D.6.26)
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v14 f − v16 f = 0
k16 f

k14 f
=

x22

x25
k16 f = k14 f

x22

x25
(D.6.27)

v10 f − v24 f = 0
k24 f

k10 f
=

x14

x34
k24 f = k10 f

x14

x34
(D.6.28)

v8 f − v26 f = 0
k26 f

k8 f
=

x9

x35
k26 f = k8 f

x9

x35
(D.6.29)

v4 f − v29 f = 0
k29 f

k4 f
=

x5

x37
k29 f = k4 f

x5

x37
(D.6.30)

v12 f − v18 f + v34 f = 0 k34 f =
k18 f x27 − k12 f x17

x44
> 0 (D.6.31)

v20 f − v37 f = 0
k37 f

k20 f
=

x28

x47
k37 f = k20 f

x28

x47
(D.6.32)
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