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Abstract

Motivated by the spectrum scarcity problem, Cognitive Radios (CRs) have

been proposed as a solution to opportunistically communicate over unused

spectrum licensed to Primary users (PUs). In this context, the unlicensed

Secondary users (SUs) sense the spectrum to detect the presence or ab-

sence of PUs, and use the unoccupied bands without causing interference

to PUs. CRs are equipped with capabilities such as, learning, adaptabil-

ity, and reconfigurability, and are spectrum aware. Spectrum awareness

comes from spectrum sensing, and it can be performed using different

techniques. Most popular techniques include matched filters, energy de-

tectors, and cyclostationary feature detector (CFD). Among these, CFD is

used for spectrum sensing since matched filtering yields a high complexity

architecture, and energy detection is sensitive to noise and fails to differ-

entiate among signals. CFD utilize the cyclostationarity of the signals by

detecting the spectral peaks in spectral correltion function (SCF), which

is sparse in both angular an cyclic frequency domain. Moreover, CFD can

differentiate among different signals, interfering signals and noise by using

the cyclostationary spectral correlation features.

Wide-band spectrum sensing is a key enabling functionality for CRs, since

sensing multiple channels simultaneously increases the probability of find-

ing spectrum holes and hence increase the throughput of the system. Due

to prioritized spectrum sharing between CRs and PUs, it is not only suf-

ficient to detect occupancy but also distinguish among different users in

order to manage interference and jamming situations in CR networks.

For, this purpose CFD is proposed as a means of extracting the cyclic

features of the detected signals in each frequency sub-band. Once the sig-

nal features are extracted, a previously trained Artificial Neural Network

(ANN) is applied to determine the types of the signals (licit or illicit).

When the CRs are operating on a wide-band (from few hundred MHz to

several GHz), the spectrum sensing task becomes more complex and could



impose a large overhead to the sensing system due to high sampling rate

analog-to-digital (A/D) converters, and heavy memory overhead. Com-

pressive sensing is adopted as a solution to reduce the overhead of A/D

conversion and allow us to estimate wide-band with sub-Nyquist rate sam-

pling. After, the Nyquist rate signal has been recovered, spectral correla-

tion function (SCF) is applied to extract the cyclic features of wide-band

signal. An ANN is trained for sub-Nyquist rate samples to classify each

signal as a legitimate or jamming signal.

Finally, a large dataset is created which consists of real-data generated

by spectrum measurements. The main purpose for which the dataset has

been created is research in the field of PHY-layer security and CR. A

Software Defined Radio (SDR) platform has been used to generate modu-

lated signals in a specified band which are stored for off-line applications.

Further, the cyclic intelligent algorithm is validated on this real dataset.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Cognitive radios have been proposed as a promising solution for the future spec-

trum scarcity problem. The term cognitive radio has been used to intelligent radio

devices that are capable of learning and adapting to their radio frequency environ-

ment. Cognitive radios are built upon software defined radios, in which most of the

signal processing tasks are being handled by general-purpose processors, instead of

specific-purpose hardware as in legacy radio systems.

In order for cognitive radio to work, spectrum sensing is the primary task needed

to be performed by a cognitive radio terminal. Many sensing techniques have been

proposed over the last decade based on matched filter, energy detection and cyclosta-

tionary detection. The matched filter detector can detect the primary signals with

very high accuracy, but the comprehensive prior knowledge for primary user’s signal is

needed. Moreover, if the environment changes, the detector’s performance degrades.

Energy detector is easy to implement but it fails at low signal to noise ratios. More-

over, it is unable to differentiate among different types of signals. On the other hand,

cyclostationary feature detector, due to its good performance at low signal to noise

ratios, has gained much attention from the research community. Furthermore, cyclo-

stationary feature detector is able to accurately characterize or classify the spectrum,

which is a key aspect for certain cognitive radio application areas, and is an essential

intermediate step between detection and demodulation. Specifically in communica-

tion electronic warfare, a cognitive radio system may be required to classify different

types of signals in wide-band spectrum to avoid any potentially harmful interferes /

jammers.

Radio frequency jamming is the process of illegitimate radio frequency transmis-

sion on one or more channels with the aim of disrupting the communication of the
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targeted system. Jamming attacks can noticeably affect the performance of wire-

less communication systems and can lead to significant overload in terms of data

re-transmission and increased power consumption. This thesis is not only focused on

detection of jamming attacks, but also to classify legitimate wave forms (modulation

scheme) in wide-band radios. It is anticipated that studies presented in this thesis will

create an impact on future tactical battlefield solutions. Furthermore, it is expected

that outcome of the presented research will be helpful in increasing the throughput

of the commercial communication systems, by allowing multiple signals to coexist

within the same band.

1.2 Thesis Contributions

The main research contributions of this thesis can be summarized as follows:

• Designed a new algorithm for wide-band spectrum characterization using spec-

tral correlation and artificial neural network.

• Designed a new algorithm for wide-band spectrum characterization using com-

pressed sensing for sub-Nyquist rate spectrum estimation.

• Designed an robust and energy efficient algorithm for signal classification in

wide-band radios using compressed sensing and artificial neural network.

• Performances of the above designed algorithms are evaluated for various jam-

ming attacks. For example, tone, modulated and stealthy (reactive and adap-

tive) jamming attacks.

• A large dataset is created consisting of real-data generated by spectrum mea-

surements. The main purpose of the dataset is to use it for research in the field

of PHY-layer security and cognitive radios. A military Software Defined Ra-

dio (SDR) platform has been used to generate modulated signals in a specified

band, which are stored for off-line applications.

• Practically implemented, designed spectrum characterization algorithm on the

created dataset.

2



1.3 Thesis Organization

The thesis consist of eight chapters in total which are based on various peer-reviewed

journal and conference papers. Each of the chapters serve as a self-contained text,

which introduce all the relevant concepts that are required to comprehend the topic

they discuss. The thesis is organized as follows:

• Chapter 2 gives background on cognitive radio technology, spectrum sensing,

signal classification and other important topics relevant to this thesis. Vari-

ous spectrum sensing and signal classification techniques are briefly discussed.

The motivation for wide-band spectrum sensing is elaborated and compressed

sensing is reviewed in context of wide-band spectrum estimation and charac-

terization. Moreover, various existing implementations of the cognitive radio

test-beds and platforms are discussed briefly in the end.

• Merely, identification of white spaces is not sufficient in cognitive radios. The

spectrum may contain jamming/interfering entities that can target the ongoing

licit transmission. Therefore, for secure communication, it is important to clas-

sify the sensed spectrum into friendly and jamming waveforms. In this context,

a new jammer detection algorithm is proposed in Chapter 3, using spectral

correlation and artificial neural network. The proposed approach assumes a

Wide-band spectrum occupied by various narrow-band signals, which can be

either legitimate or jamming signals. The second order statistics, namely, the

spectral correlation function and artificial neural network are used to classify

each narrow band signal as a legitimate or jamming signal. The algorithm

performance is shown with the help of simulations.

• Chapter 4 presents a new physical layer approach for stealthy jammer detection

in wide-band cognitive radio networks. Stealthy jammer is an adaptive reactive

jammer with same capabilities as a cognitive radio user. These type of jammers

only transmit when a legitimate transmission is detected and stop transmitting

when the legitimate transmission stops. Therefore, the jamming activities of

such jammers are hard to detect by the popular sensing approaches such as

energy detection at physical layer . Hence, we presented in this chapter a novel

cyclostationary feature detector based approach to detect such types of jammers

at physical layer. The proposed algorithm considers a wide-band consisted of

multiple narrow-band sub-bands, which can be occupied by licit or stealthy

jamming signals . The cyclostationary spectral analysis is performed on this

3



wide-band spectrum to compute spectral correlation function. The alpha profile

is extracted from the spectral correlation function and used as input features to

artificial neural network, which classify each signal as a licit signal or a stealthy

jamming signal. In the end, the performance of the proposed approach is shown

with the help of Monte-Carlo simulations under different empirical setups.

• When the radios are operating on a wide-band, the sensing task becomes more

complex due to high-rate sampling, analog-to-digital (A/D) converter require-

ments. In chapter 5, a novel algorithm is proposed for jammer detection in

wide-band cognitive radios using compressed sensing and cyclic spectral analy-

sis. First, the received wideband signal is recovered from sub-Nyquist rate sam-

ples using compressed sensing. Compressed sensing is used to alleviate Nyquist

rate sampling requirements at the receiver A/D converter. After the Nyquist

rate signal has been recovered, a cyclostationary spectral analysis is performed

on this estimated WB signal, to compute spectral correlation function. The

alpha profile is then extracted from spectral correlation function and used to

classify each narrow band signal as a licit signal or illicit signal. This algorithm

is applied to detect three different types of jammers, namely; tone, modulated

and stealthy jammers. The performance is shown with the help of simulations

as jammer detection rate versus the compression rate.

• Chapter 6 presents a cyclostationary-based jammer detection algorithm for

wide-band radios using compressed sensing and artificial neural network. The

proposed approach considers a wide-band spectrum, which is occupied by sev-

eral narrow-band signals. These narrow-band signals can be legitimate signals

or jamming signals. Compressed sensing is used to reduce the overhead of the

analog-to-digital (A/D) conversion and allows one to estimate a wide-band spec-

trum with sub-Nyquist rate sampling. Therefore, proposed algorithm is able to

recover the received wide-band signal from sub-Nyquist rate samples using com-

pressed sensing. After the Nyquist rate signal has been recovered, the second

order statistics, namely spectral correlation function, is computed to extract the

cyclic features of wide-band signal. Finally, a pre-trained artificial neural net-

work is able to characterize each narrow-band signal as a legitimate or jamming

signal. In end, the performance of proposed algorithm is evaluated for various

compression ratios and SNRs to observe the effect of various parameters on the

classification performance.

4



• Chapter 7 is focused on the creation of a large dataset consisting of experimental

data generated by spectrum measurements. A software defined radio platform

is used to generate modulated signals in a specified band which are stored

for off-line applications. Further, newly developed cyclic intelligent algorithm

is validated on real dataset for radio frequency interference mitigation. The

experimental results are shown in form of confusion matrices for various system

configurations.

• Chapter 8 presents some of the major conclusions drawn from the presented

research and details a few future directions that would be taken to further

enhance the presented work.

5



Chapter 2

Background and related work

2.1 Spectrum Scarcity

The Radio Frequency (RF) spectrum is a precious natural resource whose allocation

is governed by various government bodies around the world. Due to fixed assignment

policies, most portions of the usable RF spectrum are already allocated to different

services and systems as shown in Fig. 2.1. On the other hand, transition from voice-

only to multimedia communications is further amplified the need for higher data rate

applications. This fixed assignment of the frequencies and the growing demands for

radio spectrum due to emergence of new technologies has caused spectrum scarcity

[36]. Without addressing spectrum scarcity issue, the development of radio technolo-

gies become unsustainable.

In order to address this problem, innovative techniques must be developed with the

goal of providing new and more efficient methods of utilizing the usable spectrum.

In several spectrum measurement surveys, it has been shown that vast portions of

the licensed spectrum are highly under utilized in various geographical locations at

various times [36, 34, 12]. This is situation is shown in Figures 2.2, 2.3 and 2.4.

2.2 Cognitive Radio

The Cognitive Radio (CR) concept was first introduced by Mitola as ” a radio or a

system that senses and is aware of its operational RF environment and can dynam-

ically and autonomously adjust its radio operating parameters accordingly” [67, 68].

Therefore, a CR is distinguished from legacy communication device by two main as-

pects: the cognition capability and reconfigurability. In order to make CRs flexible,

the burden has been shifted from the analog to the digital domain. After a decade of

extensive research, CRs have gained a lot of interest have shown much promise. The

6
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Figure 2.1: The NTIA’s frequency allocation chart [34]

Figure 2.2: Measured spectrum utilization for 0− 6 GHz in downtown Berkeley [12]

fundamental idea behind a CR is the exploitation of exiting white spaces, which are

licensed frequency bands that are not used by the Primary User (PU) at a given time

and geographical location [82, 51, 27]. These white spaces / spectrum holes are op-

portunities for a secondary user (SU), and can be used either temporally, spectrally,
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Figure 2.3: Spectrum utilization with temporal variations for 0−2.5 GHz in downtown
Berkeley [12]. Licensed user inactivity is shown as green color.

or spatially. Through CRs, the goal is to greatly increase the spectrum utilization

and possibly eliminate the false spectrum scarcity problem caused by static spectrum

allocation.

Figure 2.5 presents a cognitive cycle which shows how unique features of a CR

conceptually interact with the environment. Namely, Sensing functionality requires

contentiously monitoring the RF spectrum. Analysis is the characterization / classi-

fication of the spectrum. Reasoning needs to find the best response strategy based on

the Analysis and Adaption is the transition of the device or system to new operating

parameters.

One of the key aspects for a CR terminal is to avoid imposing any harmful inter-

ference to the PU while sharing the licensed spectrum. CRs are divided into three

broad categories on bases of their ability to handle this problem. These catagories

are overlay, underlay and spectrum-sensing ( interweave) CRs. In overlay CRs, PUs

share their signal information with SUs such that SUs may enhance and aid the li-
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Figure 2.4: Spectrum utilization from 30 MHz to 6 GHz in Singapore [52].

censed transmission rather than competing for spectrum. In underlay approach, SUs

transmissions are allowed with PUs as long as the interference level at PU remain

below a tolerance threshold [57]. In spectrum sensing, SUs continuously monitor the

radio environment to sense the spectrum holes and consequently use them for their

transmissions. Therefore, the interweave mode allow SUs to efficiently utilize the

unused white spaces , while avoiding, or limiting, collisions with PU transmissions.

This dissertation is focused on interweave cognitive radios and its application, there-

fore, spectrum sensing will be the focus of the dissertation. Throughout this thesis,

interweave CR is simply referred to as CR.

2.3 Spectrum Sensing and Signal Classification

Overview

2.3.1 Spectrum Sensing

To perform its tasks properly, a CR should be aware of surrounding environment and

identify all types of on going RF activities. Thus, spectrum sensing is the primary

task needed to be performed by CR terminal, therefore it was identified as a major

part in CRs [97, 59, 65, 14, 64, 95]. Spectrum sensing is known as the ability of a

CR terminal to measure the spectrum activities due to ongoing transmissions over

different frequency bands and to capture the related parameters.

Various spectrum sensing techniques have been proposed over the last decade,

such as matched filtering, cyclostationay feature detection and energy detection [118,

120, 58, 63, 121, 54, 7, 62]. Matched filtering detectors are known be the best due
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to their detection performance even at very low SNRs but require a dedicated re-

ceiver structure for each type of signal, which may not be possible in practical CR

environment. Energy detectors are blind and simplest to use but perform poorly

at low SNRs. On the other hand, cyclostationary feature detectors [45, 26] use the

inherent cyclic properties of the received signals. Cyclostationary feature detectors

do not suffers from the noise uncertainty as they are able separate signal from noise

by exploiting cyclic features of the modulated signals. Therefore, this detector is

more robust than the energy detectors in this regard. The choice of detector to be

considered in a CR depends on the required performance versus complexity matrix.

In addition, cooperative spectrum sensing was introduced as a means of increasing

the sensing accuracy by addressing the hidden terminal problems faced by wireless

networks in [39, 40, 58, 121, 38, 105, 19]. In the following subsection, these spectrum

sensing methods are briefly discussed.

2.3.1.1 Energy Detection

Energy detection, also known as radiometry or priodogram, is the most popular tech-

nique to detect signals due to its lowest computational cast and simplest implemen-

tation. Energy detector is used when the amplitudes of the received PU’s signals
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Figure 2.6: Energy detection block diagram

are unknown. The implementation steps of the energy detector is depicted in Fig.

2.6. First, the received signal is passed through a noise pre-filter and after that, it

is squared and integrated to measure the energy contents. Then measured energy is

compared against a predefined threshold to take the decision about the presence of

the signal in particular band. The problem of the energy detection of unknown deter-

ministic signals was explored in [4] by Urkowitz. Detailed mathematical analysis of

the energy detector was presented in [4] to evaluate the probability of detection and

probability of false alarm for noisy signals.Few years later, Kostylev [55] revisited the

problem of energy detection and presented the analyses for noisy signals effected by

different kinds of fading, such as Ricean, Rayleigh and Nakagami. The disadvantage

of this spectrum sensing technique is it cannot distinguish between different types of

signals, therefore, it can not be used for spectrum characterization. Moreover, energy

detectors have poor performance under low SNR and can not detect the weak signals.

2.3.1.2 Matched Filtering Detection

The matched filter detector is the optimal method to detect any signal [87, 46, 53,

122, 106] because it maximizes the received SNR at receiver. Matched filter requires

to demodulate the PU’s signal in a CR network which would require for a CR to have

prior signal information of the PU’s at both PHY and MAC layers [11]. This informa-

tion may include, such as modulation technique, pilots, spreading codes, preambles

and packet format. The matched filter based sensing is performed by correlating the

observed signal with the known sample to detect the presence of the PU. The main

advantage of this detection technique is, it requires less time and few samples of the

received PU’s signal. However, this technique requires a dedicated receiver struc-

ture for PU which may not be possible in a CR networks. The matched filter based

detection technique is depicted in Fig. 2.7.
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Figure 2.7: Matched filter detection block diagram

2.3.1.3 Cyclostationary Feature Detection

Communication signals usually imposed on carrier sine waves, spreading code or

hoping sequences which causes built-in periodicity. Such signals are known as cyclo-

stationary, because their mean and autocorrelation exhibits periodicity [41, 42, 44].

Cyclostationary feature detection used this periodicity to detect and differentiate the

modulated signals in noise and interference. The cyclostationary based detection al-

gorithms utilize the cyclostationary of the modulated signals by detecting spectral

peaks in spectral correlation function [44]. Unlike energy detectors which relay on

power spectral density, a real valued, one dimensional transform, the spectral correla-

tion function is two dimensional transform which is complex valued. Cyclostationary

detector block diagram is depicted in Fig. 2.8.

Figure 2.8: Cyclostationary feature detection block diagram

The received signal is passed first through a noise pre-filter than an N-point dis-

crete Fourier transform (DFT) is performed to decompose time domain signal into its

frequency contents. After DFT, spectral correlation is taken and averaged over the

symbol time T to spectral correlation function. Finally, features are extracted from

spectral correlation function in order to detect and classify different type of signals.

Cyclostationary feature detectors have been used by several researchers in context

of CR due to their good performance at low SNRs, such as, [98, 62, 28] to name

a few important ones. In [98], authors used cyclostaionary signatures for detection,

network identification and rendezvous in the context of dynamic spectrum access and

CR. Authors in [62], proposed an energy efficient collaborative cyclostationary spec-

trum sensing technique for CR systems. In [28], a fast and simple implementation

scheme is introduced using single-cycle cyclostationary spectrum sensing. Further-

more, cooperation and coordination among SUs was studied to improve the detection

and classification performance of the proposed detector.
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2.3.2 Signal Classification

After detection and features extraction of active signals, a CR can construct an RF

mapping of the on-going activities in order to learn certain characteristics about its

RF domain. This RF mapping is considered to accumulate the obtained knowledge

about the RF environment over time, which may assist a CR terminal in its future

decision-making. Such RF mapping is based on the feature vectors that are extracted

from the sensed signals. By using the suitable probabilistic models, the extracted

features can be used to infer certain properties about the RF environment. For

example, if the features are considered to be obtained from a mixture model, then

classification methods can be used to identify the RF signals belong to certain wireless

communication system. On the basis of a properly designed signal classification

process, the CR terminal can identify whether a detected signal belongs to a known

system (legitimate signals) or to an interferer of jammer (illegitimate signals) [110, 94,

124], which is also the objective of this thesis. This knowledge can used by a CR to

decide whether to access or avoid a certain spectral band or channel. Moreover, this

information can be used for designing an anti-jamming system in electronic warfare

systems.

Signal classification algorithms can be divided into two categories. The Maximum

likelihood (ML) algorithms [108, 86, 50, 8] are the optimal classifiers in Bayesian

sense. They need the distribution of the incoming samples, and minimize the proba-

bility of false classification given a finite number of samples. However, the classifica-

tion performance of the ML algorithms depend on uncertainties in the received sig-

nal. Further, ML classifiers are complex to implement, because they require to store

multi-dimensional probability distribution functions. On the other hand, feature-

based (FB) [99, 75, 114] classification algorithms exploit the statistical features of the

incoming signal instead of relaying on the complete probability distribution function.

FB based algorithms are less sensitive to uncertainties in the received signal model,

are less complex to implement, but they are sub-optimal classifiers. However, the loss

in classification performance is usually compensated by increasing the sample set.

Designing a FB algorithm, to differentiate the communication signals, relies on

the choice of the features selected for classification. In particular, FB classifiers form

a higher dimensional space in which signals of distinct features can be separated by

a hyperplane. One example of such classifiers is the cumulants classifier [99] where a

hierarchical tree is presented to distinguish between one or more types at each stage of

classification. Another FB based classifier is Goodness of Fit (GoF) classifiers which

use the probability distribution function of a given feature of the received samples.
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Such classifiers depend on the knowledge of the distribution of the received signal

under the different hypotheses. However, these type of classifiers are more robust

to modeling imperfections than ML based classifiers. Other famous FB classifiers

are cyclostationary-based classifiers which exploits the cyclic features of the received

signals for classification. In this thesis cyclostationary-based classifiers are considered.

The cyclic features are extracted for different types of signals, are then fed to pre-

trained artificial neural network, to classify each signal as legitimate or jamming

signal.

2.4 Motivation for Wideband Spectrum Sensing

and Compressed Sensing

Wideband spectrum sensing has been addressed in recent CR applications [9, 10,

60, 109, 101] and has many benefits when it comes to dynamic spectrum allocation

(DSA). First, sensing wideband spectrum would entail oppertunistically occupying

unused spectrum from multiple frequency bands, i.e. ISMB band, TV band, etc.

Moreover, wideband sensing increases the probability of finding spectrum holes, and

therefore increases the CR throughput.

Wideband spectrum sensing and characterization can be performed either using

narrowband or wideband RF front-end. Narrowband RF front-ends permits the sens-

ing CR to tune to a single spectral subband at a time. In this approach, sensing

would need tuning of the local oscillator used for downconversion, and only a single

subband can be sensed at a time. In wideband RF front-end approach, RF front-ends

downconvert a wide range of frequencies to baseband, where filtering is performed in

digital domain. In this kind of receivers, sensing multiple channels would only require

changing the filtering performed in DSP while keeping the RF front-end fixed. In this

thesis, we focus on deployment of the wideband RF front-ends as sensing multiple

channels can be performed in a fixable manner through digital processing.

When the cognitive radios are operating on a wide-band (from few hundred MHz

to several GHz), the sensing task becomes more complex and imposes a large over-

head to the spectrum sensing system due to the high-rate sampling, analog-to-digital

(A/D) converter, and heavy memory usage. However, high sampling rate A/D con-

verters consume high power and are hard to design. In order to reduce sampling rate

requirements, compressed sensing [30] is an appealing solution that samples wideband

signals below the Nyquist rate, given that the received wideband spectrum is sparse

in a given domain. Due to low spectrum occupancy by PUs, the spectrum in CR
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networks are typically sparse in frequency domain.Signal recovery using compressed

sensing needs, intense, nonlinear optimization to find the sparset solution. One solu-

tion to this problem is provided by Convex Programming as in Basis Pursuit [16]. The

other solution in literature, is to use Greedy Algorithms, such as Matching Pursuit

[31] and Orthogonal Matching Pursuit [104].

Compressed sensing is used in many application areas, such as, image processing,

radar signal processing video processing and other wireless services. In CR domain,

some of the contributions are [32, 76, 90, 102, 85]. Authors, in [32] used traditional

filter-bank based approach for wideband spectrum sensing in a multi-carrier com-

munication environment. It has been shown that this approach has higher spectral

dynamic range than traditional power spectrum estimation approaches. Another

filter-based approch can be found in [76], where the filter output has been consid-

ered for channel energy vector recovery via compressed sensing. A new approach

was proposed in [90] for multiband joint detection in order to detect the active PUs

over multiple frequency bands. In this work, authors have claimed this scheme out-

performs the traditional approaches in practical conditions. In [102] a compressed

sampling followed by a wavelet based approach was used to detect and classify the

wide-band RF signals. The authors in [85] proposed a compressed sensing based

scheme to estimate wideband spectrum in CR networks. In essence, authors in [85]

introduced the autocorrelation of compressed signal to estimate the spectrum of the

sparse wideband signal.

2.5 Cognitive Radio Test-beds

Apart from large theoretical contributions, there has been various practical imple-

mentation too in CR domain. A brief overview of the hardware and software charac-

teristics and the developed functionalities for some state-of-the-art CR test-bed and

platforms architecture is given as follows. A CR platform was developed at Berke-

ley Wireless Research Center and it was based on the Berkeley Emulation Engine

(BEE2) [13] and the reconfigurable 2.4 GHz radio frequency (RF) front ends. The

fiber links were used for inter-communication. BEE2 consisted of five Xilinx Vertex-2

field programmable gate arrays (FPGAs) with support of up to 18 RF-chains, enabling

experiments multiple input multiple output (MIMO) communication systems. In this

platform, RF front ends support for 25 MHz bandwidth in a 85 MHz frequency range

and all DSP is carried out directly on this platform. The software architecture was

built on Matlab Simulink and Xilinx System Generator library to support interfaces
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with A/D converters and memory. The main research focus was placed on spec-

trum sensing implementation. The practical performances and constraints of the well

known spectrum sensing techniques, i.e. energy detectors and cylostationary detectors

were shown in imperfect channel conditions. Researchers at the Kansas University,

developed a agile radio, which was named as KUAR citeoz36, was a low cast SDR

based platform which used 1.4 GHz general purpose processor (GPP), Xilinx Vertex-2

FPGA and a RF front-end with 30 MHz spectral bandwidth. It was developed to

work in 5-6 GHz spectrum band. The most of DSP was delegated to FPGA which

was targeted using the software libraries running Linus operating system. KUAR

control library was consisted of a set of Application Programming Interfaces (APIs)

and was core of KUAR’s software architecture. The main research topics of interest

included radio spectrum survey, agile transmission techniques, and channel sounding

techniques. Maynooth Adaptable Radio System (MARS) [33] was another famous

SDR/ CR experimental test-bed consisting of an RF front end interconnected with

personal computer (PC). All the DSP was performed on the PC’s GPP. This test-bed

was able to operate in the 1.75-2.45 GHz range and The direct conversion architecture

was implemented on both transmitter and receiver sides. The software architecture

called IRiS, was highly reconfigurable, and compatible with both Linus and Windows

operating systems. Research studies and implementation included spectrum sensing,

image and video transmissions and interoperability with other SDR platforms.
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Chapter 3

Exploiting the Cyclic Features for
Spectrum Characterization in
Wide-band Radios

3.1 Introduction

Cognitive radio (CR) is a promising technology for future wireless spectrum allocation

to improve the use of licensed bands. However, security challenges faced by cognitive

radio technology are still a hot research topic. One of prevailing challenges is the radio

frequency jamming attack, where adversaries are able to exploit on-the-fly reconfig-

urability potentials and learning mechanism of cognitive radios in order to devise

and deploy advanced jamming tactics. Jamming attacks can significantly impact the

performance of wireless communication systems and lead to significant overheads in

terms of retransmission and increment of power consumption. In this chapter, a novel

jammer detection algorithm is proposed using cyclic spectral analysis and artificial

neural networks (ANN) for wide-band (WB) cognitive radios. The proposed approach

assumes a WB spectrum occupied by various narrow-band (NB) signals, which can

be either legitimate or jamming signals. The second order statistics, namely, the

spectral correlation function (SCF) and ANN are used to classify each NB signal as

a legitimate or jamming signal. The algorithm performance is shown with the help

of simulations. The rest of the chapter is organized as follows. Section 3.2 explains

some background related to this work. Section 3.3 describes the system model and

problem formulation. Section 3.4 presents the proposed algorithm, Section 3.5 covers

the simulation results and discussion and finally the chapter is concluded in section

3.6.
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3.2 Background

Over the years, cognitive radio (CR) has attained great attention from the communi-

cation society due to its ability of allowing dynamic / opportunistic spectrum access

in a spectrum sparse environment [68], [47]. A CR dynamically interacts with the

environment and updates the operating parameters with mission of exploiting the

spectrum holes without affecting primary (licensed) user activity. To gain the knowl-

edge of spectrum holes, spectrum sensing is the primary task needed to be performed

by a CR terminal [116].

In literature, various spectrum sensing techniques have been proposed for CRs,

such as, energy detection, cyclostationary feature detection (CFD) and matched fil-

tering detection [113]. Among these methods, the CFD [113] is capable of detecting

the primary signal from the interference and noise even in very low signal-to-noise

ratio (SNR) regions. This performance is achieved at the cost of increased implemen-

tation complexity. The Federal Communications Commission (FCC) of the United

States has suggested CFD as an alternative to improve the detection sensitivity in

CR networks. Generally, energy detector fails at low SNRs while matched filtering

detector requires a dedicated receiver structure which may not be possible in a practi-

cal cognitive radio terminal. CFD exploits the cyclostationarity of modulated signals

by detecting spectral peaks in spectral correlation function (SCF) or spectral coher-

ence function (SOF) [45, 93, 96], which are sparse in both angular (f) and cyclic (α)

frequency domain. Major advantage of CFD based detector lies on its abilities to

perform better than energy detector at low SNR values and to distinguish different

modulated signals. Furthermore, the cyclic spectral analysis has been used as a robust

tool for signal classification when the carrier frequency and bandwidth information is

unavailable [111], [61]. A comparison among the most common sensing methods in

terms of complexity and accuracy is made by [118]. In Fig. 3.2, those methods are

mapped into a plane that allows to compare them easily.

Radio frequency (RF) jamming refers to the process of illegitimate RF transmis-

sion on one or more RF channels with the objective of causing maximum distortion

to the communication of the targeted system. The RF jamming and anti-jamming

concepts are classical in radio communication itself, but recent progresses in CR

technology has enabled devising and deploying of more advanced, self-reconfigurable

jamming [22] and anti-jamming [23] solutions. Spectrum sensing information plays a

key role in anti-jamming systems. This information may be used to detect potential

jamming entities [72], [73] and to take proactive measures to ensure communication
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continuity [70] and security [21]. Moreover, a history of observations can be main-

tained and used to devise more effective anti-jamming tactics. For example, when

a frequency hopping spread spectrum (FHSS) based system is considered, CR may

modify its hopping sequence to avoid the channels which are occupied by potential

jamming entities [91]. In order to design the proper anti-jamming system, there is

a need for a reliable jammer detection algorithm. This chapter introduces a new

algorithm for jammmer detection for WB CRs. A WB spectrum is assumed to be

consisting of multiple sub-bands, each occupied by a narrow-band (NB) signal. These

NB signals can be legitimate or jammers. The cyclic frequency profile (α-profile) and

angular frequency profile (f -profile) of the cyclic spectral analysis are used as input

features for an artificial neural network (ANN). Based on the ANN classifier, each of

the NB signal is classified either as a licit or a jamming signal. Finally, the proposed

algorithm performance is evaluated for various SNRs to observe the effects of diverse

parameters on the classification.

3.3 System Model and Problem Formulation

We considered a received WB spectrum of ∆ Hz. This WB spectrum can be occu-

pied by various NB signals n ∈ {1, 2, 3.....N}, with different carrier frequencies and

modulation types that we want to identify. The received WB signal is an aggregated

time-domain signal which can be presented as:

r(t) =
N∑
n=1

hn(t) ∗ Sn(t) + w(t) (3.1)

Where Sn(t) denotes the n-th transmitted signal, hn(t) is the channel coefficient

between n-th transmitter and receiver, * denotes the convolution operation and w(t)

is the additive white Gaussian noise (AWGN) with zero mean and power spectral

density σ2
w . We assume that NB signals can be generated by different types of

modulation schemes, such as, binary frequency shift keying (BFSK), binary phase

shift keying (BPSK), quadrature amplitude modulation (QAM), quadrature phase

shift keying (QPSK), or any other modulation scheme as shown in Fig. 3.1(a). The

WB is divided into multiple equal bandwidth SBs and each of these SBs can be

occupied by NB signals with no spill over energy into neighboring SBs.

For our proposed system, a single tone is considered as a jamming signal. The

jammer is considered to be a cognitive jammer, which has the knowledge of carrier

frequencies of legitimate signals. This jammer can jam any of SBs, if it has higher
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Figure 3.1: (a) Wide-band spectrum divided into multiple sub-bands (SB) and each
SB is occupied by a narrow-band signal. (b) Narrow-band jammer (Tone) jumps to
the neighboring SB to jam licit (BPSK or QPSK) signal.

power than the legitimate signal as depicted in Fig. 3.1(b). The tone jammer is

very successful against NB signals, due to the fact that it allows to concentrate

all power on a single data channel. The tone jamming is often considered as the

best strategy for jammers with limited transmission power. Let us assume that the

targeted signal is QPSK-modulated and uncoded, and that targeted system uses

the coherent detection. Then, the error probability (pe) to either jam the in-phase

component (I) or quadrature component (Q) of the targeted signal can be given as:

Where Pr is the received power of targeted signal, Pn is thermal noise power,

Pj is the jamming signal received power, θj is the phase of jamming signal, and
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Q is the Gaussian Q-function. For our system model we consider that Pj >> Pr,

therefore pe ≈ 100% whenever jammer transmits on the same channel as the targeted

transmitter-receiver pair.

pI
e = Q(

√
Pr
Pn

(1−
√

2Pj
Pr

Sin(θj)) (3.2)

pQ
e = Q(

√
Pr
Pn

(1 +

√
2Pj
Pr

Cos(θj)) (3.3)

3.4 Proposed Algorithm

In this section we will first introduce SCF, then neural networks and at the end we

will present our newly proposed algorithm.

3.4.1 Cyclostationary Spectral Analysis

A process x(t) is said to be wide-sense cyclostationary with period T0 if its mean

E[x(t)] = µx(t) and autocorrelation E[x(t)x(t+ τ)] = Rx(t, τ) are both periodic with

period T0, in such case, they can be defined respectively as:

Mx(t+ T0) = Mx(t) ; Rs(t+ T0, τ) = Rx(t, τ) (3.4)

The autocorrelation function of a wide-sense cyclostationary process can be expressed

in terms of its Fourier series components.

Rx(t, τ) = E[x(t+ τ/2)x∗(t+ τ/2)] (3.5)
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Rx(t, τ) =
∑
α

Rα
xe

j2παt (3.6)

Where, α = a
T0

and a is an integer. E[.] is the expectation operator, α is the set of

Fourier components, and Rα
x(τ) represents the cyclic autocorrelation function (CAF)

and gives Fourier components. CAF is given by:

Rx(τ) = lim
T→∞

1

T

∫ T
2

−T
2

Rx(t, τ)e−j2παtdt (3.7)

When Rx(t, τ) is periodic in t with period T0, (7) can be expressed as:

Rα
x(τ) =

1

T0

∫ T0
2

−T0
2

Rx(t, τ)e−j2παtdt (3.8)

The Fourier Transform of the CAF is known as SCF and is given by:

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ (3.9)

Where α is cyclic frequency and f is the angular frequency. The major benefit of

spectral correlation is its insensitivity to background noises. Since the temporal cor-

relation of different spectral components are measured; and the spectral components

of noise are completely uncorrelated in time due to the fact that noise is wide-sense

stationary process, such noise does not play significant factor in the SCF. This fact

allows the spectral correlation of a signal to be accurately calculated even at low

SNRs. Furthermore, different types of modulated signals (BPSK, AM, FSK, MSK,

QAM, PAM) with overlapping power spectral densities have highly distinct SCFs.

Our simulations are restricted to the BPSK and QPSK modulation schemes due to

the fact that higher order QAM and higher order PSK do not exhibit second order

periodicity or exhibits the same features as QPSK. Therefore, these signals can be

distinguished by higher order spectral analysis [43]. An example of the SCF of WB

signal is depicted in Fig. 3.3

SCF computation requires large amount of data, which makes it unreasonable for a

classifier to operate on it in real time. We used here both cycle frequency profile

(α-profile) and angular frequency profile (f -profile) as features for classification given

in (10) and (11). The α-profile of SCF for WB signal is shown in Fig. 3.4.

I(α) = maxf [S
α
X ] (3.10)

I(f) = maxα[SαX ] (3.11)
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Figure 3.3: SCF of a wide-band spectrum hosting BPSK and QPSK modulated signals
and a non-modulated tone signal.

3.4.2 Detection

The crest factor is used for signal detection and is equal to the peak amplitude of a

waveform divided by its root mean square value. The crest factor is a dimensionless

quantity. For detection, the threshold CTH is first calculated when no signal is present,

i.e., when r(t) = w(t) in (3.1).

CTH =
max(I(α))√

(
∑N
α=0 I

2(α))

N

(3.12)

Because w(t) is AWGN, therefore, CTH is a random value. The probability density

function (PDF) of CTH is estimated to obtain false alarm rate. The estimated PDF of

CTH can be evaluated by plotting the histogram of CTH . To test the signal presence

in each SB binary hypothesis testing is performed as follows:

H0 : r(t) = w(t)

H1 : r(t) = S(t) + w(t)
(3.13)
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Figure 3.4: α-profile of a wide-band spectrum hosting BPSK, QPSK and a tone signal
at different cyclic frequencies.

And the signal test can be performed as follows:

CI ≤ CTH : DeclareH0

CI > CTH : DeclareH1

(3.14)

3.4.3 Artificial Neural Network Classifier

Our proposed system uses an Artificial Neural Network (ANN) as classifier due to

its ease of implementation and potential to generalize any carrier frequency, symbol

rate and phase offset. The system was designed to classify signals as BPSK, QPSK,

Jammer (single tone), BPSK plus Jammer and QPSK plus Jammer. We trained the

ANN to identify the above five classes of signals. The SCF of WB produces a large

amount of data, which makes impossible for a classifier to work on it in real time.
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Figure 3.5: Proposed Neural Network

In order to reduce the amount of data for a classification stage, we used α and f

profiles as input features for an ANN. Accordingly, the proposed ANN is composed

by 100 inputs related to the concatenation of α and f profiles, a single hidden layer

whose neurons use the hyperbolic tangent sigmoid as neural transfer function; and an

output layer of five neurons related to each type of signal taken into account in this

work. Each output value is in the range (0, 1). Accordingly, the output class with

the highest value between (0, 1) is considered as the signal class. An ANN training

based on the scale conjugate gradient propagation [69] is considered.

The selection of a single hidden layer is proposed due to the classification process

simplicity of this particular problem, it was found that with a single layer results

over the 90% of true positive classification were obtained for the 5 types of signal

classes considered in this work. Such results indicate that considering more hidden

layers would increment the training time and overall results would not be significantly

25



improved. According to this, in order to choose an appropriate number of neurons

such that does not compromise notably the training time and guarantees robustness

at repeating the training process for new ANNs, it is proposed to train multiple times

10 different architectures in which the number of neurons in the single layer is varied

from 1 to 10.

A total of 100 trains are executed for each ANN architecture. For each run,

weights are initialized randomly and a dataset composed by 20,000 signals is used in

order to train (70%), validate (15%) and test (15%) each architecture. In order to

evaluate and compare the overall performance of each architecture, the expression of

equation (3.15) was taken into consideration.

Ψm = We(ANN
m
err)(std

m
err) +Wt(ANN

m
t )(stdmt ) (3.15)

Where m is an indicator of the ANN architecture. ANNm
err represents the normal-

ized average error of the 100 trained ANNs for the particular architecture m. ANNm
t

is the normalized average time that an architecture m took in the training phase.

stdmerr and stdmt are the standard deviations of the normalized error and training time

respectively for a particular ANN architecture m. We and Wt are global weights

which indicate the impact that errors and training times have respectively in the per-

formance expression. Both parameters are related in the following way: We+Wt = 1.

Based on that, Fig. 3.6 shows the overall performance of each architecture m for

high values of We and therefore low values of Wt. This constrain is considered in the

present work in order to give more relevance to the error optimization instead of the

consumed training time.

From Fig. 3.6, it is possible to observe that the architecture of 9 neurons in the

hidden layer presents the best overall performance in terms of error and training time

minimization. According to this, the ANN architecture of 9 neurons that presented

the highest performance among the 100 trains was used for classification purposes

and its results are discussed in section 3.5. The final ANN architecture used in this

work is shown in Fig. 3.5.

The proposed algorithm can be summarized as follows: The receiver observes a

WB signal and then computes its SCF. The α and f profiles of SCF are subsequently

extracted. The WB is then divided into multiple equal length SBs. The detection is

performed at every SB and a decision is made about the presence of the signal. After

that, detected signals go through the classification process. The α and f profiles of

detected signals are concatenated and fed to a previously trained ANN. The ANN
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Figure 3.6: Neural Network performance for different number of neurons

classifies the received NB signal in each SB as a licit user or a jammer. The pseudo-

code of the proposed algorithm is outlined in Algorithm 1.

3.5 Experimental Results and Discussion

A 50 ∆Hz WB spectrum is assumed to be under observation by a CR terminal.

This WB is divided into 5 SBs. These SBs can be either free or occupied by a NB

signal. For testing the proposed system, we assume BPSK and QPSK signals as

legitimate signals and sine wave is treated as a jamming signal. The received signals

are considered to be affected by AWGN. The detection threshold CTH is computed
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Algorithm 1 Pseudo-code for proposed algorithm

1: function Jammer Detector
2: Initialize all SB states to ”free”
3: Receive the WB signal
4: Estimate the SCF of WB signal
5: Extract the α-profile and f -profile
6: Divide WB into i SBs
7: for i = 1 to I, do
8: Compute test statistic (CI)
9: Compute threshold (CTH) based on desired Pf

10: Compare CTH with CI
11: Decision ← H0 or H1

12: end for
13: if H1 then
14: Concatenate α-profile and f -profile and feed to previously trained Neural

Network
15: Decision ← Licit or Jammer
16: end if
17: end function

by fixing the false alarm rate of Pf = 10%. Monte-carlo simulations are run for 1000

iterations for each signal and at each SNR.

We configure our system in three different ways: (a) we placed the BPSK signal

in SB-1, QPSK in SB-5 and jamming signal in SB-2; (b) QPSK signal is in SB-5 while

jamming signal jumps to SB-1 to jam the BPSK signal; and (c) BPSK signal is in

SB-1 while jamming signal jumps to SB-5 to jam the QPSK signal. The sampling

rate is set at Nyquist rate of 100 ∆Hz. First, the α profile based detector is used to

detect the signal in each sub-band. If it declares that a signal exists, then this signal

goes through the signal classification stage. The detection performance is shown in

Fig. 3.7.

The ANN selected based on the process described in 3.4.3, as mentioned previ-

ously, the system is trained with 20,000 signals at various SNRs and carrier frequencies

so that the system performance does not depend on the knowledge of SNR and carrier

frequencies. The proposed system correctly classifies all signals with a total classi-

fication rate of 0.985. In order to examine only the α-profile impact, another ANN

whose inputs only depend on α-profile information was trained and tested with the

same parameters explained before. The total classification rate for this case is 0.93.

The performance of both the systems is further evaluated for independent testing

signals, with different carrier frequencies and SNRs (-9 dB to 9 dB ) from training

signals. The curves for classification accuracy vs SNR level for different signals are
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Figure 3.7: Detection probability vs. SNR with 10% false alarm rate

plotted in Fig. 3.8, where curves marked with star represent the system with α-profile

as input and curves marked with circles represents the system with concatenated α

and f -profiles as input features. It is possible to infer from Fig. 3.8 that by using

both, the α-profile and f -profile the signal classification rate is significantly increased

as compared to using only the f -profile for classification.

The overall classification accuracy for both systems is shown in Fig. 3.9. The plot

shows there are approximately no errors observed above 0 dB SNR (α − f profiles),

which shows a significant performance gain compare to common methods of signal

classifications, which need 10 dB to 20 dB for comparable classification rates [71].
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Figure 3.8: Classification results for different types of signals

3.6 Conclusion

In this chapter, we proposed a cyclic spectral analysis based on a jammer detection

algorithm for WB CR networks. The WB was considered to be occupied by several

NB signals with unknown carrier frequencies. These signals were assumed to be

either licit signals or jamming signals. The received WB was fed to the CFD to

estimate the SCF of the signal. The α and f profiles were extracted and for true

positive detection of the signal, the α and f -profiles were fed to ANN which was

previously trained. In the end, the classification performance for each detected signal

was evaluated at different SNR values. The proposed algorithm appears to perform

well at various SNR values down to -3 dB. Since the spectral correlation function of

different signals are highly different, it appears to be a very effective parameter to

use in classification.
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Figure 3.9: Overall classification results

The ability of CR to accurately and reliably identify different types of signals

(legitimate or illegitimate) can significantly increase the anti-jamming performance of

the system. The knowledge about band occupied by jammer and its type (modulated

or tone) can be used to avoid the bands frequently jammed and to design an efficient

anti-jamming system against such attacks.
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Chapter 4

Spectrum characterization for
Stealthy Jamming Attacks in
Wideband Radios

4.1 Introduction

This chapter presents a new physical layer approach for stealthy jammer detection in

wide-band (WB) cognitive radio networks. Stealthy jammer is an adaptive reactive

jammer with same capabilities as a CR user. These type of jammers only transmit

when a legitimate transmission is detected and stop transmitting when the legitimate

transmission stops. Therefore, the jamming activities of such jammers are hard to

detect by the popular sensing approaches such as ED at physical layer . Hence, we

presented in this chapter a novel cyclostationary feature detector based approach to

detect such types of jammers at physical layer. The proposed algorithm consider a

WB consists of multiple narrow-band sub-bands (SB), which can be occupied by licit

or jamming signals . The cyclostationary spectral analysis is performed on this WB

signal to compute spectral correlation function (SCF). The alpha profile is extracted

from the SCF and used as input features to artificial neural network (ANN), which

classify each NB signal as a licit signal or a jamming signal. In the end, the perfor-

mance of the proposed approach is shown with the help of Monte-Carlo simulations

under different empirical setups.

The rest of the chapter is organized as follows. Section 4.2 presents the background

in detailed, Section 4.3 describes the system model and problem formulation, Section

4.4 presents the proposed algorithm. Experimental results are discussed in section

4.5. In Section 4.6, chapter is concluded.
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4.2 Background

Cognitive radio (CR) is known as a promising technology to solve the problems of

scarcity and inefficient utilization of radio spectrum, due to its ability of allowing

dynamic/opportunistic spectrum access in spectrum sparse environment [68], [47]. A

CR dynamically interacts with its environment and adjust its driving parameters in

order to exploit the white spaces without affecting the primary user activity. In or-

der to obtain the information about spectrum holes, CR needs to perform Spectrum

sensing and different spectrum sensing techniques such as energy detection (ED), cy-

clostationary feature detection (CFD) and matched filtering (MF) [116] have been

largely under investigation. Among these, CFD has the ability to detect primary

signals from interference and noise even in low signal to noise ratios (SNRs) condi-

tions, on the other hand MF needs a dedicated receiver structure which may not be

possible in a practical CR terminal while ED fails at low SNRs. CFD exploits the

cyclostationarity features of the communication signals by detecting spectral peaks

in spectral correlation function (SCF) or spectral coherence function (SOF) [45, 96].

Furthermore, the cyclic spectral analysis has been used as a robust mechanism for

signal classification when the carrier frequency and bandwidth information is not

available [35, 61].

While CR technology is introduced as a solution for dynamic spectrum access

(DSA), it has brought serious threats to network security due to its ability of sens-

ing and exploring a wide range frequencies and opportunistic usage. Due to these

capabilities, it is easier for the attackers to launch sophisticated attacks in such net-

works. For example, the malicious user may claim to be a primary user, and carry

out the primary user emulation (PUE) attacks [15]. The attackers can also examine

the spectrum themselves, and conduct smart jamming [107, 83]. A common property

of these jamming attacks is that they cause anomalous spectrum usage and disrupt

the dynamic spectrum access, thus known as Anomalous Spectrum Usage Attacks

(ASUAs) in the context of cognitive radio networks [88] .

PUE attacks have been studied extensively [15], we assume anomalous spectrum

users attack such as stealthy jamming attacks. Stealthy jammer is considered as

an adaptive reactive jammer with same capabilities as CR user, due to its stealthy

nature it only starts jamming after a legitimate transmission is detected, and will

stop jamming as soon as the legitimate transmission stops. As a result, the jamming

activities of such jammers are hard to detect by the popular spectrum sensing ap-

proaches such as ED at physical layer. In [88], a cross layer approach is considered
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to detect the stealthy jammer. In most of the previous work, that assumed physical

layer jamming attacks assume either additive white Gaussian noise (AWGN) jamming

[84] or tone jamming . In [2] and [3], the authors explore modulation based jamming

attacks and have shown that these modulated jamming tactics can lead to optimum

jamming in power constrained environment. In our work, we consider an adaptive

stealthy jammer, which can adapt to different modulation schemes in order to exploit

optimum jamming strategy against victim signal. Therefore, in order to design the

proper anti-jamming system against these stealthy jamming attacks, there is a need

for a reliable jammer detection algorithm.

In this chapter, a new physical layer based algorithm is proposed to detect stealthy
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Figure 4.2: SCF of a wide-band spectrum hosting a BPSK and a QPSK modulated
signals.

jamming attacks in WB CRs. A WB spectrum is considered to be composed of

multiple sub-bands, each one of which can be occupied by narrow-band (NB) signal

or free. These NB signals can be licit or stealthy jamming signal. The first step of

the algorithm is to compute the SCF of the WB spectrum. Then the cyclic frequency

profile (α-profile) is extracted from SCF and used as input features for an artificial

neural network (ANN) based classifier. Based on an ANN classifier, each of the NB

signal is classified either as a licit signal of stealthy jamming signal. Finally, the

performance of the algorithm is evaluated for various SNRs to observe the effects on

classification performance.

4.3 System Model and Problem Formulation

We consider that a ∆ Hz of WB spectrum in the frequency range {0, fmax} is under

the observation of CR terminal. The WB spectrum can be occupied by various NB

signals Sl(t), l ∈ {1, 2, 3.....N}, with different carrier frequencies and modulation
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Table 4.1: Optimal jamming signals in a coherent scenario

Victim Signal Modulation scheme of pulsed
jamming signal

BPSK BPSK

QPSK QPSK

4-PAM BPSK

16-QAM QPSK

types. The received WB signal is an aggregated time-domain signal which can be

presented as:

y(t) =
N∑
l=1

hl(t) ∗ Sl(t) + w(t) (4.1)

here Sl(t) denotes the l-th transmitted signal, hl(t) is the channel response between

l-th transmitter and receiver, * denotes the convolution operation and w(t) is the

additive white Gaussian noise (AWGN) with zero mean and power spectral density

σ2
w . These NB signals can be generated by different types of modulation schemes,

such as, binary phase shift keying (BPSK), quadrature amplitude modulation (QAM),

quadrature phase shift keying (QPSK), binary frequency shift keying (BFSK), binary

phase shift keying (BPSK), quadrature amplitude modulation (QAM), or any other

modulation scheme as shown in Fig. 4.1. Moreover, we assume that the transmitter

can change its modulation schemes. The received WB at CR terminal is divided into

multiple equal bandwidth SBs and each of these SBs can be occupied by NB signals

with no spill over energy into neighboring SBs.

For our system, we consider a stealthy jammer with the same capabilities as a

CR user. This jammer is equipped with CFD and can adapt to different modulation

schemes in order to use optimal jamming tactic against target signal. The modu-

lated jamming attacks are very successful for power constrained jamming in order to

maximize the error probability of digital modulated legitimate signals. The optimal

jamming signals against targeted digital amplitude-phase modulated signals is in Tab.

4.1 [3].

4.4 Proposed Algorithm

This section illustrates the proposed algorithm as a solution to the problem described

in Section 4.3. We first introduce cyclostationary spectral analysis, then neural net-

works and eventually we will present our newly proposed algorithm.
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Figure 4.3: α-profile of a wide-band spectrum hosting a BPSK and a QPSK modulated
signal at different cyclic frequencies.

4.4.1 Cyclostationary Spectral Analysis

A process x(t) is said to be wide-sense cyclostationary with period T0 if its mean

E[x(t)] = µx(t) and autocorrelation E[x(t)x(t+ τ)] = Rx(t, τ) are both periodic with

period T0, in such case, they can be defined respectively as:

Mx(t+ T0) = Mx(t) ; Rs(t+ T0, τ) = Rx(t, τ) (4.2)

The cyclic autocorrelation function (CAF) of a wide-sense cyclostationary process

can be given as follow:

Rα
x(τ) = lim

T→∞

1

T

∫ T
2

−T
2

Rx(t, τ)e−j2παtdt (4.3)

The cyclic Wiener relation states that spectral correlation function (SCF) can be

obtained from the Fourier transform of the cyclic autocorrelation function in (3) is

known as SCF and is given by:

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ (4.4)
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Figure 4.4: Proposed Neural Network

Where α is cyclic frequency and f is the angular frequency. The major benefit

of spectral correlation is its insensitivity to background noises, since the spectral

components of noise are completely uncorrelated in time due to the fact that noise

is wide-sense stationary process, such noise does not play significant role in the SCF.

The SCF of the WB signal is shown in Fig. 4.2. The, α profile is extracted from

SCF, which is given by (4.5) and depicted in Fig. 4.3.

I(α) = maxf [S
α
X ] (4.5)
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4.4.2 Artificial Neural Network Classifier

Our considered system uses an Artificial Neural Network (ANN) as a classifier due to

its success for pattern recognition applications. The system is designed to identify the

four signal classes BPSK, QPSK, BPSK plus BPSK, QPSK plus QPSK. We trained

the ANN to classify the above four classes of signals. The SCF of WB spectrum

produces a large amount of data, therefore, α profile is extracted from the SCF and

used as input features for an ANN. Accordingly, the considered ANN is composed by

80 inputs related to α profile, a single hidden layer whose neurons use the hyperbolic

tangent sigmoid as neural transfer function; and an output layer of four neurons

related to each class of signal taken into account in this work. The output value

is in range (0,1). Accordingly, the output class with highest value between (0,1) is

considered as the signal type. An ANN training based on the scale conjugate gradient

propagation [69] is considered in this work.

A single hidden layer is proposed due to the simplicity of the classification process

for this particular problem, it was found that with single hidden layer results over

90% of true positive classification were obtained for the four types of signal classes

considered in this work. These results show that considering more hidden layers would

increase the training time and overall results would not be significantly improved. In

order to choose an appropriate number of neurons such that does not compromise

training timing and guarantees robustness for ANN, it is proposed to train multiple

times 10 different architectures in which the number of neurons in single hidden layer

is varied from 1 to 10.

For each ANN architecture, a total of 100 trains are executed and for each run,

weights are initialized randomly. A dataset composed by 36,000 signals is used in order

to train (70%), validate (15%) and test (15%) each architecture. The performance of

each architecture is evaluated using equation (4.6).

Ψn = We(ANN
n
er)(std

n
er) +Wt(ANN

n
t )(stdnt ) (4.6)

Here n is an indicator of the ANN architecture. We and Wt are global weights which

represent the impact that errors and training times have respectively. These two pa-

rameters are related in the following way: We+Wt = 1. ANNn
er and ANNn

t represent

the normalized average error and normalized average training time for the particular

architecture n consecutively. stdnerror and stdntime are the standard deviations of the

normalized error and training time respectively for a particular ANN architecture n.

In (4.6) high weight is given to We as compare to Wt to optimize error rather the
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consumed training time. According, to this, the ANN architecture of 7 neurons that

presented the highest performance among 100 trains was used for classification. The

final ANN architecture used in this work is shown in Fig. 4.4.

Algorithm 2 Pseudo-code for proposed algorithm

1: function Stealthy Jammer Detector
2: Initialise all SB states to ”free”
3: Receive the WB signal
4: Estimate the SCF of the WB signal
5: Extract the α profile from SCF
6: Divide WB into i SBs
7: for i = 1 to I, do
8: Feed the corresponding α profile to previously trained Neural Network
9: Decision ← Licit or Stealthy Jammer

10: end for
11: end function

The proposed algorithm can be summarized as follows: A WB spectrum is received at

CR terminal. The SCF of WB is computed and the α profile is then extracted from

SCF. The WB is divided into multiple equal length SBs. The α of the corresponding

SB is fed to a previously trained ANN. The ANN classifies the received NB signal in

each SB as legitimate user or a stealthy jammer. The pseudo-code of the proposed

algorithm is outlined in Algorithm 2.

4.5 Experimental Results and Discussion

We assumed a 500 ∆Hz WB spectrum received by CR terminal. Th WB is consisted

of 5 SBs. Each of the SBs can be either free or occupied by NB signal. We consider

BPSK and QPSK as licit signals. The transmitter can choose either modulation

scheme with probability of 0.5. Similarly, the jammer can choose optimum jamming

strategy against legitimate waveform from Tab. 4.1, i-e BPSK against BPSK and

QPSK against QPSK. However, the jammer can jam one band at a time. The received

signals are considered to be affected by AWGN. We configure the system in such a

way that SB-1 and SB-4 are occupied by BPSK signals.The sampling rate is set at

Nyquist rate of 1000 ∆Hz.

In this work, the system is trained with 36,000 signals at various SNRs so that

performance does not depend on the knowledge of SNR. The proposed ANN based

classifier correctly classifies all signals with a total classification rate of 0.99.
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Figure 4.5: Classification results for different types of signals .

The performance of the proposed system is further evaluated for independent

testing signals, with different SNRs (-12 dB to 12 dB) from training signals. The

Fig. 4.5 shows the classification rate vs SNR level for different types of signals. It is

easy to infer from Fig. 4.5 that the proposed algorithm not only correctly classifies

both jamming classes but also successfully classifies legitimate signals. The overall

classification accuracy for proposed system is shown in Fig. 4.6. The figure shows

there are approximately no errors observed above -6 dB. The proposed algorithm

shows a significant performance gain compare to common techniques, which need 10

dB to 20 dB for comparable classification rates [71].

4.6 Conclusion

In this work, we presented a novel physical layer based approach for stealthy jammer

detection in WB cognitive radios. The WB was consisted of multiple SBs, which
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Figure 4.6: Overall classification results .

were occupied by several NB signals with known carrier frequencies and symbol time.

The NB signals were assumed to legitimate or jamming signals. The receive WB

spectrum was fed to the CFD to estimate the SCF of the signal. The α profile was

extracted from SCF and fed to previously trained ANN. The ANN classify the signals

to be legitimate or jamming. In the end, the performance of proposed algorithm was

evaluated at different SNR values. The algorithm appears to perform well at various

SNR values down to -12 dB.
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Chapter 5

Spectrum Characterization using
Compressed Sensing for
Wide-band Radios

A new algorithm for interference / jammer detection is proposed in this chapter

for wide-band (WB) cognitive radio (CR) networks. First, the scanned WB spec-

trum, which is comprised of multiple narrow-band (NB) signals, is recovered from

sub-Nyquist rate samples using compressed sensing. Compressed sensing allows us

to alleviate Nyquist rate sampling requirements at the receiver analog-to-digital con-

verter (ADC). After the Nyquist rate signal has been recovered, a cyclostationary

feature detector is employed on this estimated signal to compute the cyclic features.

Finally, the proposed algorithm uses the second order statistics, namely, the spectral

correlation function (SCF), to classify each NB signal as a legitimate signal or an

interfering / jamming signal. In the end, performance of the proposed algorithm is

shown with the help of Monte-Carlo simulations under different empirical setups.

The rest of the chapter is organized as follows. Section 5.1 introduces the different

state-of-the-art used in this chapter. Section 5.2 describes the system model and

problem formulation. Section 5.3 outlines the spectral correlation function (SCF)

overview and proposed algorithm. Experimental results for different types of jamming

attacks are discussed in section 5.4, 5.5 and 5.6. Finally, the chapter is concluded in

Section 5.7 along with some future directions.

5.1 Introduction

Over the last few years, cognitive radios [68], [47] have plucked much attention from

wireless communication community due to its applications for Dynamic / Oppor-
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tunistic spectrum access (DSA / OSA). Cognitive radio is an intelligent device which

is aware of its spectrum environment and changes its parameters accordingly for the

purpose of DSA / OSA. In order to attain spectrum awareness, reliable spectrum

sensing is an important primary task for the cognitive radios and methods such as

energy detection (ED), cyclostationary feature detection (CFD) and matched filtering

(MF) [1] have been largely under investigation.

Among these methods, CFD [41], [42] exhibits good performance with acceptable

implementation complexity at medium to low signal-to-noise ratios (SNR). Specifi-

cally speaking, ED fails at low SNRs while MF requires dedicated receiver structure

which may not be possible in a practical cognitive radio terminal. CFDs utilize the

cyclostationarity of the modulated signals by detecting spectral peaks in the spectral

correlation function (SCF) [44], which is sparse in both angular and cyclic frequency

domain. Furthermore, CFD can differentiate among different modulated signals, in-

terfering signals and noise by using the cyclostationary spectral correlation features.

When the radios are operating on a wide-band (WB), the task of signal estimation

becomes complex due to high rate ADC requirements. Compressed sensing [30] is an

appealing solution to alleviate requirements of high sampling rates provided that the

signal is sparse in some given transform domain. Then, CFD requires to estimate the

SCF of the received WB spectrum from sub-Nyquist samples. One approach, which

appeared in [18], is to first recover the Nyquist samples from sub-Nyquist samples,

then estimate the SCF and perform feature detection. For Nyquist samples recovery,

[18] used the modulated wideband converter (MWC) [66]. On the other hand, in

the very first papers [100, 103], authors performed the SCF estimation directly from

sub-Nyquist samples by exploiting the sparsity structure in two-dimensional SCF

domain.

Radio frequency (RF) jamming is a conventional method of disrupting the com-

munication of the targeted system. Recent advances in cognitive radio technology en-

abled devising self-reconfigurable and advanced jamming and anti-jamming solutions

[22, 23]. An anti-jamming system based on the cognitive radio technology may use

the spectrum sensing information to detect potential interfering or jamming entities

[72], and take proactive measures to ensure communication continuity. Furthermore,

it may collect a history of the observations, and use it to devise anti-jamming tactics

with even higher probability of success. For example, in case of a frequency hopping

system, the cognitive radio may modify its hopping pattern to avoid the channels

which are frequently occupied by the potential interfering / jamming entities [91]. In

order to do so, there is a need for a reliable interference / jammer detection algorithm.
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In this work, we introduce a new interference / jammer detection algorithm which

exploits the cyclic features of the modulated narrow-band (NB) signals in a WB

spectrum. The first step of the algorithm is to recover the Nyquist rate WB spectrum,

which is assumed to be occupied by various NB signals, from sub-Nyquist samples

using compressed sensing. To achieve this, we use the conventional basis pursuit (BP)

technique [16]. The recovered signal is then fed to the CFD to estimate the SCF of the

recovered signal. The peaks in the SCF are then compared with the corresponding

values of the legitimate signals’ SCF, which are stored in a database. Based on

this comparison, each of the detected signals is classified either as a licit signal or a

jamming signal. Main advantage of using CFD based detector lies in its well known

ability to perform better than ED at low SNR values. Finally, performance of the

proposed algorithm is evaluated for various compression ratios at low SNR to observe

the effects of various parameters on classification performance. To the best of our

knowledge, this kind of jammer detection algorithm has not been introduced so far

in the open literature.

5.2 System Model and Problem Formulation

In the context of cognitive radio, we focus on the processing of a received WB spec-

trum of ∆ Hz. We assume that this WB signal can be occupied by various NB signals

sm(t), m ∈ {1, 2, ...,M}, with known carrier frequencies, symbol periods and modula-

tion types that we want to identify. The receiver observes an aggregated time-domain

signal which can be expressed as

r(t) =
M∑
m=1

hm(t) ∗ sm(t) + w(t) (5.1)

where hm(t) is the channel coefficient between m-th transmitter and receiver, ∗ de-

notes the convolution operation and w(t) is the AWGN with zero mean and power

spectral density σ2
w. We consider that these NB signals can have different modulation

schemes, such as, binary phase shift keying (BPSK), binary frequency shift keying

(BFSK), quadrature phase shift keying (QPSK), or any other modulation as shown

in Fig. 5.1 (a). The WB is sliced into multiple SBs of equal bandwidths and each of

these NB signals can occupy one SB with no spill-over energy into the neighboring

SBs.

For our system, we consider three different types of jammers, namely; tone [78],

modulated [80], and stealthy jammers [79] . The former two jammers can jam any of
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Figure 5.1: (a) Wide-band spectrum divided into multiple sub-bands (SB) and each
SB is occupied by a narrow-band signal. (b) Narrow-band jammer (QPSK) jumps to
the neighboring SB to jam licit (BPSK) signal.

the SBs, either free or occupied, if it has higher power than the legitimate signal as

shown in Fig. 5.1 (b). However, the later stealthy jammer is a reactive and adaptive

jammer. This type of jammers only transmit when there is ongoing transmission on

channel [79]. When the modulated jammer is in free SB, it can be considered as a

primary user emulation (PUE) attack. Let us assume that the targeted signals are

uncoded BPSK and QPSK and the targeted receiver implements coherent detection,

the error probability Pe to jam BPSK or to either jam the in-phase component (I)
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or quadrature component (Q) of the targeted QPSK signal can be calculated as [20]:

Pe
I = Q

(√
2
σR
σN

(
1−

√
2σJ
σR

sin(θJ)

))
Pe

Q = Q

(√
2
σR
σN

(
1 +

√
2σJ
σR

cos(θJ)

)) (5.2)

where σR is the received power of the targeted signal, σN is the thermal noise power,

σJ is the received power of the jamming signal, θJ is the phase of the jamming signal,

and Q represents the Gaussian Q-function. For simplicity of analysis, we assume

that σJ >> σR, resulting in Pe ≈ 100% whenever the jammer transmits on the same

channel as the targeted transmitter-receiver pair.

5.3 Proposed Algorithm

In this section, we first introduce some background on the SCF. After that, we ex-

plain the preliminaries of compressed sensing conforming to [119, 74] and present our

proposed algorithm.

5.3.1 Spectral Correlation Function Overview

A random process s(t) is said to be wide sense cyclostationary with period T0 if its

mean E[s(t)] = µs(t) and autocorrelation E[s(t)s(t+ τ)] = Rs(t, τ) are both periodic

with the period T0, i.e.,

µs(t+ T0) = µs(t), Rs(t+ T0, τ) = Rs(t, τ). (5.3)

The autocorrelation of a wide-sense cyclostationary random process can be expanded

in a Fourier series as follows:

Rs(t, τ) =
∑
α

Rα
s (τ)ej2παt, (5.4)

where α = a/T0 and a is an integer. The Fourier coefficients, i.e., the cyclic autocor-

relation functions are given as

Rα
s (τ) =

1

T

∫ ∞
−∞

Rs(t, τ)e−j2παtdt. (5.5)

Taking the Fourier transform of above, the SCF is obtained as follows:

Ss(f, α) =

∫ ∞
−∞

Rα
s (τ)e−j2πfτdτ, (5.6)
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Figure 5.2: SCF of a wide-band spectrum hosting two BPSK signals and a QPSK
modulated jamming signal.

where α is the cyclic frequency and f is the angular frequency. It is worth noting

that AWGN is a widesense stationary process and has no cyclic correlations. Thus

the SCF of noise has no spectral features at α 6= 0. The SCF produces large amount

of data which makes it hard to classify the signals in near real time. Therefore, α

profile is extracted from SCF, which is given by (5.7) and depicted in Fig. 5.3.

I(α) = maxf [S
α
X ] (5.7)

5.3.2 Compressed Sensing and Proposed Algorithm

The frequency response of the received WB signal shown in (5.1) can be observed by

taking an N -point discrete fourier transform (DFT) on r(t), as follows:

rf =
M∑
m=1

D
(m)
h s

(m)
f + wf (5.8)
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Figure 5.3: α-profile of a wide-band spectrum hosting two BPSK signals and a QPSK
modulated jamming signal at different cyclic frequencies.

where rf is a N×1 vector of frequency-domain samples, D
(m)
h = diag

(
h

(m)
f

)
is an N×

N diagonal channel matrix, and h
(m)
f , s

(m)
f and wf are the discrete frequency-domain

samples of hm(t), sm(t) and w(t), respectively. Adopting sf = [(s
(1)
f )T , ..., (s

(M)
f )T ]T

to denote the signal spectrum of the transmitted signals, Hf = [D
(1)
h , ...,D

(M)
h ] to

denote the corresponding channel matrix for the receiver, this signal model can be

generalized as follows:

rf = Hfsf + wf . (5.9)

From the above expression, we can observe that the spectrum sensing task requires

to estimate sf in (5.9) provided we have Hf and r(t). To alleviate Nyquist rate

sampling requirements at the receiver ADC, we can take advantage of the advances

in signal recovery algorithms to recover Nyquist rate signal from sub-Nyquist samples.

Various computationally feasible algorithms, such as, BP [16] or Orthogonal Matching

Pursuit (OMP) [104], were developed to reliably estimate the received signal sampled

at sub-Nyquist rate sampling.
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The compressed time-domain samples are needed to be collected at the receiver.

For this, a compressed sensing matrix Sc is constructed to collect a K × 1 sample

vector xt from r(t) as follows:

xt = Scrt (5.10)

where rt is the N × 1 vector of discrete-time representations of r(t) at the Nyquist

rate and Sc is the K ×N projection matrix with K ≤ N . There are various designs

introduced in literature for compressive sampler such as non-uniform sampler [41]

and random sampler [42].

Noting that rt = F−1
N rf , and given K compressed measurements, the frequency

response sf can now be estimated in (5.9), as follows:

xt = STc F−1
N Hfsf + w̃f (5.11)

where w̃f = STc F−1
N wf is the noise sample vector which is white Gaussian. In the

context of cognitive radio networks, i.e., low spectrum occupancy by the licensed

users, the signal vector sf is sparse in frequency domain. The sparsity is measured

by p-norm ||sf ||p, p ∈ [0, 2), where p = 0 indicates exact sparsity.

Therefore, equation (5.11) is a linear regression problem with signal sf being

sparse. This signal sf can be estimated by solving the following linear convex opti-

mization problem:

ŝf = arg min
sf
||sf ||1, s.t. xt = STc F−1

N Hfsf (5.12)

This optimization problem can be solved by various different methods, for example,

by means of Convex Programming as in BP [16] method or by usage of Greedy

Algorithms such as OMP [104].

After the reconstructed Nyquist rate WB signal have been obtained from sub-

Nyquist samples, it can be fed to CFD to estimate the SCF of the reconstructed

signal. The procedures involved in the computation of SCF are outlined in previous

subsection. Obviously, the estimated SCF in this case depends on how well the

WB signal was estimated from compressed sensing, which in turn depends on the

sparsity of the signal and the compression rate. We assume that the algorithm has

access to a database containing pre-defined SCF values of the legitimate NB signals.

The algorithm then compares the estimated SCF values with those in the database,

eventually classifying each signal as “legitimate” or “jamming” signal. The pseudo-

code of the proposed algorithm is outlined in Algorithm 3 and a generic block diagram

summarizing the proposed algorithm is shown in Fig. 5.4.
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Figure 5.4: A generic block diagram of the implementation of proposed algorithm.

The proposed algorithm is computationally inexpensive but posses some limita-

tions, such as;

(i) Simple classification using licit waveform parameters stored in a database, and

(ii) Requirements to maintain databases with licit waveform parameters.

Alternatively, more advanced classification techniques such as a neural network based

approach or support vector machine (SVM) methods could be use to train the algo-

rithm with licit waveform parameters. This may not only improve the classification

performance of the algorithm but also relieve the requirements to maintain databases.

Furthermore, this kind of jammer detection algorithm could be used in formulating

intelligent game-theoretic based anti-jamming schemes as in [22]. The pseudo-code

of the proposed algorithm is outlined in Algorithm 3.

5.4 Empirical Results and Discussion for Tone Jam-

ming

For the experiments, we assume a WB spectrum of 50 ∆Hz is under observation.

This WB is sliced into 5 SBs of equal bandwidths. Each of this SB is assumed to be

either free or occupied by a NB signal. For testing, we assume the BPSK and QPSK

signals to be our legitimate signals while a sine wave is treated as a jamming signal.

Out of various recovery algorithms, we use BP algorithm for signal recovery through

compressed sensing. The SNR is set at 0 dB and compression ratios are varied from

K/N = 0.25 to K/N = 1.0. Two different setups are considered: (a) BPSK signal is

using SB-1, QPSK signal is using SB-5 and jamming signal is jamming empty SB-3;
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Algorithm 3 Pseudo-code for proposed algorithm

1: function Jammer Detector
2: Initialise all SB states to ”free”
3: Receive the WB signal
4: Set compression rate K/N
5: Construct the measurement matrix Sc
6: Estimate the WB from compressed samples using BP
7: Compute the SCF of estimated WB signal
8: Extract the α profile from SCF
9: Divide WB into i SBs

10: for i = 1 to I, do
11: Access the database
12: Compare parameters with the database waveforms
13: Decision ← Licit or Jammer
14: end for
15: end function

(b) BPSK signal is in SB-1 while jamming signal jumps to SB-5 to jam the QPSK

signal. The Nyquist sampling rate is fs = 100 ∆Hz and the frequency resolution

is fs/N = 5/2. Note that we keep a large frequency resolution for demonstration

but it should take appropriate smaller value in practice. Having known the carrier

frequencies of the licit signals, classification is performed at α 6= 0, where AWGN

exhibits no spectral features. The simulations are run for 1000 Monte-Carlo iterations.

The results are shown in graphical form instead of confusion matrices to counter space

limitations.

Fig. 5.5 shows the jammer detection rate versus the compression rate for occupied

SBs. It is observable that the jammer detection rate in SB-3 is about 0.99 at K/N =

1.0 while that of SB-1 and SB-5 its around 0.08. Meaning that both in SB-1 and

SB-5, the algorithm correctly classified the legitimate signals (BPSK as BPSK and

QPSK as QPSK) with 92% accuracy while for 8%, algorithm wrongly classified the

legitimate signals as jammer. With the decrease in K/N , the jammer detection

rate for SB-3 decreases while that for SB-1 and SB-5 increases. It is because will less

samples available for recovery, the recovered signal is less accurate. As a consequence,

the estimated SCF by the CFD is also different from what is stored in the database

and therefore, wrong classifications are increased. For example, at K/N = 0.55, the

jammer detection rate in SB-3 is 0.61 while wrong classification of jammer as BPSK

is 0.11 and that of jammer as QPSK is 0.28. Likewise, the jammer detection rate in

SB-1 and SB-5 is around 0.15 and wrong classification of BPSK as QPSK is 0.05 and

that of QPSK as BPSK is 0.08.
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Figure 5.5: Performance of Jammer Detection Algorithm over various compression
ratios and SNR = 0 dB. SB-1 is used by BPSK, SB-5 is occupied by QPSK and SB-3
is occupied by jammer.

Jammer detection rate versus the compression rate is plotted in Fig. 5.6 for second

test configuration where the jammer is now jumped into SB-5 to jam the licit QPSK

signals. As can be seen the jammer detection rate falls to 0.61 in SB-5 as compared to

0.99 in SB-3 from previous test scenario. It is because the algorithm is now classifying

a mixture of QPSK and Jammer in SB-5 as QPSK with a rate of 0.39 but ideally

it should have classified SB-5 to be jammed. Once again the jammer detection rate

falls as the compression rate is decreased due to poor recovery of the WB signal at

low compression rates. For instance, at K/N = 0.40 the jammer detection rate is

approximately 0.51 in SB-5 with wrong classifications as QPSK to be 0.12 and as

BPSK to be 0.37. The jammer detection rate in SB-1 is approximately the same as

before.
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Figure 5.6: Performance of Jammer Detection Algorithm over various compression
ratios and SNR = 0 dB. SB-1 is occupied by BPSK signal while jammer has jumped
from SB-3 to SB-5 to jam QPSK signal.

5.5 Empirical Results and Discussion for Modu-

lated Jamming

A 50 ∆Hz WB spectrum is assumed to be under observation by a CR terminal. This

WB is divided into 5 SBs. These SBs can be either free or occupied by a NB signal.

For testing the proposed system, we assume BPSK as legitimate signals and QPSK

is treated as a jamming signal. The received signals are considered to be affected by

AWGN. The BP algorithm is used for signal recovery through compressive sensing.

The sampling rate is set at Nyquist rate of 100 ∆Hz. We set SNR at 0 dB and

compression rate (K/N) are varied from 0 to 1. We configure our system in two

different ways: (a) we placed the BPSK signals in SB-1 and SB-5 and jamming signal

in SB-3; (b) BPSK signal is in SB-5 while jamming signal jumps to SB-1 to jam the

licit BPSK signal. It is assumed that carrier frequencies of legitimate users are known.

The classification of the signals is performed at α 6=0, where AWGN exibits no spectral
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Figure 5.7: Performance of Jammer Detection Algorithm over various compression
ratios and 0 dB SNR. SB-1 and SB-5 are used by BPSK signals and SB-3 is occupied
by modulated jammer .

features. The Monte-carlo simulations are run for 1000 iterations for each K/N . The

results are shown in the forms of graphs. For first system configuration, the jammer

detection rate versus compression ratio is plotted in Fig. 5.7. It can be seen from

this figure that the jammer detection rate is approximately 1 in SB-3 at K/N = 1.

Due to false classification (false positive), the jammer detection in SB-1 and SB-5 is

0.076, which intern means that algorithm correctly classified the legitimate signals

with 92% accuracy while for 8% algorithm wrongly classified the legitimate signals as

jammer. When K/N is decreased, the jammer detection rate for SB-3 decreases while

that for SB-1 and SB-5 increases. It is due to the reason that less samples are now

available for WB signal recovery, hence recovered signal is less accurate. Therefore,

the computed SCF is also different from what is stored in the database, which leads
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Figure 5.8: Performance of Jammer Detection Algorithm over various compression
ratios and 0 dB SNR. SB-5 is occupied by BPSK signal while modulated jammer has
jumped from SB-3 to SB-1 to jam BPSK signal.

to wrong classification. For example, at K/N = 0.70, the jammer detection rate in

SB-3 is 0.868 while wrong classification of jammer as BPSK is 0.132. similarly, the

jammer detection rate in SB-1 and SB-5 is 0.11. Fig. 5.8 shows the jammer detection

rate versus compression ratio for second system configuration, where the jammer is

now jumped to SB-1 to jam licit BPSK signals. It can be observed that jammer

detection rate decrease to 0.82 in SB-1 as compared to 1 in SB-3 from previous case.

It is because the algorithm is now classifying a mixture of BPSK and Jammer in

SB-1 as it also classify BPSK with classification rate of 0.18. The jammer detection

rate is also fallen for this system configuration as the compression ratio is decreased

due to poor recovery of the WB spectrum at low compression rates. For instance,

at K/N = 0.55 the jammer detection rate is approximately 0.65 in SB-1 with wrong
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classifications as BPSK to be 0.35.

5.6 Empirical Results and Discussion for Stealthy

Jamming

We consider a 500 ∆Hz WB spectrum under the observation of a CR terminal. This

WB is consisted of 5 SBs and each of these SB can either be free or occupied by

a NB signal. For experiments, we assume BPSK and QPSK as legitimate signals.

The transmitter can alter its modulation scheme over the time and the probability

of selecting either BPSK or QPSK is 0.5. Similarly, the jammer can choose optimum

jamming strategy against legitimate waveform, i-e BPSK against BPSK and QPSK

against QPSK. However, the jammer can jam one band at a time. The received

signals are considered to be affected by AWGN. The BP algorithm is used for signal

recovery through compressive sensing. The sampling rate is set at Nyquist rate of

1000 ∆Hz. The SNR is set to 0 dB and compression ratio (K/N) is varied from 0 to

1. We configure our system in such a way that we placed the BPSK signals in SB-1

and SB-4. It is assumed that carrier frequencies of legitimate users are known. The

classification of the signals is performed at α 6=0, where AWGN exhibits no spectral

features. The Monte-carlo simulations are run for 1000 iterations for each K/N and

results are shown in the form of graphs.

In Fig. 5.9 the jammer detection rate versus compression ratio is plotted for

SB-1, It can be seen from this figure that the jammer detection rate is around 0.9

at K/N = 1. Due to false classification (false positive), the jammer detection in

SB-1 is 0.08, which means that the proposed algorithm correctly classified the BPSK

with 92% accuracy while for 8% algorithm wrongly classified the legitimate signals as

jammer. When K/N is decreased, the jammer detection rate for SB-1 decreases while

wrong classification is increased due to the reason that now less samples are available

for WB signal recovery, hence estimated signal is less accurate. Therefore, the SCF

of the signal is also different from what is previously stored in the database, which

leads to wrong classification. For instance, the jammer detection rate is 0.57, while

false classification of BPSK as a jammer (BPSK + BPSK) is 0.35 at K/N = 0.40,

Fig. 5.10 shows the jammer detection rate versus compression ratio for second case,

when the transmitter adopt QPSK as modulation scheme and jammer also apt to

its optimum jamming scheme against QPSK. It can be seen that jammer detection

rate is 0.95 in SB-1 and the wrong classification of QPSK as a jammer is 0.02. The

jammer detection rate is also fallen for this case as the compression ratio is decreased
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Figure 5.9: Performance of Jammer Detection Algorithm over various compression
ratios and 0 dB SNR. SB-1 and SB-5 are used by BPSK signals and stealthy jammer
target licit signal in SB-1 .

due to poor recovery of the WB spectrum at low compression rates. For example,

at K/N = 0.40 the jammer detection rate is approximately 0.55 in SB-1 and wrong

classifications of QPSK as a jammer is increased to 0.45. Similar, procedure is valid

for all other occupied SBs.

5.7 Conclusion and Future Work

In this chapter, we proposed a cyclic feature based jammer detection algorithm for

WB cognitive radio networks. The WB was considered to be comprised of several

NB signals with known carrier frequencies and symbol times. To alleviate ADC

complexity, compressed sensing was employed for recovering the Nyquist rate samples

of the WB signal from sub-Nyquist sampling. The recovered signal was then fed to
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Figure 5.10: Performance of Jammer Detection Algorithm over various compression
ratios and 0 dB SNR. The licit users changed modulation scheme to QPSK in SB-1
and SB-5 and stealthy jammer target licit signal in SB-1 .

the CFD to estimate the SCF of the signal. After that, estimated SCF from CFD

was compared with the SCF of the licit waveforms’ database to identify jamming

waveforms in each SB. In the end, results were evaluated for different occupancy

states of the WB spectrum over various compression rates at low SNR value, with

the help of Monte-Carlo simulations.

The proposed algorithm appears to perform well within the limitations imposed

for using simple classification based on plain comparison of parameters from database.

Alternatively, better classification techniques such as a neural network based or sup-

port vector machine (SVM) classifier could improve the performance of the algorithm.

Additionally, such a jammer detection algorithm could be helpful in formulating in-

telligent anti-jamming strategies for WB cognitive radio systems.
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Chapter 6

Spectrum Characterization using
Compressed Sensing and Artificial
Neural Networks

6.1 Introduction

Jamming attacks can noticeably affect the performance of wireless communication

systems and can lead to significant overhead in terms of data re-transmission and

increased power consumption. In this chapter, a novel compressed sensing based

jammer detection algorithm is proposed using cyclic spectral analysis and artificial

neural network (ANN) for wide-band (WB) cognitive radios. The proposed approach

considers a WB spectrum, which is occupied by several narrow-band (NB) signals.

These NB signals can be legitimate signals or jamming signals. Compressed sensing

(CS) is used to reduce the overhead of the analog-to-digital conversion (ADC) and

allows one to estimate a WB spectrum with sub-Nyquist rate sampling. Therefore,

proposed algorithm is able to recover the received WB signal from sub-Nyquist rate

samples using CS. After the Nyquist rate signal has been recovered, spectral correla-

tion function (SCF) is computed to extract the cyclic features of WB signal. Finally,

a pre-trained ANN is able to classify each NB signal as a legitimate or jamming sig-

nal. This ANN is trained for sub-Nyquist samples, which significantly increases the

signal classification rate. In the end, performance of proposed algorithm is shown

with Monte-Carlo simulations under different empirical setups.

The rest of the chapter is organized as follows. Section 6.2 explains some back-

ground on the problem. Section 6.3 describes the system model and problem for-

mulation, followed by the proposed algorithm in Section 6.4. Section 6.5 covers the

simulation results and discussions and finally the chapter is concluded in section 6.6.
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6.2 Background

Over the years, spectrum resources are becoming more and more expansive, for ex-

ample ISM bands are clutched and busier than ever. On the other hand, the licensed

spectral bands are reported under-utilized (spectrum holes) by the Primary Users

(PUs). Cognitive radio is proposed to opportunistically utilize the licensed bands by

Secondary Users (SUs) without interference to PUs. This is the reason cognitive radio

has attained great attention from wireless communication community in recent years.

A cognitive radio dynamically interacts with the environment and adopts the oper-

ating parameters accordingly for the purpose of dynamic/ opportunistic spectrum

access (DSA / OSA) [68], [47]. In order to discover the spectrum holes, spectrum

sensing is the primary task needed to be performed by a cognitive radio terminal

[116].

In literature, various spectrum detectors have been proposed for cognitive radios,

such as matched filter detector (MFD), energy detector (ED) and cyclostationary

feature detector (CFD) [113]. The MFD can detect the primary signals very well,

but the comprehensive prior knowledge for the PU’s signal is needed. Furthermore,

if the environment changes, the detector’s performance degrades. The ED is easy

to implement, and usually has good performance in low noise environment. ED is

suggested in the IEEE 802.22 standard for spectrum sensing. However, it fails at

low SNRs. In most cases, spectrum sensing is needed to detect the weak primary

signals accurately. Therefore, another typical spectrum detector called CFD, has

been proposed to significantly improve the detection probability of the PU signals.

CFD is able to accurately detect and even classify the primary signals under low

SNR condition, thanking to its cyclic frequency features, which can be extracted and

recognized in different modulation signals. This performance is achieved at the cost

of increased implementation complexity. CFD uses the cyclostationarity of the mod-

ulated primary signals by detecting spectral peaks in spectral correlation function

(SCF) or spectral coherence function (SOF) [5, 115, 78], which are sparse in both an-

gular (f) and cyclic (α) frequency domain. Furthermore, it has been used as a robust

tool for signal classification when the carrier frequency and bandwidth information is

unavailable [35, 61, 6].

When the cognitive radios are operating on a wide-band (from few hundred MHz

to several GHz), the sensing task becomes more complex and imposes a large overhead

to the spectrum sensing system due to the high-rate sampling, analog-to-digital (A/D)

converter, and heavy memory usage. Compressive sensing (CS) [30] is an interesting
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solution to alleviate requirements of high sampling rates provided that the signal is

sparse in some given transform domain. Signal sparsity is the main requirement for

CS to work and in the case of cognitive radio networks, it is a practical assumption

because not all frequency bands are occupied all the time in all geographical locations

[68]. Therefore, spectrum of the cognitive radio network is sparse in frequency domain

due to low occupancy by the PUs. CS requires non-linear optimization to find the

optimal solution for signal estimation and this could be achieved by means of greedy

algorithms such as Matching Pursuit (MP) [31] or Orthogonal MP [104]. The other

solution in literature is the use of Convex Programming as in Basis Pursuit (BP) [16].

Then, CFD needs to estimate the SCF of the received wide-band (WB) spectrum from

sub-Nyquist samples. A possible approach [18] is to first recover Nyquist samples

from sub-Nyquist samples, then estimate the SCF and perform feature extraction.

For Nyquist samples recovery, authors in [66] used modulated wide-band converter

(MWC). On the other hand, a different method is adopted in [100],[103] where authors

perform the SCF estimation directly from sub-Nyquist samples by exploiting the

sparsity in two dimensional SCF domain.

Radio frequency (RF) jamming is the process of transmitting illegitimate signals

on one or more occupied channels with the objective of disrupting the communication

of the targeted system. Jamming and anti-jamming concepts are as old as radio com-

munications itself, but recent development in CR technology has permitted devising

and deploying of more advanced, self-configurable jamming[22] and anti-jamming [23]

solutions. Spectrum sensing plays a key role in designing anti-jamming systems. This

spectrum sensing information can be used to detect potential jammers [73] and to

take proactive measures to ensure communication continuity and security. Further-

more, an observation set can be maintained over the time and used to employ more

effective anti-jamming tactics. For example, when a frequency hopping spread spec-

trum (FHSS) based system is used, cognitive radio can modify its hopping sequence

to avoid the channels which are occupied by jamming entities [91]. In order to design

an appropriate anti-jamming system, there is a need for a reliable jammer detection

algorithm.

In this work, we propose a new jammer detection algorithm for WB cognitive radios.

The first step is to recover the Nyquist rate WB spectrum, which consists of various

NB signals, from sub-Nyquist samples using CS. For this, we use the conventional BP

technique [16]. The reconstructed signal is then fed to the CFD to estimate the SCF

of the WB signal. The cyclic frequency profile (α − profile) is extracted from SCF

and is used as input features for an artificial neural network (ANN) based classifier.
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Figure 6.1: (a) Wide-band spectrum divided into multiple sub-bands (SB) and each
SB is occupied by a narrow-band signal. (b) Narrow-band jammer (Tone) jumps to
the neighbouring SB to jam licit (BPSK or QPSK) signal.

Two different ANN based classifiers are discussed in this work and one with higher

classification performance is used for jammer detection. Based on the ANN classi-

fier, each of NB signal is classified either as a legitimate signal or a jamming signal.

Finally, the performance of proposed algorithm is evaluated for various compression

ratios and SNRs to observe the effects of various parameters on the classification per-

formances.
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Figure 6.2: SCF of a wide-band spectrum hosting BPSK and QPSK modulated signals
and a non-modulated tone signal.

6.3 System Model and Problem Formulation

We consider a received WB spectrum of ∆ Hz. This WB spectrum can be occu-

pied by various NB signals n ∈ {1, 2, 3.....N}, with different carrier frequencies and

modulation types that we want to identify. The received WB signal is an aggregated

time-domain signal which can be presented as

r(t) =
N∑
n=1

hn(t) ∗ sn(t) + w(t) (6.1)

where sn(t) denotes the n-th transmitted signal, hn(t) is the channel coefficient be-

tween n-th transmitter and receiver, * denotes the convolution operation and w(t)

is the additive white Gaussian noise (AWGN) with zero mean and power spectral

density σ2
w . We assume that these NB signal can be generated by different types

of modulation schemes, such as, binary frequency shift keying (BFSK), binary phase

shift keying (BPSK), quadrature amplitude modulation (QAM), quadrature phase

shift keying (QPSK), or any other modulation scheme as shown in Fig. 6.1 (a). The
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WB is divided into multiple equal bandwidth SBs and each of these SBs can be

occupied by NB signals with no spill over energy into neighbouring SBs.

For our proposed system, a single tone is considered as a jamming signal. The

jammer is considered to be a cognitive jammer, which has the knowledge of carrier

frequencies of legitimate signals. This jammer can jam any of SBs, if it has higher

power than the legitimate signal as depicted in Fig. 6.1(b). The tone jammer is very

successful against NB signals, due to the fact that it allows to concentrate all power

on a single data channel. The tone jamming is often considered as the best strategy

for jammers with limited transmission power [20]. Let us assume that the targeted

signal is QPSK-modulated and uncoded, and that targeted system uses the coherent

detection. Then, the error probability (pe) to either jam the in-phase component (I)

or quadrature component (Q) of the targeted signal can be given as follow [73],[20]

pI
e = Q(

√
Pr
Pn

(1−
√

2Pj
Pr

Sin(θj)) (6.2)

pQ
e = Q(

√
Pr
Pn

(1 +

√
2Pj
Pr

Cos(θj)) (6.3)

here, Pr is the received power of targeted signal, Pn is thermal noise power, Pj is

the jamming signal received power, θj is the phase of jamming signal, and Q is the

Gaussian Q-function. For our system model we considered that Pj >> Pr, there-

fore pe ≈ 100% whenever jammer transmits on the same channel as the targeted

transmitter-receiver pair.

6.4 Proposed Algorithm

In this section we first introduce SCF, CS and ANN, and at the end newly proposed

algorithm is presented.

6.4.1 Cyclostationary Spectral Analysis

A process r(t) is said to be wide-sense cyclostationary with period T0 if its mean

E[r(t)] = µr(t) and autocorrelation E[r(t)r(t+ τ)] = Rr(t, τ) are both periodic with

period T0,

Mr(t+ T0) = Mr(t), Rs(t+ T0, τ) = Rr(t, τ). (6.4)

The autocorrelation function of a wide-sense cyclostationary process can be expressed

in terms of its Fourier series components.

Rr(t, τ) = E[r(t+ τ/2)r∗(t+ τ/2)] (6.5)
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Figure 6.3: Cyclic frequency profile of a wide-band spectrum hosting BPSK, QPSK
and a tone signal at different cyclic frequencies.

Rr(t, τ) =
∑
α

Rα
r e

j2παt (6.6)

where, α = a
T0

and a is an integer. E[.] is the expectation operator, α is the cyclic

frequency, and Rα
r (τ) present the cyclic autocorrelation function (CAF) and give

Fourier components. CAF is given by

Rα
r (τ) = lim

T→∞

1

T

∫ T
2

−T
2

Rr(t, τ)e−j2παtdt (6.7)

The Fourier Transform of the CAF is known as SCF and is given by

Sαr (f) =

∫ ∞
−∞

Rα
r (τ)e−j2πfτdτ (6.8)

where α is cyclic frequency and f is the angular frequency.

The major benefit of spectral correlation is its insensitivity to background noise.

Since, correlation measures the temporal correlation of different spectral components,

and the spectral components of noise are completely uncorrelated in time due to the
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Figure 6.4: A generic block diagram of the implementation of proposed algorithm.

fact that noise is wide-sense stationary process. Therefore, noise does not play sig-

nificant factor in the SCF. This fact allows the spectral correlation of a signal to be

accurately calculated even at low SNRs. Furthermore, different types of modulated

signals (BPSK, AM, FSK, MSK, QAM, PAM) with overlapping power spectral den-

sities have highly distinct SCFs. Our simulations are restricted to the BPSK and

QPSK modulation schemes due to the fact that higher order QAM and higher order

PSK do not exhibit second order periodicity or exhibits the same features as QPSK.

Therefore, these signals can be distinguished by higher order spectral analysis [43].

An example of the SCF of WB signal is depicted in Fig. 6.2.

SCF computation requires large amount of data, which makes it unreasonable for

a classifier to operate on it in real time. We used here α − profile as features for

classification given in (6.10) . The α− profile of SCF for WB signal is shown in Fig.

6.3.

I(α) = maxf [S
α
r ] (6.9)

6.4.2 Compressed sensing

In this section, an overview of CS process is presented. The frequency response of the

observed WB signal shown in (1) can be obtained by taking N-point discrete fourier
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transform (DFT) on r(t), as follows:

rf =
N∑
n=1

D
(n)
h S

(n)
f + wf (6.10)

where rf is a N × 1 vector of obtained frequency-domain samples, D
(n)
h = diag(h

(n)
f )

is an N×N diagonal channel matrix, and h
(n)
f , S

(n)
f and wf are the frequency-domain

samples of hn(t). sn(t) and w(t), respectively. This signal model in (10) can be

written in more generalized form as follows:

rf = Hf S̄f + wf (6.11)

where S̄f = [(S
(1)
f )T ....(S

(N)
f )T ]T is used to denote the spectrum of transmitted sig-

nals, and Hf = [(D
(1)
f )....(D

(N)
f )] to denote the corresponding channel matrix for the

receiver. From the above expression it can be observed that the spectrum sensing task

requires to estimate Sf in (6.11) provided we have Hf and r(t). We have WB signal

at our disposal, to alleviate Nyquist rate sampling requirements at the receiver A/D

converter, we can take advantage of the advances in signal recovery algorithms to

recover Nyquist rate signal from sub-Nyquist samples. Several computationally rea-

sonable algorithms, such as, BP [16] or Orthogonal Matching Pursuit (OMP)[104],

were developed to reliably estimate the received signal sampled at sub-Nyquist rate

sampling. The compressed time-domain samples are required to be collected at re-

ceiver. Therefore, a CS matrix Sc is constructed to collect a K × 1 sample vector Xt

from r(t) as follows:

xt = Scrt (6.12)

where sc is the k × n projection matrix and rt is the N × 1 vector of discrete-time

representations of r(t) at the Nyquist rate with K <= N . There are different designs

introduced in literature for compressive sampler such as non uniform sampler [92] and

random sampler [117]. It is worth noting that rt = F−N 1rf , and given K compressed

measurements, the frequency response S−f can now be estimated in (6.12), as follows:

xt = STc F
−1
N Hf S̄f + w̃f (6.13)

where w̃f = STc F
−1
N wf presents the noise sample vector which is white Gaussian. In

the context of cognitive radio networks, due to low spectrum occupancy by licensed

users, the signal vector Sf is sparse in frequency domain. The sparsity of signal vector

is measured by p-norm ||Sf ||p, p ∈ [0, 2), where p = 0 indicates exact sparsity. Thus,
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equation (13) is a linear regression problem with signal S̄f being sparse. The signal

S̄f can be estimated by solving the following linear convex optimization problem:

Ŝf = argm
S̄f

in||S̄f ||1, s.t. xt = STc F
−1
N Hf S̄f (6.14)

This optimization problem can be solved for example, by means of Convex Pro-

gramming as in BP [16]. After the reconstructed Nyquist rate WB signal have been

obtained from sub-Nyquist samples, CFD can be used to estimate the SCF of the

reconstructed signal. The estimated SCF in this case is definitely dependent on how

well the WB signal was estimated from CS, which in turn depends on the sparsity of

the signal and the compression rate. The procedure of SCF computation is given in

Sec. 6.4.3. Then the features are extracted from obtained SCF of the WB signal and

used to train ANN. The α− profile is used as features to train ANN based classifier.

The detail of ANN based classifier is given in following section.

6.4.3 Neural Network Classifier

The proposed system uses an ANN as classifier due to its ease of implementation and

potential to generalize any parameter, such as carrier frequency, symbol rate, phase

offset and compression ratio. The system is designed to classify signals as BPSK,

QPSK, Jammer (single tone), QPSK plus Jammer and BPSK plus Jammer. This is

done with one ANN, trained to identify the above five classes of signals. The SCF of

WB produces a large amount of data, which makes impossible for a classifier to work

on it in near real time. In order to reduce the amount of data for a classification stage,

we used α − profile as input features for an ANN. The proposed ANN is composed

by 80 inputs related to the α− profile, a single hidden layer whose neurons use the

hyperbolic tangent sigmoid as a neural transfer function; and an output layer of five

neurons relevant to each type of signal taken into account in this work. The value

is in the range [0, 1]. Therefore, the output class with the highest vlaue between

[0, 1] is considered as the signal class. ANN is trained based on the scale conjugate

gradient propagation [69]. The selection of a single hidden layer is proposed due to

the classification process simplicity of this particular problem, it was found with a

single hidden layer ANN, over the 90% accuracy was achieved. These results show

that considering more hidden layers would increment the training time and overall

results would not be significantly improved. According to this, in order to choose

the proper number of neurons such that does not compromise notably the training

time and guarantees robustness at repeating the training process for new ANNs, it
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Figure 6.5: Proposed Neural Network

is proposed to train multiple times 20 different architectures in which the number of

neurons in the single layer is varied from 1 to 20. A total of 100 trains are executed for

each ANN architecture. For each run, weights are initialized randomly and a data set

composed by 80,000 signals is used in order to train (70%), validate (15%) and test

(15%) each architecture. In order to evaluate and compare to overall performance of

each architecture, the expression of equation (6.15) was taken into consideration.

Ψk = We(ANN
k
er)(std

k
er) +Wt(ANN

k
t )(stdkt ) (6.15)

Where k is an indicator of the ANN architecture. ANNk
er represents the normalized

average error of the 100 trained ANNs for the particular architecture k. ANNk
t

is the normalized average time that an architecture m took in the training phase.

stdkerror and stdktime are the standard deviations of the normalized error and training

time respectively for a particular ANN architecture k. We and Wt are global weights
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Figure 6.6: Neural Network performance for different number of neurons

which indicate the impact that errors and training times have respectively in the

performance expression. Both parameters are related in the following way: We+Wt =

1. In this work the overall performance of each architecture k is considered for high

values of We and therefore low values of Wt. This constrain is considered in the

present work in order to give more relevance to the error optimization instead of the

consumed training time.

From Fig. 6.6, it is possible to observe that the architecture of 18 neurons in the

hidden layer presents the best overall performance in terms of error and training time

minimization. According to this, the ANN architecture of 18 neurons that presented

the highest performance among the 100 trains was used for classification purposes.

The final ANN architecture used in this work is shown in Fig. 6.5.
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Figure 6.7: Performance comparison of the two proposed ANN based classifiers. One
is trained at Nyquist rate samples and the other is trained for samples obtained with
different compression ratios.

The proposed algorithm can be summarized as follows: the receiver observers

a WB spectrum, which consists of multiple NB signals. The compression ratio is

set to a particular value and WB is sampled using random sampling. Then the

measurement matrix, Sc is collected at receiver and WB is estimated from sub-Nyquist

samples using BP. After the reconstruction of Nyquist rate WB signal from sub-

Nyquist samples, SCF is computed and features related to α−profile are extracted for

different type of signals. Then, these extracted features are fed into previously trained

ANN in order classify NB signals. The ANN classifies each NB signal as ”legitimate”

or ”jamming” signal and eventually, optimum value for SNR and compression ratio

is obtained. The pseudo-code of the proposed algorithm is outlined in Algorithm 4
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Figure 6.8: Performance of Jammer Detection Algorithm over various compression
ratios and SNRs. SB-1 is used by BPSK, SB-5 is occupied by QPSK and SB-3 is
occupied by jammer.

and a block diagram describing the different steps involved is depicted in Fig. 6.4 .

In this work, two different approaches are adopted to train ANN. In first case, the

ANN is trained for full rate (Nyquist rate) and tested against different compression

ratios. In second case, the ANN is trained for different compression ratios and tested

against various compression ratios.
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Figure 6.9: Performance of Jammer Detection Algorithm over various compression
ratios and SNRs. SB-1 is occupied by BPSK signal while jammer has jumped from
SB-3 to SB-5 to jam QPSK signal.

6.5 Experimental Results and Discussion

A WB spectrum of 50 Hz is assumed to be under observation by a cognitive radio

terminal. This WB is divided into 5 SBs. These SBs can be occupied by NB signals

or empty. For testing our proposed algorithm, we assume BPSK and QPSK to be

our legitimate signals and sine wave is treated as a jamming signal. The receives WB

signal is assumed to be affected by AWGN. From various recovery algorithms, we use

BP algorithm for signal recovery through CS. The performance of proposed system is

evaluated for various compression ratios K/N = 0.25 to K/N = 1 at different SNRs

-5 dB, 0 dB, 5 dB and 10 dB respectively. We configured the system in three different
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Figure 6.10: Performance of Jammer Detection Algorithm over various compression
ratios and SNRs. SB-1 is occupied by BPSK signal while jammer has jumped from
SB-3 to SB-5 to jam QPSK signal.

ways: (a) we placed the BPSK signal in SB-1, QPSK in SB-5 and jamming signal

in SB-3; (b) BPSK signal is in SB-1 while jamming signal jumps to SB-5 to jam the

QPSK signal; and (c) QPSK signal is in SB-5 while jamming signal jumps to SB-1 to

jam the BPSK signal. The sampling rate is set at Nyquist rate of 100 Hz. Having the

knowledge of presence of the licit signals, classification is performed at α 6= 0, where

AWGN exhibits no spectral features. The Monte-Carlo simulations are run for 1000

iterations for each signal type and for different compression ratios at each SNR. The

results are shown for two different types of ANN based classifiers.
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Algorithm 4 Pseudo-code for proposed algorithm

1: function Jammer Detector
2: Initialize all SB states to ”empty”
3: Receive the WB signal (1)
4: Set compression rate ← K/N
5: Sample the WB using random sampling (12)
6: Construct the measurement matrix ← Sc (12)
7: Estimate the WB spectrum from compressed samples using BP (14)
8: Compute the SCF of WB signal (8)
9: Extract the α− profile (9)

10: Divide WB into i SBs
11: for i = 1 to I, do
12: Feed the α− profile for SBi to previously trained ANN (15)
13: Decision ← Signal type
14: end for
15: Performance: Classification rates (β) Vs Compression ratios (CRS)
16: Select → Best (K/N,SNR)
17: end function

6.5.1 Proposed classifier

The two ANNs selected based on the process described in 6.4.3, as mentioned pre-

viously, both the systems are trained with 80,000 signals, the first system is trained

with full rate (Nyquist rate) samples and the second system is trained with various

compression ratios. Both the classifiers are trained at different SNRs and carrier fre-

quencies so that the system performance does not depend on the information of these

parameters. The proposed systems correctly classifies signals with total classification

rate of 0.93 and 0.885 respectively.

The performance of both systems is further evaluated for independent test signals,

with different compression ratios and SNRs (-5 dB to 10 dB) from training signals.

The comparison of overall classification accuracy for two classifiers is given in Fig.

6.7. The plot shows that at low SNRs and high compression ratios the system trained

for different compression ratios outperforms the other system, which is trained only

for Nyquist rate samples. For example, at -5 dB, it can be seen that the classification

rate is 0.38 for first classifier and 0.65 for second classifier at K/N = 0.25. The clas-

sification accuracy is increased as K/N is elevated, and it is 0.56, 0.71, 0.82 and 0.80,

0.85, 0.86 at K/N = 0.40, 0.55, 0.70 respectively for two classifiers. However, for the

high compression rates such as K/N = 0.85, 1, the classification rate is approximately

same for both the classifiers and it is 0.88 and 0.90 respectively. The second classifier,

which is trained for different compression ratios is selected for jammer detection on
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Figure 6.11: Performance comparison with database matching method

the basis of the above discussions.

6.5.2 Jammer Detection Rate

Fig. 6.8 shows the jammer detection rate versus the compression ratio for occupied

SBs. It can be noticed from the figure that at 0 dB, the jammer detection rate in SB-3

is 1 for K/N = 1.0 while for that of SB-1 and SB-5 is approximately 0.0. This means

that both in SB-1 and SB-5, the algorithm correctly classified the legitimate signals

(BPSK as BPSK and QPSK as QPSK) with 98% accuracy, and miss classified with

rate 0.02 BPSK as QPSK and QPSK as BPSK. By decreasing K/N ratio, the less

samples are available for recovery of signal. As a consequence, the estimated SCF by

the CFD is also an approximation. The jammer detection rate is 0.93, even K/N is
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Figure 6.12: Performance comparison with database matching method

fallen to 0.4. This high accuracy is achieved due to the use of ANN as a classifier and

training it for various compression ratios. When K/N = 0.25, the jammer detection

rate is reduced to 0.779 while wrong classification of jammer as BPSK is 0.049 and

that of jammer as QPSK is 0.039. It is worth noticing that jammer is classified as

BPSK plus jammer class for rate of 0.13, which is in fact an illegitimate signal class.

Jammer detection rate versus the compression rate is plotted in Fig. 6.9 for second

test configuration where the jammer jumped into SB-5 to jam the licit QPSK signals.

It can be seen that the jammer detection rate falls to 0.78 in SB-5 as compared to 1 in

SB-3 from first test scenario. It is because the algorithm is now classifying a mixture

of Jammer and QPSK in SB-5 with a rate of 0.21. The jammer detection rate once

again falls as the compression ratio is decreased due to the poor recovery of the WB
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Figure 6.13: Performance comparison with database matching method

signal at low compression rates. For instance, at K/N = 0.40 the jammer detection

rate is apporimately 0.7 in SB-5 with wrong classifications as QPSK to be 0.27.

In third test configuration, the jammer jumped to SB-1 in order to jam the BPSK

signals. The jammer detection rate in this case is shown in Fig. 6.10. The jammer

detection rate is 0.94 in SB-1, a 0.06 decreased is observed as compared to 1 in SB-

3 from first test scenario. The detection rate is dropped as K/N is decreased and

it is 0.87 at K/N = 0.40 and its mistaken rate as BPSK and QPSK is 0.038 and

0.019 respectively. The proposed algorithm performance is compared with[73] and

it can be seen from Fig. 6.11-6.13 that the introduction of ANN not only increases

the classification rate, but also greatly improve the jammer detection rate. In [73]

classification was made on simple comparison of parameters from database. The
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Figure 6.14: Robustness of proposed algorithm

robustness of the algorithm is shown in Fig. 6.14. It can be seen, even for low

compression ratio of 0.4, the classification rate is approximately 0.87 at 0 dB and

0.8 at -5 dB. This demonstrates that proposed algorithm can efficiently work in an

environment where noise level exceeds the signal level. Therefore, this algorithm is

robust against noise.

The purpose of the designed algorithm is also to determine an optimum value

for compression ratio and SNR, which reduces the overall cost of the system under

consideration. The signals can be further categorized into two broad classes, licit

signals (BPSK, QPSK) and illicit signals (Jammer, BPSK plus Jammer, and QPSK

plus Jammer). The illicit case is more harmful for any communication system and the

SBs occupied by these signals must be avoided. Table 6.1 presents the classification

rate for SNR = −5 dB and K/N = 0.40 . The algorithm classified BPSK and
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QPSK for 95% and 98% as a legitimate signals (BPSK, QPSK) consecutively, while

for 5% and 2% algorithm wrongly classified as the jamming signal (Jammer, BPSK

plus Jammer and QPSK plus Jammer). Similarly, Jammer, BPSK plus Jammer and

QPSK plus Jammer are correctly classified for 96%, 90% and 73% as illicit signals

and wrongly classified as legitimate signals for 4%, 10%, and 27% respectively.

Table 6.2 shows signal classification rate at SNR = 0 dB and K/N = 0.40. The

BPSK and QPSK are classified 100% and 98.5% as licit users, respectively. Similarly,

jammer is correctly detected as illicit signal for 97%. When the jammer jumps into

the band occupied by the BPSK signal, the band is for 94.3% classified as illegitimate

band. When the jammer jumps to jam QPSK, the algorithm correctly classify it as

illegitimate signal for 73%.

Therefore, by analyzing the Fig. 6.7, Table 6.1 and Table 6.2, it can be concluded

that a -5 dB and 0.40 would be a smart choice for SNR and compression ratio, which

means this technique is robust to noise and can save 60% of sensing energy . Hence,

it is definitely an adequate choice for two broad signal classes.

This work, considered a constant jammer that send out random bits without

following any medium access control (MAC)-layer protocols. It will be interesting

to use this algorithm to detect other types of jammers, for example deceptive and

reactive jammers [20].

6.6 Conclusion

In this chapter, we proposed a cyclic feature based jammer detection algorithm for

WB cognitive radio using ANN. The WB is considered to be composed of several

NB signals. To ease the A/D complexity, CS was used for recovering the Nyquist

rate samples of the WB signal from sub-Nyquist sampling. The recovered WB signal

was then fed to the CFD to compute the SCF of the signal. The α − profile is

extracted and fed to two different ANNs which were previously trained. The classifi-

cation performance of both the ANN based classifiers was evaluated at various SNR

and compression rate values. The classier trained for different compressed ratios is

selected on the basis of its good performance at low SNR and K/N as compared to

the classifier trained at Nyquist rate samples. The proposed algorithm appears to

perform well at various SNRs values down to -5 dB. Since the SCF of different signals

are quite different, it appears to be a very effective parameter to use in classifica-

tion. Furthermore, it is shown that the ANN based classifier significantly increase

the performance as compared to plain database matching methods.
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Table 6.1: Signal classifications for CR = 0.40 at -5 dB

Test Signal BPSK QPSK Jammer BPSK
Plus

Jammer

QPSK
Plus

Jammer

BPSK 935 15 24 26 0

QPSK 100 889 4 1 6

Jammer 26 14 789 163 8

BPSK Plus Jammer 79 18 218 667 18

QPSK Plus Jammer 2 273 13 14 698

Table 6.2: Signal classifications for CR = 0.40 at 0 dB

Test Signal BPSK QPSK Jammer BPSK
Plus

Jammer

QPSK
Plus

Jammer

BPSK 938 62 0 0 0

QPSK 35 950 0 0 15

Jammer 17 12 926 40 5

BPSK Plus Jammer 38 19 79 847 17

QPSK Plus Jammer 2 268 12 18 700

In the end, algorithm determine the optimum value for compression ratio and

SNR, in order to reduce the sensing energy and to work in an environment where

noise level exceeds the signal level. The algorithm appears to classify the signals

with a high accuracy in noisy channels and can save more than half of the sensing en-

ergy. Additionally, such a jammer detection algorithm could be helpful in formulating

intelligent anti-jamming strategies for WB cognitive radio systems.
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Chapter 7

Practical Implementation of
Spectrum Characterization for
Wide-band Radios

7.1 Introduction

In the framework of cognitive radio (CR) and dynamic spectrum access (DSA), spec-

trum sensing is the fundamental method which provides radio devices with infor-

mation about the wireless spectrum in the surrounding environments consisting of

signals with different characteristics, such as different modulation schemes, different

communication standards, or different objectives. In the later case, signals are defined

as legitimate signals or jammers. In this chapter, a new Cyclic Spectral Intelligence

(CSI) algorithm is proposed which exploits the cyclostationary features of digitally

modulated signals and use an artificial neural network as a classifier. This algorithm

is based on the cognitive cycle to acquire self-awareness from spectrum measurements.

The process for the realization of a large dataset consisting of experimental data

generated by spectrum measurements is also described in this chapter. The main

purpose for which the proposed dataset has been created is research in the field of

PHY-layer security and Cognitive Radio. A Software Defined Radio (SDR) platform

has been used to generate modulated signals in a specified band which are stored for

off-line applications. The proposed CSI algorithm has been validated on the collected

experimental dataset and the results highlight a classification rate of approximately

1 even at low transmit power.

The remainder of the chapter is organized as follows: Section 7.2 outlines the

background related to this work. The proposed cyclic spectral intelligence algorithm

is introduced in Section 7.3 which is based on a cognitive cycle consisting of five
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steps. Sensing described in Section 7.4 along with the testbed architecture and the

data acquisition, processing is presented in Section 7.5. The cyclostationary feature

analysis and the neural network classifier are both described in Section 7.6, while

acting and learning steps in Section 7.7 conclude the cognitive cycle. Validation of

the proposed algorithm on experimental data is made in Section 7.8. Finally, chapter

is concluded in Section 7.9.

7.2 Background

Recent advances in software defined devices and machine learning, in addition to

results obtained in neuroscience, open new horizons towards innovative technologies

in different fields including Cognitive Radio (CR) [37], [48].

CR can be defined as an intelligent and dynamically reconfigurable radio that

can adaptively regulate its internal parameters in response to the changes in the sur-

rounding environment. To this end, research is now focussing on learning mechanisms

based on some of the existing machine learning techniques [24].

Basically, CR deals with the growing demand and shortage of the wireless spec-

trum. In order to utilize the spectrum efficiently, TV white spaces (TVWS) [89]

allows secondary users to use licensed spectrum bands provided that they change

their access strategies to care for the primary users. With respect to unlicensed

communications, the available channel is not fixed and, consequently, the transmitter

operates at different carrier frequencies, modulation techniques, and transmit powers.

In literature, various spectrum sensing techniques have been proposed for CRs,

such as, energy detection [17], cyclostationary feature detection (CFD) [56], matched

filtering detection [112] wavelet transform [123]. Among these methods, the CFD is

capable of detecting the primary signal from the interference and noise even in very

low signal-to-noise ratio (SNR) regions [49]. This performance is achieved at the cost

of increased implementation complexity. The Federal Communications Commission

(FCC) of the United States has suggested CFD as an alternative to improve the de-

tection sensitivity in CR networks. Generally, energy detector fails at low SNRs while

matched filtering detector requires a dedicated receiver structure which may not be

possible in a practical cognitive radio terminal. CFD exploits the cyclostationarity of

modulated signals by detecting spectral peaks in spectral correlation function (SCF)

or spectral coherence function (SOF) [45, 93, 96], which are sparse in both angular (f)

and cyclic (α) frequency domain. Major advantage of CFD based detector lies on its

abilities to perform better than energy detector at low SNR values and to distinguish
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different modulated signals. Furthermore, the cyclic spectral analysis has been used

as a robust tool for signal classification when the carrier frequency and bandwidth

information is unavailable [111], [61]. A comparison among the most common sensing

methods in terms of complexity and accuracy is made by [118].

On the other hand, though, radio communications in wireless environments in-

troduce security issues due to external attacks from malicious devices owing to the

broadcast nature of radio propagation. In particular, the PHY-layer is extremely

vulnerable to jamming attacks.

Radio frequency (RF) jamming refers to the process of illegitimate RF transmis-

sion on one or more RF channels with the objective of causing maximum distortion

to the communication of the targeted system. Spectrum sensing information plays a

key role in anti-jamming systems. This information may be used to detect potential

jamming entities [80], [72], [73] and to take proactive measures to ensure communi-

cation continuity [70] and security [21]. Moreover, a history of observations can be

maintained and used to devise more effective anti-jamming tactics [78].

Considering that, a Software Defined Radio (SDR) platform has been used to

generate modulated signals in a specified band. The testbed is remotely controlled

and can be employed in on-line applications. Moreover, the generated data can be

also stored in datasets and used off-line.

Although previous work based on the aforementioned platform was carried out

in anti-jamming scenarios such in [23] and [74], there has never been stored a large

amount of data and organized for off-line applications.

7.3 Cyclic Spectral Intelligence

The principal idea behind the Cyclic Spectrum Intelligence algorithm is to continu-

ously monitor relevant RF spectrum activities, identify potential threats to the com-

munication, and take proactive measures to ensure communication robustness and

secrecy. For doing so, the algorithm relies on the reliable spectrum sensing mech-

anism, correct identification and extraction of the relevant parameters, and secure

software unsubjected to tampering. In comparison with the Spectrum Intelligence al-

gorithm in [25], the proposed algorithm employs a cyclostationary feature algorithm

to extract the α-profile feature from the detected signals which is then fed to a neural

network to classify the waveforms present into the observed spectrum. The func-

tional process of the Cyclic Spectrum Intelligence algorithm can be represented in

the form of the Cognitive Cycle, as shown in Fig. 7.1, consisting of 5 blocks: Sensing,
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Figure 7.1: Diagram of the Cognitive Cycle for the proposed Cyclyc Spectral Intelli-
gence algorithm.

Processing, Analysis, Learning, and Acting. Sensing and Acting blocks represent the

interface with the external radio environment. The Cognitive Cycle is described in

the following sections.

7.4 Sensing

Acquisition of the wideband RF spectrum, is performed periodically for the frequency

band of interest. This may be done by taking either a quiet or an active approach,

depending on the implementation of the architecture. Quiet approach implies that

the radio is able to performing sensing simultaneously with transmitting/ receiving,

whereas in active sensing, the radio needs to stop transmitting/receiving while sensing

takes place.

In order to describe the sensing step, the testbed architecture is firstly introduced

along with the data acquisition.
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7.4.1 Testbed Architecture

The testbed employed to generate real-data is a SDR platform which consists of

two Secure Wideband Multi-role - Single-Channel Handheld Radios (SWAVE HHs)

shown in Fig. 7.2(a), the first one is the transmitter while the second one receives

the wideband signal, connected through a dual directional coupler [25].

The fully operational SDR radio terminal SelexES (2013), SWAVE HH (from

now on referred to as HH), is capable of generating a multitude of wideband and

narrowband waveforms. Currently, two functional waveforms are installed on the

radio: SelfNET Soldier Broadband Waveform (SBW), whose channel bandwidth is

adjustable in the range 1.25 MHz to 5 MHz with channel spacing of 2 MHz and data is

modulated using a fixed digital modulation technique, and VHF/UHF Line Of Sight

(VULOS), which supports two analog modulation techniques, Amplitude Modulation

(AM) and Frequency Modulation (FM), while both channel bandwidth and channel

spacing are adjustable up to 25 kHz [24].

The radio provides operability in both Very High Frequency band, VHF (30 -

88 MHz), and Ultra High Frequency band, UHF (225 - 512 MHz). In VHF, analog

to digital conversion is performed directly at RF and the frequency band scanned is

always 0-120 MHz, while in UHF, the conversion is performed at intermediate fre-

quency (IF) and the frequency band scanned depends on the center carrier frequency

fc of the radio ([fc − 35; fc + 85] MHz) [23]. No selective filtering is applied before

ADC. Broadband digitized signal is then issued to the FPGA, where it undergoes

digital down conversion, matched filtering and demodulation.

Several interfaces are provided by the hypertach expansion placed at the bottom

of each HH, specifically, 10/100 Ethernet, USB 2.0, RS-485 serial, DC power interface

(max 12.7V), and PTT. The software architecture of the radio is compliant with the

Software Communications Architecture (SCA) 2.2.2 standard.

Maximum transmit power of the HH is 5W, with the harmonics suppression at

the transmit side over -50 dBc. Superheterodyne receiver has specified image re-

jection better than -58 dBc. Because of the high output power of the radios, one

programmable attenuator is included in the communication path and programmed to

their maximum attenuation value - 30 dB.

Agilent 778D 100MHz-2GHz dual directional coupler with 20dB nominal coupling

is used as communication medium between the two HHs.

Guided propagation exhibits several important advantages with respect to the

over-the-air implementation: accurate and stable RF levels, repeatability of the ex-

periments without the uncertainties characteristic to wireless transmission, possibil-
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(a)

(b)

Figure 7.2: SDR testbed utilised to generate the dataset with wideband spectrum
measurements: a) hardware platform, b) diagram of the main components of the
testbed and their connections.

ity to connect test instruments and generators, avoiding regulatory issues related to

transmitting outside of the allowed frequency bands.

The testbed provides support for remote control of HH’s transmit and receive

parameters through Ethernet and the Simple Network Management Protocol (SNMP

v3) [25]. A general diagram of the testbed is shown in Fig. 7.2(b). Full details on

the testbed architecture may be found in [24].

Concerning the spectrum sensing process, the HH’s 14-bit Analog-to-Digital-Converter

(ADC) performs sampling at 250 Msamples/s. Every 3 seconds, a burst of 8192 con-

secutive samples is buffered, and then outputted over the serial port at 115200 bauds.

The samples are then parsed and transformed into the frequency domain using the

Fast Fourier Transform (FFT). The bandwidth of the corresponding spectrum is 120
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Figure 7.3: Spectrum observation in the 0-120 MHz (1 burst) which includes the SBW
signal at 61 MHz and with transmitt power equal to -3dBm.

MHz wide around the center carrier frequency of the radio. Consequently, the effec-

tive resolution is 29.3 kHz/sample. In order to obtain higher frequency resolutions,

two possible changes to the testbed are increasing the buffer size on the HHs, and

finding ways to transfer spectrum data at higher baud rate [23]. Further details can

be found in [24].

7.4.2 Data Acquisition

By means of the testbed described in the previous section, real-data is collected and

stored in a dataset. To this end, the VHF transmission band where the radios are

operable has been utilized, meaning that the spectrum sensing is performed for the

frequency band of 0-120 MHz. The data consists of a large amount of spectrum ob-

servations containing a number of narrowband signals. More specifically, as shown in

Fig. 7.3 (the blue line), each spectrum consists of a SBW signal (digitally modulated

signal) transmitted by the transmitting HH device and a number of signals (from the

environment) such as the FM signal (in the 88-108 MHz band) and an unknown sig-

nal at 0-7 MHz. The parameters of the SBW signal can be set remotely and, for the

proposed research (described later in this report), the transmit power and the carrier

frequency of the transmitted SBW signal have been considered which are given 4

different values (7dBm-full, 4dBm-half, -3dBm-one-tenth, and -12dBm-minimum for

the transmit power; 41MHz - 51MHz - 61MHz - 71MHz for the carrier frequency).

Consequently, the dataset consists of spectrum measurements grouped in 16 different

configurations, as shown in Table 7.1. Each configuration consists of more than 2500

bursts. The corresponding time-domain samples have also been stored in the dataset.
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7dBm - Full Power

fc
I II III IV

41 MHz 51 MHz 61 MHz 71 MHz

4dBm - Half Power

fc
V VI VII VIII

41 MHz 51 MHz 61 MHz 71 MHz

-3dBm - One-tenth Power

fc
IX X XI XII

41 MHz 51 MHz 61 MHz 71 MHz

-12dBm - Minimum Power

fc
XIII XIV XVI XVI

41 MHz 51 MHz 61 MHz 71 MHz

Table 7.1: Configurations for transmit parameters of the SBW signal in the collected
dataset: carrier frequency and transmitting power.

For the sake of clarification, in Fig. 7.4(a) the SBW signal has been overlapped

to the 0-120 MHz spectrum, inside the VHF band, at the four different carrier fre-

quencies with fixed transmit power (3dBm). While in Fig. 7.4(b), the 16 different

configurations for the SBW signal can be seen. The minimum power for the transmit

power makes the SBW level comparable with the noise level making difficult to differ-

entiate them. In this chapter, only full and half transmit power have been considered

for the experimental step in Sec. 7.8.

7.5 Processing

This section describes the pre-precessing step of real-data to detect frequency bins

belonging to the different waveforms inside the spectrum. The main parameters for

the pre-precessing process are also described.

First of all, the received spectrum observations are smoothed in the frequency

domain through a simple moving average applied to the samples in order to reduce

the wide/sharp fluctuations due to noise which can be seen in each received spectrum.

Then, based on a sensible choice for a specific threshold, the background noise

is eliminated, keeping only the FFT bins corresponding to actual signals. Basically,
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(a) SBW signal at four different carrier frequencies (41-51-61-71 MHz) in the 0-120 MHz

spectrum

(b) SBW signal at four different carrier frequencies (41-51-61-71 MHz) and four

transmit powers (full, half, one-tenth, minimum)

Figure 7.4: Spectrum observation (1 burst) with 16 different configuration for the car-
rier frequency and transmit power. In both the figures, the SBW signal is overlapped
to the wideband spectrum for the sake of clarification.

this process can be thought as an Energy Detector (ED) and formally corresponds to

solving the decision problem between the following two hypotheses [25, 29]:

Z (n) =

{
η (n) H0

S (n) + η (n) H1
; n = 1, ..., NS (7.1)

where Z (n), S (n) and η (n) are the received signal, the transmitted signal and the

noise samples, respectively. H0 is the null hypothesis corresponding to the absence

of the signal (in this case, received signal consists only of noise), and H1 is the

alternative hypothesis corresponding to the presence of the signal, while NS is the
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(a)

(b)

Figure 7.5: Pre-processing applied to the WB signal (in both the pictures, only the
SBW signal is shown): (a) WB signal, smoothed signal, thresholding and bin grouping,
and threshold ; (b) also includes the waveform after group smoothing.

number of samples acquired during the sampling process.

Based on the Neyman-Pearson lemma, the most common approaches to finding the

appropriate threshold are the Constant Detection Rate (CDR) and Constant False

Alarm Rate (CFAR) detectors, where threshold is set adaptively depending on the

SNR regime and the characteristics of the sensed wideband signal. However, even in

adaptive thresholding, presence of interference may make the energy detector come

to incorrect decisions.

In most applications, the analysed spectrum is underutilised (usage of licensed

bands is an example [89]) which means that there is only a limited number of actual

narrowband signals in the scanned wideband signal at any instant of time [23]. In
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Figure 7.6: Wideband spectrum measurement before pre-processing (blue line) and
after pre-processing (red line).

this scenario, suboptimal thresholding algorithms with low computational complexity,

where CFAR or CDR performance is not necessarily achieved, can be considered.

Indeed, it has been shown that the threshold δ̂ may be adaptively set based only on

the mean value of the magnitudes of the scanned wideband signal [25], and given by:

δ̂ = 2 · 1

n

NS∑
n=1

|Z (n) | (7.2)

K frequency bins are identified as a result of the thresholding process.

In a wideband and sparse spectrum observation there are L actual signals (K > L)

each of them consists of a number of bins. For this reason, frequency bins correspond-

ing to the same signal need to be grouped together. In high-SNR environments, con-

secutive samples can be grouped together and classified as single waveforms. However,

in practical situations, some frequency bins may have erroneous magnitude values as

a result of imperfect sampling and would thus be discarded during the thresholding

phase. In this case, the bin grouping process considers two (o more) groups of con-

secutive bins as a single signal if they are close enough each other. More formally,

the maximum acceptable distance (in Hz) between the two samples belonging to the

same waveform is defined as:

dMAX = M · df (7.3)

M is the maximum number of consecutive samples that could be erroneously disre-

garded, and df is the frequency resolution of the FFT, given by:

df =
2 · fmax
NS

(7.4)

93



where fmax is the maximum resolvable frequency (which in case of Nyquist sam-

pling equals to half of the sampling frequency). After the thresholding step, grouped

waveforms undergo smoothing, in order to reduce impacts of the imperfect and er-

roneous sampling. For achieving this, a second stage moving average filter has been

implemented. For a waveform that consists of nG grouped bins with magnitudes

S1, . . . , SnG, filtering with the window length W results in the filtered bins given by

[23]:

Sf (ni) =
1

P

i∑
j=i−P+1

Sj; i = P, ..., nG (7.5)

So, each element in Eq. (7.5) is an average of the preceding P points.

Fig. 7.5(a) illustrates the difference between the original transmitted SBW signal,

the corresponding smoothed signal, the sensed FFT bins, and the estimated signal

after performing thresholding/bin grouping. While, in Fig. 7.5(b), the smoothed

group corresponding to the SBW signal is also shown.

A comparison between the original wideband signal and the corresponding signal

after having undergone the pre-processing is made in Fig. 7.6.

This concludes the frequency domain pre-processing phase which is applied to the

collected wideband signals.

After this phase, the inverse Fourier transform is applied to produce the corre-

sponding time domain signals from the pre-processed wideband spectrum measure-

ments and, then, the SFD algorithm produces both alpha- and f- profile from the

time-domain sub-signals as described in the following section.

7.6 Analysis

In this section, the classification process is described in order to present an application

of the dataset to theoretical framework. After the pre-processing phase in Sec. 7.5,

the waveforms are classified as either potentially malicious (PM) or friendly (FR). The

former class refers to signals which aim to disrupt or degrade communications among

legitimate users (belonging to the latter class). In the 0-120MHz wideband spectrum,

the jammer is supposed to be the SBW signal (which is capable of changing its

transmit parameters), while legitimate waveforms are the BB signal, interference at 20

MHz and 80 MHz, and the FM signal. In order to differentiate them, a cyclostationary

feature based algorithm [77] with an Artificial Neural Network (ANN) as classifier [78]

is applied to the dataset.
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(a) SCF of the 3-7 MHz BB signal

(b) SCF of the SBW signal

Figure 7.7: CSF of two of the detected signals in the WB spectrum: (a) BB signal
and (b) SBW signal.

7.6.1 Cyclostationary Feature analysis

A process x(t) is said to be wide-sense cyclostationary with period T0 if its mean

E[x(t)] = µx(t) and autocorrelation E[x(t)x∗(t + τ)] = Rx(t, τ) are both periodic

with period T0, in such case, they can be defined respectively as:

µx(t+ T0) = µx(t) ; Rx(t+ T0, τ) = Rx(t, τ) . (7.6)
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The autocorrelation function of a wide-sense cyclostationary process can be expressed

in terms of its Fourier series components:

Rx(t, τ) =
∑
α

Rα
x (τ) ej2παt (7.7)

Where α = a
T0

with a integer, E[·] is the expectation operator, α is the set of

Fourier components, and Rα
x(τ) represents the cyclic autocorrelation function (CAF)

and gives Fourier components. CAF is given by:

Rx(τ) = lim
T→∞

1

T

∫ T
2

−T
2

Rx(t, τ)e−j2παtdt . (7.8)

When Rx(t, τ) is periodic in t with period T0, (7) can be expressed as:

Rα
x(τ) =

1

T0

∫ T0
2

−T0
2

Rx(t, τ)e−j2παtdt . (7.9)

The Fourier Transform of the CAF is known as SCF and is given by:

Sαx (f) =

∫ ∞
−∞

Rα
x(τ)e−j2πfτdτ (7.10)

where α is the cyclic frequency and f the angular frequency. The major benefit of

spectral correlation is its insensitivity to background noises. Since the temporal cor-

relation of different spectral components are measured; and the spectral components

of noise are completely uncorrelated in time due to the fact that noise is wide-sense

stationary process, such noise does not play significant factor in the SCF. This fact

allows the spectral correlation of a signal to be accurately calculated even at low

SNRs. Furthermore, different types of modulated signals (BPSK, AM, FSK, MSK,

QAM, PAM) with overlapping power spectral densities have highly distinct SCFs.

The SCF of the SBW signal and the 3-7 MHz signal in the 0-120 MHz spectrum

are shown in Figs. 7.7(a) and 7.7(b), respectively.

Since SCF computation requires large amount of data, which makes it unreason-

able for a classifier to operate on it in real time, the cycle frequency profile (α-profile)

has been employed in this chapter as feature for classification. Specifically, the α-

profile of SCF for a signal x is given by:

I(α) = maxf [S
α
x ] (7.11)

The α-profile of signals in the wideband spectrum of interest is shown in Sec. 7.8.
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Figure 7.8: Proposed Artificial Neural Network used as classifier in the CSI algorithm
with I inputs, one hidden layer with N neurons, and 2 outputs.

7.6.2 Neural Network Classifier

Our proposed system uses an Artificial Neural Network (ANN) as classifier due to

its ease of implementation and potential to generalize any carrier frequency, symbol

rate and phase offset. The system was designed to classify potential malicious (PM)

and friendly (FR) signals. We trained the ANN to identify the two classes of signals

defined at the beginning of this section. The SCF of the detected signals produces a

large amount of data, which makes impossible for a classifier to work on it in real time.

In order to reduce the amount of data for a classification stage, we used the α-profile

as input feature for an ANN. Accordingly, the proposed ANN is composed by I inputs

related to the dimensionality of α-profile, a single hidden layer whose N neurons use

the hyperbolic tangent sigmoid as neural transfer function, and an output layer of

two neurons related to each class of signal considered in this work. Each output value

is in the range (0, 1). Accordingly, the output class with the highest value between

(0, 1) is considered as the signal class. An ANN training based on the scale conjugate

gradient propagation [69] is adopted.

The selection of a single hidden layer is proposed due to the classification process
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simplicity of this particular problem, it was found that with a single layer results over

the 99% of true positive classification were obtained for the 2 types of signal classes

Algorithm 5 Pseudo-code for proposed algorithm

1: function Signal recognition in WB spectrum
2: Set the number of bursts to be acquired → k
3: Receive and sample the wideband signal at or above Nyquist rate for all k

bursts → NS amplitude values
4: Data parsing → NS = 2x amplitude values
5: Perform FFT → NS

2
frequency bins with magnitudes M

6: Fisrt smooth by moving average
7: Calculate mean value of M →Mmean

8: Based on Mmean, set the energy thethreshold → η̂
9: for i = 1 to NS

2
do (for each frequency bin)

10: if M (i) > η̂ then
11: Bin i belongs to the signal
12: Change channel state of bin i to “occupied”
13: if any of M (i−K) : M (i− 1) > MT then
14: Group these bins as a single waveform
15: Perform waveform smoothing
16: end if
17: end if
18: end for
19: Estimate the SCF of detected signals
20: Extract the α-profile
21: Feed α-profile to previously trained Neural Network
22: Decision ← Licit or Jammer
23: end function

considered in this work. Employing more hidden layers would increment the training

time and overall results would not be significantly improved.

The corresponding pseudo-code of the proposed algorithm is outlined in Algorithm

1. It can be summarized as follows: the receiver observes a WB signal and then energy

detection and pre-processing are performed. The α-profile of SCF for each detected

sub-signal is subsequently extracted. After that, detected signals go through the

classification process. The α-profile of detected signals are fed to a previously trained

ANN. The ANN classifies the received NB signal in each SB as either a licit or a

potential malicious user.
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7.7 Further Steps to the Algorithm

Leaning and Acting steps in [23] conclude the proposed Cyclic Spectrum Intelligence

algorithm.

7.7.1 Learning

After having identified occupied channels and spectrum holes in the 0-120 MHz band

of interest, and classified the detected signals through the cyclostationary feature

algorithm with the neural network as classifier, the cyclic spectral intelligence al-

gorithm is thought to include a learning process strategy based on the Temporal

Frequency Map where previous occurrences of spectrum activities are stored. In each

cycle of the Cognitive strategy, the proposed algorithm accesses the Temporal Fre-

quency Map which is a n × 3 matrix that keeps track of the number of occurrences

of friendly waveforms (mF ), potentially malicious waveforms (mPM), and spectrum

holes (mSH) for each of the n channels-of-interest. Then previous values are updated

with the newly acquired and processed information. Temporal forgiveness can be

implemented within the algorithm, i.e., spectrum activities corresponding only to the

last k spectrum readouts are taken into account while making future decisions. This

reduces the probability of data becoming obsolete, at the expense of the lower amount

of accessible information.

7.7.2 Acting

Finally, based on the processed spectrum information, current transmission param-

eters (channel and transmit power) and the history obtained from the Temporal

Frequency Map, the CR may decide to act in order to improve its chances of reli-

able transmission. The actions constitute of proactively changing the transmission

frequency (channel surfing), or the transmission power whenever a threat has been de-

tected. The system is considered under threat when a potentially malicious waveform

has been identified on the channel close to the channel currently used for transmission.

The new channel for the transmission is then chosen according to:

ct+1 ∈ (ct = SH|X (ct) = min) . (7.12)

This means that the new channel ct+1 is selected among all the channels ct that

are currently spectrum holes, such that the X(ct) is minimum. X(ct) represents the

expected channel reliability, defined as:
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Figure 7.9: Confusion matrix of the proposed ANN with two classes: FR and PM.

X (ct) = l2 ·mPM/ct + (l + 1) ·mF/ct −mSH/ct , (7.13)

where mPM/ct , mF/ct and mSH/ct represent the numbers of occurrences of the po-

tentially malicious waveforms, friendly waveforms and spectrum holes on the channel

ct over the last l steps, respectively. The coefficients l2 and (l+1) are assigned in order

to give highest priority of action to avoiding channels with history of occurrences of

potentially malicious waveforms, followed by the channels with history of occurrences

of friendly waveforms. In this way, it is ensured that each possible channel reliabil-

ity corresponds to a unique combination of friendly waveforms, potentially malicious

waveforms, and spectrum holes. The new transmission power is chosen according to:

Pt+1 ∈ P |PR > 10 log10 λ̂+ 3dB. (7.14)

Another application of interest is the possibility of the cognitive system to learn

from the actions of a human operator through a graphical user interface (GUI) al-

lowing the human operator to overrule the decision of the cognitive algorithm and
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(a) 3-7 MHz signal - BB (b) SBW signal

(c) 80 MHz signal - HB (d) one peak of the FM signal

Figure 7.10: α-profiles of four different detected signals.

change transmit parameters such as the operating frequency and the transmission

power. The role of the GUI is then to allow the human operator to take decisions

irrespectively of the decisions of the Cyclic Spectral Intelligence algorithm. However,

it also presents an interesting motivation for considering principles of cognitive re-

finement, i.e., refining the reasoning behaviour of the algorithm, which is currently

policy-based, by learning from the actions of the human operator.

7.8 Validation of the Proposed Algorithm

In order to evaluate the performance of the jammer detection algorithm based on

spectral correlation detector and neural network classifier, a set of experiments is

performed using the software defined testbed architecture described in Sec. 7.4.1.

The sampling rate is set at Nyquist rate for each type of detected signals. In our

experiments, the SBW signal represents the potentially malicious waveform and is

transmitted by the transmitting HH. Its transmit parameters are given different values

according to the half upper part of Table 7.1, namely the SBW signal is in one among

the first eight configurations with full and half transmit power. All other detected

signals, described in Sec. 7.4.2 are considered as friendly.

The objective of this section is to show the performance of the proposed algorithm

in classifying the signals detected in the band-of-interest based on the α-profile, ex-
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SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 999 1 FR 996 4

PM 0 1000 PM 0 1000

(1) SBW: full - 41MHz (2) SBW: full - 51MHz

SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 1000 0 FR 1000 0

PM 0 1000 PM 0 1000

(3) SBW: full - 61MHz (4) SBW: full - 71MHz

Table 7.2: Confusion matrices for the testing step obtained by feeding the ANN with
the α-profile of 1000 independent samples at 7 dBm transmit power.

SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 1000 0 FR 999 1

PM 0 1000 PM 0 1000

(1) SBW: half - 41MHz (2) SBW: half - 51MHz

SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 1000 0 FR 999 1

PM 0 1000 PM 0 1000

(3) SBW: half - 61MHz (4) SBW: half - 71MHz

Table 7.3: Confusion matrices for the testing step obtained by feeding the ANN with
the α-profile of 1000 independent samples at 4 dBm transmit power.

tracted from each detected waveform in the wideband spectrum, which passes through

the neural network used as classifier. Each NB waveform in the wideband spectrum,
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SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 991 9 FR 992 8

PM 10 990 PM 0 1000

(1) SBW: one tenth - 41MHz (2) SBW: one tenth - 51MHz

SIGNAL
CLASS FR PM SIGNAL

CLASS FR PM

FR 993 7 FR 995 5

PM 0 1000 PM 0 1000

(3) SBW: one tenth - 61MHz (4) SBW: one tenth - 71MHz

Table 7.4: Confusion matrices for the testing step obtained by feeding the ANN with
the α-profile of 1000 independent samples at -3 dBm transmit power.

obtained after the pre-processing step in Sec. 7.5, is characterized by the cyclosta-

tionary feature through the α-profile. Specifically, each generated α-profile consists

of 200 cyclic frequency points which are the input of the ANN (I = 200 in Fig. 7.8).

Figs. 7.10 (a)-(d), show the α-profiles for the 4 different signals detected in the 0-120

MHz band: the 3-7 MHz signal, SBW signal, interference at 80 MHz, one peak of the

FM signal.

A total of 1000 trains are executed for an ANN architecture with 9 neurons in the

hidden layer (N = 9 in Fig. 7.8). For our experiments, a dataset composed by 2.000

signals is used in order to train (70%), validate (15%) and test (15%) the ANN archi-

tecture. The overall performance can be observed in the 2-classes confusion matrix

of Fig. 7.9 for the testing phase which highlights a classification rate approximately

equal to 1. Furthermore, after having trained the ANN, the waveforms are tested by

using the trained neural network.

The performance of the system is evaluated for 1000 independent testing signals,

with different carrier frequencies and transmit powers (7 dBm, 4 dBm and -3 dBm

) from training signals. Tables 7.2, 7.3, and 7.4 show the classification accuracy for

different system configurations. The proposed cyclostationary algorithm combined

with a neural network provides good performance because the classification rate is

approximately 1 even for very low power of -3 dBm. The analyzed cyclostationary
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feature detector with artificial neural network shows significant performance increase

compared to common methods of signal classification, which required 7 dBm for

comparable classification rates [25].

7.9 Conclusion

A new Cyclic Spectral Intelligence algorithm is proposed. It is based in a Cognitive

Cycle consisting of 5 steps: Sensing, Processing, Analysis, Learning, and Acting. The

Cognitive Cycle interacts with the radio environment through the sensing block which

obtains instantaneous spectrum data in the band of interest (0-120 MHz) and the act-

ing block whose task is to decide and change the transmit parameters such as the

carrier frequency and the transmission power. The main novelty introduced by this

work is the Analysis block. After having identified occupied channels and spectrum

holes in the observed wideband signal, the stationary spectral analysis is performed,

based on the cyclostationary feature of digitally modulated signals, to extract the

α-profile from the SCF of the detected signals. Afterwards, the extracted α-profile of

a number of samples of the different waveforms detected in the wideband spectrum,

are fed to a pre-trained ANN to classify the waveforms as friendly or potential mali-

cious. In addition, a software defined radio testbed has been employed to generate an

experimental dataset to validate the analysis block. Real data consists of spectrum

measurements in the 0-120 MHz in which there are different signals including the

SBW signal whose carrier frequency and transmit power are given different values.

Eight configurations of these values have been used in the validation step. Results

show that the classification rate is approximately 1 in all the considered configurations

making the cyclostationary feature detector with artificial neural network a promis-

ing method for the spectrum intelligence processing. Future work includes analysis of

fully autonomous systems capable of dynamically access the spectrum in a cognitive

radio framework for applications such as PHY-layer security against jamming attacks

as well as TVWS. In particular, Stealthy Jammer Detection Algorithm investigated

in [79] and in [81] is to be validated on the experimental dataset described in this

work.
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Chapter 8

Summary and Future Directions

This thesis was focused on the problem of wide-band spectrum sensing and charac-

terization for cognitive radios. Wide-band spectrum sensing is a key enabling func-

tionality for cognitive radios since it detects the spectral holes and allows throughput

increase. Due to prioritized spectrum sharing between cognitive radios and primary

users, it is not only sufficient to detect spectrum holes, but also distinguish among dif-

ferent users in order to mange interference and jamming. In this dissertation, various

algorithms were proposed for spectrum characterization/classification in order to ad-

dress the problem of jamming in cognitive radios. These newly developed algorithms

were applied to detect different types of jamming attacks, namely, tone, modulated

and stealthy jamming. In the end of the dissertation, practical implementation of

the wide-band spectrum sensing and characterization was addressed on a Software

Defined Radio (SDR) test-bed.

This chapter presents the summary of thesis by reviewing the main achieved results

of chapters 3, 4, 5, 6 and 7.

8.1 Chapters 3, 4

Out of the various sensing methods, cyclostationary feature detector is capable of

detecting the primary signals from interference and noise even at very low signal-to-

noise-ratio (SNR). On the other hand, energy detector fails at low SNR and unable to

differentiate between different type of signals while matched filtering detector requires

a dedicated receiver structure, which may not be possible in practical cognitive radio

terminal. Therefore, we selected cyclostationary feature detector over other spectrum

sensing techniques, because it is also able to characterize the spectrum in low SNR

regions.
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Chapter 3 introduced a novel algorithm for jammer detection in wide-band radios.

A wide-band was assumed to be consisted of multiple sub-band, each of them is occu-

pied by a narrow-band signal or free. These narrow-band signals could be legitimate

or jammers. Firstly, the cyclostationary feature detector was used to compute the

spectral correlation function of the received wide-band spectrum. After that, cyclic

frequency profile (alpha profile) and angular frequency profile (frequency profile) were

extracted from the spectral correlation function. The alpha and frequency profiles

were then fed to previously trained artificial neural network. Based on the output of

the classifier, each narrow-band signal was characterized as a legitimate or jamming

signal. Finally, the proposed algorithm’s performance was evaluated for various SNRs

to observe the effects of diverse parameters on the classification.

Chapter 4 presented a new physical layer approach for stealthy jammer detection

in wide-band cognitive radio networks. Stealthy jammer is an adaptive reactive jam-

mer with same capabilities as a cognitive radio user. These type of jammers only

transmit when a legitimate transmission is detected and stop transmitting when the

legitimate transmission stops. Therefore, the jamming activities of such jammers are

hard to detect by the popular sensing approaches such as energy detection at physical

layer. Hence, we presented a novel cyclostationary feature detector based approach

to detect such types of jammers at physical layer. The proposed algorithm considered

a wide-band composed of multiple narrow-band sub-bands, which could be occupied

by licit or stealthy jamming signals . The cyclostationary spectral analysis was per-

formed on this wide-band spectrum to compute spectral correlation function. The

alpha profile was then extracted from the spectral correlation function and used as

input features to artificial neural network, which classified each signal as a licit signal

or a stealthy jamming signal. In the end, the performance of the proposed approach

was shown with the help of Monte-Carlo simulations under different empirical setups.

The above discussed algorithms, not only successfully characterize the jamming sig-

nals, but also able to correctly classify the modulation schemes of legitimate users.

Therefore, these algorithms can not only find applications in communications elec-

tronic warfare, but also be adapted for future commercial communications systems

to increase the throughput by allowing in-band transmissions.

8.2 Chapters 5, 6, 7

When the radios are operating on a wide-band, the task of spectrum estimation

becomes complex due to high rate analog-to-digital converter requirements. Com-
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pressed sensing is an appealing solution to alleviate requirements of high sampling

rates provided that the signal is sparse in some given transform domain.

In chapter 5, a new algorithm was proposed for jammer detection using com-

pressed sensing and cyclostationary spectral analysis for wide-band cognitive radios.

The wide-band spectrum was assumed to be occupied by various narrow-band sig-

nals with sparsity. In first step, the algorithm recovered the Nyquist rate wide-band

spectrum from sub-Nyquist samples using compressed sensing. The recovered signal

was then fed to the cyclostationary feature detector to estimate the spectral cor-

relation function of the recovered signal. After that, the cyclic profile of spectral

correlation function was extracted and peaks in the cyclic profile were then compared

with the corresponding values of the legitimate signal peaks, which were stored in

a database. Based on this comparison, each of the detected signals were classified

either as a licit signal or a jamming signal. This algorithm was applied to miti-

gate three different types of jamming attacks, namely tone, modulated and stealthy

jamming attacks. The performance of the designed algorithm was evaluated for var-

ious compression ratios at low SNR to observe the effects of various parameters on

classification performance. The proposed algorithm appeared to perform well within

limitation imposed by simple classification using licit waveform parameters stored in

a database. Further, it was difficult to maintain databases.

In order to address the classification challenges faced in chapter 5, a new algo-

rithm based on artificial neural network as classifier was proposed in chapter 6. Two

different approaches were adopted to train artificial neural network. First approach

was to train neural network for Nyquist rate samples at various SNRs, and the second

approach used sub-Nyquist rate samples to train the network for different SNRs. The

classier trained for different compressed ratios was selected for jammer detection on

the basis of its good performance at low SNRs and compression ratios as compared

to the classifier trained for Nyquist rate samples. The algorithms can be explained as

following. The first step was to recover the Nyquist rate wide band spectrum, which

consists of various narrow-band signals, from sub-Nyquist samples using compressed

sensing. This reconstructed signal was then fed to the cyclostationary feature detec-

tor to estimate the spectral correlation of the wide-band signal. The cyclic frequency

profile was extracted and was used as input features for an artificial neural network

based classifier. Based on the classifier, each of the narrow-band signal was classified

either as a legitimate or a jamming signal. Finally, the performances of the proposed

algorithm were shown for various compression ratios and SNRs. The applications of
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such algorithms can be found in communications electronic warfare and TV white

space (TVWS).

Finally, chapter 7 outlines some practical aspects of sensing and characterization

of wide-band spectrum when porting proposed algorithms onto real-world implemen-

tation. A large datset was created using a software defined radio (SDR) platform,

which consisted of military radios, signal generators, spectrum analyzers and the

corresponding auxiliaries. This SDR was used to generate modulated signals in a

specified band which were stored for off-line applications. Further, a cyclic spec-

trum intelligence algorithm was implemented for interference/non-legit mitigation in

wide-band radios. The algorithm was based on learning capability and on-the-fly

re-configurability of the transmission related parameters in cognitive radio technol-

ogy. The algorithm first performed the energy detection and necessary pre-processing,

then the cyclic spectral analysis of detected narrow-band signals were performed to

compute the spectral correlation function. The spectral correlation function produces

large amount of data, which made it impossible to work on it in near real time ap-

plications. Therefore, cyclic frequency profile was extracted from spectral correlation

function. This profile was then fed to a pre-tarined artificial neural network based

classifier to identify the signal as legitimate or potential malicious. The results were

shown with the help of confusion matrices for various system configurations.

8.3 Suggestions for Future Directions

The work presented in this thesis opened various interesting future research avenues.

Some of the important ones are discussed below:

Adversaries that uses the cognitive radio learning mechanisms to improve their

jamming capabilities are considered intelligent. Intuitively, being equipped with such

learning capabilities may also aid the licit users in improving their anti jamming capa-

bilities. The goals of licit transceivers and jammers are typically negatively correlated.

This can allows us to use game theory; a mathematical study of decision-making in

situations involving conflicts of interest, as a tool for mathematical formalization of

the intelligent jamming /anti jamming problems.

A large data set was created as a part of this thesis to study PHY layer security

and cognitive radios. This thesis considered expert features, namely, cyclic features, it

will be interesting to use deep learning techniques to classify various types of signals.

These deep learning techniques, for example convolution neural networks are being

used in speech prepossessing and computer vision fields.
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In future, the cyclic intelligence algorithm can be improved by incorporating com-

pressed sensing, to alleviate the high rate analog to digital conversion (A/D) re-

quirements for wide-band sensing. Further, an artificial neural network trained with

sub-Nyquist rate can be used to improve the classification performance of cyclic intel-

ligence algorithm. Another interesting future work, would be, validating the proposed

stealthy jammer detection algorithm on cognitive radio test-bed.
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