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Abstract

Many tasks in daily life involve coordinating movements between two or more individuals.
A couple of dancers, a team of players, two workers carrying a load or a therapist interacting
with a patient are just a few examples. Acting in collaboration or joint action is a crucial
human ability, and our sensorimotor system is shaped to support this capability efficiently.
When two partners have different goals but may benefit from collaborating, they face the
challenge of negotiating a joint strategy. To do this, first and foremost both subjects need to
know their partner’s state and current strategy. It is unclear how the collaboration would be
affected if information about the partner is unreliable or incomplete. This work intends to
investigate the development of collaborative strategies in joint action. To this purpose, I devel-
oped a dedicated experimental apparatus and task. I also developed a general computational
framework – based on differential game theory – for the description and implementation of
interactive behaviours of two subjects performing a joint motor task. The model allows to
simulate any joint sensorimotor action in which the joint dynamics can be represented as
a linear dynamical system and each agent’s task is formulated in terms of a quadratic cost
functional. The model also accounts for imperfect information about dyad dynamics and
partner’s actions, and can predict the development of joint action through repeated perfor-
mance. A first experimental study, focused on how the development of joint action is affected
by incomplete and unreliable information. We found that information about the partner not
only affects the speed at which a collaborative strategy is achieved (less information, slower
learning) but also optimality of the collaboration. In particular, when information about the
partner is reduced, the learned strategy is characterised by the development of alternating
patterns of leader-follower roles, whereas greater information leads to a more synchronous
behaviour. Simulations with a computational model based on game theory suggest that
synchronous behaviours are close to optimal in a game theoretic sense (Nash equilibrium).
The emergence of roles is a compensation strategy which minimises the need to estimate
partner’s intentions and is, therefore, more robust to incomplete information. A second
study addresses how physical interaction develops between adults with Autism spectrum
disorder (ASD) and typically developing subjects. ASD remains mostly a mystery and has
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therefore generated some theories trying to explain their cognitive disabilities, which involve
an impaired ability to interact with other human partners. Although preliminary due to the
small number of subjects, our results suggest that ASD subjects display heterogeneity in
establishing a collaboration, which can be only partly explained with their ability to perceive
haptic force. This work is a first attempt to establish a sensorimotor theory of joint action.
It may provide new insights into the development of robots that are capable of establishing
optimal collaborations with human partners, for instance in the context of robot-assisted
rehabilitation.
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Chapter 1

Introduction

At every crossway on the road that leads

to the future, each progressive spirit is

opposed by a thousand men appointed to

guard the past.

Maurice Maeterlinck

1.1 Motivation

Many of our everyday behaviours take place in social settings and are coordinated with
behaviours of others. Even seemingly simple interactions, like a pair of workers sawing
timber with synchronised back and forth movements, a couple executing complex steps in a
dance floor, two children playing badminton or a therapist giving physical therapy to a patient
– see Figure 1.1, require that two individual minds are connected and their bodies coordinated
(Sebanz et al., 2006). Thus joint sensorimotor interaction is the vital aspect of our day to
day life. The characteristic feature of such interactions is that the subjects influence each
others behaviour through coupled sensorimotor exchange with continuous action spaces over
repeated trials or continuously in time.

Many of those interactions require active coordination, which is manifested by physical
and cognitive responses related to explicit knowledge of an interacting partner. Let us
consider another example: while walking through a corridor, someone is coming towards
us; there are two feasible options in this classic game knows as "choosing sides": we could
move right while the other person passes on the left or vice versa. Importantly, each of the
two scenarios requires that our choices are mutually consistent. In our everyday life, we
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Figure 1.1 Examples of human-human sensorimotor interactions in everyday life

usually tackle this decision-making situations and we master it, sometimes with awkward
readjustments.

The theory of strategic interaction or, game theory, is closely tied to decision theory. In
fact, the former can be viewed as the natural extension of the latter. Game theory can offer
insights into situations in which two or more interacting players choose actions that jointly
affect the payoff of each of them. Despite the importance of joint sensorimotor interactions,
there has been limited use of game theoretic models to study it. This limited contact is
probably due to the lack of experimental paradigms.

The overall goal of my research is to understand the mechanisms underlying adaptation
and negotiation of collaborative strategies in tasks involving sensorimotor joint action. These
mechanisms may give insights into the study of patient-therapist interactions in neuro-
rehabilitation settings. These insights could be translated into the design and use of better
robotic interfaces that could facilitate patient recovery. Secondly the mechanisms underlying
sensorimotor collaboration may be altered in persons with Autism Spectrum Disorders (ASD)
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and may be the basis of their deficits in motor control, social interaction, imitation etc. The
mechanisms of sensorimotor interaction between two humans are currently little understood
and are the basis for the development of collaborative strategies that are common in everyday
life. I plan to investigate these issues from both experimental and modelling points of view,
by looking at the optimality criteria predicted by Game Theory.

1.2 Objectives

Objective 1: To investigate sensorimotor joint action in dyads of healthy
individuals

I will address how negotiating a collaboration is affected by amount and quality of information
about the partner. I will introduce a novel experimental paradigm, based on dual haptic
interface that enables investigation of situations in which the subjects have different (and
partly conflicting) goals. To establish a collaboration, each subject may need to develop
an internal representation of his/her partner’s current state and his/her partner’s goals (or
intention). Alternatively, to establish a collaboration, each subject may not require to develop
specific knowledge about his/her partner. In the interaction experiments, I will also study
whether the emerging collaborative strategies lead to specialised behaviours (‘roles’). I will
finally look at their evolution within and across trials.

Objective 2: To develop game-theoretic models to predict interaction
strategies in sensorimotor joint action

I will use mathematical modelling to study optimality in interaction. I will develop a
modelling framework based on optimal control and differential game theory to understand the
extent to which the collaborative strategies are ‘optimal’. As a step towards reasoning over the
learning pattern of patient in a rehabilitation setting, I will then propose a learning algorithm
based on fictitious play, a game theory-based learning rule which can be implemented in
robot interfaces for rehabilitation.
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Objective 3: To investigate sensorimotor joint action in persons with
Autism Spectrum Disorders (ASD)

I will study how negotiation of collaboration is evolved in sensorimotor joint action between
persons with ASD and typically developing (TD) or neurotypical individuals. In persons
with ASD, I will focus in particular on the evolution of internal representations of partner
(partner state, partner intentions).

1.3 Thesis outline

In summary, the work presented in this thesis investigates the question of how collabora-
tive strategies are evolving in partly conflicting sensorimotor joint tasks, both in healthy
individuals and adolescents with ASD.

The thesis is organised into three parts.
Part I (Background) comprises Chapters 2-4 which contain a review of relevant literature,

with emphasis on cognitive and motor control research in sensorimotor joint action (Chapter
2), sensorimotor research on Autism spectrum disorders (Chapter 3), and game theory and
learning in games (Chapter 4).

Part II (Methods) includes Chapters 5 and 6 . Chapter 5 describes a simple yet versatile
experimental set-up that was used to perform psychophysical experiments and investigate the
mechanisms of sensorimotor joint action. It also describes a task which will serve as basis
for all subsequent experimental work. Chapter 6 describes a novel modelling framework,
based on optimal control and differential game theory, and reports on the model predictions
in the context of the task described in the previous Chapter.

Part III (Results) includes Chapters 7 and 8. Both are designed to be self-contained, with
an Introduction and problem definition section, and a Discussion/Conclusion section at the
end. Chapter 7 investigates how information about the partner affects the development of
collaborative strategies in sensorimotor joint action. Chapter 8 addresses how sensorimotor
joint action is modified in persons with ASD.

Last, Chapter 9 summarises the contribution of the thesis and discusses about possible
future directions.



Part I

Background



Chapter 2

Human-human sensorimotor interaction

Nature uses only the longest threads to

weave her patterns, so that each small

piece of her fabric reveals the

organization of the entire tapestry.

Richard Feynman

2.1 Introduction

Human-human sensorimotor interaction occurs between two persons (a ‘dyad’) working
towards a common motor goal, such as moving a table together or dancing with a partner.
While this is a relatively novel field of research, a number of studies have investigated whether
dyads perform better than individuals in motor tasks, and if mutual haptic feedback improves
dyadic performance with respect to other forms of feedback. Moreover, these studies have
raised the question of whether the interaction forces between agents in the presence of a
physical coupling can be considered as a form of implicit communication.

The next few sections review the relevant literature with regard to few aspects of human-
human sensorimotor joint action. We begin by reviewing proposed taxonomies of joint
motor action. We then examine a few aspects of the literature, analysing the principles of
sensorimotor joint action that have been elucidated to date, and the experimental paradigms
and metrics used in their identification.
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2.2 Taxonomies of joint motor action

Different forms of motor interaction can be identified when looking at the nature of the
effort and error terms in the utility function that describes the nature of the task and as
well as combination of each agent’s behaviour. They were fit into three main categories:
collaboration, cooperation and competition (Jarrassé et al., 2012; Sawers and Ting, 2014).
During collaborative and cooperative interactions, each agent considers their own effort and
error as well as their partner’s, that makes them capable to work together to find a mutual
beneficial factor to complete a task. In contrast, during competition both agents consider
their own effort and error (Jarrassé et al., 2012). Such form of interactions emerges typically
during antagonistic tasks, for example in in sports such as wrestling, where the gain of one
agents resulted in the loss of the other subject.

Collaborative and competitive interactions can be again divided based on how roles
are assigned to each agents and how they impact their contribution to the interaction. In
cooperative interactions, roles are assigned a priori to each agent. These assigned roles are
maintained throughout the execution of the task. This leads to asymmetric interests between
the agents such that while both are working towards the same goal, they are doing it so by
executing different parts of the same task. In contrast, during collaborative interactions there
is no such prior role assignment. Roles are followed in a spontaneous manner and subject to
change. This creates an equal distribution of work between agents (Jarrassé et al., 2012).

2.3 Role assignment in joint motor action

Several studies on joint action address the emergence of asymmetric behaviour due to
multiple role switching in joint task (Melendez-Calderon et al., 2011; Reed et al., 2007, 2006;
Reed and Peshkin, 2008; Stefanov et al., 2009). Few studies predominantly focused on task
where participants have fixed assigned roles (Ikeura and Inooka, 1995; Ikeura et al., 1997).
Reed et al. (2006) conducted experiments to study joint action in which two partners are
in continous physical interaction. The subject pair (dyad) was connected by a two-handled
crank which is mounted on a controlled direct drive motor. This mechanism can measure and
interact with a circular movement common to both subjects. Also this can measure if the
applied force measured at each handle signifies the interaction strategies. They demonstrated
that subjects perform task faster when connected than alone; see Figure 2.1.

In a different study, Reed and Peshkin (2008) suggest that some dyads develop a special-
ized strategy, in which one of the two partners is master in the first part of the movement
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Figure 2.1 Target reaching with a two-handled crank. Reaching is consistently faster in
dyads than in solo performance. From Reed et al. (2006)
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while the other one lets you drive, and then the roles are exchanged in the last one part of the
action; see Figure 2.2. In a later study, Reed et al. (2007) implemented a simple model on a
robot. They performed a haptic Turing test in which human subjects interacted with a robot.
Subjects could not tell whether their partner was a human or a robot, but did not develop the
type of role specialisation which was observed in human-human interaction. This suggested
that human-human physical interaction is characterised by a very subtle negotiation among
partners.

Reed’s findings on evolving specialisation strategies in joint action were further studied by
Groten et al. (2009), who showed that users prefer a dominance difference among interacting
partners in contrast to equally shared control. In this context, here dominance refers to the
actual success of influence or control over another and therefore reflects the individual share
of the overall share to task success. Stefanov et al. (2009) studied joint interaction during a
tracking task and they defined the interaction modality as a tri-state logic composed of two
roles and one "no role" condition based on the signs of the interaction velocity, acceleration
and force. A role assignment similar to a leader-follower combination involves a conductor-
executor strategy. A "conductor" decides what the interacting system should do and express
his intention through haptic signal and an "executor" executes the action as determined the
conductor. This approach for role determination can be applied to many applications. For
example in the analysis of human behaviour in a collaborative task: as the mechanical work
distributed among the partners we can calculate contribution of each of them to the total
transition work of that certain task.

Melendez-Calderon et al. (2011) studied control of impedance by subjects in a dyad,
which is important to maintain stability and robust response to perturbation during interaction
in joint action. They estimated joint torque and muscle activation and thereby identified
various interaction strategies.

In most of the above-mentioned cases, role specialisation has been noticed, because the
participant was not assigned roles a priori. Therefore one has questioned how and why do
these specialised roles develop. It is possible that their emergence is due to differences in
reaction time, skill level between agents or strength. Masumoto and Inui (2014) studied a
leader-follower relationship in a joint action performed by dyad with different skill levels.
In this task, participants sat on chairs opposite ends of a table facing the load cell based
experiment set up and monitor. They could not see each other’s action, and they were
instructed not to communicate verbally with each other.In the task, they have to produce
discrete isometric forces such that the sum of the forces generated by the right index fingers
of the two participants was the target peak force of 10% maximum voluntary contraction.
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Figure 2.2 Emergence of roles in dyad reaching with a two-handled crank. Top: experi-
mental apparatus. Middle and Bottom: In an active/inert dyad (left) one agent is active, the
other agent is passive. In a specialized dyad (right), one agent accelerates, the other agent
decelerates. From Reed and Peshkin (2008)
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The task did not prescribe share force or onset time each participant contributed to the target
force. In their novice-novice dyad group, novices with low force variability did to produce an
earlier force than those with higher force variability. In the second group, novice-experienced
group, experienced participants produced an earlier force than that of the novice. In both
group they tend to produce the force complimentary with the training, practice had no effect
on the leader-follower relationship. This suggests that leader-follower relations be not always
beneficial to the performance in a task (Masumoto and Inui, 2014).

2.4 Joint motor action improves task performance

Prior studies have suggested that haptic interaction forces create a communication channel
between partners in a dyad (Ganesh et al., 2014; Melendez-Calderon et al., 2015; Reed
et al., 2006; van der Wel et al., 2011). Additional studies have reported that haptically linked
dyads can perform collaborative sensorimotor tasks better and faster than either members
of the dyad alone, in visuomotor (van der Wel et al., 2011), reaching (Reed et al., 2006),
tracking (Ganesh et al., 2014), or in isometric force production tasks (Masumoto and Inui,
2013). Notwithstanding this improvement in performance, communication through haptic
interaction is typically perceived as an interference by individual members of dyad compared
to their solo performance (Reed et al., 2006).

Bahrami et al. (2010) developed an experimental paradigm for examining joint perceptual
decision-making. They specifically addressed the question: Would two people be able to
integrate their perceptual information to optimise their decisions? In other words, would two
heads be better than one, and in particular, better than the best individual performance in a
pair? They found that when two people were given a chance to communicate freely about
their level of confidence on a trial-by-trial basis, two heads became better than one.

Few studies have addressed whether interacting with a partner facilitates joint motor
action (Ganesh et al., 2014; Masumoto and Inui, 2013).

Masumoto and Inui (2013) studied how two coordination strategies simultaneously
facilitate joint action performed by two people. Their study examined the complementary
strategies in joint action using an isometric force production task such that the sum of the
forces produced by two partners was the target force. They used an experimental apparatus
consisting of two load cells and monitors – see Figure 2.3.a. Participants were seated
opposite to each other facing the load cell and monitor. The study consisted of a ‘solo’
condition, performed by one participant, and a set of dual conditions, performed jointly by
two participants. In the dual conditions, the sum of the forces produced by two partners had
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to equal a target peak force of 10% MVC or a target valley force of 5% MVC – see Figure
2.3.b – under four conditions (total-force, both-forces, partner-forces and no-feedback) – see
Figure 2.3.c. The total-force condition displayed the target forces for the dyad and a sum
of the forces produced by the two partners. The both-force condition displayed the force
outputs produced by the two partners separately and their personal targets. The partner-
force condition displayed only a partner’s force output and his target on a monitor and the
no-feedback condition removed any visual information from the monitor. Under these four
conditions, the participants were instructed to synchronise their force production with their
partner’s. Both of them were instructed not to verbally communicate to each other.

They found that the two participants produced complementary forces when the total force
was visible (indicated by a negative correlation between forces in the total force condition,
Figure 2.3.e). This suggested that two participants simultaneously adopted both synchronous
and complementary strategies exclusively when the total force was visible. Their results
indicated that joint action helps to control force more accurately than the individual action.
In a later study Masumoto and Inui (2014), examined effects of a leader-follower strategy
on a joint action employing novice and experienced participants, described in the previous
section.

Ganesh et al. (2014) developed an experimental paradigm shown in Figure 2.4, consisting
of a pair of robots through which the dyad is physically connected through a compliant
virtual spring. In this way, they could specifically investigate how the interaction forces of
partners can mutually induce adaptation in their motor responses. Each subject of the pair
holds one of the two robotic interfaces and receives visual feedback of the position of own
hand, represented by a cursor on a screen. They were not allowed to see (the movements of)
their arm, which moves on a plane hidden by a panel.

They demonstrated that a physical connection between subjects learning a motor task –
visual tracking of a moving target – consistently improves their performance, regardless of
their partner’s performance – Figure 2.4.b, black trace in Figure 2.5. Moreover, an intermittent
connection between the subjects enabled them to learn the task better than subjects who did
the task alone for the same duration. In another study van der Wel et al. (2011) demonstrated
that subject pairs in a dyad amplify their interaction forces to create a communication channel
with their partner. Ganesh et al. (2014) then showed that improvements in interaction task
depend not only on their partner’s performance but also on the nature of the interacting
partner. In their control experiments made it evident that the performance improvement is
more prominent when partners are similar, such that interaction with a non-human agent is
less beneficial than with a human, and interaction with a peer with similar skill or less skill
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Figure 2.3 Isometric joint force production task.(a), Experiment setup. (b), Definition
and measurement of dependent variables. (c), Displays under 4 conditions. (d), Distribution
of forces produced by 10 dyads under four conditons. (e), Mean correlation coefficiant
between forces produced by 2 participants under four conditons; from Masumoto and Inui
(2013)

level is more beneficial than with an expert. This is confirmed by a more recent study by
Avila Mireles et al. (2017). It has been suggested that improvements in performance are due
to the fact that in a dyad, individuals have fewer actions to deal with, allowing them to each
focus on a subset of actions (Knoblich and Jordan, 2003).

How is information being shared between haptically interacting partners? Takagi et al.
(2017) proposed a model in which the haptic information provided by touch and propriocep-
tion enables individuals to estimate their partner’s movements goal and use it to improve their
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Figure 2.4 Benefits due to interpersonal interaction in a motor task. (a), Setup: The
figure shows a cartoon of the setup used for the experiment. (b), Improvement of the
performance of both partners during the interaction. (c), Learning during the interaction;
from Ganesh et al. (2014)

Figure 2.5 Influence of interaction characteristics. From Ganesh et al. (2014)
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own performance. They focussed on the same task as in (Ganesh et al., 2014), consisting
of a sensorimotor estimation problem. Their ‘interpersonal goal integration’ model (Takagi
et al., 2017) is computed as an optimally weighted combination of the estimated partner’s
target, and their own estimate. This ‘interpersonal goal integration’ model outperformed
and explained the experimental results better than other models of interaction proposed in
the literature. To experimentally verify the model, Takagi et al. (2017) embodied it into a
robot and reported that it induces the same improvements in motor performance in human
individuals as those found while interacting with a human partner.

2.5 Sensorimotor interactions as games

Game theory has been used to understand complex decision-making in joint interactions. An
overview of game theory is provided in Chapter 4. Here we review experimental studies on
joint action which rely on concepts of game theory.

Game theory-based models have been used to understand the decision-making aspects
of sensorimotor interactions between self-interested players who aim at optimizing a motor
effort (Braun et al., 2009, 2011). Braun et al. (2009) investigated sensorimotor interactions in
the realms of the theory of dynamic games where players are continuously interacting over a
sequence of time steps. They developed an experimental paradigm in which two subjects sat
next to each other and hold handles of separate robot interfaces that were free to move in
horizontal plane – see Figure 2.6. The robots were coupled by a simulated virtual spring, so
that each player experienced a different force that depends on both players’ movement.

The player-specific payoff matrix of a discrete game can be encoded as a position-
dependent force field, so that payoff is associated to motor effort. Using this paradigm, Braun
et al. (2009) developed motor versions of two classical games, the prisoner’s dilemma and
rope pulling – see Figure 2.6. In both games, the force field encoded the rewards or costs of
the different strategies.

They specifically addressed the question of whether human sensorimotor interactions in
such motor games can be interpreted as optimal strategies in a game-theoretic sense.

The prisoner’s dilemma game is described in detail in Chapter 4. In short, there are two
prisoners in a jail. Each has the option of cooperating (staying silent) or defeating (betraying
their partner). If they both cooperate, they each serve 3 years. If one defeats, he goes free but
his partner serves 10 years. Finally, if they both defeat they both serve 7 years. If the two
prisoners could agree on a common strategy (cooperative behaviour), their optimal strategy
would be to both stay silent. Consider however what happens if they cannot communicate –
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Figure 2.6 Nash equilibria in motor games. (a), Prisoner’s dilemma motor game. (b),
temporal evolution of game solutions in the prisoner’s dilemma.(c), Rope-pulling game. A
mass is pulled by two players. The arrow shows the direction of force for players for Nash
and cooperative solutions. From Braun et al. (2009)
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and therefore they don’t know what their inmate will do. If they both defeat (betray), they
both get 7 years. If one decides unilaterally to remain silent, he may get 10 years. Therefore,
he is better off to betray. Same for the other partner. Therefore, the optimal strategy is
to both betray. This non-cooperative optimal strategy is called a Nash equilibrium. The
experiment involved a two-player and a ‘solo’ condition, in which one subject grasped the
two robots with both hands – see Figure2.6,a. They found that in the bimanual condition
subjects converged to the cooperative solution. In the two-subjects condition, they converged
to the Nash equilibrium – see Figure2.6, b.

In the rope pulling game – see Figure2.6 c – two players pull a rope to move a mass on a
plane. However, each player has access to visual feedback on either X or Y direction alone.
The goal for both is to reach a visual target. In this case, the cooperative solution is that the
two players move toward the spatial target in the XY plane. The non-cooperative solution
is that each player only moves in the direction for which he has visual feedback, keeping
the other to 0. Again, Braun et al. (2009) found that the cooperative solution is preferred in
bimanual mode whereas the non-cooperative solution is preferred in the two-player mode.

In a later study Braun et al. (2011), studied motor versions of coordination games, each
involving multiple Nash equilibria. They exposed subject pairs to four different classical
coordination games: choosing sides, stag hunt, chicken and battle of sexes – see Chapter
4 for detailed descriptions of these games. Like the previous study, they used a two-robot
apparatus and the for each game the payoff matrix was encoded into a position-dependent
force field. They found that players could adapt single movement trials to converge into Nash
equilibrium strategies even when the interaction force encoded multiple equilibria.

Overall, these results show that dyads typically converge to optimal non-cooperative
strategies (Nash equilibria). However, these tasks put more emphasis on strategic decision-
making than sensorimotor control – the movement end position was taken as the decision
outcome.

Grau-Moya et al. (2013) studied a decision-making model that forms beliefs about
the other player’s strategy and its effect of uncertainty on cooperation in a stag hunt-like
sensorimotor interaction. They adopted a learning model based on fictitious play – see
Chapter 4. Their key idea is that if a decision maker does not fully trust the model, he will
biase his estimates by taking his utility function into account. If he is extremely pessimistic
and cautious, he will dismiss the model and assume a worst case scenario. On the other hand
if he fully trusts the model, he will end up picking up the strategy with highest utility. But a
risk averse decision maker will always compromise between two extremes. Grau-Moya et al.
(2013) manipulated the risk sensitivity of the virtual player, and found that humans adapted
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their behaviours accordingly – by changing the amount of their cooperation. These results
suggest that the players develop predictions of their partner’s habits. Uncertainty about the
partner also plays a role in forming decisions.

In a similar direction, Li et al. (2015) employed game theory to analyse human-robot
interactive behaviours. They proposed an adaptation law to achieve a human–robot coordina-
tion that automatically adjusts the role of the robot, according to the measured interaction
force.

2.6 Cognitive influences during joint motor action

Several studies have addressed the influence of social factors in joint motor action. Shergill
et al. (2003) investigated the basis of the force escalation process. Force escalation typically
involves an antagonist type of interaction, in which the latter increases intensity over time.
Sometimes it arises spontaneously as a result of an interactive pattern. In Shergill et al.
(2003)’s example, the interaction is quite minimal and involves subjects applying a downward
force with a finger on the other one’s hand. This procedure is then repeated, alternating
roles. Subjects are instructed to apply the same force as the perceived force applied to
them. As the turns alternate, the absolute amount of force escalates. This suggests that
subjects tend to underestimate the force they apply in an interaction, self-generated force is
perceived as weaker than externally applied force and they compensate by increasing force
in the next round, resulting in escalation. Simple as this explanation is, it provides a good
model for more general situations. As escalation can originate unintentionally by a reciprocal
configuration in which a perceived mismatch between one’s own ‘moves’ and those that
we are subject to by external action and somehow this is undesirable in joint motor action
experiments.

Recently, Takagi et al. (2016a) studied the influence of social factors involved in facing a
partner in the sensorimotor joint action. Similar to Shergill et al. (2003), they asked subjects
in a dyad to exchange forces. Their experiment involved two configurations, one where
partners were separated by a curtain and another where they seated face to face, and their
goal was to reproduce the partner’s force accurately. They found the partner’s gaze caused
significant changes in behaviour so that separated and face-to-face pairs behave differently.
However, the social factors influence face-to-face exchange of forces are still unknown. They
suggest studies on sensorimotor joint action should take such social influences into account.
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2.7 Conclusions

This brief overview of joint sensorimotor action emphasizes a few aspects: (i) interaction
implies an exchange of information among partners in a dyad; (ii) interaction involves
learning which, at least to some extent, may transfer to ‘solo’ performance. Like many
forms of interaction, sensorimotor joint action may benefit from analytical frameworks, like
game theory, which are based on economic concepts – i.e., costs, benefits, and effort. These
concepts are increasingly used to interpret human behaviour, in particular decision-making
(Glimcher, 2003; Glimcher and Fehr, 2013). In the case of neural control of movement,
optimal control theories (Todorov and Jordan, 2002) may be seen as instances of this approach.
Some authors (Jarrassé et al., 2012) have suggested to use differential game theory – a natural
extension of optimal control – to develop a taxonomy of joint sensorimotor action, but this
approach has never been used systematically in conjunction with empirical studies. This is
the main goal of this thesis work.



Chapter 3

Sensorimotor symptoms in persons with
Autism Spectrum Disorder

Imagination is everything. It is the

preview of life’s coming attractions

Albert Einstein

3.1 Introduction

Autism Spectrum Disorder (ASD) is a range of conditions characterised by deficits in
communication and social skills and repetitive and stereotyped patterns of behaviour and
interest (American Psychiatric Association, 2013). Though early intervention has a dramatic
impact on reducing symptoms and in increasing the ability of the child to mature and learn
new abilities, it is estimated that only 50% of children affected by ASD receive a diagnosis
before starting the primary school.

The impaired communication and social skills that so greatly impact the daily lives of
those with ASD depend on the motor system, which allows individuals to map the movements,
body language and expressions of others onto themselves, and to experience the intentions of
others, known as Theory of Mind (Baron-Cohen et al., 1985; Gallese et al., 2004; Iacoboni,
2009; Larson et al., 2008a). Although sensorimotor control is not included in the diagnostic
criteria for ASD, many studies have identified a number of motor abnormalities in individuals
with autism (Dowell et al., 2009; Ego et al., 2016; Gowen and Hamilton, 2013; Jansiewicz
et al., 2006; Mostofsky et al., 2006).
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Understanding impaired motor control and motor learning in persons with ASD may
offer insight and a potential understanding of the difficulties these children face in developing
the higher-order skills that govern social interaction, communication, and cognition.

3.2 Sensorimotor control and motor learning

Due to the broad spectrum of cognitive impairments in persons with ASD, it is not surprising
that their observed motor deficits are equally variable. Individuals with ASD repeatedly score
low in a generalised set of motor assessments that measures timed movements, balance, gait
(Dowell et al., 2009; Dziuk et al., 2007; Jansiewicz et al., 2006; MacNeil and Mostofsky,
2012). Also, they often show an impaired ability to accurately make and imitate gestures,
specifically if they are either involving tool use or have a social significance (e.g., waving
hand). This is usually referred as dyspraxia (Boria et al., 2009; MacNeil and Mostofsky,
2012; Mostofsky et al., 2006). Also, children with ASD are not only impaired in their ability
to perform these skilled gestures, but also in representational or postural awareness of these
movements, when performed by others (Dowell et al., 2009). Though overall assessments
consistently point at a motor impairment, there is no specific or signature motor deficit for
ASD. The above studies report a variety of motor impairments which do not fit into any
precise, clinical classification and validation.

Due to the developmental nature of ASD, these deficits may begin with error-based
learning, rooted in an unusual mechanism for motor adaptation, and an ineffectiveness to
learn how to make movements without error. Proprioception and vision are the two sensory
modalities that primarily drive error-based motor learning. As with studies of motor control,
individuals with ASD show a broad range of sensorimotor abnormalities. In fact, hypo-
reactivity to sensory inputs has been added to DSM-V as part of the diagnostic criteria for
autism (American Psychiatric Association, 2013).

Vision-related problems have been demonstrated in several contexts. For instance,
individuals with ASD exhibited low performance on a visual-temporal integration tasks
(Nakano et al., 2010) and, according to surveys with parents, children with ASD tend to
either avoid or seek out visual input (Leekam et al., 2007). With regard to the visual aspects
of movement, hypo-reactivity to visual feedback has been manifested as an impairment in
recognising biological motion (Cook et al., 2009) and in the recognition and response to
visual chains of action (Cattaneo et al., 2007). Taken together, these findings suggest that
persons with ASD exhibit an inability to properly process and utilise visual information,
especially with regard to movement.
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In contrast, studies on the proprioceptive and haptic responses in ASD seem to suggest an
overall hypersensitivity. Individuals with ASD are better at haptic-to-visual shape matching
(Nakano et al., 2012) and have a lower threshold for high frequency vibro-tactile stimulus
detection (Blakemore et al., 2006).

These symptoms are unlikely due to peripheral deficits, as individuals with ASD show
normal proprioceptive (Fuentes et al., 2011) and visual acuity (Tavassoli et al., 2011). Rather,
they suggest that sensory abnormalities in ASD may arise from differences in the central
integration of sensory information.

A number of studies (Haswell et al., 2009; Izawa et al., 2012) – see Figure 3.1 – show
evidence of how sensory processing may impact motor learning in children with ASD.
Haswell et al. (2009) specifically measured the generalisation patterns in children who
learned to control a new tool to quantify the representation of internal models within the
brain. In these studies, children experienced velocity-dependent force field perturbations
while reaching a target on the left workspace and they were required to learn to compensate
for it. They were then asked to make moves to two additional targets on the right workspace.
The targets were defined either in extrinsic coordinates – i.e. they were visually matched
with the learned targets, but required a different arm configuration to complete the movement
– or in intrinsic coordinates – they proprioceptively matched the learned target, i.e. they
required the same joint rotations for movement, but were visually different from the initial
learned target. The children compensated for the perturbation when reaching to targets in
both intrinsic and extrinsic coordinates, or in other words, they generalised their learning,
even though they had never experienced a perturbation when reaching to these two additional
targets. Interestingly, children with ASD showed normal performance at the learned target,
but significantly greater generalisation to the target in the extrinsic coordinate, suggesting
a greater reliance on proprioceptive feedback during learning (Haswell et al., 2009). A
follow-up study from the same group (Izawa et al., 2012) confirmed this finding with a larger
group of subjects, which also included subjects with attention deficit-hyperactivity disorder
(ADHD), and confirmed that the observation is specific to ASD.

3.3 Action and intention understanding

Our daily social life is based on our capacity to understand the behaviour of others. How
do we understand the goal of our partner by looking at their actions? Humans and monkeys
possess a dedicated neuronal network – the mirror neuron system – which maps visual
descriptions of actions by others onto their own motor representations of the same actions
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Figure 3.1 Learning and generalisation of an internal model in typically developing
children and children with ASD. (a), Scheme of the motor task. (b), Movement trajectories
in baseline and last training phase. (c), Lateral deviation of movements during the three
phases of the task. (d,e), Percentage of force perturbation compensated in training and
generalisation trials. Typically developing children are shown in blue, ASD children are
shown in red. From (Haswell et al., 2009)
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(Rizzolatti and Craighero, 2004). Besides this role in action understanding, the mirror neuron
system is believed to mediate imitation (Bird et al., 2007; Iacoboni et al., 1999; Rizzolatti
and Craighero, 2004), understanding intentions of others (Iacoboni et al., 2005), and emotion
recognition (Gallese et al., 2004).

The mirror neuron system encodes the goal of motor acts. Hamilton and Grafton (2006)
used a trial-by-trial adaptation technique, where participants observed a couple of video-clips
showing goal-directed motion actions in which some of the goals were novel and others
were repetitions from previously observed movements. Repeated display of the same goal
triggered a response in the left intra-parietal sulcus. Interestingly, this region was not sensitive
to the trajectory of the subject’s hand.

A number of typical ASD symptoms (impairment in language, communication, and the
capacity to understand others) appears to involve functions mediated by the mirror neuron
mechanism. The ’broken mirror’ hypothesis states that this specific set of deficits might
relate to the impairment of the mirror neuron mechanism (Ramachandran and Oberman,
2006; Williams et al., 2001). Evidences from imaging, EEG, and TMS studies supports
this hypothesis (Cattaneo et al., 2007; Dapretto et al., 2006). A strong evidence came from
(Dapretto et al., 2006). They studied children with high-functioning autism who were MR-
scanned while observing and imitating emotional expressions. Children with autism showed
weaker activation of mirror neuron areas in the brain than typically developing (TD) children.
Interestingly the activation was inversely proportional to symptom severity. However, a few
behavioural studies (Bird et al., 2007; Hamilton et al., 2007) do not support the broken mirror
hypothesis as they reported that subjects with ASD do not present deficits in understanding
goal of motor actions by others.

In a set of neurophysiological studies, Fogassi et al. (2005) investigated the neuronal
mechanisms through which a person understands his/her partner’s intention. They found
that for a chain of motor actions, the mirror neuron system involves a neural population,
in which each neuron encodes a specific sequence of motor actions (e.g., reach-grasp-eat
or reach-grasp-move away). These sequences of actions also contain ’action-constrained’
mirror neurons, which fire only if the motor action they encode is part of a sequence (e.g.,
grasping for eating, but not grasping for placing, or vice versa). During the observation of
others’ actions, these ’action-constrained’ mirror neurons fire when the observed actions
match the actions encoded by the sequence in which those set of neurons are embedded. In
a later study, Cattaneo et al. (2007) showed evidence that organisation of sequenced motor
actions is impaired in ASD condition. In one of the experiments, ASD children and TD
children were asked to perform two action sequences, either grasping an object to eat or



3.3 Action and intention understanding 25

a

b

Figure 3.2 Impairment of the mirror mechanism may explain some deficits in children
with autism. (a), Individuals reach food located on a touch sensitive plate, grasp it and
bring it to the mouth (top) or put it in a container (bottom). (b), Rectified EMG activity of
mylohyoid muscle in typically developing (TD) and autism (AU) children during observation
(top) and execution (bottom) of the above actions. (Cattaneo et al., 2007)
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grasping to place it into a box; see Figure 3.2.a. The EMG activity of the mylohyoid muscle –
involved in mouth opening – was recorded.

In TD children, the muscle was active well before they moved the arm to reach a food
pellet; in contrast, no muscle activation was observed in ASD children. In these subjects,
muscle activation only appeared immediately before they brought food to their mouth. This
finding suggests that ASD children are unable to coordinate their motor actions into a
sequence characterised by a specific motor intention.

In a separate experiment, subjects were instructed to observe a person while either
grasping a food item for eating or grasping a piece of paper for placing it into a box; see
Figure 3.2.b. Again, EMG activity of the mylohyoid muscle was recorded. TD children
exhibited muscle activation while observing food grasping, but this activation was lacking
in ASD children. This finding suggests that in ASD, understanding of other’s intention is
partially absent. A few follow-up studies claimed this modified mirror neuron hypothesis in
both humans (Boria et al., 2009) and in monkeys (Caggiano et al., 2009).

3.4 Prediction and internal models

Predicting the consequences of own motor actions or about future sensory events is a
fundamental property of our cognition and is crucial to adapt our actions and behaviours
and to interact with the world around us. These abilities have been widely studied in motor
control and have highlighted the role of internal models (Wolpert et al., 1998). Empirical
evidence supporting the hypothesis that internal models are impaired in ASD is highly
controversial – see Gowen and Hamilton (2013) for a review. Many behavioural studies
failed to to find a difference in prediction at both motor and perceptual levels in individuals
with ASD (Blakemore et al., 2006; Haswell et al., 2009; Larson et al., 2008b; Marko et al.,
2015). To further investigate this, Aitkin et al. (2013); Ego et al. (2016) used a framework
to test the prediction abilities of persons with ASD in the context of smooth pursuit eye
tracking. Ego et al. (2016) recorded eye movements from high-functioning autism children
during a tracking with occasional blanking paradigm. They compared them with age-matched
controls. Eye movements during the blanking period are controlled on the basis of prediction
of the target motion. They defined number and accuracy of predictive saccades and predictive
re-acceleration during target blanking as markers of predictive eye movements. They found
that these markers are comparable between two populations, suggesting both internal models
and predictive abilities are left unaffected in ASD. Aitkin et al. (2013) had found similar
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results. These studies calls for a more restrictive and careful definition of the impaired
prediction hypothesis in ASD.

3.5 Understanding other minds and interpersonal interac-
tion

Humans are great at inferring others’ emotional states and on reasoning about how their
actions can affect future behaviour of their partner, and also they invent ways to collaborate
with them. This has been called a sense of ‘theory of mind’ (ToM) (Premack and Woodruff,
1978). ToM is central to our social life and is one of the reasons humans are good at
collaborating with each other. Hence ToM is essential for physical and social interactions
(Häberle et al., 2008; Sebanz et al., 2003).

Between the 1980s and 1990s the mind-blindness theory was proposed to explain the
social and communicative difficulties of children with ASD, thus suggesting that they had a
delay in developing ToM as the ability to anticipate others’ thoughts and feelings (Baron-
Cohen et al., 1985; Leslie, 1987).

Leslie (1987) postulated that our ability of mental state representation is based on a
dedicated cognitive mechanism. This includes a ‘decoupler’ and an ‘expression raiser’ and
transform our impressions of the physical world into secondary representations. These are
decoupled from reality and mentalising about a situation can be visualized as representing a
person’s propositional attitude to the states in the world. This is why children are normally
not confused when their mother holds something to her face and pretend it as a telephone.
According to Leslie (1987), the first marked manifestation of our ability to mentalize is seen
in the child’s enjoyment of pretence in their early ages, from around 18 months. Here the
child acts as if understanding whatever mother is holding as a telephone, which does not
make any confusion with the child’s learning about the real telephone. A neural system is
needed that supports the processing of particular information in relation to agents and is not
bound to a particular modality. If such system is dysfunctional from birth, a difficulty will
result in mind blindness.

The development of ideas on mentalising and mind blindness as a neurocognitive theory
originated from studies published in the late 1970s and early 1980s, on understanding
mental states such as beliefs in chimpanzee (Premack and Woodruff, 1978), and in children
(Wimmer and Perner, 1983). At around the same time, Wing and Gould (1979) documented
that children with ASD lacked spontaneous make-believe play. The theory of mind blindness
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predicts that normal developmental milestones of mentalizing is absent at the appropriate
age in children with ASD. Particularly, they will fail to follow another person’s gaze, fail to
show or point at objects of interest and failed to understand make belief play. Baron-Cohen
et al. (1996) studied these signs in a large population of infants aged 18 months. These early
signs were found to predict the ASD diagnosis well at the age of 3, when a firm diagnosis of
autism can be made.

The mind-blindness hypothesis was proposed and tested by Baron-Cohen et al. (1985).
The conflict on this was that if the social impairment deficit in autism is due to a failure of
mentalizing mechanism as abstracted by Leslie (1987), then autism children should be unable
to represent mental state such as beliefs. They should be unable to predict and understand
behaviour in terms of someone’s belief even when having developed the appropriate level
of cognitive and verbal development. Wimmer and Perner (1983) first devised a test based
on a false belief task. In the Sally-Anne task (Baron-Cohen et al., 1985) – see Figure 3.3

Figure 3.3 The Sally-Anne test. From (Baron-Cohen et al., 1985)

– children are told a situation-based story in which there are two people, Sally and Anne.
Sally places a marble in her basket, then leaves. Anne later moves the marble to her box
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while Sally is away. After being told this situation, children are asked where will Sally
look for her marble when she returns (action-prediction) or where Sally thinks her marble
is (belief). Typically developing children as young as 4 years and children with Down
syndrome normally pass such test, whereas younger children and much older children with
ASD typically fail. Another reason for studying mechanisms of belief-desire reasoning is to
provide an information-processing aspect of successful performance.

The outcome of the false belief test is not always easily understood. The failure on the
Sally-Anne test and similar tasks can be predicted by the mentalizing deficit hypothesis,
but there are other reasons for failure. For example, the Sally-Anne test requires working
memory and ability to suppress reality-oriented responses, i.e., pointing where the object
really is. Taken this into consideration, for a good demonstration, it is essential to show
success on the test that is in every respect the same but that should not involve thoughts about
mental states.

One of the strength of mind blindness hypothesis is that it can explain social communi-
cation impairments in autism. It can be also applied to all individuals on the wide range of
autistic spectrum, in that age and mental-age appropriate tests are used, which is independent
of IQ. Functional imaging studies have reported key areas of the ‘social’ brain that are
activated in particular during false-belief tasks in the typically developing subjects, but are
hypo-active in autism conditions.

It is also important to identify shortcomings of the mind blindness hypothesis. It has
never claimed to account for the repetitive behaviour and the obsessive interests in autism. It
explains neither motor control problems nor perceptual processing impairments. Nonetheless,
mind blindness may be able to explain some of the language problems; among other, language
delay, muteness, echoing of speech, idiosyncratic use of language. Since today ASD is no
longer defined by any firm separation from the "normality", the best way to seeing this
"normality" is by referring to the results from Autism Spectrum Quotient (AQ) (Baron-Cohen
et al., 2001a,b). This is a questionnaire-based screening test, either done by a parent about
his child, or by self-report (if the child is high functioning). The test consists of 50 questions
in total, relates to five different aspects, with ten questions each: social skill (S), attention
switching (SW), communication (C), imagination (I), attention to details (D). The AQ test
needs to be administered to subjects with normal IQ. When administered to a large population
its score follows a normal distribution, and separates autism from control groups. Specifically,
93% of the population falling in the mean range of the AQ, and about 99% of the autistic
population comes at the high-end of the scale (Baron-Cohen et al., 2001b).
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The Empathising-Systemising (ES) theory (Baron-Cohen, 2009) explains the social and
communication difficulties in autism condition by reference to delays and deficits in empathy
while explaining intact or even superior skill in systemising. Systemising is the drive to
analyse or construct systems. This can be any kind of systems, which follows rules. When
we systemise, we are trying to identify the rules that regulate the system. Examples of some
major kind of systems includes: numerical systems (e.g., bus timetable), collectable systems
(e.g., distinguishing between types of plant leaves), mechanical systems (e.g., operating
video-recorder), social systems (e.g., a management hierarchy), abstract systems (e.g., the
syntax of language). In all these cases, we systemise by understanding regularities and rules.
The advantage of ES theory is its usefulness to explain major groups of features in autism
spectrum conditions including: repetitive behaviour, local attention to detail and narrow
interests. This also explain difficulties in affective reaction to another’s mental state. For this
reason the ES theory appears better suited to explain the whole set of features characterising
in ASD.

As children grow up, they are more able to engage in organized, planned, goal-directed
actions. Goal-directed activity depends on some mental processes, including organization,
inhibiting impulses, selective attention, planning memory and shifting. The ability to engage
in goal-directed activity, along with the mental processes that make this possible, falls
under the heading of executive function (EF). The pre-frontal cortex is considered to be
mostly responsible for EF skills. Difficulties across the breadth of EFs, including planning,
inhibition, cognitive flexibility, generativity and working memory, have all been reported
in ASD (see (Hill, 2004) for a review). Jones et al. (2017) studied autistic adolescents and
found that social communication difficulties and the presence of restricted and repetitive
behaviours related to ToM. In contrast, these behaviours were not associated with EF.



Chapter 4

Game theory and joint action

All stable processes we shall predict.

All unstable processes we shall control.

John von Neumann

4.1 Introduction

Game Theory is an important branch of operational research which aims to study how agents
make their decisions restricted to the available information from other or both agents, in order
to attain a balanced effect. Following Nash (1951), a ’game’ can be defined as an economic

(or other) situation involving two individuals whose interests are neither completely opposed

nor completely coincident.

Simply put, Game Theory is a study of the strategic interaction of self-interested people,
in which each of them chooses his actions based on his judgement of how other players
will make their decisions. At the beginning of 20th century, John Von Neumann began to
systematically study Game Theory (Von Neumann and Morgenstern, 1944). At that time the
field was relatively new; the research on game theory was focused on cooperative games, in
which agents are assumed they can enforce agreements between them about proper strategies.

In the early 1950s, John Nash initiated a new era of game research, by shifting the focus
from cooperative to non-cooperative games. Non-cooperative games are situations in which
there are no external means to enforce cooperative behaviours. In other words, each player
takes his/her decisions in autonomy. Nash developed a criterion for mutual consistency of
players’ strategies, known as Nash equilibrium. The notion of ‘Nash equilibrium’ was first
presented in (Nash, 1950), and later in his PhD thesis (Nash, 1951).
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The first part of this Chapter will present the basic elements of the game theoretic
framework and the notion of Nash equilibrium will be exemplified in various classic games.
In the second part we will present a brief overview of differential game theory and its
mathematical foundations. We will then introduce the concept of learning in games. The
Chapter will be concluded with a review about the application of game theory in behavioural
research.

4.2 Basic definitions

Game theory is used to solve the problem of multi-person, multi-object conflict decision-
making with constraints under certain rules. The players in a game choose the ’optimal’
strategy that maximises their reward based on partial information about each other and the
state of the environment to achieve an equilibrium. Unless otherwise mentioned, definitions
and notations in the coming subsections are adapted from (Başar and Olsder, 1999; Leyton-
Brown, 2008) .

The games studied in game theory are well-defined mathematical objects. To be fully
defined, a game must specify the following elements: the players of the game, the information
and actions available to each player at each decision point, and the payoffs for each outcome.

1. Players. The players are the decision-makers of the game. They must make a decision
in order to meet their own demands and interests. Let N = {1,2, . . . ,n}, denote the
set of players. If a player is denoted as i, then his/her partners will be denoted as −i

(also termed the ’opponents’ of player i). In a two-players game, −i just denotes the
opponent of player i.

2. Actions and Strategies. Players in a game can take a defined set of actions. If the
set is limited, then the game is termed a finite game; otherwise it is an infinite game.
Continuous games, differential games and repeated games are sub-types of infinite
games. The notion of differential game will be explained in detail in a dedicated
section.

A strategy is a complete algorithm for playing the game, telling a player what action to
take for every possible situation throughout the game.

A strategy profile (sometimes called a strategy combination) is a set of strategies for
all players which fully specifies all actions in a game. A strategy profile must include
one and only one strategy for every player. Let Si be the set of strategies available to
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player i. If si ∈ Si the strategy selected by player i, then the strategies selected by each
player – the strategy profile – form a vector denoted by s = {s1,s2, . . . ,sn}.

A strategy can be ‘pure’ or ‘mixed’. In a pure strategy, players that are in exactly the
same situation always take the same actions. In a mixed strategy, players select their
action randomly. More formally, σ = (σ1,σ2, . . . ,σn) is a mixed strategy for all agents
if σi : Si → [0,1] with ∑s∈Si σi(s) = 1 is a probability distribution over the strategy
space Si of player i.

3. Payoffs. The win or loss of the players after the decisions are made, which is a function
of all game strategies or behaviours. Let fi(s1,s2, . . . ,sn), i ∈ N, si ∈ Si be the payoff
function value of players obtained under the strategy profile s = {s1,s2, . . . ,sn}. The
income of the player is not only related to the strategy of his choice, but also on the
actions taken by the other players. Players’ earnings are not only related to their chosen
strategies, but also to the actions of other players. In a simple game, a payoff matrix is
often used to describe the income of each game with different strategy profiles.

4.3 Representation of games

Extensive form A game in extensive form is represented as a tree, in which each vertex (or
node) represents a point of choice for a player. The player is specified by a number listed by
the vertex. The lines out of the vertex represent a possible action for that player. The payoffs
are specified at the bottom of the tree. The extensive form can be viewed as a multi-player
generalization of a decision tree. The extensive form can be used to formalize games with
a time sequencing of moves. Since choice nodes form is a tree, we can uniquely identify
a node with its history, that is, the sequence of choices leads from the root node to it; see
Figure 4.1 for an example.

Normal form Also known as strategic or matrix form, it is the common way of representing
strategic interaction in a game. A game is represented in this way by specifying every player’s
utility for every state of the world. The representation of games in normal form is conceptually
straightforward. However, that does not always assume players act simultaneously. Also, a
normal-form game representation does not incorporate any notion of time or sequence of the
actions of players.
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Player 1

(7,7)

C

(0,10)

D

C

(10,0)

C

(3,3)

D

D

Player 2

Figure 4.1 Example of a game (Prisoner’s dilemma) in extensive form. C and D are the
two actions

4.4 Nash equilibrium

In this section we will look into various classic games in normal form. Consider a game
involving two players, player 1 and player 2. Each of them has two available actions, which
we call A and B. If both player 1 and player 2 choose A, each of them get 2, whereas if both
choose B, they each get 1. If they choose different actions, they each get a payoff of 0. This
is a coordination game and may be represented as follows, where player 1 chooses column
and player 2 chooses a row and the resulting payoffs for each players are listed in parenthesis,
where the first element corresponds to player 1 – see Table 4.1. The action outcome (B,B) is

Table 4.1 Coordination game in normal form

Player 1
A B

Player 2
A (2,2) (0,0)
B (0,0) (1,1)

a ‘stable’ strategy. In other words we can say it is an equilibrium, since unilateral deviation
to A by any of them would result in a lower payoff for the deviating player. Similarly, the
action outcome (A,A) is also an equilibrium. This is an example of a pure strategy Nash
equilibrium. In general, a Nash equilibrium is defined as follows.
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Nash equilibrium in pure strategies A pure strategy profile s∗ = (s∗1,s
∗
2, . . . ,s

∗
n) is a Nash

equilibrium solution if, for all si ∈ Si, i ∈ N:

fi(s∗−i,s
∗
i )≥ fi(s∗−i,si) (4.1)

Intuitively, a pure Nash equilibrium is a specification of a strategy for each player such that
no player would benefit by changing his strategy unilaterally, i.e. provided the other players
don’t change their strategies.. The Nash equilibrium provides a very important analysis
method for game theory, but does not address how players achieve that equilibrium.

Consider another example:

Matching pennies This game involves two players, each with two actions available. Each
of them can choose either heads (H) or tails (T ). Player 1 wins a coin from Player 2 if their
choice of outcome are the same, and Player 1 loses a coin to Player 2 is they are not; see Table
4.2. This game has no pure-strategy Nash equilibria. If we play this game, we should be

Table 4.2 Payoff matrix for Matching pennies game

Player 1
H T

Player 2
H (1,−1) (−1,1)
T (−1,1) (1,−1)

"unpredictable". That is, we should randomize (or mix) between strategies so that we do not
get exploited. Suppose Player 1 plays 0.75 heads and 0.25 tails (i.e. heads with 75% chance
and tails with 25%). Then Player 2 by choosing tails (with 100% chance) can get an expected
payoff of (0.75×1+0.25× (−1) = 0.5), but that cannot happen at equilibrium since Player
1 then wants to play tails (with 100% chance) deviating from original mixed strategy. Since
this game is completely symmetric, it is easy to see that when players are allowed to use a
mixed strategy, at least one Nash equilibrium is guaranteed to exist. Specifically (50%, 50%)
mixed strategy, is the only mixed Nash equilibrium for this game.

Nash equilibrium in mixed strategies A mixed strategy σ∗(s)= (σ∗1 (s1),σ
∗
2 (s2), . . . ,σ

∗
n (sn))

is a mixed-strategy Nash equilibrium if, for i ∈ N, there are

fi(σ
∗
−i(s−i),σ

∗
i (si))≥ fi(σ

∗
−i(s−i),σi(si)) (4.2)

In other words, all players cannot benefit by deviating unilaterally from a Nash equilibrium.
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A few variants of the basic coordination game defined by Table 4.1 are worth mentioning.

Battle of sexes Imagine a couple agreed to meet but they cannot recall if they will be
attending the opera or football match. The Player 1 (husband) prefers to go to football
whereas Player 2 (wife) would rather prefer opera. Both would prefer to go to together. If
they cannot communicate, what would be their decision? The payoff matrix of the scenario is
given in Table 4.3. There are two pure Nash equilibria in this case, represented by asterisks.

Table 4.3 Payoff matrix for Battle of sexes game (left) and Stag hunt game (right)

Husband
Opera Football

Wife
Opera (3∗,2∗) (0,0)

Football (0,0) (2∗,3∗)

Player 1
Stag Hare

Player 2
Stag (2∗,2∗) (1,0)
Hare (0,1) (1∗,1∗)

Stag hunt Suppose that two people are out for hunting. If they work together, they can
catch a stag, which is big (would bring highest payoff), but if they work on their own they will
catch a hare. The tricky part is that if one hunter alone cannot hunt a stag, he will get nothing.
Their strategies are shown in Table 4.3. This is a quite unbalanced coordination game unlike
battle of sexes. If they miscoordinate the one who was trying for stag gets penalised more
than one who was trying for hare. Here also there are two pure Nash equilibria.

Prisoner’s dilemma This is another example of coordination game having one Nash
equilibrium – see the payoff matrix Table 4.4. Two subjects (prisoners) have the choice

Table 4.4 Payoff matrix for Prisoner’s dilemma

Subject 1
Cooperate De f ect

Subject 2
De f ect (0,10) (7∗,7∗)

Cooperate (3,3) (10,0)

between to claim the other subject is innocent (cooperation) and claim other subject is guilty
(defection). If both of them cooperate, each will receive a short sentence of 3 years, whereas
if both defect they will receive a fairly moderate sentence of 7 years. But if one cooperates
and the other defects, the cooperator will receive 10 years of sentence while the defector will
be freed. Here it is obvious that the global optimal solution is both subjects to cooperate.
However if one decided to defect, the defector will get more advantage at the expense of
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another subject. In this non-cooperative setting, the pure Nash equilibrium strategy is for
both subject to defect (shown by the asterisk). The dilemma arises because here the Nash
equilibrium solution is not identical to the globally optimal solution which is cooperative. In
extensive form, the Prisoner’s dilemma game is shown in Figure 4.1.

4.5 Information in games

A complete extensive-form representation specifies:(1) The players of a game. (2) For every
player every opportunity they have to move. (3) What each player can do at each of their
moves. (4) What each player knows for every move. (5) The payoffs received by every player
for every possible combination of moves. Complete information requires that every player
know the strategies and payoffs available to the other players but not necessarily the actions
taken.

Inversely, in a game with incomplete information, players may not possess full informa-
tion about their opponents. Some players may possess private information that the others
should take into account when forming expectations about how a player would behave. A
typical example is an auction: each player knows his own utility function (= evaluation for
the item), but does not know the utility function of the other players.

Incomplete information games are studied in the context of Signalling. Signalling is an
omnipresent phenomenon in animal and human societies. Examples of signalling in animal
kingdom includes odors, pheromones, sounds etc. In humans, the most advanced form of sig-
nalling is language undoubtedly. Importantly, we also rely on non-verbal forms of signalling
through sensorimotor interactions, for example gestures, facial expressions, interpersonal
distance and body orientation (Sebanz et al., 2006; Takagi et al., 2016a). Influence Signalling
between self-interested players have become an important issue when one player posses
private information about the other partner. Leibfried et al. (2015) investigated how humans
behave in a sensory motor version of signalling game with conflicting goals.

4.6 Repeated games

A repeated game is a game in the extensive form that consists of repetitions of the base game
(sometimes called a stage game). Repeated games imply that a player will have to take into
account the impact of his current action on the future actions of other players; this impact
is sometimes called his reputation. Repeated games are broadly divided into two classes,
depending on the horizon. The horizon is the player’s belief about the number of repetitions
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of the stage game and may be finite or infinite. In infinite horizon repeated games, players
can expect to play indefinitely. In finite horizon repeated games, players expect the game to
terminate after playing the stage game some number of times.

4.7 Differential game theory

Differential games are set of problems related to the modelling of conflict in the context of a
dynamical system. Especially, a state variable or variables evolve over time according to a
differential equation. Differential game theory deals with cooperative or conflict situations
in a system is influenced by two or more individuals. Each individual imposes his/her own
control to the system in order to gain some utility or sometimes they have to pay costs. A
game problem seeks, the controls for all individuals such that each of them achieves his/her
own goal, exactly speaking, those controls either minimum or maximum the concerned
utility for the players. Since most daily life situations call for making choices of some kind,
differential games have a wide range of applications.

Differential games are closely related to optimal control problems. In an optimal control
problem, there is single control u(t) and a single criterion to be optimized; differential game
theory generalises this to two controls u1(t), u2(t) and two criteria, one for each player. Each
player tries to control the state of the system so as to achieve the goal.

This section provides background information on differential game theory which will
serve as a foundation of the computational model framework described in the Chapter 6.
Here I will be discussing various concepts and notions by considering 2-player differential
game. A more detailed overview on differential game theory can be found in (Başar and
Olsder, 1999).

4.7.1 Problem formulation

A differential game consists of N players, where N ∈ Z+. For the case in which N = 1 the
differential game becomes a problem of standard optimal control. Here we focus our attention
on differential games with N ≥ 2. We will start with the rope pulling game, by looking at its
cooperative (nonzero-sum game) and noncooperative (zero-sum game) conditions. We will
then define the problem of solving infinite-horizon nonzero-sum differential games.

Rope pulling game A point object can move in a plane which is defined by the standard
(x,y) coordinate system (Başar and Olsder, 1999), pp.3-5. Initially, at time t = 0, the object



4.7 Differential game theory 39

is at the origin (0,0). Two forces act on the point object with opposite directions, where one
is from Player 1 and the other is Player 2. The directions of forces – measured by angles,
counter-clockwise with respect to the positive x-axis – are denoted by u1 and u2; see 4.2.
Assuming unit mass and unit forces, the system can be described by the following differential
equations: ẍ = cos(u1)+ cos(u2), ẋ(0) = x(0) = 0;

ÿ = sin(u1)+ sin(u2), ẏ(0) = y(0) = 0.
(4.3)

y

x

Player 1 Player 2

Figure 4.2 Rope pulling game

At time t = 1, Player 1 wants to pull the object as far as in the negative x-axis as possible.
That is, he wants to minimize x(1). Player 2 would like to pull in the opposite direction of that
of Player 1; that is, he wants to maximize x(1). The sum of the utilities of each player is zero.
Such a non-cooperative game is called zero-sum differential game, and the solution is known
as a saddle point equilibrium. The solution of this condition follows immediately. Each
subjects pulls in his favourite direction. The choice of their action controls are apparently
(u1,u2) = (π,0). Under these conditions the point object remains at the origin.

Now we change the game slightly. The aim of Player 2 is now to pull the object as far
as possible in the negative direction of y-axis; in other words, he aims at minimizing y(1).
Instead, Player 1 will maintain his original objective, which is to maximize x(1). This new
game is clearly nonzero-sum. Now, consider the pair of decisions (u1,u2) = (π/2,π) In this
condition, the two players are not in conflict, alternatively, they are of cooperative relationship.
The solution here will help both of them to win, is given by , (u1,u2) = (π,−π/2). Their
respective payoffs are L1 = −1/2 and L2 = −1/2. If Player 2 sticks to u2 = −π/2, the
best Player 1 can do is to choose u1 = π . Similarly, if Player 1 stays on u1 = π , there is no
better choice for Player 2 than u2 =−π/2. Hence the pair (u1,u2) = (π,−π/2) exhibits an
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equilibrium behaviour. This kind of solution, where one player cannot improve his utility by
changing his choice unilaterally, is called a Nash equilibrium solution.

4.7.2 Two-player differential games

Let us consider a dynamical system with state x(t) ∈ Rn, and the following state-space
dynamics:

ẋ = f̄ (x,u1,u2) (4.4)

where f̄ (x,u1,u2) is a mapping function and u1(t) ∈ Rm1 and u2(t) ∈ Rm2 ,with m1 ≤ n and
m2 ≤ n are the control actions of Players 1 and 2. Player 1 aims to select its strategy u1(t) to
minimize the cost functional of this form:

J1[u1, . . . ,uN ,T ] =
∫ T

0
q1(x,u1,u2)dt + r1(x(T )) (4.5)

where q1(x,u1,u2) is the running cost and r1(x(T )) is the terminal cost respectively for
Player 1. Similarly, Player 2 seeks to minimize the cost functional:

J2[u1, . . . ,uN ,T ] =
∫ T

0
q2(x,u1,u2)dt + r2(x(T )), (4.6)

where q2(x,u1,u2) is the running cost and r2(x(T )) is the terminal cost respectively for
Player 2. This problem is known as a two player finite-horizon differential game. Here
two players must determine their strategies u1() and u2() in order to minimize two cost
functionals subject to the state dynamics – Equation 4.4. The game theoretic solution of our
modelling framework for physical human-human interaction described in 6 is a two player

finite-horizon differential game.
In the limit as T tends to infinity the problem becomes a two player infinite-horizon

differential game. In some applications, for example in an economic situation, the duration of
the game may be long or even unknown. In infinite-horizon differential games, it is assumed
that by means of their respective control strategies, both Player 1 and 2 aim to minimize cost
functionals of the form:

J1[u1,u2] =
∫

∞

0
q̄1(x,u1,u2)dt

J2[u1,u2] =
∫

∞

0
q̄2(x,u1,u2)dt

(4.7)
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Note that there is no terminal cost term in the cost functionals for the infinite-horizon
differential game and it must be taken with care to ensure these cost functionals are bounded.

What if the players in a two player game are in competition, or those cost functionals
of the players define a conflicting scenario? Take the non-cooperative condition of above
mentioned rope pulling game. For this case, when the sum of the cost functionals of two
player sis zero, i.e. q1(x,u1,u2) =−q2(x,u1,u2), a gain of Player 1 implies a loss for Player
2 and vice versa. Differential games that fall within this categories are called two player

zero-sum differential games.
In a classical optimal control problem the optimal control is such that the cost functional

minimised subjected to the dynamics of the system. For a differential game, on the other
hand, optimality concept is not straight forward as intuitive. Consider , an example , a
two-player differential game with set of strategies S1 = {u1,u2} given by S2 = {w1,w2} and
assume that the set of strategies S1 is favourable for player 1 and S2 is favourable for player
2. Here clearly, in contrast to what we see in a classical optimal control problems, it is
not straight forward to determine which set of strategies is better than the other. Thus here
different notion of optimality solutions for differential games must be introduced.

The definition of optimality for differential games is not unique and many different
solution concepts exist – for example, cooperative conditions and noncooperative condition
are treated differently. In the non-cooperative case, the optimal solution is represented by the
Nash equilibrium strategies.

We specifically focus on closed-loop or feedback Nash equilibrium strategies, which are
formalised in the following definitions:

Definition 1. A pair of state feedback control strategies S = {u1,u2} is said to be fit for the
noncooperative differential game – defined by Equations 4.4, 4.7 – if the zero-equilibrium of
the system – Equation 4.4 – in closed-loop with S is locally asymptotically stable.

Definition 2. State feedback control strategies given by u∗1 and u∗2 are said to be Nash

equilibrium strategies of Player 1 and Player 2 , for the non-cooperative differential game of
Eq. 4.4- 4.7 if the pairs of strategies S∗ = {u∗1,u∗1} satisfy the following inequalities:

J1[u∗1,u
∗
2]≤ J1[u1,u∗2]

J2[u∗1,u
∗
2]≤ J2[u∗1,u2]

(4.8)

for all admissible feedback strategy pairs S1 = {u1,u∗2} and S2 = {u∗1,u2}, where u1 ̸= u∗1
and u2 ̸= u∗2.
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The Nash equilibrium strategies of a differential game are such that if any player deviates
from his Nash strategy, while assuming all other players are rational, this results in a loss for
the deviating player. This does not imply that the players cannot perform better by changing
to different strategies. In fact, strategies that give best outcomes for both players are known
as Pareto-optimal strategies. Chapter 6 will give a detailed overview of our differential game
theory based modelling framework that simulate dyad behaviour in a joint motor action.

4.7.3 Two-player linear-quadratic differential games

This is a category of differential games in which the system satisfies linear dynamics and
the cost functionals, which each players seek to minimise are quadratic. Linear quadratic
differential games are comparable to its optimal control counter part, linear-quadratic regula-
tor problems. The optimal solution for such a problem relies on the solution of an algebraic
Riccati equation.

Consider a two-player differential game in which the system (4.4) is linear, given by he
system dynamics:

ẋ = Ax+B1u1 +B2u2 (4.9)

where x,u1,u2 state and the players’ strategies as defined before. A ∈ Rn×n, B1 ∈ Rn×m1

and B2 ∈ Rn×m2 are constant matrices. Also, the players aim to minimise the following cost
functionals, are quadratic in the state variable and the control strategies:

J1 =
1
2

∫
∞

0
(xT Q1x+uT

1 R11u1 +uT
2 R12u2)dt,

J2 =
1
2

∫
∞

0
(xT Q2x+uT

1 R21u1 +uT
2 R22u2)dt.

(4.10)

where Q1 ≥ 0,Q2 ≥ 0 and weighting matrices satisfy R11 = RT
11 ≥ 0,R22 = RT

22 ≥ 0. This
form of differential games are known as two-player nonzero-sum differential games.

4.8 Learning in games

In a game or in a multiagent system, agents learn their behaviour or adapt based on their
experience with the environment and other agents. The amount and rate of learning depends
not only on the learning method, but also on how much information is available to the agents.
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In game theory the traditional explanation for why and when equilibrium arises is that it
results from analysis and self-examination by the players in a situation where the rules of the
game, the rationality of the players and the payoffs of players are all common knowledge.

4.8.1 Fictitious play

Classic models in game theory are usually equilibrium models that predict Nash equilibria
or its derivatives. In evolutionary game theory, this problem is addressed by developing
dynamic learning based models that converge to the equilibria. Fictitious play is one of
the simplest yet powerful and earliest learning rules, introduced in Brown (1951). It is a
"belief-based" learning rule, i.e., players form a belief about their opponent (from the history
of past play) and behave rationally with respect to these beliefs.

In a two player game, it works as follows. Assume that players i = 1,2, play the game
at times t = 1,2, . . .n. Define η t

i : S−i→ N to be number of times Player i has observed the
strategies of his partner s−i in the past, and let η0

i (s−i) be the starting point (or fictitious past).
For example, let S2 = {A,B}. If η0

1 (A) = 2 and η0
1 (B) = 6, and player 2 plays A,A,B in the

first three periods, then η3
1 (A) = 6 and η3

1 (B) = 4.
Given the Player i’s forecast/belief about his opponents play, he chooses his action at

time t to maximise his payoff, that is:

st
i ∈ arg max

si∈S−i
gi(si,µ

t
i ) (4.11)

Shen and Cruz Jr (2007) implemented a form of fictitious play to learn Nash strategies in
2-player linear quadratic discrete-time games with scalar control variables. They assumed that
each player uses conventional adaptive control methods to estimate the partner’s controller.

4.9 Game theory in behavioural research

The use of innovative experimental methods has allowed researchers to begin to study
behavioural functions of the brain as players interact with one another while playing games
with real consequences. These games helped to understand the decision making process, in
particular the extend to which social motives are important in behavioural and sensorimotor
decisions, also the process that may underlie demonstrations of competition or cooperation.

Behavioural game theory is explicitly meant to predict how human subjects behave.
Basically it has four components: representation, preferences over outcome, initial conditions
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and learning. Perception or mental representation of game is the key aspect in strategic
interaction. Often players in a game perceive an incomplete representation of the game or
some elements of the game may be ignored to avoid computational complexity. This aspect
of game is explained by complete or incomplete information game in the previous section.

Social preferences over the outcome imply, when the payoffs in a game are measured, to
fully understand the game, a theory is needed to realise preferences over payoff distributions.

When a game is played repeatedly, players can learn from payoffs they get and from the
strategies other players choose, also they can learn about what other players likely to do.
Many models of this learning process have been proposed fictitious play, explained in the
previous section is one of them. The general structure of learning models is that strategies
have numerical attractions that are updated based on payoffs and actions of the opponent.

Behavioural game theory must be complemented with adequate psychological, neural
evidence and motor control based studies. Some examples are described in Section 2.5 of
Chapter 2.

The application of game theory in multi-agent motor interaction is becoming more
promising and studied over the last few years. A number of studies have recently begun
to examine how game theory might be used to analyse the neural architecture of active
agents when competitive behaviours are produced. McCabe et al. (2001) initially studied this
approach through brain imaging. They examined the brain regions of subjects engaged in a
strategic game using functional magnetic resonance imaging (fMRI). In their experiment,
the subjects played a two-person game called ’trust and reciprocity’. The game starts with
one player who must decide whether to terminate game immediately – in that case, both
of them will receive a 45 cents cash reward – otherwise, he/she can decide to turn control
of the game over to his partner. If control passes to the partner, then he/she must decide
between taking all of a larger share of 405-cents gain for himself or keep only 225 cents
and returning 180 to his partner. This conflict if particularly interesting for a game theoretic
point of view when subjects face a new opponent on each iteration. In those circumstances,
if player two is rational, given the chance, he/she always take all for himself/herself. Here
basically cooperating with player one offers no advantage. Player one knows this and should,
therefore, always be compelled to end the game at the beginning, which at least guarantees
him/her a small but decent outcome.

When opponents encounter each other repeatedly, nevertheless a different optimal strategy
emerges. What they found was that a typical player even when he told that he would face
a different opponent on text trial, he was very likely to cooperate with a human opponent.
Naturally, humans turned out to be more cooperative with their peers than strictly rational,
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almost as if their brains were learning that assumed their opponent would sooner will
encounter again. Notwithstanding, when players were told that they faced a computer
opponent, they tend to take a more purely rational approach and they never cooperated.
McCabe et al. (2001) found when studying the brains of their subjects over these conditions
that when a subject opt to cooperate, a region in the prefrontal cortex was more activated
than when they act rationally against a computer player. This suggests on a very rough
approximation that frontal areas responsible for game theoretic evaluative choices.

4.9.1 Game theory within theory of minds

Theory of mind (ToM) is a great evolutionary human brain achievement. It is considered
as a special type of intelligence that can understand not only one’s own beliefs and desires,
but also others’. At the core level, this is an ability to assign mental states, belief, desires,
knowledge, intent etc. Recent interest in understanding the computational basis of ToM has
motivated neuroimaging studies. ToM studies have constantly evidenced the involvement of
brain networks comprising the medial pre-frontal cortex (mPFC), posterior superior temporal
sulcus (STS) and sometimes also temporal poles (TP) – see for a review, cognition in social
setting by (Frith and Singer, 2008).

Although the term ‘theory of mind’ is rarely seen in the economics literature, the founda-
tions of modern economic theory contain a powerful and elegant mathematical description
of ToM. Game theory is basically a theory of social interaction, which can be applied in
understanding sociological and psychological behaviours as well. Therefore ToM and its
implications can be discussed in the context of game theory. Game theoretic frameworks
need a complete , explicit description of people’s internal states of mind, including own
beliefs and beliefs about the mental states of their opponents.

Harsanyi (1968) initiated most of the effort to understand ToM, by analysing games
in which players were lacking information about significant details of the game structure.
Harsanyi found – sometimes called Harsanyi doctrine – that a complete description of such a
game requires explicit representation of an infinite reasoning of reciprocal beliefs. He stated
that introduction of a parameter that is unknown to a player necessitates a description of
his/her probabilistic beliefs about that unknown parameter.

Aumann (1987) gives a serious account of how the players’ internal states of mind seek
to provide foundations of equilibrium concepts. An important problem in this regard is: what
do players need to know (about game strategy, about opponents, about knowledge of others)
for their strategies to constitute an equilibrium? Possibly the best powerful answer to this
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is correlated equilibrium, a generalisation of Nash equilibrium allowing correlation of in
strategies.

4.10 Conclusions

Game theory is useful for developing a precise mathematical model of joint action by linking
strategy combinations to payoffs, can be considered as a periodic table of the elements
of social life. So far, there has been very limited use of game theoretic models in and
experimental tools to study joint action and strategic thinking. This limited contact probably
is due to the facts that psychologists and neuroscientists have not used the major tools in
game theory, which may be due to the skepticism that the rationality based analysis done in
game theory are psychologically inaccurate.

When it comes to study sensorimotor joint action, there is a need of adequate experimental
apparatus as well. This chapter gave a brief foundation to Differential Game Theory and
learning model, used in the modelling framework explained in Chapter 6.

Behavioural Game theory has progressed rapidly since the term was first proposed 10
years or so ago. It extends the empirical accuracy and cognitive plausibility of game theory,
expressing strategic situations in mathematical models that permit rapid progress. One
promising point of contact is between ToM and theories of strategic thinking thought to be
necessary for understanding desires, beliefs and thoughts of other people.

Game theory could be useful in understanding some psychiatric disorders such as Autism,
I study sensorimotor joint action in adults with Autism reported in the Chapter 8.



Part II

Methods



Chapter 5

Experimental apparatus and task1

Somewhere, something incredible is

waiting to be known.

Carl Sagan

5.1 Introduction

The main goal of this work is to investigate the mechanisms of joint action during collabora-
tive tasks. Many studies (Braun et al., 2009; Ganesh et al., 2014; Melendez-Calderon et al.,
2011; Reed and Peshkin, 2008; Takagi et al., 2016a) use motor tasks based on dual robotic
interfaces to study joint action.

For instance, Reed and Peshkin (2008) developed a two-handled crank mechanism,
which allows studying point-to-point reaching in a simplified control environment. Their
mechanism equipped with a central actuator, which allows them to replace one partner by
emulating by simulating a corresponding control strategy using computer simulation. Feth
et al. (2009) studied more complex protocols based on lateral arm movements using two
linear actuators with dedicated displays placed in front of the partners. They particularly
studied how subject pairs in a dyad collaborate in tracking a laterally moving target. Stefanov
et al. (2009) similarly used the same system to study the evolution and switching of roles each
partner take during a collaborative task. Ganesh et al. (2014) have used a robotic interface
to study sensorimotor joint action in a tracking task. In their experimental session there

1A part of this chapter has been published as Chackochan, V.T., Tamagnone, I and Sanguineti, V (2015)
Development of collaborative strategies in physical human-human interaction. Society for Neuroscience Annual
Meeting, Chicago.
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are equal number of unconnected solo trials and connected dual trials. In the solo trials
each individual performed the tracking alone while in the dual trials the robotic interface
implemented a simulated virtual spring that physically connect the hands of individuals in a
dyad during the tracking task. Takagi et al. (2016a) points that social factors such gaze can
cause altered behaviour in joint motor task. They suggest the use of curtain to mitigate the
such effects while investigating motor adaptation in joint motor interaction.

These studies have given us insights on the way humans interact at the level of haptic
interaction, but still far from understanding the mechanisms of cooperative strategies in
conflict scenarios.

We developed an experimental setup which allows to manipulate all aspects of interaction,
by specifying what each agent knows about his/her partner’s goal and current actions. This is
described in section 5.2.1.

5.2 Experimental set-up

5.2.1 Apparatus

We developed an experimental set-up based on two identical 3DoF haptic interfaces (Novint
Falcon), each with a dedicated 19-inch LCD monitor for the presentation of visual informa-
tion.

The Falcon device (Martin and Hillier, 2009) is a relatively inexpensive three degrees
of freedom haptic interface, originally manufactured by Novint for the game industry
(www.novint.com). The mechanical architecture is based on the Delta parallel robot design,
originally introduced by Raymond Clavel (Clavel, 1990, 1991), which consists of three arms
connected to universal joints at the base. The key design feature is the use of parallelograms
in the arms, which maintain a constant orientation of the end effector and limit its motion to
translation in all three dimensions. Due to its low inertia, high stiffness, high power-to-weight
ratio, high payload capability, this configuration has proven itself as an efficient platform for
operations involving high velocity pick-and-place. Complete technical specifications of the
Novint Falcon robot are summarised in the Table 5.1.

The terminal effector can be replaced with different handles, such as a pistol for action
games, a pen for writing exercises, or a simple spherical manipulator to generate trajectories
in 3D space. This has allowed the application in areas outside the gaming industry, such
as robotics and haptics, also thanks to the affordability of this device. It was used as a
force-feedback tele-control device (Jin, 2010), as learning aid for visually impaired kids
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Table 5.1 Technical specifications of the Novint Falcon haptic interface

3D workspace dimensions 10.16 cm ×10.16 cm ×10.16 cm
Maximum force ∼ 9 N

Resolution < 0.0635 mm
Communication interface USB 2.0

Device dimension 22.86 cm ×22.86 cm ×22.86 cm
Weight ∼ 2.7 kg

Maximum Power 30 W
Power supply 100V-240V AC, 50 Hz-60 Hz, 30 V DC

(Murphy and Darrah, 2015) and as a robot for home-based stroke rehabilitation (Borghese
et al., 2013).

The Falcon device is connected with the control computer through a USB interface.
The commands sent by the computer through the interface are interpreted by the integrated
firmware. Similarly, the data recorded by the optical encoders are transmitted back to the
control PC. This interface uses a nominal refresh rate of 1 kHz, with commanded forces
maintained by the firmware for about 100 ms. Practically, the 1 kHz sampling rate cannot be
sustained over the USB interface, which results in an actual sampling rate of 800 Hz-1kHz.

The experimental apparatus is depicted in Figure 5.1. Each participant sat in front of the
computer screen and grasped the handle of the haptic interface. They could not see or hear
each other and were not allowed to talk. The subjects were instructed to perform reaching
movements in the vertical plane, in which the apparent endpoint inertia is more anisotropic.

5.2.2 Software application

A generic application framework was implemented using CHAI3d (Computer Haptics and
Active Interface), is a collection of graphics and haptic libraries based on C++ language
intended for computer haptics, visualization and interactive real-time simulation. CHAI3d
was originally developed in 2003 at the Robotics and Artificial Intelligence Laboratory of
Stanford University (Conti et al., 2003). CHAI3d provides a simple yet powerful development
environment that would favour haptics-based psychophysical experiments. With subsequent
contributions from EPFL in Switzerland and the University of Siena in Italy, in 2004 the first
public version of CHAI3d was released.

The CHAI3d libraries are freely downloadable with examples which could be compiled
and executed with Visual Studio 2010 or above. They make use of the underlying low-level
graphics library, OpenGL (2.1 or above). They also have separate threads for graphics and
haptics loops as explained in next section.
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Figure 5.1 Experimental apparatus for sensorimotor joint action studies

The software was run on a dual core, 2.2 GHz, Pentium 4 computer running Windows 7.
The software application was programmed to have easy interoperability. The schematic of

the software architecture is shown in Figure 5.2. The haptic thread reads encoder information
from the haptic interface, performs computation, communicates with the graphics process,
and sends motor torques information back to the haptic interface. . Furthermore, as haptic
application’s refresh rate falls, the system becomes more prone to instability and constraint
violation. For this reason, the haptic thread runs at higher priority than graphics thread. To
ensure real-time performance, all computations in the haptic thread have to complete within
1 ms (corresponding to a sampling rate of 1 kHz).

The graphics thread is a user-space process that can be run on the same system as the
real-time haptics interface which is running at a lower priority than the graphics thread.
This thread takes care of user interface that allows visualisation of haptic interaction. Since
this thread runs on the user side, updates of the graphics are not deterministic. This thread
generally requires low refresh rates (around 60 Hz are sufficient) for graphic rendering and
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Figure 5.2 Schematic diagram of the software application. In the multi-threading struc-
ture, both the haptic and the graphic loops share the same database. In this structure, the
synchronization of the two loops in accessing the data is important. A separate data logging
thread runs in parallel to the haptic thread

have been achieved for complex visual presentation with reasonable hardware requirements.
The GUI is implemented with Visual Studio 2010. The visual task is rendered using OpenGL
2.5 using GLUT library.

Data logging is another task that requires high latencies (often over 10 ms), in particular
when the bandwidth is high. For my experiment scenarios with a dual-haptic interface
we need constantly logging data to disk. It is essential to place a data logging thread that
is distinct from the haptic rendering thread with the same priority. We implemented data
logging in a separate thread that uses an efficient data structure known as "blocked linked
list" (BLL) (Morris, 2006).

5.3 Task

5.3.1 A sensorimotor Battle of sexes game

We designed a novel interactive learning paradigm, derived from the classical ’battle of sexes’
game, in which subjects have different preferred targets and also a preference to stay together.
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Figure 5.3 Experimental protocol of the sensorimotor Battle of sexes game

In our task, two subjects are mechanically connected but cannot see each other. Both
are instructed to perform reaching movements with the same start and end positions, but
through different via-points (VP). Both are also instructed to keep the interaction force as
low as possible during movement, see Figure 5.3. Subjects had the option of establishing a
collaboration - negotiating a path through both VPs, which would lead to a minimisation of
the interaction forces – or to ignore each other, by only focusing on their own goal.

In Chapter 7, we manipulated the information available on partner’s actions by providing
it either haptically, through the interaction force (haptic group, H); by additionally displaying
the interaction force vector on the screen (visuo-haptic group, VH); or by displaying the
partner’s trajectory (partner-visible group, PV).

The experimental protocol is described in more detail in the next Chapters.

5.3.2 Performance indicators

During each trial we measured the movement trajectories of both partners, p1(t) and p2(t),
and the interaction forces, F1(t) and F2(t) =−F1(t). From the trajectories we also calculated
the partners’ velocities, ṗ1(t) and ṗ2(t). From these data we then calculated a number of
performance indicators, at either dyad or individual subject level – see Figure 5.4.
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Figure 5.4 Summary of performance indicators. Top: interaction force. Middle: Mini-
mum distance to partner’s via-point. Bottom,: Leadership index

Dyad-level

Interaction force The average interaction force (IF) is an overall measure of the extent to
which the two agents share the same trajectory when they are mechanically connected. IF is
defined as:

IF =
1
T

T

∑
t=1
||Fi(t)|| (5.1)

where Fi(t) is the interaction force at time t; see Figure 5.4, top.

Subject-level

Minimum distance from partner’s VP The minimum distance of subject i from the j-th
VP is calculated as:

MDi j = min
t

√
(px

i (t)− px
V P j)

2 +(py
i (t)− py

V P j)
2 (5.2)

When i ̸= j this indicator represents, for each subject, his/her ability to cross his/her partner’s
VP; see Figure 5.4, middle.
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Leadership index Looking at the power developed by each subject would provide infor-
mation on whether the subjects move actively, or are passively pulled by their partner through
the mechanical coupling.Individual agents at a given time may behave as ’leaders’ or as
’followers’. Similar to (Stefanov et al., 2009), we defined a subject’s index of leadership in
terms of the power associated to the interaction force, defined as: Pi(t) = Fi(t)T · ṗi(t); see
Figure 5.4, bottom.

We reasoned that, at a given time, a negative power would mean that the subject is
controlling his/her motion (i.e. he/she is behaving as a ’leader’). Conversely, a positive power
would indicate that the subject is being pulled toward the other (i.e., he/she is behaving as a
’follower’).

We specifically focused on the average power calculated in the 300-ms interval taken just
before and just after the crossing of each via-point. We denote as LIi j this value for the i-th
subject and the j-th via-point.

5.4 Conclusions

This chapter presents a dual-haptic interface to investigate sensorimotor joint action between
two humans. A generic, modular software is developed using CHAI3d library, which
allows us to implement and save experimental behavioural tasks having moderate graphical
requirements. We introduced a sensorimotor version of a classic game Battle of sexes in
this Chapter. Various performance indicators have been proposed to validate the joint action
experiments. We present the experiments in detail in Chapter 7 and Chapter 8. In particular,
Chapter 7 addresses joint motor action experiments with healthy individuals. Chapter 8
focuses on individuals with Autism Spectrum Disorder.



Chapter 6

Computational model1

We do not describe the world we see, we

see the world we can describe.

Rene Descartes

6.1 Introduction

Different from most previous studies – see Chapter 2 – we are specifically interested in
situations in which the two interacting agents have slightly different goals. This chapter
describes a computational framework to model joint actions that involve situations in which –
different from most previous studies – the two interacting agents have slightly different goals.
This situation can be modelled using a particular form of game theory – differential game
theory – in which the agents’ goals are described by two separate cost functionals and their
strategies are described by two feedback controllers (Başar and Olsder, 1999). Differential
game theory represents a generalisation of optimal feedback control, a well established theory
of sensorimotor control (Todorov and Jordan, 2002) which describes actions in terms of the
trade-off of performance and effort. Here this notion is extended to the joint optimisation of
the individual agents’ goals.

In this Chapter we define a general modelling framework, which we then use to run
computer simulations of the interaction experiments. The purpose of simulations is to
characterise scenarios in which each partner autonomously determines his/her actions, based

1An earlier version of this chapter has been published as Chackochan, V.T. and Sanguineti, V (2017)
Modelling collaborative strategies in physical human-human interaction. Biosystems and Biorobotics 15:253-
258.
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on a variety of assumptions about his/her knowledge about the dyad, the task and the partner.
Specifically, we focus on two separate objectives.

First, we use the general Nash framework to provide predictions for the optimal dyad
behaviours. We compare two different scenarios: (i) each partner has a perfect knowledge of
their partner’s control policy – this corresponds to the Nash strategies; and (ii) each player
completely ignores their partner when determining his/her control policy – these will be
referred as optimal no-partner strategies.

Second, we develop a model, based on fictitious play, of how the agents develop a joint
coordination as a result of repeated task performance. We use this model to assess how lack
of information about the partner affects the learned strategy.

6.2 Modelling framework

6.2.1 Dyad dynamics

We assume there is one single plant, reflecting dyad dynamics – i.e. both agents’ body
dynamics and their mechanical interaction. The dyad state trajectory, x(t), is determined by
both partner’s control commands, u1(t) and u2(t). We approximated plant dynamics as a
discrete-time linear dynamical system with two inputs:

x(t +1) = A · x(t)+B1 · [u1(t)+η1(t)]+B2 · [u2(t)+η2(t)] (6.1)

The state variable x(t) accounts for position, velocity and muscle activation dynamics of
both partners. Both inputs are affected by process or ‘motor’ noise, assumed to be Gaussian
and zero-mean: ηi(t) ∼ N(0,Ση

i ), with i = 1,2. Model parameters Σ
η

i , i = 1,2 reflect the
non-deterministic component of plant dynamics which is due to motor command uncertainty.

6.2.2 Control model

Consistent with the optimal control model of sensorimotor control (Todorov and Jordan,
2002), we completely specified the agents’ goals by a pair of cost functionals:{

J1 [u1,u2] = ∑
T
t=1

[
x(t)T ·Q1(t) · x(t)+u1(t)T ·R1(t) ·u1(t)

]
J2 [u1,u2] = ∑

T
1=1

[
x(t)T ·Q2(t) · x(t)+u2(t)T ·R2(t) ·u2(t)

] (6.2)
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Assuming that the two agents have a perfect knowledge of the plant state, the dyad’s control
system can be modelled as a pair of feedback controllers, one per each agent:

ui(t) =−Li(t) · x(t) (6.3)

with i = 1,2. This is called a linear-quadratic discrete-time differential game (Başar and
Olsder, 1999).

We assume that each agent autonomously determines his/her own control policy, Li(t)

with no explicit agreement with his/her own partner - which in game theory is called a
non-cooperative scenario.

The controller gains can be calculated on the basis of the assumptions that each agent
makes on his/her partner. We specifically focused on two situations.

Nash controllers

The optimal non-cooperative solution is known as Nash equilibrium (Nash, 1951). A pair of
control policies i [u∗1,u

∗
2] is a Nash equilibrium if none of the agents can achieve a lower cost

magnitude by unilaterally changing his/her own control policy:

J1 [u∗1,u
∗
2]≤ J1 [u1,u∗2] ∀u1 ̸= u∗1 (6.4)

and similarly
J2 [u∗1,u

∗
2]≤ J1 [u∗1,u

∗
2] ∀u2 ̸= u∗2 (6.5)

The definition of a Nash equilibrium is depicted in Figure 6.1. ’
The optimal Nash feedback controllers can be determined through the following iterative

algorithm (Başar and Olsder, 1999):

Zi(T )← Qi(T )

for t← T,0 do
solve for i = 1,2:[

Ri(t)+BT
i ·Zi(t +1) ·Bi

]
·Li(t)+

[
BT

i ·Zi(t +1) ·B−i
]
·L−i = BT

i ·Zi(t +1) ·A
F(t)←−B1 ·L1(t)−B2 ·L2(t)

Zi(t)← Qi(t)+F(t)T ·Zi(t +1) ·F(t)+Li(t)T ·Ri(t) ·Li(t)

end for

In the above equation and in all the following, i denotes an agent and −i denotes his/her
partner.
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Figure 6.1 Nash equilibria and ‘no partner’ solution in a two-agents non-cooperative
game. The two agents have different goals and hence separate cost functionals, J1 and J2,
depicted as iso-cost curves in the [u1, u2] (action) plane. For a given u1, say ū1, the best
agent 2 can do is to choose u2 = l2(ū1), where l2 is the agent 2’s ’reaction curve’ (in red),
i.e. the curve defined by u2 = argminu J2[ū1,u]. Similarly, agent 1 has his/her own reaction
curve l1 (depicted in blue). The set of Nash equilibria is determined by the intersections
of l1 and l2 – here we assume that the Nash equilibrium is unique. A second (sub-optimal)
scenario is represented by the situation in which each agent assumes that his/her partner is
inactive. This ‘no partner’ solution, is determined by the intersections of the two reaction
curves with the coordinate axes, adapted from (Başar and Olsder, 1999).
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Optimal no-partner controllers

A second (sub-optimal) scenario is represented a the situation in which each agent assumes
that his/her partner is inactive, i.e. u−i(t) = 0.

In this case, the optimal controllers are calculated independently, as two separate LQG
optimal control problems:

Zi(T )← Qi(T )

for t← T,0 do
Li(t) =

[
Ri(t)+BT

i ·Zi(t +1) ·Bi
]−1 BT

i ·Zi(t +1) ·A
Zi(t)← Qi(t)+Li(t)T ·Ri(t) ·Li(t)+ [A−Bi ·Li(t)]

T ·Zi(t +1) · [A−Bi ·Li(t)]

end for

The above algorithm is separately applied to both agents, i.e. for i = 1,2.

6.2.3 State observer and partner model

The above calculations of the optimal control policy assume that each agent has a perfect
information on the plant state vector, x(t), but this is not the case. However, each agent has
its own sensory system, described by:

y1(t) = H1 · x(t)+ v1(t) (6.6)

y2(t) = H2 · x(t)+ v2(t) (6.7)

where v1 and v2 are zero-mean, Gaussian sensory noise processes: vi(t) ∼ N(0,Σv
i ), with

i = 1,2. Eq. 6.7 implies that each agent’s sensory system has a (partial and noisy) knowledge
of the whole plant state. Model parameters Hi and Σv

i , i = 1,2 reflect such knowledge.
In a single-agent situation, agent i may predict the dyad state at time t by combining

prior knowledge of dyad dynamics (forward model), including a copy of his/her own motor
command, ui (efferent copy) with his/her own sensory information, yi(t). The combination
of using own sensory feedback and forward model to estimate the current state is known as
state observer.

In the case of linear systems with Gaussian noise, the Kalman algorithm is an optimal
(Bayesian) solution to this state estimation problem. The posterior estimate of the next state,
x̂+(t +1), has the general structure:

x̂+(t +1) = x̂−(t +1)+Ki(t +1) · [yi(t +1)−Hix̂−(t +1)] (6.8)
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The two components of the observer are, respectively, the ’prediction’ and the ’correction’
(or ’innovation’) terms.

In particular, the optimal ’prior’ prediction of the next state, x̂−(t+1) – i.e. the estimation
obtained before the sensory feedback yi(t +1) is measured – is given by:

x̂−(t +1) = Ax̂++Biui(t) (6.9)

The Kalman gain K(t), t = 1, · · · ,T of the ‘innovation’ term is determined by the Kalman
iterative algorithm and reflects the trade-off of the reliability of the prediction and correction
terms. If the prediction term is highly reliable – i.e., if we have a good knowledge about
plant dynamics – the innovation term will add little to the state estimation and the Kalman
gain will be small. In contrast, if the sensory input is highly reliable the Kalman gain will be
large and the state estimation will be largely determined by the innovation term.

However, when there are two agents acting on the same plant, unbiased estimation of
the plant state also requires the partner’s input, u−i(t) which is generally unknown. Several
authors – among others, Gillijns and Moor (2007) – have proposed general solutions to the
problem of joint estimation of input an state when no prior information about the input, thus
resulting in a generalisation of the Kalman algorithm.

However, under the reasonable assumption that the partner’s input is smooth, the problem
of estimating u−i(t) can be formulated as a simple extension of the Kalman algorithm. The
assumption that the partner’s input is smooth can be formalised in the following expression:

u−i(t +1) = Au ·u−i(t)+ ε−i(t) (6.10)

where 0 < Au < 1 and ε−i(t)∼ N(0,Σε
−i). Eq. 6.10 corresponds to the prior belief that the

partner’s input is a low-pass filtered Gaussian noise.
We can now define, for each agent, an augmented state: Xi(t) = [x(t) , u−i(t)]

T . Equations
6.1 and 6.10 can be grouped together as:

Xi(t +1) =

[
A B−i

0 Au

]
·Xi(t)+

[
Bi

0

]
·ui(t)+wi(t) (6.11)

where wi(t) = N(0,Σw
i ) and Σw

i = diag(BiΣ
η

i BT
i ,Σ

ε
−i).

We then assume that each agent has a state observer for the augmented dynamics of Eq.
6.11. In this way, each agent’s state observer combines information on plant dynamics and
on own sensory information to predict both dyad dynamics and partner’s input.
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This formulation implies that in joint action each agent has his/her own sensory system,
control policy and state observer. The latter also includes an internal representation of the
partner’s input. We will refer to this as the agent’s ‘partner model’. In other words, the model
assumes that joint action requires that each agent infers what the other partner intends to do.

By varying the parameters Au and Σε
−i, the above model can be used to capture a variety

of situations, ranging from perfect information to no information at all about partner’s
actions. Therefore, the model provides a general modelling framework but makes no strong
assumptions on the actual ability to predict the partner’s actions. The model only constitutes
a reference to understand the consequences of different assumptions.

The extent to which an agent actually uses information about his/her partner during
interaction will be investigated empirically in the next chapters.

The overall control model is summarised in Figure 6.2.
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Figure 6.2 Optimal joint control of a dyad. Each subject has his/her own sensory system,
optimal controller, state observer and partner model
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6.2.4 Learning through ‘fictitious play’

In the previous sections we introduced a general optimality framework to account for dyad
behaviours. In the case of perfect information about the plant, the task and the partner,
Nash equilibrium is the predicted optimal behaviour if the two agents act independently in
determining their respective control policies (non-cooperative play).

However, Nash equilibria describe the optimal collaborative behaviour but do not tell
us how do agents achieve it. Collaborative behaviour is the result of repeated task perfor-
mance, during which the agents gradually gain knowledge about dyad dynamics, the task
requirements, and the partner’s actions. This suggests that collaboration, if any, is a result of
learning and adaptation.

One possible solution of the problem of iteratively calculating a Nash equilibrium is
represented by the classical learning process known as fictitious play or as the Brown-
Robinson learning process, originally introduced by Brown (1951) as an algorithm for
finding the value of a zero-sum game, and first studied by Robinson (1951). In fictitious play,
two agents play the game repeatedly. After arbitrary initial moves in the first round, in every
round each agent determines its best response against the empirical strategy distribution of
his/her partner.

In fictitious play, strict Nash equilibria are absorbing states (Fudenberg and Levine, 1998).
In other words, if at any time period all the players play a Nash equilibrium, then they will
do so for all subsequent rounds. Further, if fictitious play converges to any distribution,
those probabilities correspond to a Nash equilibrium of the underlying game. Convergence
does not occur in general, but many authors have identified classes of games for which such
convergence holds; see Berger (2007) for review.

Fictitious play has two basic properties: (i) It is only adequate if the partner uses a
stationary strategy; (ii) It does not require that each agent knows the partner’s task as it only
requires a model of the strategy distribution. In other words, players don’t have to know
anything at all about their opponent’s payoffs. All they do is to form beliefs about how their
opponents will play (Fudenberg and Levine, 1998).

Alternatively, players need to incorporate beliefs about opponent’s strategies or require
players to have a ‘model’ of the game. While many studies agree that humans can form
‘models’ of their opponents and/or they ‘understand’ their intentions, the exact nature of
these models remains elusive. Here we use fictitious play as it represents the simplest form
of ‘partner model’.

Within our modelling framework, we implemented a simplified version of fictitious play
by assuming that each agent ’sees’ a plant that incorporates partner’s input estimated at the
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previous trial. For agent i, the augmented dyad dynamics is defined as:[
x(t +1)

xF(t +1)

]
=

[
A B−iû−i(t)

0 1

]
·

[
x(t)

xF(t)

]
+

[
Bi

0

]
· [ui(t)+ηi(t)] (6.12)

where xF is a ‘dummy’ state variable, initialised as xF(1) = 1 so that it remains constant for
the whole duration of the movement. If we define x̃i = [x,xF ]

T the above can be rewritten as:

x̃i(t +1) = Ã(t) · x̃i(t)+ B̃i · [ui(t)+ηi(t)] (6.13)

This augmented dynamics can be used to calculate the optimal control policy by using the
LQG algorithm described in section 6.2.2.

Our implementation of fictitious play only uses the most recent estimate of partner’s
input. This is less robust than estimating the distribution of partner inputs over multiple
repetitions, but may be adequate for practical purposes.

6.3 Model implementation

To study how joint coordination is influenced by uncertainty about the goals and actions of
their partner, we focused on a novel experimental task, a sensorimotor version of classic
game Battle of sexes, explained in Chapter 4. Partners were mechanically connected through
a compliant virtual spring and they have partly conflicting goals – reaching the same target
through different via-points.

6.3.1 Dyad dynamics

In our simulated dyad movements, we approximated each agent’s upper limb and robot
dynamics as a point mass mi, i = 1,2:

mi p̈i = fi + k · (p−i− pi)−b · ṗi +mig (6.14)

where pi(t) and p−i are the hand position vectors of, respectively, agent i and his/her partner
−i; mi is the agent’s mass, fi(t) is the muscle-generated force vector. We also assumed that
each agent is subjected to gravity and to a small viscous force accounting for the damping
caused by muscles and soft tissue. In all simulations, consistent with the actual experiments –
see the next Chapters – we took m1 = m2 = 2 kg, b = 10 Ns/m and k = 150 N/m.



6.3 Model implementation 65

As in (Todorov and Jordan, 2002), we modelled the dynamics of muscle force generation
as a second order system:

τ
2 f̈i +2τ ḟi + fi = ui (6.15)

where ui(t) is the activation vector, which is taken as system’s input, and τ is the activation
time constant. We took τ = 40 ms.

By defining the overall state vector as x = [pT
1 , ṗT

1 , f T
1 , ḟ T

1 pT
2 , ṗT

2 , f T
2 , ḟ T

2 ]T , the dyad
dynamics can be rewritten in state-space form:

ẋ = A · x+B1 · (u1 +η1)+B2 · (u2 +η2)+G (6.16)

where G = [0,0,0,−m1g,0,0,0,0,0,0,0,−m2g,0,0,0,0]T is a constant vector which ac-
counts for gravity and η1 and η2 are process noise sources (one per subject), assumed to be
Gaussian with covariance Σ

η

i .
Eq. 6.16 can be rewritten as:

ẋ = A · x+B1 ·u1 +w1 +B2 ·u2 +w2 +G (6.17)

where wi = Biηi, with variance Σw
i = BiΣ

η

i BT
i .

In all simulations we took Σu
i = diag(0.25,0.25)N2, identical for both subjects.

For simulation purposes, the above model equations were discretised by using a first-order
hold method, with a sampling rate ∆t = 1 ms over a movement duration of T = 2 s.

After model discretisation, we added three extra state variables to store information about
the position of the target xT and of the two via-points, xV P1 and xV P2 so that the new state is:
X = [x,xT ,xV P1,xV P2]

T – a 22-dimensional vector.
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6.3.2 Task and cost functionals

The task (reaching a target through a via-point) was specified in terms of the following cost
functionals (i = 1,2):

Ji[u1,u2] =wp · ∥xT − xi(T )∥2+

wv · ∥ẋi(T )∥2+

wvp · ∥xV Pi− xi(TV Pi)∥2+

w f ·
1
T

T

∑
t=1
∥x−i(t)− xi(t)∥2+

r ·wu ·
1
T

T

∑
t=1

ui(t)2

The cost functional has five terms. The first two terms enforce stopping on target at the end
of the movement. The third term reflects the requirement to pass through the via-point. The
fourth term accounts for minimising the distance between agents throughout the movement.
The last term penalises the effort incurred during the movement.

The weight coefficients determine the relative importance of the corresponding constraint.
We set these weights by assuming (Bryson’s rule) a maximum acceptable displacement (in
the via-point and in the final target) equal to, respectively, the radius of the via-point (2.5 mm)
and that of the target (5 mm). The value of the ’velocity’ weight was calculated by assuming
a maximum acceptable speed at the target of 5 mm/s. We made a similar normalisation in the
maximum inter-agent distance (15 mm) and maximum activation (10 N). In all simulations
we used the following weights: wvp = 160000 1/m2, wp = 40000 1/m2 and wv = 40000
s2/m2, w f = 40001/m2 and wu = 0.011/N2.

The scalar coefficient r – the only free parameter in the model – specifies the trade-off
between task-related accuracy and effort. With r≫ 1, the optimal strategy is not moving
at all. With r≪ 1, the optimal strategy pays little attention to effort requirements. In all
simulations we used r=1.

6.3.3 Sensory systems

Each agent has his/her own sensory system yi(t), which provides information about the dyad
state. Reliability of the sensory information is determined by the magnitude of the sensory
noise, vi(t), assumed to be Gaussian. The sensory system of each agent is described by



6.3 Model implementation 67

Eq.6.7:

yi(t) = Hi · x(t)+ vi(t) (6.18)

The structure of the Hi matrix depends on the available sensory information. In the H and
V H groups (see previous Chapter) the sensory information is defined as yi = [pi, ṗi,k(p−i−
pi),xT ,xV Pi]

T . For subject 1 we have:

H1 =


I2 02 02 02 02 02 02 02 02 02 02

02 I2 02 02 02 02 02 02 02 02 02

−k · I2 02 02 02 k · I2 02 02 02 02 02 02

02 02 02 02 02 02 02 02 I2 02 02

02 02 02 02 02 02 02 02 02 I2 02

 (6.19)

A similar expression is found for H2.
The subjects in the PV group are assumed to also see their partner’s position so that the

sensory information is defined as yi = [pi, ṗi, p−i, ṗ−i,k(p−i− pi),xT ,xV Pi]
T and H1 and H2

are modified accordingly.
The measurement noise is assumed to be Gaussian with variance:

Σ
v
i = diag(σ2

x ,σ
2
x ,σ

2
xd,σ

2
xd,σ

2
f ,σ

2
f ,σ

2
x ,σ

2
x ,σ

2
x ,σ

2
x ) (6.20)

We set σ2
x = 1.72 mm2, σ2

xd = 352 mm2/s2. For the H and VH group, we respectively set
σ2

f = 0.12 N2 and σ2
f = 0.012 N2.

6.3.4 Partner model

Partner’s control input was estimated as part of the state observer. We made the prior
assumption that partner input is described by a low-pass filtered white noise:

u−i(t +1) = Au ·u−i(t)+ ε−i(t) (6.21)

In all simulations, we set Au = 1 and Σε
−i = 0.5N2.
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6.4 Simulation results

Nash equilibrium for this task consists of the two subjects following the same trajectory
by crossing both via-points at the same time. Therefore there are two Nash equilibria,
which differ in the order of crossing (V P1 first or V P2 first). The second Nash equilibrium
is characterised by greater path lengths and therefore greater costs, and is therefore never
chosen. In the following we only refer to the first Nash equilibrium, and will refer to it as
‘the’ Nash equilibrium.

6.4.1 Optimal collaboration

We first simulated joint movements under three situations: (i) unconnected – the mechanical
link among the two agents has been removed; (ii) no-partner – the two agents are mechanically
connected but, when calculating the optimal control policy, each agent ignores his/her partner
i.e. he/she considers him/her as noise; (iii) Nash – the two agents establish an optimal
collaboration (Nash equilibrium).

The simulation results, based on the H condition, are summarised in Figure 6.3.
The trajectories look similar in the two models, but a closer look suggests that in the

no-partner case – see Figure 6.3.a, left – each subject crosses his/her own via-point before
their partner.

This is also reflected in the interaction power. The interaction power (dot product of
interaction power and subject velocity) allows to identify when a subject behaves as a leader
(moving against the interaction force – negative interaction power) or as a follower (pulled by
the other partner – positive interaction power). In the non-collaborative strategy, each subject
actively moves toward his/her own via-point, but gets closer to the other only because he/she
is pulled by the partner. This is why he/she approaches the partner’s via-point with a delay.

In the collaborative scenario (Nash equilibrium) – see Figure 6.3, right – the two subjects
approximately follow the same trajectory, by crossing each via-point at approximately the
same time. Both the interaction force and the interaction power remain low over the whole
movement, and there are no clear leader-follower roles.

Statistical analysis (t-test) confirmed these qualitative observations. Specifically, we
found significant group differences in the interaction force (t38 = 83.7, P < 10−6) in the
interaction power (t38 = 84.6, P = 2.2 ·10−6), and in the via-point crossing times (via-point
1: t38 = 38, P < 10−6; via-point 2: t38 = 6.21, P < 10−6). At individual subjects level, we
observed significant differences in the minimum distance from partner’s via point (subject 1:
t38 = 24, P < 10−6; subject 2: t38 = 63.4, P < 10−6) and in the leadership index, at via-point
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Figure 6.3 Optimal collaboration. Simulation results for unconnected (left), no-partner
(middle), Nash (right) agents. (a), Simulated trajectories for agent 1 and agent 2 (blue and
red). (b), Distances from via-points as a function of time. (c), Interaction force, as a function
of time. (d), Interaction power. (e), Leader-follower patterns for the two subjects. The
different colours denote the different signs of the interaction power: negative (magenta)
denotes leading, positive (cyan) denotes following. (f), Leadership indexes for the two
subjects, calculated as the average interaction power in the 300-ms interval before via-point
crossing
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1 (subject 1: t38 =−92, P < 10−6; subject 2: t38 = 62, P < 10−6) and at via-point 2 (subject
1: t38 = 18, P < 10−6; subject 2: t38 =−11, P < 10−6).

In conclusion, with respect to optimal collaboration, in addition to a greater cost (greater
interaction force), a distinctive feature of the no-partner scenario is the alternation of leader
and follower roles - each subject acts as a leader when crossing his/her own via-point, and as
a follower when crossing that of the partner. This is also reflected in different crossing times
(with respect to the leader, the follower lags behind).

6.4.2 Estimation of partner input

Figure 6.4 depicts, for both agents, the results of the prediction of the partner’s motor
command, in comparison to the corresponding true command (agent 1: blue; agent 2: red).
We repeated the simulation for the different scenarios used in the experiments described in
Chapter 7, i.e. H (haptic feedback alone), VH (visual and haptic feedback) and PV (partner
visible).

6.4.3 Learning to collaborate

We then simulated the trial-by-trial learning process of a collaborative strategy. When two
naive subjects are mechanically connected, at least three learning and/or adaptation processes
take place:

• Model adaptation Each agent adapts the forward model of dynamics which is part of
their state observer in order to incorporate the interaction force and the dynamics of
the connected partner.

• Task learning Each agent modifies his/her control policy in order to incorporate the
additional constraint of keeping the interaction force low. This form of learning affects
the feedback controller and aims at maximising the performance score.

• Partner learning Each agent may establish an internal representation of the partner’s
motor command, to be incorporated into the computed control policy. Estimating the
partner’s motor command can be achieved as a relatively straightforward extension of
the state observer – see section 6.2.3 – but it is unclear to what extent human subjects
are actually capable of incorporating it into their control policy.

In our simulations, we assumed that model adaptation is instantaneous, i.e. changes in dyad
dynamics are immediately incorporated in each agent’s internal models. As regards task
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Figure 6.4 Prediction of partner’s input from sensory information and state prediction.
On-line prediction of partner’s input from sensory information and state prediction, for agent
1 (left) and agent 2 (right). Dark colours denote the true inputs, light colours their estimations.
Simulations are based on the H scenario (the only information about partner is provided by
haptic interaction)

learning, we assumed that when the mechanical connection is established, the controller
incorporates the additional constraint on minimising the interaction force – see Eq. 6.18 –
gradually, within 12 trials (one epoch). As regards incorporation of the partner model into
the control policy (partner learning), we assumed that it occurs more gradually, within 24
trials (two epochs). This prevents abrupt changes of the partner model when the mechanical
connection is established or turned out.
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The learning outcome is summarised in Figure 6.5 for all three scenarios (H, VH PV).
The results of the simulation are quantified in Figure 6.6 (average within epoch 11 or ‘late’

Figure 6.5 Learning outcome. Trajectories in the last epoch for all three H (left), VH
(middle) and PV scenarios (right)

learning). We found that increasing the amount of information about the partner makes the
final performance closer to the ideal situation (Nash equilibrium).
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Figure 6.6 Learning performance. From left to right: Interaction force and minimum
distance from V P1 (MD21) and V P2 (MD12), for all three H, VH and PV scenarios

This is also confirmed when looking at the leadership index; see Figure 6.7. The switching
of roles (each subject leads when aiming at his/her own VP and follows when aiming at the
partner’s VP) – which is an indication of lack of consideration of partner intentions when
developing their own control policy – decreases as the amount of information about the
partner increases.
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Figure 6.7 Leadership index for model. (a), Leadership index for subject 1 (blue) and
subject 2 (red) at V P1 (left) and V P2 (right).(b), For all three H, VH and PV scenarios

6.5 Discussion

6.5.1 A general computational model for joint action

In this Chapter we defined a general modelling framework to analyse human-human sensory
motor collaborative strategies. Our modelling framework uses a differential game-theoretic
approach, which is a natural extension of optimal feedback control models which are widely
used to capture sensorimotor control of individuals (Todorov and Jordan, 2002). Game theory
methods yields shared decision making, allowing subjects to have different utility functions,
which help to characterize the existence and uniqueness of an ‘optimal collaboration’, defined
by a Nash equilibrium point (Nash, 1951).

In our model, dyad dynamics is described by a linear state-space model with two control
inputs, each with Gaussian process noise. The task is described by a pair of quadratic cost
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functionals (one per partner). The model accounts for incomplete information about the
partner and includes, for each agent, a separate sensory system with Gaussian measurement
noise. Each partner is equipped with a feedback controller and a state observer – which also
estimates the partner’s motor command. We modelled the time course of learning a joint
action through the biologically-plausible notion of ’fictitious play’ (Brown, 1951), which
requires minimal assumptions on the partner’s goals and ongoing actions.

To our knowledge, this is the first and most complete computational model which
accounts for learning joint action with partial or incomplete information. Previous
attempts of applying game theory to physical joint action are less general (Braun et al., 2009)
and/or address simple situations or toy problems (Jarrassé et al., 2012). More recently, Li
et al. (2015) applied differential game theory and Nash strategies to a linear model of human
sensorimotor control in the context of human-robot interaction. Takagi et al. (2017) modelled
the interaction of two mechanically connected partners while tracking a moving target. They
show that the experimental observations are better explained by assuming that each partner
maintains a model of their partner’s predicted target movement. However, their model is not
based on game theory. No existing model addresses learning of collaboration and the effect
of incomplete information.

The model could be useful to interpret pathological interactive motor behaviours (e.g. in
case of Autism spectrum disorder) – a preliminary exploration of this issue is done in Chapter
8 – or to interpret pattern of interaction that imply the establishment of a collaboration which
is driven by mutual utility. In principle, this same framework could be used to investigate the
patient-therapist or patient-robot interaction in neuromotor rehabilitation. In particular, it may
explain ’slacking’ – a distinctive observation in human-robot or robot-assisted rehabilitation
in which voluntary control diminishes over trials when assistance keeps the errors low
(Emken et al., 2007; Franklin et al., 2008, 2003; Thoroughman and Shadmehr, 1999).

6.5.2 Nash equilibria in a dynamic ‘battle of sexes’ game

We used our model to simulate the ‘battle of sexes’ game described in Chapter 4, to predict
the optimal non-cooperative strategy (Nash equilibrium) and to simulate the learning process
under a variety of conditions, characterised by different amount of information about the
partner. The game is characterised by two Nash equilibria, in which both subjects cross both
via-points. The two Nash equilibria only differ in the order the two via-points are crossed,
and in terms of overall path length and therefore energetic cost. The Nash equilibria are
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characterised by overlapping paths, approximately same crossing times at both via points
and near-zero interaction forces.

Nash equilibria require that each agent knows what his/her partner is doing (partner
model). This is not a realistic assumption in interpersonal joint action. For this reason, we
also simulated an opposite situation, in which each agent has no knowledge at all about
his/her partner’s actions. In this no-partner model, the overall trajectories are very similar –
they too come close to both via-points – but the overlap between paths is incomplete and
each partner crosses their partner’s via-point with a significant delay.

In the next Chapter these simulations will be compared to experimental results in which
we studied how nature and quality of the collaboration is affected by the incomplete or
unreliable information about the partner.

6.5.3 Roles are an emergent strategy to compensate the lack of infor-
mation about the partner

The simulations with the battle of sexes game make a distinctive prediction about how the
two agents assume different ‘roles’ (leader, or follower). We specifically found that ‘roles’
are an optimal compensation strategy, which results from lack or incomplete information
about the partner. Therefore, ‘roles’ are a signature of this lack of information. We will
use this prediction in Chapter 7 and 8 to understand the extent to which subjects establish a
model of their partner’s actions.

6.5.4 Model limitations

Optimal feedback control models of individual sensorimotor control (Todorov and Jordan,
2002) typically assume that process noise increases its magnitude with that of the motor
command – signal-dependent or multiplicative noise. Multiplicative noise is ubiquitous in
the motor system. In its current implementation, our model only uses additive, Gaussian
noise. However, the model can be easily extended by using results in differential game theory
in which multiplicative noise is used in differential games with both finite (Huiying and
Liuyang, 2011; Sun et al., 2013) and infinite horizon (Sun et al., 2012).
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6.6 Conclusions

We developed a general computational framework – based on differential game theory – for
the description and implementation of interactive behaviours of two subjects performing
a joint motor task. The model allows to simulate any joint sensorimotor action in which
the joint dynamics can be represented as a linear dynamical system and each agent’s task is
formulated in terms of a quadratic cost functional. The model also accounts for imperfect
information about dyad dynamics and partner’s actions, and can predict the development
of joint action through repeated performance. In Chapter 7, I will use this computational
framework to study the role of sensory information about partner in the development of
collaborative strategy in joint action.



Part III

Experiments



Chapter 7

Information about the partner affects the
development of collaborative strategies
in joint motor action

All our knowledge has its origin in our

perceptions.

Leonardo da Vinci

7.1 Introduction

Many tasks in daily life involve coordinating movements between two or more individuals.
A couple of dancers, a team of players, two workers carrying a load or a therapist interacting
with a patient are just a few examples. Acting in collaboration or joint action (Sebanz et al.,
2006) is a crucial human ability, and our sensorimotor system is shaped to efficiently support
this capability.

Two partners (a ‘dyad’) may have a common goal – e.g. reaching a target (Reed et al.,
2006), spatio-temporal control of isometric force (Masumoto and Inui, 2013, 2014), or
tracking a moving target (Ganesh et al., 2014). In this case, dyad behaviour can be compared
with individual performance. Although the partner is often perceived as an impediment,
dyads generally perform better than individual subjects. For instance, dyads tend to move
faster than individuals (Reed et al., 2006). In visual tracking, dyad performance is always
better than that of the partner who was most skilled in ‘solo’ performance (Ganesh et al.,
2014). Further, the performance achieved by training as a dyad transfers to the subsequent
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‘solo’ performance. In a related study, Takagi et al. (2016b) suggested that rigidly coupled
subject pairs accomplish joint reaching movements by relying on distinct motion plans that
are independent of the partner’s behaviour throughout the trial. However, Takagi et al. (2017)
give evidence that human individuals establish models of their partner in a shared tracking
task.

In many situations, partners in a dyad have different and partly conflicting goals (Braun
et al., 2009, 2011; Grau-Moya et al., 2013; Leibfried et al., 2015). Game theory is a natural
framework to address interpersonal interaction. Braun et al. (2009) used a pair of haptic
robots to implement ‘motor’ versions of classical non-cooperative games, like the prisoner’s
dilemma and rope pulling, in which the player-specific payoff was substituted by a position-
dependent force field, encoding costs or rewards of the interaction. These authors compared
bimanual and dyad behaviours. In the bimanual version of the task there is only one controller,
whereas in the dyad version there are two controllers which may (or may not) negotiate a
common strategy. They found that the bimanual version of the task ended up in a cooperative
solution, whereas the dyad converged to the optimal non-cooperative solution, which can be
interpreted as a Nash equilibrium (Nash, 1951).

Asymmetric behaviours (i.e., ‘roles’) have been consistently observed within a dyad.
Reed and Peshkin (2008) reported the emergence of a variety of roles (e.g., acceleration,
deceleration) in individual partners within a dyad. Based on the signs of velocity, acceleration
and applied force, Stefanov et al. (2009) proposed an analytic framework in which roles are
described in terms of ’execution’ (whether a partner contributes or resists to the overall move-
ment) and ‘conductorship’ indicators (to what extent a partner is responsible for initiating or
stopping a movement). Masumoto and Inui (2014) distinguished leader and follower roles,
where leaders tend to initiate the action and contribute most effort. Roles can be fixed, or
change with time. In a visual tracking task subject to force perturbations, Melendez-Calderon
et al. (2015) identified a variety of interaction strategies, differing in terms of patterns of
joint torques and muscle activations. They also observed that perturbations often induced
a switch among strategies. Role assignment in human-human interaction has often been a
source of inspiration for applications involving the interaction between humans and robots -
see Jarrassé et al. (2014) for a review.

Further, if two partners have different goals, they need to negotiate a joint strategy.
However, if information about the partner is incomplete or unreliable collaboration may be
less effective or even unfeasible (Oguz et al., 2012). Optimal collaboration (Nash equilibrium)
is an ideal situation, which can only be achieved if both subjects know everything about their
own and partner’s goals. If knowledge about the partner is partial or incomplete, optimal
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collaboration may be difficult to achieve. In a human-computer negotiation game, Oguz et al.
(2012) found that the combined effect of visual and haptic sensory feedback leads to better
performance than that attained by subjects who played with visual feedback alone. However,
it is unclear how partial information affects establishing a collaboration in two interacting
humans – see also Grau-Moya et al. (2013).

Here we address how negotiating a collaboration is affected by amount and quality
of information about the partner. We designed a novel interactive learning paradigm, in
which two subjects are mechanically connected but cannot see each other. Both subjects
were instructed to perform reaching movements with the same start and end positions, but
through different via-points(VP); see Figure 7.1. Both subjects were instructed to keep the
interaction force as low as possible during movement. Subjects had the option of establishing
a collaboration - negotiating a path through both VPs, which would lead to a minimisation of
the interaction forces - or to ignore each other, by only focusing on their own goal. The task
can be seen as a sensorimotor version of the classical ‘battle of sexes’ game. We manipulated
the information available on partner’s actions by providing it either haptically, through the
interaction force (haptic group, H); by additionally displaying the interaction force vector
on the screen (visuo-haptic group, VH); or by continuously showing the partner movements
(partner visible, PV).

7.2 Materials and Methods

7.2.1 Experimental apparatus and task

Each experiment involved a pair of subjects (a dyad). Each participant sat in front of a
computer screen and grasped the handle of a three-dimensional haptic interface (Novint
Falcon). They could not see or hear each other, and were not allowed to talk. The experimental
apparatus is depicted in Figure 7.1. The subjects were instructed to perform reaching
movements in the vertical plane, between the same start point (displayed as a white circle,
⊘ 1 cm) and the same target point (yellow circle, ⊘ 1 cm), but through different via-points.
In a reference frame centred on the robot workspace (one for each subject), with the X axis
aligned with the left-right direction and the Y axis aligned with the vertical direction, the
start point was placed in the (-5, 0, 0) cm position and the target point was placed in the
(5, 0, 0) cm position. Hence the start and the target point had a horizontal distance of 10
cm. The subjects were also instructed to keep their movements as planar as possible, i.e. by
keeping the depth, Z coordinate within the range (18-26 cm) from the origin of the workspace.
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Figure 7.1 Experimental apparatus and protocol. (a), Partners in a dyad were connected
through a virtual spring. Both subjects were instructed to perform reaching movements in
the vertical plane, between the same start point (displayed as a white circle, ⊘ 1 cm) and the
same target point (yellow circle, ⊘ 1 cm), but through via-points (VP). Each subject could
only see his/her own VP, but not their partner’s. Both were instructed to keep the interaction
force as low as possible during movement. A trial started when both subjects placed their
cursor inside the start region. Then the target and a VP (⊘ 0.5 cm circle) appeared. The
VPs were different for the two subjects and were placed, respectively, at locations VP1 =
(-3,-2,0) cm and VP2 =(3,2,0) cm. At the end of each movement each subject received a
0-100 reward, calculated as a function of the minimum distance of their movement path from
his/her own VP and of the average interaction force. The subjects were instructed to aim at
maximising this score. The experiment was organised into epochs of 12 movements each.
The experimental protocol consisted of three phases: (i) baseline (one epoch), (ii) training
(ten epochs) and (iii) after-effect (two epochs) for a total of 13 × 12 = 156 movements.
During the baseline phase the interaction forces were turned off, and each subject performed
on their own (’solo’ performance). During the training phase the subjects were mechanically
connected, but in randomly selected trials (catch trials) within each epoch (1/6 of the total, i.e.
2 trials per epoch) the connection was removed. The connection was permanently removed
during the after-effect phase. (b), We manipulated the information available on partner’s
actions by providing it either haptically, through the interaction force (Haptic group, H) or by
additionally displaying the interaction force vector on the screen (Visuohaptic group, VH) or
displaying partner’s cursor itself (Partner visible group, PV). The yellow and white circles
denote, respectively, the start and target position. The green circle is the cursor location.
In the VH group, direction and magnitude of the interaction force is depicted by a line
originating from the cursor. In the PV group, partner’s cursor is shown by black circle.



7.2 Materials and Methods 82

The current positions of the end effectors, x1 and x2, were continuously displayed to each
partner, as ⊘ 0.5 cm circular cursors on their respective screens, coloured in green if the
depth was correct and in red otherwise. Audio queues were provided at the start and end of
the movements.

A trial started when both subjects placed their cursor inside the start region. Then the
target and a via-point (⊘ 0.5 cm circle) appeared. The via-points were different for the two
subjects and were placed, respectively, at locations VP1 = (-3,-2,0) cm and VP2 =(3,2,0)
cm. The haptic interfaces generated a force proportional to the difference of the two hand
positions:

F1 = K · (x2− x1) (7.1)

F2 = K · (x1− x2) (7.2)

with k = 150 N/m. Hence, the two subjects were mechanically connected. At the end of each
movement each subject received a 0-100 reward, calculated as a function of the minimum
distance of their movement path from his/her own via-point and of the average interaction
force, according to the following formula:

scorei =
100

1+ exp−k·(d0−di)
(7.3)

where di = dV Pi + c · d12 and i = 1,2. The quantities dV Pi and d12 are, respectively, the
minimum distance between the movement trajectory and the subject’s own ’via-point’ (VPi

) and the average distance between the two subjects’ hand positions. In the disconnected
trials we took c = 0, i.e. the score only depended on how close the subjects got to their own
via-point. Parameters k and d0 were calculated so that the score was maximum (100) for
di ≤0.005 m (i.e., the VP radius), and minimum (0) for di ≥ 0.02 m. To encourage subjects
to establish a collaboration, in trials in which the two subjects were mechanically connected
we took c = 0.5, so that in order to get a maximum score subjects also had to keep their
relative distance as low as possible. The subjects were instructed to aim at maximising this
score. Specifically, they were told that performance depends on how close they would get
to the via-point. They were also told that they might experience a force while performing
the task. They were warned that force magnitude also affects the score, and were instructed
to also keep this force to a minimum. To encourage subjects to maintain an approximately
constant movement duration, after each movement a text message and changes in the color
of the target (either green or red) warned the subjects if the movement was either too fast
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(duration < 1.85 s) or too slow (duration > 2.15 s). However, if their movement duration did
not remain within the recommended range the participants received no further penalisation.

The subjects pairs were randomly assigned to three groups which differed for the feedback
provided about the interaction force. In the haptic (H) group, interaction could only be sensed
haptically. In the visuo-haptic group (VH), interaction force (magnitude, direction) was
also displayed as an arrow attached to the cursor (scale factor: 10 N/cm). A third group,
namely partner-visible (PV) was recruited as control group. In the PV group subjects see
their partner’s cursor at all times. Therefore, subjects in the PV group receive highly reliable
information about partner’s movement. The experiment was organised into epochs of 12
movements each. The experimental protocol consisted of three phases: (i) baseline (one
epoch), (ii) training (ten epochs) and (iii) after-effect (two epochs) for a total of 13 × 12
= 156 movements. During the baseline phase the interaction forces were turned off, and
each subject performed on their own (’solo’ performance). During the training phase the
subjects were mechanically connected. During this phase, in randomly selected trials (catch
trials) within each epoch (2 trials per epoch, i.e. 1/6 of the total) the connection was removed.
The connection was permanently removed during the after-effect phase. During the training
phase the subjects had the option to establish a collaboration - negotiating a path through
both via-points, which would lead to a minimisation of the interaction forces and a maximum
score for both - or to ignore each other - each partner would only focus on their own via-point
and on maximising his/her own score. The application has been developed using CHAI3D,
an open-source software environment for the control of haptic devices (Conti et al., 2003)
(see Chapter 5 for more details about experiment setup).

7.2.2 Subjects

A total of 30 subjects participated in this study. All subjects were right-handed, as assessed
using the Edinburgh Handedness Inventory (Oldfield, 1971), naive to the task and with no
known neurological or motor impairment at the upper limb. From the list of participants,
we randomly formed three groups of ten subjects, which were randomly assigned to the H
and VH and the control group, PV. The subjects’ demographic data are summarized in Table
7.1. The research conforms to the ethical standards laid down in the 1964 Declaration of
Helsinki that protects research subjects. Each subject signed a consent form conforming to
these guidelines.
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Table 7.1 Participants demographics for study 1. For the three groups, we indicate the
range and mean (± SE) age, the total number of subjects, subject label, dyad label, age and
sex.

Group # Subjects Label Dyad Age Sex
Haptic (H) 10 S11-S20 D1-D5 25 ± 5 9 M+ 1 F

Visuohaptic (VH) 10 S1-S10 D6-D10 24 ± 3 8 M+ 2 F
Partner visible (PV) 10 S21-S30 D11-D15 24 ± 3 6 M+ 4 F

7.2.3 Data Analysis

Hand trajectories and robot-generated forces were sampled at 100 Hz and stored for subse-
quent analysis. The data samples were smoothed by means of a 4th order Savitzky-Golay
filter with a 370 ms time window (cut-off frequency: 7.5 Hz). We used the same filter to
estimate velocity and acceleration. We identified the start and end times of each trajectory
as the time instants at which the speed crossed a threshold of 2 cm/s. In the analysis, we
specifically focused on the temporal evolution of the trajectories and on signs of collaboration
between partners within the same dyad. Collaboration can be characterised in terms of both
movement kinematics and movement kinetics. We developed a number of performance
indicators to characterise collaboration. All data were analysed using MATLAB.

The performance indicators can be broadly divided into Dyad-level and Subject-level
indicators – see Chapter 5 for details.

Dyad-level indicators

Interaction force (IF) is calculated as IF = 1
T ∑

T
t=1 ∥Fi(t)∥, where Fi(t) is the interaction force

(equal and opposite for the two partners in the dyad) – see Eq. 7.2. Less interaction force
would point at a greater collaboration.

Subject-level indicators

Another sign of collaboration is that each subject, while passing through his/her own via-
point, also gets very close to his/her partner’s. This can be quantified in terms of the Minimum
Distance to the Via-Point (MDi j), defined as the minimum value of the distance of subject i to
the j-th via-point (MDi j = mint ||xi(t)− xV P j|| with i, j = 1,2. If i ̸= j, this quantity reflects
how close each subject gets from his/her partner’s via-point.

Looking at the power developed by each subject would provide information on whether
the subjects move actively, or are passively pulled by their partner through the mechanical
coupling. To quantify this, we calculated the power (Pi), defined as the scalar product of the
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interaction force Fi(t) and the velocity vector vi(t) of each of the subjects. At a given time,
a positive power would mean that the subject is controlling his/her motion (i.e. he/she is
behaving as a ’leader’). Conversely, a negative power would indicate that the subject is being
pulled toward the other (i.e., he/she is behaving as a ’follower’). We specifically focused on
the average power calculated in the 300ms interval taken just before the crossing of each
via-point. We denote as LIi j this value for the i-th subject and the j-th via-point.

7.2.4 Statistical analysis

We expect that task performance at subjects and dyad level evolves with time (learning)
and is affected by the amount of information each subject has available about his/her own
partner. To test this, for all the above indicators we ran a repeated-measures ANOVA with
group (VH, H, PV) and Time (early - epoch 1, middle - epoch 6 and late - epoch 11) as
factors. In the case of the leadership index, we only focused on the final epoch. Hence in
this case we looked at a 1-way ANOVA with group as the only factor. If a main effect was
found, Tukey’s HSD (honest significant difference) post hoc test was used to examine the
differences. Statistical tests were performed using R. Statistical significance was considered
at P < 0.05 level for all tests.

7.3 Results

7.3.1 Collaboration in dyads and the role of information

In all three haptic (H), visuo-haptic (VH) and partner-visible (PV) groups, all dyads converged
to stable and consistent behaviours; see Figure 7.2. At a first glance, the learned movement
paths at the end of the training phase look quite similar in all groups. When the connection
was removed, both agents quickly returned to the baseline situation.

These observations are confirmed when looking at the score, the interaction force and the
minimum distance from the partner’s VP. All are expected to decrease if subjects establish a
collaboration. The temporal evolution of score for subject pairs is summarised in Figure 7.3
(a,b).

Subjects in the VH group achieved a greater score than those in the H group at the end
of training, which is confirmed by statistical analysis. Overall the subject pairs improved
their score with training (F2,24 = 47; P < 10−4) and exhibited significant group differences
(F2,12 = 56.07; P < 10−4).
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a
Baseline Early training Late training Washout

b

c

Figure 7.2 Movement trajectories. Movement trajectories in baseline (unconnected),
early-training, late-training and washout phases of the experiment from Haptic group (a),
Visuo-haptic group (b) and Partner-visible group (c).
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Figure 7.3 Score and Interaction force changes with training. Magnitude of score (a)
over trials, for the visuo-haptic (VH) , haptic (H) and Partner-visible(PV) group respectively).
(b), Score at the beginning, middle and at the end of training. c, Magnitude of the interaction
force (rms) over trials. (d), Interaction force at the beginning, middle and at the end of
training. The areas in grey denote the training phase. Error bars denote the standard error
(SE). Asterisks indicate statistically significant differences (∗ : P < 0.05, ∗∗ : P < 0.005,
∗∗∗ : P < 0.0005)
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We also found a significant group×time interaction (F4,24 = 5.2; P = 0.0034). Specifi-
cally, post-hoc analysis confirmed that subject pairs in the VH group achieved a significantly
greater score at the end of training phase than the H group (P = 0.004). Also the PV group
differs significantly from H (P < 0.0002). At the middle time, PV again differs from H
(P < 10−3) and from VH (P < 10−3), see Figure 7.3.(b).

The interaction force is the main determinant of the score, and its temporal evolution
exhibits a similar behaviour in the three groups – see Figure 7.3 c, d. Overall, we found a
significant training (time) effect (F2,24 = 37.4; P < 10−4), a significant group effect (F2,12 =

6.2; P = 0.014), and a significant group × time interaction effect (F2,12 = 6.2; P = 0.014) –
see Figure 7.3.(d). Post-hoc analysis showed that groups PV-H (p=0.02) but not VH-H and
PV-VH differ significantly at middle time. In addition, groups VH-H (P = 0.04) and PV-H
(P = 0.01) but not PV-VH differ significantly at late time.

In summary, the temporal evolution of both Score and Interaction Force are faster in the
PV group and slower in the H group.

A similar behaviour can be observed in the temporal evolution of the minimum distance
from the partner’s via-point is depicted in Figure 7.4.(a,b). In both groups and in both subjects
in the dyad, the minimum distance (MD) decreases over trials and quickly washes out when
the connection is permanently removed (after-effect phase). The magnitude of the decrease
is very similar in all groups.

Statistical analysis confirmed this observation. We found a significant time effect (F2,24 =

40; P < 10−4) for subject 1 and (F2,24 = 36.4; P = 0.0067) for subject 2. We also found
significant group effects (F2,12 = 40; P < 10−4) for subject 1 and (F2,12 = 8.9; P = 0.004)
for subject 2. However, we only found a significant group×time interaction for subject 2
(F2,16 = 5.64; P = 0.014), but not for subject 1. Post-hoc analysis showed that for subject 1,
in the groups (PV-H) the MD value is significantly different (lower in the PV group) in the
late time (P = 0.0296) and also group combinations (PV-H and PV-VH) differ significantly
at the middle time (P = 0.0002 , P = 0.01 respectively). For subject 2, post-hoc analysis
showed that group pairs (VH-H and PV-H , but not PV-VH) differ significantly at the late
time (P = 0.0009, P = 0.0003 respectively) and groups (PV-H , but not VH-H and PV-VH)
significantly differ at the middle time (P = 0.04). In other words the three groups – specially
H and PV – differed in both magnitude and rate of decrease of their via-point distance.
Figure 7.5 summarises the effect of learning in terms of MD in three groups. The Figure also
suggests that in the H group learning is less complete for subject 2 than subject 1.
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Figure 7.4 Minimum distance from the partner’s VP decreases with training. Magni-
tude of the distance from partner’s VP for subject 1 (a) , subject 2 (b), over trials, for the
visuo-haptic (VH) , haptic (H) and Partner-visible(PV) group respectively). (c,d), Mean of
minimum distances of subject 1 and subject 2 at the beginning, middle and at the end of
training. The areas in grey denote the training phase. Error bars denote the standard error
(SE). Asterisks indicate statistically significant differences (∗ : P < 0.05, ∗∗ : P < 0.005,
∗∗∗ : P < 0.0005)
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Figure 7.5 Learning in dyads. Minimum distance from partner’s VP for subject 1 (MD12)
vs subject 2 (MD21) from baseline to end training (filled circles) for all three groups. The PV
group ended up with better learning by minimising distance at the end of training which is
followed by VH and H groups

Subjects also consistently adapted with catch trials throughout the training phase. We
found significant catch trial error (F2,36 = 15.11; P < 10−4), which shows the adaptation
within the training phase. However, we found neither group nor group × time effects.

Overall, these results suggest that in the PV group learning is faster and results in a better
performance, followed by VH (greater score, lower interaction force).

7.3.2 Optimal interaction: model predictions

The above results still say little on how the collaboration is developed and about the underly-
ing mechanisms.

We developed a computational model, based on differential game theory Başar and Olsder
(1999), to predict the ’optimal’ interaction behaviours. We modelled the dyad dynamics and
the subjects’ sensory systems as a pair of point masses connected by a spring. We assumed
that each subject operates his/her own point mass by applying a force to it. As in the H group
in this experiment, we also assumed that each partner’s sensory system provides visual and
proprioceptive information about his/her own position, plus haptic information about the
interaction force ; the latter indirectly provides information about partner’s position. The
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task is specified by a pair of quadratic cost functionals (one per partner). Consistent with
the score provided to subjects at the end of each trial, each cost functional is a combination
of distance from own via-point and interaction force with the partner, plus an effort term
– see Chapter 6 for details. The interaction strategy is completely specified by a pair of
feedback controllers (one per partner); see Figure 6.2. Consistent with computational models
of sensorimotor control of individual movements (Shadmehr and Krakauer, 2008), we posited
that each partner must use a state observer to predict the dyad state from sensory and motor
information. The state observer is easily extended to also account for the partner’s control
action; see Figure 6.2.

Using the model we simulated an optimal collaboration, which occurs when no partner
can improve his/her strategy unilaterally (Nash equilibrium)– see Nash (1951). The two con-
trollers are calculated from differential game theory (Başar and Olsder, 1999), by iteratively
solving a system of two Riccati equations. We also considered an opposite scenario, in which
the subjects determine their control actions by assuming that they are alone in controlling the
dyad dynamics. As a consequence, they just focus on their own via-point and on minimising
the interaction. The two controllers are calculated separately, by solving two separate linear
quadratic Gaussian (LQG) optimal control problems. In this case, each subject does not
need to know what the other partner is doing. Therefore, this scenario defines the maximum
compliance with the task achievable with the minimum amount of collaboration between
partners. We refer to this scenario as the ’no-partner’ strategy – see Figure 6.3. Movement
trajectories look similar in the two models, but a closer look suggests that in the no-partner
case each subject actively moves toward his/her own via-point – thus behaving as a ‘leader’,
but gets closer to the other only because he/she is pulled by the partner – thus switching
to a ‘follower’ role. This effect is clearly visible when looking at the average interaction
power calculated just before crossing the via-point – se Figure 6.3.(f). As a consequence,
the no-partner scenario exhibits temporal delays between the via-points crossing times and
a greater magnitude of interaction force and interaction power. In contrast, in the optimal
(Nash) scenario the two subjects approximately follow the same trajectory, by crossing each
via-point at approximately the same time. Both the interaction force and the interaction
power remain low over the whole movement, and there are no clear leader-follower roles.
Therefore, a distinctive feature of the ‘no-partner’ scenario is the alternation of leader and
follower roles - each subject acts as a leader when crossing his/her own via-point, and as a
follower when crossing that of the partner. This is also reflected in the different crossing
times (with respect to the leader, the follower lags behind). In conclusion, establishing roles
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can be seen as a form of compensation for poor integration of the partner’s intentions into
the subject’s own control strategy.

The model was also used to simulate the process of establishing a collaboration through
repeated task performance. The model uses a form of ‘fictitious play’, in which each subject
is assumed to estimate the most likely partner’s action and to incorporate it into his/her own
control policy. The model is attractive as it requires minimum information about the partner –
it does not need to establish a model of the partner’s task or intentions. We simulated all three
scenarios (H, VH, and PV) and found – see Figure 6.5 and 6.6 – that greater information leads
to more stable and more ‘Nash-like’ collaboration, characterised by greater synchronisation
and less distinct roles; see Figure 6.7.

7.3.3 Emergence of roles

Motivated by the model predictions, in our experimental data we looked into the emergence
of distinctive roles. Figure 7.6 shows the leader-follower strategies from three sample
dyads – one per group – as they appear from the sign and magnitude of the interaction
power. Figure 7.7 summarises the leadership indices (LI) – average interaction power in
the 300 ms interval before via-point crossing – calculated in the late epochs. As regards
LI11 – leadership index for subject 1 at V P1 – we found significant differences between
H and VH (t6.65 = −2.98,P = 0.022), H and PV (t5.72 = −4.82,P = 0.003) and VH and
PV (t7.52 = −2.3,P = 0.047). Similarly, for LI12, we found significant differences for the
following pairs: H-VH (t6.58 = 2.42,P = 0.04), H-PV (t7.32 = 2.87,P = 0.023) but not
VH-PV. Also, we found no significant effects for LI21 and LI22.

These results indicate that when there is limited information about the partner (group
H), Subject 1 exhibits a transition from a leader role near V P1 and a follower role near V P2.
The effect decreases and tend to vanish when the amount of available information about
the partner increases (from H – minimum information – to PV – maximum information).
Although not statistically significant, Subject 2 exhibits a similar trend – leader near V P2

and follower near V P1. When comparing these results with the simulations, at the end of the
training phase the dyads in the PV group are more similar to the optimal (Nash) strategy.
To compare model predictions and experimental results, . For a quick comparison with
the model, we calculated the difference in the interaction power for both partners at V P1

and V P2 and for the corresponding Nash (green) and ’No partner’ (yellow) scenarios. The
experimental results are summarised in Figure 7.8. These results suggest that dyads with
more available information (PV group) about the partner are closest to the optimum (Nash)
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Figure 7.6 Leader-follower strategies from typical dyads. From top to bottom: H, VH
and PV groups. The crossing times for V P1 and V P2 are represented, respectively, by a blue
and a red dotted line
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Figure 7.7 Leadership Index (LI) in late epochs. LI is calculated as the average power
calculated in the 300 ms interval just before each via-points. (a), LI11 (left) is the leadership
index for subject 1 at V P1 at the late epoch, similarly LI12 is for subject 1 at V P2. Negative
value of power shows subject 1 is the leader till his via-point and follower at his partner’s
via-point. Similarly (b), leadership index for subject 2 at V P1 (left) and V P2 (right).
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scenario, whereas dyads with less reliable information (H group) are closest to the ‘no partner’
scenario.
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Figure 7.8 Difference in power for subject pairs at each VPs. additionally the same
parameter for Nash and No partner models are shown. Nash model have more balanced
leader-follower strategy at VP, meaning at each VP neither of them leads nor follows. Out of
three dyad groups, PV have similar characteristics to Nash model

7.4 Discussion

We investigated how subject pairs in a dyad establish a collaboration in a partially conflicting
reward-based point-to-point reaching task – a sensorimotor form of Battle of sexes game. We
compared the learning performance and the final modality of interaction in dyads performing
the same task, but with different types of information about partner’s state and movements:
haptic information alone (H group); haptic and visual display of the interaction force (VH
group); and visual display of partner movements (PV group). We also compared the exper-
imental results with the predictions of a computational model based on differential game
theory and the notion of ‘fictitious play’. The experiments confirmed the prediction of the
learning model, that the type of interaction strategy achieved is determined by the amount
and reliability of the information about the partner.
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7.4.1 Dyads gradually develop stable strategies

Dyads in all the three groups gradually converged to a stable interaction strategy. The
final practice epoch shows less variability than the early stage of training in terms of score,
interaction force, minimum distance from partners via point. Convergence required repeated
training (‘play’). Therefore, stable interaction seems the effect of a learning process.

In a joint reaching task involving two rigidly coupled subjects, Takagi et al. (2016b) did
not observe systematic trial-to-trial changes. Rather, subjects relied on a pre-programmed
motion plan that was independent of the partner. On the other hand, in subjects with a
weaker coupling a learning effect was clearly observed (Ganesh et al., 2014). Likewise,
Reed and Peshkin (2008) reported that emergence of stable strategies in the joint control of
crank rotations did not occur instantaneously, but required trial-by-trial adaptation. These
observations suggest that dyads need time to learn and accustom to an interaction strategy.
This is particularly true if task difficulty increases or – as in the present study – if the subjects
have different and partly conflicting goals.

7.4.2 The learned interaction is influenced by the amount of available
information

In our study, we manipulated the amount of information available about the partner. We found
that when more reliable information about the partner actions is available, the interaction
strategies come closer to optimal collaboration (Nash equilibrium).

Oguz et al. (2012) studied human-robot interaction in the context of conflicting and
collaborative settings and their negotiation behaviours. They found that haptic cues provided
a statistically significant increase in the human-recognition accuracy of machine-displayed
behaviours.

In a stag-hunt game between a human and a virtual player, Grau-Moya et al. (2013)
manipulated the risk sensitivity of the virtual player. They found that humans adapted their
behaviours accordingly – by changing the amount of their cooperation. In contrast, in our
experiment we did not directly manipulate opponent behaviour. Rather, we altered the
amount of available information about him/her.

We used a computational model not only to determine the optimal behaviours predicted
by game theory, but also to understand how these behaviours are learned. Our model predicts
that dyads converge to a Nash equilibrium if players have reliable information about their
opponent. In contrast, if there is more uncertainty on the partner action, the dyad converge to
a pragmatic form of interaction, which requires minimal or no negotiation with the partner.
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Model predictions are confirmed by our experimental results. Dyads in which more
information about the partner is available (PV group) get closer to a Nash strategy. Dyads
with less reliable information about the partner (H group) develop strategies that are less
sensitive to their partner’s actions. These results also suggest that the ability to predict
interaction is indicative of a key aspect of ’acting together’.

7.4.3 Taking roles compensates for uncertainty about the partner

The computational model allowed to identify one specific signature of the extent to which
subjects use information about their partner’s actions when planning their movements. In
simulations in which each subject computes his/her control action by ignoring the partner,
subjects alternate leader and follower roles within the same movement. Subject 1 leads in
via-point 1 and then follows his partner in via-point 2. Conversely, Subject 2 follows his
partner in via point 1 and leads at via point 2.

This behaviour can be interpreted in terms of the ‘minimum intervention principle’ of
optimal feedback control (Todorov and Jordan, 2002). For subject 1, via-point 2 is task-
irrelevant and therefore getting close to this point is not controlled explicitly; vice versa for
subject 2.

We found that dyads characterised by less reliable partner information (group H) converge
to this strategy. In contrast, clear roles disappear when information is more reliable – similar
to the Nash equilibrium situation. Similarly, in a tracking task Stefanov et al. (2009) identified
the same roles – leader, follower, or neither of them.

Does training have an effect on roles? Masumoto and Inui (2014) studied joint action
in a task where participants produced discrete isometric forces such that sum of the forces
determine the target force. They observed a leader-follower relation in the novice-experienced
pairs, but found that practice had no effect in leader-follower relationship. In contrast, in both
simulations and experiments we found that roles evolve with the knowledge gained about the
partner. As a consequence, in all groups early trials exhibit distinct roles, which gradually
disappear as high-information dyads come close to Nash equilibrium.

7.4.4 Do partners understand each other intentions?

One crucial question is whether whether the two partners within the dyad develop an under-
standing of their partner’s ‘intentions’. Many studies have suggested that humans actually
have this capability. For instance, Grau-Moya et al. (2013) show that subjects adapt their
behaviours to changes of their partner’s risk variability.
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Factors like gaze are known to alter behaviour in joint motor tasks. This effect is easily
eliminated by using curtains (Takagi et al., 2016a). In our task, the partners in a dyad are
separated by a curtain. Also, they have complete information about their own task, but no
information at all about their partner’s – in particular, partner’s via-point (and whether they
have one).

In our experiment, the gradual decrease in the leadership indices suggests that subjects
incorporate information about their partner into their motor plans. However, model simu-
lations suggest that minimal partner information about the partner is sufficient to converge
to quasi-optimal behaviours (Nash equilibrium). In particular, learning through fictitious
play does not require to establish a model of the partner’s task – this is what should properly
referred as ‘intention’ – but simply require to account for the partner’s most likely control
actions – inferred from previous trials. Future experiments, possibly involving generalisation
to other tasks or interacting with a virtual partner will be necessary to clarify this important
point.

7.5 Conclusions

Several attempts have been made before to use game theory to explain joint sensorimotor
behaviours, but until now the emphasis has been on tasks which do not involve different goals
for each participant (Takagi et al., 2016a) or in tasks that, although sensorimotor in nature,
ultimately focus on making discrete decisions (Braun et al., 2009, 2011; Grau-Moya et al.,
2013). Here for the first time we use game theory to understand a purely motor interaction
task, in which the goal of collaboration is to develop coordinated dyad movements.

We have shown that information about the partner deeply affects speed and outcome of
learning a joint collaboration. In future studies, the same experimental and computational
framework could be used to transfer capabilities to establish a collaboration to virtual or
artificial agents. This may open the way to novel approaches to e.g. neuromotor rehabilitation,
in which an artificial agent – e.g. a robot – automatically adapts its action as a consequence
of incorporating a model of the patient’s action.



Chapter 8

Sensorimotor joint action in adults with
Autism spectrum disorders

Love, for instance. Everybody

experiences it, craves it, requires it for

his or her very existence, knows it’s

there. But no one can explain it, break it

down into physics and chemistry.

Rupert Isaacson, The Horse Boy

8.1 Introduction

Autism spectrum disorder (ASD) is a developmental disorder characterised by deficits in
communication and social skills, and stereotyped and repetitive patterns of behaviour and
imagination. Even though motor impairments are not considered a diagnostic feature of ASD,
motor deficits have reported in many studies (Dowell et al., 2009; Dziuk et al., 2007; Gowen
and Hamilton, 2013; Jansiewicz et al., 2006). Similarly, abnormalities in sensory function
have been repeatedly demonstrated in few studies (Blakemore et al., 2006; Leekam et al.,
2007; Nakano et al., 2012; Paton et al., 2012), but ASD lacks any clear signature impairment.
Rather, sensory and motor impairments manifested in ASD conditions lack any clinical
classification and are broad and generalised – see Chapter 3 for a more comprehensive review.
On our activities of daily living, deficits in motor abilities can have far-reaching effects, as
motor control is believed essential for language, communication, decision making and even
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understanding of others thoughts, intention and to act jointly (Gallese et al., 2004; Iacoboni,
2009).

It is likely that motor impairments shown by adolescents with ASD may be present right
from their infancy (Teitelbaum et al., 1998) and are rooted in the ability to acquire motor
learning or new motor skills. In sensorimotor tasks, interestingly the effect of these motor
impairments sometimes leads to improved performance in some aspects of motor control
relative to healthy individuals. For instance in a set of studies Haswell et al. (2009) and
Izawa et al. (2012) assessed generalisation of motor learning during adaptation. Children
with ASD show increased generalisation in the proprioceptive coordinates. Similarly, in
a haptic-to-visual shape matching task in which subjects explored an object by touching
and tracing with their fingers, Nakano et al. (2012) showed that individuals with ASD are
better at recognising the object. Further, individuals with ASD have less susceptibility to
proprioceptive drift during a rubber band illusion task (Paton et al., 2012) and show lower
thresholds in the tactile perception of vibrotactile stimulus (Blakemore et al., 2006).

Predicting the consequences of own motor action or about future sensory events is a
fundamental property of our cognition to enable us to adapt our actions and behaviours and to
interact with the world around us. Empirical evidence supporting the hypothesis that internal
models are impaired in ASD is highly controversial – see (Gowen and Hamilton, 2013) for a
review. Many behavioural studies failed to find a difference in prediction at both motor and
perceptual levels in individuals with ASD (Blakemore et al., 2006; Ego et al., 2016; Haswell
et al., 2009; Larson et al., 2008b; Marko et al., 2015). Our daily social life is based on our
capacity to understand the behaviour of others. How does one understand the goal of his
partner by looking at the motor action? Rizzolatti and Craighero (2004) reported that humans
and monkeys possess a system of neurons called mirror neuron system, which maps visual
description of actions by others onto their partner’s motor representation of the same action.
Subsequent studies demonstrated various functional aspects of the mirror neuron system
in mediating imitation (Bird et al., 2007; Iacoboni et al., 1999), understanding intention of
others (Iacoboni et al., 2005), and emotion recognition (Gallese et al., 2004). Does this aspect
of cognition have any implication on sensorimotor joint action in individual with ASD?

Here we address how negotiation of a joint action evolves in persons with ASD and in
typically developing (TD) individuals. We specifically looked at differences between dyads
of TD individuals and mixed dyads, involving one ASD and one TD individual.
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8.2 Materials and Methods

8.2.1 Participants

We recruited 26 subjects, aged 22-27 years. Twenty were typically developing (TD) subjects,
and six were diagnosed with high-functioning ASD with no intellectual impairments – see
Table 8.1. ASD participants were recruited at the local psychiatric outpatient facility (Centro
Interzonale Autismo, ASL3 Genovese). The protocol and procedures were conducted in
accordance with the Declaration of Helsinki. All participants provided written informed
consent. Experiments took place in a dedicated room with the presence of a professional
educator and a psychologist.

Table 8.1 Participants demographics for study 2. For the two groups, we indicate the
range and mean (± SE) age, the total number and the number of males, weight, height and
the Autism-Spectrum Quotient (AQ) score

Group # Subjects Label Age Sex Weight (kg) Height (m) AQ score

TD 20 S1-S20 25 ± 3 10 M+ 10 F 70 ± 20 1.73 ± 0.2 12 ± 9

ASD 6 S21-26 25 ± 3 6 M+ 0 F 76 ± 11 1.78 ± 0.03 22 ± 8

Autism diagnosis was established using the Autism Diagnostic Interview – Revised
(ADI-R) and were confirmed by a child psychiatrist with experience of autism spectrum
diagnosis. Participants were excluded if they had other neuromotor disorders, obsessive
compulsive disorder, attention deficit hyperactivity disorder (ADHD), with exception of
anxiety disorder. Before the experiment session, each individual were evaluated with Autism-
Spectrum Quotient (AQ) questionnaire (Baron-Cohen et al., 2001b), Italian version (Ruta
et al., 2012). The AQ questionnaire comprises 50 questions, assessing 5 different areas (10
questions each): social skills, attention switching, attention to detail, communication, and
imagination.

Participants were paired by matching their body mass index (BMI) and their Edinburgh
Handedness score Oldfield (1971) and were grouped into 2 categories (either TD + TD,
control dyad or ASD + TD, mixed dyad). The demographic data of dyad groups are shown
in Table 8.2.
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Table 8.2 Dyad description. Subjects were grouped into 2 categories (control or mixed) by
matching with their BMI.

Dyad # Type Sub ject1 BMI1 Sub ject2 BMI2

D1 control S1 22.6 S11 20.2
D2 control S2 18.9 S12 19.5
D3 control S3 23.4 S13 21.5
D4 control S4 17.9 S14 18.8
D5 control S5 23.5 S15 20.7
D6 control S6 19.1 S16 19.6
D7 control S7 23.6 S17 21.8
D8 mixed S21 24.1 S8 26.5
D9 mixed S22 20.9 S9 21.2

D10 mixed S23 20.7 S10 21.6
D11 mixed S24 24.9 S18 26.1
D12 mixed S25 24.5 S19 26.2
D13 mixed S26 22.6 S20 23.3

8.2.2 Experimental setup and protocol

The joint motor task for the this study was a modified version of the task used for healthy
subjects in the previous chapter. Briefly, subjects sat in front of a computer screen and
grasped the handle of a three-dimensional haptic interface (Novint Falcon). They could not
see or hear each other, and were not allowed to talk. The experimental apparatus is depicted
in Figure 5.1.a. The subjects were instructed to perform reaching movements in the vertical
plane, between the same start point (displayed as a white circle, ⊘ 1 cm) and the same target
point (yellow circle, ⊘ 1 cm), but through different via-points. In a reference frame centred
on the robot workspace (one for each subject), with the X axis aligned with the left-right
direction and the Y axis aligned with the vertical direction, the start point was placed in the
(-5, 0, 0) cm position and the target point was placed in the (5, 0, 0) cm position. Hence the
start and the target point had a horizontal distance of 10 cm. The subjects were also instructed
to keep their movements as planar as possible, i.e. by keeping the depth, Z coordinate within
the range (18-26 cm) from the origin of the workspace. The current positions of the end
effectors, x1 and x2, were continuously displayed to each partner, as⊘ 0.5 cm circular cursors
on their respective screens, coloured in green if the depth was correct and in red otherwise.

In a separate experiment – an haptic tracking task – we assessed the participants’ ability
to perceive an haptic force during movements guided by an expert – see Figure 8.1.b.
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Figure 8.1 Experimental apparatus and protocol. (a), Partners in a dyad were connected
through a virtual spring. (b), Force perception task. Subjects must track the movements of a
‘master’, by feeling the interaction force. (c), Joint action task
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The experiment was organised into epochs of 12 movements each. The experimental
protocol consisted of three phases: (i) baseline (3 epochs), (ii) training ( 12 epochs) and
(iii) after-effect (2 epochs) for a total of 18 × 12 = 216 movements. During the baseline
phase the interaction forces were turned off, and each subject performed on their own (’solo’
performance). During the training phase the subjects were mechanically connected, but in
randomly selected trials (catch trials) within each epoch (1/6 of the total, i.e. 2 trials per
epoch) the connection was removed. The connection was permanently removed during the
after-effect phase. The experiment duration for joint motor action task was about 45 minutes
– see Figure 8.1.(c).

The experimental protocol for the haptic tracking task consisted of two phases: (i)
baseline (one epoch), and (ii) training (five epochs) for a total of 6 × 12 = 72 movements.
Each experiment lasted for about 20 minutes. The two tasks were administered in random
order.

To modify the paradigm to make it more suitable for ASD subjects, we created three
game-like scenarios –see Figure 8.2. We replaced start, target and via-points with images
and made it more colourful and engaging. Additionally, we provided 2 baseline sessions
for familiarisation with the setup and task. After each movement, a score was displayed
– computed as explained in the previous chapter – accompanied by different sounds of
appreciation.

8.2.3 Data analysis

Hand trajectories and robot-generated forces were sampled at 100 Hz and stored for subse-
quent analysis. The data samples were smoothed by means of a 4th order Savitzky-Golay
filter with a 370 ms time window (cut-off frequency: 7.5 Hz). We used the same filter to
estimate velocity and acceleration. We identified the start and end times of each trajectory as,
the time instants at which the speed crossed a threshold of 2 cm/s.

In the analysis, we specifically focused on the temporal evolution of the trajectories
and on signs of collaboration between partners within the same dyad. Collaboration can be
characterised in terms of both movement kinematics and movement kinetics. We developed
a number of performance indicators to characterise collaboration. Data were analysed using
MATLAB.

Most of the performance indicators are defined as same as in the previous chapter. In
short, we have interaction force (IF) as dyad level indicator, is calculated as IF = 1

T ∑t ∥F(t)∥,
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Subject 1 Subject 2

Scene 1

Scene 2

Scene 3

Bird

Pirate

Basketball 

player

Figure 8.2 Graphic environment. The graphic environment includes three different scenar-
ios, switched after each epoch of training to keep the level of motivation of the participants.
The same environments have been used both experiments. Each scene consists of a back-
ground and four small images, called sprites, each corresponding to one of the characteristic
elements of each our basic motor task, the start and end points and the two via points. The
cursor is one animated sprite, obtained by alternating the display of two still images, which
gives more reality to each of these scenes. For example, in scene 1, a tree (start) and nest
(target), a bird (cursor) have to fly from tree to nest by picking a worm (via point). Similarly,
for scene 2, a pirate has to move from ship to a treasure box by picking a key, in scene 3, a
player has to run from start point to basket by collecting a ball. Audio queues were provided
at the start and end of the movements.
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where F(t) is the interaction force (equal and opposite for the two partners in the dyad). less
interaction force would point at a greater collaboration.

A sign of collaboration is that each subject, while passing through his/her own via-point,
also gets very close to his/her partner’s. This can be quantified in terms of the Minimum
via-point distance (MDi j), defined as the minimum value of the distance of subject i to the
j-th via-point(MDi j = mint ||xi(t)− xV P j|| with i, j = 1,2. If i ̸= j this quantity reflects how
close each subject gets from his/her partner’s via-point.

Looking at the power developed by each subject would provide information on whether
the subjects move actively, or are passively pulled by their partner through the mechanical
coupling. To quantify this, we calculated the power (Pi), defined as the scalar product of the
interaction force Fi(t) and the velocity vector vi(t) of each of the subjects. We specifically
focused on the average power calculated in the 300ms interval taken just before the crossing
of each via-point. We defined this as Leadership Index, denoted as LIi j this value for the i-th
subject and the j-th via-point.

As for the haptic tracking task, as indicator of the performance of each subject we
took the mean value of Tracking Error (T Ei) , defined as the average difference between
the xi(t) positions of the subject’s hand with that of an expert, xM(t) for each movement
(T Ei =

1
T ∑t ∥xi(t)− xM(t)∥).

We expect that task performance at subjects and dyad level evolves with time (learning)
and is affected by the amount of information that each subject has available about his/her
own partner. To test this, for all the above indicators we ran a repeated-measures ANOVA
with group – control dyad (TD+TD) vs mixed dyad (ASD+TD) – and Time (early - epoch 1
and late - epoch 11) as factors. If a main effect was found, Tukey’s HSD (honest significant
difference) post-hoc test was used to examine the differences. Data were analysed using
MATLAB and statistical tests were performed using R and Microsoft Excel. Statistical
significance was considered at P < 0.05 level for all tests.

8.3 Results

8.3.1 Questionnaire data

We first looked at the AQ score of the two subjects groups. The score of subjects in the
TD group was 12± 9 (mean ± SE) whereas that of ASD subjects was 22± 8 – see also
Table 8.1. The difference between the two groups (TD vs ASD) is statistically significant
(t-test 2 tailed for unequal variances, t6 =−3.6,P = 0.01). Significant differences were also
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Table 8.3 Summary of AQ score for all participants

No
Subject

label Type Total AQ
Social
skill

Attention
switiching

Local
details Imagination Communication

1 S1 TD 13 0 2 5 4 2
2 S2 TD 12 1 3 4 1 3
3 S3 TD 17 5 3 4 3 2
4 S4 TD 20 0 4 9 6 1
5 S5 TD 9 1 3 3 1 1
6 S6 TD 13 2 2 6 2 1
7 S7 TD 4 0 1 1 2 0
8 S8 TD 8 1 3 3 0 1
9 S9 TD 15 1 4 7 1 2
10 S10 TD 15 2 4 4 3 2
11 S11 TD 15 1 6 3 3 2
12 S12 TD 16 1 5 4 4 2
13 S13 TD 11 0 5 2 1 3
14 S14 TD 11 1 1 6 2 1
15 S15 TD 17 0 7 5 2 3
16 S16 TD 8 1 1 2 1 3
17 S17 TD 18 1 5 6 3 3
18 S18 TD 13 3 3 3 0 4
19 S19 TD 11 1 1 2 4 3
20 S20 TD 3 0 1 2 0 0
21 S21 ASD 14 1 1 5 2 5
22 S22 ASD 28 4 5 4 7 8
23 S23 ASD 26 4 6 4 6 6
24 S24 ASD 20 4 6 5 2 3
25 S25 ASD 30 8 9 4 7 2
26 S26 ASD 11 2 1 4 4 0

found when looking at individual subsections of the AQ questionnaire, namely social skill
(t6 =−3.9,P = 0.008), and imagination (t7 =−3.1,P = 0.01), but not attention switching
(t7 = −1.9,P = 0.08), attention to local detail (t14 = −0.86,P = 0.41), or communication
(t5 =−1.7,P = 0.14). The AQ score for individual subjects are displayed in Table 8.3

8.3.2 Movement trajectories

We are specifically interested in comparing the interaction strategies in a mixed dyad with
participants with ASD and age-matched, BMI matched control dyads. We studied a total
of thirteen dyads, out of which seven control (TD+TD) and six mixed (ASD+TD). The
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Baseline Early training Late training Washout

a

b

Figure 8.3 Movement trajectories. (a), Movement trajectory of control dyads (TD+TD).
Subject 1 (blue), subject 2 (red). (b), Mixed dyad (ASD+TD)

movement trajectories from two typical control and mixed dyads are displayed in Figure 8.3.
Movements were categorised as early training, late training and after-effects. In the control
(TD+TD) group, dyads generally converged to stable and consistent behaviours. Only one
subject in the control group exhibited poor convergence. In the mixed (ASD+TD) group, half
of the ASD subjects (three out of six) exhibited few signs of convergence to a joint behaviour.
The other ASD subjects looked more similar to TD subjects. When the connection was
removed, both TD and ASD subjects quickly returned to the baseline situation. Only few
subjects showed retention in the after-effect phase.

8.3.3 Dyad behaviour: Interaction force and score

The overall temporal evolution of interaction force and average dyad score for both groups are
shown in Figure 8.4. Overall, subject pairs improved their score with training (F1,10 = 11.05;
P = 0.0005) but we did not find any difference between the groups (P = 0.45). Interaction
force also decreases with training (F1,10 = 15.35; P = 0.003) but, again, we found no
differences between groups (P = 0.69).

8.3.4 Minimum distance to partner’s via-point

A similar behaviour can be observed in the temporal evolution of the minimum distance from
the partner’s via-point – see Figure 8.5. In both groups and in both subjects in the dyad, the
minimum distance (MD) decreases over trials and quickly washes out when the connection
is permanently removed (after-effect phase). The overall time effect was significant for
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Figure 8.4 Score and Interaction force change with training. Magnitude of score (a) ,
Magnitude of the interaction force (rms), (c), over trials, for the control dyad , mixed dyad
groups respectively). (b), Score at the beginning, middle and at the end of training. (d),
Interaction force at the beginning, middle and at the end of training. The areas in grey denote
the training phase. Error bars denote the standard error (SE)

both Subject 1 and Subject 2 (MD12: F1,10 = 18.19; P = 0.0016; MD21: F1,10 = 22.58;
P = 0.0008). However, we found no significant group effects and no significant group-time
interactions. Although the ASD subject (subject 1) in the mixed group exhibited on average
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a greater minimum distance to V P2 (MD12) at the end of training, post-hoc analysis revealed
no significant group differences in the final (late) minimum distances. Figure 8.6 summarises
the effect of learning in terms of MD in both groups.

a b

c

Early Middle Late

Epoch

0

0.01

0.02

0.03

0.04

0.05

D
is

ta
n
ce

 [
m

]

Subject 1

d

Early Middle Late

Epoch

D
is

ta
n
ce

 [
m

]

Subject 2

Figure 8.5 Minimum distance in dyad groups. (a,b). Minimum distance from partner’s
via-point for subject 1 (MD12) vs subject 2 (MD21) for control dyads and mixed dyads (b).
Mean of minimum distance for each dyad groups in the early, middle and late training phase
for subject 1 and subject 2 (c,d). In mixed dyads, Subject 1 is always ASD
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Figure 8.6 summarises the findings at individual subjects level. The figure confirms the
initial observations, that only one subject in the control group exhibits poor convergence of
MD12. In the mixed group (ASD+TD), half of the ASD subjects (three out of six) did not
reduce their MD12 after training, whereas the other ASD subjects looked more similar to TD
subjects.
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Figure 8.6 Learning in dyads. Minimum distance from partner’s VP for subject 1 (MD12)
vs subject 2 (MD21) from baseline to end training (filled circles) for both groups.

8.3.5 Leadership index and emergence of roles

We then examined if there is a specialised leader-follower strategy in mixed dyads. Figures
8.7 and 8.8 show the leader-follower strategies – expressed in terms of interaction power –
from the control and mixed dyads, for both subject 1 and subject 2.

For a more quantitative analysis at population level, we focused on the leadership indices
(LI) for both subjects at both via-points, at the end of training (‘late’ epoch). These results are
summarised in Figure 8.9. As expected, the subjects in the control (TD+TD) group alternated
leader roles when crossing their own via-point (negative LI11 and LI22) and follower roles
when crossing their partner’s (positive LI12 and LI21).

The mixed dyads exhibited a qualitatively different behaviour. When crossing V P1 –
where Subject 1 (ASD) is aiming – both subjects exhibit small interaction power, suggesting
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Figure 8.7 Leader-follower strategy in control dyads. The colours indicate the magnitude
of the interaction power, per time instant and per trial. Magenta: negative power, i.e. leader;
Cyan: positive power, i.e. follower. Blue dotted lines indicate the time of crossing of
via-point 1. Red dotted lines represent the average time of crossing of via-point 2
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Figure 8.8 Leader-follower strategies in mixed dyads. The colours indicate the magnitude
of the interaction power, per time instant and per trial. Magenta: negative power, i.e. leader;
Cyan: positive power, i.e. follower. Blue dotted lines indicate the time of crossing of
via-point 1. Red dotted lines represent the average time of crossing of via-point 2
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close collaboration. However, when crossing V P2, not only Subject 2 (TD) but also Subject
1 (ASD) behave as leaders. In other words, both subjects move in such a way that their
interaction forces increase. Subject 2 moves toward his via-point, but Subject 1 moves away
from it. This is a sign that Subject 1 moves against collaboration. However this behaviour is
not consistent among all ASD subjects, so that we found no group difference for any of LI11,
LI12, LI21, LI22.

8.3.6 Tracking error

We then turned to the results of the haptic perception experiment. The tracking error (TE) is
shown in Figure 8.10.(a). Although some ASD subject exhibited a greater error, we found no
significant group difference in haptic force perception capability.

Can the poor performance of some ASD subjects in the joint task (Experiment 1) be
explained by poor haptic perception? To test this, we looked at the correlation between
minimum distance from the partner’s via-point (MD) in both dyads with the tracking error
measured in Experiment 2; see Figure 8.10.(b). Indeed we found a significant (N = 26,
R = 0.206, P = 0.01), but only one ASD subject exhibiting large MD12 also exhibited a large
T E. For this subject the inability to collaborate may be explained by a poor haptic perception,
but this does not seem to be the case in general.

8.3.7 Correlation with the AQ score

To further analyse the variability of performance observed in ASD subjects, we also looked
at the correlation between MD, TE and the total AQ score – see Figure 8.11.(a,b). Both
correlations were not significant for either TD or ASD subjects. Somehow surprisingly, the
ASD subjects exhibiting lack of collaboration were the ones with a closer to normal AQ
score (Figure 8.11).

8.4 Discussion

The main objective of the study was to understand if people with ASD are capable of
establishing collaboration with a partner in a partially conflicting joint motor task. I adopted
the same paradigm used in Chapter 7. I compare the joint motor action strategy of a typically
developing subject pair (control dyad) with that performed by a mixed dyad formed by an
ASD and a typically developing subject.
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Figure 8.9 Leadership index (LI) in the late epochs for control and mixed dyad subjects.
Leadership index (LI) is the average power calculated in the 300ms interval just before each
via-points. (a), LI11 (left) is the leadership index for subject 1 at V P1, similarly LI12 is for
subject 1 at V P2. Negative value of power shows subject 1 is the leader till his via-point and
follower at his partner’s via-point. Similarly, (b), leadership index for subject 2 at V P1 (left)
and V P2 (right).
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subject group (TD or ASD) over trial is shown. (b), Correlation between minimum distance
from partner’s via-point and tracking error
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Figure 8.11 Correlation with the AQ score. (a), Correlation between minimum distance
from partner’s VP and total total AQ score. (b), Correlation between tracking error and total
AQ score

Since their infancy, persons with an autism spectrum condition demonstrate motor
impairments and an inability to appropriately adapt their movements (Teitelbaum et al.,
1998). In addition, individuals with autism commonly lack the ability to extrapolate their
partner’s goal by observing their actions alone (Cattaneo et al., 2007). Based on these findings,
we hypothesised that ASD subjects may be unable to estimate a partner’s desired movement
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from observing haptics forces alone. If internal models are crucial for understanding partner’s
intentions (Mostofsky et al., 2009), then individuals who exhibit an ability to perform joint
motor actions may also have better success learning more complex social interactions.

Our experimental results suggest that some ASD subjects exhibit a difficulty in estab-
lishing a collaboration, which can only be partly explained in terms of defective haptic
perception. However, other ASD subjects are not distinguishable from TD subjects. Because
of the small number of subjects these results should be taken cautiously and need to be
confirmed in a larger study.

However, the literature on impaired coordination in persons with ASD is somehow
inconsistent. Several studies reported impairments (i) in the perceptual level (Leekam et al.,
2007; Paton et al., 2012), (ii) in adaptive capabilities (Teitelbaum et al., 1998), (iii) in the
ability to predict the outcomes of own actions or of external stimuli, and (iv) in the ability to
understand their partner’s intentions (Cattaneo et al., 2007). However, other studies reported
no differences with respect to normal subjects or an even better performance (Blakemore
et al., 2006; Nakano et al., 2012). For instance persons with ASD exhibit normal anticipatory
eye movements (Aitkin et al., 2013; Ego et al., 2016).

Taken together, these results suggest that ASD subjects are characterised by a wide
spectrum of symptoms which may involve different aspects of the sensorimotor system
(sensory performance, ability to establish and adapt and internal model of dynamics and/or the
partner, etc) and therefore may result in different capabilities of establishing a collaboration
with a partner.

8.5 Conclusions

Although the results are not conclusive, we still believe that our proposed experimental
framework may be an useful starting point to achieve a better understanding of the neuro-
physiological and computational substrate of individuals’ ability to coordinate actions with
a partner. In addition to probing the motor aspects of Theory of Mind, motor paradigms
involving physical interpersonal interaction may be used to develop forms of exercise to train
persons with ASD in order to improve their interaction capabilities.



Chapter 9

Conclusions and future directions

In three words I can sum up everything

I’ve learned about life: It goes on.

Robert Frost

9.1 Conclusions

We human beings possess a remarkable ability to coordinate our actions with others to reach
common goals. Several mechanisms can be identified that are involved in joint motor action.
Studies on psychology address theories on non-verbal and non-haptic joint motor actions.
However, joint motor action has not been investigated much until the last ten years or so.
In this regard, there is still a great number of questions that need to be addressed on joint
motor actions. From a mathematical point of view, joint motor actions can be studied using
game theory, using a set of cost functions to organise, understand and reproduce human
motor behaviours of interactions with partners. Once the nature of the underlying motor task
has been characterised, existence and uniqueness of a Nash equilibrium can be established.
This thesis’s main focus is on the sensorimotor interactions between two individuals that
perform joint motor tasks. It is the first study to use psychophysics and a differential game
theory-based computational model that accounts for learning in joint motor action with
partial or incomplete information.

Chapter 5 presented a dual-haptic interface to investigate joint motor interaction between
two humans. A generic, modular software environment has been developed. The modularity
of the software allows to implement various functionality for the experimental task in an
easy and coordinated manner. In Chapter 6, I introduced a modelling framework to study
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sensory motor collaborative strategies between to humans, where the task and interacting
subjects’ constraints are described by a pair of cost functionals. In the specific example
of a sensorimotor version of the ‘battle of sexes’ game, simulation results demonstrate
that the model predicts that optimal collaboration between partners (Nash equilibrium) is
characterised by overlapping paths, approximately same crossing times at both via-points
and near-zero interaction forces. In contrast, in the no-partner model, the overlap between
paths is incomplete and each partner crosses their partner’s via-point with a significant
delay. Also, the interaction powers suggest that partners switch between leader-follower
roles during movements. I modelled the time course of learning a joint action under the
theoretical framework of ‘fictitious play’. To our knowledge, this is the first and most
complete computational model which accounts for learning joint action with partial or
incomplete information.

The simulations suggest that different ‘roles’ during an interaction can be predicted by
the interaction modality. The modelling framework uses differential game theoretic based
approach, using set of quadratic cost functionals to detect, understand and reproduce motor
behaviours of joint interaction with a partner. Game theory methods yield shared decision
making, allowing subjects to have different utility functions, which help to characterize the
existence and uniqueness of a Nash equilibrium point. For the simplicity our framework
omitted multiplicative noise in defining sensory and motor system, although those models
are more practical than additive noise model, is much more complex when it comes to game
theoretic models.

In Chapter 7, I studied how subject pairs in a dyad establish collaboration in partially
conflicting reward based point-to-point reaching task–a sensorimotor form of ‘battle of sexes’
game. In the task, I manipulated the amount of information available to the partner. I have
found that information about the partner deeply affects speed and outcome of learning a
collaboration also when more information about the partner action is available, the interaction
strategies come closer to Nash equilibrium.

In Chapter 8, I investigated how negotiation of a joint action evolves in persons with
ASD and in typically developing (TD) individuals. We specifically looked at differences
between dyads of TD individuals and mixed dyads, involving one ASD and one TD individual.
Our experiment results suggest that some ASD subjects exhibit difficulty in establishing a
collaboration, which can only be partly explained with their ability to perceive haptic force.
Since autism is characterised by large spectrum symptoms, this need to tested with large
population study.
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9.2 Future directions

Any interesting body of research inevitably leads to more questions beyond those that
stimulated the initial studies. Our results suggest that sensorimotor joint action can be
understood by game theoretic framework. Moreover, the general design of our experiments
provides a tool to translate classical games into continuous motor games and might provide a
new avenue for studying human motor interactions, many questions remain open and will
have to be addressed in future work.

While the studies presented in this thesis were not directly linked to rehabilitation,
one of the major motivational factors that drove me to initiate this study was to gain a
better understanding on the processes behind interactions that are commonly seen during a
patient-therapist interaction. Physiotherapist assisting stroke or spinal cord injury patient is a
common example of sensorimotor joint action. I strongly believe that better understanding of
these processes will translate into simpler and more efficient rehabilitation protocols without
compromising recovery in future.

Finally, this thesis raises new questions that, when answered, may further expand current
definitions and a small step towards an ultimate understanding of autism spectrum disorder.
It is not clear how the brain implement the internal model of a partner in sensorimotor
interactions. So far, there has been only limited use of game theory and experimental tools to
link strategic thinking Theory of Mind (ToM). Game theoretic models could also be useful
in understanding autism. Future studies based on psychophysics and neuroimaging offers a
useful method for future exploration of whether key subcomponents of formal ToM models
predict brain activity in ToM regions.

⋆⋆⋆



Appendix A

Autism-Spectrum Quotient (AQ)
Questionnaire (Italian and English
versions)



 
Il Quoziente di Spettro Autistico (AQ)  

Eta’ 16+ 
 

SPECIMEN, SOLO PER USO DI RICERCA. 

 
Per informazioni dettagliate si prega di vedere: 
 
S. Baron-Cohen, S. Wheelwright, R. Skinner, J. Martin and E. Clubley, (2001) 
The Autism Spectrum Quotient (AQ) : Evidence from Asperger Syndrome/High Functioning Autism, 
Males and Females, Scientists and Mathematicians 
Journal of Autism and Developmental Disorders 31:5-17 
 
 
 

Nome e Cognome:...........................................................................................   Sesso:………..……

    

Data di nascita:.............................................................    Data odierna:............................................. 

            _ 

 

 

Come compilare il questionario 

Sotto sono riportate una lista di affermazioni. Leggi ciascuna affermazione molto attentamente e 

indica quanto fortemente sei in accordo o in disaccordo con esse, cerchiando la tua risposta.  

 

NON SALTARE ALCUNA AFFERMAZIONE. 

 

Esempio: 

E1. Sono disposto a correre dei rischi. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente in 
disaccordo 
 

E2. Mi piace giocare ai giochi da 

tavolo. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente in 
disaccordo 
 

E3. Trovo facile imparare a suonare 

strumenti musicali. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente in 
disaccordo 
 

E4. Sono affascinato dalle altre culture. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente in 
disaccordo 
 

 
 
 



 
 

1. Preferisco svolgere le attivita’ con 
gli altri piuttosto che da solo. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

2. Preferisco fare le cose sempre nello 
stesso modo. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

3. Se cerco di immaginare qualcosa, 
trovo molto semplice creare 
un’immagine nella mia mente. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

4. Frequentemente vengo cosi’ 
fortemente assorbito da una cosa 
che perdo di vista le altre cose. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

5. Spesso noto piccoli suoni che gli 
altri non notano. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

6. Di solito noto i numeri di targa 
delle macchine o simili sequenze di 
informazioni. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

7. Frequentemente le altre persone mi 
dicono che quanto ho detto e’ 
scortese, anche quando io penso sia 
cortese. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

8. Quando leggo una storia, riesco 
facilmente a immaginare come i 
personaggi potrebbero apparire. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

9. Sono affascinato dalle date. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

10. In un gruppo sociale, riesco 
facilmente a seguire le 
conversazioni di parecchie persone. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

11. Trovo le situazioni sociali semplici. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

12. Ho la tendenza a notare dettagli che 
gli altri non notano. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

13. Preferisco andare in biblioteca 
piuttosto che ad una festa. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

14. Trovo semplice inventare racconti. 
 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

15. Mi trovo attratto piu’ fortemente 
dalle persone che dalle cose. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

16. Tendo ad avere interessi molto forti 
e mi innervosisco se non posso 
perseguirli. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

17. Mi piace chiacchierare. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 



 
18. Quando parlo, non e’ sempre facile 

per gli altri inserirsi nella 
conversazione. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

19. Sono affascinato dai numeri. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

20. Quando leggo una storia, trovo 
difficile capire le intenzioni dei 
personaggi. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

21. Non amo particolarmente leggere 
romanzi. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

22. Trovo difficile fare nuove amicizie. Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

23. Noto costantemente degli schemi 
nelle cose. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

24. Preferisco andare al teatro piuttosto 
che al museo. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

25. Non mi infastidisco se le mie 
routine quotidiane vengono 
disturbate. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

26. Mi capita frequentemente di non 
sapere come continuare una 
conversazione.  

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

27. Trovo semplice “leggere tra le 
righe” quando qualcuno mi parla. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

28. Di solito mi concentro di piu’ 
sull’intera figura che su piccoli 
dettagli. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

29. Non sono molto bravo a ricordare i 
numeri telefonici. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

30. Di solito non noto piccoli 
cambiamenti in una situazione, o 
nell’aspetto di una persona. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

31. So distinguere se chi mi ascolta si 
sta annoiando.  

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

32. Trovo semplice fare piu’ di una 
cosa contemporaneamente. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

33. Quando parlo al telefono, non sono 
sicuro quando e’ il mio turno di 
parlare. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

34. Amo fare le cose spontaneamente. 
 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

35. Sono spesso l’ultimo a capire il 
punto di una battuta. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 



 

 
Grazie per aver compilato il Questionario!∗ 
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               ©MRC-SBC/SJW Feb1998. 
Traduzione validata eseguita dalla Dott.ssa Liliana Ruta, specialista in Neuropsichiatria Infantile, 
Universita’ di Catania – ruta@policlinico.unict.it  

36. Trovo semplice capire cosa una 
persona sta pensando o provando, 
semplicemente guardandola in 
faccia. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

37. Se c’e’ un’interruzione, io posso 
ritornare a cio’ che stavo facendo 
molto velocemente. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

38. Sono bravo nella conversazione 
sociale. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

39. Le persone spesso mi dicono che 
persevero sempre sulla stessa cosa. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

40. Quando ero piccolo, mi piaceva fare 
giochi di finzione con altri bambini. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

41. Mi piace raccogliere informazioni 
su categorie di cose (es. tipi di 
macchine, tipi di uccelli, tipi di 
treni, tipi di piante, etc.). 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

42. Trovo difficile immaginarmi nei 
panni di qualcun’altro.  

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

43. Mi piace pianificare attentamente 
ogni attivita’ a cui partecipo. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

44. Mi piacciono gli eventi sociali. 
 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

45. Trovo difficile capire le intenzioni 
delle persone. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

46. Le situazioni nuove mi rendono 
ansioso. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

47. Mi piace incontrare persone nuove. 
 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

48. Sono un buon diplomatico. 
 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

49. Non sono molto bravo a ricordare la 
data di nascita delle persone 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 

50. Trovo semplice fare giochi di 
finzione con i bambini. 

Assolutamente 
daccordo 

Parzialmente 
daccordo 

Parzialmente 
in disaccordo 
 

Assolutamente 
in disaccordo 
 



 

The Adult Autism Spectrum Quotient (AQ)  

Ages 16+ 

 

SPECIMEN, FOR RESEARCH USE ONLY. 

 

For full details, please see: 

 

S. Baron-Cohen, S. Wheelwright, R. Skinner, J. Martin and E. Clubley, (2001) 

The Autism Spectrum Quotient (AQ) : Evidence from Asperger Syndrome/High 

Functioning Autism, Males and Females, Scientists and Mathematicians 

Journal of Autism and Developmental Disorders 31:5-17 

 

 

 

Name:...........................................     Sex:........................................... 

 

Date of birth:...................................     Today’s Date................................. 

 

 

How to fill out the questionnaire 

Below are a list of statements. Please read each statement very carefully and rate how strongly 

you agree or disagree with it by circling your answer. 

 

 DO NOT MISS ANY STATEMENT OUT. 

Examples 

E1. I am willing to take risks. definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

E2. I like playing board games. definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

E3. I find learning to play musical instruments easy. definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

E4. I am fascinated by other cultures. definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 



 

 

1. I prefer to do things with others rather than on 

my own. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

2. I prefer to do things the same way over and over 

again. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

3. If I try to imagine something, I find it very easy 

to create a picture in my mind. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

4. I frequently get so strongly absorbed in one 

thing that I lose sight of other things. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

5. I often notice small sounds when others do not. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

6. I usually notice car number plates or similar 

strings of information. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

7. Other people frequently tell me that what I’ve 

said is impolite, even though I think it is polite. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

8. When I’m reading a story, I can easily imagine 

what the characters might look like. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

9. I am fascinated by dates. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

10. In a social group, I can easily keep track of 

several different people’s conversations. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

11. I find social situations easy. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

12. I tend to notice details that others do not. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

13. I would rather go to a library than a party. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

14. I find making up stories easy. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

15. I find myself drawn more strongly to people than 

to things. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

16. I tend to have very strong interests which I get 

upset about if I can’t pursue. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

17. I enjoy social chit-chat. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

18. When I talk, it isn’t always easy for others to get 

a word in edgeways. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 



 

19. I am fascinated by numbers. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

20. When I’m reading a story, I find it difficult to 

work out the characters’ intentions. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

21. I don’t particularly enjoy reading fiction. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

22. I find it hard to make new friends. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

23. I notice patterns in things all the time. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

24. I would rather go to the theatre than a museum. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

25. It does not upset me if my daily routine is 

disturbed. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

26. I frequently find that I don’t know how to keep a 

conversation going. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

27. I find it easy to “read between the lines” when 

someone is talking to me. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

28. I usually concentrate more on the whole picture, 

rather than the small details. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

29. I am not very good at remembering phone 

numbers. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

30. I don’t usually notice small changes in a 

situation, or a person’s appearance. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

31. I know how to tell if someone listening to me is 

getting bored. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

32. I find it easy to do more than one thing at once. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

33. When I talk on the phone, I’m not sure when it’s 

my turn to speak. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

34. I enjoy doing things spontaneously. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

35. I am often the last to understand the point of a 

joke. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

36. I find it easy to work out what someone is 

thinking or feeling just by looking at their face. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

37. If there is an interruption, I can switch back to 

what I was doing very quickly.  

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 



 

38. I am good at social chit-chat. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

39. People often tell me that I keep going on and on 

about the same thing. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

40. When I was young, I used to enjoy playing 

games involving pretending with other children. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

41. I like to collect information about categories of 

things (e.g. types of car, types of bird, types of 

train, types of plant, etc.). 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

42. I find it difficult to imagine what it would be 

like to be someone else. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

43. I like to plan any activities I participate in 

carefully. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

44. I enjoy social occasions. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

45. I find it difficult to work out people’s intentions. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

46. New situations make me anxious. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

47. I enjoy meeting new people. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

48. I am a good diplomat. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

49. I am not very good at remembering people’s 

date of birth. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

50. I find it very easy to play games with children 

that involve pretending. 

 

definitely 

agree 

slightly 

agree 

slightly 

disagree 

definitely 

disagree 

 

Developed by: 

The Autism Research Centre 

University of Cambridge 

 

 
 

 MRC-SBC/SJW Feb 1998 
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