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Abstract 
 

One of the most fundamental features of a neural circuit is its connectivity since the single neuron 

activity is not due only to its intrinsic properties but especially to the direct or indirect influence of 

other neurons1. It is fundamental to elaborate research strategies aimed at a comprehensive structural 

description of neuronal interconnections as well as the networks’ elements forming the human 

connectome. The connectome will significantly increase our understanding of how functional brain 

states emerge from their underlying structural substrate, and will provide new mechanistic insights 

into how brain function is affected if this structural substrate is disrupted. The connectome is 

characterized by three different types of connectivity: structural, functional and effective 

connectivity. It is evident that the final goal of a connectivity analysis is the reconstruction of the 

human connectome, thus, the application of statistical measures to the in vivo model in both 

physiological and pathological states. Since the system under study (i.e. brain areas, cell assemblies) 

is highly complex, to achieve the purpose described above, it is useful to adopt a reductionist 

approach. During my PhD work, I focused on a reduced and simplified model, represented by neural 

networks chronically coupled to Micro Electrodes Arrays (MEAs). Large networks of cortical 

neurons developing in vitro and chronically coupled to MEAs2 represent a well-established 

experimental model for studying the neuronal dynamics at the network level3, and for understanding 

the basic principles of information coding4 learning and memory5. Thus, during my PhD work, I 

developed and optimized statistical methods to infer functional connectivity from spike train data. In 

particular, I worked on correlation-based methods: cross-correlation and partial correlation, and 

information-theory based methods: Transfer Entropy (TE) and Joint Entropy (JE). More in detail, my 

PhD’s aim has been applying functional connectivity methods to neural networks coupled to high 

density resolution system, like the 3Brain active pixel sensor array with 4096 electrodes6. To fulfill 

such an aim, I re-adapted the computational logic operations of the aforementioned connectivity 

methods. Moreover, I worked on a new method based on the cross-correlogram, able to detect both 

inhibitory and excitatory links. I called such an algorithm Filtered Normalized Cross-Correlation 

Histogram (FNCCH). The FNCCH shows a very high precision in detecting both inhibitory and 

excitatory functional links when applied to our developed in silico model. I worked also on a temporal 

and pattern extension of the TE algorithm. In this way, I developed a Delayed TE (DTE) and a 

Delayed High Order TE (DHOTE) version of the TE algorithm. These two extension of the TE 

algorithm are able to consider different temporal bins at different temporal delays for the pattern 
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recognition with respect to the basic TE. I worked also on algorithm for the JE computation. Starting 

from the mathematical definition in7, I developed a customized version of JE capable to detect the 

delay associated to a functional link, together with a dedicated shuffling based thresholding approach. 

Finally, I embedded all of these connectivity methods into a user-friendly open source software 

named SPICODYN
8. SPICODYN allows the user to perform a complete analysis on data acquired from 

any acquisition system. I used a standard format for the input data, providing the user with the 

possibility to perform a complete set of operations on the input data, including: raw data viewing, 

spike and burst detection and analysis, functional connectivity analysis, graph theory and topological 

analysis. SPICODYN inherits the backbone structure from TOOLCONNECT, a previously published 

software that allowed to perform a functional connectivity analysis on spike trains data.    
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Acronyms 
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Introduction 
 

Bridging structure and function of neural circuits  
One of the most fundamental features of a neural circuit is its connectivity since the single neuron 

activity is not due only to its intrinsic properties but especially to the direct or indirect influence of 

other neurons1. As recently reviewed by Yuste9, thanks to technology advancements, the era of the 

“neuron doctrine” has faded: neuronal assemblies can be considered the physiological units of the 

brain which generate and sustain the functional properties as well as the dynamical states of the entire 

system. Nervous systems are complex networks par excellence, capable of elaborating and integrating 

information from multiple external and internal sources in real time. It has been proposed that such 

information is managed by means of neural networks complying with two competing demands, which 

might also be considered as fundamental organizational principles: functional segregation and 

functional integration, enabling both the rapid extraction of information and the generation of 

coherent brain states10. As confirmed by recent studies reporting structural analyses of brain networks 

carried out on datasets describing the cerebral cortex of mammalian animal models (e.g. rat, cat, 

monkey), cortical areas were found to be neither completely connected with each other nor randomly 

linked; instead, their interconnections show a specific and intricate organization11. It is fundamental 

to elaborate and adopt research strategies aimed at a comprehensive structural description of such 

interconnections as well as the networks’ elements forming the human connectome12. The 

connectome will significantly increase our understanding of how functional brain states emerge from 

their underlying structural substrate, and will provide new mechanistic insights into how brain 

function is affected if this structural substrate is disrupted. 

 

Different types of connectivity to describe neuronal assemblies 

The types of connectivity used to describe the interactions of neuronal networks are: structural, 

functional and effective. 

Structural connectivity (Fig. 1A): the structural or anatomical connectivity indicates the physical 

interactions (i.e., a chemical or electrical synapses) that link network’s neurons at a given time13. 

Therefore, we can determine which neural units can directly interact with each other. The structural 

connectivity ranges over multiple spatial scales, since we can detect morphological connections both 

in local microcircuits and in long-range interactions that link different sub-networks. In a short time 
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scale (about., less than one minute), such morphological connections mediated by dendritic spines 

are static, while in a longer time scale, they are dynamic, since physiological mechanisms of learning, 

plasticity and development can shape the morphological circuits14. 

Functional connectivity (Fig. 1B): functional connection indicates the correlation between time 

series of spikes coming from different neurons. It measures statistical interdependence without 

considering any causal effects; it is time-dependent and “model-free”. Therefore, two neurons are 

functionally linked, if we can predict the activity of one of the two neurons on the basis of the activity 

of the other neuron. Functional properties of single neurons are strongly driven by their anatomical 

connections, dendritic arborizations and synaptic distributions13. Moreover, functional interactions 

can contribute to the shaping of the underlying anatomical substrate through activity-dependent 

synaptic modifications.  

Effective connectivity (Fig. 1C): effective connectivity indicates the presence of a connection when 

a neuron on the network directly affects another neuron through a causal relationship between the 

activities of the two neurons. In other words, “effective” means any observable interactions between 

neurons that alters their firing activity; so it is not “model-free” like functional connectivity, but can 

require the specification of a causal model including structural parameters. 

 

 

Fig. 1| Classification of the neural network connections. (A) Structural connectivity involving the 

physical connections between neurons (B) Functional connectivity, involving functional connections 

and activity synchrony and correlation between neurons, without any causal model. (C) Effective 

connectivity. It is derived from functional connectivity introducing a causal model.  
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The relevance of the in vitro model  

The final goal of connectivity analysis is the reconstruction of the human connectome, thus, the 

application of statistical measures to the in vivo model in both physiological and pathological states. 

Since the system under study (i.e. brain areas, cell assemblies) is highly complex and not controllable, 

to achieve the purpose described above, it is useful to adopt a reductionist approach. A possible 

strategy to reduce such a complexity makes use of in vitro experimental models coupled to Micro-

Electrode Arrays (MEAs). Nowadays, dissociated neuronal cultures coupled to MEAs are fairly used 

to better understand the complexity of brain networks. One of the main advantage to use dissociated 

neuronal assemblies is the possibility to manipulate and control their connectivity: in other words, it 

is feasible to drive the connectivity of a network and to study how such a topological configuration 

can shape the emergent dynamics. Examples of engineered networks started in 1975 with the 

pioneering work of Letourneau15 who investigated the role of different adhesion substrates for 

promoting the initiation, elongation and branching of the axons. The possibility to use the in vitro 

model, that is a valuable but at the same time reduced and simplified experimental model can be 

considered a great breakthrough in understanding the functional properties of neuronal networks. 

 

 

 

Micro Electrode Arrays  

MEAs are a powerful tool for simultaneously monitoring and acquiring the electrophysiological 

activity of neural preparations at many sites (Fig. 2A). The electrodes embedded in such devices can 

record electrophysiological activity in a non-invasive way (i.e., extracellularly) and therefore, under 

proper maintenance conditions, can allow long-term recordings (i.e., from hours up to months)16. 

Commercial available MEAs usually provide 60-120 electrodes with 100-500 μm inter-electrode 

spacing (Fig. 2B). However, recent advances in multichannel recording techniques have made 

possible to observe the activities of thousands of neurons simultaneously, and made routine the 

acquisition of massive amounts of empirical data or high-density configurations with thousands of 

microelectrodes (4’000-10’000) with a spatial resolution of some tens of micrometers (Fig. 2C)6,17 
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Fig. 2| MEA and extracellular signals: (A) The activity of a cortical neural network (28 DIVs) 

presents a mix of bursting and spiking activity (top). Applying a spike detection algorithm, time series 

are converted into a serial point process (bottom). (B-C) Examples of Micro-Electrode Arrays 

(MEAs) made up of (B) 60, (C) 4096 electrodes. 

 

The characteristics of these devices allow different studies on neuronal networks like electrical18 and 

chemical manipulation19, and/or physical segregation in sub-populations (e.g.,20).  

More recently the scientific community is beginning to use MEAs for characterizing the underlying 

functional connectivity, and its interplay with the expressed dynamics21, especially by exploiting the 

high-density systems which allow a more accurate reconstruction of the network topology22.  

 

How to infer functional connectivity in in vitro neural networks 

In vitro networks represent an excellent benchmark for the validation of functional-effective 

connectivity methods7,23. Indeed, reconstructing the detailed connectivity of a neuronal network from 

spike data (functional connectivity) is not trivial, and it is still an open issue, due to the complexities 

introduced by neuron dynamics and the high number of network connections24,25. Researchers have 

often studied the status of structural connectivity and its relationship to functional-effective 

connectivity, and tried to relate connectivity to dynamics26. In order to gain understanding of the 

exchange of information within and between hypothetical neuronal assemblies and to extract 
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topological characteristics, it is necessary to monitor, in parallel, the activities of many neurons and 

to analyze large amount of data from these electrophysiological measurements. For this purpose, the 

recent developed high-density MEAs technologies are certainly very attractive since they allow 

monitoring the on-going electrophysiological spatio-temporal patterns of complex networks17,27, from 

the majority of neurons in the network.  

To estimate the functional-effective connectivity of in vitro networks, there are two different 

strategies: the first one relies on the direct analysis of the acquired sequence of voltage values (Fig. 

2A top) from each recording electrode (i.e., the time series). The other approach deals with point 

processes (e.g., spike trains). Practically, a spike train is a sequence of samples equal to 1 if a spike 

is detected and 0 otherwise (Fig. 1A bottom).28-31 

Statistical analysis of spike train data was pioneered by Perkel32 and followed by more than four 

decades of methodology development in this area33. Analytically, cross-correlation based methods 

remain the main statistics for evaluating interactions among the elements in a neuronal network, and 

produce a weighted assessment of the connections strength. Weak and non-significant connections 

may tend to obscure the relevant network topology constituted by strong and significant links, and 

therefore are often discarded by applying an absolute, or a proportional weighted threshold34. 

Correlation based techniques include: independent components analysis and various measures of 

synchrony, smoothed ratio of spiking activity35, cross-correlation and cross-correlogram36,37, 

correlation coefficient38, partial-correlation39. Cross-Correlation (CC) measures the frequency at 

which one particular neuron or electrode fires (“target”) as a function of time, relative to the firing of 

an event in another network (“reference”). Partial Correlation (PC) is able to distinguish between 

direct and indirect connections by removing the portion of the relationship between two spike trains 

that can be attributed to linear relationships with recorded spike trains from other neurons39,40. Other 

popular techniques to infer functional-effective connectivity are based on Information Theory (IT) 

methods41,42, Granger causality and dynamical causal modeling43. Commonly used information 

theoretic measures able to estimate causal relationships are transfer entropy44 and joint entropy7. 

Transfer Entropy (TE) is an information-theory based method that estimates the part of the activity 

of a neuron which depend from the past activity of another neuron. Joint Entropy (JE) is an entropic 

measure of the cross Inter-Spike Intervals (cISI).  

In my PhD work, I focused on CC and Cross-Correlation Histogram (CCH) based methods, PC, TE 

and JE. With few exceptions45,46, all the recently introduced and revisited methods deal with 

excitation, ignoring inhibition or admitting the failure in reliably identifying inhibitory links44. To 

overcome such a limitation, I introduced a new CCH-based algorithm able to efficiently and 
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accurately infer effective excitatory-inhibitory links (cf. Filtered Normalized Cross-Correlation 

Histogram (FNCCH) section). 

In fact, the cross-correlation is able by definition to detect inhibition, but, from some experimental 

works related to the analysis of cortical connectivity from in vivo multi-unit recordings, it was shown 

that the sensitivity for excitation is much higher than the sensitivity for inhibition47 (due to the low 

firing rates of neurons). A general lower sensitivity of cross-correlation for inhibition vs. excitation 

has also been proved theoretically48 thus making the task of inhibitory connection’s identification 

particularly difficult. However, by using my ad-hoc developed FNCCH algorithm, I could derive 

effective connectivity maps (both for excitation and inhibition) reliably extracting topological 

characteristics from multiple spike trains in large-scale networks (i.e., thousands of neurons) 

monitored by large-scale MEAs (i.e., with thousands of micro-transducers).  

Relative to the information theory-based methods, I implemented customized versions of TE and JE. 

In particular, I studied a new version of the TE algorithm, in which I extended the method to deal with 

multiple time delays (temporal extension) and with multiple binary patterns (high order extension), 

obtaining improved reliability-precision and increasing computational performances. I also worked 

on the JE algorithm; in fact, in its original definition the JE provides only a value that estimates the 

probability of two neurons to be functionally connected, but in my work I added the possibility to 

extract the temporal delay that characterizes a detected functional connection. It is worth to consider 

that every connectivity method provides a full n x n connectivity map, if n is the number of the 

analyzed electrodes. Thus, a thresholding procedure is required to throw away those values that are 

close to or in the noise, and not real connections. This requires setting a threshold for the connectivity 

matrix. Exploring the available works in the literature about the analysis of functional connectivity 

of in vitro neural networks, it is possible to see several thresholding procedures, with different levels 

of complexity. The simplest of such procedures is to use a hard threshold39 defined as (µ + n∙σ), where 

µ and σ are the mean and the standard deviation computed among all the CM’s elements, respectively, 

and n is an integer. Another possibility is to use shuffling techniques, that allow to destroy the 

information stored in the spike timing, obtaining independent spike trains (i.e., surrogate data). In my 

PhD, I focused on both the typologies of thresholding procedures, introducing a customized shuffling 

approach for the JE algorithm. Such an approach, required high computational efficiency and was 

made possible only by the optimization strategies that I adopted for the implementation of the 

connectivity methods.  
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Functional Connectivity analysis requires ad-hoc software and 

algorithms implementation  

The analysis of the interactions in large-scale neuronal networks to infer functional connectivity is a 

demanding computational process. Recent advances in multichannel extracellular recording 

techniques have made possible the simultaneous recording of the electrophysiological activity of 

thousands of neurons, with in vitro arrays that can contain up to thousands of microelectrodes 

6,14,27,49,50. Such relevant advancements in the technology have made routine the acquisition of 

massive amounts of data. Moreover, quite often the experimental protocols researchers perform 

require long recordings (e.g., tens of minutes, hours) which generate a huge amount of raw data. 

Furthermore, to validate an experimental finding, several trials of the same protocol are necessary, or 

in other cases, several experimental conditions have to be tested. For these reasons, the three main 

features that software tools have to satisfy are: i) reasonable times of computation (efficiency); ii) 

simple procedures to process several experiments (automation); iii) possibility to analyze data coming 

from different acquisition systems (flexibility). Indeed, the two first conditions should not 

compromise on the accuracy and the efficacy of the developed algorithms. For the above reasons, 

new computational strategies are requested for optimizing the management and analysis of the 

acquired data.   

I developed a new software package, named SPICODYN, which implements, starting from raw data, 

several algorithms to characterize the spiking and bursting properties of large-scale neuronal 

networks. Such a tool is independent from the acquisition system and is conceived for the analysis of 

multi-site neuronal spike signals in HDF5 format (HDFGroup 2013). Particularly, it is specifically 

tailored to process recordings acquired by the commercial High-Density Multi-Electrode Arrays 

(HD-MEAs) (e.g., 4096 microelectrodes from 3Brain or 4225 microelectrodes from Multi Channel 

Systems, MCS, Reutlingen, Germany).  

 

Goal of the Thesis 

Goal of my PhD work has been to develop a group of statistical measures to infer functional 

connectivity in in vitro neural networks. I worked on correlation-based methods (cross-correlation 

and partial correlation), and information-theory based methods (Transfer Entropy (TE) and Joint 

Entropy (JE)). More in detail, by means of the developed methods, I tried to study the interplay 

between dynamics and connectivity, using high density resolution systems, with thousands of 

microelectrodes. To fulfill such an aim, I re-adapted the computational logic operations of the 

aforementioned connectivity methods to reduce the time requested for the statistical computations. 



11 
 

Moreover, I worked on a new method based on the cross-correlogram, able to detect both inhibitory 

and excitatory links. The FNCCH shows a very high precision in detecting both inhibitory and 

excitatory functional links when applied to a computational model of neuronal networks. Concerning 

the information-theory based algorithms, I worked on the temporal and pattern extension of the 

already existing TE algorithm, by developing the Delayed TE (DTE) and the Delayed High Order TE 

(DHOTE) algorithms. Finally, starting from the mathematical definition in7 of the JE, I developed a 

new customized version of the algorithm capable to detect the delay associated to a functional link, 

together with a customized shuffling based thresholding approach. Finally, I embedded all of these 

connectivity methods into a user-friendly open source software named SPICODYN
8 which inherits the 

backbone structure from TOOLCONNECT
51. SPICODYN allows the user to perform a complete analysis 

on data acquired from any acquisition system, including: raw data viewing, spike and burst detection 

and analysis, functional connectivity analysis, graph theory and topological analysis.  

Structure of the Thesis  

In the first section, Materials and methods, I will describe at first the statistical measures that I used 

to infer functional connectivity in in vitro neural networks coupled to the MEAs. Then, I will 

introduce the problem of thresholding the connectivity matrix, together with the description of 

possible solutions that I studied during my work. Finally, I will describe the metrics that I used to 

evaluate the connectivity methods’ performances and all the graph theory’s mathematical instruments 

fundamental to treat the connectivity matrix as a graph, inferring and characterizing the neural 

networks’ topological features. The section Results is divided into two sub-sections. In the first one, 

I will describe the results obtained by applying each of the implemented connectivity methods on 

computational models to evaluate the computational accuracy, as well as an application to 

experimental neural networks coupled to both low and high density MEAs. In the second one, I will 

describe the logics of optimization that I adopted in order to reduce the requested time for computation 

and the software package SPICODYN, explaining the informatics tools and implementation choices 

that allowed an improvement of the computational efficiency, making possible to perform a complete 

analysis of neural networks coupled to high density acquisition systems. Finally, a last section 

summarizes all the obtained results and suggests a possible perspective for further extension of my 

work.  
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Materials and methods  
 

 

Correlation-based connectivity methods  

 

Cross-Correlation  

Cross-correlation37 measures the frequency at which one particular neuron or electrode fires (“target”) 

as a function of time, relative to the firing of an event in another one (“reference”). Mathematically, 

the correlation function is a statistic representing the average value of the product of two random 

processes (the spike trains). Given a reference electrode x and a target electrode y, the correlation 

function reduces to a simple probability Cxy(τ) of observing a spike in one train y at time (t+τ), given 

that there was a spike in a second train x at time t; τ is called the time shift or the time lag. For my 

PhD studies, I used the standard definition for the cross-correlation computation, following a known 

normalization approach on the CC values52. We can define the cross-correlation as follows:        

  

 

𝐶𝑥𝑦(𝜏) =
1

√𝑁𝑥𝑁𝑦 
 ∑ 𝑥(𝑡𝑠)𝑦(𝑡𝑠

𝑁𝑥
𝑠=1 −  𝜏)       (1)

                         

where ts indicates the timing of a spike in the x train, Nx is the total number of spikes in the x train 

and Ny is the total number of spikes in the y train. Cross-correlation is limited to the interval [0,1] and 

is symmetric Cxy(τ) = Cyx(-τ). The cross-correlogram is then defined as the correlation function 

computed over a chosen correlation window (W, τ = [-W/2, W/2]). Fig. 3 describes a possible strategy 

to compute the Cross-Correlation Histogram (CCH). The Normalized CCH (NCCH) is obtained by 

applying the normalization factor represented by the squared product of the target and the reference 

number of spikes to the CCH. Different shapes of cross-correlograms can be obtained from pairs of 

analyzed spike trains. When the two spike trains are independent, the cross-correlogram is flat; if 

there is any covariation in the spike trains, one or more peaks appear (Fig. 4C). The occurrence of 

significant departures from a flat background in the cross-correlogram (i.e., a peak or a trough) is an 

indication of a functional connection. In particular, a peak corresponds to an excitatory connection 

and a trough is relative to an inhibition. The different amplitude of the peaks can be related to the 

existence of different levels of correlation between neural spike trains. A peak can appear also for 
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other kinds of interaction (e.g., covariations over in response latency, and in neuronal excitability). 

Generally, a correlogram can reflect a so-called direct excitatory connection between the two neurons 

when a one-sided peak is evident (Fig. 4C). This peak is displaced from the origin of time by latency 

corresponding to the synaptic delay.  

 

Cross-correlation histogram 

The use of spike trains data offers the possibility to optimize the cross-correlation algorithm 

efficiency. Thus, to overcome the lack of efficiency of many of the proposed cross-correlation 

computation strategies, here I present an alternative approach based on the “direct” spike time stamps 

inspection that avoids un-necessary calculations on the binarized spike trains.  The only important 

information is stored in the bins containing a spike (i.e., spike time stamp), that are significantly less 

than null bins. If we consider that, typically, the average mean firing rate in neural networks oscillates 

between 0.2 spikes/s and 20 spikes/s53, acquiring with a sampling frequency of 10 kHz means we will 

have only 2% of bin with spikes. To account only for the spike trains time stamps, I developed a new 

logical version of the CCH.    

 

 

Fig. 3| Computation of the Cross-Correlation Histogram. The Cross-Correlation Histogram 

(CCH) is computed according to a discrete convolution. Thus, the correlation window is centered in 

each of the reference train spikes (red squares). The number of target spikes inside each correlation 

window’s bin (green squares) are counted, and the cumulative number of spikes, after normalization, 

represent the cross-correlation histogram.  

 

Filtered and Normalized Cross-Correlation Histogram (FNCCH)  

Let us consider a reference neuron x and a target neuron y, and let us suppose that we computed the 

NCCH between x and y. After the NCCH computation, the maximum value (i.e., the peak) is 

commonly used as a value reflecting the strength of the estimated functional link. If x and y share an  
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Fig. 4| Example of FNCCH detection for excitatory and inhibitory links in a network model. A, 

NCCH computed between two spike trains correspondent to two neurons linked by an inhibitory link 

in the model. The NCCH might detect a false excitatory peak (blue circle). B, FNCCH of the two 

neurons of panel c. The filtering procedure allows to recognize the trough and to detect the negative 

peak correspondent to the inhibitory link (blue circle). A, NCCH computed between two spike trains 

correspondent to two neurons linked by an excitatory link in the model (identified by a red circle). B, 

FNCCH of the two neurons of panel a. The “entity peak” allows a better recognition of the excitatory 

link. 

 

 

excitatory link this procedure works well (Fig. 4a). When x inhibits y, instead, the inhibitory trough 

will be discarded in favor of the NCCH peak (Fig. 4c), with a misleading excitatory link detection.   

Eq. (2) gives the mathematical definition of the FNCCH computation, that overcomes this problem.  

 

𝐹𝑁𝐶𝐶𝐻𝑥𝑦_𝑝𝑒𝑎𝑘 =  𝐶𝑥𝑦(𝜏) |  =  arg max
𝑡

|𝐶𝑥𝑦(𝑡) −  
1

𝑊
 ∑ 𝐶𝑥𝑦(𝑣)

𝑣= 
𝑊

2

𝑣=−
𝑊

2

 |        (2) 

A 

C 

B 

D 
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I refer to the filtered peak value as entity of the peak. In this way, it is possible to distinguish between 

peaks and troughs by taking into account the sign. A negative peak is referred to an inhibitory link 

(Fig. 4B), while conversely a positive peak is referred to an excitatory link (Fig. 4D). I also 

implemented and applied a post computation filtering procedure to improve the detectability of 

inhibitory links on noisy spike trains. 

 

Post computation FNCCH filtering 

The temporal occurrence of the extracted peak of the NCCH represents the time delay of the identified 

connection between two neurons. When we deal with experimental recordings, the NCCH could be 

very jagged, with a shape characterized by oscillations in the central region of the correlation window 

and a typical decrease of the NCCH values in the borders. The FNCCH computation procedure 

permits to extract the peaks evaluating their sign, but it is sensitive to a decrease in synchrony due to 

uncorrelated activity. Such a decrease appears at the boundaries of the correlation window (Fig. 5, 

black curves), and can be exchanged for a decrease in synchrony related to an inhibitory connection. 

Thus, we can expect that in specific cases characterized by a very jagged correlogram (e.g., due to a 

low firing rate), this procedure will introduce some mistakes in the inhibitory connections detection. 

I defined this artifact as tail effect on the FNCCH. For this reason, I implemented a post FNCCH 

filtering operation that allows to account for the presence of these artifacts removing them from the 

set of identified inhibitory connections. More specifically, the filtering procedure (Fig. 5) consists in 

few steps applied to every negative FNCCH values falling in one of the two boundary regions of the 

correlation window (defined as the 15% of half the amplitude of the correlation window, Fig. 5 black 

curves). If such detected inhibitory link is an artifact due to the tail effect, the FNCCH values in the 

boundary region will be all negative and likely with a decreasing trend. In this case, the corresponding 

putative peak is discarded and a new search starts for another peak excluding the boundary regions. 

We then search for a peak in the central region of the correlation window that I called “peak re-

computation window” (Fig. 5, green curve, by applying Eq. (1)). Indeed, the “new” peak can be 

related either to an inhibitory effective connection or to an excitatory one. On the other hand, if we 

find an increase in the FNCCH reaching a positive value before the end of the correlation window, 

we can state that the negative peak is correctly identified (i.e., an actual minimum). 

 

 



16 
 

 

 

Fig.  5| FNCCH post filtering procedure. In this illustrative case, correspondent to weak correlation, 

the filtering procedure infers a negative value in the boundary region of the correlation window (black 

line) leading to a false positive inhibitory link. To avoid this, heuristic post filtering procedure is 

formed by a peak search re-applied in a smaller region of the correlation window (green line) 

discarding part of the tail. The resulting peak, in this example, is excitatory and with a shorter delay. 
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Partial Correlation  

Cross-correlation based methods are not able to distinguish between direct and indirect connections. 

In order to overcome this limitation it was introduced the notion of partial coherence54 in which the 

effects of the activity of all other spike trains (assumed to be additive) could be removed. Eichler40, 

instead, presented a partialization method in the time domain, based on a scaled version of the partial 

covariance density known as Scaled Partial Covariance Density (SPCD). The SPCD combines the 

advantages of the cross-correlation histograms and the partialization analysis in the frequency 

domain: (i) it interprets, in the same way of the cross-correlation histograms, peaks and troughs as 

excitatory and inhibitory connections respectively; (ii) it allows to discriminate direct and indirect 

connections and common inputs (see Fig. 6).  

In general, let us consider a neuronal population V and two specific neurons x, y ∈ 𝑉. Let 𝑅𝑥𝑦(𝜏) be 

their Standard Correlation, and 𝑅𝑥𝑥(𝜏) and 𝑅𝑦𝑦(𝜏) the Auto-Correlation of x and y respectively55. 

The Fourier Transform of 𝑅𝑥𝑦(𝜏), i.e. the cross-spectral density 𝑆𝑥𝑦(𝜔), will define the Spectral 

Coherence 𝐶𝑥𝑦(𝜔) as follows: 

 

𝐶𝑥𝑦(𝜔) =
𝑆𝑥𝑦(𝜔)

√𝑆𝑥𝑥(𝜔)𝑆𝑦𝑦(𝜔)
         (3) 

 

where 𝑆𝑥𝑥(𝜔) and 𝑆𝑦𝑦(𝜔) are the Fourier Transform of 𝑅𝑥𝑥(𝜏) and 𝑅𝑦𝑦(𝜏), respectively. 

The partialization process54 removes from 𝑆𝑥𝑦(𝜔) the effect Z related to all other (possibly 

multivariate) spike trains of the population V in the following way: 

 

𝑍 = 𝑉 − [𝑥, 𝑦]            (4) 

 

𝑆𝑥𝑦|𝑍(𝜔) =  𝑆𝑥𝑦(𝜔) − 𝑆𝑥𝑍(𝜔)𝑆𝑍𝑍
−1(𝜔)𝑆𝑍𝑦(𝜔)      (5) 

 

where 𝑆𝑍𝑍(𝜔) is the auto-correlation of Z in the frequency domain and the Inverse Fourier transform 

of Sxy|Z(ω), 𝑅𝑥𝑦|𝑍(t), is the partial covariance density. Basically, the partialization process consists 

in iterating the cross-spectral power density computation by removing a node per time, subtracting 

the new computed value from the cross-spectral power density correspondent to the couple (x, y). If 

there is the influence of a third node, that is, if the investigated connection is likely to be indirect, 

such an operation will significantly modify the cross-spectrum value. 
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𝐶𝑥𝑦|𝑍(𝜔) corresponds to the partial coherence function. It can be defined by the inversion of the 

spectral matrix 𝑆(𝜔) of the whole set of nodes40,56. If 𝐺(𝜔) = 𝑆(𝜔)−1, then it can be mathematically 

proved, that the partial auto spectrum densities correspond to: 

 

𝑆𝑥𝑥|𝑉\{𝑥}(𝜔) =  
1

𝐺𝑥𝑥(𝜔)
            (6) 

 

𝑆𝑦𝑦|𝑉\{𝑦}(𝜔) =  
1

𝐺𝑦𝑦(𝜔)
                        (7) 

 

Moreover, it can be proved that the partial coherence function can be expressed in function of 

𝐺(𝜔) as: 

 

𝐶𝑥𝑦|𝑍(𝜔) =  −
𝐺𝑥𝑦(𝜔)

√𝐺𝑥𝑥(𝜔)𝐺𝑦𝑦(𝜔)
                      (8) 

 

We can use the partial coherence function to compute the partial power spectral density  Sxy|Z(ω): 

Sxy|Z(ω) =  
Cxy|Z(ω)

1−|Cxy|Z(ω)|
2

 
           (9) 

 

And substituting Eq. (6), Eq. (7) and Eq. (8) into Eq. (9), it is possible to obtain: 

 

𝑆𝑥𝑦|𝑍(𝜔) =  −
𝐺𝑥𝑦(𝜔)

√𝐺𝑥𝑥(𝜔)𝐺𝑦𝑦(𝜔)
  

𝐶𝑥𝑦|𝑍(𝜔)

1−|𝐶𝑥𝑦|𝑍(𝜔)|
2

 
 √𝑆𝑥𝑥|𝑉\{𝑥}(𝜔)𝑆𝑦𝑦|𝑉\{𝑦}(𝜔)  (10) 

 

The partial covariance density 𝑅𝑥𝑦|𝑍(𝑡) corresponds to the Fourier inverse transform of the partial 

power spectral density. The partial correlation function (or SPCD) that I used in my PhD’s work is a 

scaled version defined of 𝑅𝑥𝑦|𝑍(𝑡) defined as: 

 

𝑠𝑥𝑦|𝑍(𝑡) =  
𝑅𝑥𝑦|𝑍(𝑡)

√𝑟𝑥𝑟𝑦
          (11) 
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where 𝑟𝑥 and 𝑟𝑦 are the maximum peak values of the autocorrelation function. Finally, PC function, 

as well as CC, permits to recognize the directionality of the connections by observing the peak latency 

from zero.  

 

 

Fig. 6| Schematic representation of the partialization process. CM built using cross-correlation 

(B) and partial correlation (C) for a simple network made up of 3 neurons, (A) correspondent sketch 

of connections. PC (differently from CC) does not detect the indirect link between neuron 1 and 

neuron 3 (Yellow Circle). 
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Information-theory based connectivity methods 

 

Transfer Entropy 

Transfer Entropy (TE) is an asymmetric directed information theoretic measure which allows to 

extract causal relationships from time series57, estimating the part of the activity of one single neuron 

which does not depend only on own past, but also by neural past activity of another cell. In other 

words, TE measures the flow of information between the activity of two cells. Let us consider a 

reference spike train y, and a target spike train x. The mathematical definition of transfer entropy is 

given by Eq. (12):  

𝑇𝐸𝑦−>𝑥 = ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡 , 𝑦𝑡+1)𝑙𝑜𝑔
𝑝(𝑥𝑡+1|𝑥𝑡,𝑦𝑡+1)

𝑝(𝑥𝑡+1,𝑥𝑡)𝑡                                                       (12) 

where xt+1 is the bin representing the present activity of the reference train, while xt and yt are the past 

activity of the two trains. See Fig. 7 for a schematic description of the computation process.  

 

 

 

Fig. 7| Schematic representation of the Transfer entropy computation process. (A) Recorded in 

vitro neural networks or in silico model from which binned spike trains (B) are extracted. Considering 

the reference neuron y and the target neuron x (B, bottom), Eq. (12) is applied by extracting all the 

possible patterns (C) for the binary trains, obtaining the TE’s values (D).   

 

 

 

A 

C B 

D 
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Delayed Transfer Entropy  

When two neurons are activity-dependent and connected in a causal dependent way, the consequent 

information flow usually appears in the correspondent spike trains with a specific delay, different for 

each couple of neurons. If TE’s bin is not large enough, it is highly probable to miss the detection of 

such effective connection. On the other side, if the bin is too large, more spikes collapse into a single 

bin causing a likely decreasing in the estimated amount of activity dependence. A possibility to 

overcome these limitations is to temporally extend TE58,59. The Delayed Transfer Entropy (DTE) is 

defined according to Eq. (13): 

𝐷𝑇𝐸𝑦−>𝑥(𝑑) = ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡 , 𝑦𝑡+1−𝑑)𝑙𝑜𝑔
𝑝(𝑥𝑡+1| |𝑥𝑡,𝑦𝑡+1−𝑑)

𝑝(𝑥𝑡+1,𝑥𝑡)
                                  𝑡          (13) 

In particular, we can start to consider the past bins for the target train at a specific temporal distance 

(parameter d in Eq. (12)) before the present bin in the reference train. Considering d varying from 1 

to a fixed number, we can build a temporal function TE(d). The estimated connection among the 

analyzed spike trains can be extracted using the peak of the TE(d) function and/or the Coincidence 

Index (CI) 60, i.e. the ratio of the integral of the function in a specified area around the maximum peak 

to the integral of the total area. 

 

Delayed High Order Transfer Entropy 
It is possible to extend the TE to deal with multiple delays. In Eq. (12), the part of past activity to 

take into account in the TE’s computation (number of bins) for the reference train is indicated by k 

while l represents the number of bin to consider for the target train. Thus, we can define the Delayed 

High Order Transfer Entropy (DHOTE) according to Eq. (14):  

𝐷𝐻𝑂𝑇𝐸𝑦−>𝑥(𝑑) = ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡
(𝑘), 𝑦

𝑡+1−𝑑
(𝑙))𝑙𝑜𝑔

𝑝(𝑥𝑡+1|𝑥
𝑡

(𝑘),𝑦
𝑡+1−𝑑

(𝑙))

𝑝(𝑥𝑡+1,𝑥𝑡
(𝑘))

                           𝑡              (14) 

In this way, the couple (k, l) defines the TE’s order. For (k, l) different from the couple (1, 1) we 

define the High Order Transfer Entropy (HOTE). The more is the increase of the TE’s order (taking 

into account more bins in the two trains) the more precise is the estimation of the information flow 

with a subsequent increasing of the time required for the computation. See Fig.8 for a schematic 

description of the computation process. 
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Fig. 8| Schematic representation of the DTE and DHOTE computation process. (A) The past 

bins for the reference train are shifted of a quantity d, that is the parameter of the function DTE(d) 

(B). If multiple bins are considered (blue squares in panel (C), the DHOTE is obtained.  

 

Joint Entropy 

The JE algorithm is based on the computation of the cross-Inter Spike Intervals (cISI). It is based on 

the idea that if two spike trains are correlated, their activity will show a specific degree of synchrony. 

Let us introduce a reference spike train x and a target spike train y. We can define the cISI as: 

𝑐𝐼𝑆𝐼 =  𝑡𝑥 − 𝑡𝑦                                                                                                                         (15) 

where tx is the time stamp correspondent to a reference spike train, while ty is the first time stamp 

temporally following the reference one in the target train. By iterating the cISI computation for every 

reference spike, we can build the cISI histogram. Thus, if cISIk corresponds to a cISI of size k bins, 

we can introduce the JE measure as:  

𝐽𝐸(𝑥, 𝑦) =  − ∑ 𝑝(𝑐𝐼𝑆𝐼𝑘) ∗ log(𝑝(𝑐𝐼𝑆𝐼𝑘))                                                                          (16) 

The higher the probability of two neurons being correlated in their activity, the lower the JE value. In 

the ideal case of autocorrelation, JE will be equal to 0. The more jagged is the cISI histogram, the 

less is the correlation of two spike trains, causing the growing of the JE value, according to Eq. (16). 

In its original definition7, JE provides only a number for each couple of neurons, with no temporal 

information of the delay of a functional connection.  

 

 

 

A 

C 

B 
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Fig. 9| Schematic representation of the JE computation process. The cISIs between reference and 

target trains are computed. Taking into account the occurrences of each cISI it is possible to build the 

cISI histogram. The application of Eq. (16) allows to compute the JE between the two investigated 

electrodes. 

 

To overcome such a limitation, I introduced and tested a method for extracting the delay. Such 

procedure is simply based on extracting the most frequent cISI's size in bins (see Fig. 9). This value 

corresponds to the most likely delay of the investigated functional connection. 
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Thresholding approaches 
The statistical measures described in the previous paragraphs enable building a Connectivity Matrix 

(CM). The CM is a n x n matrix (where n is the number of analyzed nodes (i.e., electrodes or neurons)) 

whose generic element (i, j) is the estimation of the strength of connection between electrodes i and 

j. Any connectivity method provides a value for each couple of analyzed electrodes, even if such 

electrodes do not share a real functional connection. As a consequence, the CM is a full matrix of n2 

elements, and a thresholding procedure is required to throw away those values that are not significant 

since close to the noise level, and then not representing real connections.  

 Hard Threshold   

The simplest thresholding procedure is to apply a hard threshold23 to the CM. One of the simplest 

choices is to use a threshold equal to µ + n*σ, where n is an integer, while µ and σ are the mean value 

and the standard deviation of the connectivity matrix elements, respectively42. Such a procedure is 

based on the assumption that the strongest a link, the most likely it corresponds to a true functional 

link. The main limit of the hard threshold approach is the choice of the parameter n, that is completely 

arbitrary. A little variation on the threshold (i.e., the value of n) can drastically alter the results of a 

functional connectivity analysis, providing different graphs with different topological parameters (see 

Fig. 10). Even if the basic assumption on the links strength can be correct, the problem of defining 

how strong is enough, could still affect the obtained results with a bias dependent on the choice of 

the parameter n in the thresholding procedure. 

 

Fig. 10| Hard Thresholding dependence on the parameter n. Connectivity graph of a cortex neural 

network coupled to the MEA-4k acquisition system, correspondent to: 1(A), 2(B), 3(C). 
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Shuffling Approach 

Another possible solution to threshold the connectivity matrix is the shuffling thresholding approach 

61. This method is based on the generation of spike trains surrogate data. A surrogate data is generated 

from a spike train by preserving all the statistical features except for the one that we want to test for 

the significance (i.e., the timing of the spikes). In fact, the correlation between two spike trains is 

embedded in the temporal positions and synchrony of the spikes. If we destroy such information, by 

randomly changing the positions of the target spikes, we can build a null hypothesis, that is 

correspondent to a non-likely connection. I will describe the shuffling approach that I implemented 

and tailored for the JE algorithm (see Fig. 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11| Schematic representation of the 

customized thresholding approach based on 

surrogate data generation.  

In detail, after generating surrogate data (see 

Fig. 12), it is possible to test the significance of 

a found functional connection between spike 

trains x and y, by applying the JE method to 

the pair (x, shuffled y) for every surrogate 

target train. Such JE value is correspondent to 

a non-connection, thus, we can test if the JE 

value correspondent to the pair (x, y) is lower 

than the shuffled one, indicating a likely 

significant functional connection. If we 

generate hundreds or thousands of shuffled 

trains, we can repeat such test a large number 

of times. Finally, we can define a minimum p-

value for accepting as significant a functional 

connection, and apply the thresholding 

procedure to the entire dataset.  

In my work, I introduced a parameter that I 

called delta, that is a minimum difference 

between the value representing the null 

hypothesis and the original statistical one, in 

order to increase the precision reducing the 

number of false positives. In detail, I 

implemented a bootstrap shuffling analysis to 

extract the parameter delta. Thus, I start a pre-

Shuffling test with 10 surrogate 
train per target  

Distribution Dist of the connections 
that passes the thresholding 

procedure  
JE(x,y) < JE (x, yshuffled) 

Delta = mean(Dist) + n*std(Dist), n 
integer  

Shuffling test with the desired 
number of surrogate train per 

target. The thresholding procedure:  
(JE(x,y) < JE (x, yshuffled) and 

abs(JE(x,y) - JE (x, yshuffled)>delta  
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processing analysis performing the shuffling test with 10 shuffled spike trains for each electrode. I 

compute the distribution of the differences between the original JE value and the shuffled one, among 

all the statistically significant estimated connections, that is, considering those differences for which 

the original JE value is lower than the shuffled one. At this stage, I define the delta value as an integer 

multiple of the mean value of such distribution (see Fig. 11).  

 

Fig. 12| Schematic representation of the shuffling process. If we consider two strongly correlated 

spike trains x and y as in panel (A), they will provide high values for every applied connectivity 

method. As an example, panel (B) reports the computed DTE’s values. If we destroy the correlation, 

just randomly changing the position of the spike in the neuron y (red squares in all the panels), the 

detected values decrease (panel (B), bottom). The idea behind the shuffling process is to destroy 

correlation randomly changing the position of the spikes, as reported in panel (C) (green squares 

represent the shuffled spikes). It is possible to shuffle the reference, the target or both the spike trains, 

comparing the obtained values with the ones corresponding to the original trains. As an example, 

panel (D) shows how the NCCH correspondent to original trains (blue line) and shuffled target train 

(red line). We can notice that the shuffled peak is lower than the original one, suggesting that the 

investigated functional connection is significant. Otherwise, if the shuffled peak is higher or equal to 

the original one, we can assess that the functional connection is not significant, discarding it.  

 

As we can see in the results, such a parameter hardly influences the performances. In the literature, 

several methods to generate surrogate data from spike trains can be found. In my work, I followed 

the spike time dithering approach61. The spike time dithering procedure consists in randomly 

shuffling each spike inside a window of specified width. Thus, each spike at time t is randomly 

substituted by a spike at a time ϵ [t-w, t+w], where w is the shuffling window’s width.   
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Metrics to evaluate the connectivity methods’ performances  

After the thresholding procedure, any connectivity method works as a binary classifier. In fact, the 

method classifies whether two electrodes i and j share a functional link or not. It is evident that all the 

metrics used to evaluate a binary classifier can be applied to quantify a connectivity method’s 

computational accuracy. For this purpose, the testing of a connectivity method requires the use of a 

neural network computational model, and the consequent comparison between prediction and 

observation. Using such computational models, we have the prediction represented by the computed 

thresholded connectivity matrix and the observation represented by the model’s Synaptic Weight 

Matrix (SWM). The higher the correspondence between prediction and observation, the higher the 

computational accuracy of a method.  

 

Receiver Operating Characteristic (ROC) Curve  

The ROC curve62 is a common metrics used to evaluate the performances of a binary classifier by 

comparing prediction and observation. In my PhD study, the prediction is represented by the 

computed Thresholded Connectivity Matrix (TCM), while the observation corresponds to the SWM 

of the neural network model (i.e., the ground truth).  

We can define the True Positive Rate (TPR) and the False Positive Rate (FPR) as follows: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (17) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
           (18) 

 

The ROC curve (Fig. 13A) is then obtained by plotting TPR versus FPR. The Area Under Curve 

(AUC) is a main parameter extracted to have a single number describing the performances of a binary 

classifier: a random guess will correspond to 0.5 (straight line in Fig. 13A), while a perfect classifier 

will have a value of 1. Another important metric that can be extracted from a ROC analysis is the 

accuracy, defined as: 

 

𝐴𝐶𝐶 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (19) 
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Matthews Correlation Coefficient (MCC) Curve 

The MCC curve62 is a common metrics, alternative to the ROC analysis, used to evaluate the 

performances of a binary classifier by comparing prediction and observation. Using the quantities 

defined in the previous paragraph, changing the threshold used to compute the TCM, we can define 

the MCC as:  

𝑀𝐶𝐶 =  
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
         (20) 

The MCC assumes values in the interval [-1,1] and the MCC curve is obtained by plotting the MCC 

value versus the false positive rate (Fig. 13B). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13| Metrics to evaluate a binary classifier. (A) example of ROC curve. The random guess 

corresponds to the ROC curve being a line coincident with the bisector. (B) example of MCC curve.  
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Graph Theory 

Graphs are made up of nodes which represent the neurons and edges which model the connections 

(morphological or functional) among the neurons. If we consider the directionality of the connection 

(i.e., from a pre- to a post-synaptic neuron), the graph is named directed, otherwise it is called 

undirected. The structure of the graph is described by the adjacency matrix (often named connectivity 

matrix (CM)), a square symmetric matrix of size equal to the number of nodes N with binary entries. 

If the element aij = 1, a connection between the node j to i is present, otherwise aij = 0 means the 

absence of connections. To allow a mathematical analysis, the graph, and consequently the network 

topology, can be characterized by a large variety of parameters63. In the field of neuronal networks, 

the simplest metrics which allow to have a simple but clear indication of the kind of underling 

connectivity are the Node Degree, the Cluster Coefficient and the Average Path Length10 which will 

be briefly described below. 

 

Node Degree: the in-degree (id) and the out-degree (od) of a single node are defined as the number 

of incoming (afferent) and outcoming (efferent) edges respectively, and the total degree (td) is their 

sum.  

 

𝑡𝑑 = 𝑖𝑑 + 𝑜𝑑           (21) 

 

High in-degree values indicate neural units influenced by a larger number of nodes, while high out-

degree values show a large number of dynamic sources. Depending on the node degree distribution, 

we can identify three stereotyped graphs: scale-free, regular, and random (Fig. 14). 

 

Scale-free networks (Fig. 14B, panel a)64 are characterized by high-connected units called hubs. Hubs 

are nodes with a degree at least one standard deviation above the network mean. Thanks to this 

peculiarity, hubs play a significant role on the neural dynamics65. In the scale-free network, the 

probability that a generic node i has k connections is given by a power law relationship: 

 

𝑝(𝑘) ∝  𝑘−ϒ                                        (22) 

 

where ϒ is the characteristic exponent which ranges experimentally from 1.3 (slice recordings 66) to 

2 (fMRI recordings67).  
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Regular networks (Fig. 14B, panel b) are ordered and characterized by high segregation values. The 

integration levels of the network grow by increasing the number of graph units. In this case, the 

probability that i has k connections is given by: 

 

𝑝(𝑘) = 𝑐                       (23) 

 

where c is a constant. 

 

Random networks (Fig. 14B, panel d) show each node with a different connectivity degree and the 

probability that a single unit has k connections is modeled by a Poisson distribution: 

 

𝑝(𝑘) ∝  
𝑒−𝛿𝛿𝑘

𝑘!
                                                                                       (24)

      

  

where δ is the average connectivity degree of the network. The random graph has few local 

connections and therefore it shows low segregation values. The integration levels of the network, 

instead, follow the logarithm of the number of nodes. 

A last case is the small-world network (Fig. 14B, panel c): it shares the same characteristics of 

regular and random networks, constituting a sort of composite model. By increasing the probability 

p of rewiring, the order of a regular lattice is disrupted, and when p = 1 a random graph is generated. 

Increasing the probability of rewiring, both the integration and the segregation levels decrease. In a 

small-world network, the distance between two nodes grows according to the logarithm of the number 

of nodes of the graph68. 

 

Cluster coefficient (CC) 

Let x be a generic node and vx the total number of nodes adjacent to x (and including x). Let u be the 

total number of edges that actually exist between x and its neighbors. The maximum number of edges 

that can exist among all units within the neighborhood of x is given by vx(vx -1)/2. The Cluster 

Coefficient (Cx) for the node x, is defined as follows 

 

𝐶𝑥 =  
2∗𝑢

𝑣𝑥(𝑣𝑥−1)
                                               (25) 

The Average Cluster Coefficient, obtained by averaging the cluster coefficient of all the network’s 

nodes, is a global metric often used to quantify the segregation at network level (Fig. 14A).  
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Average Shortest Path Length (PL) 

Let x and y be two generic nodes of a network V. Let d (x, y) be the shortest distance between the 

nodes x and y. We define the Average Path Length (L) as follows: 

 

𝑃𝐿 =
2

𝑛(𝑛−1)
∑ 𝑑(𝑥, 𝑦)𝑥≠𝑦            (26) 

 

This topological parameter is commonly used to evaluate the network's level of integration (Fig. 

14A). 

 

Small World Index (SWI) 

To detect the emergence of small-world network69, it is possible to combine the metrics previously 

introduced, defining the Small-World Index (SWI): 

 

𝑆𝑊𝐼 =

𝐶𝑛𝑒𝑡
𝐶𝑟𝑛𝑑
𝐿𝑛𝑒𝑡
𝐿𝑟𝑛𝑑

            (27) 

where Cnet and Lnet are the cluster coefficient and the path length of the investigated network; while 

Crnd and Lrnd correspond to the cluster coefficient and the path length of random networks equivalent 

to the original network (i.e., with the same number of nodes and links). A SWI higher than 1 suggests 

the emergence of a small-world topology. 

 

Rich Club Coefficient 

The Rich-Club Coefficient (RCC)70 Φ at a specific k level is computed by evaluating the cluster 

coefficient between the nodes with a degree higher than k: 

 

𝛷(𝑘) =
2𝐸>𝑘

𝑁>𝑘(𝑁>𝑘−1)
                                                                                                                                         (28)  

 

Where 𝐸>𝑘 and 𝑁>𝑘 represent the number of edges and nodes with a degree higher than k, 

respectively. The RCC curve is obtained by evaluating the RCC at the varying of k from 1 to the 

maximum degree. The RCC is normalized by the corresponding average value for a set of surrogates 

random neural networks equivalent to the investigated one (i.e., networks with the same number of 

nodes and edges). A privileged sub-network (i.e., a rich club) emerges, if the computed normalized 

coefficient value is higher than one. 
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Fig. 14| Basic graph measures and network structures. (A) node degree is the number of 

connections of a given node; this panel shows a simple network divided in four different modules: 

Module 1, in which we can see a high-connected unit called hub, and Module 2, that presents a low 

connectivity case. Modules 3 and 4 show two units with high and low values of Cluster Coefficient 

respectively, and an example of shortest path length; the nodes X and Y are connected by the shortest 

possible path (three links), and two different units that we call intermediaries. (B) classification of 

the network structure (scale-free (panel a), regular (panel b), small-world (panel c) and random (panel 

d)) and corresponding degree distributions. 
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BIOCAM and Active Pixel Sensor (APS) array 
During my PhD, I studied neural cultures coupled to both low resolution and high resolution 

acquisition system. Briefly, the low resolution acquisition system is represented by the MEA60 and 

MEA2100 by Multi-Channel System (www.multichannelsystems.com; MCS, Reutlingen, Germany) 

60 electrodes device, while the 3Brain APS (www.3brain.com; Landquart, Switzerland) was used as 

a high resolution acqusition system. In this section, I will briefly describe the BIOCAM X and the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15| Overview of the high resolution 

electrophysiological platform. The system is 

composed of three hardware levels, i.e. the 

CMOS–MEA chip, the interface board and a 

work station equipped with a frame grabber for 

capturing and storing the video stream. 

 

APS MEA-4k chip. The 3Brain APS chip is a 

platform based on monolithic Complementary 

Metal Oxide Semiconductor technology 

enabling acquisitions from 4096 

microelectrodes at a full frame rate of 9043 

kHz and at a spatial resolution up to 21 µm 

(electrode separation)6. Based on the Active 

Pixel Sensor concept (APS), the platform 

development, electrical characterization and 

preliminary validation was performed on 

cardiac tissue. To introduce the platform, Fig. 

15 presents a schematic description. 

 

 

Briefly, the two essential elements are: (i) the metallic microelectrode array implemented similarly 

to a light imager, with in-pixel integrated microelectrodes and low-noise amplifiers; and (ii) a real-

time acquisition and processing board. Based on image/video concepts implemented in hardware, the 

signal and data processing is furthermore adapted for handling a very large data flow (typically 0.5 

Gbit/s). The platform enables acquisitions with a spatial resolution comparable to mammalian 

neuronal cell bodies (i.e., microelectrode size of 21 µm, electrodes separation from 21 to 81 µm), and 

a temporal resolution down to 8 ms/pixel on 64 selected pixelmicroelectrodes. The 3Brain system 

allows accessing in real-time the spatial–temporal correlation of activities at both local and network 

levels acquired from 4096 microelectrodes.  

The BIOCAM (Fig. 16) is the hardware tool that allows to sample the 4096 recording electrodes 

simultaneously at 18kHz, providing orders of magnitude more data points compared to conventional 
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passive MEAs), thus leading to the recording, over a large bandwidth, of electrophysiological signals 

ranging from slow large-population field potentials to fast single-cell spiking activity. In addition, it 

incorporates further optional functionalities, which come as separate modules in most MEA-systems, 

such as a temperature control system and an electrical programmable current-driven stimulator. 

 

 

 
 

 

Fig. 16| 3Brain BIOCAM. 
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Results 
 

In the first section of the Results, I will consider each of the connectivity methods that I developed 

and implemented during my PhD. In detail, I will at first show the evaluation procedure’s results. 

Such a procedure exploits the use of an in silico neural network model made up of 1000 randomly 

connected neurons, characterized by an average ratio between inhibitory and excitatory connections 

of 1/4. Simulations display the typical signature characterized by a mix of spiking and bursting 

activity, as displayed by the raster plot and the Instantaneous Firing Rate (IFR) traces of the excitatory 

(red) and inhibitory (blue) neuronal populations of Fig. 22A. From a topological point of view, both 

the excitatory and inhibitory structural sub-networks follow a random connectivity, as the degree 

distributions histograms of Fig. 22B display. More details about the computational model can be 

found in the appendix of this work. The evaluation procedure assesses the computational accuracy of 

the connectivity methods considering them as binary classifiers, building ROC and MCC curves. 

After evaluating the capability to detect the in silico functional connections (e.g, looking at the ratio 

between true and false positive), I checked the capability of the connectivity methods to reconstruct 

the topology of the model (looking at topological parameters like the degree distribution, see section 

Graph theory) and the delay distribution of the in silico functional connections. At first I will report 

the results relative to the information-theory based methods: TE (and its extensions DTE, DHOTE), 

JE, and then I will describe the correlation-based ones: FNCCH and PC.  
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Transfer Entropy  
 

Validation of the TE by means of in silico neural networks 

I tested the developed DTE and DHOTE algorithms on 5 realizations of the in silico neuronal network 

model described in the appendix. I randomly extracted 500 neurons from such simulated neuronal 

populations, and I run the TE, the DTE and DHOTE algorithms over one hour of simulation (sampled 

at 1 kHz).  

First of all, I tested and evaluated our classic TE algorithm. To determine the optimal bin value that 

maximizes the accuracy, I considered the TPR value corresponding to a FPR = 0.01. Fig. 17a shows 

the obtained results. The accuracy displays a sharp increasing trend, reaching a maximum for a bin 

of 9 ms. Then, in order to compare classic TE, DTE and DHOTE, I evaluated the accuracy of the 

methods by means of the Receiver Operating Characteristic (ROC) curves62. Within this framework, 

the True Positive Rate (TPR) and the False Positive Rate (FPR) are defined on the basis of the true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) values. First of all, I 

explored the variation of the accuracy with respect to the order k and l for DTE. I considered a 

temporal window of 30 ms for computing the DTE, corresponding to a classic TE (with bin equal to 

1 ms) computed for 30 different delays, as explained in section Delayed Transfer Entropy. Following 

the approach used in44, I took into account the TPR value corresponding to a very low value of the 

FPR (0.01) performing the evaluation by varying the parameters from order (1,1) to order (3,3). Fig. 

17B and C show in terms of false color maps the results obtained considering the peak value (Fig. 

17B) and maximum CI (Fig. 17C) of DHOTE. The best accuracy performances in both cases are 

achieved by using k = 1 and l = 3 (red asterisk). As expected, the computation time (Fig. 17D) 

increases with the total order (k, l) although it remains reasonably low for all the explored orders. For 

60 min of simulation of 500 neurons, the maximum computation time is 27 minutes (54 seconds for 

a single TE computation) for order (3, 3). The computation time required for the order (1, 1) is equal 

to 9 minutes (18 second for a single TE computation). Finally, I compared the TE (using the optimum 

bin of 9 ms) with the DTE and the DHOTE with k = 1 and l =3 by means of the ROC curves. Fig.13E 

shows the obtained results, while in Fig. 17F we can see the corresponding Area Under Curve (AUC) 

values. There is a relevant improvement in the accuracy consequent to the temporal extension of the 

TE method, while the extension of the TE's order to k = 1 and l = 3 produces only little improvement 

with respect to TE (Fig. 17F). In the light of the previous analysis and considerations, I used the 

DHOTE showing the best performances (k = 1 and l = 3), to explore the capability of such a method 

to reconstruct the temporal delay and the degree distribution of the in silico neuronal network. 

Therefore, a hard threshold procedure to extract the strongest effective links from the TE's 
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connectivity matrix was used. In particular, following the results achieved in39, I used a threshold 

equal to  +  , where   and  are the mean and the standard deviation values of the TE's connectivity 

matrix, respectively. Figs. 17G and 17H display how DHOTE reconstructs both delay and degree 

distribution of the simulated network. Fig. 17G shows that the reconstructed delay distribution from 

the functional-effective links is qualitatively similar to the uniform distribution of the delays of the 

neuronal network model. Fig. 17H shows that the estimated degree distribution can be fitted with a 

Gaussian distribution (R2 = 0.89), in accordance with the original distribution of the structural 

connectivity of the in silico neuronal network (Fig. 17H inset). 

 

DTE application to neural networks coupled to the MEA-4k 

In this section, I report a demonstrative example of the use of DTE to process and analyze 30 minutes 

of spontaneous activity of a cortical network recorded by means of a 4096 HD-MEA (3Brain) at the 

sampling frequency of 9043 Hz. I computed the TE on the extracted spike trains in order to 

characterize the topological features of the network connectivity. I used a first order (k=1, l=1) DTE 

with a temporal window of 20 ms and with a bin size equal to the sampling period (0.12 ms). Thus, 

to cover the 20 ms temporal window I computed 170 TE corresponding to 170 different delays. Fig. 

18E shows the connectivity graph corresponding to the DTE analysis of an illustrative cortical 

network. To provide some quantitative results, I performed some topological analysis (Fig. 18F) by 

evaluating the CC, PL, SWI, and percentage of hubs. The SWI is equal to 4.8 suggesting that the 

considered network exhibits small world features; the degree distribution is plotted in a log-log plane 

in Fig. 18G.             
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Fig. 17| TE’s testing on in silico neural networks. (A) TPR (corresponding to FPR = 0.01) for classic 

TE computed by increasing the bin size from 1 to 30 ms. (B-C), TPR corresponding to FPR = 0.01 

for increasing TE’s orders for reference train (k) and for target train (l) is considered. The red symbol 

“*” indicates the (k, l) pair that guarantees the best accuracy. (B) Values computed using TE’s peak. 

(C) Values computed using TE’s CI. (D) Computational times for increasing TE’s orders. (E) ROC 

curves corresponding to TE (black), DTE (peak and CI, red and green, respectively) and DHOTE 

(peak and CI, blue and gray, respectively); inset of panel (E) shows a zoom  of the same curve. (F) 

AUC derived from the ROC curves of panel e. (G) Delay distribution obtained using the DHOTE (k 

= 1, l = 3) CI. The reconstructed delay distribution is coherent to the one used to generate the neural 

model. (H) Degree distribution obtained using the DHOTE (k = 1, l = 3) CI. The reconstructed degree 

distribution fits a Gaussian curve that is the distibution used to generate the underlying connectivity 

of the in silico neuronal model (inset).  
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Fig. 18. Dynamic, connectivity and topological analysis of a cortical neural network coupled to the 

4096 electrodes 3Brain system. (A) ISI histogram (bin = 5 ms). (B) IBI histogram (bin = 50 ms). (C) 

Burst Duration histogram (bin = 100 ms). (D) Summary of the spiking and bursting statistics, (E) 

Connectivity graph obtained by means of DTE thresholded with µ + 4σ to show only the strongest 

links. (F) Summary of the topological  parameters. (G) Degree distribution. 
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Joint Entropy  
 

Shuffling thresholding procedure validation on in silico networks 
The thresholding approach based on surrogate data described in the section Shuffling thresholding 

procedure, requires the choice of three main parameters. The first one is the number of surrogates to 

generate for the statistical significance test (i.e., the number of times the electrodes’ time stamps will 

be randomly displaced and shuffled), while the second one is the parameter that I called delta, used 

to compute the minimum difference between shuffled JE and original JE value to take into account 

for rejecting the null hypothesis, considering a functional connection significant (see section Shuffling 

approach). In detail, the minimum difference will be defined as delta multiplied by the average value 

of a differences distribution built with a bootstrap shuffling approach (see, Shuffling thresholding 

procedure). The last parameter is the p-value, that represents the number of times over the total 

allowing the null hypothesis to be rejected before considering as not significant an investigated 

connection. For instance, a p-value of 0.01 indicates that if the original JE value is higher than the 

shuffled one, more than 1 time over 100, I will discard the correspondent link considering it as not 

significant. To validate the method, and tuning plausible values for such parameters, I applied the JE 

algorithm to 10 realizations of the in silico neural networks, described in detail in the appendix. I 

tested the shuffling approach using 100 and 1000 surrogates for each neuron, sweeping the parameter 

delta from 0 to 3 with unitary step. I evaluated the shuffling performances in terms of precision, 

evaluating the ratio between TP and FP. In detail, the precision is defined as TP/(TP+FP). The higher 

the precision, the higher the performances of a binary classifier. In our case, the binary classifier is 

based on the JE algorithm, with different performances in function of the parameter delta, the p-value 

and the number of surrogates used. At first, I tested the classical shuffling approach, in which both 

the reference and the target train are managed with random spike displacements to destroy an eventual 

correlation between spike trains building a null hypothesis correspondent to non-connections. Using 

100 surrogates, I obtained a precision value of 0.15 ± 0.04.  Then, I tested our shuffling approach, in 

which only the target train is shuffled, to be more restrictive obtaining a lower number of functional 

links with a higher precision. Figs. 19A, 19C and 19B, 19D show the average results obtained for 100 

and 1000 surrogates. The 3-D graph correlates precision with the parameter delta and the p-value 

used for the significance statistical test. As we can see, a delta value of 3 with a p-value of 0.01 

corresponds to a maximum value of precision for both the number of surrogates. The generation of 

the surrogate data, and above all, the statistical tests, need the execution of the JE algorithm for each 

couple reference electrode-shuffled target electrode, thus require a computational time that is function 

of the number of surrogates. According to this, considering that the developed algorithm has to be 
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used to analyze neural networks coupled to the HD-MEA acquisition system, with 4096 electrodes, 

the best choice seems to be the use of 100 surrogates with a p-value of 0.01 and a delta value of 3. I 

use such parameters to analyze two cortex neural networks coupled to the HD-MEA system (JE 

Application to cortex network coupled to the HD-MEA).  

 

Hard threshold validation on in silico neural networks  
The shuffling approach in thresholding the connectivity matrix is aimed to provide an efficient 

method, with statistical basis, to select the meaningful functional connectivity links. However, the 

simplest approach remains the use of a hard threshold procedure as described in Shuffling 

thresholding procedure section. The main problem with such a thresholding approach, is the choice 

of the parameter n. As Fig. 19E shows, the precision critically depends on the choice of n. In 

particular, the precision increases at the increasing of n, with a consequent decreasing of the number 

of true positive links. The hard threshold approach is based on the assumption that the strongest the 

links (i.e., the lowest the obtained value for the JE), the most likely a found connection can be an 

actual one. To support such a hypothesis, I considered the JE values correspondent to the functional 

links that survived the shuffling thresholding procedure. As Fig. 19F shows, the JE values that 

survived to the shuffling thresholding procedure, correspond to the lowest ones in the CM, and would 

have been selected by the hard thresholding procedure, being a subset of the links surviving such a 

procedure (red line n=3, blue line n=4). However, it is worth noticing that the shuffling approach is 

independent from the user in the thresholding procedure. The AUC value is equal to 0.6848 ± 0.033, 

that is higher than 0.5 (value correspondent to random guess), but not descriptive of good 

classification performances. In fact, when applying a threshold to select the most significant 

functional connections, we work in an area of FPR rate that are very low. Thus, the TPR rate should 

be high in this region to be representative of good classification performances. The CC method (blue 

curve) shows a behavior similar to the DTE one, correspondent to poor performances in detecting 

and identifying the model functional connections. The MCC curves (Fig. 20G) confirm the 

information provided by the ROC curves. In fact, the JE (red curve) presents its maximum value 

(0.601± 0.005) in correspondence to a FPR value of 0.01, indicating good classification 

performances.  Both the DTE (black curve) and the CCH (blue curve), instead, show negative values 

in correspondence of FPR value of 0.01, representing a complete disagreement between prediction 

and observation. The reason of such impressive differences between JE, CC and DTE has to be 

searched in the inhibitory links detection and identification. In fact, it is worth to notice that JE is not 

able, by definition, nor to detect or to identify inhibitory links. Thus, the curve showed in Fig. 20C, 

actually, is relative only to the excitatory links. The DTE, as well as the CC, are instead able to detect, 
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by definition, inhibitory links, but they are not able to identify it, that is, they are not able to 

distinguish excitatory links from inhibitory links. It is worth to notice, that inhibitory neurons have a 

firing rate higher than the excitatory ones (5-6 spikes/s versus 2 spikes/s in the model). According to 

this, both the DTE and the CC detect strong functional links correspondent to inhibitory links, due to 

artifacts and not to actual connections. To prove such statement, that is to show that DTE and CC are 

hardly influenced and wasted by the inhibitory neurons and links, I considered for the ROC curve 

analysis only the excitatory neurons (the first 800). Figs. 20D and 20H show the correspondent ROC 

curve and MCC curves. As we can see, the DTE and the CC hardly improve their performances, while 

the JE’s curve is almost the same. In the excitatory subnetwork, the CC algorithm shows the best 

performances reaching a TPR value of 0.72 ± 0.01 in correspondence to the false positive rate of 0.01. 

The MCC curve confirms what emerges from the ROC analysis, with the CC reaching a peak of 0.77 

± 0.02. The DTE shows a similar behavior with a TPR value of 0.50 ± 0.01 in correspondence of a 

FPR value of 0.01, and a MCC peak equal to 0.57 ± 0.01. The JE algorithm, instead, has a TPR value 

of 0.580 ± 0.005 in correspondence of a FPR value of 0.01, and a MCC peak equal to 0.616 ± 0.004. 

Later, I applied the shuffling approach with 100 surrogates and a delta value of 3 (see Shuffling 

validation on in silico networks) to the JE connectivity matrices. I used the thresholded connectivity 

matrices to extract the mean degree distribution (Fig. 20F). The computed average distribution fits a 

Gaussian Curve (R2 = 0.92, black curve), that is the distribution used to generate the model (Fig. 

20E). Finally, I computed the delay distribution for the excitatory links (Fig. 20F, inset). The obtained 

distribution reflects the uniform distribution in [0 20] ms used to generate the in silico model.  

 

JE Application to cortex network coupled to the HD-MEA  
Finally, I applied the developed JE algorithm to two cortical neural networks coupled to the HD-

MEA acquisition system, after they reached a stable stage (i.e., after 21 days in vitro). In particular, I 

analyzed two networks characterized by two different seeding densities: a low density network (400 

cell/mm2) and a high density one (1000 cell/mm2). It is possible to see an example of the recorded 

spontaneous electrophysiological activity in form of raster plot (Fig. 21A) and instantaneous firing 

rate (Fig. 21B). I used our developed JE algorithm with the implemented customized shuffling 

approach to infer the functional connectivity of the two neural networks. Fig. 21C represents an 

example of the thresholded connectivity graph (using the shuffling thresholding approach with 100 

surrogates, delta = 3 and a p-value of 0.01), where nodes and edges represent electrodes and functional 

links, respectively. I performed a topological analysis (Fig. 21E) extracting the cluster coefficient and 

the average path length71. The low density neural network showed a higher cluster coefficient than 
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the high density one (0.192 versus 0.042). Such a difference is likely the reflection of the cross-talking 

effect with high seeding densities in the in vitro model. I extracted the Small World Index (SWI) by 

comparing the cluster coefficient and the average path length of our networks with the average values 

extracted from 100 random networks equivalent to the investigated one (i.e., with the same number 

of nodes and links, as done in69). Both the networks showed the emergence of a small world topology 

(Fig. 21E). Such a topology is coherent with the degree distribution, represented in Fig. 21D. Again, 

the difference in the absolute value of the SWI (10.57 versus 2.15) is likely referred to the different 

cellular seeding densities.  

 

 

 

Fig. 19| Shuffling thresholding procedure validation on in silico neural networks. (A), (B) 

Average values of precision for the shuffling approach at the varying of the parameters p_value and 

Delta in a 3d graph for a number of surrogates = 1000 (A) and 100 (B). (C), (D) same information in 

a 2d graph for a number of surrogates = 1000 (C) and 100 (D). (E) Average values of the precision 

and the total number of detected links for the hard thresholding approach at the varying of n. (F) JE 

values corresponding to the links surviving the shuffling thresholding procedure. These links are a 

subset of the hard thresholding procedure survival links (with n = 3, red line and n=4, blue line).   
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JE Results Discussion 
The JE algorithm is characterized by both high computational accuracy and efficiency. The 

computational efficiency is a result of the implementation I did, that adapted the algorithm to be 

directly applied on the spike time stamps. The computational accuracy is linked to the selectivity of 

the JE algorithm for the excitatory links. In fact, JE is not able, by definition, to neither detect nor to 

identify the inhibitory links. The inhibitory neurons are usually characterized by high (and likely 

tonic) firing rate, and as I showed in section JE Validation on in silico neural networks, they can be 

responsible for the appearance of false positive artifacts when using other connectivity methods like 

DTE and CC. Moreover, the incapability to detect inhibitory links could be very useful when 

combining the JE algorithm to another one able to detect and identify inhibitory links. In this way, 

the JE could be used as a sort of inhibition filter to improve the classification performances. 

Thresholding the connectivity matrix is a main problem in the functional connectivity analysis, and 

can dramatically alter the results influencing even the kind of topology that is detected72. The hard 

thresholding approach is hardly dependent on the choice of the threshold value as I showed in section 

Hard threshold validation on in silico neural networks. To overcome this problem, I developed a 

customized version of the shuffling approach. The basic thresholding approach corresponded to low 

values of precision, due to the presence of a high number of false positives; thus, I introduced another 

threshold that is dependent on the shuffling values distribution, and so it is dependent on the network 

firing rate and dynamic parameters. Such thresholding approach brought to very high level of 

precision when tested on in silico networks.  
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Fig. 20| JE validation on in silico neural networks. A) Raster Plot and (B) mean Instantaneous 

Firing Rate (IFR) representative of the simulated spiking activity. (C) ROC curves and MCC curves 

(D) relative to DTE (black curve), JE (red curve) and CCH (blue curve) considering both the 

excitatory and the inhibitory neurons. Correspondent AUCs in the inset. When only the excitatory 

sub-networks are considered, DTE and CCH severally improve their performances, as shown by the 

ROC curves (G) and MCC curves (H). Using the shuffling approach, the degree (F) and the delay 

distribution (F, inset) is reconstructed. Such distributions reflect the ones used to generate the in silico 

networks model (E). 

A E 

B 

C 

F 

G 

D H 

 



46 
 

 

 

Fig. 21| JE application to cortex networks coupled to the HD-MEA acquisition system. (A) 

Raster Plot and (B) mean Instantaneous Firing Rate (IFR) representative of the recorded spiking 

activity. (C) connectivity graph in false colors and correspondent degree distribution (D) obtained by 

means of the JE algorithm and the customized shuffling approach. (E) table reporting the main 

topological parameters extracted for the two networks with different seeding densities (400 cell/mm2 

and 1000 mm2).  
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 FNCCH results 
 

Validation of the FNCCH by means of in silico neural networks 

I applied the FNCCH to 10 realizations of the in silico neural networks. Fig. 22C shows the ROC 

curves obtained by comparing the Synaptic Weight Matrix (SWM) of the model (i.e., the ground 

truth) with the computed Functional Connectivity Matrix (FCM). Fig. 22D shows the MCC curve 

(cf., Methods). The ROC curve relative to the detection of inhibitory connections (blue curve in Fig. 

22C) is very close to the perfect classifier, with an Area Under Curve (AUC) of 0.98  0.01(blue bar 

in the inset of Fig. 22C). The MCC curve relative to the inhibitory links (blue curve in Fig. 22D) has 

a maximum value of 0.87 ± 0.04. Then, I compared the sensitivity of the FNCCH for the detection of 

excitatory links (red curves in Fig. 22C and 22D) to the standard CCH’s one (for excitation, black 

curves in Figs. 22C and 22D), to underline the improved detection capabilities with the filtering 

procedure. I observed not only a significant (p<0.001) AUC increase (0.92 ± 0.01 versus 0.72 ± 0.02, 

Fig. 22C inset), but also significant improvements in both ROC and MCC curves shape for low values 

of false positive rates (FPR). In particular, we can notice (Fig. 22D), that the FNCCH excitatory curve 

has a maximum value of about 0.75 with respect to the correspondent NCCH’s value (for the same 

false positive rate) that is negative (suggesting a disagreement between prediction and observation). 

The above results justify the use of a hard threshold procedure (cf., Methods) to select the strongest 

and significant functional connections. The Thresholded Connectivity Matrix (TCM) is thus directly 

computed from the FCM using a threshold equal to µ + 1σ, (mean plus one standard deviation of the 

connections strength) for the inhibitory links, and µ + 2σ for the excitatory ones, obtaining estimated 

links with a very high level of accuracy (cf. Methods): R2 = 0.99 for the inhibitory links and R2 =0.94 

for the excitatory ones. To investigate whether the reconstructed functional connectivity network 

resembles the one of the model, I calculated the excitatory and the inhibitory (Fig. 22E) links’ degree 

distribution from the TCM. The computed degree distributions fit a Gaussian distribution (Fig. 22E, 

R2 = 0.99 for the inhibitory links and R2 =0.98 for the excitatory ones), in accordance to the original 

distributions used to generate the structural (random) connectivity of the model (Fig. 22B). It can be 

noticed, that the mean values of the functional Gaussian distributions are slightly higher than the 

structural ones due to the presence of false positives. Finally, I computed the delay distribution for 

both the excitatory and the inhibitory links of the TCM (Fig. 22F); both the extracted distributions 

reflected the ones used to generate the model. In fact, the excitatory delay distribution was uniform 

in the interval [0, 20] ms, while all the inhibitory links introduce a constant delay set at 5 ms (cf., 

Methods).  

 



48 
 

Functional Connectivity and emergent network topologies in in vitro large-scale neural 

networks 

The FNCCH was applied to neuronal networks coupled to two different devices: MEA-60 and MEA-

4k. Fig. 23 shows the two utilized micro transducers (Figs. 23A and 23D) and the relative images of 

representative networks coupled to the two devices (Figs. 23B and 23E). Such networks are the 

morphological substrate originating the complex electrophysiological activity characterized by an 

extensive bursting dynamics (i.e., highly synchronized network bursts) and random spiking activity. 

Figs. 23C and 23F show two examples of spontaneous activity recorded by a MEA-60 (Fig. 23C) and 

a MEA-4k (Fig. 23F). We can observe silent periods, (where very few activity appears), 

desynchronized spiking activity and huge bumps of activity (of different duration) called network 

bursts which cause a fast increasing of the firing rate as the mean Instantaneous Firing Rate (IFR) 

plots show (Figs. 23C and 23F). I analyzed three cortical and three striatal networks coupled to the 

MEA-60 (FNCCH parameters: time window W= 25 ms and time bin of 0.1 ms) and three cortical 

networks coupled to the MEA-4k (FNCCH parameters: time windows W= 24 ms and time bin of 0.12 

ms) after they reached a stable stage (i.e., after 21 Days In Vitro, 21 DIV).  

Figs. 24A and 24G show a directed graph relative to a cortical and a striatal network coupled to a 

MEA-60 device (Figs. 24B and 24H and Figs. 24C and 24I show the contribution of excitation and 

inhibition respectively). All the graphs were obtained by applying the hard threshold approach and a 

spatio-temporal filtering to prune co-activations (cf. Methods). For the striatal culture, the qualitative 

prevalence of inhibitory connections is clearly visible. To characterize the detected links for the 

cortical cultures, I computed the box plots of the functional connections’ delay (Fig. 24D) and 

connection length (Fig. 24E) of excitatory (red) and inhibitory (blue) connections. Interestingly, I 

found that the inhibitory links are slower and with longer connections than the excitatory ones, as 

previously reported in brain slices66 for structural and functional connectivity. Similar representative 

graphs are shown in Fig. 25, where a directed graph relative to a cortical network coupled to a MEA-

4k is presented (Fig. 25A). Link strengths are represented by two distinct color codes (arbitrary unit) 

to facilitate the observation of excitation (hot-red color code) and inhibition (cold-blue color code). 

The two detected sub-networks are also shown in Figs. 25B and 25C. Moreover, box plots showing 

the connectivity peak delays and lengths are presented in Figs. 25D and 25E. The obtained results are 

in agreement with what obtained with MEA-60 devices. 
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Fig. 22 | Effective connectivity estimation from 10 in silico neural networks. (A), Raster Plot and mean 

Instantaneous Firing Rate (IFR) representative of the simulated spiking activity. (B), Structural degree 

distribution of the model (red curve for excitatory links and blue curve for the inhibitory ones). (C), ROC 

curves relative to inhibitory (blue curve) and excitatory (red curve) links computed by applying the FNCCH; 

the black curve, related to only excitatory links extracted with the standard NCCH, has been superimposed for 

comparison. Corresponding AUCs are represented in the inset. (D), MCC curves related to inhibitory and 

excitatory links computed by applying the FNCCH; the black curve, related to only excitatory links extracted 

with the standard NCCH, has been superimposed for comparison. (E), functional degree distribution 

reconstructed by means of FNCCH. The reconstructed degree distributions fit the Gaussian distribution used 

to generate the structural connectivity of the in silico model.  (F), Box plot of the excitatory and inhibitory 

delay distribution obtained by means of the FNCCH.  
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Fig. 23 | Micro-Electrode Arrays (MEAs) used in the presented experiments. (A), MEA-60 device, (B), 

Cortical network coupled to a MEA-60. (C), example of 100 s recording of spontaneous electrophysiological 

activity and mean Instantaneous Firing Rate (IFR) plot. (D), MEA-4k device, (E), cortical network coupled to 

the MEA-4k. (F), example of 100 s recording of spontaneous electrophysiological activity and mean IFR plot. 

Both the recordings come from cortical assemblies at DIV 25. 

 

 

I also computed the inhibitory links percentage with respect to the total number of detected links for 

the three different experimental conditions (n=3 experiments for each condition). As expected, I 

found that striatal cultures have a higher percentage of inhibition and inhibitory links (about 60%)73,74 

than cortical ones (about 25%). It is worth noticing that for the cortical cultures the 

excitatory/inhibitory ratio is detected quite independently from the number of recording sites (Fig. 

24F and 24F) although it tends to stabilize with a shorter recording time for the MEA-4k. 

Interestingly, the found ratio, in cortical networks, between inhibitory and excitatory links (about 1/4) 

is about the same as the ratio of inhibitory and excitatory neurons estimated by immunostaining5.  
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Fig. 24| Functional Connectivity analysis on different neural network populations coupled to MEA-60 

device. (A), functional connectivity graph obtained by applying the FNCCH to a cortical network at DIV 25. 

Excitatory and inhibitory links are separately thresholded and shown for convenience in panel (B), (excitation, 

red color map) and (C), (inhibition, blue color map). Color scales are indicative of the relative connection’s 

strength based on the peak of FNCCH. Yellow circles in panel b and  cyan circles in panel c represent the 

identified rich club nodes. (D), Box plot of the delays of the detected functional links. (E), Box plot of the 

connection lengths of the detected links. (F), Mean percentage of the inhibitory links revealed by the FNCCH 

at the varying of the recording time length. (G), Example of functional connectivity graph relative to a striatal 

network at DIV 21 coupled to a MEA-60 device. Panels (H), and (I), show the excitatory (red color map) and 

inhibitory (blue color map) networks, respectively.  
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Fig. 25 | Functional Connectivity analysis on cortex neural networks populations coupled to the MEA-

4k. (A), functional connectivity graph obtained by applying the FNCCH to a cortical network at DIV 21 

coupled to a MEA-4k device. Excitatory and inhibitory links are separately thresholded and shown for 

convenience in panel (B), (excitation, red color map) and (C), (inhibition, blue color map). Color scales are 

indicative of the relative connection’s strength based on the peak of FNCCH. Cyan circles in panel (B), and 

pink circles in panel (C), represent the identified rich club sub-networks. (D), Box plot of statistical distribution 

of the delays of the detected functional links. (E), Box plot of the statistical distribution of the connection 

lengths of the detected links. (F), Percentage of the inhibitory links revealed by the FNCCH at the varying of 

the recording time length.  

 

 

In order to derive the topological features75 of the analyzed cortical networks, I computed the 

Clustering Coefficient, CC (Fig. 26A) and the average shortest Path Length, PL (Fig. 26B). Then, I 

extracted the Small-World Index (SWI) by comparing the CC and the PL of the analyzed networks 

to the mean values of CC and PL of 100 realizations of a random network with the same degree-

distribution, as recently proposed44. I found that when the cortical networks are coupled to MEA-4k 

devices we could see the emergence of a clear small-world (SW) topology (Fig. 26C), while for 

cortical networks coupled to MEA-60s we could not infer any SW topology. With the measurements 

performed with MEA-4k’s I can state that, both inhibitory and excitatory links with their small world 
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index, SWI >>1 (9.2 ± 3.5 for the inhibitory links and 5.2 ± 2 for the excitatory ones) contribute to 

‘segregation’ with the emergence of small world networks. Moreover, inhibitory links, with their 

somehow longer connections, might contribute also to network ‘integration’ (i.e., communication 

among the SWs). To further characterize the topology of these neuronal assemblies, I also 

investigated the possible emergence of scale-free topologies76 by evaluating the presence of hubs23 

and power laws for the excitatory (Fig. 26D), inhibitory (Fig. 26E) and global (Fig. 26E, inset) link 

degree distributions. In agreement with what was obtained in previously published model systems 21 

and in other studies66, I obtained that such distributions fit a power law with a R2 higher than 0.92, in 

all the three cases. Finally, I searched for the presence of privileged sub-networks, constituted by the 

most connected nodes (i.e., rich club) of the investigated networks70. I identified the Rich Club 

Coefficient (RCC). For the analyzed cortical cultures, I found privileged sub-networks as indicated 

by the computed RCC with a max value of 2.7 ± 0.5. Figs. 25B and 25C show the rich club networks 

identified for one neural network coupled to the MEA-4k, represented by means of blue circles (for 

excitatory subnetwork) and pink circles (for inhibitory subnetwork). Figs. 24B and 24C are the 

analogous for a cortical neural network coupled the MEA-60 (yellow for the excitatory nodes and 

light blue for the inhibitory ones).   

When analyzing similar cortical networks but coupled to the MEA-60 devices, as pointed out above, 

no SW topology is identified (Fig. 26C); they seem to be characterized by a sub-random topology 

with a SWI of 0.4 ± 0.1 for the excitatory and 0.2 ± 0.2 for the inhibitory links. These cortical networks 

are of the same type as the ones coupled to the MEA-4k (i.e., similar density of neurons, same age, 

same culture medium) and the apparent estimated random topology should be attributed to the low 

number of recording sites (i.e., 60 channels) that are not enough to reliably infer topological features. 

For determining how number and density of electrodes are crucial, I computed the SWI by 

considering a reduced number of electrodes for the functional connectivity analysis from the MEA-

4k recording, as described in Fig. 26F. In particular, I started from the full resolution of the MEA-4k 

(i.e., 4096 electrodes), and I progressively decreased the electrode density, down to 60 electrodes 

(inter-electrode distance of 189 μm, electrode density of 19 electrode/mm2) to obtain a situation 

comparable with the MEA-60 devices, as previously reported77. The obtained results are shown in 

Fig. 26G: the SWI decreases down to a random topology becoming variable and unstable when the 

number of considered electrodes is less than 100. This last result is referred to the excitatory links 

and the same analysis was not applied to the inhibitory connections. In fact, such inhibitory links are 

much less than the excitatory ones, thus leading to an inhibitory topology reconstruction that is 

strongly influenced by the decimation scheme applied to reduce the number of electrodes.  
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FNCCH Results: discussion and observations 

The computation of the correlation of firing activity in the framework of multiple neural spike trains 

has been around since the 1960s. For over thirty years, cross-correlation, its generalizations78, and its 

homolog in the frequency domain79 have been the main tools to characterize interactions between 

neurons organizing into functional groups, or “neuronal assemblies”. A common established 

technique was to build a cross-correlogram (CCH), describing the firing probability of a neuron as a 

function of time that elapsed after a spike occurred in the other one. Nevertheless, in the literature, 

there has been no standard definition of the CC and the strength of a connection can be estimated by 

different means. To make the correlation coefficient independent of modulations in the firing rate, 

and to provide a basis for the evaluation of the significance in correlation measurements, and in turn, 

to allow the interpretation within an experiment and comparison between experiments, it is essential 

to have procedures for correction, normalization and thresholding of the coincidence counts obtained 

from cross-correlation calculations. Commonly used normalization procedures are related to 

Normalized Cross-Correlation Histogram (NCCH)36,52, event synchronization80, Normalized Cross-

Correlation (NCC – Pearson Coefficient)38
 , Coincidence Index of the CCH44. Once that a Functional 

Connectivity Matrix (FCM) is obtained, a thresholding procedure is necessary to discard those values 

that are not related to putative real connections. All these approaches present advantages and 

disadvantages but none of them have been applied to reliably identify inhibitory connections on large-

scale network from spiking activity. I introduced a filtered and normalized CC based algorithm (i.e., 

FNCCH) from which thresholded functional connectivity matrices for excitation and inhibition can 

be robustly obtained.  

From the analysis of the data, I identified both small-world and scale free topologies in cortical 

networks for the excitatory and inhibitory sub-populations. More specifically, I extracted inhibitory 

subnetworks in cortical and striatal neuronal cultures demonstrating the capability of the method and 

offering new understanding of neuronal interactions. Finally, the proposed algorithm, while 

confirming already presented preliminary results in the literature, demonstrates a new way (i.e., 

through large-scale MEAs and CCH based analysis) to investigate network topology and opens up 

new perspective for the analysis of multisite electrophysiological recordings. 
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Fig. 26 | Topological features of the detected functional networks. (A), Mean Cluster Coefficient (CC). (B), 

average shortest Path Length (PL). (C), Small-World Index (SWI). Red and blue colors indicate excitatory and 

inhibitory population, respectively. Degree Distributions of (D) excitatory, (E) inhibitory, and total links 

(inset). (F), Schematic representation of the procedure used to decrease the electrodes density to analyze the 

SWI dependence on the electrodes’ resolution. (G), SWI evaluation as a function of the electrodes density 

from 60 to 4096 microelectrodes. 

 

Identification of Inhibition 

Generally, by inspecting the CCH we can notice an increase or a decrease of the fluctuations37. In 

some studies it was noticed that the primary effect of inhibition on the cross-correlogram is a trough 

near the origin, and for this interaction to be visible there must be present a background of 

postsynaptic spiking against which the inhibitory effect may be exercised (high-tonic firing rate 

regime)81,82. From some experimental works related to the analysis of connectivity from cortical 

multi-site and multi-unit recordings83, reporting the normalized strength of the identified connections 

it appears that for excitation a good sensitivity is fairly commonly obtained, while the situation is 

considerably worse for inhibition. This is due to a low sensitivity of CCH for inhibition, especially 

under conditions of low firing rates48, as previously demonstrated81. The noted difference in 

sensitivity may amount to an order of magnitude, and it was demonstrated that for inhibition the 

magnitude of the departure relative to the flat background is equal to the strength of the connection, 

whereas for excitation it involves an additional gain factor81. As a whole, the lack of efficiency in the 

detection of inhibition simply reflects the disproportionate sensitivity of the analysis tool84. In our 

work, I introduced a cross-correlogram filtering approach (FNCCH) that I developed to overcome the 

inhibition detectability issue. As Fig. 22 shows, the FNCCH is able to detect with very high accuracy 
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the inhibitory links when applied to in silico neural networks with similar dynamics with respect to 

actual ones. The filtering procedure improves also the detectability of excitatory links resulting in a 

reshaping of the ROC Curve (Fig. 22C) with an increase of both precision (MCC Curve, Fig. 22D) 

and AUC with respect to the standard cross-correlation. However, being a cross-correlation based 

method, the presented FNCCH has indeed some limitations in the inhibitory links detection that I 

tried to investigate with the in silico models. The major factor affecting the detectability of inhibition 

is the variability of the cross-correlogram. In order to reduce this variability, it is possible to increase 

the number of coincidences per bin by increasing the bin-width (that is, down-sampling with loss of 

information in the acquired electrophysiological data), or by increasing the number of events involved 

(which can be obtained with high firing rate and/or by increasing the recording time)85. Another 

influencing factor depends on the balance of excitatory and inhibitory neuronal inputs (i.e., balanced 

model) and it is referred to the relative strength between inhibitory and excitatory inputs. In fact, 

when the neuron is not balanced, excitation is, on average, stronger than inhibition. Conversely, when 

the neuron is balanced, both excitation and inhibition are strong and thus detection of inhibitory links 

improves37,84,86. Starting from the in silico model, I was able to investigate the impact of rates 

variability on excitation/inhibition detectability, and try to define a reasonable threshold (criterion for 

detectability37,48). In particular, I varied the firing rate of the inhibitory neurons from 20 spikes/s to 2 

spikes/s while maintaining a firing rate of 2-3 spikes/s for the excitatory neurons. I found that the 

detectability of functional inhibitory links is preserved with our method down to a firing of about 6 

spikes/s and then decreases significantly (data not shown). I also investigated the inhibition 

identification with respect to the recording time. Starting from 1 hour of simulation, I reduced (10 

min steps) the recording time and I found that there is a decrease in the inhibition detectability below 

30 minutes of recording (cf. Fig. 25F). The obtained results enabled us to apply the FNCCH to in 

vitro large-scale neural networks, and allowed us to infer topology and functional organization. The 

described procedure can be also directly applied to Multi Unit Activity (MUA) from in vivo multi-

site measurement recordings. 

The emergence of a scale free and small-world topology 

The cortical networks probed with MEA-4k’s showed an unambiguous small-world topology. The 

inhibitory functional links had a SWI equal to 9.2 ± 3.5, higher than the value extracted from the 

excitatory links (5.1 ± 1.9). Conversely, the cortical networks coupled to the MEA-60 showed a 

random organization topology (0.21 ± 0.212 for the inhibitory links and 0.38 ± 0.1 for the excitatory 

ones). The apparent random organizations are due to the low number of recording site of the 

acquisition system; in fact, it is worth to remember that the SWI is computed by comparing cluster 

coefficient (CC) and average shortest path length (PL) of the analyzed networks to the corresponding 
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values for surrogate random equivalent networks (same number of nodes and links). From the 

obtained results, contrarily with what has been recently presented70, I demonstrated that the 

emergence of small-worldness, and above all, deviations from a random topology on a reduced set of 

electrodes (<100 in the case of the MEA-60) cannot be reliably derived or observed in a neuronal 

population probed by a reduced number of recording sites. Definitively, besides the crucial 

importance of well-defined statistical tools used for the analysis, it is fundamental to probe network 

activity by using large-scale microtransducer arrays (i.e., with at least 200 electrodes). As a whole, 

the issue related to the low number of recording sites should be carefully taken into account when 

extracting dynamical features as well as organizational principles of complex networks.  

Finally, it should be underlined that I limited and focused the work on the CC based methods. I 

mentioned in the Introduction the widespread and continuously increase use of Information Theory 

based techniques. Beside the relative novelties of such methods and the good performances (for a 

review see7 and references therein), they showed high computational costs and, to our knowledge, 

the inability to reliably estimate inhibitory connections44. Although theoretically, information theory 

based methods, like Transfer Entropy (TE) and Mutual Information (MI) are, in principle, able to 

detect inhibitory links, I am not aware of studies consistently reporting a successful identification of 

inhibitory connections. The problem might be more in the lack of possibility to distinguish between 

excitatory and inhibitory links, rather than the detection of inhibition, as I will show in the next 

paragraph. 

 

 

Comparison with a Transfer Entropy based algorithm 

In this section, we compare FNCCH with Delayed Transfer Entropy (DTE)8. Fig. 27A shows the 

ROC curve and the correspondent AUC (Fig. 27B) when DTE is applied to an in silico network made 

up of 1000 neurons (cf., Methods). The ROC curve relative to the total number of links (black curve) 

displays a shape similar to the one correspondent to the NCCH (black line of Fig. 1c, main text). 

However, if we analyze separately excitatory and inhibitory links, the results change dramatically. If 

we restrict the detection only to the excitatory links, the DTE ROC curve greatly improves (Fig. 27A), 

together with the AUC value (Fig. 27B). The ROC curve related to the inhibitory links (Fig. 27A) 

shows a good TPR value higher than 0.4 in correspondence of a FPR of 0.01. Finally, the ROC curve 

relative to the links between inhibitory neurons (green curve) shows that only false positives are 

detected, since in the model there are no links among inhibitory neurons. Moreover, these false 

detected connections correspond to higher values with respect to all the other detected functional 

links (as confirmed by the connectivity matrix, represented with false color in Fig. 27C) with the 
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consequence of worsening the total links detection. Thus, it is indeed possible to “detect” inhibitory 

links with a TE based method, but is not possible to “identify” (i.e., to distinguish) excitatory and 

inhibitory links.  

 

 

 

Fig. 27| DTE effective connectivity estimation relative to an in silico neuronal network. Effective 

links are estimated starting from the simulated multi-site electrophysiological activity. (A), ROC 

curves relative to the total links (black), to the excitatory versus excitatory neurons’ links (red), to the 

inhibitory versus excitatory neurons’ links (blue) and to the to the inhibitory versus inhibitory (green). 

(B) Correspondent AUCs. (C) DTE weighted connectivity matrix. 
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Partial Correlation 

I applied PC to the in silico neural networks described in detail in the appendix. I compared PC to TE 

and basic CC. In particular, I extracted subsets made up of 60, 120, and 240 neurons. Furthermore, I 

systematically tested how the aforementioned methods are able to account for different connectivity 

degrees. To this end, we increased the average connectivity degree of each node of the network model 

by considering low- ( 20%), medium- ( 50%) and high-connected ( 100%) values. 

 

Validation of the PC by means of in silico neural networks 

The performances of each connectivity method were evaluated by means of ROC and ACC curves, 

averaged over 10 realizations (lasting 10 minutes) for each network model. The ROC curves of our 

partialization procedure, observed considering low (L) connected assemblies and low number of 

nodes (60 MNeu), were very close to the ideal case (i.e. TPR values equal to 1); by increasing the 

complexity of the neural networks from medium (M) to high (H) connectivity degree, PC maintained 

higher performances than one-delay TE and CC (Fig. 28A, first row). PC showed very good 

performances also in larger (120 and 240) assemblies at low and medium connectivity degrees (Fig. 

28A, second and third row), corresponding to reasonable physiological conditions 5. The extreme 

situation of high connected networks is considered as limit case to test the performances of the 

connectivity methods. For this condition, we observed a clear degradation of the partialization 

approach (Fig. 28A, third column). This result might be explained with the so-called “married-nodes” 

effect in which two generic nodes could be interpreted as direct (i.e., mono-synaptically) connected 

if they are connected to a third common neuron40. These results were confirmed by the AUC analysis 

that showed PC statistically different (and better) with respect to CC and TE (Wilcoxon rank sum 

test; Fig. 28B) not only in small (60 nodes: p < 0.001 at L, M and H connectivity degree) but also in 

larger networks (120 nodes: p < 0.001 at L and M connectivity degree; 240 nodes: p < 0.01 and p < 

0.05 at L and M connectivity degree, respectively). 

 

PC application to experimental data 

I also applied the developed partial correlation algorithm on neural networks coupled to the MCS60 

low resolution acquisition system. 

Modularity analysis 

I first considered data coming from segregated yet structurally and functionally connected 

neuronal populations, and compared with homogeneous networks (control). The rationale was to 
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further support, with experimental data, whether the partialization approach and the implementations 

of CC and one-delay TE proposed in this work, were capable of clearly individuating the two 

segregated populations by means of the modularity index Q71,87. Such an index was extracted by 

applying first the three methods to n = 8 simulations coming from an interconnected network model, 

and then to the spontaneous activity of n = 8 cortical assemblies grown in vitro by using a dual-

compartment experimental set-up. I quantified whether and to what extent the methods identified the 

segregation effects. Fig. 29A and B shows two examples of functional connectivity graphs, obtained 

by means of PC applied to the two experimental set-ups (i.e., the standard MEA device (Fig. 29A) 

and the dual compartment system (Fig. 29B: the black lines indicate the functional connections that 

cross the physical barrier between the compartments). I analyzed data during the third week in vitro 

since it is considered a stable and mature stage of development of dissociated cortical networks88. 

The compartmentalization effect was identified by all connectivity methods both in silico (Fig. 

29C) and in vitro (Fig. 29D) models; however the modularity detected by PC was much higher and 

more significantly different than CC and one-delay TE, both in simulated (Fig. 29C; PC modularity 

 0.59 ± 0.01, p < 0.001; CC and one-delay TE modularity < 0.5 ± 0.02, p < 0.01 and p < 0.05 

respectively) and experimental conditions (Fig. 29D; PC modularity  0.63 ± 0.04, p < 0.001; CC and 

one-delay TE modularity < 0.5 ± 0.03, p < 0.01 and p < 0.05 respectively). This is a clear and 

additional proof about the actual performances of the connectivity methods used in these experimental 

conditions. 
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Fig. 28| Partial Correlation performances (A) ROC curves. Mean shape was extracted from 21 

simulations; PC algorithm shows significant performances at low and medium connectivity degrees, 

not only in small (60) but also in larger (120- 240) assemblies. Only the high-connected networks, 

increasing the number of “married nodes”, worsen the partialization process. (B) Areas under the 

curves (AUC). Values of the areas under ROC curves: PC shows very good performances, statistically 

different respect to CC and one-delay TE (Kruskal-Wallis test. p < 0.05, 0.01, and 0.001 identified 

by one, two and three stars, respectively). 
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Fig. 29| (A) Example of functional connectivity map obtained by applying PC algorithm to a 

homogeneous cortical network. (B) Connectivity map obtained by applying PC algorithm to a dual 

compartment network. (C) Modularity Index obtained by applying PC, CC and one-delay TE methods 

to the homogeneous (grey) and modular cortical network model (dark grey): PC method is a very 

good choice to detect the compartmentalization effect introduced by the structure of the experimental 

set-up (p < 0.001). (D) Modularity Index obtained by applying PC, CC and one-delay TE methods to 

the experimental data (homogeneous –grey-, and interconnected networks –dark grey-). The results 

obtained in the computational model were confirmed also during experimental analysis. 

 

 

Connectivity during development 

As application of our partialization method, I characterized the functional-effective connections 

and I derived the topological structures in developing neuronal cultures (i.e., from the second to the 

fourth week in vitro). I considered two datasets: the first one composed by n = 7 spontaneous 

homogeneous cortical assemblies (2 batches), the second consisting of n = 10 chronically stimulated 

cultures (3 batches) by low-frequency electrical pulses (cf. Sec. 2.1). I estimated functional 

connectivity by means of the PC method and I evaluated basic graph measures. I normalized them by 

the average of the same graph indices extracted by 100 randomized surrogates graphs (graph 

characterized by the same number of links and involved nodes with respect to the experimental data), 

following the approach devised in69.  
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When monitored during development, in vitro cortical cultures started to display relevant 

spontaneous electrophysiological activity after the first week in vitro. For this reason, I considered 

the evolution of the cortical networks from the second to the fourth week.  

The normalized network statistics (Fig. 30A) did not show a significant trend during development 

(Wilcoxon rank sum test; p > 0.05). The increasing entropy values that I found from the second to the 

fourth weeks in vitro, instead, provided an important contribution to identify a significant emergence 

of a random structure (Fig. 30C, red line; Wilcoxon rank sum test; p < 0.001), supporting the 

hypothesis that cortical assemblies had a tendency to integrate rather than to segregate. 

In addition to spontaneous-evolving networks, I studied how the chronic delivery of electrical 

stimulation could affect the development of functional links. I considered the development of n = 10 

cortical networks during the pre-stimulus phases, from the second to the fourth week by studying how 

the topological structures changed from the pre-stimulus to post-stimulus phase during the second 

week. By evaluating the cluster coefficient, I observed that young cultures (II week in vitro) exhibited 

a more segregated structure. In the following weeks (IIIrd and IVth) the cultures exhibited the 

emergence of an integrated structure. This is clearly visible in Fig. 30B with a decrease of the 

clusterization effect while keeping constant the normalized values of Path Length. I observed a 

significant integration trend during development (Wilcoxon rank sum test: II week pre or post 

stimulus / III-week pre-stimulus p << 0.01; II week pre or post stimulus / IV week pre-stimulus p << 

0.001). Moreover, the cluster coefficients that I found were significantly different from those 

extracted by analyzing random network models (Wilcoxon rank sum test: II week pre or post stimulus 

/ random case p << 0.001; III-week pre-stimulus / random case p << 0.001; IV week pre-stimulus / 

random case p < 0.05). These results were confirmed also by the increasing Entropy levels, evaluated 

for each network node having non zeros cluster coefficient values (Fig. 30C, black line). Our analysis 

shows how the stimulation promoted a significant change in the network topology favouring the 

emergence of a random functional structure as indicated by the decrease of the normalized Cluster 

Coefficient values while keeping the Path Length measures on the maximum integration levels (levels 

equal to 1) during development (Fig. 30B). Moreover, I observed that the stimulation did not have 

any effect on the connections length, since their distributions did not change from the spontaneous to 

the stimulated homogeneous networks (Figs. 30D and 30E). I did not find significant differences at 

level of number of links (Fig. 30F). Finally, I also characterized the functional topological structures 

of the same spontaneously developing and electrically stimulated networks by means of CC and one-

delay TE methods. The obtained results did not show significant trends during development 39. 

Altogether these results support the idea that PC can be conveniently applied to estimate structural 
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connections from functional-effective links and that is capable to discriminate subtle changes in the 

network topology. 

 

 

 
 

 

Fig. 30| (A) Cluster Coefficient (red line) and Path Length (black line) analysis of 7 spontaneous 

homogeneous networks during development. (B) Cluster Coefficient (red line) and Path Length 

(black line) analysis of 10 stimulated homogeneous networks during development. (C) Entropy of 

spontaneous (red) and stimulated (black) homogeneous networks. (D) and (E) Link distributions 

during development. (F) Histogram of number of connections extracted from spontaneous (dark grey) 

and stimulated (grey) homogeneous networks. 
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Algorithm Optimization  
The functional connectivity analysis is a quite demanding computational process, and all of the 

previous described connectivity methods for analyzing multiple spike trains rely on quantities that 

need to be computed through intensive calculations8. In order to reduce the time requested for the 

computation and to improve the Random Access Memory (RAM) usage, I decided to combine 

informatics tool for the implementation of the statistic methods, with a computational logic approach 

based on a redefinition of the connectivity algorithms to be tailored for spike train data. In this section, 

I will describe the latter approach, while in the next one, I will introduce and define the informatics 

instruments as well as the informatics tools that I developed for the complete analysis of dynamics 

and functional connectivity of spike trains data. The computational logic approach modifications 

allowed a very drastic reduction of the time requested for the computation and the RAM usage. In 

fact,  I implemented a C# optimized version of the transfer entropy algorithm using informatics 

optmization strategies to reduce the time needed for the computation. I used an in silico neural 

networks with 500 Izhikevich-based neurons simulated for 1 hour to test the developed algorithm. 

That implementation required 42 hours to provide the full 500 x 500 connectivity matrix with a 4 

cores i7 2.5 GhZ, 16 GB of RAM and solid state disk. Such a computational time was not optimal in 

the optic of analysing neural networks coupled to MEA-4k with 4096 electrodes.. Spike trains are 

very sparse data and, as a consequence, the possibility to consider only the non-zeros value in the 

algorithm computation, can drastically reduce the requested time for computation. The chosen 

strategy is based on the efficient use of time stamps (i.e., the index of a sample correspondent to a 

spike) as input and working data. In fact, in the in silico networks I used for the testing, the firing rate 

of neurons are around 2-3 spikes/s, meaning that there are totally 7’200-10’800 spikes with respect 

to 3’600’000 total number of samples (sampling frequency set at 10 kHz), with a reduction of the 

data dimensionality of more than 3 orders of magnitude. In the next paragraphs, I will describe the 

logic optimization and implementation of FNCCH, TE and JE algorithms.  

 

 

FNCCH: algorithm optimization 
The optimization procedure for the FNCCH is based on time stamps relative to the occurrence of a 

spike on a specific electrode. The block diagram and pseudocode depicted in Fig. 31 shows the 

computational operations executed by the optimized CC algorithm (FNCCH). We start from the first 

bin containing a spike in the target train. The binning procedure is directly performed on the time 

stamps. For each pair of neurons, starting from the first spike of the target train, we slide the time 
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stamps of the reference electrode to find the first spike whose correlation window contains the target 

investigated spike. Then, we continue to move over the target train to build the entire cross-

correlogram (for that reference spike). When the correlation window for the reference spike is 

completed (i.e., when we have counted the number of spikes for all the bin of the target spike train), 

we move to the next spike of the reference train, and re-iterate the procedure starting from the first 

target spike into the correlation window, centered in the current reference spike. Thus, we normalize 

the CC and repeat all the aforementioned operations for the other electrodes. An important 

optimization strategy exploits the symmetry of the CC function allowing considering only half of the 

electrodes for the computation. Moreover, we choose, as target train, the one presenting the smallest 

number of spikes to reduce the number of operations for each pair. Once the NCCH is obtained, we 

apply the filtering operation described by Eq. (2) to compute the FNCCH values. Finally, we take the 

maximum absolute value as estimation of the correlation between the two electrodes. If it is negative, 

the found connection is likely to be an inhibitory link, otherwise the found connection is likely to be 

an excitatory link.  

 

 

 

Fig. 31|Schematic representation and description of the algorithm to obtain the FNCCH.  
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Transfer Entropy Algorithm Optimization  
Fig. 32 schematically represents and describes the main operations of the implemented TE algorithm. 

First of all, the customized algorithm performs a binning procedure (with a bin width set by the user 

via the GUI) directly on the time stamps. Then, we start the computation of the information transfer 

among each couple of electrodes. We compute the TE order, that is equal to x_order (i.e., number of 

bins in the reference train) + y_order ( i.e., number of bins in the target train) + 1 (past bin in the 

reference train). At this stage, we build a pattern vector with TE order elements initialized with 

x_order bins of the reference train, the one past bin of the reference train, and the y_order past bins 

of the target train. The number of all the possible patterns is 2TEorder, and we use a decimal code 

(0,1,2,…,TE order) for coding each binary pattern. Thus, starting from the first element of the pattern 

vector, we select the minimum bin (i.e., minimum spike time stamp value) and initialize the code to 

the simplest pattern (1 in that bin, and 0 for all the others). Then, we substitute this element of the 

pattern vector with the next spike (from the correspondent train) and select again the minimum bin 

indifferently from the reference or the target train. If this bin belongs to a common pattern with the 

precedent bins the code is updated and increased, otherwise, a vector of length TE order, representing 

the frequency of occurrence of each code is updated and the code is re-initialized to the simplest 

pattern for the updated minimum bin. We repeat all these operations until the number of spikes of the 

reference or the target train is ended. The null code (related to the pattern formed by only empty bins) 

is obtained as the total number of recorded bins minus the sum of all other patterns frequency of 

occurrences. At this stage, we use the frequency of occurrences to extract each probability of 

occurrences and we compute the TE value among the analyzed electrode by applying Eq. (12). For 

delayed transfer entropy, I used a multithreading implementation to have a different thread for every 

different delay. At the end of the computation, I save the maximum value of TE and the correspondent 

delay. 
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Fig. 32|Schematic representation and description of the algorithm to obtain the TE.  
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Joint Entropy Algorithm Optimization  
Fig. 33 schematically describes and represents in form of pseudocode the main operations executed 

by the customized JE algorithm’s implementation. Considering the first spike of the reference train, 

we slide the target train to find the first spike next to the reference one. We compute the cISI value 

and update the cISI histogram (i.e., the counting of cISI of specified sizes). We iterate such a 

procedure until all the reference’s spikes have been analyzed. Finally, we compute the cISI 

probability normalizing the number of cISI of a specific width for the total number of cISIs. The 

application of (15) allows the computation of the JE between the analyzed electrodes.  

 

 

 

Fig. 33| Schematic representation and description of the algorithm to obtain the JE. 
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Software development for functional connectivity analysis 
Recent advances in multichannel extracellular recording techniques have made possible the 

simultaneous recording of the electrophysiological activity of thousands of neurons, with in vitro 

arrays that can contain up to thousands of microelectrodes6,14,27,49,50. Such relevant advancements in 

the technology have made routine the acquisition of massive amounts of data. Moreover, quite often 

the experimental protocols researchers perform require long recordings (e.g., tens of minutes, hours) 

which generate a huge amount of raw data. For the above reasons, new computational strategies and 

informatics toolboxes are requested for optimizing the management and analysis of the acquired data. 

When I started my PhD, to the best of my knowledge, there was no available dedicated software that 

put together a set of different functional connectivity analysis methods, with a friendly Graphical 

User Interface (GUI) and appositely tailored to be applied on spike train data. For this reason, I 

decided to develop a user-friendly toolbox51 in order to provide the researchers community with a 

powerful tool to perform functional connectivity analysis on in-vitro neuronal networks coupled to 

standard and high-density MEAs, while guaranteeing computational efficiency and high accuracy.  

 

 

 

Fig. 34| Schematic overview of TOOLCONNECT. The Functional blocks show the computational and 

graphical tools embedded in the software package. The flow chart starts with the pre-processing 

section; it includes the data acquisition procedure and all the other operations necessary to create the 

spike trains, which are the software’s input data.  
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Main Graphical Interface 

I designed and developed TOOLCONNECT taking care of the user-friendliness. According to this, our 

software package has a Graphical User Interface (GUI), which permits also to inexperienced users to 

perform functional connectivity analysis, to graphically represent the results, without knowing the 

details of the algorithms and the organization of the software’s code. Fig. 34 shows in form of block 

diagrams the organization of TOOLCONNECT, while Fig. 35 shows an example of the graphical tools 

provided to the users by TOOLCONNECT, and inherited by SPICODYN.  

 

 

 

Fig. 35| Example of TOOLCONNECT’s graphical output. (A) Sketch of connections among three 

neurons in a simulated neuronal network. (B), (C) Cross-correlograms computed by using the 

frequency and the time approach respectively. (D) Partial correlograms computed among the three 

electrodes. (E), (F) Correspondent TE and the JE matrices. The peak appearing for the cross- and 

partial correlograms 12vs13 and 12vs21 corresponds to a connection found between the 

aforementioned electrodes. In the same way, the TE presents the highest values for the couples (12, 

13) and (12, 21) and the joint entropy shows the smallest values for the same couples; meaning that 

these methods found a connection between the aforementioned electrodes. Regarding the 

electrodes13 and 21, instead, the absence of peak in the cross-and partial correlograms, the low values 

for TE and the high values for JE suggest the absence of a connection, as the sketch of the panel A 

shows. 
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Example of TOOLCONNECT’s application to experimental Data 

                         

Spontaneous vs stimulated networks 

I applied the cross-correlation algorithm (in the frequency domain) to cultured hippocampal neural 

networks (see Supplementary Material for cell culture) during both spontaneous and stimulus-evoked 

activity. Electrical stimulation was performed by applying bi-phasic voltage stimuli delivered at the 

frequency of 0.2 Hz, with a peak-to-peak amplitude of 2.0V, from a single electrode. Analysis was 

performed on recordings lasting 10 minutes (sampling frequency of 10 kHz). Fig. 36 shows the 

connectivity graphs and the connectivity matrices obtained for the spontaneous conditions (Figs. 36A, 

36D) and stimulation phases relative to a stimulation phase from channel 45 (Figs. 36B, 36E) and 21 

(Figs. 36C, 36F). All these graphs and matrices were obtained by thresholding the CM using a 

threshold equal to µ+ 2σ, where µ and σ are the mean value and the standard deviation of the CM’s 

elements, respectively (cf. hard threshold). After the thresholding procedure, during spontaneous 

activity, I detected more links (about 90%) than during stimulated activity (Fig. 37C). These 

functional links involve a larger number of electrodes (about 53%) in the spontaneous condition with 

respect to the stimulated one (Fig. 37D). Moreover, the correlation values obtained for the 

spontaneous activity are lower but more homogeneous than the values corresponding to the stimulated 

one (maximum values’ difference of 0.16, standard deviation 0.008 versus 0.045 for spontaneous and 

stimulated activity respectively, Figs. 36D, E, F). I also evaluated the in- and the out-degree 

distribution. We can observe that during spontaneous activity, the in- and the out-degree for the 

different electrode are almost equally distributed among the active electrodes (Fig. 36G). During 

stimulus-evoked activity, the stimulated electrode showed an increased number of outgoing 

connections, reaching a difference of 14 links with the other electrodes (Figs. 36H, I). In the case 

corresponding to the stimulation of electrode 21, we had only one electrode with more than 3 outgoing 

connections. When stimulating the electrode 45, I found only one electrode with more than 4 

outgoing-ingoing connections. In the spontaneous condition, instead, there were 35 and 28 electrodes 

with an out-degree of connections greater than 3 and 4 links, respectively. Finally, I used two metrics 

form graph theory (namely, cluster coefficient and path length) to evaluate the topological 

characteristics of the neural networks, in the two different experimental conditions. Figs. 37A and 

37B show the results relative to the cluster coefficient and path length, respectively. I could observe 

that the path length is not affected by the electrical stimulation (i.e., same values for the spontaneous 

and the stimulus-evoked activity). On the contrary, I found a higher cluster coefficient for the 

spontaneous conditions than for the stimulated ones. This is probably due to the effect of the 

stimulation on the global network’s dynamics: the stimulation empowers the outgoing connections 
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from the stimulated electrode, thus, these connections become stronger, and correspond to higher 

cross-correlation values. We can observe that, the connectivity graph for the stimulation of the 

electrode 21 and 45 are quite different. In particular, the outgoing connections of the electrode 45, 

are weaker than the ones relative to the electrode 21 (Figs. 36B, 36C). Moreover, the degree 

distribution relative to the electrode 45 shows a higher variability in the number of in-coming and 

out-going connections than the one relative to the electrode 21. Figs. 37E and 37F shows the 

population Post Stimulus Time Histogram (PSTH) relative to the two different sites of stimulation 

(i.e., the PSTH averaged over all the electrodes); we can observe that the number of evoked spikes 

by the stimulation of channel 45 (Fig. 36E) is lower than the number correspondent to the stimulation 

of the electrode 21 (Fig. 37F). It is possible to ascribe that the electrode 45 is less involved in the 

dynamics of the analyzed network with respect to the electrode 21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 36| TOOLCONNECT’s application to mature hippocampal assemblies. TOOLCONNECT’s 

application to mature hippocampal assemblies. Cross-correlation algorithm was applied to 

hippocampal networks in spontaneous and stimulus-evoked conditions. (A), (D) and (G) connectivity 

graph, connectivity matrix and degree distribution for spontaneous activity. (B), (E) and (H) 

connectivity graph, connectivity matrix and degree distribution for stimulated activity (site of 

stimulation, electrode 45). (C), (F) and (I) Connectivity graph, connectivity matrix and degree 

distribution for stimulated activity (site of stimulation, electrode 21).  
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Fig. 37| Graph Theory’s analysis of hippocampal neural assemblies. (A) Cluster coefficient. (B) 

Path length. (C), (D) Number of links and number of neurons found after the thresholding procedure, 

respectively. (E) PSTH relative to the stimulation of electrode 45. (F) PSTH relative to the stimulation 

of electrode 21. 
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SPICODYN 
 

I implemented an automated and efficient open-source software for the analysis of multi-site neuronal 

spike signals. The software package, named SPICODYN, has been developed as a standalone windows 

GUI application, using C# programming language with Microsoft Visual Studio based on .NET 

framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and 

text files, containing recorded or generated time series spike signals data. SPICODYN processes such 

electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective 

connectivity analysis. In particular, for inferring network connectivity, a new implementation of the 

transfer entropy (TE) method is presented dealing with multiple time delays (temporal extension) and 

with multiple binary patterns (high order extension). SPICODYN is specifically tailored to process 

data coming from different MEAs setups, guarantying, in those specific cases, automated processing. 

The optimized implementation of the Delayed Transfer Entropy (DTE) and the High-Order Transfer 

Entropy (HOTE) algorithms, allows performing accurate and rapid analysis on multiple spike trains 

from thousands of electrodes. The new developed software SPICODYN inherits the overall 

architecture from TOOLCONNECT
51, no more supported,  and includes new relevant features such as 

spike detection, first-order statistics for spikes and bursts, fully revisited TE based algorithms, and 

topological analysis. Specifically, it includes a brand new temporal extension of the TE dealing with 

multiple time delays and orders higher than one44,59.  Fig. 38 displays a screenshot of the main raw 

data processing user interface providing all the functionalities that will be described in the next 

sections. 

Multi-Threading Implementation  

SPICODYN is a Multiple Document Interface (MDI) windows form application. A father form is a 

frame in which all the embedded computational and graphical tools’ interfaces are opened and 

displayed. I implemented each of these interfaces independently from the others, as a windows form. 

A friendly GUI and a complete set of feedback information are fundamental in the definition of the 

toolbox. According to this, each windows form has a multi-thread implementation: one thread of the 

application is used to update the graphical interface and another one executes the effective code of 

the selected connectivity method. In this way, it is possible to update a progress bar indicating the 

state of the application and other controls reporting useful information (e.g. the start time of the 

algorithm and the percentage of progress), and to make this interface accessible any time in order to 

resize, minimize or move the relative window. Some of the threads were directly implemented at code 

level, while other were implemented by use a .Net Framework 4.5’s powerful embedded control to 

handle the multi-threading application: the backgroundworker. This object provides the user 
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with the methods DoWork, RunWorkerCompleted and ProgressChanged. The first one contains all 

the code that must be executed in the thread (in our case the connectivity method’s code); the second 

one indicates the operations to run after the conclusion of the thread. The last one indicates the 

operations to do when a change in the progress occurs (e.g., the update of a progress bar). When 

performing functional connectivity analysis, the need of a large amount of RAM and the high 

computational time of execution are the two main issues to manage. The aforementioned multi-

threading implementation permits the various connectivity methods to be performed simultaneously 

on the different threads of the different available CPUs, significantly reducing the computational 

requested time. 

Input data processing and conversion procedures 

Researchers need a reliable format for exchanging large datasets for specific data analysis. A well-

recognized possibility of a common file format is based on the HDF5 (Hierarchical Data Format) 

structure89. HDF5 format (structured binary format) allows fast loading and low processing times 

when dealing with huge amounts of data58.  

 

Fig. 38| Screenshot of the main interface of SPICODYN. 

 

For this reason, I adopted this standardized raw input data format, making our tool compatible to deal 

with data coming from different acquisition systems. In fact, most of the acquisitions system’s related 

software provides tools and packages to convert the specific format or to save the acquired electrode’s 

raw data into a standardized level-2 HDF5 format (e.g., “DataManager” from MCS Systems - “mcd” 
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format, “BrainWaveX” form 3Brain - “brw” format). However, SPICODYN offer the possibility to 

read also the level 5 MAT-files format (v5-v6-v7, The Mathworks, Natick, US) and convert them 

into textual or binary files, which are the supported formats for spike trains files to be used as input 

for the spike analysis and connectivity methods. Such a conversion procedure is done by using 

dedicated open-source .NET libraries and adopting an optimized implementation strategy to extract 

the structured data elements values. More specifically, I implemented a procedure to iteratively move 

through the file by finding a tag and then reading ahead in memory the specific number of bytes until 

the next tag. The conversion procedure offers also the possibility to join spike trains related to distinct 

phases of the same experiment, provided in separate level 5 MAT-files. Fig. 39 graphically illustrates 

the MAT-files format providing details about the structured elements. Finally, SPICODYN guarantees 

the compatibility with spike trains format data generated by SpyCode90: a previously developed 

software from our research group. The main raw data pre-processing features offered by SPICODYN 

includes: i) electrode’s raw signal visualization with a time-varying plot of the selected electrodes in 

a specific interval; ii) selectable algorithms of spike detection (Cf., Sec. 2.3.1); iii) raster plot of the 

identified spiking activity while the electrode’s raw signal is being displayed. Fig. 40 represents a 

block diagram of SPICODYN’s functionalities and process flow, schematically describing the 

operations performed by the user to select the input data files, to choose the analysis method to 

perform, and to set the input parameters. It also depicts the operations performed by SPICODYN’s 

modules, related to the input raw data management, conversion, spike detection and spike trains 

analysis (dynamics and spiking/bursting statistics, functional-effective connectivity analysis, 

connectivity matrix and graphs visualization, topological features analysis and graph theory metrics).  

 

Spiking and Bursting features analysis 

The creation of huge amounts of data from simultaneous recording of many (thousands of) neurons 

with HD-MEA acquisition setups implies the development of efficient methods and specific tailored 

algorithms to analyze such neuronal spike trains. Spike detection methods, applied to recorded 

electrodes raw signals, rely on quantities that require intensive calculations. SPICODYN’s interface 

provides the user with commonly used algorithms to perform spike detection, and some subsequent 

statistical analysis on the extracted spike trains data. 

 

Spike detection 

The current version of SPICODYN implements two spike-detection algorithms: “Spike Detection 

Differential Threshold” (SDDT) and “Precision Timing Spike Detection” (PTSD). 
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Fig. 39| Matlab Level 5 MAT file-format.             

I developed a dedicated form that provides the 

necessary fields to specify all the required 

input parameters. The spike detection 

algorithms involve a common step related to 

the threshold computation. I implemented two 

different strategies to compute distinct 

threshold values for all the channels: 

i) “automatic” sliding-window threshold 

computation procedure: the user sets the 

number of positions of the sliding window (k: 

typical values between 10 and 20), the 

percentage of coverage of the total signal 

length (or the complementary sliding window 

length - w), and the multiplication factor (n) for 

the computed standard deviation (SD) of the 

analyzed signal’s portion. The SD value is 

evaluated for all the windows positions (k), 

and the minimum value represents the basal 

noise threshold value. The threshold on every 

channel can be written as:  

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑖 =  𝑛 ∗ 𝑚𝑖𝑛𝑘{𝑆𝐷(𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑖_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑤𝑘))}     (29) 

ii) “manual” user-set interval threshold computation procedure: the user sets an interval for the 

threshold computation on the basis of the signal’s amplitude trend by visual inspection. The threshold 

value for every channel corresponds to the SD value of that precise portion of the signal, multiplied 

by the SD factor n. Taking into account the setup-dependent signal’s amplitude and variability, the 

automatic procedure for the threshold computation, when applied to 3Brain data, uses the mean SD 

value computed in all the sliding window positions instead of the minimum SD value. In both 

methods, I implemented a preliminary control (of the noise levels) procedure, to exclude from the 

spike detection those channels that exhibits higher levels of noise with respect to a maximum admitted 

value. In the case of the 3Brain data, this procedure is based on a maximum threshold value that is 
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set by the user. In the case of the MCS data instead, the control is performed only with the “manual” 

threshold computation option, and the maximum threshold value is computed on a “reference” 

electrode (set by the user). 

I implemented a version of the SDDT procedure following the algorithm as described in91. The PTSD 

procedure is implemented on the basis of the specifics described in28. Both procedures have been 

adapted and customized to deal with multiple electrodes raw data in the HDF5 file format. I took 

specific care to guarantee an optimized memory data management and to reduce the computational 

costs. To achieve this, in the worst case of data coming from the 4096 electrodes from the 3Brain 

setup (sampling frequency of 9043 Hz), I implemented a memory buffer that stores only a short 

portion of 10 s (i.e., 10 x 9043 samples per buffer) of the data file in an iterative manner. I also applied 

a multi-threading approach to parallelize spike detection for different electrodes on different threads. 

 

 

Fig. 40| Functionalities block diagram and process flow chart describing the flux of operations 

performable using SPICODYN. The blue line identifies a possible path to perform a complete 

analysis starting from the raw data in HDF5 format, and performing spike detection, spiking and 

bursting analysis as well as connectivity analysis. 

 

 

Burst detection 

A burst consists of a sequence of spikes separated by short time intervals within the sequence, and by 

a relatively long interval between two spikes belonging to two different sequences92. However, the 

definitions of bursts and burst detection methods differ among studies. Commonly accepted analysis 
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tools employ burst detection algorithms based on predefined criteria93. The specific parameters of the 

methods adopted to identify bursts from MEA recorded spike trains are usually tailored according to 

the experimental conditions, and generally differs in the inter spike interval (ISI) thresholds definition 

and usage and in the minimum number of consecutive spikes for burst identification. Some studies 

use the average ISIs of the measurements94, average firing rates or logarithmic histogram of ISIs95 to 

calculate an ISI threshold for detecting bursts. In the current version of SPICODYN, I implemented 

the detection of bursts as sequences of at least N consecutive spikes spaced less than a chosen ISI 

threshold value, according to96. The two threshold parameters are provided directly by the user 

through the interactive burst detection interface. The first one is the maximum ISI for spikes within 

a burst. The second one is the minimum number of consecutive spikes belonging to a burst (N). Our 

algorithm applies an efficient strategy to scan the spike train time stamps values and calculate the 

ISIs while at same time evaluating the threshold conditions. Thus avoiding the need to scan the entire 

sparse binary spike train improving the computational performances and data storage resources usage. 

Spiking and bursting statistics  

Different metrics, such as overall spiking activity, firing rates, bursting frequency and duration, can 

be used to have a first overview of the dynamic behavior of a neuronal network. Indeed, such simple 

metrics are extensively applied when MEAs recorded data are used for neuro-toxicology and neuro-

pharmacological studies97,98. In SPICODYN, I implemented several spiking and bursting statistics to 

characterize the dynamical features exhibited by the underlying neuronal networks.  

i) Spiking activity (Raster Plot) and spiking statistics: SPICODYN provides the computation of the 

single electrode’s firing rates (FR) and the overall network’s mean firing rate (MFR), as well as the 

evaluation of the number of “active” electrodes (i.e., with FR > FR_threshold_value). After the 

spiking statistics computation, the user can choose the requested time intervals to plot the raster plot 

trough the dedicated interface.  

ii) Inter Spike Interval (ISI): is defined as the time interval between consecutive spikes and it is a 

commonly used metric in the analysis of neuronal recordings. SPICODYN provides the network’s 

mean and relative standard deviation of ISI, and the ISI coefficient of variation (CV). It also provides 

the ISI histogram (ISIH) computation and plots for the whole set of electrodes. The latter is 

constructed evaluating the time (samples) intervals between every couple of consecutive spikes while 

binning at a user specified bin width: 

𝐼𝑆𝐼𝐻 (𝑏𝑖𝑛𝑘) =  ∑ [𝑘 − 1 ≤
(𝑡𝑖−𝑡𝑖−1)

𝑤
< 𝑘)]𝑖 , 𝑘 = 1, … , 𝑚;  𝑖 = (2, 𝑁)    (30) 
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where w is the bin width, k is the k-th bin index, m is the maximum bin number (user defined limit 

for the histogram plot), 𝑡𝑖 is the time (or timesamp) of occurrence of i-th spike, (𝑡𝑖 − 𝑡𝑖−1) is the ISI 

between spikes i and i-1, N is the total number of spikes on the entire set of electrodes. 

iii) Inter Burst Interval (IBI): is the time interval between two consecutive bursts (spike sequences). 

It is computed for the whole set of electrodes burst data spike evaluated during the burst detection 

procedure. The IBI Histogram (IBIH) is computed evaluating the time (samples) intervals between 

every couple of consecutive bursts while time binning at user specified bin width: 

𝐼𝐵𝐼𝐻 (𝑏𝑖𝑛𝑘) =  ∑ [𝑘 − 1 ≤
(𝑡𝑏𝑖−𝑡𝑏(𝑖−1))

𝑤
< 𝑘]𝑖 , 𝑘 = 1, … , 𝑚;  𝑖 = (2, 𝐵)    (31) 

where w is the bin width, k is the k-th bin index, m is the maximum bin number (user defined limit 

for the histogram plot), 𝑡𝑏𝑖 is the time of occurrence of burst bi (first spike of the sequence), (𝑡𝑏𝑖 −

𝑡𝑏(𝑖−1)) is the IBI between bursts i and (i-1), B is the total number of bursts on the entire set of 

electrodes. Indeed, network’s mean and standard deviation of the IBI is also provided. 

iv) Burst Duration (BD): is the sum of the ISIs of the sequence of consecutive spikes within the burst 

itself, i.e., the time interval between the first and the last spike in the spikes sequence. I applied an 

efficient strategy by storing only the first and last spike time stamps (and the number of spikes within 

the burst) allowing the computation of the BD as the difference between the two time stamps. The 

BD histogram (BDH) is constructed by summing the whole network’s total number of bursts 

durations at a user specified time bin: 

𝐵𝐷𝐻 (𝑏𝑖𝑛𝑘) = ∑ [𝑘 − 1 ≤
(𝑡𝑏𝑖,𝑛−𝑡𝑏𝑖0)

𝑤
< 𝑘)]𝑖 , 𝑘 = 1, … , 𝑚;  𝑖 = (2, 𝐵)    (32) 

where w is the bin width, k is the k’th bin index, m is the maximum bin number (user set limit for the 

histogram plot), 𝑡𝑏𝑖,0 is the time of occurrence of the first spike in burst bi (first spike of the sequence), 

𝑡𝑏𝑖,𝑛 is the time of occurrence of the last spike in burst bi, B is the total number of bursts on the entire 

set of electrodes. 

v) Bursting statistics: SPICODYN provides the computation of single electrode’s bursting rates (BR) 

and the overall network’s mean bursting rate (MBR). It also provides the calculation of the percentage 

of random spikes (that can be alternatively expressed as the complementary of the percentage of 

bursts related spikes99 for a single electrode and the entire network’s mean and standard deviation 

values). Random spikes are the spikes that are not involved in the sequences within the bursts. Finally, 

the percentage of bursting time (with related network’s mean value and standard deviation) is 
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provided. It is defined as the fraction of the recording length (for each electrode) in which bursts 

occur: 

%𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐿
∑ 𝐵𝐷𝑖𝑖

⁄ , 𝑖 = 1, … , 𝑛        (33) 

where L is the total recording’s length, n is the total number of electrode’s bursts, and 𝐵𝐷𝑖 is the i-th 

burst’s duration. 

Comparison with other software 

I performed a detailed comparison between SPICODYN and SpyCode based on the times needed to 

perform the most resources-requiring dynamics analysis operations, and the computation of a subset 

of the main spiking/bursting parameters. Table 1 summarizes the results in terms of the time needed 

to complete each of the main steps of the reported set of operations, on a 10-minutes recording of a 

mature cortical neuronal network coupled to a 60-electrodes MEA. The software run under Windows 

10 on 4 cores i7, 2.5 GHz, 16 GB of RAM and solid state disk. It is important to underline that while 

obtaining appreciably lower computational times, the results in terms of the produced output values 

of the procedures are identical compared to those obtained with SpyCode (some not significant 

differences emerged only due to some customized strategies that I applied in the spiking and bursting 

statistics computation). 

 

 

Table 1. Comparison of the SPICODYN and SpyCode computation times evaluated for the processing 

of a neural network coupled to a 60 microelectrodes MEA (from MCS). All the computational tests 

have been performed on a 4 cores i7 2.5 GhZ, 16 GB of RAM and solid state disk. 
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Spiking and connectivity analysis performed on HD-MEAs show fast computational time, considered 

the large amounts of calculations to be performed (Fig. 41). When considering spike detection (the 

most demanding computational task), SPICODYN requires about the same time that BrainWaveX 

software (3Brain) needs to run the same algorithm. 

 

Use of SPICODYN to process long-lasting recordings on MEA-4k 

In this section, I will report an example of SPICODYN’s application to cortex neural networks coupled 

to the MEA-4k. As Fig. 41 shows, the analysis is composed of a part related to the dynamics and one 

related to the evaluation of the topological properties of the network. The total time required to 

analyze both the spiking and bursting dynamics, as well as the functional-effective topological 

properties is 812 minutes. It is worth noticing that the dynamical characterization requires less than 

31 minutes: 30 minutes for the spike detection and 26 s to produce all the output (figures and text 

files). Most of the computational time is consumed by the functional-effective connectivity algorithm. 

However, it is worth to underline that it was necessary the computation of 170 TEs to cover a temporal 

window of 20 ms, while a single TE required only 4.5 minutes to be evaluated. Finally, the topological 

features extraction on the active electrodes (i.e. 1980 over 4096 electrodes) required only 95 seconds 

to be processed. 

Dynamic characterization 

SPICODYN is independent from the acquisition system used to acquire the electrophysiological data; 

according to this, it uses the HDF5 standardized input data format. The 3Brain acquisition system 

allows to directly export the raw data in HDF5 format online during the recordings. Once the HDF5 

files has been stored, the user can select the folder containing the raw data. In this way, SPICODYN 

permits to analyze in parallel all the experiments and phases contained in the input data folder. After 

reading the HDF5 files, the PTSD algorithm is used to spike detect the raw data. I report the results 

of a complete analysis for a neural network coupled to the MEA-4k. The mean MFR computed among 

all the active electrodes (1916 over 4096) was 0.55  1.63 spikes/s. Fig. 18A represents the ISIH, -

where it can be noticed that most of the ISIs are smaller than 15 ms with an exponential-like decay. 

Then, I performed a bursting analysis using the algorithm described in Burst Analysis. Bursting 

features are characterized by means of the IBIH (Fig. 18B) and the mean burst duration histogram 

(Fig. 18C). As the table of the panel of Fig. 18D shows, bursting activity presents a mean BD of 139 

 89 ms, a MBR of 1.74   3.31 bursts/s and a percentage of random spiking of 51.26   31.55 %. 
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Fig. 41| Schematic representation and relative computational times of the algorithm used to 

analyze 30 minutes of spontaneous activity recorded by high density MEA with 4096 

microelectrodes. All the computational tests have been performed on a 4 cores i7 2.5 GhZ, 16 GB 

of RAM and solid state disk. 

 

Connectivity Characterization  

The connectivity characterization is reported in section DTE application to experimental data.  
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Conclusion 
 

It is fundamental to elaborate research strategies aimed to a comprehensive structural description of 

neuronal interconnections as well as the networks’ elements forming the human connectome13. The 

connectome will significantly increase our understanding of how functional brain states emerge from 

their underlying structural substrate, and will provide new mechanistic insights into how brain 

function is affected if this structural substrate is disrupted. The final goal of a connectivity analysis is 

the reconstruction of the human connectome, thus, the application of statistical measures to the in 

vivo model in both physiological and pathological states. Since the system under study (i.e. brain 

areas, cell assemblies) is highly complex, to achieve the purpose described above, it is useful to adopt 

a reductionist approach. During my PhD work, I focused on a reduced and simplified model, 

represented by neural networks chronically coupled to MEAs. I developed and optimized statistical 

methods to infer functional connectivity from spike train data. In particular, I worked on correlation-

based methods: cross-correlation and partial correlation, and information-theory based methods: 

Transfer Entropy (TE) and Joint Entropy (JE). More in detail, my aim was to reconstruct the 

functional-effective connectivity, trying to establish a relationship between dynamics and 

connectivity, in order to understand if and in which way these parameters influence the topological 

(functional) organization of a neural network. This information could be very useful to help in 

understanding the mechanisms underlying the superior cognitive functions (e.g., learning, memory, 

movement) in both physiological and pathological states. In order to topologically characterize neural 

networks, it is important to use high resolution acquisition system, having few neurons (1-3) per 

electrode. Thus, my PhD’s aim has been applying functional connectivity methods to neural networks 

coupled to MEA-4K (3Brain APS with 4096 electrodes). To reliably reconstruct the functional 

topological organization of neural networks it is fundamental to detect and analyze both excitatory 

and inhibitory links. In fact, inhibitory links not only represent a consistent part of the total functional 

links (~ 25%5), but they can be fundamental in orchestrating the synchrony and shaping the 

connectivity66. No published work about functional-effective connectivity estimation on multiple 

neuronal spike trains provides a well-defined computational method to identify inhibitory 

connections. Starting from the standard definition of the cross-correlation37 (cf., Methods), I adopted 

the normalization approach described in36,52 to obtain the “raw” Normalized Cross-Correlation 

Histogram (NCCH). I formalized my hypothesis that, the extraction of negative peaks (rather than 

troughs) obtained through a simple filtering operation on the NCCH and followed by distinct 
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thresholding operations for excitatory and inhibitory connections, permits to identify a significant 

percentage of inhibitory connections with a high level of accuracy. In fact, theoretically, cross-

correlation is able to detect both an increase and a decrease of the synchrony between the spike trains 

relative to putative interconnected neurons. However, in real experimental data, the cross-

correlogram is very jagged making difficult the detection of small peaks and troughs, and, apart 

specific conditions (i.e., high and tonic firing rate)81 hindering the detection of inhibition. My 

approach has consisted in a simple post processing of the cross-correlation histogram, obtaining what 

I called Filtered and Normalized Cross-Correlation Histogram. The FNCCH was able to detect with 

very high precision both the excitatory and the inhibitory links in in silico neural networks. I applied 

the FNCCH algorithm to neural networks coupled to the MEA-4k, trying to extract the topological 

organization. I found that for cortical networks coupled to MEA-4k devices it is possible to see the 

emergence of a clear small-world (SW) topology. With the measurements performed with MEA-4k’s 

I can state that, both inhibitory and excitatory links with their small world index, SWI >>1 (9.2 ± 3.5 

for the inhibitory links and 5.2 ± 2 for the excitatory ones) contribute to ‘segregation’ with the 

emergence of small world networks. Moreover, inhibitory links, with their somehow longer 

connections, might contribute also to network ‘integration’ (i.e., communication among the SWs). 

Such a result confirms the importance to perform functional connectivity analysis using a method 

able to detect both excitatory and inhibitory links, above all when the final aim is to characterize the 

topology of a neural network. When analyzing similar cortical networks but coupled to the MEA-60 

devices, no SW topology is identified; such networks seem to be characterized by a sub-random 

topology with a SWI of 0.4 ± 0.1 for the excitatory and 0.2 ± 0.2 for the inhibitory links. These 

cortical networks are of the same type as the ones coupled to the MEA-4k (i.e., similar density of 

neurons, same age, same culture medium) and the apparent estimated random topology should be 

attributed to the low number of recording sites (i.e., 60 channels) that are not enough to reliably infer 

topological features (see section FNCCH results). Such a result confirms the importance to consider 

neural networks coupled to high resolution acquisition systems (MEA-4k). Both the results should be 

confirmed by applying the FNCCH algorithm to process more neural networks not only in 

physiological state, but also in a pathological state that could alter the topological organization. 

However, the use of MEA-4k produces a huge amount of data, requiring the development of ad-hoc 

computational efficient software platforms to process and analyze such data100. For this reason, I 

developed the software package SPICODYN, aiming to be a possible solution of the aforementioned 

big data problem, by introducing new software tools, independent from the acquisition systems, able 

to process in reasonable computational times, discrete time series coming from multi-site spike signal 

recordings. The philosophy under this project was to develop and share with the scientific community 
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an open source platform that allows performing spike analysis by including new tools, to enhance the 

repertoire of algorithms. The current version of SPICODYN embeds a collection of functions 

(correlation and information-theory based) to estimate functional-effective connectivity, part of 

which directly come from the software TOOLCONNECT
51, 

(https://www.nitrc.org/projects/toolconnect/). The connectivity analysis section has been revised and 

expanded introducing the implementation of a customized fully optimized version of the TE 

algorithm, tailored to be used on time stamps data extracted from multi-unit spike train recordings. 

In addition, SPICODYN implements an extension of the TE method to deal with multiple time delays 

(temporal extension) and with multiple binary pattern (high order extension), the FNCCH and the JE. 

Another feature of the developed software is the possibility to characterize the spiking and bursting 

dynamics, starting from raw data coming from different acquisition systems. By exploiting the fact 

that several commercial acquisition systems (e.g., 3Brain, Multi-Channel Systems) use the HDF5 file 

format for storing and managing data, I realized a tool that, starting from such metafiles, performs 

spike detection and then analysis of spiking and bursting activity. Nonetheless, also a specific analysis 

of the topological properties (i.e., connectivity properties) can be performed by exploiting the 

functional connectivity maps derived from the available algorithms for inferring functional-effective 

connectivity (e.g., cross-correlation, partial-correlation, joint entropy, transfer entropy). The current 

release of the software presents also two main limitations: the first one is the lack of algorithms to 

process the stimulus-evoked activity (e.g., Post-Stimulus Time Histogram, PSTH). The second one 

is that all the algorithms work only on spike trains data (i.e., point process).  On the other hand, it is 

worth underlining that most of the fundamental optimization strategies applied in the implementation 

of the connectivity algorithms are based on the use of spike trains data, and therefore applicable only 

because of working with this kind of input data. Finally, it is important to underline that SPICODYN 

is available to the scientific community and it has been programmed to be adapted, modified and 

extended by the interested researchers. 

 

 

 

 

 

 

 

 

https://www.nitrc.org/projects/toolconnect/
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Appendix 
 

Computational model 
I used computational model to assess the connectivity methods accuracies (cf., Fig. A1). The network 

model is made up of 1000 neurons randomly connected. The dynamics of each neuron is described 

by the Izhikevich equations101. In the actual model, two families of neurons have been taken into 

account: regular spiking and fast spiking neurons for excitatory and inhibitory populations, 

respectively.  The ratio of excitation and inhibition has been set to 4:1 as experimentally founded in 

cortical cultures5. In the model, each excitatory neuron receives 100 connections from excitatory 

and/or inhibitory neurons, while each inhibitory neuron receives 100 input only from excitatory 

neurons). Autapses are not allowed. All the inhibitory connections introduce a delay equal to 1 ms, 

while excitatory ones range from 1 to 20 ms. Synaptic weights are extracted from a Gaussian 

distribution with mean equal to 6 and -5 for excitatory and inhibitory weights. Standard deviations 

have been set to 1. Excitatory weights evolve following the spike timing dependent plasticity (STDP) 

rule with a time constant equal to 20 ms102. The spontaneous activity of the neuronal network has 

been generated by stimulating a randomly chosen neuron at each time stamp injecting a current pulse 

extracted from a normal distribution (Istm,exc = 11  2; Istm,inh = 7  2). The network model has been 

implemented in Matlab (The Mathworks, Natick, MA, USA), and each run simulates 1 hour of 

spontaneous activity. 
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Fig. A1| Computational model features and simulation results. (A), electrophysiological patterns 

of excitatory (top) and inhibitory (bottom) neurons. (B), excitatory synaptic weights distribution at t 

= 0 (left side) and at the end of the simulation (right side). (C), sketch of the permitted connections 

among the excitatory and inhibitory populations. (D), MFR distributions. (E), IBI distributions.  
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