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ABSTRACT 

In the recent years, there has been increased interest in using multilayered structures in the construction 

of mechanical devices and vehicles, such as turbines, wind-blades, aircrafts or ships. These structures are 

often subjected to severe mechanical loads and a wide range of operational temperatures. Under such 

loading conditions, the stresses in multilayered structures may exceed the elastic limit, and delaminations 

and debonds may form and propagate as a consequence of the high interfacial tractions caused by the 

inhomogeneous material structure. To design layered systems and define their load-bearing capacity and 

life, accurate understanding of their mechanical behavior in the elastic and post-elastic regimes is needed. 

In this thesis, we focus on developing methods for multiscale modeling of elastic and delamination 

response of multilayered structures. We firstly formulate a matrix technique based on the transfer matrix 

method formulated in (Thomson, J. Applied Physics, 1950), and on the 2D/3D thermo-elasticity models in 

(Tungikar and Rao, Composite Structures, 1994) (Pelassa and Massabò, Meccanica, 2015), which use a 

classical displacement approach to solve the thermo-elasticity equations in rectangular simply supported 

plates with an arbitrary number of layers and thermally and/or mechanically perfect/imperfect interfaces 

subjected to stationary thermo-mechanical loading. Novel explicit expressions are derived for temperature, 

displacements and stresses. The expressions allow to easily generate exact solutions for plates with 

perfectly bonded or imperfectly bonded layers, and can be used for parametric analyses, to investigate the 

influence of the inhomogeneous material structure and interfacial imperfections on local fields or to verify 

the accuracy of approximate theories and numerical models. In this work the closed-form solutions are used 

to verify the capabilities of approximate multiscale structural models. 

We formulate a homogenized fracture model for mode II dominant delamination problems in bi-material 

wide plates subjected to transverse loads. The formulation is based on the multiscale structural theory 

formulated in (Massabò and Campi, Composite Structures, 2014) for laminated plates with an arbitrary 

number of layers and mixed-mode cohesive or traction-free interfaces, which uses a fixed number of 

unknown variables independent of the number of layers and delaminations for the efficient closed-form 

solution of numerous thermo-mechanical problems. A delaminated bi-material wide plate is modeled by 

introducing a cohesive interface along the delamination line, which is governed by a piecewise linear 

interfacial traction law to approximate Linear Elastic Fracture Mechanics. The model is applied to an edge 

cracked bi-material wide plate subjected to arbitrary generalized end forces, for which accurate solutions 

are available in the literature for verification. The energy release rate of the model system is derived in 

closed-form through an application of the J-integral and using the local fields calculated through the 

multiscale model. The derived expression for the energy release rate does not account for the contribution 

of the crack tip root-rotations, which are relative rotations of the arms at the delamination tip cross section, 

used in the literature to account for the near tip deformations. The contribution can be calculated a posteriori 

using the equations and tables given in (Li, Wang and Thouless, J. of the Mechanics and Physics of Solids, 

2004) (Andrews and Massabò, Engineering Fracture Mechanics, 2007) as function of the crack tip force 

and moment resultants predicted by the multiscale model. Except for the root-rotations contribution, the 

derived expression of the energy release rate coincides with those obtained in the literature, for bi-material 

and homogeneous plates. The energy release rate is also derived through an application of the J-integral 



along a path surrounding the delamination surfaces to show the accuracy of the homogenized model to 

capture the relative crack displacements. The fracture model is used to analyze delamination growth and 

investigate the structural response of End-Notched Flexural (ENF) specimens; comparisons between the 

results of the homogenized model and those of the accurate two-dimensional elasticity solutions and a 

discrete-layer interface model demonstrate that the model is able to accurately predict the fracture 

parameters and capture the macro-structural response, including snap-back instabilities. This is done 

through a homogenized description of the problem and using the same number of variables as that needed 

for modeling a single intact homogenous layer. The main drawback of the approach is that it underestimates 

the compliance of the specimen due to neglecting shear deformations in the delaminated portion of the 

specimen.  

To try and overcome this limitation of the homogenized model, we extend the refined zigzag theory 

developed in (Tessler, Di Sciuva and Gherlone, J. of Composite Materials, 2009) for fully bonded plates, 

to account for the presence of imperfect interfaces. The theory accounts more accurately for the contribution 

of the shear deformations in the displacement field of partially or fully debonded plates and resolves some 

difficulties of the previous multiscale model in modeling clamped boundaries, where fictitious boundary 

layers occur due to neglecting shear deformations. The model is formulated for plates deforming in 

cylindrical bending, the interfaces are assumed to be rigid against relative opening displacements and their 

mechanical behaviour is described through a linear elastic interfacial constitutive law. Applications to 

simply supported and cantilevered wide plates prove the accuracy of the model in predicting displacement 

and stress fields in plates with continuous imperfect and fully debonded interfaces. Preliminary applications 

of the model to delamination problems are also presented. It is shown that when the model is applied to 

solve plates with finite length imperfect interfaces, the accuracy of the results depends on the difference 

between the interfacial stiffnesses of the interfaces ahead and behind the crack tip. This limitation strongly 

affects applications to Linear Elastic Fracture Mechanics problems and is expected to have effects in 

cohesive crack modeling.  
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Figure 4-9: Relative percent error between the energy release rates of the homogenized model and 2D 

solution [103] in bi-material ENF specimen made of two incompressible isotropic layers with  

and . “From sub-resultants Eq. (4-55)” and “From crack surface displacements Eq. (4-63)” 

refer to relative percent errors of energy release rates in Eqs. (4-55) and (4-63), and Eq. (4-74). 

Figure 4-10: Dimensionless critical load versus load point displacement of homogeneous ENF specimen 

with ,  and . Material: ,  (L and T indicate 

in-plane principal material directions with L = ). Shear correction factor, . 

Figure 4-11: Comparison of the bending stresses at the lower surface of the plate through the length, 
calculated by the homogenized model and the discrete layer interface model. 

Figure 4-12: Distributions of bending stresses at the traction-free delamination tip in the cracked and intact 
regions. 

Figure 4-13: Comparison between the interfacial tractions calculated a posteriori by the homogenized 
model and those obtained through discrete layer interface model. The dimensionless interfacial shear 
tractions tend to the constant value -3/8, which is the maximum transverse shear stress of the layers far 
from the traction-free delamination tip. 

Figure 5-1: Multilayered wide plate/beam with imperfect interfaces and delaminations. 

Figure 5-2: Schematic description of the assumed displacement field in a three layers laminate: global 
displacement and local perturbations. 

Figure 5-3: (a) Layers joined by imperfect interfaces. (b) Representing imperfect interfaces as thin layers. 

(c) Values of the zigzag functions below and above the thin layer , perfectly bonded to layers  and 
. 

Figure 5-4: Three-layered plate with linear elastic interfaces subjected to sinusoidal transverse loading. 

Figure 5-5: Longitudinal at  and transverse at  displacements through the thickness in a 

simply supported three-layer wide plate , , transverse loading . 

Elastic constants: , ,  and . Shear correction factor 

. 

Figure 5-6: Bending at  and transverse shear at  stresses through the thickness in a simply 

supported three-layer wide plate , , transverse loading . Elastic 

constants: , ,  and . Transverse shear stresses are 

calculated a posteriori from bending stresses. Shear correction factor . 

Figure 5-7: Transverse displacements at  at the top of a simply supported two-layer wide plate 

, ; layers connected by a linear elastic interface at the mid-thickness, transverse loading 

 on its upper surface, while the lower surface of the plate is traction-free [25]. The 

results are normalized to those of a fully debonded plate, , and shown on varying the interfacial 

stiffness (decreasing interfacial stiffness from left to right). Elastic constants: , , 

 and . Shear correction factor . 
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Figure 5-8: Longitudinal at  and transverse at  displacements through the thickness in a 

simply supported three-layer wide plate , , transverse loading 

. Elastic constants: , ,  and 

. Shear correction factor . 

Figure 5-9: Bending at  and transverse shear at  stresses through the thickness in a simply 

supported three-layer wide plate , , transverse loading . 

Elastic constants: , ,  and .  Transverse shear stresses 

are calculated a posteriori from bending stresses. Shear correction factor . 

Figure 5-10: A cantilevered plate composed of two layers joined by a linear elastic interface at the mid-
thickness and subjected to transverse load F at the free end [26]. 

Figure 5-11: Interfacial tractions along the length of a cantilever two-layer with plate , , 

subjected to a concentrated transverse force F at the free end (Figure 5-6) [26]. Two identical layers 
connected by a linear elastic interface at the mid-thickness. The elastic constants: , 

,  and . Interfacial tractions predicted by the model used in Chapter 4 [25] are 

calculated a posteriori from the bending stresses. 

Figure 5-12: ENF specimen with two layers of equal thickness, bonded by two linear elastic interfaces with 
different interfacial stiffness for  and . 

Figure 5-13: Deflection of the specimen in Figure 5-12 with  and  made of 

, ,  and .  (a)  for  and  

for  (fully bonded), and (b)  for  and  for . 

Correction factor . 

Figure 5-14:  (a) Interfacial tractions and (b) interfacial jumps from 2 0x  to 2 x L  in the specimen in 
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Figure 5-15: (a) Interfacial tractions and (b) interfacial jumps from  to  in the specimen in 

Figure 5-12 with  and   made of , ,  and 

.  for  and  for  (fully bonded). Correction factor 

. 

Figure 5-16: (a) Deflection of the specimen in Figure 5-12 with  and  made of 

, ,  and .  for  and  

for  (fully bonded). (b) Deflection of a perfectly bonded specimen in Figure 5-13 with 

 and  made of , ,  and . The shear 
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1 INTRODUCTION 

1.1 MULTILAYERED MATERIALS AND STRUCTURES 

A multilayered composite is a stack of several layers joined together to achieve superior properties, such 

as high strength-to-weight ratio, energy absorption and fatigue life. Laminated composite plates and shells 

and sandwich structures are exemplary structures which use multilayered composites. A laminate is made 

up of several laminae which are bounded together to meet certain design requirements. A sandwich 

structure is composed of two relatively thin but stiff skins attached to a core which is made of lightweight 

materials such as balsa, foam or honeycomb. The mechanical properties of laminated composite structures 

depend on their fabrication quality. The fabrication methods include autoclave molding, filament winding 

and resin transfer molding [1].  

Nowadays, laminated composite and sandwich structures are largely used in different areas of technology 

and industry. Their applications as primary structures in mechanical devices and vehicles, such as turbines, 

wind-blades, aircrafts or ships, are increasing. The interest in the use of layered materials is due to the fact 

that their mechanical properties can be tailored, by proper selection of the materials and design of the 

layups, to meet the growing design requirements of modern mechanical devices. 

More than 50%  weight of the Boeing 787 and the A350 XWB is made of composite materials [2]. 

Sandwich structures, are being used in Helicopter blades, vertical tail planes, airplane fuselage and wings, 

for instance in the Airbus A380 [3],  and in ships due to their optimal performance as insulation, lower 

manufacturing cost and lack of corrosion. Composite laminates are being used in the construction of bridge 

decks [4] and have structural applications in automotive vehicles [5]. Use of composite laminates and 

sandwiches in the blades of wind turbine significantly increases the power output and reduces the cost. 

These are only a few examples of applications of laminated composite structures, which continue to expand. 

Understanding the mechanical behaviour of layered materials and structures is an active research line and 

the scientific community is currently working on the development of physically based predictive 

mechanical models for the confident design of such structures. 

1.2 PROBLEM DEFINITION AND METHODOLOGY 

Current applications of laminated composite and sandwich structures require withstanding severe 

mechanical loadings and surviving aggressive environments, characterized for instance by very high or 

very low temperatures.  Laminated structures used in the external parts of aircrafts or ships, face a wide 

range of operational temperature, aerodynamic loads and impacts. These structures often have complex 

geometries and boundary conditions, and are composed of many layers exhibiting different material 

properties. To design layered structures and define their load-bearing capacity and life, accurate 

understanding of their mechanical behavior in the elastic and post-elastic regimes is needed. 
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The focus of this thesis is on the elastic and delamination response of layered composite structures 

subjected to stationary thermo-mechanical loading. In the first part of the thesis, the 2D/3D  thermo-

elasticity models previously developed in [6, 7] are used along with matrix techniques to derive novel 

explicit expressions for temperature, displacements and stresses in multilayered plates with an arbitrary 

number of imperfectly bonded layers in imperfect thermal contact. In the second part, a model is formulated 

to study the delamination of layered structures in a homogenized fashion through multiscale structural 

theories. 

1.3 MOTIVATIONS 

1.3.1 Elastic regime of laminated composites 

Wherever possible, two- and three-dimensional thermo-elasticity approaches are the first choice to study 

the elastic response of layered plates because they exactly predict the field variables and allow to perform 

parametric analyses. In many case, the exact elasticity solutions are not available, due for instance to the 

complex geometry, loading and boundary conditions. For such cases, numerical models and/or approximate 

structural theories are applied to describe the response of the layered structures. The thermo-elastic 

solutions are valuable because they can be used to assess the accuracy of these numerical and approximate 

models. 

While the early thermo-elastic solutions were derived for laminates with perfectly bonded layers, simple 

geometries, boundary and loading conditions [6, 8], recent works include solutions for plates with thermally 

and mechanically imperfect interfaces and boundary conditions other than the simple support [7, 9]. All the 

aforementioned thermo-elasticity theories firstly derive a general solution for a generic layer of the structure 

and then impose continuity and boundary conditions to obtain the unknown constants. Therefore, the 

problem becomes more complex on increasing the number of layers and may require numerical solutions. 

This limits the applicability of the methods and reference is often made to a few classical examples, which 

have been presented in some original papers for fully bonded layers in perfect thermal contact, e.g. [8, 10]. 

These solutions are often used also to verify theories which are based on different assumptions and account, 

for instance, of interfacial imperfections. This may lead to misjudgments on their accuracy and range of 

validity (see [11] for a discussion on this problem). 

Matrix techniques have been formulated to overcome the above-mentioned limitation, i.e. 

computationally expensive solutions for laminates with many layers, and derive thermo-elastic solutions 

for laminates with many layers [12-18]. However, the solutions are derived and presented only in matrix 

form, can be obtained through many matrix multiplications and no expanded explicit expressions are given 

for the field variables; the solution then remains quite complex. Moreover, none of the current matrix 

formulations in the literature consider the effect of thermally imperfect interfaces.  

Thermo-elastic models for multilayered plates with thermally and mechanically imperfect interfaces can 

be found in the literature, for instance in [7, 19]; however, closed-form expressions for the field variables 

do not exist in the open literature neither for perfectly bonded nor for imperfectly bonded laminates. It 

would be then desirable to derive explicit and easy to use expressions which exactly predict the stress and 

displacement components in laminates with any number of layers and thermally and mechanically 
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imperfect interfaces. Such expressions could be readily applied to generate benchmark solutions for the 

verification of numerical models and approximate theories. 

1.3.2 Post-elastic regime of laminated composites 

The post-elastic response of layered materials is governed by the interaction of different failure mechanisms 

which include intraply damage and interply damage or delamination. The intraply damage mechanisms in 

laminates are in the form of matrix cracking and fiber fracture, result in a global reduction of the stiffness 

of the layers and can be studied through material degradation and continuum damage models. Delamination 

is inherently a localized event and is one of the dominant failure mechanisms of layered structures, because 

of their weak interlaminar properties. Debonding of the layers or delamination takes place in the internal 

parts of structures and often its presence is undetectable by visual inspection. Delaminations can occur at 

the stages of fabrication, due to manufacturing errors, storage or transportation, or during the service life, 

due for instance to impacts. In many practical applications, e.g., those which involve impact or blast 

loadings, multiple delaminations may form within the layered structures. Because of the high level of 

interlaminar stresses caused by the inhomogeneous material structure, delaminations may then propagate 

and cause stiffness degradation or final failure of the components.  Studying the onset and propagation of 

delaminations requires an accurate prediction of the stress field in each layer of the laminated composites. 

Progressive delamination failure in laminated composites can be accurately studied through discrete-

layer cohesive-crack models (e.g., [20, 21]). In these models, the laminated composite plate is divided 

through the thickness into discrete layers connected by cohesive interfaces; the mechanical behavior of the 

interfaces are governed by the cohesive traction laws which relate the interfacial cohesive tractions to the 

interfacial relative displacement of the layers. The number of the discrete layers is taken to be equal or 

higher than the number of physical layers. Appropriate kinematic fields are then assumed for the layers and 

displacements of the layers at the interfaces are related to each other through the cohesive traction laws. 

The discrete-layer cohesive-crack models are able to accurately predict the interlaminar stresses, and to 

account for the presence of delaminations. However, the number of unknown variables in these theories 

depends on the number of layers and delaminations, and therefore, these models become computationally 

expensive for nonlinear analysis (progressive failure), and when the laminated structure has many layers 

and delaminations. Therefore, analytical solutions can be obtained only for simple cases and numerical 

approaches such as finite element method are required for most problems [22-24]. 

An alternative approach to discrete-layer cohesive-crack modeling has been presented in [25], aimed at 

modeling delamination fracture in laminated composites through a homogenized structural theory which 

uses a fixed number of unknown variables independent of the number of layers and delaminations while 

capturing the local fields due to the inhomogeneous material structure and the presence of delaminations. 

The homogenized structural theory then removes the through thickness discretization used in discrete 

approaches and increases the range of problems, for which analytical solutions can be obtained. The 

schematic illustration of the idea is shown in Figure 1-1. 
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Figure 1-1: Schematic illustration of a homogenized approach for modeling delamination fracture in 
laminates subjected to transverse loading. The shaded parts indicate regions characterized by different global 

properties accounting for the presence of one or more delaminations. 

The accuracy of the homogenized structural model in predicting the local and global fields in layered 

plates with continuous, imperfect and fully debonded interfaces and subjected to stationary thermo-

mechanical loads has been verified in [7, 11, 25, 26]. In [26], the multiscale structural model has been 

applied to a delaminated cantilever plate, to preliminary assess the applicability of the model to study 

fracture problems. The homogenized structural model seems promising in modeling delamination fracture 

in laminates, and its limitations and advantages should be investigated. 

1.4 OBJECTIVES 

The general objective of this research is to formulate accurate and efficient physically based methods to 

model the elastic and delamination response of layered structures. In this regard, the work is divided into 

two parts. In the first part, a matrix method is formulated which is based on the  thermo-elasticity models 

in [6, 7] and aims at efficiently obtaining exact solutions for stationary two- and three-dimensional 

problems. The objective of the second part is to formulate a homogenized fracture model, based on the 

multiscale structural theory in [25], and investigate its advantages and limitations through the application 

of the model to mode II dominant delamination problems in bi-material wide plates subjected to transverse 

loads.  

The thesis yields: 

 novel 2D/3D thermo-elasticity explicit expressions for temperature, displacements and stresses 

in simply supported multilayered plates with an arbitrary number of layers, arbitrary layups and 

interfacial thermal and mechanical imperfections, subjected to stationary thermo-mechanical 

loads; 

 formulation and verification of a homogenized fracture model for studying mode II dominant 

delamination fracture in laminated composite wide plates, based on a multiscale structural 

approach which removes the through thickness discretization; 
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 formulation of a refined homogenized structural theory for wide plates with imperfect interfaces 

and delaminations, which is able to more accurately describe shear deformations, and 

preliminary application of the model to delamination problems. 

1.5 THESIS OUTLINE 

The thesis is divided into six chapters. In the first part of Chapter 2, a brief literature review is presented on 

some of the relevant two- and three-dimensional thermo-elasticity models for laminated and sandwich 

structures with thermally and mechanically perfect and imperfect interfaces. Thermo-elasticity models 

based on matrix formulations are also discussed. The second part of Chapter 2, focuses on the structural 

theories, and reviews some of the equivalent single layer and the zigzag theories. This chapter also covers 

zigzag theories formulated for layered structures with imperfect interfaces. 

In Chapter 3, a matrix technique is formulated and novel 2D/3D thermo-elasticity explicit expressions 

are derived for the field variables of simply supported multilayered plates composed of imperfectly bonded 

orthotropic or isotropic layers in imperfect thermal contact and subjected to sinusoidally distributed 

transverse surface tractions and thermal gradients. The expressions are valid for an arbitrary layup and 

number of layers, and can be used to solve problems with load distributions other than sinusoidal using 

Fourier series and the principle of superposition. They are also applicable to the limiting cases of perfectly 

bonded layers in perfect thermal contact and fully debonded layers or impermeable interfaces. The 

expressions can be readily applied to generate benchmark solutions and used for the verification of 

numerical models and approximate theories, with no need to solve algebraic systems, as in the classical 

approaches, or to perform extensive matrix multiplications, as in other matrix formulations in the literature. 

The expressions are in dimensionless form to facilitate parametric analyses of the problem. 

In Chapter 4, the multiscale structural theory formulated in [25] is particularized to a bi-material wide 

plate with a single delamination,  and a homogenized fracture model is formulated to study mode II 

dominant problems. The homogenized fracture model is used to investigate a fracture mechanics model 

system for which accurate Linear Elastic Fracture Mechanics solutions are available for verification. The 

energy release rate is derived in closed-form through an application of the J-integral in the homogenized 

problem using the local fields calculated through the multiscale model. The expression of the energy release 

rate is shown to coincide with the classical solution of the problem, for both bi-material and homogeneous 

plates. The energy release rate of the model system is also derived through an application of the J-integral 

along a path surrounding the delamination surfaces to show the accuracy of the homogenized model to 

capture the relative crack displacements. The model is applied to study delamination growth and investigate 

the structural response of End Notched Flexural (ENF) specimens. The advantages and limitations of the 

homogenized approach are discussed. 

In Chapter 5, a refined homogenized structural theory is formulated, based on the  refined zigzag theory 

[27] and the homogenized structural theory [25], for wide plates with imperfect interfaces. The theory 

allows to accurately model all boundary conditions including clamped supports, and has enough kinematic 

flexibility to adequately describe the shear deformations through the thickness of wide plates with 

continuous imperfect interfaces. The new model is applied to study simply supported and cantilevered 
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plates with continuous linear elastic interfaces. For simply supported plates, expressions derived in Chapter 

3 are used to generate benchmark solutions and verify the predictive capabilities of the model. The model 

has difficulties in analyzing wide plates with finite length imperfect interfaces due to the absence of the 

continuity condition on the slope of the transverse displacement at the cross sections, where two regions 

characterized by different interfacial stiffness are joined. This limitation affects applications of the model 

to delamination problems. 

In Chapter 6, concluding remarks and suggestions for future research are presented. 
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2 STATE OF THE ART 

2.1 INTRODUCTION 

In the first part of this chapter, Sect. 2.2, some of the relevant available thermo-elastic solutions for perfectly 

and imperfectly bonded laminated composites are briefly introduced. The concepts of the mechanically and 

thermally imperfect interfaces, which are used in the literature to account for the interfacial imperfections, 

are described. The thermo-elasticity models based on the matrix formulations are reviewed in Sect. 2.2.3. 

The limitations of the current models, which motivated the work presented in Chapter. 3, are also discussed. 

The second part of this chapter, Sect. 2.3, focuses on a class of reduced order models for mechanical 

analysis of laminated composites, known in the engineering community as the structural theories, and 

briefly introduces some of the equivalent single layer (or smeared laminate) and the zigzag theories; the 

zigzag theories belong to the more general approaches known as multiscale or global-local approaches [28]. 

In Sect. 2.3.3, the extension of the zigzag theories to plates with imperfect interfaces is discussed, and the 

idea of modeling the progressive delamination failure in laminated composite structures through the 

homogenized structural theories is introduced.  The  homogenized structural theory, which will be used in 

Chapter 4 to formulate a homogenized fracture model, is presented in Sect. 2.3.4. 

2.2 THERMO-ELASTICITY MODELS FOR MULTILAYERED STRUCTURES 

Multilayered structures are frequently used as load-bearing components, also for applications which 

necessitate withstanding severe thermo-mechanical loadings. Since these structures often have complex 

geometries, boundary and loading conditions, numerical models and approximate structural theories are 

typically applied to determine their response in the elastic and post-elastic regimes. Two- and three-

dimensional thermo-elasticity solutions are valuable because they exactly predict the field variables and 

can be used to assess the accuracy of numerical and approximate models and to perform parametric analyses 

(e.g., [6, 8, 10, 19, 29-35]). 

2.2.1 Perfectly bonded multilayered composites 

In an early paper [29], Pagano used the Airy’s stress function method to obtain an exact solution in the 

framework of the linear theory of elasticity for simply supported cross-ply laminates composed of perfectly 

bonded orthotropic/isotropic layers. The solution was given for plates subjected to sinusoidal transverse 

loads and deforming in cylindrical bending. The theory was extended to include uniformly distributed and 

concentrated loads described by means of Fourier series in [31] and to treat stationary sinusoidally 

distributed thermal loads, under the simplifying assumption of linear thickness-wise temperature 

distribution, in [36]. Thanks to these exact solutions, the limitations of classical laminated plate theory for 

the analysis of laminates with low span-to-thickness ratios were first revealed and the solutions are still 



8  CHAPTER 2 

used nowadays to assess the range of validity of approximate theories and numerical models. Pagano’s 

solution was completed in [37], using the displacement method, for cases where the characteristic equation 

of the problem has complex conjugate roots, as it occurs in sandwich plates with honeycomb cores having 

transverse stiffness much higher than the in-plane stiffnesses. An exact stationary thermo-elasticity solution 

for simply supported plates in plane strain and subjected to arbitrary thermo-mechanical loading was 

obtained in [34] using the method of displacement potentials and assuming perfect thermal contact at the 

layer interfaces.  

In a later study by Pagano [8], three-dimensional elasticity solutions were obtained for rectangular simply 

supported bidirectional laminated and sandwich plates composed of perfectly bonded orthotropic/isotropic 

layers. The characteristic equation of this problem was restated in the form of a cubic equation whose 

discriminant controls the nature of the solution. Pagano obtained closed form solutions for the cases of 

negative and zero discriminants (e.g. isotropic layers) and later solutions for the case of a positive 

discriminant were presented in [38]. These exact solutions allowed to verify the faster convergence to the 

exact solution of classical plate theory on increasing the number of layers [30]. In parallel with Pagano’s 

work, Srinivas et al. [33, 39] obtained elasticity solutions for simply supported perfectly bonded cross-ply 

laminates under arbitrary loading by expressing the displacement and stress components in terms of infinite 

series. The thermo-elastic problem was studied in [6, 10, 32] for plates with perfect thermal contact between 

the layers, by assuming a prescribed temperature distribution with a through-the-thickness linear variation 

in [10], and through the exact solution of the heat conduction problem in [6, 32]. Solutions for plates with 

boundary conditions other than the simple supports were obtained in the form of infinite series in [40, 41] 

and through the extended Kantorovich method in [9].  

An exact elasticity solution for plane-strain simply supported laminated cylindrical shells with perfectly 

bonded orthotropic layers and subjected to transverse loading was derived in [42] using the Airy’s stress 

function method. In [43], 3D elasticity solutions were derived for simply supported circular cylindrical 

shells made of perfectly bonded orthotropic layers, subjected to transverse loading. The solutions were 

derived by expressing the displacement and stress components in terms of infinite series. 

2.2.2 Imperfectly bonded multilayered composites 

The thermo-elasticity models mentioned above assume the layers to be perfectly bonded and in perfect 

thermal contact, which imply continuity of displacements, tractions, temperature and heat flux at the layer 

interfaces. This assumption does not describe systems with damaged interfaces or delaminations between 

the layers or systems where the plies are connected by very thin adhesive layers which are not described as 

regular layers in the formulation, to reduce the computational cost. Flaws and delaminations may develop 

during the manufacturing processes and/or in service due to, for instance, fatigue loads, impacts or 

environmental effects, such as temperature or humidity. They modify the continuity conditions at the layer 

interfaces and result in stiffness degradation and reduction of the load-carrying capacity of the plates [44]. 

Two models are introduced here, which allow to study the effect of imperfect bonding of two adjacent 

layers. 

Mechanically imperfect interface model 
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From a mechanical point of view, an imperfect interface or a very thin interlayer can be represented as a 

zero-thickness surface across which the interfacial tractions are continuous, while the displacements are 

discontinuous (see Figure 2-1). The interfacial tractions can then be related to the relative displacements of 

the layers at the interfaces using interfacial traction laws able to describe different interfacial mechanisms. 

Linear interfacial traction laws have been frequently used in the literature; they assume that the interfacial 

tractions are proportional to the corresponding relative sliding and opening displacements and the 

proportionality factors are the interfacial tangential and normal stiffnesses. These laws well describe the 

response of thin adhesive elastic layers and the initial branch of more general interfacial traction laws, such 

as those which are typically used to model cohesive delamination fracture. In addition, these laws can be 

used to describe the limiting cases of perfectly bonded and fully debonded layers [7].  

 

Figure 2-1: Schematic illustration of defects in the bonding region between two composite layers and their 
relative displacements after loading. 

To the authors knowledge, Williams et al. [19] were the first to employ the concept of linear interfacial 

traction law in conjunction with Pagano’s model [29] in order to obtain exact elasticity solutions for the 

cylindrical bending of laminates with imperfect interfaces subjected to mechanical loading. The extension 

is straightforward since the general solutions for stresses and displacements in each layer are unchanged, 

while the interfacial continuity conditions must account for the assumed interfacial traction laws. The same 

idea was applied in [11] to verify structural models based on a zigzag homogenization used to improve 

classical structural theories; in [12, 45] it was used along with the state-space approach, for the bending and 

free vibrations of simply supported cross-ply laminates and cylindrical panels with imperfect interfaces; in 

[46] it was applied to study plates subjected to arbitrary boundary conditions. 

Thermally imperfect interface model 

From a thermal point of view, heat transfer through the layers of a plate with interfacial imperfections is a 

rather complex process. Micro-cracks, voids and delaminations reduce the areas of actual physical contact 

between adjacent layers and create regions separated by air gaps which prevent the heat flow across the 

interface. Heat transfer across the imperfect interfaces takes place through conduction at the contact spots 

and conduction and/or radiation through the air gaps (see Figure 2-2). These mechanisms control and reduce 

the interfacial thermal conductance, which also depends on other factors, such as the applied pressure and 

the mean temperature. The consequence of this behavior is a jump in the temperatures of the layers at the 

interface [47]. Hence for laminates with interfacial imperfections, the assumption of perfect thermal contact 

between the layers, which implies a continuous temperature at the interface, is not valid.  
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Figure 2-2: Interfacial temperature jump due to the interfacial thermal resistance. 

The concept of thermally imperfect interface characterized by an interfacial thermal resistance has been 

frequently used in the literature to account for the behavior described above [7, 48-50]. This model enforces 

the equality of the heat fluxes which enter and leave the interface and assumes that the heat flux through 

the interface is proportional to the interfacial temperature jump; the interfacial thermal conductance H  is 

the proportionality factor and should then account for the various modes of heat transfer through the 

interface [47]. An interfacial thermal resistance is then introduced which is the reciprocal of the interfacial 

thermal conductance, 1R H . If 0R , the model describes perfect interfaces, where the temperature is 

continuous at the interface. Impermeable interfaces, where the heat flux vanishes, can be modelled by 

setting 0H . The model can also be used to efficiently describe the thermal behavior of thin adhesive 

layers when they are represented as interfaces, to reduce the computational cost, and H  will then be related 

to the conductivity and thickness of the adhesive. Pelassa et al. [7] employed the concept of interfacial 

thermal resistance and assumed the interfaces to be mechanically imperfect and described by linear traction 

laws to extend the thermo-elasticity model presented in [6] to multilayered plates with thermally and/or 

mechanically imperfect interfaces. 

2.2.3 Matrix formulations in thermo-elasticity: the transfer matrix method 

Most of the aforementioned thermo-elasticity theories are based on two main steps. First, the general forms 

of the field variables which satisfy the edge boundary conditions and the governing field equations are 

obtained for a generic layer. Then, the unknown constants in the solutions of each layer are calculated by 

imposing continuity conditions at the layer interfaces and boundary conditions at the top and bottom 

surfaces of the plate. For a plate composed of n layers, a system of 4×n and 6×n algebraic equations need 

to be solved for cylindrical bending and general plate problems, respectively [8, 29]. Therefore, solving the 

system of equations becomes cumbersome when the number of layers increases and this restricts the 

applicability of the models. 

The transfer matrix method was originally formulated by Thomson in [51] to solve the problem of the 

propagation of plane elastic waves in a layered medium immersed in a fluid. The method is the first attempt 

in the literature to methodically extend the solution derived for layer to a multilayered medium. Thomson 

derives a local transfer matrix, which relates the displacements and transverse stresses at the bottom and 

top surfaces of a generic layer. The local transfer matrix is then related to that of the adjacent layer by 

imposing continuity conditions at the interface. Starting from the uppermost layer and using the local 
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matrices and continuity conditions at the interfaces, a global transfer matrix is derived which relates the 

field variables at the bottom surface of the medium to those at the top. The solution for a medium with any 

arbitrary number of layers is then obtained through the imposition of the boundary conditions only. A small 

mistake in the interfacial continuity conditions in [51] was later corrected by Haskell and the method 

became known as the Thomson-Haskell method [52]. Applications of the method in the ultrasonic and 

seismology fields have been reviewed in [53]. 

The applications of the transfer matrix method have not been restricted to wave propagation problems. 

A matrix technique was employed within the state-space approach to efficiently solve, using a mixed 

formulation, the three-dimensional elasticity problem of a simply supported multilayered plate subjected to 

transverse loadings in [13] and to compressive in-plane loadings in [14] (buckling problem). Solutions were 

obtained for perfectly bonded, homogeneous and orthotropic layers, with principal material axes parallel to 

the geometrical axes. The transfer matrix method was later applied to multilayered plates with mechanically 

imperfect interfaces governed by linear interfacial traction laws in [12, 15]. The solutions in [12-15] 

however are derived and presented only in matrix form, can be obtained through many matrix 

multiplications and no expanded explicit expressions are given for the field variables; the solution then 

remains quite complex. Applications of the transfer matrix method to the solution of stationary thermo-

elasticity problems can be found in [16-18] for simply supported rectangular multilayered plates and 

cylindrical arches with perfectly bonded isotropic layers in perfect thermal contact. As for the previous 

applications, solutions are derived only in terms of matrix multiplications and interfacial mechanical or 

thermal imperfections are not considered. 

Therefore, there is a need in the literature for explicit expressions, to be used to easily generate exact 

solutions for laminated composites with an arbitrary number of imperfectly bonded layers in imperfect 

thermal contact. The exact solutions can be then used to assess the accuracy of numerical and approximate 

models and to perform parametric analyses. Currently, due to the absence of such explicit expressions in 

the literature, a few classical examples, which have been presented in some original papers for fully bonded 

layers in perfect thermal contact, e.g. [8, 10, 29, 33] are often used to verify theories which are based on 

different assumptions and account, for instance, of interfacial imperfections and this may lead to 

misjudgments on their accuracy and range of validity (see [11] for a discussion on this problem). 

2.3 STRUCTURAL THEORIES FOR MULTILAYERED COMPOSITES 

The in-plane dimensions of laminated composite structures are usually much larger than their thickness 

dimension. This feature allows to formulate structural theories based on a priori assumptions on through 

the thickness variations of the primary variables (axiomatic approach). In displacement based structural 

theories, the primary variables are the generalized displacements (e.g., axial displacements, rotations), and 

in mixed theories both generalized displacements and stresses are used as primary variables. These 

assumptions allow to treat a laminated structure as a two-dimensional problem and reduce the 

computational cost of modeling complicated structures. Moreover, the structural theories allow to derive 

approximate solutions for problems for which elasticity solutions are not available. In the remaining part 

of this chapter, some of the equivalent single layer and the zigzag theories are briefly introduced. 
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2.3.1 Equivalent single layer theories 

Among the displacement based structural models, the equivalent single layer theories (see for example [54, 

55], and [56, 57] for recent reviews) assume either a polynomial or non-polynomial (e.g. trigonometric, 

hyperbolic, and exponential functions) expansion of the displacement components in the thickness direction 

[56]. For cylindrical bending problems in plane 2 3x x , where 2x  and 3x  are, respectively, the longitudinal 

and thickness directions, the displacement field of polynomial theories takes the following form [57]: 

           2 3 3 2 2 3 3 2
0 0

, ,
m n

i j

i j
i j

u x x x u x w x x x w x
 

                            (2-1) 

where u and w are the in-plane and transverse displacements, and iu  and jw  are the primary variables. The 

displacement components are continuous through the thickness with continuous first derivative with respect 

to the thickness direction, which leads to discontinuous interlaminar stresses in multilayered structures. 

The displacement field in Eq. (2-1) for m = 1, n = 0 and 1 0 2, u w  represents that of the Euler-Bernoulli 

theory, where the shear deformations are neglected (a comma followed by a subscript denotes a derivative 

with respect to the corresponding coordinate) [57]. In the Euler-Bernoulli theory it is assumed that plane 

sections normal to the reference surface remain plane and normal to the reference surface after deformation 

and do not experience elongation. In the first order shear deformation theory, the transverse shear strain is 

assumed to be constant through the thickness so m = 1, n = 0, and 0u , 1u  and 0w  are independent variables 

[57]. In the first order shear deformation theory it is assumed that plane sections normal to the reference 

surface do not experience elongation and remain plane but not necessarily normal to the reference surface 

after deformation. Higher order theories have been formulated by taking more terms in the expansion (e.g., 

[54]). The transverse compressibility/extensibility of the plate can be incorporated into the formulation by 

assuming 0n  [58].  

The displacement field of the equivalent single layer theories does not account for the relative 

displacement of the adjacent layers. Moreover, the equivalent single layer theories are not able to reproduce 

the complex stress and displacement fields, with zigzag patterns in the thickness direction, which occur in 

laminated composite materials due to the different mechanical properties of the layers. 

2.3.2 Zigzag theories: perfectly bonded layers 

A good compromise between computational simplicity and accuracy, for stress analysis of laminated 

composite structures, is offered by a class of structural models, known in the literature as zigzag theories. 

In zigzag theories, the displacement fields of the equivalent single layer theories are enriched by layerwise 

linear functions, known as zigzag functions, to account for the inhomogeneous material structure. Zigzag 

functions introduce strain discontinuities at the interfaces and allow to fulfill the interfacial continuity 

conditions. In this section, two widely used zigzag models are introduced along with a refined zigzag theory. 

Murakami’s zigzag theory 

Within the framework of Reissner’s mixed variational theorem [59], Murakami [60] enhanced the in-plane 

displacement field of the equivalent single layer theory by introducing zigzag functions. His work was 

motivated by displacement microstructure of laminates with periodic layups. Therefore, he used zigzag 
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functions with periodic nature, which are independent of the material properties of the layers, depend only 

on the thickness of the layers, and do not fulfill the condition of continuity of the transverse shear tractions 

of the interfaces [57]. 

Adding the Murakami zigzag function to the in-plane displacement field of the first order shear 

deformation theory introduced in Sect. 2.3.1, yields the following displacements for a generic layer k: 

             ( ) ( )
2 3 0 2 3 1 2 2 2 0 2, 1

kk k
k Mu x x u x x u x u x w x w x   +             (2-2) 

where ( ) ( )
32  k k

k x h  is a dimensionless function (see Figure 2-3), which is linear through the thickness 

and has values of -1 and 1 at the bottom and top surfaces of the layer, ( )
3

k x  is the distance from the mid-

thickness axis of the layer and ( )k h  is the thickness of the layer. Mu  is an additional kinematic variable, 

which defines the amplitude of the zigzag functions. This zigzag function can be added to any displacement 

component of any equivalent single layer theory to incorporate the zigzag effects. 

 

Figure 2-3: Murakami zigzag functions in a three-layer system. 

Murakami zigzag theory works well when applied to the laminated composite with periodic stacking 

sequence, i.e.  , ,...    and runs into difficulties, for example, for layups with external soft (lower shear 

moduli) layers or for sandwiches with large face-to-core stiffness ratios [61].  

Di Sciuva’s zigzag theory 

In [62, 63], Di Sciuva formulated a displacement based zigzag theory in which a different displacement 

field is assumed for each layer. For cylindrical bending problems in plane 2 3x x , the displacement field 

takes the following form for a generic layer k (see Figure 2-4):  

         
1

( ) ( )
2 2 3 02 2 3 2 2 2 3 3 3 2 0 2

1

, ( )               
k

k i i k

i

v x x v x x x x x v x w x




       (2-3) 

where 02v ,  2  and 0w  are the global variables, which define the displacement field of the first-order shear 

deformation theory (global model), and 2
k  is the zigzag function of the layer k. Interfacial continuity 
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conditions are imposed a priori to eliminate the layerwise degrees of freedom, which yields 

 2 0 2 2 22,k kw      with 22 k  known constants only depending on the transverse shear mechanical 

properties of the layers. Substitution of 2 k  into Eq. (2-3) results in a homogenized displacement field in 

terms of the global displacement variables only. The number of the unknown variables of Di Sciuva’s 

zigzag theory is then equal to that of the first-order shear deformation theory. While Murakami zigzag 

function  1  k

k Mu  in Eq. (2-2) depends only on the thickness of the layers, Di Sciuva zigzag function 

accounts for the geometrical and material properties of the layers and is derived by enforcing physical 

conditions at the interfaces. 

 

Figure 2-4: Schematic illustration of the displacement field of Di Sciuva’s theory for a three-layer system: global 

model enriched by zigzag functions. 

Many researches formulated later zigzag theories inspired by the original Di Sciuva’s theory. For 

instance, in [64, 65] third order shear deformation zigzag theories are formulated. In [66, 67], higher order 

zigzag theories have been formulated with incorporation of the transverse compressibility/extensibility of 

layers. In [68-72], zigzag theories have been formulated for laminated plates and shells which use four ply-

dependent and five global variables to define the displacement field; the total number of the variables is 

then reduced to five using the interfacial continuity conditions. In [73], a higher order zigzag theory has 

been formulated with improved approximations for the transverse displacements of laminated shells under 

thermal loadings. 

Di Sciuva’s theory has two drawbacks. First, its finite element implementation requires 1C -continuous 

shape functions for the transverse displacements, which is undesirable especially for plate and shell 

problems. Second, the transverse shear stress, strain and resultant, obtained from the constitutive equations, 

vanish along clamped boundaries [27, 74]. To facilitate the finite element implementation, Di Sciuva’s 

theory has been modified in [74, 75] to formulate zigzag models which require only 0C -continuous shape 

functions. In the next section, a recently formulated refined zigzag theory [27, 76] will be introduced, which 

overcomes both limitations of Di Sciuva’s theory. 

Refined zigzag theory 

A refined zigzag theory is formulated in [27, 76] by enriching the displacement field of the first order shear 

deformation theory through piecewise linear zigzag functions, which vanish at the top and bottom surfaces 
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of the plate (see Figure 2-5). For cylindrical bending problems in plane 2 3x x , displacement field of the 

refined zigzag theory for a generic layer k is: 

 

             ( ) ( ) ( )
2 2 3 02 2 3 2 2 3 2 2 3 2 0 2,          k k kv x x v x x x x x v x w x       (2-4) 

where 02v ,  2  and 0w  are the global variables, which define the displacement field of the first-order shear 

deformation theory,  ( )
3k x  is a piecewise linear zigzag function and 2  is the amplitude of the zigzag 

contribution into the longitudinal displacement. The zigzag functions can be fully defined in terms of their 

values at the interfaces,  k  for k = 0, …, n, with n the number of layers; 0  and n  are imposed to be zero 

at the top and bottom surfaces of the domain. The interfacial values of the zigzag functions are determined 

a priory without enforcing the continuity of the transverse shear tractions at the layer interfaces.  

 

Figure 2-5: Schematic illustration of the displacement field of the refined zigzag theory for a three-layer system: 

global model enriched by zigzag contribution. 

The refined zigzag theory requires only 0C -continuous shape functions for finite element 

implementation, and uses more kinematic variables compared to that of Di Sciuva’s zigzag theories. The 

refined zigzag theory is proved to be accurate in predicting displacements and stresses in highly anisotropic 

thick laminates and sandwiches with clamped boundaries [27, 76]. The extension of the refined zigzag 

theory to laminated shells is presented in [77]. In [78], a refined zigzag theory is formulated within the 

framework of Reissner’s mixed variational theorem, and the approximation of the transverse shear stresses 

is made a priori using Cauchy’s equilibrium equation and continuity conditions at the layer interfaces. The 

mixed model allows to accurately predict the transverse shear stress without using a posteriori integration 

procedure [78].  

2.3.3 Zigzag theories: imperfectly bonded layers 

All the aforementioned zigzag theories have been formulated for perfectly bonded laminated composite 

structures. In [74], the presence of a delamination has been modeled through the introduction of a very thin 

layer with negligible material stiffnesses. In [79-82], the presence of multiple zero-thickness imperfect 

interfaces has been incorporated into the displacement field of zigzag theories using Heaviside unit step 

functions, which allows discontinuity in the displacement field. The theories only account for the relative 
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sliding displacements of the adjacent layers and use the spring-layer model to describe the mechanical 

behavior of the interfaces; the law relates the interfacial shear tractions to the relative sliding displacements 

of the layers. The a priori imposition of the interfacial continuity conditions allows to define the 

displacement field in terms of the global variables only. In [83-85], displacement jumps across 

delaminations are considered as unknown variables and are added to the displacement field of a third order 

zigzag theory, to perform buckling and dynamic analysis on laminated plates and shells with delaminations; 

the number of variables in these theories depend on the number of delaminations and therefore, the theories 

become computationally expensive for structures with multiple delaminations.  

The refined zigzag theory have been used in [86-89] to model delamination fracture in laminated 

composite structures. In these theories, delaminations are represented by very thin layers and the nonlinear 

deformations at the vicinity of the delaminations are modeled through continuum damage mechanics. The 

applications have been restricted to delamination problems under mode II loading, since the theories neglect 

the transverse normal strain and compressibility/extensibility of the layers. 

A multiscale structural model, based on the Di Sciuva’s zigzag theory [62, 63], has been formulated in 

[11, 25] for laminated composite plates with mixed mode cohesive interfaces and delaminations subjected 

to dynamically applied loads, by reconsidering the original idea of theories in [80-82]. The model follows 

the approach proposed in [90] to account for interfacial relative opening displacements and couples a first 

order shear and first order normal deformation theory [58] (coarse-grained model), which defines the global 

fields, to a discrete layer cohesive crack theory (detailed small-scale model), which describes the local 

fields. Piecewise linear interfacial laws, which relate the interfacial tractions to the interfacial relative 

displacements, are used to approximate nonlinear cohesive traction laws and to represent all nonlinear 

mechanisms taking place at the interfaces, e.g. brittle, cohesive and bridging fracture and contact. A 

homogenization technique, which imposes continuity of the tractions at the layer interfaces and the cohesive 

traction laws, is then applied to define the local variables as functions of the global ones. The model then 

removes the need for the through-thickness discretization of conventional discrete layer cohesive crack 

models; the number of unknown functions in the model is independent of the number of layers, cohesive 

interfaces and delaminations, and is equal to that of the global model. The model was proven to be accurate 

in predicting the local and global fields in layered plates with continuous, imperfect and fully debonded 

interfaces and subjected to stationary thermo-mechanical loads [7, 11, 25, 26] and was used in [91] to study 

propagation of plane strain harmonic waves in multilayered plates with imperfect interfaces. In [26], the 

multiscale structural model was applied to a delaminated cantilever homogeneous wide plate subjected to 

concentrated end load, to preliminary assess the applicability of the model to study delamination fracture 

problems.  

2.3.4 Homogenized structural theory ([25]) 

In this section, the homogenized structural theory in [25] is briefly presented for wide plates with mixed 

mode cohesive interfaces and delaminations subjected to static loads; the theory in [25] has been formulated 

for wide plates subjected to dynamically applied loads. The simplified version of the model for plates with 
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sliding only interfaces, which will be used in Chapter 4 to study mode II dominant delamination problems 

in bi-material wide plates, is also presented. 

Figure 2-6(a) depicts a portion of a rectangular multilayered plate with global thickness h, in-plane 

dimensions L1 and L2 = L with L1 >> L2, and 1 2 3 x x x  a system of Cartesian coordinates with origin at 

the left edge. The plane 3 0x  defines the reference surface of the plate, S .The plate is composed of n 

linearly elastic, homogenous and orthotropic layers with principal material axes parallel to the geometrical 

axes, and is subjected to distributed loads, which are independent of 1x , acting on the upper and lower and 

lateral bounding surfaces, S , S  and B. The plate deforms in cylindrical bending parallel to the plane 

2 3x x . The layers are joined by 1n  interfaces, which are zero-thickness mathematical surfaces where 

material properties and displacements may be discontinuous while interfacial tractions are continuous. The 

layer k, with k = 1, … n numbered from bottom to top, is defined by 1
3
kx  and 3

kx , the coordinates of its 

lower and upper surfaces, ( )  kS  and ( )  kS , and has thickness ( )k h  (the superscript (k) on the left of a 

quantity shows association with the layer k, while the superscript k on the right identifies the interface 

between layers k and 1k ). Under these assumptions, the displacement components in each layer simplify 

as ( )
1 0k v  , ( ) ( )

2 2 2 3( , )k kv v x x  and ( ) ( )
3 2 3( , )k kv w x x  where ( )k

iv  is the displacement component in the 

layer k in ix  direction and i = 1, 2, 3. 

 

 
Figure 2-6: (a) Laminated composite plate with multiple delaminations and cohesive interfaces. (b) Exemplary 

piecewise linear cohesive traction law. 

The constitutive equations for the layer k are those of the 3D elasticity, particularized to plane-strain 

conditions: 
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with ( )k
ij

 and ( )k
ij  the stress and strain components, and ( )k

ijC  are the coefficients of the stiffness matrix 

in engineering notation. 

The mechanical behavior of the interfaces is described through the interfacial traction laws which relate 

the interfacial tractions, acting along the surface of the layer k at the interface with unit positive normal 

vector, ( )  kS , 

   
   

( )
23 2 23 2 3 3

( )
33 2 33 2 3 3

ˆ ˆ ,

ˆ ˆ ,

  

  

  

  

k k k k
S

k k k k
N

x x x x

x x x x
 

(2-6) 

to the interfacial relative sliding and opening displacements: 

( 1) ( )
2 2 2 2 3 3 2 2 3 3

( 1) ( )
2 2 3 3 2 3 3

ˆ ( ) ( , ) ( , )

ˆ ( ) ( , ) ( , )

k k k k k

k k k k k

v x v x x x v x x x

w x w x x x w x x x





   

   
 

(2-7) 

Generally nonlinear traction laws can be approximated as piecewise linear functions so that an arbitrary 

piece of the law is defined by the affine function (Figure 2-6(b)) [25]: 

   
2 2 2 2 2

2 2 2 2 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

 

 

   

   

                  

               

k k k k k k k k
S S S N N N

k k k k k k k k
S S S N N N

x K v x t x K w x t

v x B x t w x B x t
 

(2-8) 

with k
SK , k

NK  and k
SB , k

NB  the interfacial tangential and normal stiffnesses and compliances, k
St  and k

Nt  

constant tractions. The interfacial traction laws in Eq. (2-8) assume no coupling between in-plane and out 

of plane behavior.  

 Purely elastic interfaces which can represent an adhesive layer, are modeled by a single branch with 

0 k k
S Nt t . Perfectly bonded interfaces are described by 0 k k

S Nt t  and 0 k k
S NB B  which result in 

2 2ˆ ˆ 0 k kv w . Fully debonded interfaces are modeled by 0 k k
S Nt t  and 0 k k

S NK K  which result in 

ˆ ˆ 0  k k
S N . For k

St , 0k
Nt  and 0 k k

S NK K , the law could represent plastic deformations of the 

interlayer. The model is presented here for an arbitrary branch of the interfacial traction law, (2-8), which 

provides the essential tools for solving plates with nonlinear cohesive interfaces.  

Homogenized displacements, strain and stress components ([25]) 

The following two length scales displacement field is assumed in the layer k, which is a superposition of 

the first order shear and first order normal deformation theory (coarse-grained model) and local 

perturbations (small-scale model) [25]: 
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1 1
( )

2 2 3 02 2 3 2 2 2 2 3 3 2 2
1 1

1 1
( )

2 3 0 2 3 3 2 3 2 3 3 2
1 1

ˆ( , ) ( ) ( ) ( )( ) ( )

ˆ( , ) ( ) ( ) ( )( ) ( )
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

 

 

 

 

     
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 

 

k k
k i i i

i i

k k
k i i i

i i

v x x v x x x x x x v x

w x x w x x x x x x w x

 
(2-9) 

The global variables, 02 2( )v x ,  2 2( ) x  and 0 2( )w x , define the displacement field of the first-order shear 

deformation theory, which is continuous with continuous first derivative in the thickness direction; when 

the reference surface 3 0x  is placed at the mid-thickness of the first layer, the global variables then define 

the displacement components of points on the reference surface and the rotations of its normal axes; 3 2( ) x  

is the constant strain in the transverse direction, which is needed to capture, in the simplest way possible, 

the effect of the transverse normal compressibility/extensibility and to model opening or elastic contact 

along the delaminations. The third and fourth terms on the right hand side of Eq. (2-9) are the local variables 

and account for the zigzag contribution due to the inhomogeneous material structure through the zigzag 

functions 
1

2 2 3 3
1

( )( )




 
k

i i

i

x x x  and 
1

3 2 3 3
1

( )( )




 
k

i i

i

x x x , and the interfacial sliding and opening jumps due 

to the cohesive interface through 
1

2 2
1

ˆ ( )




k

i

i

v x  and 
1

2
1

ˆ ( )




k

i

i

w x . 

The strain components are derived from the displacement field in Eq. (2-9) through the linear strain-

displacement relationships: 

1 1
( )

22 02 2 3 2 2 2 2 3 3 2 2
1 1

1 1
( )

23 0 2 3 3 2 3 2 3 3 2 2
1 1

1
( )

33 3 3
1

ˆ, , , ( ) ,

ˆ2 , , , ( ) ,

 

 

 

 

 

 

 





     

        

  

 

 



k k
k i i i

i i

k k
k i i i i

i i

k
k i

i

v x x x v

w x x x w  
(2-10) 

The stress components are derived by substituting the strain components from Eq. (2-10) into the 

constitutive equations (2-1). The  2 1n   zigzag functions 2 k  and 3 k  for k = 1, …, 1n  are then 

derived by imposing continuity of shear and normal tractions at the layer interfaces, which yields [25]: 

   
   

( ) ( 1)
23 3 23 3

( ) ( 1)
33 3 33 3

 

 









k k k k

k k k k

x x

x x
 

(2-11) 

for k = 1, …, 1n . The presence of the zigzag functions in both algebraic and differential forms in Eq. 

(2-10) complicates the derivation of the zigzag functions. Following [90], for the purpose of determining 

3 k  only, it is assumed that the effect of 22  on 33  in Eq. (2-1) is negligible with respect to that of 33 . 

Under this assumption, the following forms are derived for the zigzag functions of the layer k [25]: 
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         

 

1
1; ;1 1

2 0 2 2 3 3 2 22 3 2 22 3 3 33 2
2 1

3 33 3
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k l

k l k jk l l k

l j

kk

w x x x w
 

(2-12) 

where: 

 

 

( 1) ( )
(1) 33 33

33 33 ( 1) ( )
33 33

i; ( )
22 55 ( 1) ( )

44 44

1 1


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


  

 
   

 

k k
k

k k

j i
j j

C C
C

C C

C
C C

 
(2-13) 

Once the zigzag functions 2 k  and 3 k  for k = 1, …, 1n  have been defined, the interfacial relative 

displacements at each cohesive interface are derived in terms of the global variables through the interfacial 

constitutive laws in Eq. (2-8), through Eqs. (2-1), (2-6), (2-10) and (2-12). The expressions for the 

displacement jumps for kth interface are: 

  

 2 2 0 2 22 3 2 22

3 33

ˆ , ,

ˆ

 



     

  

k k k k k
S S

k k k k
N N

v w B t

w B t
 

(2-14) 

where 

 
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
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



 
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 
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 
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 



  
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jk k k

S
j

jk l
j j l i ik k k k k j l l

S
j l i

k
jk k k

N
j

C B

C B x x x x x x

C B

 
(2-15) 

Substituting the small-scale variables from Eqs. (2-12) and (2-14) into Eq. (2-9) yields the homogenized 

displacement field, which is defined only in terms of the global variables, 02v , 2 , 0w  and 3  [25]: 

 

 

1
( )

2 02 2 3 2 0 2 22 3 2 22
1

1 1
( ) ( )

0 3 3 33 3 3 33
1 1

, ,  







 

 

     

           



 

k
k k k i i

S N S S
i

k k
k i i i i i

N N
i i

v v x w R R B t

w w x x x B t

 
(2-16) 

with 
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 
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(2-17) 

The longitudinal and transverse displacements in Eq. (2-16) are piecewise linear through the thickness and 

discontinuous at the imperfect interfaces. 

The strain components in the layer k are derived from the homogenized displacement field in Eq. (2-16) 

through the linear strain-displacement relationships: 

 
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(2-18) 

The axial and transverse shear strains in Eq. (2-18) are piecewise linear through the thickness and 

discontinuous at the interfaces, while the transverse normal strain is piecewise constant through the 

thickness.  

The stress components in the layers are derived by substituting the strain components from Eq. (2-18) 

into the constitutive equations (2-1). The bending and transverse normal stresses are piecewise linear 

through the thickness and discontinuous at the interfaces, whereas the transverse shear stress is piecewise 

linear through the thickness and continuous at the interfaces. Discontinuity of the transverse normal stresses 

at the interfaces are due to neglecting the effect of 22  on 33  for determining 3 k . 

The interfacial tractions in terms of the global variable are: 

 2 0 2 22 3 2 22

33 3

ˆ , ,
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S S

k k k
N N

K w

K
 

(2-19) 

Homogenized equilibrium equations and boundary conditions ([25]) 

The homogenized equilibrium equations and boundary conditions are derived using the Principle of Virtual 

Works [25]: 
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(2-20) 
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where   is the volume of the plate. 


i
SF , 



i
SF  and B

iF  with i = 2, 3 are the components of the tractions 

acting along the boundary surfaces of the plate, S , S  and B. The   symbol is the variational operator 

and the virtual displacements are independent and arbitrary. The second and third terms on the left hand 

side of Eq. (2-20) define energy contributions due to the interfacial tractions on the interfaces. 

Virtual strains and displacements are defined in terms of the global variables through Eqs. (2-14), (2-16) 

and (2-18), and are substituted in Eq. (2-20). Applying Green’s theorem wherever possible, Eq. (2-20) 

yields the equilibrium equations and boundary conditions. 

The equilibrium equations conditions are presented here in a form similar to that of the first order shear 

and first order normal deformation theory [58]: 

02 :v 22 2 2, 0 N f  

2 :
22 2 2 2, 0  b

g mM Q f  

0 :w 2 2 3, 0 gQ f  

3 : 3 3 2 3, 0  g g mV M f   

(2-21) 

The stress resultants and loading terms in Eq. (2-21) are: 

 normal force and bending moment: 
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(2-22) 

 generalized transverse shear force: 

2 2 2 22 2 2ˆ,    b z zS
gQ Q Q M   

(2-23) 

 transverse shear force: 
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(2-24) 

 higher order stress resultants due to the transverse normal stress: 
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 stress resultants, load and load couples associated to the multilayered structure and cohesive 

interfaces: 
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 loading terms 
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The generalized transverse shear force, 2 gQ  in Eq. (2-23), has additional contributions to 2
bQ  , which 

are due to the discontinuities of material properties, 22 2,  zS zM Q  , and displacements at the interface, 22 2ˆ,  zSM 

. The introduction of 2 gQ  is physically important since it is statically equivalent at any arbitrary section of 

the plate with outward normal  0, 1,0
T n , to the vertical equilibrant of the external forces acting on the 

portion of the plate to the right of the section. 

The homogenized boundary conditions at the plate edges are: 

22 2 2 N n N                            or         02 02 v v   

22 2 2 b bM n M                          or         2 2    

2 2 3 2 2 
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3 2 3 3 2 
g g mbcM n M f n          or         3 3    

22 2 2 zS zSM n M                         or         0 ,2 0 ,2 w w  

33 2 3 zS zSR n R                          or         3,2 3,2    

(2-28) 

with 2n  the component of the outward normal. The terms with the tilde define prescribed values of 

displacements, forces and couples at the plate edges: 
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(2-29) 

for j = 2, 3. Along a clamped support, where 2 0 2 3 2, , 0w    , Eq. (2-18) shows that the transverse 

shear strain and stress vanish and the model then neglects the shear deformations at a clamped end, similar 

to the original zigzag theory for fully bonded plates in [62, 63].  
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The importance of the introduction of the generalized shear force, 2 gQ ,was demonstrated in [26], where 

some of the previously observed anomalies in the original zigzag theory [62, 63] at the clamped supports, 

were clarified. In [27], the original zigzag theory [62, 63] was used to study a multilayered cantilever beam 

subjected to a concentrated force at the free end and it was found that the shear force increases from zero 

at the clamped end, due to vanishing shear strain and stress, to a value higher than the applied load. This 

apparent inconsistency is explained by Eqs. (2-21), (2-23) and (2-28), which demonstrate that the 

generalized shear force defined in Eq. (2-23), is constant, due to the linear distribution of the bending 

moment, and equals the applied force at any cross section of the beam including the clamped end [26]. 

The equilibrium equations (2-21) and boundary conditions (2-28) can be defined in terms of the 

displacements through Eqs. (2-1), (2-14), (2-18) and (2-19). 

Displacement field, equilibrium equations and boundary conditions for plates with sliding interfaces 

([25]) 

The displacement field in Eq. (2-9), the equilibrium equations (2-21) and boundary conditions (2-28) are 

presented here for plate with interfaces which are rigid against mode I (opening) relative displacements, 

0k
NB  , so that ˆ 0kw   for k = 1, …, 1n . The assumption of sliding only interfaces is exact for interfaces 

under pure mode II loading, e.g. a single interface in a plate with symmetric layup subjected to anti-

symmetric loading about the interface plane. The assumption is acceptable for plates with continuous 

interfaces, when the interfacial normal tractions are small compared to the tangential tractions and 

interfacial opening is prevented by a through-thickness reinforcements or other means. The simplified 

version of the model for plates with sliding only interfaces, will be used in Chapter 4 to study mode II 

dominant delamination problems in bi-material wide plates. 

For plates with sliding only interfaces, the transverse compressibility/extensibility of the layers is 

neglected, 3 0   and 33 0  ; therefore, the transverse displacement in Eq. (2-9) becomes constant 

through the thickness,    ( )
2 0 2

k w x w x  for k = 1, …, n . In addition, the normal stress ( )
33k  is assumed 

to be negligible compared to the other stress components and the constitutive equation (2-1) modifies in 

( ) ( ) ( )
22 22 22 k k kC , with  ( )( )

22 22 23 32 33 kk C C C C C . 

The displacement field in Eq. (2-9), particularized to plates with sliding only interfaces is: 

1 1
( )

2 2 3 02 2 3 2 2 2 2 3 3 2 2
1 1

( )
2 3 0 2

ˆ( , ) ( ) ( ) ( )( ) ( )

( , ) ( )

k k
k i i i

i i

k

v x x v x x x x x x v x

w x x w x


 

 

     



 
 

(2-30) 

where 2
i  and 2ˆ

iv  are defined in Eqs. (2-12) and (2-14) with 3 ˆ 0kw   . The homogenized displacement 

field in Eq. (2-16), particularized to plates with sliding only interfaces is: 
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 
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    




 

(2-31) 

where 22
k
SR  is given in Eq. (2-17). 

The equilibrium equations in terms of displacement for plates with sliding only interfaces are [25]: 

0 1 0 0
22 02 22 22 22 2 22 22 0 222 2

1 0 2 1 2 1 2
22 22 02 22 22 22 22 2 22 22 22 0 222

44 44 22 0 2 2 22 2

0 1 2 2
22 02 222 22 22 2 222 22 0 2222 44 44 2

, ( ) , , 0

( ) , ( 2 ) , ( ) ,

[ ]( , ) 0

, ( ) , , [









    

     

     

    

S S

S S S S S

P S C
m

S S S S P

C v C C C w f

C C v C C C C C w

k C C w C f

C v C C C w k C C 2 0 22 2 2 3]( , , ) 0  S w f

  
(2-32) 

where the coefficients, 22
rC , 22

rSC , 2
22
SC , 44

PC , 22
SC  and 22

CC  for r = 0, 1, 2,  can be calculated a priori, depend 

on the geometry, the layup and the status of the interfaces: 

 

 

3 3

1 1
3 3

3 3

1 1
3 3

( ) ( )
22 22 3 3 22 22 3 22 3

1 1

22 ( ) 2 ( )
22 22 22 3 44 44 22 3 3

1 1

1 2

22 22
1

( )          ( )

( )      1 ,
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 

 

 




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  
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  
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

k k

k k

k k

k k

n nx xr k r rS k r k
Sx x

k k

n nx xS k k P k k
S Sx x

k k
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S k k

S
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C C x dx C C x R dx

C C R dx C C R dx

C K
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22 22
1
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 
n

C k k
S

k

C t

  
(2-33) 

A shear correction factor, 44k , has been introduced in Eq. (2-32) to improve the approximate description 

of the shear [25]. The correction factor is defined, following the classical approach used in the first order 

theories, as    44 2 2 44 2 0 2,    
b z pk Q Q C w . The introduction of the shear correction factor has some 

advantages. It allows to recover the constitutive equations of the equivalent single layer first order shear 

deformation theory in the limiting case of a fully bonded and homogeneous plate, for which 44 5 6k   is 

required. Also, in a plate with imperfect interfaces, where the transverse shear strains and stresses in the 

layers will progressively reduce on decreasing the interfacial stiffness, as it can be understood from Eqs. 

(2-8), (2-18) and (2-19),  the shear correction factor may be used to account for the missing contribution of 

the shear deformations in the equilibrium equations of the model [25]. In general, the shear correction factor 

is a problem dependent parameter and depends on the stacking sequence, geometry, material and interfacial 

properties and loading conditions. If the shear correction factor is not needed, for instance in bending 

problem of fully bonded multilayered plates subjected to static loadings, the shear correction factor should 

be equal to 1. 

The boundary conditions (2-28) for plates with sliding only interfaces simplify as: 
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22 2 2 N n N                            or         02 02 v v   

22 2 2 b bM n M                          or         2 2    

2 2 3 2 2 
g mbcQ n N f n             or         0 0 w w  

22 2 2 zS zSM n M                         or         0 ,2 0 ,2 w w  

(2-34) 
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3 A MATRIX TECHNIQUE FOR THERMO-ELASTIC ANALYSIS OF 

MULTILAYERED STRUCTURES  

3.1 INTRODUCTION 

In this chapter a matrix technique is formulated aimed at efficiently obtaining exact solutions for thermo-

mechanical problems in simply supported multilayered plates and beams with an arbitrary number of 

imperfectly bonded layers in imperfect thermal contact, and subjected to stationary sinusoidal thermo-

mechanical loading. The technique is based on the theoretical formulation developed in [7], which uses a 

classical displacement approach, and on the transfer matrix method formulated in [51]. The model in [7] 

follows the models formulated in [6, 29, 37] for fully bonded layers and perfect thermal contact. Imperfect 

interfaces, which are zero-thickness mathematical surfaces where interfacial tractions and heat flux are 

continuous while displacements and temperature may be discontinuous, are introduced in the model in [7] 

to account for the presence of damage regions, delaminations or thin interlayers, e.g. adhesives. 

The applications of matrix techniques in elasticity problems of simply supported multilayered plates 

subjected to mechanical and/or thermal loadings can be found in [12-18], where the solutions are derived 

and presented only in the matrix form, can be obtained through many matrix multiplications and no explicit 

expression is given for the field variables; therefore, the solution remains quite complex. Moreover, none 

of them consider the presence of thermally imperfect interfaces. 

Novel explicit expressions are derived for two-dimensional and three-dimensional problems. The 

expressions can be used to solve problems with load distributions other than sinusoidal using Fourier series 

and the principle of superposition. The expressions are applicable to the limiting cases of perfectly bonded 

layers in perfect thermal contact and fully debonded layers or impermeable interfaces. For purely 

mechanical loading and plates with orthotropic layers, the explicit expressions derived in this chapter 

coincide with the expanded forms of the matrix expressions in [12]; the solution presented here is applicable 

also to plates containing isotropic layers. Different applications to composite laminates and sandwiches are 

also presented; the influence of interfacial imperfections and length-to-thickness ratio on local fields is 

highlighted. 

In Sect. 3.2, the two-dimensional problem is solved. In Sect. 3.3, closed-form and explicit expressions 

are derived for plates with finite dimensions. The conclusions are presented in Sect. 3.4.  

3.2 CLOSED-FORM 2D THERMO-ELASTICITY SOLUTIONS FOR MULTILAYERED WIDE PLATES 

WITH IMPERFECT INTERFACES AND IMPERFECT THERMAL CONTACT 

The multilayered plate illustrated in Figure 3-1 is assumed to be under plane conditions parallel to the plane 

2 3x x , with 1 2 3 x x x  a system of Cartesian coordinates with origin at the left edge. The plate is simply 
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supported at 2 0,x L , has global thickness h and is composed of n layers. The kth layer, with k = 1, … n 

numbered from bottom to top, is defined by the coordinates of its lower and upper surfaces, 1
3
kx  and 3

kx , 

and has thickness ( )k h  (the superscript (k) on the left of a quantity shows association with the layer k, while 

the superscript k on the right identifies the interface between layers k and k+1). The plate is subjected to 

thermo-mechanical loadings:  3 2 3 3,  nf x x x  2sinuf px  and  0
3 2 3 3,  f x x x  2sinlf px are 

normal surface tractions acting on the upper and lower surfaces, and  2 3 3,  nT x x x  2sinuT px  and 

 0
2 3 3,  T x x x  2sinlT px  are applied temperatures, with p m L  and m . 

 

 

Figure 3-1: Simply supported multilayered plate subjected to thermo-mechanical loadings. Surface tractions 

correspond to the case p L ,  1m . 

The layers are linearly elastic, homogenous and orthotropic with principal material axes parallel to the 

geometrical axes. Coupling between elastic deformations and heat transfer is neglected and the thermal 

conditions are assumed to be stationary. For plane-strain conditions, the constitutive equations of a generic 

layer k are: 

 

 

( ) ( ) ( )

22 22 2 12 1
( )

33 33 3 13 1

23 23

( )

22 23
( )

23 33

55

   

2 0

0

0

0 0

   
   
 

     
            
     
     

 
   
  

k k k

k

k

k

T C T

C T C T

C C

C C C

C

 (3-1) 

where 
( ) k

ij
( )

2 3( , )k
ij x x  and 

( ) k
ij

( )
2 3( , )k

ij x x  (for i, j = 2, 3) are Cauchy stress and linear strain 

components, 
( )k

ijC  (for i, j = 1, 2, 3, 5) are stiffness coefficients, 
( )k

i  are coefficients of thermal expansion 

along the ix  direction and ( ) ( )
2 3( , )k kT T x x  is the temperature increment in the layer k. The constitutive 
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equations for plane-stress conditions can be obtained by replacing 
( )k

ijC  for i, j =  2, 3 and ( )
1

k   in Eq. 

(3-1) with 
( ) ( ) ( ) ( )

1 1 11
k k k k

ij i jC C C C  and 0, respectively. 

The displacement components in the layer k are ( )k
iv  with i = 2, 3. The layers are joined by interfaces, 

which are zero-thickness mathematical surfaces where material properties, displacements and temperature 

may be discontinuous while interfacial tractions and heat flux are continuous. The interfaces are introduced 

to account for the presence of damage regions, delaminations or thin interlayers, e.g. adhesives [7]. In this 

work, the constitutive equations of the interfaces are defined by linear uncoupled traction laws which relate 

the interfacial tractions to the relative displacements of the adjacent layers: 

2 2 2 2 3 3

3 2 3 2 3 3

ˆ ˆ( )  ( , )

ˆ ˆ( )  ( , )

k k k k
S

k k k k
N

x K v x x x

x K v x x x





 

 
 (3-2) 

where 2̂
k  and 3̂

k  are the interfacial tangential and normal tractions acting on the upper surface of the layer 

k with unit positive normal vector, k
SK and k

NK  are tangential and normal stiffnesses and 2ˆ
kv  and 3ˆ

kv  are 

the relative displacements between the layers k and k + 1 at the interface: 

( 1) ( )
2 2 3 3 2 3 3ˆ ( ) ( , ) ( , )k k k k k

i i iv x v x x x v x x x     (3-3) 

with ( )k
iv  the displacement component in the layer k and i = 2, 3. The limiting case of a perfectly bonded 

interface is described by 1 1 0k k
S NK K  , which leads to a continuous displacement field with 

2 3ˆ ˆ 0 k kv v ; an interface which allows free sliding displacements in constrained contact is defined by 

1 0k
NK  and 0k

SK , which yield 2ˆ 0 k  and 3ˆ 0kv . 

The thermal behavior of the interfaces is described in this work by a thermal resistance, kR , which is 

independent of the interfacial displacements and controls the heat flux and the temperature at the interface 

[47]. The jump in temperature between layers k and k + 1 is related to the heat flux through the interface 

through the interfacial thermal resistance:  

( ) ( 1) ( )
3 2 3 3 2 3 3 2 3 3( , )  [ ( , ) ( , )]     k k k k k k kq x x x R T x x x T x x x  (3-4) 

where ( ) ( ) ( )
3 2 3 3 3 2 3 3 3( , ) ( , ),k k k k kq x x x K T x x x     is the heat flux in the layer k at 3 3

kx x , and ( )k
iK  is 

its thermal conductivity in the ix  direction. Here and throughout the derivation, a comma followed by a 

subscript denotes a partial derivative with respect to the corresponding coordinate. The limiting case 

corresponding to perfect thermal contact, where the temperature is continuous across the interface is 

described by 0kR , and an impermeable interface, where the heat flux through the interface vanishes, by 

a vanishing thermal conductance 1 0kR . 
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3.2.1 Heat conduction and thermo-elastic problems 

In this section, heat conduction and equilibrium equations are presented for a generic layer k along with the 

associated thermal and mechanical boundary and continuity conditions. The two-dimensional steady-state 

heat conduction equation, in the absence of internal heat generation, for the layer k is given by: 

2 ( ) 2 ( )( )
2 3 2 32

( ) 2 2
3 2 3

( , ) ( , )
0

 
 

 

k kk

k

T x x T x xK

K x x
 (3-5) 

where ( )k
iK  is the thermal conductivity of the layer k in the ix  direction. The solution of the heat conduction 

equation must satisfy the continuity conditions at the layer interfaces, also accounting for the interfacial 

thermal laws Eq. (3-4) 

( )
( ) ( 1)3

2 3 3 2 3 3( 1)
3

( 1) ( ) ( )
2 3 2 3 3 2 3

( , ), ( , ),

( , ) ( , ) ( , )








  

k
k k k k

k

k k k k k k k

K
T x x T x x

K

T x x T x x q x x R

 (3-6) 

for k = 1, …, 1n , and the boundary conditions at the upper and lower surfaces of the plate and at the 

plate edges: 

( )
2 3 3 2

(1) 0
2 3 3 2

( )
2 3

( , ) sin( )

( , ) sin( )

( 0 and , ) 0, for  = 1, ..., 

 

 

 

n n
u

l

k

T x x x T px

T x x x T px

T x L x k n

 (3-7) 

The two-dimensional equilibrium equations for the layer k, in the absence of body forces, are: 

( ) ( )
22 2 32 3

( ) ( )
33 3 23 2

, , 0

, , 0

 

 

 

 

k k

k k
 (3-8) 

and the compatibility equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
22 2 2 33 3 3 23 2 3 3 2, ; , ;   2 , ,     k k k k k k kv v v v  (3-9) 

Using the constitutive and compatibility equations, (3-1) and (3-9), the equilibrium equations are restated 

in terms of displacement variables, ( )
2

k v   and ( )
3

k v : 

( ) ( ) ( ) ( ) ( ) ( )
22 2 22 23 55 3 23 55 2 33

( ) ( )
12 1 22 2 23 3 2

( ) ( ) ( ) ( ) ( ) ( )
33 3 33 23 55 2 23 55 3 22

( ) ( )
13 1 23 2 33 3

, ( ) , ,

                      ( ) ,

, ( ) , ,

                      ( )

  

  

  

  

  

  

k k k k k k

k k

k k k k k k

k k

C v C C v C v

C C C T

C v C C v C v

C C C T 3,

 (3-10) 
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The continuity conditions on interfacial tractions and relative displacements, also accounting for the 

interfacial tractions laws Eqs. (3-2), are expressed in terms of stresses in the layers as: 

( ) ( 1)
23 2 3 23 2 3

( ) ( 1)
33 2 3 33 2 3

( 1) ( ) ( )
2 2 3 2 2 3 23 2 3

( 1) ( ) ( )
3 2 3 3 2 3 33 2 3
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( , ) ( , ) ( , )

1
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




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






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k k k k

k k k k

k k k k k k
k
S

k k k k k k
k
N

x x x x

x x x x

v x x v x x x x
K

v x x v x x x x
K

 (3-11) 

for k = 1, …, 1n . The boundary conditions at the upper and lower surfaces of the plate and at the plate 

edges impose: 

( )
33 2 3 3 2

( )
23 2 3 3

(1) 0
33 2 3 3 2

(1) 0
23 2 3 3

( )
22 2 3

( )
3 2 3
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 (3-12) 

Following Buckingham’s Π theorem [92] and choosing as independent fundamental units (1)
2 , (1)

22C  

and h , the equations (3-5)-(3-12) can be defined in dimensionless forms to highlight self-similar behaviors 

and the dimensionless groups which control the response of the plate. This is done by first defining the 

dimensionless forms of all quantities. The dimensionless temperature in the layer k, for instance, is given 

by (1) ( )
2 k T ; and the dimensionless forms of ix , iv  and k

SK  are ix h , iv h  and (1)
22/k

SK h C . The thermal 

conductivities always appear through the dimensionless group ( ) ( )/k k
i jK K , due to the assumption of 

stationary conditions, and heat flux and thermal resistance through the group ( )
3 2 3( , )k k kq x x R , whose 

dimensionless form is (1) ( )
2 3 k kq R . The list of dimensionless quantities is given in Table 3-1. 
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Table 3-1: Dimensionless quantities (with (1)
2 , h  and (1)

22C  as fundamental units). 

Dimensional 

quantity/group 

Dimensionless 

quantity/group 

Dimensional 

quantity/group 

Dimensionless 

quantity/group 

( )k
ijC  ( ) (1)

22/k
ijC C  ( )

3
k kR q  (1) ( )

2 3 k kR q  

 ( ) ˆ, k k
ij i   ( )

(1)
22

1
ˆ, k k

ij iC
 ( )

3
k kR K  ( )

3
k kR K h  

( )k
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2 k
i   ,k k

S NK K   (1)
22

,k k
S N

h
K K

C
 

 3, ,k
ix x L   3

1
, ,k

ix x L
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  ( ) ( ) ( ), ,k k k
i i ijB D a   ( ) ( ) ( )1
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i i ijB D a
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( )k T  
(1) ( )

2 k T  
( )k

j  
2 ( )k

jh  

 f  (1)
22f C  ( )

0
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22 01 kC A  

 ( ) ( )
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kh C A  
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jh s m t p  ( )
2

k A   22 (1) ( )
22 2
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 ( ) ( ) ( )ˆ, , ,k k k k
i iv v V W   ( ) ( ) ( )1

ˆ, , ,k k k k
i iv v V W

h
 ( )k   4(1) ( )

22 kh C  

 

Equation (3-10), for instance, is dimensionalized by multiplying both sides by (1)
22h C  so that: 
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k kk
k k k

k
k

C C CC
h v h v h v

C C C

C C C
h T

C

 (3-13) 

Comparing Eqs. (3-13) and (3-10) shows that Eq. (3-10) can be interpreted as a dimensionless equation 

provided its terms are interpreted as their respective dimensionless forms in Table 3-1. The formulation of 

the problem in the remaining of the chapter can be used, similarly, in dimensional or dimensionless form. 

3.2.2 Solution of the heat conduction problem through the transfer matrix method 

The general solution of the heat conduction equation (3-5) in layer k, which satisfies the thermal boundary 

conditions at the plate edges, Eq. (3-7), is obtained using the method of separation of variables [7] 

( ) ( )
2 3 3 2( , ) ( ) sin( )k kT x x F x px  (3-14) 
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with: 

( ) ( )( ) ( ) ( )3 3
3 1 2

( )
( ) 2

( )
3

( ) ( )

,    


 

 

k ksx sxk k k

k
k

k

F x c e c e

K m
s p p

K L

 (3-15) 

where ( )
1

k c  and ( )
2

k c  are integration constants (dimensionless forms in Table 3-1). Equation (3-14) and the 

thermal continuity and boundary conditions, Eqs. (3-6) and (3-7), yield an algebraic system of 2×n coupled 

equations in the 2×n unknown constants ( )
1

k c  and ( )
2

k c , for k = 1, …, n.  

The transfer matrix method is used here for an efficient closed-form derivation of the unknowns. The 

method first derives explicit expressions which relate the unknowns in layer k to those of the first layer; 

then defines the two unknowns, (1)
1c  and (1)

2c , through the boundary conditions at the top and bottom 

surfaces of the laminate.  

The matrix forms of the temperature distribution in the layer k, Eqs. (3-14) and (3-15), and its gradient 

in the 3x  direction, ( )
2 3 3( , ),k T x x , are: 

( )

2 3 ( )
3 2

2 3 3

( , )
( ) sin( )

( , ),

 
 

 

k

kT x x
G x px

T x x
 (3-16) 

where: 

( )

1( ) ( )
3 3

2

( ) ( )
 

  
 

k

k k c
G x D x

c
 (3-17) 

( )
3 3

( )
3 3 3

( )




 
   

k sx sx
k

sx sx

e e
D x

se se
 (3-18) 

with ( )
3( )k D x  a 2×2 matrix whose elements depend on ( )k s  and 3x . In order to establish a relationship 

between ( )
1

k c  and ( )
2

k c , and the constants of the first layer, the 2×1 matrix ( )k G  is related to the matrix 

(1)G  of the first layer (Figure 3-2). The procedure necessitates two main relationships, namely the local 

transfer matrix, which relates the values of the matrix ( )k G  at the upper and lower surfaces of the layer, 

and the interfacial continuity conditions expressed in terms of matrix ( )k G . 
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Figure 3-2: Schematic of the Transfer Matrix Method. 

Local transfer matrix of a generic layer 

The vector  ( )

1 2,
k T

c c  is expressed as function of ( )k G  by setting 
1

3 3
 kx x  in Eq. (3-17): 

( )

1 ( ) 1 1 ( ) 1
3 3

2

( ) ( )   
 

 

k

k k k kc
D x G x

c
 (3-19) 

where the superscript 1 at the right of a matrix denotes its inverse. The local transfer matrix is then obtained 

by substituting Eq. (3-19) into Eq. (3-17) and setting 3 3 kx x : 

( ) ( ) ( ) 1 1 ( ) 1
3 3 3 3( ) ( ) ( ) ( )  k k k k k k k kG x D x D x G x  (3-20) 

where ( ) ( ) 1 1
3 3( ) ( )k k k kD x D x   is the local 2×2 transfer matrix which relates the values of ( )k G  calculated 

at the upper and lower surfaces of the layer. 

Continuity conditions and global transfer matrix 

The continuity conditions at the interface 1
3 3

kx x  , between the layer k and 1k , Eq. (3-6), are expressed 

in terms of matrix ( )k G  as: 

 ( ) 1 1 ( 1) 1
3 3

( 1) 1
1 3

( 1) ( )
3 3

( ) ( )

1

0 /

   

 






 
  
 

k k k k k

k k
k

k k

G x J G x

K R
J

K K

 (3-21) 

where the 2×2 interfacial transfer matrix 1kJ  depends on the interfacial thermal resistance and the thermal 

conductivities of the layers k  and 1k . Substitution of ( ) 1
3( )k kG x  from Eq. (3-21) into Eq. (3-20) gives 
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a relationship between the matrices G  of the layers k and 1k . The local transfer matrix of the layer 

1k  is then used to extend the previous relationship and further relate the matrix ( )k G  calculated at the 

upper surface of the layer k to that of the layer 1k  calculated at its lower surface (Figure 3-2). Repeating 

this procedure, an explicit relationship between ( )
3( )k kG x  and (1) 0

3( )G x  is derived: 

    
11( ) ( ) ( ) 1 1 (1) 0

3 3 3 3( ) ( ) ( ) ( )
  



 k k k i i i i i

i k

G x J J D x D x G x  (3-22) 

where the symbol  
1


 
i k

defines the product of the terms in brackets. The explicit relationships between 

( )
1

k c  and ( )
2

k c , and the constants of the first layer, are then obtained by substituting ( )
3( )k kG x  and (1) 0

3( )G x  

in Eq. (3-17) into Eq. (3-22): 

    
( ) (1)111 1( ) 1 ( ) ( ) 1 1 (1) 0

3 3 3 3
2 2

( ) ( ) ( ) ( )
  



   
   

   


k

k k k i i i i i

i k

c c
D x J J D x D x D x

c c
 (3-23) 

with k = 1, …, n. The boundary conditions are then applied to define the constants of the first layer. The 

condition at the bottom surface directly depends on (1)
1c  and (1)

2c  while the one at the top is restated in 

terms of (1)
1c  and (1)

2c  using Eq. (3-23) for k = n. Explicit expressions have been derived for (1)
1c  and (1)

2c

, through the procedure presented in the Appendix A: 

( )(1) 0
3 3 3

12 22
(1)

1 ( ) ( )(1) 023 3 3 3 3
11 21 12 22

(1) 0
(1) 3

(1) 1
2 (1) 0

3



 



   
 

        
   




n n nsx sx sx

u l

n nn n n nsx sx sx sx sx

sx

l

sx

T T e F e F e
c

F e F e e F e F e

T c e
c

e

 (3-24) 

with ( )n
ijF  given in the Appendix A, Eq. (A-2). The constants in the remaining layers are calculated using 

Eq. (3-23) or its expanded version: 

( ) ( ) (1) ( ) (1)
1 11 1 12 2

( ) ( ) (1) ( ) (1)
2 21 1 22 2

 

 

k k k

k k k

c F c F c

c F c F c
. (3-25) 

The temperature in the layers is then defined by Eqs. (3-14) and (3-15). 

3.2.3 Solution of the thermo-elastic problem through the transfer matrix method 

The displacement components in the layer k are obtained by summing particular and complementary 

solutions of the governing equilibrium equations (3-10), for i = 2, 3: 
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( ) ( ) ( )
2 3 2 3 2 3( , ) ( , ) ( , ) k k k

i ip icv x x v x x v x x  (3-26) 

In the absence of thermal loads, the particular solution is ( )
2 3( , ) 0k

ipv x x . 

Particular solution for layer k 

A particular solution of the equilibrium equations (3-10) for the layer k, with ( ) ( )
2 3( , )k kT T x x  prescribed 

by the previous solution of the heat conduction problem, which satisfies the edge boundary conditions in 

Eq. (3-12), is [7]: 

( ) ( )
3 3

( ) ( )
3 3

( ) ( ) ( )
2 2 3 1 2 2

( ) ( ) ( )
3 2 3 1 2 2

( , ) ( )cos( )

( , ) ( )sin( )





 

 

k k

k k

sx sxk k k
p

sx sxk k k
p

v x x B e B e px

v x x D e D e px
 (3-27) 

where ( )
1

k B , ( )
2

k B , ( )
1

k D  and ( )
2

k D  are unknown constants and ( )k s  is given in Eq. (3-15). Substituting 

(3-27) into (3-10), collecting the terms multiplying 
( )

3
k sxe  and 

( )
3 k sxe  and equating them to zero, result in 

four algebraic equations for the unknown constants, Eq. (B-1) in Appendix B. 

Complementary solution for layer k 

A solution of the complementary problem, which satisfies the boundary conditions at the plate edges in Eq. 

(3-12) is obtained using the separation of variables [7]: 

( ) ( )
2 2 3 3 2

( ) ( )
3 2 3 3 2

( , ) ( )cos( )

( , ) ( )sin( )





k k
c

k k
c

v x x V x px

v x x W x px
 (3-28) 

with: 

( )
3( ) ( ) ( ) ( )

3 3 0 0( ), ( ) ,      
k txk k k kV x W x V W e  (3-29) 

where ( )
0

k V  and ( )
0

k W  are unknown constants and ( )k t  is the root of the associated characteristic equation 

which is defined below. Substituting Eqs. (3-28) and (3-29) in the homogenous part of Eq. (3-10) results in 

the following system of algebraic equations: 

( ) 2 2
22 55 0 23 55 0

( ) 2 2
23 55 0 55 33 0

( ) ( ) 0

( ) ( ) 0

     

     

k

k

C p C t V C C ptW

C C ptV C p C t W
 (3-30) 

The non-trivial solution of the system is obtained by imposing the determinant of the coefficients to be 

zero. This yields the characteristic equation for the layer k: 
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( ) 2
0 1 2( ) 0   k A A A  (3-31) 

where: 

( ) ( ) 2

( ) ( )
0 33 55

( )( ) 2 2 2
1 23 55 22 33 55

( ) ( ) 4
2 22 55

( )

( )

( )

 



     


k k

k k

kk

k k

t

A C C

A C C C C C p

A C C p

 (3-32) 

The nature of the solution  ( )
( ) ( ) 2 ( )

1 02     
k

k k kt A A  is controlled by the discriminant 

( ) ( ) 2
1 0 2( 4 )  k k A A A . When ( )k  is positive, ( )

3( )k V x  and ( )
3( )k W x  are: 

2
( ) ( )

3 3
1

2
( ) ( ) ( )

3 3
1

( ) ( )

( ) ( )













k k
j

j

k k k
j j

j

V x V x

W x W x

 (3-33) 

with 

 

( ) ( ) ( ) ( ) ( )
3 1 3 2 3

( ) ( ) ( ) ( ) ( ) ( )
3 2 3 1 3

( )

23 55( )
2 2

33 55

( ) ( )

( ) ( ) ( )

( ) ( ) ( )






 

 

 
  

  



k k k k k
j j j j j

k k k k k k
j j j j j

k

jk
j

j

k k
j j

V x a X x a Y x

W x a X x a Y x

C C pm

C m C p

m

 (3-34) 

and 

( ) ( )
3 3

( ) ( )
3 3

( )

( ) cosh( )

( ) sinh( )

1

 
 




k k
j j

k k
j j

k

X x m x

Y x m x  if ( ) 0 k
j  

( ) ( )
3 3

( ) ( )
3 3

( )

( ) cos( )

( ) sin( )  

1

 
 


 

k k
j j

k k
j j

k

X x m x

Y x m x  if ( ) 0 k
j  

(3-35) 

The displacement components in each layer then depend on four unknown constants, ( )
11

k a , ( )
21

k a , ( )
12

k a  

and ( )
22

k a , which leads to a total of 4×n unknowns for the plate. Solutions for the cases of negative and zero 

discriminants are presented in matrix form in Appendix C. 
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In the classical approach, the unknowns are obtained by imposing continuity and boundary conditions, 

which lead to a system of 4×n coupled algebraic equations. Here the transfer matrix method is applied to 

first derive explicit relations between the unknowns of the generic layer and those of the first layer; the four 

unknown constants (1)
11a , (1)

21a , (1)
12a  and (1)

22a  are then defined through the application of the boundary 

conditions. 

From Eqs. (3-27), (3-33) and (3-34), the displacements of the layer k, are: 

( ) ( )
3 3

( ) ( )
3 3

( ) ( ) ( )
2 2 3 1 2

( ) ( ) ( ) ( ) ( )
3 11 12 21 11 2

( ) ( ) ( )
3 2 3 1 2

( ) ( ) ( ) ( ) ( )
3 11 12 21 11 2

( , )

( , , , , ) cos( )

( , )

( , , , , ) sin( )





  
 

  
 

k k

k k

sx sxk k k

k k k k k

sx sxk k k

k k k k k

v x x B e B e

V x a a a a px

v x x D e D e

W x a a a a px

 (3-36) 

where the constants ( )
1

k B , ( )
2

k B , ( )
1

k D  and ( )
2

k D   are defined in Appendix B. Normal and transverse shear 

stress components are derived from the equation above using constitutive and compatibility equations (3-1) 

and (3-9). Displacements and transverse stresses are then collected in the following matrix form: 

( )

2 2 3

3 2 3 ( )
2 3

33 2 3

23 2 3

( , )

( , )
( ) ( )

( , )

( , )




 
 
  
 
 
 

k

k

v x x

v x x
C x M x

x x

x x

 (3-37) 

where 2( )C x  and ( )
3( )k M x  are 4×4 and 4×1 matrices defined as follows: 

2

2
2

2

2

cos( ) 0 0 0

0 sin( ) 0 0
( )

0 0 sin( ) 0

0 0 0 cos( )

 
 
 
 
 
 

px

px
C x

px

px

 (3-38) 

 ( )( ) ( ) ( )
3 3 3 11 21 12 22( ) ( ) ( ) , , ,  k Tk k kM x Q x E x a a a a  (3-39) 

The 4×1 matrix ( )
3( )k Q x  is independent of the unknowns with elements: 
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 
 

   
  

   

( )( ) 3 3
1 3 1 2

( )( ) 3 3
2 3 1 2

( )
( ) 3 3 3 3

3 3 23 1 2 33 1 2

3 3
1 2 23 2 13 1 33 3

( )
( ) ( ) 3 3 3 3

4 3 55 1 2 1 2

( )

( )

( )

( )

  





 



 

 

 

     

   

     

k sx sxk

k sx sxk

k
sx sx sx sxk

sx sx

k
sx sx sx sxk k

Q x B e B e

Q x De D e

Q x C p B e B e C s De D e

c e c e C C C

Q x C s B e B e p De D e

 (3-40) 

The 4×4 matrix ( )
3( )k E x  is related to the complementary solution and depends on the sign of the 

discriminant. Expressions for ( )
3( )k E x  in the different cases are given in Appendix C. 

Local transfer matrix of a generic layer 

The local transfer matrix, which provides a relationship between the values of the matrix ( )k M  at the top 

and bottom surfaces of the layer is derived following what done for the heat condition problem 

( ) ( ) ( ) 1 1 ( ) 1 ( ) 1 ( )
3 3 3 3 3 3( ) ( ) ( ) ( ) ( ) ( )       

k k k k k k k k k k k kM x E x E x M x Q x Q x  (3-41) 

Continuity conditions and global transfer matrix 

The continuity conditions between the layer k  and 1k , Eq. (3-11), are written in matrix form: 

 ( ) 1 1 ( 1) 1
3 3( )  ( )   k k k k kM x B M x  (3-42) 

with the interfacial transfer matrix: 

1

1
1

1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1






 
 
 
 
 
  

k
S

k
k N

K

K
B  

(3-43) 

For perfect bonding of the layers 1 11 1 0  k k
S NK K  and B is the identity matrix. The procedure used 

for the solution of the heat conduction problem (Figure 3-2), is used to derive a relationship between 
( )

3 3( )k kM x x  and (1) 0
3 3( )M x x : 
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     

     

11( ) ( ) ( ) 1 1 (1) 0 (1) 0
3 3 3 3 3

( ) ( ) 1 1 1 ( 1) 1 ( ) 1
3 3 3 3

2

( )
3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 ( )

  



     

 


 




 






 

k k k i i i i i

i k

ik
j j j j j i i i i i

i j k

k k

M x B B E x E x M x Q x

B E x E x B Q x Q x

Q x

 (3-44) 

The explicit expressions relating the four unknown constants, ( )
11

k a , ( )
21

k a , ( )
12

k a  and ( )
22

k a  in Eq. (3-33), 

to those of the first layer are then derived substituting ( )
3( )k kM x  and (1) 0

3( )M x  defined by Eq. (3-41), into 

Eq. (3-44): 

    

     

( ) (1)

11 11

1121 21( ) 1 ( ) ( ) 1 1 (1) 0
3 3 3 3

12 12

22 22

( ) ( ) 1 1 1 ( 1) 1 ( ) 1
3 3 3 3

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  



     

 

   
          
   
   


 




 

k

k k k i i i i i

i k

ik
j j j j j i i i i i

i j k

a a

a a
E x B B E x E x E x

a a

a a

B E x E x B Q x Q x

 (3-45) 

for k = 2, …, n. For fully bonded layers, the matrix B = I in Eq. (3-45) can be omitted. The constants of the 

first layer may then be defined using the four boundary conditions (3-12) at the top and bottom surfaces of 

the laminate and Eq. (3-45) for k = n, which lead to an algebraic system of four equations. A different 

approach is presented in Appendix D, which avoids the derivation of the constants and provides explicit 

expressions of displacements and stresses directly: 

 

 

( )
2 2 3

4 4 4
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

1 3 1 3  3 3 1 3 2
1 1 1

( )
3 2 3

4 4
( ) ( ) ( ) (1) 0 (1) 0 ( )

2 3 2 3  3 3 2
1 1

( , )

( ) ( ) ( ) ( ) + ( ) cos( )

( , )

( ) ( ) ( ) ( ) (

  

 



  
    

  



  
      

  

 

k

k k k k k
r rl l l t t

l r t

k

k k k k
r rl l l t

l r

v x x

Q x P x M x Q x P x S px

v x x

Q x P x M x Q x P

 

4
( )

3 2
1

( )
33 2 3

4 4 4
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )
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(3-46) 
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The constants (1) 0
3( )lM x , ( )

 
k

rl  and ( )k
tS  are given in Eqs. (D-3) and (D-5) in the Appendix D; ( )

3( )k
lQ x  

and kB  in Eqs. (3-40) and (3-43); ( )
3( )k

ijE x  in Appendix C; ( )
2 3( , )k T x x  is defined in (3-14), (3-15), (3-24) 

and (3-25). 

For fully bonded layers, Eq. (3-47) modifies as: 

4
( ) ( ) ( ) 1

3 3 3
1

( ) ( ) ( )



k k k k
ir ij jr

j

P x E x E x  (3-48) 

3.2.4 Application to simply supported plates and sandwiches subjected to mechanical loading 

The explicit expressions derived above are easily applied to solve special problems. For purely mechanical 

loading, lT  = uT  = 0, and for purely thermal loading, lf  = uf  = 0. If the equations are used as 

dimensionless equations, using the notation in Table 3-1, parametric analyses can be performed and the 

results collected in tables and diagram to describe the response of a class of materials and interfacial 

imperfections. In this section, exact solutions for two simply supported cross-ply laminates and one 

sandwich plate under plane-strain conditions and subjected to sinusoidal transverse loading are presented. 

The results are given in tables using at least four digits in order to generate benchmark solutions with 

enough precision for verification of approximate structural theories. The dimensionless quantities are easily 

related to the dimensionless groups used in the derivation, e.g. 2 T uv E hf     (1) (1)
2 22 22u Tv h C f E C .  

The results are also presented in graph form, to highlight the important influence of the interfacial 

imperfections on stress and displacement fields. Dimensionless stresses and displacements are given for 

different length-to-thickness ratios and interfacial stiffnesses. In the examples, the interfaces have the same 

interfacial stiffnesses and three cases of perfect bonding, sliding interfaces in constrained contact and partial 

bonding are examined.  

In order to avoid interpenetration between the layers, the results presented for the cases with 1 0NK , 

are valid only for positive applied surface tractions. The model presented in the previous section and the 
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results are valid under the assumption of infinitesimal strains and displacements, which must be verified in 

each layer. The validity of this assumption and the range of values of the applied load for which the 

solutions in the tables are correct can be verified by using the maximum dimensionless transverse 

displacements and stresses given in the tables. 

Plate with 3-layers and a symmetric layup 

The first example is a simply supported anisotropic plate with three layers of equal thickness, symmetrically 

stacked and joined by two interfaces. The length and thickness of the plate are L and h, respectively, and 

the origin of the coordinate system is placed at mid-thickness of the left edge of the plate. The elastic 

constants of the layers are 17L TE E , 0.7LT TG E , 0.6TT TG E , 0.28 LT  and 0.4 TT  (subscripts 

L and T indicate in-plane principal material directions), and the stacking sequence of  0,90,0 . The 

assumed ratios between the elastic constants of the layers could represent a graphite-epoxy laminate. The 

plate is subjected to normally applied tractions  3 2sinuf f x L  acting on the upper surface . Results 

are presented in Table 3-2 for three length-to-thickness ratios equal to 4, 10, 20. The results are tabulated 

for perfectly bonded interfaces, 1 1 0 S NK K , sliding interfaces in constrained contact, 1 0NK  and 

0SK , and partial bonding with dimensionless interfacial stiffnesses 0.2S TK h E  and 0.5N TK h E  

(see Eq. (3-2) for the interfacial traction laws used in the model). The ratio between the interfacial normal 

and tangential stiffnesses for this latter case is 2.5 and could represent layers joined by thin elastic and 

isotropic adhesive interlayers. 
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Table 3-2: Simply supported three-layer plate  0,90,0  under plane-strain conditions: normal surface tractions 

 3 2sinuf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT  and 0.4 TT . Subscripts l and u correspond to values below and above the interface. 

T3-2-1: Perfect bonding: 1 0SK  and 1 0NK  

L

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 0.915 0.458 0.194 0.194 -0.118 -0.118 -0.414 -0.914 
10 12.21 7.710 3.718 3.718 -3.595 -3.595 -7.602 -12.12 
20 94.88 62.38 30.90 30.90 -30.67 -30.67 -62.16 -94.68 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 4.648 4.686 4.727 4.727 4.870 4.870 4.971 5.072 
10 92.67 92.88 93.02 93.02 93.16 93.16 93.16 93.09 
20 1268 1269 1269 1269 1269 1269 1269 1268 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -12.27 -6.111 -2.487 -0.040 0.387 1.872 5.913 12.66 
10 -65.52 -41.34 -19.84 -1.063 1.431 19.58 41.15 65.44 
20 -254.5 -167.3 -82.78 -4.766 5.138 82.58 167.1 254.4 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses a: 23 uf  at 2 0x   

4 0.682 1.164 1.495 1.709 1.708 1.686 1.665 1.485 1.174 0.696 
10 1.549 2.783 3.720 4.376 4.395 4.386 4.356 3.707 2.775 1.546 
20 3.043 5.515 7.426 8.784 8.830 8.825 8.774 7.419 5.510 3.040 

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6 -1/18 1/18 1/6 5/18 7/18 1/2 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.000 0.040 0.141 0.278 0.427 0.576 0.722 0.857 0.959 1.000 
10 0.000 0.036 0.133 0.271 0.424 0.577 0.730 0.867 0.964 1.000 
20 0.000 0.036 0.131 0.269 0.423 0.577 0.731 0.869 0.964 1.000 
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T3-2-2: Partial bonding:  0.2S TK h E  and 0.5N TK h E  ( 0uf ) 

L

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 2.079 0.208 -1.579 2.229 -1.875 1.864 -0.173 -2.308 
10 18.86 6.336 -5.772 12.20 -11.90 5.991 -6.233 -18.88 
20 110.6 59.11 8.559 50.18 -49.86 -8.286 -58.90 -110.5 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 16.51 16.57 16.58 17.33 17.48 18.66 18.80 18.86 
10 248.4 248.7 248.7 249.3 249.5 250.8 251.0 250.8 
20 1998 1998 1999 1999 2000 2001 2001 2000 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -27.88 -2.728 21.32 -1.607 1.719 -24.76 2.640 31.36 
10 -101.2 -33.95 31.09 -3.724 4.036 -31.87 33.79 101.7 
20 -296.8 -158.6 -22.85 -7.805 8.161 22.51 158.4 296.8 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses b: 23 uf  at 2 0x   

4 1.377 1.939 1.740 0.762 0.840 0.833 0.748 1.894 2.151 1.541 
10 2.199 3.519 3.982 3.594 3.666 3.658 3.578 3.982 3.528 2.208 
20 3.429 5.953 7.583 8.324 8.400 8.396 8.315 7.577 5.950 3.428 

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6 -1/18 1/18 1/6 5/18 7/18 1/2 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.000 0.083 0.247 0.373 0.445 0.520 0.590 0.725 0.907 1.000 
10 0.000 0.052 0.173 0.309 0.436 0.564 0.691 0.827 0.947 1.000 
20 0.000 0.040 0.143 0.280 0.427 0.574 0.720 0.857 0.960 1.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A MATRIX  TECHNIQUE FOR THERMO-ELASTICITY OF MULTILAYERED STRUCTURES  45 

 

T3-2-3: Sliding interfaces in constrained contact : 0SK  and 1 0NK  

L

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 3.222 0.008 -3.210 3.889 -3.384 3.269 0.024 -3.233 
10 49.70 0.018 -49.67 51.36 -50.07 49.75 0.057 -49.64 
20 396.6 0.036 -396.5 399.9 -397.3 396.7 0.112 -396.5 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 27.84 27.93 27.90 27.90 28.07 28.07 28.23 28.28 
10 969.6 970.1 969.6 969.6 969.8 969.8 970.4 970.0 
20 15230 15232 15230 15230 15231 15231 15233 15231 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -43.21 -0.009 43.25 -2.873 2.879 -43.64 -0.030 43.76 
10 -266.7 -0.002 266.7 -16.01 16.01 -266.7 -0.005 266.8 
20 -1064 0.000 1064 -62.91 62.91 -1064 -0.001 1064 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses c: 23 uf  at 2 0x   

4 2.070 2.737 2.071 0.000 0.141 0.141 0.000 2.091 2.767 2.094 
10 5.215 6.944 5.215 0.000 0.314 0.314 0.000 5.216 6.946 5.217 
20 10.43 13.91 10.43 0.000 0.618 0.618 0.000 10.43 13.91 10.43 

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6 -1/18 1/18 1/6 5/18 7/18 1/2 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.000 0.125 0.356 0.481 0.489 0.505 0.514 0.640 0.873 1.000 
10 0.000 0.126 0.359 0.485 0.493 0.507 0.515 0.641 0.874 1.000 
20 0.000 0.126 0.360 0.486 0.493 0.507 0.514 0.640 0.874 1.000 

a Maxima 3 23max( / , )ux h f : (-0.134, 1.710) for / 4L h   , (-0.024, 4.399) for / 10L h   and (-0.006, 
8.844) for / 20L h  . 

b Maxima 3 23max( / , )ux h f : (0.317, 2.168) for / 4L h   , (-0.246, 3.983) for / 10L h   and (-0.004, 8.424) 
for / 20L h  . 

c Maxima 3 23max( / , )ux h f : (0.333, 2.767) for / 4L h   , (0.333, 6.946) for / 10L h   and (0.333, 13.91) 

for / 20L h  . 

Figure 3-3 and Figure 3-4 highlight the influence of the interfacial imperfections on the field variables: 

both longitudinal and transverse displacements may become discontinuous at the interfaces and the stress 

distributions are substantially modified with changes in position and value of the maxima. 
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Figure 3-3: (a) Longitudinal at 2 0x   and (b) transverse at 2 2x L  displacements through thickness in a simply 

supported three-layer plate  0,90,0  under plane-strain conditions, 4L h , normal surface tractions 

 3 2sinuf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT  and 0.4 TT . 

 

 

Figure 3-4: (a) Bending at 2 2x L , (b) transverse shear at 2 0x  and (c) transverse normal at 2 2x L  stresses 

through thickness in a simply supported three-layer plate  0,90,0  under plane-strain conditions, 4L h , normal 
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surface tractions  3 2sinuf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E , 

0.6TT TG E , 0.28 LT  and 0.4 TT . 

Plate with 5-layers and a symmetric layup 

The second example is a simply supported symmetrically laminated plate with length L and thickness h. 

The layup consists of five layers of equal thickness and joined by four identical interfaces; the stacking 

sequence is  0,90,0,90,0 . The origin of the coordinate system is assumed to be at mid-thickness of the 

left edge and the elastic constants of the layers are 17L TE E , 0.7LT TG E , 0.6TT TG E , 0.28 LT  

and 0.4 TT . The plate is subjected to normal surface tractions  3 2sinuf f x L  on the upper surface. 

Results in the tables are given for three length-to-thickness ratios of 4, 10, 20 and for laminates with perfect 

interfaces, imperfect interfaces with 0.1S TK h E  and 0.25N TK h E , and sliding interfaces in 

constrained contact with 1 0NK  and 0SK . 

Table 3-3: Simply supported five-layer plate  0,90,0,90,0  under plane-strain conditions: normal surface 

tractions  3 2sinuf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT  and 0.4 TT . Subscripts l and u correspond to values below and above the interface. 

T3-3-1: Perfect bonding: 1 0SK  and 1 0NK  

L

h
 

x3/h 
-1/2 -3/10l -3/10u -1/10u 1/10u 3/10l 3/10u 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 1.016 0.482 0.482 0.205 -0.129 -0.426 -0.426 -1.011 
10 14.42 8.295 8.295 2.854 -2.721 -8.173 -8.173 -14.32 
20 113.4 67.31 67.31 22.60 -22.36 -67.07 -67.07 -113.2 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 4.905 4.957 4.957 5.021 5.106 5.212 5.212 5.329 
10 106.7 107.0 107.0 107.2 107.2 107.2 107.2 107.1 
20 1503 1505 1505 1505 1505 1505 1505 1504 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -13.62 -6.414 -0.326 -2.604 0.356 0.688 6.055 13.96 
10 -77.35 -44.46 -2.565 -15.17 1.114 2.933 44.20 77.21 
20 -304.2 -180.5 -10.57 -60.50 3.784 10.94 180.3 303.9 

L

h
 

x3/h 
-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse shear stresses a: 23 uf  at 2 0x   

4 0.630 1.120 1.502 1.528 1.624 1.640 1.577 1.495 1.128 0.641 
10 1.497 2.759 3.797 3.901 4.114 4.117 3.912 3.785 2.751 1.494 
20 2.965 5.496 7.599 7.818 8.241 8.242 7.822 7.591 5.491 2.963 

L

h
 

x3/h 

-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.017 0.064 0.133 0.371 0.454 0.540 0.624 0.866 0.936 0.982 
10 0.016 0.061 0.130 0.373 0.457 0.543 0.628 0.870 0.939 0.984 
20 0.016 0.061 0.130 0.372 0.457 0.543 0.628 0.871 0.939 0.984 
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T3-3-2: Partial bonding: 0.1S TK h E    and 0.25N TK h E   ( 0uf  ) 

L

h
 

x3/h 

-1/2 -3/10l -3/10u -1/10u 1/10u 3/10l 3/10u 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 3.477 -2.838 3.522 3.328 3.813 -3.425 3.437 -4.072 
10 27.64 -8.907 22.40 18.23 14.35 -22.17 9.216 -27.85 
20 144.2 27.39 99.56 58.09 16.56 -99.24 -27.09 -144.2 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 42.74 42.77 43.66 45.06 47.62 47.74 50.71 50.83 
10 593.2 593.4 594.1 595.7 598.3 598.3 601.7 601.6 
20 3758 3759 3759 3761 3764 3764 3767 3766 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -46.64 38.16 -2.688 -44.51 -2.757 3.004 -45.81 55.02 
10 -148.3 47.85 -7.004 -97.65 -4.271 7.336 -49.12 149.8 
20 -386.9 -73.43 -15.65 -155.7 -2.357 16.01 73.02 387.1 

L

h
 

x3/h 

-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse shear stresses b: 23 uf  at 2 0x   

4 1.678 1.886 0.636 0.644 2.188 2.208 0.705 0.686 2.196 1.972 
10 2.412 3.452 3.131 3.209 4.573 4.581 3.235 3.138 3.477 2.434 
20 3.500 5.903 7.216 7.420 8.507 8.510 7.429 7.214 5.905 3.502 

L

h
 

x3/h 

-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.051 0.150 0.223 0.334 0.415 0.537 0.620 0.741 0.824 0.941 
10 0.028 0.091 0.163 0.366 0.450 0.548 0.632 0.836 0.908 0.972 
20 0.019 0.069 0.139 0.371 0.455 0.545 0.629 0.861 0.930 0.981 
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T3-3-3: Sliding interfaces in constrained contact : 0SK  and 1 0NK  

L

h
 

x3/h 

-1/2 -3/10l -3/10u -1/10u 1/10u 3/10l 3/10u 1/2 

Dimensionless longitudinal displacements: 2 ( )T uv E f h  at 2 0x   

4 5.846 -5.838 6.285 5.865 6.473 -5.787 5.892 -5.847 
10 90.96 -90.94 92.06 90.99 92.50 -90.77 91.02 -90.90 
20 727.1 -727.0 729.3 727.1 730.1 -726.7 727.2 -726.9 

Dimensionless transverse displacements: 3 ( )T uv E f h  at  2 2x L  

4 78.01 78.04 78.04 78.11 78.19 78.32 78.32 78.46 
10 2918 2918 2918 2918 2918 2918 2918 2918 
20 46377 46377 46377 46377 46377 46377 46377 46377 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -78.42 78.43 -4.829 -78.53 -4.840 4.842 -78.77 78.82 
10 -488.1 488.1 -28.92 -488.1 -28.93 28.93 -488.1 488.1 
20 -1951 1951 -115.0 -1951 -115.0 115.0 -1951 1951 

L

h
 

x3/h 

-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse shear stresses c: 23 uf  at 2 0x   

4 2.708 2.708 0.000 0.000 2.712 2.713 0.000 0.000 2.721 2.721 
10 6.803 6.803 0.000 0.000 6.803 6.803 0.000 0.000 6.804 6.804 
20 13.61 13.61 0.000 0.000 13.61 13.61 0.000 0.000 13.61 13.61 

L

h
 

x3/h 
-13/30 -11/30 -3/10 -1/10 -1/30 1/30 1/10 3/10 11/30 13/30 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.083 0.236 0.319 0.339 0.422 0.576 0.659 0.679 0.762 0.917 
10 0.083 0.237 0.321 0.340 0.423 0.577 0.660 0.679 0.762 0.917 
20 0.083 0.238 0.321 0.340 0.423 0.577 0.660 0.679 0.762 0.917 

a  Maxima 3 23max( / , )ux h f : (0.014, 1.643) for / 4L h   , (0.001, 4.142) for / 10L h   and (0.000, 8.294) 
for / 20L h  . 

b Maxima 3 23max( / , )ux h f : (0.001, 2.386) for / 4L h   , (0.000, 4.746) for / 10L h   and (0.000, 8.644) 
for / 20L h  . 

c Maxima 3 23max( / , )ux h f : (0.400, 3.057) for / 4L h   , (0.400, 7.652) for / 10L h   and (0.400, 15.31) 

for / 20L h  . 

Figure 3-5 and Figure 3-6 highlight the influence of the interfacial imperfections on the field variables: 

both longitudinal and transverse displacements may become discontinuous at the interfaces and the stress 

distributions are substantially modified with changes in position and value of the maxima. 
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Figure 3-5: (a) Longitudinal at 2 0x  and (b) transverse at 2 2x L  displacements through thickness in a simply 

supported five-layer plate  0,90,0,90,0  under plane-strain conditions, 4L h , normal surface tractions 

 3 2sin  uf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT  and 0.4 TT . 

 

Figure 3-6: (a) Bending at 2 2x L , (b) transverse shear at 2 0x  and (c) transverse normal at 2 2x L  stresses 

through thickness in a simply supported five-layer plate  0,90,0,90,0  under plane-strain conditions, 4L h , 
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normal surface tractions  3 2sin  uf f x L  acting on upper surface. Elastic constants: 17L TE E , 0.7LT TG E

, 0.6TT TG E , 0.28 LT  and 0.4 TT . 

Sandwich plate with imperfect bonding at the core-face sheets interfaces 

The third example is a symmetric sandwich plate with thickness of face sheets and core 0.1h  and 0.8h, 

respectively, and subjected to normal tractions  3 2sin  uf f x L  acting on the upper surface on varying 

the interfacial conditions. Faces and core are assumed to be transversally isotropic in the planes 1 3x x  and 

1 2x x  respectively. The origin of the coordinate system is assumed to be at mid-thickness of the left edge 

and the elastic constants of faces and core are 2 3 17f fE E , 23 3 0.7f fG E , 23 21 0.28  f f , and 

31 0.4 f ; 2 3 0.016c fE E , 3 3 0.026c fE E , 23 3 0.006c fG E  and 23 21 31 0.32    c c c  which could 

represent unidirectionally reinforced graphite-epoxy face sheets with fibers aligned along the 2x  axis and 

a foam core. Results are presented for 4L h , 6 and 8, and for perfectly bonded layers, partially bonded 

layers with 3 0.005f
SK h E  and 3 0.0125f

NK h E , and layers free to slide in constrained contact. 
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Table 3-4: Simply supported symmetric sandwich plate under plane-strain conditions with thickness of face 
sheets and core 0.1h and 0.8h: normal surface tractions  3 2sin  uf f x L  acting on upper surface. Elastic 

constants 2 3 17f fE E  , 23 3 0.7f fG E , 23 21 0.28  f f , and 31 0.4 f , 2 3 0.016c fE E  , 3 3 0.026c fE E  , 

23 3 0.006c fG E   and 23 21 31 0.32    c c c . Subscripts l and u correspond to values below and above the interface. 

T3-4-1: Perfect bonding: 1 0SK  and 1 0NK  

L

h
 

x3/h 
-1/2 -9/20 -2/5l -2/5u -4/15 4/15 2/5l 2/5u 9/20 1/2 

Dimensionless longitudinal displacements: 
2 3 ( )f

uv E f h  at 2 0x   

4 9.062 1.088 -6.847 -6.847 -3.068 6.734 7.420 7.420 -0.948 -9.354 
6 18.22 4.076 -9.997 -9.997 -5.623 8.295 10.50 10.50 -3.853 -18.27 
8 30.50 10.08 -10.25 -10.25 -6.038 8.203 10.77 10.77 -9.772 -30.40 

Dimensionless transverse displacements: 
3 3 ( )f

uv E f h  at  2 2x L  

4 206.1 206.2 206.1 206.1 206.6 214.1 217.1 217.1 217.2 217.2 
6 544.4 544.5 544.5 544.5 544.8 552.0 555.1 555.1 555.2 555.1 
8 1046 1046 1046 1046 1046 1053 1056 1056 1056 1056 

L

h
 

x3/h 

-1/2 -19/40 -17/40 -2/5l -2/5u 2/5l 2/5u 17/40 19/40 1/2 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -121.6 -67.75 38.49 91.90 0.162 0.256 -99.20 -42.87 69.16 125.9 
6 -162.9 -99.47 26.45 89.44 0.139 0.283 -93.57 -29.31 99.12 163.8 
8 -204.5 -135.9 0.617 68.80 0.109 0.314 -71.85 -2.962 135.0 204.3 

L

h
 

x3/h 

-19/40 -9/20 -17/40 -2/5 -1/5 1/5 2/5 17/40 9/20 19/40 

Dimensionless transverse shear stress a: 23 uf  at 2 0x   

4 1.857 2.665 2.430 1.151 1.126 1.070 1.034 2.428 2.720 1.913 
6 1.717 2.606 2.671 1.913 1.897 1.856 1.829 2.633 2.597 1.720 
8 1.671 2.669 2.998 2.657 2.647 2.615 2.593 2.960 2.651 1.665 

L

h
 

x3/h 

-9/20 -2/5 -3/10 -1/5 -1/10 1/10 1/5 3/10 2/5 9/20 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.066 0.155 0.245 0.333 0.421 0.594 0.679 0.762 0.844 0.932 
6 0.041 0.108 0.208 0.307 0.406 0.603 0.700 0.797 0.893 0.959 
8 0.031 0.087 0.192 0.296 0.399 0.606 0.709 0.812 0.914 0.970 
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T3-4-2: Partial bonding: 3 0.005f
SK h E   and 3 0.0125f

NK h E  ( 0uf ) 

L

h
 

x3/h 

-1/2 -9/20 -2/5l -2/5u -4/15 4/15 2/5l 2/5u 9/20 1/2 

Dimensionless longitudinal displacements: 
2 3 ( )f

uv E f h  at 2 0x   

4 17.18 0.566 -16.02 103.3 70.65 -54.17 -88.85 19.54 -0.486 -20.54 
6 41.63 2.821 -35.94 228.6 153.9 -138.2 -214.6 38.49 -2.655 -43.84 
8 70.92 8.001 -54.85 367.0 245.9 -232.1 -354.7 56.89 -7.746 -72.45 

Dimensionless transverse displacements: 
3 3 ( )f

uv E f h  at  2 2x L  

4 428.5 428.6 428.5 448.6 453.5 461.7 460.8 517.1 517.2 517.1 
6 1492 1492 1492 1507 1514 1521 1519 1583 1583 1583 
8 3216 3217 3216 3228 3236 3243 3240 3307 3308 3307 

L

h
 

x3/h 

-1/2 -19/40 -17/40 -2/5l -2/5u 2/5l 2/5u 17/40 19/40 1/2 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -230.4 -118.4 103.3 215.0 -1.338 1.544 -261.9 -126.9 140.7 275.9 
6 -372.3 -198.3 147.9 321.5 -2.051 2.343 -343.8 -159.6 207.8 392.4 
8 -475.6 -264.3 157.0 367.9 -2.505 2.845 -381.2 -164.3 269.0 486.3 

L

h
 

x3/h 

-19/40 -9/20 -17/40 -2/5 -1/5 1/5 2/5 17/40 9/20 19/40 

Dimensionless transverse shear stress b: 23 uf  at 2 0x   

4 3.422 4.658 3.719 0.596 0.749 0.724 0.542 4.356 5.534 4.087 
6 3.734 5.196 4.394 1.323 1.480 1.452 1.265 4.559 5.445 3.928 
8 3.632 5.192 4.685 2.109 2.253 2.228 2.058 4.735 5.284 3.707 

L

h
 

x3/h 

-9/20 -2/5 -3/10 -1/5 -1/10 1/10 1/5 3/10 2/5 9/20 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.120 0.252 0.302 0.359 0.419 0.543 0.602 0.656 0.703 0.857 
6 0.088 0.193 0.265 0.341 0.419 0.578 0.656 0.730 0.799 0.908 
8 0.065 0.150 0.234 0.322 0.411 0.591 0.679 0.765 0.848 0.934 
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T3-4-3: Sliding interfaces in constrained contact : 0SK  and 1 0NK  

L

h
 

x3/h 

-1/2 -9/20 -2/5l -2/5u -4/15 4/15 2/5l 2/5u 9/20 1/2 

Dimensionless longitudinal displacements: 
2 3 ( )f

uv E f h  at 2 0x   

4 28.80 0.006 -28.79 231.5 156.3 -126.3 -202.7 29.37 0.024 -29.33 
6 97.09 0.009 -97.08 776.6 520.4 -474.9 -731.9 97.50 0.035 -97.43 
8 229.7 0.012 -229.7 1837 1228 -1167 -1776 230.0 0.047 -230.0 

Dimensionless transverse displacements: 
3 3 ( )f

uv E f h  at  2 2x L  
4 742.2 742.5 742.3 742.3 752.3 761.9 756.6 756.6 756.8 756.6 
6 3729 3729 3729 3729 3749 3759 3743 3743 3744 3743 
8 11735 11736 11735 11735 11771 11780 11749 11749 11750 11749 

L

h
 

x3/h 

-1/2 -19/40 -17/40 -2/5l -2/5u 2/5l 2/5u 17/40 19/40 1/2 

Dimensionless bending stresses: 22 uf  at 2 2x L  

4 -386.3 -192.3 192.3 386.3 -3.072 3.092 -393.8 -196.0 196.0 393.7 
6 -868.2 -433.2 433.2 868.2 -7.079 7.088 -871.6 -434.9 434.9 871.6 
8 -1541 -769.5 769.5 1541 -12.69 12.69 -1543 -770.4 770.4 1543 

L

h
 

x3/h 

-19/40 -9/20 -17/40 -2/5 -1/5 1/5 2/5 17/40 9/20 19/40 

Dimensionless transverse shear stress c: 23 uf  at 2 0x   

4 5.676 7.562 5.676 0.000 0.358 0.359 0.000 5.785 7.708 5.786 
6 8.515 11.35 8.515 0.000 0.553 0.553 0.000 8.548 11.39 8.548 
8 11.34 15.11 11.34 0.000 0.745 0.745 0.000 11.35 15.13 11.35 

L

h
 

x3/h 

-9/20 -2/5 -3/10 -1/5 -1/10 1/10 1/5 3/10 2/5 9/20 

Dimensionless transverse normal stresses: 33 uf  at 2 2x L  

4 0.198 0.396 0.405 0.428 0.459 0.533 0.565 0.587 0.596 0.798 
6 0.198 0.396 0.405 0.429 0.461 0.537 0.570 0.593 0.602 0.801 
8 0.198 0.396 0.405 0.428 0.462 0.538 0.571 0.595 0.604 0.802 

a  Maxima 3 23 max( / , ) ux h f : (0.444, 2.750) for / 4L h , (-0.436, 2.744) for / 6L h  and (-0.425, 2.998) 

for / 8L h . 

b Maxima 3 23 max( / , ) ux h f : (0.449, 5.538) for / 4L h , (0.447, 5.466) for / 6L h  and (0.444, 5.346) 

for / 8L h . 

c Maxima 3 23 max( / , ) ux h f : (0.450, 7.708) for / 4L h , (0.450, 11.394) for / 6L h  and (0.450, 

15.133) for / 8L h . 

The diagrams in Figure 3-7 show results for 4L h . In the presence of interfacial imperfections, 

longitudinal and transverse displacements are discontinuous at the interfaces and the stress distributions are 

modified with changes in location and value of the maxima with respect to the fully bonded case. The 

presence of interfacial imperfections reduces the transverse shear stresses at the both interfaces at the 

expenses of an increase in the transverse shear stresses of the face sheets. The transverse normal stress at 

the lower interface of the sandwich plate increases in the presence of interfacial imperfections. 
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Figure 3-7: (a) longitudinal at 2 0x , (b) transverse at 2 2x L  displacements, (c) bending at 2 2x L , (d) 

transverse shear at 2 0x  and (e) transverse normal at 2 2x L  stresses through thickness in a simply supported 

symmetric sandwich plate under plane-strain conditions, 4L h , normal surface tractions  3 2s in  uf f x L  

acting on upper surface. Thickness of face sheets and core 0.1h and 0.8h. Elastic constants: 2 3 17f fE E  , 

23 3 0.7f fG E , 23 21 0.28  f f , and 31 0.4 f , 2 3 0.016c fE E  , 3 3 0.026c fE E  , 23 3 0.006c fG E   and 

23 21 31 0.32    c c c .   

3.2.5 Application to simply supported plates subjected to thermal loading 

This section presents exact solutions of temperature, displacements and stresses in a simply supported 

symmetrically laminated plate under plane-strain conditions subjected to sinusoidal thermal loading. The 

plate has thickness h and length L and is composed of three layers of equal thickness, joined by two identical 

interfaces. The origin of the coordinate system is at the mid-thickness. The stacking sequence of the plate 

is  0,90,0  and the thermo-elastic constants of the layers are 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT , 0.4 TT , 1125  T L  and 0.16T LK K  (subscripts L and T indicate in-plane principal 

material directions). The assumed thermo-elastic constants could represent a graphite-epoxy laminate with 

a large ratio between the coefficients of thermal expansion in the principal material directions. This example 

provides a severe test for the approximate structural theories. Results are presented in tables and figures for 

a plate subjected to thermal loading  0 2sinT T x L   on the upper surface, with 0T  a positive constant; 

the temperature increment at the lower surface of the plate is assumed to be zero. Results in Table 3-5 

correspond to layers in perfect thermal contact, 0R  , and those in Table 3-6 to layers with interfacial 

thermal resistance, 10LRK h . Dimensionless stresses and displacements are presented for three length-

to-thickness ratios equal to 4, 10, 20 and for three cases of perfect bonding, 1 1 0 S NK K , partial bonding 
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with dimensionless interfacial stiffnesses equal to 0.1S TK h E  and 0.25N TK h E , and sliding 

interfaces in constrained contact, 0SK  and 1 0NK . The assumed applied temperature implies no 

interpenetration of the layers at the interfaces for all interfacial stiffnesses, including the case 1 0NK ; 

for constrained contact the results apply also to 0 0T . 

Table 3-5: Simply supported three-layer plate  0, 90, 0  under plane-strain conditions: applied temperature 

 0 2sin  T T x L  on upper surface . Thermo-elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT , 0.4 TT , 1125  T L  and 0.16T LK K . Perfect thermal contact, 0R  . Subscripts l and u 

correspond to values below and above the interface. 

T3-5-1: Perfect mechanical bonding: 1 1 0S NK K  ; Perfect thermal contact: 0R   

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 31.27 20.90 15.24 14.10 14.10 17.74 17.74 23.29 40.32 73.69 
10 53.52 54.20 56.91 62.20 62.20 82.75 82.75 92.29 107.8 130.2 
20 96.41 108.3 121.2 135.4 135.4 180.7 180.7 197.2 216.9 240.0 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 149.0 143.1 123.2 88.45 88.45 -114.7 -114.7 -219.0 -346.8 -503.5 
10 5.185 -3.273 -30.15 -75.60 -75.60 -325.3 -325.3 -447.1 -589.1 -752.3 
20 -656.9 -665.8 -693.9 -741.2 -741.2 -998.8 -998.8 -1123 -1268 -1432 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -419.4 -253.7 -149.3 -102.3 274.5 606.8 -51.82 -88.97 -269.3 -654.9 
10 -287.1 -255.8 -235.0 -227.3 339.7 702.8 -228.5 -242.5 -286.4 -365.0 
20 -258.7 -254.0 -251.9 -253.4 351.0 718.8 -264.2 -271.5 -286.5 -310.3 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress a: 23 0( )L TT E   at 2 0x   

4 22.97 38.61 49.12 56.60 36.00 -21.28 -58.18 -54.63 -47.68 -31.86 
10 7.187 13.81 20.02 26.01 15.93 -11.33 -28.53 -22.48 -16.02 -8.692 
20 3.360 6.680 9.980 13.29 8.090 -5.909 -14.72 -11.23 -7.656 -3.933 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.798 2.847 5.740 9.211 12.27 13.47 10.90 7.203 3.822 1.154 
10 0.095 0.371 0.815 1.417 1.972 2.133 1.617 0.949 0.443 0.117 
20 0.022 0.088 0.197 0.349 0.490 0.529 0.396 0.226 0.102 0.026 
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T3-5-2: Partial mechanical bonding: 0.1S TK h E   and 0.25N TK h E  ; Perfect thermal contact: 0R   

( 0 0T  ) 

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 19.92 12.48 8.193 7.138 290.6 297.3 8.676 15.40 32.17 63.77 
10 43.30 46.86 52.25 60.07 286.2 315.1 71.28 83.65 101.7 126.5 
20 90.10 104.0 118.8 135.0 263.2 314.4 173.4 191.9 213.5 238.6 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 104.8 98.56 78.22 43.00 63.70 -111.5 -83.56 -188.4 -316.6 -473.6 
10 -81.39 -89.97 -116.9 -162.4 -157.6 -397.8 -392.0 -514.0 -656.0 -819.2 
20 -772.7 -781.6 -809.7 -857.0 -855.7 -1111 -1109 -1234 -1378 -1542 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -267.2 -141.0 -55.46 -10.54 54.72 384.6 68.24 16.16 -160.1 -521.8 
10 -232.3 -216.5 -210.0 -216.0 268.9 629.4 -167.0 -196.2 -253.9 -345.5 
20 -241.7 -242.4 -245.6 -252.3 330.8 697.7 -244.6 -257.2 -277.5 -306.4 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress b: 23 0( )L TT E   at 2 0x   

4 14.12 22.57 26.82 28.35 22.10 -6.447 -28.87 -32.69 -32.61 -23.87 
10 5.907 11.54 17.05 22.62 14.40 -9.089 -24.38 -19.79 -14.49 -8.054 
20 3.165 6.342 9.551 12.82 7.886 -5.573 -14.10 -10.85 -7.453 -3.858 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.497 1.725 3.360 5.176 6.856 8.116 6.990 4.966 2.796 0.885 
10 0.078 0.307 0.681 1.200 1.690 1.870 1.437 0.858 0.408 0.110 
20 0.021 0.083 0.187 0.333 0.470 0.510 0.383 0.220 0.100 0.026 
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T3-5-3: Sliding interfaces in constrained contact: 0SK   and 1 0NK ; Perfect thermal contact: 0R   

L

h
 

x3/h 

-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 14.56 5.931 -0.756 -5.855 567.3 574.2 -5.392 6.027 25.77 59.16 
10 -5.520 4.345 14.79 26.57 1698 1746 16.22 37.02 62.16 92.88 
20 -27.66 4.232 36.39 69.28 3494 3599 44.92 82.54 122.4 165.1 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 112.6 106.1 85.41 49.62 49.62 -97.57 -97.57 -203.0 -331.5 -488.7 
10 -281.4 -290.6 -318.1 -364.2 -364.2 -544.4 -544.4 -667.1 -809.8 -973.5 
20 -1828 -1838 -1867 -1915 -1915 -2100 -2100 -2226 -2371 -2536 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -195.4 -53.29 64.07 162.5 -164.9 164.9 255.7 141.4 -74.36 -460.0 
10 29.62 11.61 -9.241 -36.73 -177.3 177.3 127.9 53.86 -41.60 -164.8 
20 74.19 25.15 -24.53 -76.05 -179.2 179.2 99.95 36.22 -33.09 -109.3 

L

h
 

x3/h 

-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress c: 23 0( )L TT E   at 2 0x   

4 9.119 11.60 8.328 0.000 8.086 8.087 0.000 -14.39 -22.16 -19.31 
10 -0.601 -0.840 -0.670 0.000 3.481 3.481 0.000 -2.667 -3.785 -3.028 
20 -0.730 -0.979 -0.740 0.000 1.759 1.759 0.000 -1.002 -1.365 -1.048 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.337 1.049 1.731 2.029 2.323 3.617 3.911 3.412 2.170 0.742 
10 -0.009 -0.028 -0.049 -0.059 -0.008 0.214 0.265 0.227 0.139 0.045 
20 -0.005 -0.017 -0.029 -0.034 -0.021 0.035 0.048 0.040 0.024 0.008 

aMaxima 3 23 max 0[ / , ( )]L Tx h T E  : [0.167, -58.18] for / 4L h   , [0.167, -28.53] for / 10L h  and [0.167, 

-14.72] for / 20L h . 

b Maxima 3 23 max 0[ / , ( )]L Tx h T E  : [0.293, -33.40] for / 4L h   , [0.167, -24.38] for / 10L h  and [0.167, 

-14.10] for / 20L h . 

c Maxima 3 23 max 0[ / , ( )]L Tx h T E  : [0.358, -22.64] for / 4L h   , [0.000, 4.640] for / 10L h  and [0.000, 

2.346] for / 20L h . 

 

 

 

 

 

 

 

 

 



A MATRIX  TECHNIQUE FOR THERMO-ELASTICITY OF MULTILAYERED STRUCTURES  59 

 

Table 3-6: Simply supported three-layer plate  0, 90, 0  under plane-strain conditions: applied temperature 

 0 2sin  T T x L  on upper surface . Thermo-elastic constants: 17L TE E  , 0.7LT TG E ,  0.6TT TG E , 

0.28 LT , 0.4 TT , 1125  T L  and 0.16T LK K . Imperfect thermal contact, 10LRK h . Subscripts l 

and u correspond to values below and above the interface. 

T3-6-1: Perfect mechanical bonding: 1 1 0 S NK K ; Imperfect thermal contact: 10LRK h  

L

h
 

x3/h 

-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 23.91 17.13 13.68 13.05 13.05 15.19 15.19 21.02 39.34 74.53 
10 45.18 48.46 53.27 59.84 59.84 82.70 82.70 93.49 111.0 135.8 
20 83.21 98.38 114.3 131.2 131.2 183.6 183.6 202.8 225.4 251.8 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 100.3 99.72 96.46 90.56 90.56 -84.64 -84.64 -218.6 -363.5 -525.8 
10 -74.27 -75.74 -81.35 -91.12 -91.12 -334.5 -334.5 -492.0 -655.3 -825.5 
20 -850.3 -851.9 -858.0 -868.5 -868.5 -1124 -1124 -1286 -1452 -1624 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -320.8 -224.4 -171.8 -156.0 343.3 416.8 50.24 -14.79 -234.8 -666.1 
10 -242.4 -251.9 -269.5 -296.3 467.8 547.7 -146.6 -194.9 -276.5 -395.2 
20 -223.2 -255.3 -289.4 -326.0 490.9 571.7 -188.1 -230.5 -281.6 -342.1 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress a: 23 0( )L TT E   at 2 0x   

4 18.32 32.50 44.09 54.47 31.48 -17.93 -44.53 -47.07 -44.66 -31.44 
10 6.421 13.07 20.06 27.53 15.02 -11.53 -25.60 -21.37 -16.03 -9.085 
20 3.077 6.474 10.21 14.29 7.733 -6.174 -13.52 -10.86 -7.768 -4.169 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.627 2.308 4.825 8.054 10.87 11.81 9.774 6.764 3.721 1.153 
10 0.084 0.338 0.771 1.393 1.951 2.051 1.566 0.950 0.457 0.124 
20 0.020 0.082 0.191 0.351 0.495 0.518 0.389 0.229 0.107 0.028 
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T3-6-2: Partial mechanical bonding: 0.1S TK h E  and 0.25N TK h E ; Imperfect thermal contact: 

10LRK h  ( 0 0T ) 

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 19.50 10.88 4.430 -0.901 260.0 248.0 15.52 17.44 31.23 60.38 
10 40.93 42.43 45.28 49.65 285.3 301.9 79.65 88.54 104.0 126.6 
20 80.67 94.82 109.7 125.5 262.7 311.9 181.6 199.8 221.4 246.7 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 116.3 115.5 111.9 105.4 125.6 -25.50 -1.901 -136.1 -281.4 -444.1 
10 -25.17 -26.71 -32.43 -42.33 -37.47 -271.5 -266.0 -423.6 -587.0 -757.3 
20 -792.4 -794.1 -800.2 -810.7 -809.4 -1063 -1061 -1223 -1389 -1560 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -261.6 -140.6 -48.09 30.06 147.2 231.6 44.21 32.29 -126.2 -476.4 
10 -219.6 -219.6 -226.6 -241.7 396.6 478.4 -130.4 -168.3 -239.0 -345.5 
20 -216.4 -245.8 -277.1 -310.8 470.2 551.5 -182.8 -222.4 -270.7 -328.2 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress b: 23 0( )L TT E   at 2 0x   

4 13.92 22.33 26.19 26.09 15.80 -8.817 -23.24 -26.67 -27.83 -21.18 
10 5.733 11.50 17.40 23.56 12.91 -9.969 -22.22 -18.51 -13.90 -7.906 
20 2.975 6.242 9.817 13.72 7.429 -5.941 -13.03 -10.45 -7.463 -4.002 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.489 1.703 3.313 5.045 6.423 6.941 5.899 4.267 2.457 0.794 
10 0.075 0.300 0.678 1.214 1.692 1.779 1.359 0.824 0.397 0.108 
20 0.019 0.079 0.184 0.338 0.476 0.498 0.374 0.220 0.102 0.027 
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T3-6-3: Sliding interfaces in constrained contact: 0SK  and 1 0NK ; Imperfect thermal contact: 

10LRK h  

L

h
 

x3/h 
-1/2 -7/18 -5/18 -1/6l -1/6u 1/6l 1/6u 5/18 7/18 1/2 

Dimensionless longitudinal displacements: 2 0( )Lv T h  at 2 0x   

4 17.26 5.702 -4.640 -15.53 501.8 483.5 6.615 10.65 25.31 54.24 
10 6.508 3.565 0.829 -1.675 1677 1679 44.70 51.06 62.86 80.62 
20 -2.454 2.351 7.229 12.27 3513 3534 102.0 111.7 124.3 139.9 

Dimensionless transverse displacements: 3 0( )Lv T h  at  2 2x L  

4 146.6 145.7 141.8 134.8 134.8 7.827 7.827 -126.9 -272.4 -435.3 
10 87.12 85.08 78.77 68.14 68.14 -107.4 -107.4 -265.6 -429.5 -600.4 
20 -275.0 -277.2 -284.0 -295.3 -295.3 -479.8 -479.8 -641.9 -808.9 -981.1 

Dimensionless bending stresses: 22 0( )L TT E   at 2 2x L  

4 -231.5 -71.22 73.24 225.3 -44.58 44.61 162.6 122.9 -46.95 -394.0 
10 -34.92 -11.11 11.65 33.29 -43.16 43.16 56.68 32.56 -18.48 -99.04 
20 6.584 2.303 -2.157 -7.023 -42.91 42.91 30.84 13.82 -10.22 -41.65 

L

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stress c: 23 0( )L TT E   at 2 0x   

4 11.04 14.52 10.89 0.000 2.187 2.188 0.000 -10.38 -17.35 -15.96 
10 0.678 0.893 0.661 0.000 0.847 0.847 0.000 -1.311 -2.019 -1.725 
20 -0.065 -0.088 -0.067 0.000 0.421 0.421 0.000 -0.329 -0.473 -0.382 

Dimensionless transverse normal stresses: 33 0( )L TT E   at 2 2x L  

4 0.405 1.281 2.151 2.549 2.628 2.978 3.058 2.711 1.772 0.622 
10 0.010 0.031 0.053 0.062 0.075 0.129 0.141 0.123 0.078 0.026 
20 0.000 -0.002 -0.003 -0.003 0.000 0.013 0.017 0.014 0.009 0.003 

a Maxima 3 23max 0[ / , ( )]L Tx h T E  : [-0.167, 54.47] for / 4L h   , [-0.167, 27.53] for / 10L h   and [-
0.167, 14.29] for / 20L h  . 

b Maxima 3 23max 0[ / , ( )]L Tx h T E  : [0.312, -28.04] for / 4L h   , [-0.167, 23.56] for / 10L h   and [-
0.167, 13.72] for / 20L h  . 

c Maxima 3 23max 0[ / , ( )]L Tx h T E  : [0.366, -18.10] for / 4L h   , [0.335, -2.056] for / 10L h   and [0.000, 

0.562] for / 20L h  . 
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Figure 3-8: (a) Through-thickness temperature distribution at 2 2x L  in a three-layer plate  0,90, 0 , 4L h , 

applied temperature  0 2sin  T T x L  on upper surface, and (b) normalized temperature in the upper layer at the 

interface at 2 2x L  on increasing LRK h  ( 0LRK h  perfect contact;   0Lh RK  impermeable interface). The 

thermal conductivities of the layers, 0.16T LK K . 

 

Figure 3-9: (a) Longitudinal at 2 0x  and (b) transverse at 2 2x L  displacements through thickness in a simply 

supported three-layer plate  0,90, 0  under plane-strain conditions, 4L h , applied temperature 

 0 2sin  T T x L  on upper surface. Thermo-elastic constants: 17L TE E , 0.7LT TG E , 0.6TT TG E , 

0.28 LT , 0.4 TT , 1125  T L  and 0.16T LK K . Imperfect thermal contact, 10LRK h . 
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Figure 3-10: (a) Bending at 2 2x L , (b) transverse shear at 2 0x  and (c) transverse normal at 2 2x L  

stresses through thickness in a simply supported three-layer plate  0,90, 0  under plane-strain conditions, 4L h , 

applied temperature  0 2sin  T T x L  on upper surface. Thermo-elastic constants: 17L TE E , 0.7LT TG E , 

0.6TT TG E , 0.28 LT , 0.4 TT , 1125  T L  and 0.16T LK K . Imperfect thermal contact, 10LRK h .  

Figure 3-8, Figure 3-9 and Figure 3-10 highlight the influence of the mechanical and thermal interfacial 

imperfections on the temperature distribution in the layers and the field variables. A non-zero interfacial 

thermal resistance induces temperature jumps at the layer interfaces (Figure 3-8) and modifies displacement 

and stress distributions. In the limiting case of an impermeable interface, the temperature in the third layer 

at the upper interface is given by 
(3) (3)(3) 2 3 2 3

2 3 3 0 2( , ) 2 (1 )sin( )   sh sh
imT x x x T e e x L  and tends to the 

applied temperature on increasing L h . For large values of L h , the temperature in the upper layer is 

(3)
2 3 0( 2 , )  T x L x T . 

3.3 CLOSED-FORM 3D THERMO-ELASTICITY SOLUTIONS FOR MULTILAYERED PLATES WITH 

IMPERFECT INTERFACES AND IMPERFECT THERMAL CONTACT  

The matrix formulation developed in Sect. 3.2 is extended here to rectangular plates with finite dimensions. 

Figure 3-11 shows the multilayered plate with 1 2 3 x x x  a system of Cartesian coordinates with origin 

at the left edge. The plate has global thickness h and its length in 2x  and 1x  directions are a and b, 
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respectively. The layers are assumed to be linearly elastic, homogenous and orthotropic with principal 

material axes parallel to the geometrical axes (e.g., cross-ply laminate). The kth layer, with k = 1, … n 

numbered from bottom to top, is defined by the coordinates of its lower and upper surfaces, 1
3
kx  and 3

kx , 

and has thickness ( )k h  (the superscript (k) on the left of a quantity shows association with the layer k, while 

the superscript k on the right identifies the interface between layers k and k+1). The body is simply 

supported along four edges and subjected to bi-sinusoidal thermo-mechanical loadings acting on the upper 

and lower surfaces:    0
3 1 2 3 3 1 1 2 2( , , ) sin sin  lf x x x x f p x p x  and 3 1 2 3 3( , , ) nf x x x x

   1 1 2 2sin sinuf p x p x  are, respectively,  normal surface tractions on the lower and upper surfaces of the 

plate with 1 1p m b , 2 2p m a ,  and  1 2, m m , and the applied temperatures on the lower and 

upper surfaces of the plate,    0
1 2 3 3 1 1 2 2( , , ) sin sin  lT x x x x T p x p x   and  1 2 3 3( , , )nT x x x x 

   1 1 2 2sin sinuT p x p x . 

 

Figure 3-11: Simply supported multilayered plate with thermally and/or mechanically imperfect interfaces. 

The constitutive equations of the layer k, is: 

( )( )

11 12 1311 11 1

12 22 2322 22 2
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 (3-49) 



A MATRIX  TECHNIQUE FOR THERMO-ELASTICITY OF MULTILAYERED STRUCTURES  65 

 

where 
( ) k

ij
( )

1 2 3( , , )k
ij x x x  and 

( ) k
ij

( )
1 2 3( , , )k

ij x x x  (for i, j = 1, 2, 3) are Cauchy stress and linear strain 

components, 
( )k

ijC  (for i, j = 1, …, 6) are stiffness coefficients, ( )k
i  are coefficients of thermal expansion 

along the ix  direction and ( ) ( )
1 2 3( , , )k kT T x x x  is the temperature increment in the layer k. 

The layers are joined by interfaces, which are zero-thickness mathematical surfaces where material 

properties, displacements and temperature may be discontinuous while interfacial tractions and heat flux 

are continuous. The constitutive equations of the interfaces are defined by linear uncoupled traction laws 

which relate the interfacial tractions to the relative displacements of the adjacent layers: 

1 1 2 3 3 1 1 1 2 3 3

2 1 2 3 3 2 2 1 2 3 3

3 1 2 3 3 3 1 2 3 3

ˆ ˆ( , , )  ( , , )

ˆ ˆ( , , )  ( , , )

ˆ ˆ( , , )  ( , , )







  

  

  

k k k k k
S

k k k k k
S

k k k k k
N

x x x x K v x x x x

x x x x K v x x x x

x x x x K v x x x x

 (3-50) 

where 1̂
k , 2̂

k  and 3̂
k  are the interfacial tangential and normal tractions acting on the upper surface of the 

layer k with unit positive normal vector, 1
k
SK , 2

k
SK and k

NK  are tangential and normal stiffnesses and 1̂
kv , 

2ˆ
kv  and 3ˆ

kv  are the relative displacements between the layers k and k + 1 at the interface: 

( 1) ( )
1 2 3 3 1 2 3 3 1 2 3 3ˆ ( , , ) ( , , ) ( , , )    k k k k k k

i i iv x x x x v x x x x v x x x x  (3-51) 

with ( )k
iv  the displacement component in the layer k and i = 1, 2, 3. The limiting case of a perfectly bonded 

layer is described by 1 21 1 1 0  k k k
S S NK K K , which leads to a continuous displacement field and 

vanishing interfacial jumps; an interface which allows relative sliding displacements in constrained contact 

is defined by 1 0k
NK  and 1 2 0 k k

S SK K , which yield 1 2ˆ ˆ 0  k k  and 3ˆ 0kv  . 

The thermal behavior of the interfaces is described by a thermal resistance, kR , which is independent of 

the interfacial displacements and controls the heat flux and the temperature at the interface [47]. The 

interfacial thermal jump between layers k and k + 1 is related to the heat flux through the interface through 

the interfacial thermal resistance:  

( ) ( 1) ( )
3 1 2 3 3 1 2 3 3 1 2 3 3( , , )  [ ( , , ) ( , , )]     k k k k k k kq x x x x R T x x x x T x x x x  (3-52) 

where ( ) ( ) ( )
3 1 2 3 3 1 2 3 3( , , ) ( , , ), k k kq x x x K T x x x  is the heat flux in the layer k and ( )k

iK  is the thermal 

conductivity of the layer in the ix  direction. The limiting case corresponding to perfect thermal contact, 

where the temperature is continuous across the interface is described by 0kR , and an impermeable 

interface, where the heat flux through the interface vanishes, by a vanishing thermal conductance 1 0kR

. 

3.3.1 Problem formulation 

The equations governing the response of the layer k are [6]: 
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 Heat conduction in the absence of internal heat generation: 

2 ( ) 2 ( ) 2 ( )( ) ( )
1 2 3 1 2 3 1 2 31 2

( ) 2 ( ) 2 2
3 1 3 2 3

( , , ) ( , , ) ( , , )
0

  
  

  

k k kk k

k k

T x x x T x x x T x x xK K

K x K x x
 (3-53) 

 Continuity of heat flux and interfacial thermal response: 

( 1) ( ) ( )
1 2 3 1 2 3 3 1 2 3

( )
( ) ( 1)3

1 2 3 3 1 2 3 3( 1)
3

( , , ) ( , , ) ( , , )

( , , ), ( , , ),






  



k k k k k k k

k
k k k k

k

T x x x T x x x R q x x x

K
T x x x T x x x

K

 (3-54) 

 Thermal boundary conditions: 

   
   

( )
1 2 3 3 1 1 2 2

(1) 0
1 2 3 3 1 1 2 2

( )
1 2 3

( )
1 2 3

( , , ) sin sin

( , , ) sin sin

( , 0 and , ) 0,   for  = 1, ..., 

( 0 and , , ) 0,   for  = 1, ..., 

 

 

 

 

n n
u

l

k

k

T x x x x T p x p x

T x x x x T p x p x

T x x a x k n

T x b x x k n

 (3-55) 

 Strain-displacement equations: 

( ) ( ) ( ) ( ) ( ) ( )
11 1 1 22 2 2 33 3 3

( ) ( ) ( ) ( ) ( ) ( )
13 1 3 3 1 23 2 3 3 2

( ) ( ) ( )
12 2 1 1 2

, ;     , ;     ,

2 , , ;    2 , ,

2 , ,
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 
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  
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k k k k k k
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v v v

v v v v

v v

 (3-56) 

 Equilibrium, Navier equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 1 11 12 66 2 12 13 44 3 13 44 1 33

( ) ( ) ( ) ( )
66 1 22 11 1 12 2 13 3 1
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( ) ( ) ( ) ( )
55 3 22 13 1 23 2 33 3 3

( ) , ;

, ( ) , ( ) , ,

, ( ) ,

  

  

  

    

   

k k

k k k k k k k k

k k k k

C C C T

C v C C v C C v C v

C v C C C T

 (3-57) 

 Continuity conditions in terms of the stresses and interfacial constitutive response: 
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( ) ( 1)
13 1 2 3 13 1 2 3

( ) ( 1)
23 1 2 3 23 1 2 3

( ) ( 1)
33 1 2 3 33 1 2 3

( 1) ( ) ( )
1 1 2 3 1 1 2 3 13 1 2 3

1

( 1) ( )
2 1 2 3 2 1 2

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

1
( , , ) ( , , ) ( , , )

( , , ) ( , ,

 

 

 



















 



k k k k

k k k k

k k k k

k k k k k k
k
S

k k k

x x x x x x

x x x x x x

x x x x x x

v x x x v x x x x x x
K

v x x x v x x ( )
3 23 1 2 3

2

( 1) ( ) ( )
3 1 2 3 3 1 2 3 33 1 2 3

1
) ( , , )

1
( , , ) ( , , ) ( , , )







 

k k k
k
S

k k k k k k
k
N

x x x x
K

v x x x v x x x x x x
K

 (3-58) 

 Boundary conditions in terms of the stresses and displacements: 

   

   

( )
33 1 2 3 3 1 1 2 2

( ) ( )
23 1 2 3 3 13 1 2 3 3

(1) 0
33 1 2 3 3 1 1 2 2

(1) 0 (1) 0
23 1 2 3 3 13 1 2 3 3

( )
11 1 2 3

( , , ) sin sin

( , , ) ( , , ) 0 

( , , ) sin sin

( , , ) ( , , ) 0 

( 0 and , , ) 0,  for  = 1



 



 



 

   

  

   

 

n n
u

n n n n

l

k

x x x x f p x p x

x x x x x x x x

x x x x f p x p x

x x x x x x x x

x b x x k
( )

22 1 2 3

( )
2 1 2 3

( )
1 1 2 3

( )
3 1 2 3

( )
3 1 2

, ..., 

( , 0 and , ) 0,  for  = 1, ..., 

( 0 and , , ) 0,  for  = 1, ..., 

( , 0 and , ) 0,  for  = 1, ..., 

( 0 and , , ) 0,  for  = 1, ..., 

( , 0 a

  

 

 

 



k

k

k

k

k

n

x x a x k n

v x b x x k n

v x x a x k n

v x b x x k n

v x x 3nd , ) 0,  for  = 1, ..., a x k n

 (3-59) 

3.3.2 Solution of the heat conduction problem through the transfer matrix method 

The solution of the heat conduction problem in the layer k, Eq. (3-53), which satisfies the thermal boundary 

conditions at the plate edges in Eq. (3-55) is obtained using the method of separation of variables [6]: 

   ( ) ( )
1 2 3 3 1 1 2 2( , , ) ( ) sin sink kT x x x F x p x p x  (3-60) 

where: 

   

( ) ( )
3 3( ) ( ) ( )

3 1 2

2 2( ) ( )
1 1 2 2( )

( )
3

( ) ( ) 




k ksx sxk k k

k k
k

k

F x c e c e

K p K p
s

K

 (3-61) 

The thermal boundary conditions at the upper and lower surfaces of the plate, Eq. (3-55), and the thermal 

continuity conditions at the layer interfaces, Eq. (3-54), lead to an algebraic system of 2×n coupled 

equations in the 2×n unknown constants ( )
1

k c  and ( )
2

k c , for k = 1, …, n. The transfer matrix method is used 

here for the efficient closed form derivation of the 2×n unknown constants.  

The temperature distribution, Eqs. (3-60) and (3-61),  and its gradient are written in matrix form as: 
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   
( )

2 3 ( )
3 1 1 2 2

2 3 3

( , )
( )sin sin

( , ),

 
 

 

k

kT x x
G x p x p x

T x x
 (3-62) 

where: 

( )

1( ) ( )
3 3

2

( ) ( )
 

  
 

k

k k c
G x D x

c
 (3-63) 

( )
3 3

( )
3 3 3

( )




 
   

k sx sx
k

sx sx

e e
D x

se se
 (3-64) 

and ( )
3( )k D x  is a 2×2 matrix whose elements are explicit functions of ( )k s  defined in Eq. (3-61) and  3x . 

In order to stablish a relationship between ( )
1

k c  and ( )
2

k c , and the constants of the layer k = 1,  the same 

procedure as followed for the plane strain problem in Sect. 3.2, is followed here; the local transfer and 

interfacial matrices remain the same as those of the 2D problem defined in Eqs. (3-20) and (3-21). The 

relationships between the thermal constants of the layer k and those of the first layer given in Eqs. (3-23) 

and (3-25) in the matrix and expanded forms, and the expressions given in Eq. (3-24) for the constant of 

the first layer, hold also for the case of the plate with finite dimensions. Therefore, the temperature 

distribution is fully defined by Eqs. (3-24), (3-25), (3-60), (3-61) and (A-2) in Appendix A. 

3.3.3 Solution of the thermo-elastic problem through the transfer matrix method 

The displacement components in the layer k are obtained by summing particular and complementary 

solutions of the governing equilibrium equations (3-57), for i = 1, 2, 3: 

( ) ( ) ( )
1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , ) k k k

i ip icv x x x v x x x v x x x  (3-65) 

In the absence of thermal loads, the particular solution is ( )
1 2 3( , , ) 0k

ipv x x x .  

Particular solution for layer k 

A particular solution of the equilibrium equations (3-57) for the layer k, with ( ) ( )
1 2 3( , , )k kT T x x x  

prescribed by the previous solution of the heat conduction problem, which satisfies the edge boundary 

conditions in Eq. (3-59), is [6]: 

   
   
   

( ) ( )
3 3

( ) ( )
3 3

( ) ( )
3 3

( ) ( ) ( )
1 1 2 3 1 2 1 1 2 2

( ) ( ) ( )
2 1 2 3 1 2 1 1 2 2

( ) ( ) ( )
3 1 2 3 1 2 1 1 2 2

( , , ) ( )cos sin

( , , ) ( )sin cos

( , , ) ( )sin sin







 

 

 

k k

k k

k k

sx sxk k k
p

sx sxk k k
p

sx sxk k k
p

v x x x A e A e p x p x

v x x x B e B e p x p x

v x x x D e D e p x p x

 (3-66) 
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where ( )
1

k A , ( )
2

k A , ( )
1

k B , ( )
2

k B , ( )
1

k D  and ( )
2

k D  are unknown constants and ( )k s  is given in Eq. (3-61). 

Substituting ( )
1

k
pv , ( )

2
k

pv  and ( )
3

k
pv  from Eq. (3-66) into Eq. (3-57) and collecting the terms multiplying 

( )
3

k sxe  and 
( )

3 k sxe  and equating them to zero, result in a system of six algebraic equations: 

      

   

      
   

   

( )
2 22

44 11 1 66 2 1 12 66 1 2 1

( )( )
13 44 1 1 1 1 11 1 12 2 13 3

( )
2 22

12 66 1 2 1 55 22 2 66 1 1

( )( )
23 55 2 1 2 1 12 1 22 2 23 3

( )
22

13 44 1 1 33 44 1

  

  

     


     

     


     

    

k

kk

k

kk

k

C s C p C p A C C p p B

C C p sD p c C C C

C C p p A C s C p C p B

C C p sD p c C C C

C C p sA C s C p C   
   

      

   

      
 

2

55 2 1

( )( ) ( )
23 55 2 1 1 13 1 23 2 33 3

( )
2 22

44 11 1 66 2 2 12 66 1 2 2

( )( )
13 44 1 2 1 2 11 1 12 2 13 3

( )
2 22

12 66 1 2 2 55 22 2 66 1 2

(
23 55 2 2 2

  

  

 


     

     


     

     


   

kk k

k

kk

k

p D

C C p sB s c C C C

C s C p C p A C C p p B

C C p sD p c C C C

C C p p A C s C p C p B

C C p sD p  

      
   

( ))
2 12 1 22 2 23 3

( )
2 22

13 44 1 2 33 44 1 55 2 2

( )( ) ( )
23 55 2 2 2 13 1 23 2 33 3

  

  

 

     


     

kk

k

kk k

c C C C

C C p sA C s C p C p D

C C p sB s c C C C

 

(3-67) 

which depend on the layer material properties, the integration constants of the thermal problem derived in 

Sect. 3.3.2 and thermal boundary conditions. Solution of the system of equations (3-67) is: 

3 3
( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( )

1 1 1 1 1 2
1 1

( )3
( ) ( ) ( ) 1 ( ) ( ) ( )2

1 1 3 2 1( )
1 1

( ) ( )
( ) ( ) ( ) ( )2 2

2 1 2 1( ) ( )
1 1

;  ;

;  ;

;  

 

 





 

 

  

 



k k k k k k k k
j j j j

j j

k
k k k k k k

j j k
j

k k
k k k k

k k

A c O X B c O X

c
D c O X A A

c

c c
B B D D

c c

 (3-68) 

where: 
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 
 
 

( )

1 11 1 12 2 13 3
( )

2 12 1 22 2 23 3

13 1 23 2 33 3

  
  
  

   
    
   

k

k

p C C C

X p C C C

s C C C

 

       
       
       

( ) 2 22
44 11 1 66 2 12 66 1 2 13 44 1

2 2( ) 2
12 66 1 2 55 22 2 66 1 23 55 2

2 22
13 44 1 23 55 2 33 44 1 55 2

     
 
      
 

       

k

k

C s C p C p C C p p C C ps

O C C p p C s C p C p C C p s

C C ps C C p s C s C p C p

 

(3-69) 

Complementary solution for layer k 

A solution for the complementary problem, which satisfies the boundary conditions at the plate edges in 

Eq. (3-59) is obtained using the method of separation of variables [8]: 

   
   
   

( ) ( )
1 1 2 3 3 1 1 2 2

( ) ( )
2 1 2 3 3 1 1 2 2

( ) ( )
3 1 2 3 3 1 1 2 2

( , , ) ( )cos sin

( , , ) ( )sin cos

( , , ) ( )sin sin







k k
c c

k k
c c

k k
c c

v x x x V x p x p x

v x x x U x p x p x

v x x x W x p x p x

 (3-70) 

with: 

( )
3( ) ( ) ( ) ( ) ( ) ( )

3 3 3 0 0 0( ), ( ), ( ) , ,      
k txk k k k k k

c c cV x U x W x V U W e  (3-71) 

where ( )
0

k V , ( )
0

k U   and ( )
0

k W  are unknown constants and ( )k t  is the root of the associated characteristic 

equation defined below. Substituting Eqs. (3-70) and (3-71) in the homogenous part of Eq. (3-57) yield the 

following system of algebraic equations: 

        

        

        

( )
2 22

12 66 1 2 0 44 11 1 66 2 0 13 44 1 0

( )
2 22

55 22 2 66 1 0 12 66 1 2 0 23 55 2 0

( )
2 22

23 55 2 0 13 44 1 0 33 44 1 55 2 0

0

0

0

        
 

       
 

       
 

k

k

k

C C p p U C t C p C p V C C p tW

C t C p C p U C C p p V C C p tW

C C p tU C C p tV C t C p C p W

 (3-72) 

  

The non-trivial solution of the system is obtained by imposing the determinant of the coefficients to be 

zero. This yields the characteristic equation for the layer k  [8]: 

( ) 6 4 2( ) 0    k At Bt Ct D  (3-73) 

where: 
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 

     
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( )2( ) 2
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( )4 2
2 66 22 33 23 55 22 44 23 66

2

2

2

2



      

    
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     
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( )2 2 ( )2
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( )( ) 6 2 4( ) 2
22 55 66 2 55 11 22 12 66 22 44 12 55 1 2
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2

44 11 22 12 66 11

2 2

2 2 2

2

       
     

      

  

k k

k

kkk

k

p C C C C C C C C C C C C C

C C C C C C C C C C C

D C C C p C C C C C C C C C p p

C C C C C C        4 2 ( ) 6

55 12 44 1 2 11 44 66 12   
k

C C C p p C C C p

 
(3-74) 

 

The characteristic equation (3-73) is put into the standard cubic form by introducing 
( )

( ) ( ) 2

3
     

 

k
k k B

t
A

 

[8]: 

( ) 3

( ) 2
( )

2

( ) 3 2
( )

3

( ) 0

3

3

2 9 27

27

   

 
   

 

  
   

 

k

k

k

k

k

d f

CA B
d

A

B ABC DA
f

A

 
(3-75) 

The discriminant of Eq. (3-75), 
2 3

( ) ( ) ( )
4 27

 k k f d
H , controls the nature of the solution. When the 

discriminant is negative, the roots of the above cubic equation are real and unequal [8]: 

 

( ) 1/2 ( )
( )

( )

( ) 1
3/2

2( 1)
2 cos

3 3

27
cos

2

 

 

           

 
  

  

k k
k

j

k

k

d j

f

d

 (3-76) 

for j=1, 2 and 3. Recalling Eqs. (3-71), (3-72) and 
( )

( ) ( ) 2

3
     

 

k
k k B

t
A

, the displacement functions take 

the following forms: 
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3 3
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3 ( )( )
3 3
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3 ( )( )
3 3

1

( ) ( )

( ) ( )

( ) ( )







   

   

   
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
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c j j
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j
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V x L U x

U x U x

W x R W x

 (3-77) 

where: 

( )( )
3 1 3 2 3

( )( )
3 2 3 1 3

( ) ( ) ( )

( ) ( ) ( )

   

   

kk
j j j j j

kk
j j j j j

U x a C x a S x

W x a C x a S x
 (3-78) 

for j=1, 2, 3. If 
( )

0
3

   
 

k

j

B

A
, then ( ) 1 k  and: 

( ) ( )
3 3

( ) ( )
3 3

( ) cosh( )

( ) sinh( )





k k
j j

k k
j j

C x m x

S x m x
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0
3

   
 

k

j

B

A
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3 3
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3 3
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( ) sin( )





k k
j j
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C x m x

S x m x
 

where: 
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33 44 2 44 55

3








 

       

  

     

  

   

k
j j

k
k

j j jk
j

k k
jk

j j jk
j

k
k

j j j j

B
m

A

p p
L m C C C C C C C

J

C C C p C p

p m
R m C C C C C C p C p

J

p C C C C

J C C m m p C C     
         

2 2
33 66 1 13 11 33 13 44

2 2 2 2

66 2 11 1 55 2 44 1

2     

  

C C p C C C C C

C p C p C p C p

 

(3-79) 
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Solutions for the cases of zero and positive discriminants are presented in matrix form in Appendix E. 

The complementary solution for each layer is obtained by substituting ( )
3( )k

cV x , ( )
3( )k

cU x  and ( )
3( )k

cW x  

in Eq. (3-77), which depend on six independent unknown constants, ( )
11

k a , ( )
21

k a , ( )
12

k a , ( )
22

k a , ( )
13

k a  and 

( )
23

k a ,  into Eq. (3-70). Therefore, the displacement components in each layer, Eq. (3-65), depend on six 

unknown constants, which leads to a total of 6×n unknowns for the plate. The unknowns are typically 

obtained using interfacial continuity and boundary conditions, which lead to a system of coupled algebraic 

equations whose solution becomes computationally cumbersome on increasing the number of layers.  

Here, we use the transfer matrix method to solve the problem in closed-form. First, the six unknown 

constants in the solution of the generic layer k, ( )
11

k a , ( )
21

k a , ( )
12

k a , ( )
22

k a , ( )
13

k a  and ( )
23

k a  will be related to 

those of the first layer. Then, the problem is reduced to finding only six unknown constants (1)
11a , (1)

21a , 
(1)

12a , (1)
22a , (1)

13a  and (1)
23a  through the application of boundary conditions at the upper and lower surfaces 

of the plate.  

From Eqs. (3-65), (3-66), (3-70) and (3-77), the displacements in the layer k, can be written as: 

   

( ) ( )
3 3

( ) ( )
3 3

( ) ( ) ( )
1 1 2 3 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 11 21 12 22 13 23 1 1 2 2

( ) ( ) ( )
2 1 2 3 1 2

( ) ( ) ( ) ( ) ( ) ( )
3 11 21 12 22

( , , )

( , , , , , , ) cos sin

( , , )

( , , , , ,

k k

k k

sx sxk k k

k k k k k k k
c

sx sxk k k

k k k k k k
c

v x x x Ae A e

V x a a a a a a p x p x

v x x x B e B e

U x a a a a a





  
 

  

    

   

( ) ( )
3 3

( )
13 23 1 1 2 2

( ) ( ) ( )
3 1 2 3 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )
3 11 21 12 22 13 23 1 1 2 2

, ) sin cos

( , , )

( , , , , , , ) sin sin

k k

k

sx sxk k k

k k k k k k k
c

a p x p x

v x x x D e D e

W x a a a a a a p x p x




  

 

 (3-80) 

where the constants ( )
1

k A , ( )
2

k A , ( )
1

k B , ( )
2

k B , ( )
1

k D  and ( )
2

k D  are defined in Eq. (3-68). Normal and 

transverse shear stress components are derived from the equation above using constitutive and compatibility 

equations (3-49) and (3-56). Displacements and stresses are then collected in the following matrix form: 

2 1 2 3

1 1 2 3

3 1 2 3 ( )
1 2 3

33 1 2 3

23 1 2 3

13 1 2 3

( , , )

( , , )

( , , )
( , ) ( )

( , , )

( , , )

( , , )





 
 
 
 

 
 
 
 
  

k

v x x x

v x x x

v x x x
C x x M x

x x x

x x x

x x x

 (3-81) 

where 1 2( , )C x x  and ( )
3( )k M x  are 6×6 and 6×1 matrices defined as follows: 
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           
           

1

2

3
2

4

5

6

1 1 1 2 2 2 1 1 2 2 3 1 1 2 2

4 1 1 2 2 5 1 1 2 2 6 1 1 2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

sin cos ; cos sin ; sin sin ;

sin sin ; sin cos ; cos sin ;

 
 
 
 

  
 
 
 
  

  

  

C

C

C
C x

C

C

C

C p x p x C p x p x C p x p x

C p x p x C p x p x C p x p x

 

(3-82) 

 

( )

11

21

12( ) ( ) ( )
3 3 3

22

13

23

( ) ( ) ( )

 
 
 
 

   
 
 
 
  

k

k k k

a

a

a
M x Q x E x

a

a

a

 (3-83) 

The 6×1 matrix ( )
3( )k Q x  is independent of the unknowns and its elements are: 

   
    

3 3

3 3

3 3

3 3 3 3

3 3 3 3

3

( )
1 3 1 2

( )
2 3 1 2

( )
3 3 1 2

( )
4 3 2 23 1 2 1 13 1 2

33 1 2 1 2 23 2 13 1 33 3

( )
5 3 55 1 2

( )

( )

( )

( )

( )

  







 

 



 

 

 

     

     

 

sx sxk

sx sxk

sx sxk

sx sx sx sxk

sx sx sx sx

sx sk

Q x B e B e

Q x Ae A e

Q x D e D e

Q x p C B e B e p C Ae A e

C s D e D e c e c e C C C

Q x C s B e B e   
   

3 3 3

3 3 3 3

2 1 2

( )
6 3 44 1 2 1 1 2( )



 

   
     

x sx sx

sx sx sx sxk

p D e D e

Q x C s Ae A e p D e D e

 
(3-84) 

The 6×6 matrix ( )
3( )k E x  relates to the complementary solution and depends on the sign of the discriminant. 

Expressions for ( )
3( )k E x  in different cases are given in the Appendix E. 

Local transfer matrix of a generic layer 

An expression for the unknown constants of the layer k,  ( )

11 21 12 22 13 23, , , , ,
k T

a a a a a a , is obtained by setting 

1
3 3

 kx x  in Eq. (3-83). The local transfer matrix of the layer k is then derived by substituting the expression 

of the unknowns into Eq. (3-83) and setting 3 3 kx x : 

( ) ( ) ( ) 1 1 ( ) 1 ( ) 1 ( )
3 3 3 3 3 3( ) ( ) ( ) ( ) ( ) ( )       

k k k k k k k k k k k kM x E x E x M x Q x Q x  (3-85) 
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Eq. (3-85) establishes a relationship between the values of matrix ( )k M  at the top and bottom surfaces of 

the layer. 

Continuity conditions and global transfer matrix 

The continuity conditions between the layer k and k-1, Eq. (3-58), are written in matrix form: 

 ( ) 1 1 ( 1) 1
3 3( )  ( )   k k k k kM x B M x  (3-86) 

with 

1
2

1
1

1
1

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1








 
 
 
 

  
 
 
 
  

k
S

k
S

k
k N

K

K

K
B  (3-87) 

The matrix 1kB  depends on the interfacial stiffnesses and for the case of perfect bonding, with 
1 1 1

1 21 1 1 0    k k k
S S NK K K , it becomes the identity matrix. 

Starting from Eq. (3-85) and using the local and interfacial transfer matrices of the layers and interfaces 

below the layer k in equations (3-85) and (3-86), (see Figure 3-2), a relationship between ( )
3( )k kM x  and 

(1) 0
3( )M x  is derived: 

     

     

11( ) ( ) ( ) 1 1 (1) 0 (1) 0
3 3 3 3 3

( ) ( ) 1 1 1 ( 1) 1 ( ) 1 ( )
3 3 3 3 3

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  ( )

  



     

 


  




  




 

k k k i i i i i

i k

ik
j j j j j i i i i i k k

i j k

M x B B E x E x M x Q x

B E x E x B Q x Q x Q x

 (3-88) 

The explicit expressions, relating the six unknown constants, ( )
11

k a , ( )
21

k a , ( )
12

k a , ( )
22

k a , ( )
13

k a  and ( )
23

k a

, to those of the first layer are then derived by substituting ( )
3( )k kM x  and (1) 0

3( )M x  defined in Eq. (3-83), 

into Eq. (3-88):  
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    

    

( ) (1)

11 11

21 21

1112 12( ) 1 ( ) ( ) 1 1 (1) 0
3 3 3 3

22 22

13 13

23 23

( ) ( ) 1 1 1 ( 1) 1 ( )
3 3 3

2

( ) ( ) ( ) ( )

( ) ( ) ( )

  



    

 

   
   
   
   

    
   

   
   
      


 




 

k

k k k i i i i i

i k

ik
j j j j j i i i i

i j k

a a

a a

a a
E x B B E x E x E x

a a

a a

a a

B E x E x B Q x Q 1
3( )ix

 (3-89) 

for k = 2, …, n. For fully bonded layers, the matrix B = I in Eq. (3-89) can be omitted. The constants of the 

first layer may then be defined using six boundary conditions (3-59) at the top and bottom surfaces of the 

laminate and Eq. (3-89) for k = n, which lead to an algebraic system of six equations. A different approach, 

similar to that presented in Appendix D for the plane strain problem in Sect. 3.2, is followed to avoid the 

derivation of the constants; the approach yields the following  explicit expressions for the displacements: 

 

( )
2 1 2 3

6 6 6
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

1 3 1 3  3 3 1 3 1 1 2 2
1 1 1

( )
1 1 2 3

6 6
( ) ( ) ( ) (1) 0 (1)

2 3 2 3  3
1 1

( , , )

( ) ( ) ( ) ( ) + ( ) sin( )cos( )

( , , )

( ) ( ) ( )

  

 



       
  



 
   

 

  

 

k

k k k k k
r rl l l t t

l r t

k

k k k
r rl l

l r

v x x x

Q x P x M x Q x P x S p x p x

v x x x

Q x P x M x Q 

 

6
0 ( ) ( )
3 2 3 1 1 2 2

1

( )
3 1 2 3

6 6 6
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

3 3 3 3  3 3 3 3 1 1 2 2
1 1 1

( ) ( ) cos( )sin( )

( , , )

( ) ( ) ( ) ( ) ( ) sin( )sin( )



  

 
  





  
      

  



  

k k
l t t

t

k

k k k k k
r rl l l t t

l r t

x P x S p x p x

v x x x

Q x P x M x Q x P x S p x p x

 

(3-90) 

and stresses: 

 

( )
33 1 2 3

6 6 6
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

4 3 4 3  3 3 4 3 1 1 2 2
1 1 1

( , , )

( ) ( ) ( ) ( ) ( ) sin( )sin( )



  



  
      

  
  

k

k k k k k
r rl l l t t

l r t

x x x

Q x P x M x Q x P x S p x p x
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 

( )
23 1 2 3

6 6 6
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

5 3 5 3  3 3 5 3 1 1 2 2
1 1 1

( )
13 1 2 3

6 6
( ) ( ) ( ) (1) 0 (1

6 3 6 3  3
1 1

( , , )

( ) ( ) ( ) ( ) ( ) sin( )cos( )

( , , )

( ) ( ) ( )





  

 



        
  



    
 

  

 

k

k k k k k
r rl l l t t

l r t

k

k k k
r rl l

l r

x x x

Q x P x M x Q x P x S p x p x

x x x

Q x P x M x 

 

6
) 0 ( ) ( )

3 6 3 1 1 2 2
1

( )
22 1 2 3

6 6 6
( ) ( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

1 12 2 3 2 3  3 3 2 3
1 1 1

( ) ( ) ( )
2 22 1 3

( ) ( ) cos( )sin( )

( , , )

( ) ( ) ( ) ( ) ( )

( )





  

   




              

 



  

k k
l t t

t

k

k k k k k k
r rl l l t t

l r t

k k k

Q x P x S p x p x

x x x

p C Q x P x M x Q x P x S

p C Q x P  

 

6 6 6
( ) (1) 0 (1) 0 ( ) ( )

1 3  3 3 1 3
1 1 1

6 6 6
( ) ( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

23 3 3 3 3 3 3  3 3 3 3 3
1 1 1

( ) ( ) ( ) + ( )

( ), ( ), ( ) ( ) ( ),

              

  

  

      
  

  
       

   

  

  

k k k
r rl l l t t

l r t

k k k k k k
r rl l l t t

l r t

x M x Q x P x S

C Q x P x M x Q x P x S

 

 

( ) ( )
1 1 2 2 12 1 22 2 23 3 1 2 3

( )
11 1 2 3

6 6 6
( ) ( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

1 11 2 3 2 3  3 3 2 3
1 1 1

                                sin( )sin( ) ( , , )

( , , )

( ) ( ) ( ) ( ) ( )

  



  

   



        
 

  

k k

k

k k k k k k
r rl l l t t

l r t

p x p x C C C T x x x

x x x

p C Q x P x M x Q x P x S

 

 

6 6 6
( ) ( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

2 12 1 3 1 3  3 3 1 3
1 1 1

6 6
( ) ( ) ( ) ( ) (1) 0 (1) 0 ( )

13 3 3 3 3 3 3  3 3 3 3
1 1

( ) ( ) ( ) ( ) + ( )

( ), ( ), ( ) ( ) ( ),

  

 

   
 

          
  

      
 

  

 

k k k k k k
r rl l l t t

l r t

k k k k k
r rl l l t

l r

p C Q x P x M x Q x P x S

C Q x P x M x Q x P x

 

6
( )

3
1

( ) ( )
1 1 2 2 11 1 12 2 13 3 1 2 3

( )
12 1 2 3

6 6
( ) ( ) ( ) ( ) (1) 0 (1)

66 2 2 3 2 3  3
1 1

                                              sin( )sin( ) ( , , )

( , , )

( ) ( ) ( )

  





 






   



 
   

 



 

k
t

t

k k

k

k k k k
r rl l

l r

S

p x p x C C C T x x x

x x x

C p Q x P x M x 

 

6
0 ( ) ( )
3 2 3

1

6 6 6
( ) ( ) ( ) (1) 0 (1) 0 ( ) ( )

1 1 3 1 3  3 3 1 3
1 1 1

( ) ( )

( ) ( ) ( ) ( ) + ( )

                                                             



  

      
  

        
   



  

k k
l t t

t

k k k k k
r rl l l t t

l r t

Q x P x S

p Q x P x M x Q x P x S

1 1 2 2                                     cos( )cos( ) p x p x

 

(3-91) 

with: 

 
6 6 1( ) ( ) ( ) 1

3 3 3
1 1

( ) ( ) ( )


 

 
  

 
 k k k k k

ir ij jd dr
d j

P x E x E x B  (3-92) 
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The constants (1) 0
3( )lM x , ( )

 
k

rl  and ( )k
tS  are given in Eqs. (F-1) and (F-2) in the Appendix F; ( )

3( )k
lQ x  

and kB  in Eqs. (3-84) and (3-87); ( )
3( )k

ijE x  in Appendix E; ( )
1 2 3( , , )k T x x x  is defined in Sect. 3.3.2. 

For fully bonded layers, Eq. (3-92) modifies as: 

6
( ) ( ) ( ) 1

3 3 3
1

( ) ( ) ( )



k k k k
ir ij jr

j

P x E x E x  (3-93) 

3.3.4 Application to simply supported plates subjected to mechanical loading 

In this section, exact solutions for a simply supported anisotropic plate with three layers of equal thickness, 

symmetrically stacked and joined by two interfaces and subjected to bi-sinusoidal transverse loading are 

presented. The results are given in tables using at least four digits in order to generate benchmark solutions 

with enough precision for verification of approximate structural theories. The results are also presented in 

graph form, to highlight the important influence of the interfacial imperfections on the stress and 

displacement fields.  

The thickness of the plate is h and the origin of the coordinate system is placed at mid-thickness of the 

left edge. Dimensionless stresses and displacements are given in Table 3-7 for plates with  4a h  and 

different b h  and interfacial stiffnesses.  The elastic constants of the layers are 25L TE E , 0.5LT TG E

, 0.2TT TG E , 0.25  LT TT  (subscripts L and T indicate in-plane principal material directions), and 

the stacking sequence is  0,90,0  so that the L direction coincides with 2x  axis in the outer layers. The 

assumed ratios between the elastic constants of the layers could represent a graphite-epoxy laminate. The 

plate is subjected to normally applied tractions    3 1 2sin sin  uf f x b x a  acting on its upper surface. 

The interfaces are identical with 1 2 S S SK K K  and the results are tabulated for perfectly bonded 

interfaces, 1 1 0 S NK K , sliding interfaces in constrained contact, 1 0NK  and 0SK , and partial 

bonding with dimensionless interfacial stiffnesses 0.2S TK h E  and 0.5N TK h E  (see Eq. (3-50) for the 

interfacial traction laws used in the model).  

In order to avoid interpenetration between the layers, the results presented for the cases with 1 0NK , 

are valid only for positive applied surface tractions. The model presented in the previous section and the 

results are valid under the assumption of infinitesimal strains and displacements, which must be verified in 

each layer. The validity of this assumption and the range of values of the applied load for which the 

solutions in the tables are correct can be verified by using the maximum dimensionless transverse 

displacements and stresses given in the tables.  
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Table 3-7: Simply supported three-layer plate  0, 90, 0 , 4a h : normal surface tractions 

   3 1 2sin sin  uf f x b x a  acting on upper surface. Elastic constants: 25L TE E , 0.5LT TG E , 

0.2TT TG E  and 0.25  LT TT  . L direction coincides with 2x  axis in the outer layers. Subscripts l and u 

correspond to values below and above the interface. Identical interfaces with 1 2 S S SK K K . 

T3-7-1: Perfect bonding: 1 0SK  and 1 0NK  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )T uv E f h  at 1 0x   and 2 2x a  

4 1.459 0.900 0.458 0.458 -0.425 -0.425 -0.862 -1.460 
10 0.983 0.649 0.354 0.354 -0.288 -0.288 -0.584 -0.935 
20 0.540 0.366 0.211 0.211 -0.135 -0.135 -0.293 -0.476 

Dimensionless in-plane displacements: 2 ( )T uv E f h  at 1 2x b  and 2 0x   

4 0.599 0.145 -0.154 -0.154 0.203 0.203 -0.124 -0.620 
10 0.876 0.231 -0.200 -0.200 0.250 0.250 -0.209 -0.897 
20 0.910 0.244 -0.201 -0.201 0.252 0.252 -0.221 -0.930 

Dimensionless transverse displacements: 3 ( )T uv E f h  at 1 2x b  and 2 2x a  

4 4.962 5.020 5.070 5.070 5.226 5.226 5.333 5.431 
10 6.992 7.030 7.069 7.069 7.227 7.227 7.345 7.463 
20 7.209 7.240 7.275 7.275 7.433 7.433 7.555 7.679 

Dimensionless bending stresses: 11 uf  at 1 2x b  and 2 2x a  

4 -1.267 -0.713 -0.262 -8.900 8.546 0.476 0.932 1.525 
10 -0.482 -0.222 0.005 -2.652 2.433 0.216 0.450 0.724 
20 -0.264 -0.078 0.085 -0.692 0.696 0.145 0.314 0.511 

Dimensionless bending stresses: 22 uf  at 1 2x b  and 2 2x a  

4 -12.08 -3.011 3.040 0.100 0.106 -3.681 2.899 12.81 
10 -17.33 -4.569 3.996 0.207 0.000 -4.674 4.440 18.05 
20 -17.93 -4.778 4.053 0.229 -0.020 -4.744 4.640 18.64 

Dimensionless shear stresses: 12 uf  at 1 0x   and 2 0x   

4 0.808 0.410 0.119 0.119 -0.087 -0.087 -0.387 -0.817 
10 0.524 0.291 0.108 0.108 -0.074 -0.074 -0.262 -0.508 
20 0.283 0.163 0.067 0.067 -0.033 -0.033 -0.132 -0.260 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 uf  at 1 0x   and 2 2x a  

4 0.118 0.206 0.266 0.303 0.727 0.755 0.357 0.308 0.235 0.134 
10 0.041 0.071 0.091 0.102 0.160 0.169 0.119 0.104 0.080 0.046 
20 0.019 0.033 0.043 0.048 0.058 0.061 0.053 0.046 0.036 0.021 

Dimensionless transverse shear stresses: 23 uf  at 1 2x b  and 2 0x   

4 0.650 0.997 1.114 1.028 1.027 1.017 1.007 1.129 1.030 0.681 
10 0.887 1.360 1.522 1.406 1.396 1.384 1.382 1.534 1.391 0.916 
20 0.909 1.395 1.561 1.443 1.431 1.419 1.417 1.573 1.426 0.938 

Dimensionless transverse normal stresses: 33 uf  at 1 2x b  and 2 2x a  

4 0.027 0.093 0.179 0.269 0.372 0.614 0.718 0.811 0.901 0.971 
10 0.032 0.109 0.207 0.307 0.402 0.593 0.688 0.788 0.887 0.967 
20 0.033 0.110 0.209 0.310 0.404 0.592 0.686 0.786 0.886 0.966 
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T3-7-2: Partial bonding: 0.2S TK h E  and 0.5N TK h E  ( 0uf ) 

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )T uv E f h  at 1 0x   and 2 2x a  

4 1.739 0.716 -0.221 0.900 -0.874 0.497 -0.669 -1.963 
10 1.507 0.815 0.167 0.734 -0.678 -0.020 -0.764 -1.568 
20 0.847 0.483 0.141 0.417 - 0.349 - 0.039 - 0.431 -0.852 

Dimensionless in-plane displacements: 2 ( )T uv E f h  at 1 2x b  and 2 0x   

4 0.899 0.039 -0.772 0.977 -0.769 1.001 -0.023 -1.115 
10 1.511 0.089 -1.250 1.571 -1.326 1.487 -0.071 -1.729 
20 1.591 0.100 -1.303 1.647 -1.394 1.541 -0.081 -1.809 

Dimensionless transverse displacements: 3 ( )T uv E f h  at 1 2x b  and 2 2x a  

4 8.600 8.666 8.693 9.257 9.411 10.72 10.85 10.94 
10 14.11 14.16 14.19 14.95 15.11 16.25 16.37 16.47 
20 14.77 14.82 14.85 15.62 15.78 16.91 17.04 17.14 

Dimensionless bending stresses: 11 uf  at 1 2x b  and 2 2x a  

4 -1.546 -0.540 0.398 -17.82 17.56 -0.423 0.746 2.018 
10 -0.772 -0.231 0.290 -5.967 5.778 -0.142 0.458 1.087 
20 -0.447 - 0.051 0.333 -1.843 1.824 -0.155 0.286 0.744 

Dimensionless bending stresses: 22 uf  at 1 2x b  and 2 2x a  

4 -18.05 -0.875 15.33 -0.875 0.944 -19.59 0.849 22.64 
10 -29.85 -1.757 24.72 -1.198 1.242 -29.09 1.700 34.47 
20 -31.35 -1.936 25.77 -1.215 1.253 -30.16 1.870 35.97 

Dimensionless shear stresses: 12 uf  at 1 0x   and 2 0x   

4 1.036 0.296 -0.390 0.737 -0.645 0.588 -0.272 -1.209 
10 0.829 0.334 -0.131 0.535 -0.475 0.226 -0.311 -0.887 
20 0.458 0.198 -0.047 0.293 - 0.246 0.106 - 0.176 -0.477 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 uf  at 1 0x   and 2 2x a  

4 0.138 0.219 0.248 0.224 1.093 1.119 0.274 0.306 0.272 0.172 
10 0.062 0.101 0.118 0.113 0.256 0.266 0.132 0.137 0.117 0.072 
20 0.030 0.049 0.057 0.055 0.088 0.091 0.062 0.065 0.055 0.034 

Dimensionless transverse shear stresses: 23 uf  at 1 2x b  and 2 0x   

4 0.907 1.238 1.065 0.350 0.428 0.430 0.354 1.280 1.522 1.126 
10 1.436 1.963 1.962 0.564 0.633 0.632 0.563 1.899 2.238 1.650 
20 1.496 2.045 1.764 0.590 0.652 0.651 0.587 1.969 2.319 1.709 

Dimensionless transverse normal stresses: 33 uf  at 1 2x b  and 2 2x a  

4 0.038 0.123 0.217 0.282 0.355 0.581 0.656 0.733 0.847 0.953 
10 0.053 0.171 0.298 0.380 0.425 0.525 0.570 0.660 0.804 0.938 
20 0.055 0.176 0.306 0.389 0.431 0.520 0.562 0.653 0.799 0.937 
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T3-7-3: Sliding interfaces in constrained contact: 0SK  and 1 0NK  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )T uv E f h  at 1 0x   and 2 2x a  

4 1.646 0.035 -1.579 1.341 -1.338 1.821 0.177 -1.484 
10 1.111 0.045 -1.023 1.057 -1.044 1.225 0.145 -0.942 
20 0.582 0.028 -0.527 0.572 -0.551 0.648 0.087 -0.476 

Dimensionless in-plane displacements: 2 ( )T uv E f h  at 1 2x b  and 2 0x   

4 1.329 0.002 -1.328 1.726 -1.525 1.364 0.011 -1.359 
10 2.172 0.004 -2.168 2.833 -2.549 2.209 0.013 -2.198 
20 2.251 0.004 -2.247 2.947 -2.644 2.289 0.014 -2.275 

Dimensionless transverse displacements: 3 ( )T uv E f h  at 1 2x b  and 2 2x a  

4 13.01 13.07 13.06 13.06 13.22 13.22 13.39 13.49 
10 21.07 21.13 21.14 21.14 21.31 21.31 21.45 21.55 
20 21.81 21.87 21.88 21.88 22.05 22.05 22.19 22.28 

Dimensionless bending stresses: 11 uf  at 1 2x b  and 2 2x a  

4 -1.557 0.014 1.588 -26.63 26.85 -1.535 0.069 1.689 
10 -0.778 0.045 0.869 -8.731 8.884 -0.689 0.144 0.982 
20 -0.535 0.056 0.647 -2.680 2.851 -0.423 0.175 0.776 

Dimensionless bending stresses: 22 uf  at 1 2x b  and 2 2x a  

4 -26.48 0.004 26.55 -1.540 1.632 -26.99 0.018 27.36 
10 -42.84 -0.007 42.91 -2.194 2.221 -43.41 -0.024 43.65 
20 -44.33 -0.013 44.40 -2.221 2.233 -44.92 -0.039 45.12 

Dimensionless shear stresses: 12 uf  at 1 0x   and 2 0x   

4 1.168 0.015 -1.142 1.204 -1.124 1.251 0.074 -1.116 
10 0.778 0.018 -0.743 0.860 -0.810 0.828 0.059 -0.715 
20 0.405 0.011 -0.383 0.456 -0.424 0.434 0.035 -0.366 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 uf  at 1 0x   and 2 2x a  

4 0.131 0.174 0.131 0 1.299 1.302 0 0.134 0.178 0.135 
10 0.052 0.069 0.052 0 0.212 0.212 0 0.053 0.070 0.053 
20 0.025 0.032 0.025 0 0.048 0.049 0 0.025 0.033 0.025 

Dimensionless transverse shear stresses: 23 uf  at 1 2x b  and 2 0x   

4 1.289 1.690 1.291 0 0.132 0.132 0 1.319 1.732 1.325 
10 2.014 2.641 2.015 0 0.124 0.124 0 2.043 2.681 2.048 
20 2.073 2.719 2.075 0 0.113 0.113 0 2.102 2.759 2.107 

Dimensionless transverse normal stresses: 33 uf  at 1 2x b  and 2 2x a  

4 0.052 0.165 0.277 0.330 0.382 0.609 0.662 0.716 0.831 0.946 
10 0.075 0.236 0.397 0.472 0.480 0.513 0.521 0.597 0.760 0.924 
20 0.077 0.241 0.405 0.482 0.487 0.506 0.511 0.588 0.755 0.922 

 

Figure 3-12 and Figure 3-13 highlight the influence of the interfacial imperfections on the field variables: 

in-plane and transverse displacements may become discontinuous at the interfaces and the stress 

distributions are substantially modified with changes in position and value of the maxima. 
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Figure 3-12: Through thickness variation of (a) displacements in 1x  direction at  1 20, 2 x x a , (b) 

displacements in 2x  direction at  1 22 , 0 x b x , (c) transverse displacements at  1 22 , 2 x b x a , (d) 

bending stresses in 1x  direction at  1 22 , 2 x b x a  and (e) bending stresses in 2x  direction at 

 1 22 , 2 x b x a  in a simply supported three-layer square plate  0, 90, 0 , 4 a h b h , normal surface 

tractions    3 1 2sin sin  uf f x b x a  acting on upper surface. Elastic constants: 25L TE E , 0.5LT TG E , 

0.2TT TG E  and 0.25  LT TT . L direction coincides with 2x  axis in the outer layers. Identical interfaces with 

1 2 S S SK K K . 
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Figure 3-13: Through thickness variation of (a) in-plane shear stresses at  1 20, 0 x x , (b) transverse shear 

stresses 13  at  1 20, 2 x x a , (c) transverse shear stresses 23  at  1 22 , 0 x b x  and (d) transverse normal 

stresses at  1 22 , 2 x b x a  in a simply supported three-layer square plate  0,90, 0 , 4 a h b h , normal 

surface tractions    3 1 2sin sin  uf f x b x a  acting on upper surface. Elastic constants: 25L TE E , 

0.5LT TG E , 0.2TT TG E  and 0.25  LT TT . L direction coincides with 2x  axis in the outer layers. Identical 

interfaces with 1 2 S S SK K K . 

3.3.5 Application to simply supported plates subjected to thermal loading 

This section presents exact solutions of temperature, displacements and stresses in a simply supported 

symmetrically laminated plate subjected to bi-sinusoidal thermal loading. The plate is composed of three 

layers of equal thickness, joined by two identical interfaces with 1 2 S S SK K K . The origin of the 

coordinate system is at the mid-thickness. The thermo-elastic constants of the layers are 25L TE E , 

0.5LT TG E , 0.2TT TG E , 0.25  LT TT , 62  T L  and 38L TK K  (subscripts L and T indicate 

in-plane principal material directions). The stacking sequence is  0,90,0  so that the L direction coincides 

with 
2x  axis in the outer layers.  
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Results in Table 3-8 and Table 3-9 correspond to plates with 4a h  and subjected to thermal loading 

   1 2sin sin  uT T x b x a  on the upper surface of the plate; the temperature increment at the lower 

surface of the plate is zero. Results in Table 3-8 correspond to layers in perfect thermal contact, 0R , and 

those in Table 3-9 to layers with interfacial thermal resistance, 15LRK h . Dimensionless stresses and 

displacements are presented for three b h  equal to 4, 10, 20 and for three cases of perfect bonding, 

1 1 0 S NK K , partial bonding with dimensionless interfacial stiffnesses equal to 0.2S TK h E  and 

1 0NK , and sliding interfaces in constrained contact, 0SK  and 1 0NK .  
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Table 3-8: Simply supported three-layer plate  0, 90, 0 , 4a h : applied temperature 

   1 2sin sin  uT T x b x a  on upper surface. Thermo-elastic constants: 25L TE E , 0.5LT TG E , 

0.2TT TG E , 0.25  LT TT , 62  T L  and 38L TK K . L direction coincides with 2x  axis in the outer 

layers. Perfect thermal contact, 0R . Subscripts l and u correspond to values below and above the interface. 
Identical interfaces with 1 2 S S SK K K . 

T3-8-1: Perfect bonding: 1 0SK  and 1 0NK ; Perfect thermal contact: 0R  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 1.543 0.669 -0.044 -0.044 -3.188 -3.188 -8.604 -12.77 
10 -2.515 -2.613 -2.795 -2.795 -3.980 -3.980 -6.168 -7.720 
20 -3.453 -3.494 -3.661 -3.661 -4.207 -4.207 -5.182 -5.900 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 0.853 0.141 -0.429 -0.429 -0.182 -0.182 -1.008 -2.942 
10 -0.010 -0.130 -0.390 -0.390 -0.660 -0.660 -1.150 -2.713 
20 -0.294 -0.236 -0.407 -0.407 -0.800 -0.800 -1.182 -2.631 

Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 7.470 7.616 7.966 7.966 10.46 10.46 14.20 22.66 
10 0.688 0.837 1.473 1.473 5.492 5.492 9.834 18.71 
20 -1.329 -1.149 -0.405 -0.405 4.078 4.078 8.579 17.55 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -1.383 -1.366 -2.075 -0.417 55.03 -9.494 -20.54 -51.78 
10 0.794 -1.039 -4.130 18.77 21.05 -14.60 -26.97 -59.44 
20 0.602 -1.595 -5.245 10.63 5.653 -16.15 -28.48 -60.96 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -17.10 -3.410 7.071 -1.848 -11.27 -3.554 3.650 19.83 
10 0.403 1.534 4.578 -4.560 -15.15 2.896 4.151 13.41 
20 5.925 3.359 4.294 -5.437 -16.17 4.845 4.251 11.43 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 0.941 0.318 -0.186 -0.186 -1.324 -1.324 -3.774 -6.169 
10 -0.989 -1.047 -1.159 -1.159 -1.667 -1.667 -2.603 -3.458 
20 -1.379 -1.391 -1.470 -1.470 -1.715 -1.715 -2.128 -2.523 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 0.138 0.255 0.363 0.477 0.216 -2.356 -5.253 -4.644 -3.761 -2.344 
10 -0.075 -0.129 -0.155 -0.146 -0.708 -1.859 -2.490 -2.180 -1.741 -1.066 
20 -0.091 -0.169 -0.230 -0.271 -0.499 -0.915 -1.107 -0.989 -0.805 -0.501 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 0.895 1.331 1.401 1.117 1.252 1.796 2.320 2.323 2.015 1.306 
10 -0.065 -0.168 -0.331 -0.593 -0.260 0.857 1.695 1.463 1.180 0.743 
20 -0.342 -0.601 -0.836 -1.101 -0.690 0.619 1.551 1.252 0.970 0.600 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.037 0.125 0.236 0.348 0.451 0.541 0.433 0.262 0.129 0.036 
10 -0.003 -0.013 -0.033 -0.066 -0.106 -0.141 -0.116 -0.074 -0.038 -0.012 
20 -0.012 -0.045 -0.095 -0.161 -0.226 -0.257 -0.200 -0.122 -0.061 -0.018 
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T3-8-2: Partial bonding: 0.2S TK h E  and 1 0NK ; Perfect thermal contact: 0R  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 1.038 0.061 -0.842 0.439 -2.089 -14.18 -17.89 -21.48 
10 -1.434 -1.588 -1.769 -1.804 -2.824 -10.91 -12.63 -14.08 
20 -2.071 -2.107 -2.205 -2.778 -3.220 -7.196 -8.000 -8.674 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 0.793 -0.032 -0.888 -1.047 -3.081 0.699 -0.479 -2.484 
10 0.148 -0.143 -0.578 -3.585 -4.876 -0.150 -0.947 -2.692 

20 -0.161 -0.196 -0.417 -4.492 -5.362 -0.481 -1.068 -2.632 
Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 7.988 8.110 8.414 8.414 10.78 10.78 14.20 22.38 
10 2.346 2.513 3.164 3.164 6.988 6.988 11.25 20.05 
20 -0.285 -0.092 0.668 0.668 4.907 4.907 9.399 18.36 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -0.974 -0.859 -1.390 -9.852 33.90 -1.061 -13.35 -45.00 
10 0.422 -1.355 -4.405 11.60 12.77 -12.52 -24.98 -57.44 
20 0.358 -1.817 -5.458 7.975 2.673 -15.73 -28.05 -60.52 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -15.82 0.101 16.23 -1.490 -9.252 -18.80 -4.952 12.53 
10 -2.804 1.717 8.213 -2.111 -11.92 -6.606 0.675 13.51 
20 3.248 2.513 4.440 -2.241 -12.61 -1.308 2.123 11.55 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 0.719 0.011 -0.679 -0.239 -2.030 -5.294 -7.214 -9.412 
10 -0.540 -0.646 -0.786 -1.272 -1.875 -4.308 -5.110 -5.952 
20 -0.826 -0.843 -0.898 -1.444 -1.685 -2.864 -3.225 -3.613 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 0.094 0.162 0.212 0.256 0.578 -0.619 -2.418 -2.586 -2.422 -1.685 
10 -0.037 -0.055 -0.049 -0.007 -0.391 -1.181 -1.617 -1.532 -1.311 -0.851 
20 -0.052 -0.091 -0.114 -0.115 -0.305 -0.644 -0.795 -0.757 -0.651 -0.424 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 0.770 1.005 0.757 -0.032 0.057 0.392 0.756 1.358 1.453 1.042 
10 0.092 0.038 -0.176 -0.601 -0.435 0.315 0.945 1.143 1.097 0.759 
20 -0.198 -0.372 -0.563 -0.815 -0.612 0.270 0.976 0.981 0.874 0.589 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.032 0.101 0.174 0.216 0.247 0.299 0.242 0.149 0.077 0.023 
10 0.003 0.007 0.002 -0.023 -0.063 -0.118 -0.114 -0.086 -0.049 -0.015 
20 -0.007 -0.027 -0.058 -0.105 -0.155 -0.197 -0.167 -0.112 -0.060 -0.018 
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T3-8-3: Sliding interfaces in constrained contact: 0SK  and 1 0NK ; Perfect thermal contact: 0R  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 -0.254 -0.780 -1.333 0.462 -0.640 -24.06 -25.75 -28.29 
10 -1.513 -1.589 -1.691 0.187 -0.147 -23.95 -24.58 -25.59 
20 -1.107 -1.121 -1.150 0.211 0.077 -14.87 -15.17 -15.67 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 0.407 -0.003 -0.435 -4.256 -5.838 0.768 -0.124 -1.694 
10 0.062 -0.042 -0.196 -11.42 -12.556 0.147 -0.647 -2.224 
20 -0.068 -0.064 -0.120 -13.622 -14.578 -0.114 -0.861 -2.427 

Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 3.954 4.031 4.307 4.307 6.485 6.485 9.615 17.57 
10 0.832 0.998 1.660 1.660 5.077 5.077 9.197 17.86 
20 -0.247 -0.042 0.740 0.740 4.477 4.477 8.939 17.86 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.119 -0.218 -1.126 -9.706 5.889 6.675 -7.228 -39.80 
10 0.464 -1.375 -4.497 -2.523 -6.767 -8.456 -21.27 -53.91 
20 0.188 -1.993 -5.660 -1.967 -8.463 -14.57 -26.96 -59.46 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -7.964 -0.317 7.372 1.000 -7.393 -18.24 -10.39 -1.694 
10 -1.096 -0.278 0.695 3.905 -6.073 -11.412 -4.291 5.189 
20 1.376 -0.123 -1.408 4.852 -5.459 -8.199 -1.675 7.790 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 0.060 -0.307 -0.694 -1.490 -2.544 -9.146 -10.16 -11.78 
10 -0.584 -0.631 -0.695 -1.720 -2.030 -9.383 -9.754 -10.40 
20 -0.440 -0.445 -0.461 -0.987 -1.115 -5.848 -6.024 -6.344 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 -0.006 -0.013 -0.015 0.000 0.385 0.390 0.000 -0.878 -1.342 -1.169 
10 -0.040 -0.058 -0.048 0.000 -0.034 -0.033 0.000 -0.342 -0.530 -0.465 
20 -0.025 -0.036 -0.029 0.000 -0.029 -0.028 0.000 -0.168 -0.262 -0.231 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 0.374 0.491 0.375 0.000 -0.142 -0.199 0.000 0.431 0.578 0.454 
10 0.041 0.055 0.043 0.000 -0.231 -0.247 0.000 0.371 0.509 0.410 
20 -0.067 -0.087 -0.064 0.000 -0.249 -0.253 0.000 0.345 0.480 0.392 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.014 0.043 0.071 0.085 0.094 0.128 0.135 0.120 0.079 0.028 
10 0.001 0.003 0.005 0.006 -0.003 -0.043 -0.053 -0.044 -0.026 -0.008 
20 -0.003 -0.008 -0.014 -0.017 -0.026 -0.067 -0.076 -0.065 -0.040 -0.013 
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Table 3-9: Simply supported three-layer plate  0,90, 0 , 4a h : applied temperature 

   1 2sin sin  uT T x b x a  on upper surface. Thermo-elastic constants: 25L TE E , 0.5LT TG E , 

0.2TT TG E , 0.25  LT TT , 62  T L  and 38L TK K . L direction coincides with 2x  axis in the outer 

layers. Imperfect thermal contact with 15LRK h . Subscripts l and u correspond to values below and above the 

interface, Identical interfaces with 1 2 S S SK K K . 

T3-9-1: Perfect bonding: 1 0SK  and 1 0NK ; Imperfect thermal contact: 15LRK h  

b

h
 

x3/h 

-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 1.926 0.927 0.068 0.068 -3.295 -3.295 -8.945 -13.20 
10 -2.277 -2.418 -2.671 -2.671 -3.931 -3.931 -6.181 -7.748 
20 -3.334 -3.390 -3.589 -3.589 -4.170 -4.170 -5.176 -5.902 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 1.006 0.204 -0.390 -0.390 -0.115 -0.115 -1.007 -3.012 
10 0.117 -0.070 -0.343 -0.343 -0.609 -0.609 -1.134 -2.719 
20 -0.206 -0.197 -0.381 -0.381 -0.775 -0.775 -1.181 -2.654 

Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 8.555 8.654 8.788 8.788 10.213 10.21 14.72 23.37 
10 1.533 1.574 1.791 1.791 5.008 5.008 9.855 18.87 
20 -0.739 -0.678 -0.381 -0.381 3.704 3.704 8.671 17.77 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -1.715 -0.944 -0.447 -2.282 60.97 -15.13 -22.39 -51.42 
10 0.694 0.063 -1.017 17.26 23.88 -18.32 -28.34 -59.43 
20 0.566 -0.378 -1.928 9.102 8.049 -19.58 -29.75 -60.95 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -20.18 -4.298 7.409 -1.373 -5.375 -8.575 2.319 21.29 
10 -2.126 1.108 5.709 -5.419 -10.25 -0.519 2.960 13.53 
20 4.189 3.385 5.951 -7.367 -12.279 2.122 3.411 11.86 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 1.151 0.444 -0.126 -0.126 -1.339 -1.339 -3.908 -6.367 
10 -0.876 -0.960 -1.103 -1.103 -1.639 -1.639 -2.606 -3.470 
20 -1.325 -1.347 -1.439 -1.439 -1.698 -1.698 -2.125 -2.526 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 0.160 0.272 0.344 0.381 0.189 -2.575 -5.771 -4.875 -3.830 -2.342 
10 -0.073 -0.140 -0.201 -0.253 -0.785 -1.962 -2.650 -2.261 -1.774 -1.074 
20 -0.091 -0.177 -0.257 -0.331 -0.543 -0.967 -1.182 -1.027 -0.821 -0.504 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 1.063 1.593 1.706 1.424 1.508 1.751 1.966 2.220 2.043 1.365 
10 0.061 0.017 -0.141 -0.450 -0.102 0.773 1.344 1.291 1.114 0.731 
20 -0.261 -0.496 -0.757 -1.100 -0.610 0.577 1.305 1.146 0.945 0.608 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.044 0.148 0.278 0.407 0.525 0.621 0.478 0.269 0.124 0.034 
10 0.002 0.002 -0.006 -0.030 -0.062 -0.092 -0.084 -0.062 -0.035 -0.011 
20 -0.009 -0.036 -0.080 -0.144 -0.206 -0.231 -0.184 -0.118 -0.061 -0.018 
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T3-9-2: Partial bonding: 0.2S TK h E  and 1 0NK ; Imperfect thermal contact: 15LRK h  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 1.421 0.429 -0.496 0.458 -2.043 -15.39 -19.08 -22.61 
10 -1.002 -1.153 -1.347 -1.753 -2.747 -11.35 -13.06 -14.47 
20 -1.829 -1.858 -1.957 -2.746 -3.170 -7.403 -8.203 -8.863 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 0.839 0.004 -0.822 -0.183 -2.000 0.661 -0.475 -2.458 
10 0.191 -0.091 -0.466 -2.894 -3.900 -0.221 -0.951 -2.635 
20 -0.150 -0.152 -0.301 -4.222 -4.783 -0.574 -1.085 -2.588 

Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 8.227 8.300 8.390 8.390 9.734 9.734 13.89 22.23 
10 2.422 2.481 2.716 2.716 5.783 5.783 10.55 19.48 
20 -0.469 -0.395 -0.082 -0.082 3.782 3.782 8.737 17.82 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -1.284 -0.522 0.041 -10.06 36.62 -5.815 -14.53 -44.12 
10 0.278 -0.328 -1.403 10.54 15.20 -16.06 -26.21 -57.33 
20 0.318 -0.626 -2.190 6.554 4.914 -19.10 -29.29 -60.50 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -16.80 -0.265 15.97 -1.654 -4.193 -21.523 -6.179 12.23 
10 -3.672 1.420 8.029 -3.477 -7.749 -7.568 -0.110 12.40 
20 3.027 2.451 4.314 -4.365 -9.153 -1.693 1.638 10.69 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 0.887 0.170 -0.518 0.108 -1.587 -5.786 -7.679 -9.844 
10 -0.363 -0.467 -0.602 -1.143 -1.691 -4.490 -5.278 -6.097 
20 -0.730 -0.741 -0.792 -1.410 -1.621 -2.952 -3.307 -3.684 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 0.116 0.183 0.207 0.191 0.529 -0.754 -2.670 -2.632 -2.377 -1.629 
10 -0.029 -0.054 -0.072 -0.081 -0.440 -1.244 -1.720 -1.572 -1.319 -0.847 
20 -0.049 -0.092 -0.129 -0.158 -0.334 -0.676 -0.847 -0.778 -0.656 -0.423 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 0.831 1.108 0.890 0.128 0.226 0.398 0.532 1.250 1.415 1.037 
10 0.141 0.118 -0.077 -0.486 -0.269 0.323 0.736 0.986 0.988 0.699 
20 -0.186 -0.353 -0.539 -0.784 -0.487 0.314 0.842 0.872 0.793 0.542 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.035 0.111 0.192 0.242 0.281 0.337 0.261 0.148 0.073 0.021 
10 0.005 0.013 0.014 -0.005 -0.037 -0.079 -0.084 -0.069 -0.042 -0.014 
20 -0.007 -0.025 -0.056 -0.100 -0.145 -0.173 -0.146 -0.100 -0.054 -0.017 
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T3-9-3: Sliding interfaces in constrained contact: 0SK  and 1 0NK ; Imperfect thermal contact: 
15LRK h  

b

h
 

x3/h 
-1/2 -1/3 -1/6l -1/6u 1/6l 1/6u 1/3 1/2 

Dimensionless in-plane displacements: 1 ( )L uv T h  at 1 0x   and 2 2x a  

4 0.194 -0.190 -0.581 0.332 -0.430 -26.35 -27.73 -30.02 
10 -0.587 -0.602 -0.626 0.101 -0.069 -25.22 -25.74 -26.65 
20 -0.504 -0.486 -0.473 0.158 0.105 -15.57 -15.82 -16.28 

Dimensionless in-plane displacements: 2 ( )L uv T h  at 1 2x b  and 2 0x   

4 0.310 0.000 -0.317 -2.273 -3.309 0.557 -0.134 -1.554 
10 -0.006 -0.016 -0.045 -9.352 -9.921 -0.075 -0.677 -2.099 
20 -0.130 -0.028 0.049 -12.66 -13.07 -0.317 -0.898 -2.333 

Dimensionless transverse displacements: 3 ( )L uv T h  at 1 2x b  and 2 2x a  

4 3.027 3.056 3.124 3.124 4.344 4.344 8.173 16.28 
10 0.030 0.092 0.342 0.342 3.089 3.089 7.693 16.48 
20 -1.084 -0.998 -0.661 -0.661 2.748 2.748 7.667 16.71 

Dimensionless bending stresses: 11 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -0.214 -0.053 -0.034 -7.208 5.108 2.799 -7.783 -38.46 
10 0.186 -0.521 -1.713 -2.790 -4.679 -11.71 -22.27 -53.60 
20 0.105 -0.864 -2.474 -3.196 -6.320 -17.84 -28.12 -59.38 

Dimensionless bending stresses: 22 ( )L u TT E   at 1 2x b  and 2 2x a  

4 -6.141 -0.079 6.003 -0.026 -3.512 -17.36 -11.18 -4.107 
10 0.165 -0.105 -0.318 1.462 -3.205 -9.331 -4.494 2.818 
20 2.582 -0.053 -2.599 2.184 -2.738 -6.390 -1.747 5.967 

Dimensionless shear stresses: 12 ( )L u TT E   at 1 0x   and 2 0x   

4 0.198 -0.075 -0.353 -0.763 -1.469 -10.13 -10.94 -12.40 
10 -0.232 -0.239 -0.253 -1.429 -1.586 -9.918 -10.21 -10.80 
20 -0.208 -0.193 -0.182 -0.932 -0.985 -6.140 -6.284 -6.577 

b

h
 

x3/h 
-5/12 -1/3 -1/4 -1/6 -1/12 1/12 1/6 1/4 1/3 5/12 

Dimensionless transverse shear stresses: 13 ( )L u TT E   at 1 0x   and 2 2x a  

4 0.019 0.024 0.017 0.000 0.302 0.305 0.000 -0.754 -1.194 -1.067 
10 -0.016 -0.023 -0.019 0.000 -0.015 -0.014 0.000 -0.308 -0.490 -0.438 
20 -0.012 -0.017 -0.014 0.000 -0.014 -0.014 0.000 -0.152 -0.243 -0.218 

Dimensionless transverse shear stresses: 23 ( )L u TT E   at 1 2x b  and 2 0x   

4 0.296 0.388 0.296 0.000 -0.049 -0.080 0.000 0.346 0.468 0.370 
10 -0.012 -0.015 -0.011 0.000 -0.105 -0.118 0.000 0.265 0.372 0.306 
20 -0.122 -0.159 -0.121 0.000 -0.118 -0.122 0.000 0.260 0.370 0.309 

Dimensionless transverse normal stresses: 33 ( )L u TT E   at 1 2x b  and 2 2x a  

4 0.012 0.036 0.061 0.073 0.082 0.120 0.128 0.115 0.077 0.027 
10 -0.001 -0.002 -0.004 -0.004 -0.008 -0.027 -0.032 -0.026 -0.015 -0.005 
20 -0.005 -0.014 -0.024 -0.029 -0.033 -0.053 -0.057 -0.049 -0.030 -0.010 

 

Figure 3-14, Figure 3-15 and Figure 3-16 depict through thickness variations of temperature, 

displacements and stresses in a three-layer simply supported square plate with two identical interfaces and 

8 a h b h . The plate is subjected to temperature    0 1 2sin sin T x b x a  and 

   0 1 2sin sin T x b x a  on its upper and  lower surfaces, respectively. The material properties and the 

stacking sequence are given in the caption of the figures. To illustrate the effect of the interfacial thermal 
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imperfections on the field variables, results for three cases of thermally perfect interfaces, interfaces with 

intermediate thermal resistance 15LRK h  and impermeable interfaces are presented; the interfaces are 

assumed to be mechanically perfect. A non-zero interfacial thermal resistance induces temperature jumps 

at the layer interfaces (Figure 3-14) and modifies displacement and stress distributions. 

 

 
Figure 3-14: (a) Through-thickness temperature distribution at  1 22 , 2 x b x a  in a three-layer plate 

 0,90, 0 , 8 a h b h , applied temperature    0 1 2sin sin T x b x a  on upper and    0 1 2sin sin T x b x a  

on lower surfaces, and (b) normalized temperature in the upper layer at the interface at  1 22 , 2 x b x a  on 

increasing LRK h  ( 0LRK h  perfect contact;   0Lh RK  impermeable interface). The thermal conductivities of 

the layers are 38L TK K . L direction coincides with 2x  axis in the outer layers. 
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Figure 3-15: Through thickness variation of (a) displacements in 1x  direction at  1 20, 2 x x a , (b) 

displacements in 2x  direction at  1 22 , 0 x b x , (c) transverse displacements at  1 22 , 2 x b x a , (d) 

bending stresses in 1x  direction at  1 22 , 2 x b x a  and (e) bending stresses in 2x  direction at 

 1 22 , 2 x b x a  in a simply supported three-layer plate  0,90, 0 , 8 a h b h , applied temperature 

   0 1 2sin sin T x b x a  on upper and    0 1 2sin sin T x b x a  on lower surfaces. Thermo-elastic constants: 

25L TE E , 0.5LT TG E , 0.2TT TG E , 0.25  LT TT , 62  T L  and 38L TK K . L direction coincides 

with 2x  axis in the outer layers. Interfaces are mechanically perfect. 

Figure 3-16(b) and (c) show that even in the absence of mechanical loading,  shear forces are generated 

at the plate edges to maintain the equilibrium of the structure. For the plates under the plane-strain 

conditions and subjected to pure thermal loading, distribution of the shear stresses at the plate edges are 

self-equilibrating so that the resultant shear forces are zero, e.g., Figure 3-10(b).  
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Figure 3-16: Through thickness variation of (a) in-plane shear stresses at  1 20, 0 x x , (b) transverse shear 

stresses 13  at  1 20, 2 x x a , (c) transverse shear stresses 23  at  1 22 , 0 x b x  and (d) transverse normal 

stresses at  1 22 , 2 x b x a   in a simply supported three-layer plate  0,90, 0 , 8 a h b h , applied 

temperature    0 1 2sin sin T x b x a  on upper and    0 1 2sin sin T x b x a  on lower surfaces. Thermo-elastic 

constants: 25L TE E , 0.5LT TG E , 0.2TT TG E , 0.25  LT TT , 62  T L  and 38L TK K . L direction 

coincides with 2x  axis in the outer layers. Interfaces are mechanically perfect. 

3.4 CONCLUSIONS 

A matrix technique, based on the transfer matrix method in [51] and the thermo-elasticity models in [6, 7], 

has been formulated to efficiently solve stationary two- and three-dimensional thermo-elasticity problems 

in rectangular simply supported multilayered plates, with an arbitrary number of layers, which may be in 

imperfect mechanical and thermal contact, subjected to sinusoidally varying transverse loads and thermal 

gradients. The matrix technique systematizes the analysis and facilitates the solution of the system of 

algebraic equations resulting from the imposition of continuity and boundary conditions. The method uses 

local transfer matrices and continuity conditions at the interfaces to establish explicit matrix relationships 

between the unknown integration constants in the solution of a generic layer and those of the first layer. 

Novel explicit expressions are derived for temperature, displacements and stresses which are valid for an 

arbitrary number of layers and arbitrary layups and interfacial thermal and mechanical imperfections. The 

expressions simplify in the case of perfect thermal or mechanical contact. The expressions are in 
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dimensionless form to facilitate parametric analyses of the problem. The solutions can be applied to solve 

problems with different load distributions via Fourier’s series approximations. 

Some benchmark solutions are presented in tabular and graph forms for laminates and sandwiches with 

different layups, length-to-thickness ratios and interfacial stiffnesses and resistances, to highlight the 

efficacy of the method and the important effect of the imperfections on the field variables. 

  

 



A HOMOGENIZED APPROACH FOR DELAMINATION FRACTURE 95 

 

4 A HOMOGENIZED APPROACH FOR DELAMINATION FRACTURE OF 

LAMINATED WIDE PLATES AND BEAMS 

4.1 INTRODUCTION 

Delamination fracture is one of the dominant failure mechanisms of layered structures. Because of the high 

level of interlaminar stresses caused by the inhomogeneous material structure, delaminations may then 

propagate and cause stiffness degradation or final failure of the component.  

The aim of this chapter is to formulate a homogenized fracture model based on the multiscale structural 

theory formulated in [25] for laminated wide plates with an arbitrary number of layers and cohesive or 

traction-free interfaces. The multiscale structural theory [25], which was recalled in Sect. 2.3.4 of Chapter 

2, is particularized to a bi-material wide plate with a single delamination, Figure 4-1. A fracture model is 

then formulated to study mode II dominant problems using a homogenized approach. The conditions for 

which the mode II dominant assumption is applicable, will be discussed later in the chapter. 

The homogenized fracture model is applied to the model system in Figure 4-3, which has been 

extensively studied in the literature and for which accurate Linear Elastic Fracture Mechanics solutions 

have been derived and are available for verification [93-97]. The model is then used to analyze delamination 

growth and investigate the structural response of End Notched Flexural (ENF) specimens; the results are 

compared with the solutions of other structural models to shed light on the advantages and limitations of 

the homogenized approach.  

The homogenized fracture model for bi-material wide plates and beams with a single traction-free 

delamination is presented in Sect. 4.2. In Sect. 4.3, the quantities which are needed for the calculation of 

the energy release rate in a bi-material edge-cracked element through an application of the J-integral, are 

derived. An explicit expression of the energy release rate is derived in Sect. 4.4 in terms of force and 

moment sub-resultants and rotations of the layer arms; the expression is then particularized to a 

homogeneous material. In Sect. 4.5, a bi-material ENF specimen is considered and the predictive 

capabilities of the proposed homogenized fracture model are investigated. Conclusions are given in Sect. 

4.6. 

4.2 HOMOGENIZED STRUCTURAL THEORY FOR BI-MATERIAL WIDE PLATES AND BEAMS 

4.2.1 Model assumptions 

Figure 4-1(a) illustrates a portion of a bi-material wide plate with a single delamination, subjected to 

arbitrary transverse loads, and deforming in cylindrical bending. The plate is studied using the homogenized 

description of the actual problem shown in Figure 4-1(b) and the multiscale structural theory presented in 

Sect. 2.3.4 of Chapter 2 [25].  
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A system of Cartesian coordinates 1 2 3 x x x  is introduced, whose origin is arbitrarily placed. The 

layers are linearly elastic, homogenous and orthotropic with principal material axes parallel to the 

geometrical axes. The layer k, with k = 1, 2 numbered from bottom to top, is defined by 1
3
kx  and 3

kx , the 

coordinates of its lower and upper surfaces, and has thickness ( )k h  (the superscript (k) on the left of a 

quantity, for k = 1, 2, shows association with the layer k). 

It is assumed that the delamination is under mode II dominant conditions. This assumption significantly 

simplifies the analysis, allowing to provide new insight into the capabilities of the homogenized structural 

theory for calculating fracture parameters. The assumption is exact when the crack surface opening 

displacement is zero, e.g. a plate with a symmetric layup subjected to anti-symmetric loading about the 

interface, for instance a homogenous ENF specimen with two layers of equal thickness. The assumption is 

acceptable when the crack surfaces are in frictionless contact, e.g. a homogenous ENF specimen with a 

thicker lower layer or a bi-material ENF specimen with a stiffer lower layer. 

The layers are assumed to be incompressible in the thickness direction and the transverse normal stresses 
( )

33k  to be negligible compared to the other stress components. Under this assumption, the 3D constitutive 

equations for the layer k particularized to plane-strain conditions are: 

( ) ( ) ( )
22 22 22

( ) ( ) ( )
23 44 232

 

 





k k k

k k k

C

C
 (4-1) 

with ( )k
ij

 and ( )k
ij  for i, j = 2, 3 the stress and strain components, and  ( )( )

22 22 23 32 33 kk C C C C C , 

where ( )k
ijC  are the coefficients of the stiffness matrix in engineering notation. The model presented in 

this chapter is also applicable to bi-material beams with longitudinal axis 2x , provided that ( )
22

k C  is 

replaced by the Young’s modulus of the layers in 2x  direction. 

 

Figure 4-1: A bi-material element extracted from a wide plate subjected to transverse loads, and (b) its 
homogenized description obtained through the multiscale structural theory.  
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Under these assumptions, the displacement components in the layer k , ( )k
iv  for i = 1, 2, 3 simplify as 

( )
1 0k v  , ( ) ( )

2 2 2 3( , )k kv v x x  and ( )
3 0 2( )k v w x , and the infinitesimal strain components are: 

( ) ( )
22 2 3 2 2 2 3

( ) ( ) ( )
23 2 3 2 3 2 3 3 2 2 3

( , ) , ( , )

2 ( , ) , ( , ) , ( , )







 

k k

k k k

x x v x x

x x v x x v x x
 

(4-2) 

Here and throughout the derivation, a comma followed by a subscript denotes a derivative with respect to 

the corresponding coordinate. 

A cohesive interface, which is a zero-thickness mathematical surface where the material properties and 

displacements are discontinuous while the interfacial tractions are continuous, is introduced along the 

delamination line in the schematic in Figure 4-1. The mechanical behavior of the interface is governed by 

a cohesive traction law which relates the relative sliding displacement of the layers at the interface, 2v̂ : 

(2 ) 1 (1) 1
2 2 2 2 3 3 2 2 3 3ˆ ( ) ( , ) ( , )   v x v x x x v x x x  

(4-3) 

to the interfacial cohesive traction 2ˆ ( ) S x . In [25], piecewise linear traction laws were introduced to 

approximate general nonlinear cohesive traction laws, and to represent all nonlinear mechanisms taking 

place at the interfaces, e.g. brittle, cohesive and bridging fracture and contact. Here, in order to study the 

model system in Figure 4-3 and compare the solutions of the homogenized model with accurate LEFM 

solutions derived in [94, 95], the following piecewise linear interfacial traction law is considered, Figure 

4-2(a): 

2 2 2 2 2
2

2 2 2

ˆ ˆ ˆ( )         for ( )
ˆ ( )

ˆ ˆ0         for ( )


  


S c
S

c

K v x v x v
x

v x v
 

(4-4) 

with 2ˆ cv  a critical sliding displacement for which 2ˆ ( ) S x  vanishes. This law approximates linear elastic 

fracture mechanics [21-23], by imposing a very stiff initial branch, which approximates the perfect bonding 

of the two sub-layers in the intact region, and a second branch with zero interfacial stiffness, to model the 

traction-free delamination. In order to simplify the treatment of the problem, the interfacial traction law in 

Eq. (4-4) and Figure 4-2(a), is approximated in the solution by the following law (Figure 4-2(b)): 

2 2 2 2 2
2

2 2 2 2 2

ˆ ˆ ˆ( )         for ( )  
ˆ ( )

with 0ˆ ˆ ˆ( )         for ( )  


   
S c

S
SS c

K v x v x v
x

KK v x v x v
 

(4-5) 

where the interfacial shear tractions in both intact and delaminated portions of the plate are assumed to be 

proportional to the interfacial relative sliding displacements; the interfacial stiffness of the initial branch is 

very high to model the perfect bonding of the two sub-layers in the intact region, while the interfacial 

stiffness of the second branch is very low to model the traction-free delamination. The numerical values for 

the interfacial stiffnesses in the intact/delaminated portion should be chosen as large/small as possible, 

considering that numerical problems do not arise in calculations. The advantage of the interfacial traction 
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law (4-5) used to approximate (4-4) is that it allows to formulate the multiscale model and derive the 

solutions for a generic linear interfacial traction law with interfacial stiffness SK  and then use the solutions 

to describe the different portions of the plate. Different portions of the plate could also be modeled with the 

asymptotic limits of the multiscale theory, which is derived in [7] and correspond to the fully bonded limit, 

to describe the intact portion, and to the fully debonded limit, to describe the delaminated portion.  

The interfacial tractions are related to the transverse shear stresses in the adjacent layers through, e.g., 
(1) 1

2 23 2 3 3 3ˆ ( ) ( , )    S x x x x n , with 3n  the component of the unit outward normal to the upper surface of 

the first layer. 

 

 

 
Figure 4-2: (a) Interfacial traction law used to approximate linear elastic fracture mechanics. (b) The interfacial 

traction law used in the solution of the problem through the multiscale model. (c) Schematic description of the 
assumed two length scales displacement field: global displacement and local perturbations. 

4.2.2 Multiscale treatment and homogenization 

The two length scales displacement field introduced in Eq. (2-30), which is described by global variables 

and local perturbations, is particularized to two-layer wide plate in Figure 4-1; the displacement field in the 

layer k for k = 1 and 2, is (see Figure 4-2(c)): 
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(1)
2 2 3 02 2 3 2 2

(2) 1
2 2 3 02 2 3 2 2 2 2 3 3 2 2

( )
3 2 0 2

( , ) ( ) ( )

ˆ( , ) ( ) ( ) ( )( ) ( )

( ) ( )k

v x x v x x x

v x x v x x x x x x v x

v x w x





 

    



 
(4-6) 

The global variables, 02 2( )v x , 2 2( ) x  and 0 2( )w x , define the displacement field of the first order shear 

deformation theory, which is continuous with continuous first derivative in the thickness direction; when 

the reference surface 3 0x  is placed at the mid-thickness of the first layer, the global variables then define 

the displacement components of points on the reference surface and the rotations of its normal axes. The 

local variables account for the zigzag contribution due to the inhomogeneous material structure, through 

the zigzag function 1
2 2 3 3( )( )x x x  , and the interfacial sliding jumps, due to the presence of the cohesive 

interface, through 2 2ˆ ( )v x . The variables, 2  and 2v̂  are derived in terms of the global variables by 

imposing continuity of the interfacial shear tractions, which yield (2 ) 1 (1) 1
23 3 3 23 3 3( ) ( )   x x x x , and the 

assumed interfacial traction law, Eq. (4-5) [25]. This yields: 

 
 

2 0 2 2 22

2 0 2 2 22

,

ˆ ,





   

  

w

v w
 

(4-7) 

with 

 

(1)
22 44 (2) (1)

44 44

(2)
44 22

22

1 1

1

 
   

 

 
 

S

C
C C

C

K

 
(4-8) 

In a plate with two layers having the same elastic properties, 22  is zero since (1) (2)
44 44C C  and the 

zigzag contribution 2  vanishes from the displacement field (4-6). Moreover, the relative displacement of 

the layers at the interface, 2v̂ , and 22  given in Eqs. (4-7) and (4-8), vanish in the intact portion of the 

plate, where SK  is a large number, and the displacement field would then coincide with that of the global 

first order model if the two layers have the same elastic constants. 

Substituting the small-scale variables from Eq. (4-7) into Eq. (4-6) yields the macro-scale displacement 

field, which is defined only in terms of the global variables, 02 2( )v x , 2 2( ) x  and 0 2( )w x , and is a 

particularization of that derived in [25] and given in Eq. (2-31), to a two-layer wide plate with the interfacial 

traction law in Eq. (4-5). The macro-scale displacement field is written as: 

 ( )
2 2 3 02 2 3 2 2 0 2 2 2 2 22 3

( )
3 2 0 2

( , ) ( ) ( ) , ( ) ( ) ( )

( ) ( )

    



k k
S

k

v x x v x x x w x x R x

v x w x
 (4-9) 

for k = 1, 2 and 



100 CHAPTER 4 

 
1

22 3

2 1
22 3 22 3 3 22

( ) 0

( )



    
S

S

R x

R x x x
 

(4-10) 

The strain components in the layer k for k = 1, 2 are derived through the macro-scale displacement field 

in Eq. (4-9) and the compatibility equations (4-2): 

 
  

( )
22 2 3 02 2 2 3 2 2 2 0 22 2 2 2 2 22

( )
23 2 3 0 2 2 2 2 22 3

( , ) , ( ) , ( ) , ( ) , ( )

2 ( , ) , ( ) ( ) 1 ,

  

 

   

  

k k
S

k k
S

x x v x x x w x x R

x x w x x R
 

(4-11) 

The stress components in the layer k for k = 1, 2 are derived through the strain components in Eq. (4-11) 

and the constitutive equations (4-1): 

 

  
  

( ) ( )
22 2 3 22 02 2 2 3 2 2 2 0 22 2 2 2 2 22

( ) ( )
23 2 44 0 2 2 2 2 22 3

( , ) , ( ) , ( ) , ( ) , ( )

( ) , ( ) ( ) 1 ,

  

 

   

  

k k k
S

k k k
S

x x C v x x x w x x R

x C w x x R
 

(4-12) 

Eqs. (4-8) and (4-10) show that the transverse shear stresses, Eq. (4-12), are constant through the 

thickness since  (1) (2) 2
44 44 22 31 ,  SC C R  and   (1) (2) (2)

23 23 44 22 0 2 21 ,     C w . This is a 

consequence of the a priori imposition of the continuity of the shear tractions at the interface and the 

assumption of a first order global displacement field. Following the approach which is commonly used in 

the structural low order theories, accurate predictions of the transverse shear stresses and strains, in both 

delaminated and intact regions, can however be made a posteriori from the bending stresses in Eq. (4-12), 

through the imposition of local equilibrium: 

( ) ( )
22 2 23 3

( )
( ) 23

23 ( )
44

, , 0

2

 




 



k k post

k post
k post

k C

 
(4-13) 

In [7, 11, 25] the shear stresses calculated a posteriori have been observed to accurately describe the fields 

in plates with continuous interfacial imperfections subjected to thermo-mechanical loading.  

The interfacial tractions in terms of the global variables are: 

  (2)
44 22 0 2 2ˆ 1 ,    S C w  

(4-14) 

Since the interfacial tractions vanish in the delaminated portion of the plate, Eq. (4-14) shows that 0 2 2, w  

vanishes, and as a consequence, transverse shear strains and stresses , Eqs. (4-11) and (4-12), also vanish. 

Vanishing transverse shear strains and stresses in the delaminated portion of the plate, which is a 

consequence of the homogenized procedure, limits the accuracy of the solutions for the compliance of the 

plate and the energy release rate. In Sect. 4.4, it will be shown that by using a posteriori calculated quantities 

deduced from the a posteriori stresses in Eq. (4-13), such as transverse shear forces and generalized shear 
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strains energetically associated to the transverse shear forces, the energy terms due to the shear 

deformations can be accurately taken into account in the derivation of the energy release rate. The effects 

that neglecting the shear deformations has on the solution of the problem will be discussed in Sect. 4.3.  

4.2.3 Homogenized field equations 

The homogenized equilibrium equations, boundary and continuity conditions in the delaminated and intact 

regions of the plate, are derived using the Principle of Virtual Work and following what done in [25]. The 

equilibrium equations in terms of force and moment resultants are: 

where 3f  are the transverse distributed forces acting on the top and bottom surfaces of the plate. The force 

and moment resultants and loading terms in Eq. (4-15) are: 

 normal force and bending moment: 

   3

1
3

2
( )

22 22 22 3 3
1

, 1,





k

k

xb k

x
k

N M x dx  
(4-16) 

 generalized transverse shear force: 

2 2 2 22 2 2ˆ,     b z zS
gQ Q Q M  

(4-17) 

 transverse shear force: 

3

1
3

2
( )

2 23 3
1







k

k

xb k

x
k

Q dx  
(4-18) 

 force and moment resultants associated to the multilayered structure and cohesive interface: 

 

3

1
3

3

1
3

2
( )

22 22 22 3
1

2
( )

2 23 22 3 3
1

(2)
2 44 22 2

,

ˆ ˆ1



















   





k

k

k

k

xzS k k
Sx

k

xz k k
Sx

k

M R dx

Q R dx

C v

 (4-19) 

The first equilibrium equation in (4-15) describes equilibrium in the longitudinal direction, and coincides 

with that of the equivalent single layer theory. The second equation relates the first derivative of the bending 

moment and the generalized transverse shear force; the equation is similar to that of the equivalent single 

layer theory, but for the presence of the generalized shear force which substitutes the classical transverse 

shear force, 2
bQ , of the equivalent single layer theory. The generalized transverse shear force, 2gQ  in Eq. 

22 2

22 2 2

2 2 3

, 0

, 0

, 0



 

 

b
g

g

N

M Q

Q f

 
(4-15) 
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(4-17), was introduced in [11] for the general case of a plate with n layers, and has additional contributions 

compared to 2
bQ , which are due to the inhomogeneous material structures, 22 2,  zS zM Q , and displacement at 

the interface, 22 2ˆ,  zSM  . The introduction of 2gQ  is physically important since it is statically equivalent at 

any arbitrary section of the plate with outward normal  0,1,0n  T
, to the vertical equilibrant of the 

external forces acting on the portion of the plate to the right of the section. In addition, the generalized 

transverse shear force is the resultant of the a posteriori calculated transverse shear stresses, Eq. (4-13), 

over the thickness of the plate: 

3

1
3

2
( )

2 23 3
1







k

k

x k post
g x

k

Q dx  
(4-20) 

In the intact portion of the bi-material wide plate, the term 2̂  defined in Eq. (4-19) vanishes, since 

2ˆ 0v  , and the equilibrium equations (4-15) coincide with those of the original first order zigzag theory 

developed in [62] for fully bonded plates. In the intact portion of a homogenous plate, 22
zSM , 2

zQ  and 2̂  

defined in Eq. (4-19) vanish since 22 22 2ˆ 0   k
SR v , and therefore 2 gQ  equals the transverse shear force 

2
bQ , and the equilibrium equations (4-15) simplify to those of the first order shear deformation theory.  

The homogenized boundary conditions at the plate edges are derived as: 

22 2 2 02 02

22 2 2 2 2

2 2 3 0 0

22 2 2 0 2

              or                   

            or                   

              or                   

          or                   ,

 

 

 

 



 
 
 


b b

g

zS zS

N n N v v

M n M

Q n N w w

M n M w 0 2, w

 
(4-21) 

with 2n  the component of the outward normal. The terms with the tilde define prescribed values of 

displacements, forces and couples at the plate edges, and are given in Eq. (G-1) in Appendix G.  

The homogenized boundary conditions (4-21) cannot be used to describe the edge-cracked specimen in 

Figure 4-3(a), if (1)N  and (2)N , or (1)M  and (2)M , or (1)Q  and (2)Q  are applied to the delaminated arms 

in opposite directions. For instance, in a Double Cantilever Beam specimen, the homogenized boundary 

condition on 2gQ , which is the net value of the applied shear forces through the whole thickness of the 

specimen, would be zero. However, these boundary conditions are limited to laboratory test specimens and 

are unlikely to occur in practical cases, where the delamination arise between the internal layers and the 

loads are applied on the outer surfaces of the structure; in such cases, the edge-cracked specimen in Figure 

4-3(a) represents and element extracted from a delaminated plate and the end forces are the force and 

moment resultants.  

Along a clamped support, where 2 0 2, 0w   , the transverse shear strain in Eq. (4-11), transverse shear 

stress in Eq. (4-12), 2
bQ  in Eq. (4-18) and 2

zQ  in Eq. (4-19) vanish. The effect of vanishing transverse shear 

strain and stress at a clamped boundary on the solution of the multiscale model was studied in [26] by 
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considering a symmetric cantilevered wide plate with two layers bonded by a linear elastic interface and 

subjected to a concentrated load at the free end. It was shown that vanishing transverse shear strain and 

stress at the clamped boundary only affects the solutions within a localized region near the boundary and 

the solution of the model out of the boundary layer is accurate; the size of the boundary layer depends on 

the interfacial stiffness and is negligibly small for very stiff and very compliant interfaces [26]. The 

generalized transverse shear force, 2 gQ  in Eq. (4-17), which is related to the first derivative of the bending 

moment through the second equilibrium equation (4-15), accurately describe the shear force at any cross 

section including clamped supports [26]. 

The constitutive equations of the multiscale structural theory are derived by substituting the stresses and 

interfacial relative sliding displacement from Eqs. (4-12) and (4-7) into Eqs. (4-16)-(4-19): 

  
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1 2 1
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(4-22) 

where the coefficients, 22
rC , 22

rSC , 2
22
SC , 44

PC  and 22
SC  for r = 0, 1, 2, can be calculated a priori, depend on the 

geometry, the layup and the status of the interface and are defined in Eq. (G-2) in Appendix G. 22
zSM , which 

is a moment resultant due to the inhomogeneous material structure and the interface, contributes into the 

equilibrium equations (4-15) only through 2 gQ , and appears in one of the boundary conditions of the 

homogenized model in Eq. (4-21). 

Unlike the original zigzag theory [62, 63] and the refined zigzag theory [27] for fully bonded plates , a 

shear correction factor, 44k , has been introduced [25] in Eq. (4-22) to improve the approximate description 

of the shear, following the approach used for the low order structural theories. The correction factor is 

defined following the classical approach used in the first order theories, [58, 98], as 

   44 2 2 44 2 0 2,    
b z pk Q Q C w . The introduction of the shear correction factor has some advantages. It 

allows to recover the constitutive equations of the equivalent single layer first order shear deformation 

theory in the limiting case of a fully bonded and homogeneous plate, for which 44 5 6k   is required. Also, 

in a plate with imperfect interfaces, where the transverse shear strains and stresses in the layers will 

progressively reduce on decreasing the interfacial stiffness, as it can be understood from Eqs. (4-5), (4-11), 

(4-12) and (4-14),  the shear correction factor may be used to account for the missing contribution of the 

shear deformations in the equilibrium equations of the model, as suggested in [25]. In general, the shear 

correction factor is a problem dependent parameter and depends on the stacking sequence, geometry, 

material and interfacial properties and loading conditions. Therefore, introduction of the shear correction 

factor keeps the constitutive equations of the homogenized model, Eq. (4-22), general enough to be used 

for different problems, e.g. dynamic problems; if the shear correction factor is not needed, for instance in 
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bending problem of fully bonded multilayered plates subjected to static loadings, the shear correction factor 

should be equal to 1. 

The coefficient 0
22C , 1

22C  and 2
22C  are the so-called plate extensional, coupling and bending stiffnesses, 

depend on the material properties and thicknesses of the layers and have the same values in the intact and 

delaminated portions of the plate. When the reference surface 3 0x  is placed along the neutral axis of the 

intact portion of the plate, 1
22C  is zero. The coefficients with superscript S depend on the interfacial 

stiffnesses, 22  and the thickness of the layers, and have different values in the intact and delaminated 

portions of the plate. The coefficient 22
SC  vanishes in the intact portion of the plate, and the constitutive 

equations (4-22) coincide with those of the original first order zigzag theory for fully bonded plates and 

44 1k   [62]; in addition, in the intact portion of a homogenous plate all the terms with superscript S vanish 

and the constitutive equations (4-22) simplify to those of the first order shear deformation theory; 44 5 6k  

is then needed for static problems to get the constitutive equations of the first order shear deformation 

theory.  

Substitution of the plate constitutive equations (4-22) into the equilibrium equations (4-15) yields the 

equilibrium equations in terms of displacements: 
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(4-23) 

Similarly, the boundary conditions in terms of displacements can be obtained by substitution of the plate 

constitutive equations (4-22) into the boundary conditions (4-21). The boundary conditions in terms of the 

displacements are presented in Appendix G. 

The system (4-23) has order VIII. The equations are decoupled by subsequent derivations/substitutions 

and eliminating 2  through the introduction of a variable   given by 2 0 2,   w , which represents the 

transverse shear strain of the first layer, (1)
232   given in Eq. (4-11), since 1

22 0SR  . The system of 

decoupled equations, which has the same order of the original system is: 
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w D E

C C C
v w
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(4-24) 

where  
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   
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(4-25) 

The constants A , B , C , D  and E  depend on the 22
rC , 22

rSC , 2
22
SC , 44

PC , 22
SC  and the shear correction factor. 

The first equation (4-24) is a third order differential equation in   whose solution allows cascading 

solutions for 0w  and 02v through the solutions of a third order and a second order equation, respectively. 

The last equation (4-24) then defines 2 . 

The system of decoupled equations (4-24) has different coefficients in the intact and delaminated 

portions of the plate and the solution of the bi-material plate in Figure 4-1(b) needs the imposition of the 

continuity conditions on the global variables, 02v , 2 , 0w , 0 2,w , 22N , 22
bM , 2gQ  and 22

zSM  at the cross 

sections separating the two portions. The global displacement variables 02v , 2 , 0w  are obtained by solving 

the system of decoupled equations (4-24) for the different regions, imposing the boundary conditions (4-21) 

and continuity conditions at the cross sections of the traction-free delamination tips.  

In the special case of a plate with traction-free external surfaces, the closed form solution of the system 

of decoupled equations (4-24) with 3 0f  is: 
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(4-26) 

 

where ic  for i = 1, …, 8, are integration constants to be determined by the imposition of the boundary and 

continuity conditions. These solutions will be applied later for the calculation of the energy release rate. 

In Appendix H, perturbation analysis is used to derive asymptotic limits of the displacement variables in 

Eq. (4-26). The perturbation analysis investigates the solution for small values of a perturbation parameter, 

 ; the perturbation parameter is chosen as 1 0  SK  to investigate the fully bonded limit and describes 
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the intact region of the plate, and as 0  B , where B , which is defined in Eq. (4-25), goes to zero with 

the same order as SK , is used to investigate the fully debonded limit which describes the delaminated region 

of the plate. The displacement variables and integration constants ic  for i = 1, 2 and 3, which depend on the 

interfacial stiffness, are expanded into power series of the perturbation parameter,  , and taking the limit 

as 0   yields the zero-order solutions (see Appendix H).  

When 1 0  SK , 22  in Eq. (4-8), 2v̂  in Eq. (4-7) and 22
SC  in Appendix G Eq. (G-2) vanish and 

2
22SR  in Eq. (4-10) modifies in  2 1

22 22 3 3  SR x x . The constants 22
rSC  and 2

22
SC  in Appendix G Eq. (G-2), 

and A , B , C , D  and E  in Eq. (4-25) simplify by substituting  2 1
22 22 3 3 SR x x  into Eqs. (G-2) and 

(4-25). 

When 0  B , the finite coefficients in Eq. (4-26) are 1A , 22
rC , E , DB , 0

22
sC B ; 2

22SR  in Eq. 

(4-10) modifies in  2 (2)
22 44 221S SR C K    and the coefficients 22

rSC , 22
SC  and 2

22
SC  simplify by 

substituting  2 (2)
22 44 221S SR C K    into Eq. (G-2) in Appendix G. The coefficients 22

rSC , 22
SC , D , 22  

and 2
22SR  go to infinity with the order  1O  , and 2

22
SC  goes to infinity with the order  21O   (see Table 

H-1 in Appendix H). 

4.3 DERIVATION OF LOCAL FIELDS 

In order to verify the model capability to analyze brittle fracture, the model system in Figure 4-3(a) will be 

examined. Accurate LEFM solutions are available for this problem [93-97]. The model system is an edge-

cracked bi-material element subjected to end forces applied per unit width. The element has upper and 

lower traction-free surfaces and the lengths of the crack and the ligament ahead of the crack tip, a and c, 

are assumed to be sufficiently long to ensure that the stress fields at the traction-free delamination tip depend 

only on the value of the force and moment resultants and the stress distributions at the ends of the element 

are unaffected by the delamination tip stress field. The minimum lengths a and c then depend on the material 

properties mismatch of the layers, the loading and geometry conditions [95, 99]. The element could 

represent a fracture mechanics specimen or an element extracted from a delaminated plate subjected to 

arbitrary loading conditions; in this latter case, the end forces are the force and moment resultants at the 

sections, which can be derived through accurate, e.g. FEM, or approximate, e.g. plate theories, solutions of 

the problem. 

The model system in Figure 4-3(a) could represent an element including the crack tip taken from the 

plate in Figure 4-1(a). Using the homogenized description of Figure 4-1(b), the homogenized crack tip 

element in Figure 4-3(b), is then used to demonstrate, in a homogenized description, the model system in 

Figure 4-3(a).  

The analysis of the macro-scale displacement field and the stress/strain field derived in Sect. 4.2, allows 

to investigate the local fields in the layers of the model system in Figure 4-3(b), and the local fields will be 

used in the next section to calculate the energy release rate.  
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Figure 4-3: (a) a bi-material cracked element subjected to end forces. The element is extracted from a loaded 
plate, e.g. Figure 4-1(a). (b) The homogenized representation of the cracked element, showing the path  used for 

the calculation of the J-integral. 

In order to define the local fields, it is convenient to use as the origin of the system of Cartesian 

coordinates 1 2 3 x x x  the delamination crack tip cross section and assume the 2x  axis along the neutral 

axis of the intact portion of the element. In the derivation that follows it is assumed that the neutral axis 

falls into the lower layer. This assumption simplifies the derivation and the conclusions will be applicable 

also to problems where the neutral axis is in the upper layer. The distances between the reference plane 

3 0x  and the geometrical mid-thickness of the first and second layers are (1)e  and (2)e  (see Figure 4-4). 

Local coordinates are introduced at the mid-thickness of the first layer, (1) (1)
3 3 X x e , and at that the 

second layer, (2 ) (2)
3 3 X x e . The local coordinates coincide with the neutral axes of the layers in the 

delaminated portion of the model. The superscript (0) on the left of a global quantity, e.g. (0)
22
bM  in Figure 

4-3(b), shows association with the intact portion of the element. 

Local rotations of the layers, shown in Figure 4-4, can be introduced which define the rotations of the 

lines perpendicular to the neutral axes of the layers, and correspond to the slope with respect to 3x  of the 

longitudinal displacement of the layers in Eq. (4-9). Using Eq. (4-9) they are given by:  
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(4-27) 

Equation (4-27) defines the local rotations of the layers both in the delaminated and in the intact portions 

of the plate, which depend on the global rotation  2 2 x  and on the terms accounting for the multilayer 

structure, given in Eq. (4-7).  

 

 

Figure 4-4: Local coordinates and rotations of the layers in the homogenized element.  

If the edge-cracked specimen in Figure 4-4 is homogeneous, 22 0   and the rotations of the layers in 

the intact portion of the element coincide with the global rotation, (1) (2 )
2 2 2    . If the specimen is not 

homogeneous, the local rotations of the layers in the intact region, far from the traction-free delamination 

tip, would be different, as it is expected due to the inhomogeneous material structure and the enforcement 

of the continuity condition on the transverse shear tractions at the layer interface. 

In Appendix H, the zero-order solutions of the displacement variables for the fully debonded limit which 

describe the delaminated portion of the plate, are presented; it is shown that the zero-order solution of 

2 0 2,  w  is zero in this limit. Therefore, the rotations of the layers in the delaminated portion of the element 

defined in Eq. (4-27), coincide with the global rotation, (1) (2)
2 2 2    . Moreover, imposing the 

continuity conditions at the delamination tip cross section on 2  and 0 2,w , as part of the solution of the 

homogenized structural model, forces the solution of 2 0 2,  w  to be zero also in the intact portion of the 

element at the traction-free delamination tip cross section. Therefore, Eq. (4-27) shows that the model also 

predicts the same rotations for the upper and lower layers in the intact region at the traction-free 

delamination tip cross section. As a consequence, the rotations of the layers at the delamination tip cross 

section in the intact and delaminated regions are all equal, and this reduces the accuracy of the predicted 

energy release rates of the model system, as explained below. 
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The structural concept of root-rotations, which are defined as the relative rotations of the layers at the 

delamination tip cross section, have been frequently used in the literature, e.g. [95], to account for the 

primary effect of the elastic near tip deformations on the fracture parameters. In the light of Eq. (4-27), the 

root-rotations for the model system in Figure 4-3 are    ( ) ( )
2 20 0i i

i x x         for i = 1, 2, where 

 ( )
2 0i x   and  ( )

2 0i x  are the local rotation of the layer i at the traction-free delamination tip in the 

intact and delaminated portions, respectively. As explained in the previous paragraph, the multiscale 

structural model predicts the same rotations for the layers at the delamination tip cross section, and therefore 

the model neglects the root-rotations. In sect. 4.4, the effect of neglecting the root-rotations on the energy 

release rate of the model system will be discussed.  

The transverse shear strains of the layers in Eq. (4-11) can be rewritten in terms of the rotations of the 

layers in Eq. (4-27), and this yields an expression which is similar to that of the first order shear deformation 

theory: 

( ) ( )
23 0 2 22 ,  k kw  

(4-28) 

Again, Eq. (4-28) is valid both in the intact and in the delaminated portions of the specimen. 

The force and moment sub-resultants acting in the first and second layers in the delaminated and intact 

portions of the element in Figure 4-3(b) are defined using the local coordinates as: 
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(4-29) 

for i = 1 and 2 where the superscript (i) shows association with the layer i. Since the upper and lower 

surfaces of the model system in Figure 4-3 are traction-free, 3 0f  and the equilibrium equations of the 

homogenized model in Eq. (4-15) show that ( )
22

i N  and ( )
2

i
gQ are independent of 2x  in the delaminated and 

intact regions, and have different values in different portions of the element, while the bending moment 

varies linearly in 2x . The global forces and moments in the intact region, (0)
22N , (0)

22
bM  and (0)

2gQ  are: 
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(4-30) 

In Eq. (4-29), the bending stresses and the transverse shear stresses calculated a posteriori through local 

equilibrium are defined by Eqs. (4-12) and (4-13). 

Generalized shear strains energetically associated to the transverse shear forces, (0)
2gQ , (1)

2 gQ  and (2)
2 gQ

, are calculated a posteriori as follows, which accurately describe the shear deformations through the 

thickness of the layers and the whole cross section in the intact region [7]. The generalized shear strains 

through the thickness of the layers are: 
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for i = 1 and 2. ( )
44

i k  are shear correction factors, which are different from    44 2 2 44 2 0 2,    
b z pk Q Q C w  

introduced in Sect. 4.2.3 to improve approximate description of the shear of the homogenized structural 

theory. When Eq. (4-31) is used for the delaminated portion of the element, where the layers deform 

independently as two homogeneous layers, the value of ( )
44 5 6i k  is needed for accurate prediction of the 

generalized shear strains. 

The generalized shear strain through the thickness of the model system in the intact region is: 

 

(0)
2(0)

23 (0)
44 44

2   g
g p

Q

k C
 (4-32) 

where (0)
44k  is a shear correction factor, which is generally different than    44 2 2 44 2 0 2,    

b z pk Q Q C w  

in definition, but for a homogeneous element where (0)
2 2

b
gQ Q , since 22

zSM , 2
zQ  and 2̂  defined in Eq. 

(4-19) vanish because 22 22 2ˆ 0   k
SR v . Similar to (1)

44k  and (2)
44k  introduced above, (0)

44k  relates the 

generalized shear force and strain in the intact portion of the element and allows to improve the accuracy 

of the generalized shear strain calculated from Eq. (4-32).  

In the remaining part of this section, the normal strains and stresses of the layers in the intact and 

delaminated portions of the element will be defined in terms of ( )
22

i N  and ( )
22

i bM  for i = 0, 1 and 2. 

The normal strains and stresses, Eqs. (4-11) and (4-12), in the first layer of the delaminated region are 

expressed using the local coordinate, (1) (1)
3 3 X x e  as: 
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x X v x e x X x

x X C v x e x X x
 

(4-33) 

Substituting  (1) (1)
22 2 3, x X  from Eq. (4-33) into the first equation (4-29) and performing the integration 

yields: 

   

   
 

(1)
(1) 22

02 2 2 2 2 2 (1) (1)
22

(1)
22 2

2 2 2 3(1) (1)
22

,  ,

12
,





 


b

N
v x e x

C h

M x
x

C h

 
(4-34) 
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Substitution of the displacement variables from Eq. (4-34) into Eq. (4-33) gives the normal strain and 

bending stress of the first layer in the delaminated region, in terms of the normal force and bending moment 

sub-resultants: 

   
 

   
 

(1)(1)
22 2(1) (1) (1)22

22 2 3 3 3(1) (1) (1) (1)
22 22

(1)(1)
22 2(1) (1) (1)22

22 2 3 3 3(1) (1)

12
,  

12
,  





 

 

b

b

M xN
x X X

C h C h

M xN
x X X

h h

 
(4-35) 

Equation (4-35) has the same form as that of the equivalent single layer theory for a homogeneous layer. 

The equation shows the high efficacy of the multiscale structural theory to capture local strains and stresses 

in such highly discontinuous structural system with only three kinematic variables.  

The longitudinal displacements in the second layer, Eq. (4-9) for k = 2, can be simplified and expressed 

in terms of the displacement jump using Eqs. (4-7), (4-8) and (4-10) and noting that 2 0 2,  w  vanishes in 

the delaminated portion of the element. This yields: 

       (2)
2 2 3 02 2 2 2 3 2 2ˆ,      v x x v x v x x x  

(4-36) 

The normal strain and bending stress in the second layer, Eqs. (4-11) and (4-12) with k = 2, in the 

delaminated region are defined using the local coordinate (2 ) (2)
3 3 X x e  and Eqs. (4-1), (4-2) and (4-36): 

          

          

(2) (2) (2) (2)
22 2 3 02 2 2 2 2 2 2 2 2 3 2 2 2

(2) (2) (2) (2) (2)
22 2 3 22 02 2 2 2 2 2 2 2 2 3 2 2 2

ˆ, , , ,  ,

ˆ, , , ,  ,

  

  

   

     

x X v x v x x e X x

x X C v x v x x e X x
 (4-37) 

Substituting  (2) (2)
22 2 3, x X  from Eq. (4-37) into the first equation of (4-29) and performing the integration 

yield: 

     

   
 

(2)
(2) 22

02 2 2 2 2 2 2 2 2 (2) (2)
22

(2)
22 2

2 2 2 3(2) (2)
22

ˆ, , ,

12
,





  


b

N
v x v x x e

C h

M x
x

C h

 
(4-38) 

Substitution of the displacement variables from Eq. (4-38) into Eq. (4-37) gives the normal strain and 

bending stress of the second layer in the delaminated region, in terms of the normal force and bending 

moment sub-resultants: 
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   
 

   
 

(2)(2)
22 2(2) (2) (2)22

22 2 3 3 3(2) (2) (2) (2)
22 22

(2)(2)
22 2(2) (2) (2)22

22 2 3 3 3(2) (2)

12
,  

12
,  





 

 

b

b

M xN
x X X

C h C h

M xN
x X X

h h

 
(4-39) 

As for the first layer, Eq. (4-35), Eq. (4-39) has the same form as that of the equivalent single layer theory 

for a homogeneous layer. Defining the normal strains and bending stresses of the layers with the same 

forms as those of the equivalent single layer theory, will allow later in Sect. 4.4 to derive an explicit 

expression for the energy release rate of the model system in Figure 4-3(a), which coincides with the 

classical solution of the problem. 

If the shear forces in the model system in Figure 4-3(a) are absent, ( ) 0i Q   for i = 0, 1 and 2, the 

transverse shear stresses in Eq. (4-12) become zero, and this implies that 0 2 2,w   is zero. As a 

consequence, the local variables of the homogenized model, 2  and 2v̂  defined in Eq. (4-7) are also zero 

and the displacement field, Eq. (4-9), coincides with that of the classical plate theory. The model is then 

unable to describe the response of delaminated portion. Therefore, equations (4-35) and (4-39) are valid for 

problems in the presence of the shear forces, e.g. plates subjected to transverse loads. 

For the intact portion of the layer in Figure 4-3(b), an approach similar to that used above can be 

followed. The constitutive equations of the model, given in Eq. (4-22), are: 

     
       

0 0
22 22 02 2 2 22 2 2 2 0 22 2

2 1
22 2 22 2 2 2 22 2 2 2 0 22 2

, , ,

, , ,



 

     
     

S

b S

N C v x C x w x

M x C x C x w x
 (4-40) 

where 1
22 0C  has been set equal to zero since the reference surface 3 0x  is placed along the neutral axis 

of the intact portion. The second terms on the right hand side of the equation vanish for a homogenous 

element, since 2
22SR  and therefore 0

22
SC  and 1

22
SC  defined in Eq. (G-2) in Appendix G vanish, and the 

equations then coincide with those of the first order shear deformation theory. The term in the square 

bracket is 2, , where 2 0 2,w    has been derived in closed form in Eq. (4-26). The exponential terms in 

the solution of  , Eq. (4-26), decrease exponentially moving from the traction-free delamination tip. If the 

distance c is sufficiently long, the exponential terms then become negligible and   becomes constant with 

respect to 2x ; this implies that 2,  becomes zero. As a consequence, the constitutive equation (4-40) 

simplifies as: 

   

0
22 22 02 2

2
22 2 22 2 2 2

,

,



b

N C v

M x C x
 (4-41) 
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The normal strain and bending stress in the intact region at a sufficient distance from the crack tip are 

then defined in terms of the global normal force and bending moment resultants using Eqs. (4-11), (4-12), 

(4-30) and (4-41): 

 

 

(0)(0)
22 2( ) 22

22 2 3 30 2
22 22

(0)(0)
22 2( ) ( ) 22

22 2 3 22 30 2
22 22

( , )

( , )





 

 
  

 

b
k

b
k k

M xN
x x x

C C

M xN
x x C x

C C

 (4-42) 

As for the first and second layers in the delaminated portion of the specimen, Eqs. (4-35) and (4-39), Eq. 

(4-42) has the same form as that of the equivalent single layer theory.  

The local fields defined in this section, Eqs. (4-27), (4-28), (4-31), (4-32), (4-35), (4-39) and (4-42), will 

be used in the next section to derive an explicit expression for the energy release rate of the model system 

in Figure 4-3(a), and to compare the results of the homogenized structural theory with accurate 2D LEFM 

solutions. 

4.4 ENERGY RELEASE RATE 

In this section the local fields defined in Sect. 4.3 are used to derive in closed-form an explicit expression 

for the energy release rate of the homogenized model system in Figure 4-3(b), through an application of 

the J-integral. The accurate derivation of the fracture parameters in the system in Figure 4-3(a) has been 

presented in [94] based on 2D elasticity, dimensional analysis, interfacial fracture mechanics and finite 

element simulations; the energy release rate and mode mixity angle have been defined in terms of the end 

forces and rotations of the different arms. In [95] another expression has been derived for homogeneous 

and orthotropic layers which explains the physical and mechanical significance of the terms in [94]. 

The solution of the homogenized structural theory is limited to problems in the presence of shear forces 

where the crack is under mode II dominant conditions. Problems characterized by mixed-mode conditions 

could similarly be studied through the extended version of the multiscale model in [25] which accounts also 

for interfacial opening displacements. In addition, the homogenized structural theory cannot be applied to 

the edge-cracked specimen in Figure 4-3(a), if (1)N  and (2)N , or (1)M  and (2)M , or (1)Q  and ( 2)Q  are 

applied to the delaminated arms in the opposite directions. For instance, in a Double Cantilever Beam 

specimen, the homogenized boundary condition (4-21) on 2 gQ , which is the net value of the applied shear 

forces through the whole thickness of the specimen, would be zero. However, this problem is limited to 

laboratory test specimens and are unlikely to occur in practical cases, where the delamination arise between 

the internal layers and the loads are applied on the outer surfaces of the structure; in such cases, the edge-

cracked specimen in Figure 4-3(a) represents and element extracted from a delaminated plate and the end 

forces are the force and moment resultants. 
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4.4.1 J-integral along the external boundaries of the element 

The energy release rate of the homogenized element in Figure 4-3(b) is calculated through an application 

of the J-integral, 3 2( , )II ij j iJ Wdx n v d


   G  for i, j = 2, 3, with 
5

1

   i
i

 a path surrounding the 

crack tip which follows the external boundaries of the element in Figure 4-3(b);  22 22 23 232 2    W  

is the strain energy density, jn  is the component of the unit outward vector normal to the path, ij jn  are 

the tractions along the contour. The components of the J-integral along the paths 4  and 5 are 4 5 0 J J

, since the upper and lower surfaces are traction-free. In the calculations of the components of the J-integral 

along the paths 1 , 2  and 3 , the a posteriori calculated transverse shear stresses, Eq. (4-13), and the 

generalized transverse shear strains, Eqs. (4-31) and (4-32), are used. 

Upon substitution of W  and the tractions, (1)
22 2n  and (1)

23 2
postn  with 2 1n  , into the definition of the 

J-integral along the path 1  and some manipulations,  1 2J x a  can be written as: 

 
(1) (1)

(1) (1)

(1)

(1)

(1) (1) (1) (1) (1) (1)2 2
1 2 22 22 3 23 23 3

2 2

(1) (1) (1)2
23 3 2 3

2

1 1
2

2 2

,

h h
post

gh h

h
post

h

J x a d X d X

v d X

   



 



    



 


 (4-43) 

Using the generalized transverse shear strain (1)
232 g  and Eq. (4-28), (1)

3 2,v  in the third term on the right 

hand side of Eq. (4-43) is substituted by (1) (1)
23 22 g  , since (1)

3 0v w . Equation (4-43) then becomes: 

 
(1) (1)

(1) (1)

(1)

(1)

(1) (1) (1) (1) (1) (1)2 2
1 2 22 22 3 23 23 3

2 2

(1) (1) (1)2
2 23 3

2

1 1
2

2 2

h h
post

gh h

h
post

h

J x a d X d X

d X

   

 

 



    



 


 (4-44) 

The second term on the right hand side of Eq. (4-44), can be written as follows, by substituting the 

generalized transverse shear strain, (1)
232 g , from Eq. (4-31) and using the definition of (1)

2 gQ  given in Eq. 

(4-29): 

(1) (1)

(1) (1)

2(1)(1)
22(1) (1) (1) (1) (1)2 2

23 23 3 23 3(1) (1) (1) (1) (1) (1)
44 44 44 442 2

1 1 1
2

2 2 2

h h
ggpost post

gh h

QQ
d X d X

k C h k C h
  

 

      (4-45) 

The integration of the a posteriori calculated transverse shear stresses through the thickness of the first 

layer in the third term on the right hand side of Eq. (4-44), is equal to (1)
2 gQ  (Eq. (4-29)). The first term on 

the right hand side of Eq. (4-44) is calculated in terms of the normal and moment sub-resultants, (1)
22N  and 
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(1)
22
bM , using the bending stresses and normal strains given in Eq. (4-35). This yields the following 

expression for the component of the J-integral along the path 1 : 

 
 

2 2 2(1) (1) (1)
22 22 2 (1) (1)

1 2 2 23(1) (1) (1) (1) (1)(1) (1)
22 44 4422

121
2

2

b
g

g

N M Q
J x a Q

C h k C hC h


                 
 
 

 (4-46) 

The component of the J-integral along the path 2  can be calculated following the same procedure 

explained above for the calculation of  1 2J x a  . Upon substitution of W  and the tractions, (2)
22 2n  and 

(2)
23 2
postn  with 2 1n  , into the definition of the J-integral along the path 2  and some manipulations, 

 2 2J x a  can be written as: 

 

 
( 2) ( 2)

( 2) (2)

( 2)

( 2)

(2) (2) (2) (2) (2) (2)2 2
2 2 22 22 3 23 23 3

2 2

(2) (2) (2)2
23 3 2 3

2

1 1
2

2 2

,

h h
post

gh h

h
post

h

J x a d X d X

v d X

   



 



    



 


 (4-47) 

Using the generalized transverse shear strain (2)
232 g  and Eq. (4-28), (2)

3 2,v  in the third term on the right 

hand side of Eq. (4-47) is substituted by ( 2 ) ( 2 )
23 22 g  , since (2 )

3 0v w . Equation (4-47) then becomes:  

 
( 2) ( 2)

( 2) ( 2)

( 2)

( 2)

(2) (2) (2) (2) (2) (2)2 2
2 2 22 22 3 23 23 3

2 2

(2) (2) (2)2
2 23 3

2

1 1
2

2 2

h h
post

gh h

h
post

h

J x a d X d X

d X

   

 

 



    



 


 (4-48) 

The second term on the right hand side of Eq. (4-48), is calculated, by substituting the generalized 

transverse shear strain, (2)
232 g , from Eq. (4-31) and using the definition of (2)

2 gQ  given in Eq. (4-29). The 

integration of the a posteriori calculated transverse shear stresses through the thickness of the second layer 

in the third term on the right hand side of Eq. (4-48), is equal to (2)
2 gQ  (Eq. (4-29)). The first term on the 

right hand side of Eq. (4-48) is also calculated in terms of the normal and moment sub-resultants, (2)
22N  

and (2)
22
bM , using the bending stresses and normal strains given in Eq. (4-39). This yields the following 

expression for the component of the J-integral along the path 2 : 
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 
 

2 2 2(2) (2) ( 2)
22 22 2 (2) (2 )

2 2 2 23( 2) (2) ( 2) (2 ) ( 2)(2 ) (2)
22 44 4422

121
2

2

b
g

g

N M Q
J x a Q

C h k C hC h


                 
 
 

 (4-49) 

To calculate the component of the J-integral along the path 3 , W  and the tractions, ( )
22 2

i n  and 

( )
23 2

i postn  with 2 1n  , are substituted into the definition of J-integral: 

  3 3

1 1
3 3

3

1
3

2 2
( ) ( ) ( ) ( )

3 2 22 22 3 23 23 3
1 1

2
( ) ( )

23 3 2 3
1

1 1
2

2 2

,

i i

i i

i

i

x xi i i post i
gx x

i i

x i post i

x
i

J x c dx dx

v dx

   



 



 



    



  


 (4-50) 

Equation (4-50) can be further simplified by substituting ( ) ( ) ( )
3 2 23 2, 2i i i

gv    , obtained from Eq. (4-28) 

and using the generalized transverse shear strains and ( )
3 0i v w : 

  3 3

1 1
3 3

3

1
3

2 2
( ) ( ) ( ) ( )

3 2 22 22 3 23 23 3
1 1

2
( ) ( )

2 23 3
1

1 1
2

2 2

i i

i i

i

i

x xi i i post i
gx x

i i

xi i post

x
i

J x c dx dx

dx

   

 

 



 



    



  

 
 (4-51) 

The first term on the right hand side of Eq. (4-51) is calculated by substituting the bending stresses and 

normal strains from Eq. (4-42), performing the integration and using the definitions given in Eq. (G-2) in 

Appendix G for the coefficients 0
22C  and 2

22C : 

3

1
3

2 2(0) (0)2
22 22( ) ( )

22 22 3 0 2
1 22 22

1 1

2 2
 



           
 
 


i

i

b
x i i

x
i

N M
dx

C C
 (4-52) 

The second term on the right hand side of Eq. (4-51), is an energy term due to the shear deformations 

and can be expressed accurately as the work done by the generalized transverse shear force, (0)
2gQ  defined 

in Eq. (4-30), on the generalized transverse shear strain energetically associated to the generalized 

transverse shear force in Eq. (4-32): 

3

1
3

2(0)2
2( ) ( )

23 23 3 (0)
1 44 44

1 1
2

2 2

i

i

x gi post i
g px

i

Q
dx

k C
 



      (4-53) 

 

The integration of the a posteriori calculated transverse shear stresses through the thickness of the layers 

in the third term on the right hand side of Eq. (4-51), is equal to ( )
2

i
gQ  for i = 1 and 2 (Eq. (4-29)). 
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Substituting Eqs. (4-52) and (4-53) into Eq. (4-51) and noting that the integration of the a posteriori 

calculated transverse shear stresses through the thickness of the layers in the third term on the right hand 

side of Eq. (4-51), is equal to ( )
2

i
gQ  for i = 1 and 2 (Eq. (4-29)), the following expression for the component 

of the J-integral along the path 3  is derived: 

 
2 2 2(0) (0) (0)

22 22 2 (1) (1) (2) (2)
3 2 2 2 2 20 2 (0)

22 22 44 44

1

2

b
g

g gp

N M Q
J x c Q Q

C C k C
 

                  
 
 

 (4-54) 

The energy release rate of the homogenized element in Figure 4-3(b) is then derived by summing Eqs. 

(4-46), (4-49) and (4-54): 

 
   

   
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  
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2 2 2 2gx c Q x c

 
  
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 

 (4-55) 

where ( )
22

i N , ( )
22

i bM  and ( )
2

i
gQ  for i = 0, 1 and 2, are the force and moment sub-resultants acting on the 

different arms and are given in Eqs. (4-29) and (4-30), (1)
2 2   and (2 )

2  are the rotations of the first and 

second layers at the edges of the homogenized element, and are given in Eq. (4-27).  

Equation (4-55) defines the energy release rate in terms of the force and moment sub-resultants on the 

different arms and end rotations which should be calculated through the multiscale structural theory. As it 

will be demonstrated in Sect. 4.5, the multiscale model is able to well predict the force and moment sub-

resultants. The rotations of the layers at the edges of the element depend on two contributions: (i) the end 

rotations of arms rigidly clamped at the crack tip cross section and subjected to the end force and moment 

sub-resultants and (ii) the elastic near tip deformations. The structural concept of root-rotations, which are 

defined as the relative rotations of the layers at the delamination tip cross section, have been frequently 

used in the literature, e.g. [95], to account for the contribution of the elastic near tip deformations into the 

end rotations. As it was explained in Sect. 4.3 after Eq. (4-27), the multiscale structural theory neglects the 

root-rotations and predicts the rotations of the layers at the edges of the element as they are rigidly clamped 

at the crack tip. This fact will be demonstrated in Sect. 4.4.2, by particularizing Eq. (4-55) to the case of 

homogeneous layers and expressing the energy release rate in terms of the crack tip force and moment 

resultants. The contribution of the root-rotations into the energy release rate can be important even in the 

presence of long cracks and/or thin plates [95]. The missing contribution of the root-rotations in the solution 

of the multiscale model, can be accurately accounted for through the expression in [94, 95], once the force 

and moment sub-resultants are obtained by the multiscale structural model. 

Except for the root-rotations contribution, the expression for the energy release rate in Eq. (4-55) is the 

same as that obtained in [95] for a homogeneous layer, and is the same as that which can be derived using 
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the results in [94] for a bi-material edge-cracked element. In Sect. 4.5, the accuracy of the multiscale 

structural theory in predicting the energy release rates through Eq. (4-55) will be investigated by comparing 

the results with 2D solutions obtained in [94]. 

4.4.2 Energy release rate in a homogeneous layer 

When the edge-cracked element in Figure 4-3 is homogeneous, i.e. the first and second layers have the 

same material properties, the neutral axis of the intact section coincides with the mid-thickness axis of the 

element and the following relationships hold: 22 0  , (1) (2 )
2 2 2    , (1) (2) 2e h and (2) (1) 2e h . 

Therefore, the expression given in Eq. (4-55) for the energy release rate simplifies as: 
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In order to demonstrate the limitation of the homogenized structural theory with respect to exact LEFM 

solutions, i.e. neglecting root-rotations, Eq. (4-56) is redefined in terms of crack tip force and moment 

resultants, which are related to the values at the edges by the following relations: 
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 (4-57) 

The rotations of the end sections of the layer in Figure 4-3 are calculated as functions of the rotations of 

the crack tip cross sections and the force and moment sub-resultants, by integrating the second equations 

in Eqs. (4-34) and (4-38) from 2x a   to 2 0x  , and Eq. (4-41) from 2 0x   to 2x c : 
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 (4-58) 

for i = 1, 2. Substituting Eqs. (4-57) and (4-58) into Eq. (4-56) yields: 
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where ( )
22

i N , ( )
22

i bM  and 
( )

2
i

gQ  for i = 0, 1, 2, are calculated at the delamination tip cross section through 

Eq. (4-57), and    (0) ( )
2 20 0i

i x x        for i = 1, 2 are the root-rotations. Since the homogenized 

structural theory does not account for the root-rotations, due to the imposition of the continuity condition 

on the global bending rotation variable at the traction-free delamination tip cross section as part of the 

solution of the model,        (0) (1) (2)
2 2 2 20 0 0 0x x x x          , i  in Eq. (4-59) is zero and 

the energy release rate predicted by the model is: 
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Except for the root-rotations contribution, the expression for the energy release rate in Eq. (4-60) is the 

same as that obtained in [95], Eq. (4-59), for a homogeneous layer. Similar to Eq. (4-55), the missing 

contribution of the root-rotations in the solution of the multiscale model, Eq. (4-60), can be accurately 

accounted for through the expression in [95], once the force and moment sub-resultants are obtained by the 

multiscale structural model. In [95], the root-rotations are defined in a tabular form for edge-cracked 

homogeneous and orthotropic layers subjected to arbitrary end forces. The expressions for the root-rotations 

in [95] depend linearly on the crack tip stress resultants through compliance coefficients, which are derived 

numerically using rigorous finite element simulations. 

In Sect. 4.5, the accuracy of the multiscale structural theory in predicting the energy release rates through 

Eq. (4-60) will be investigated by comparing the results with 2D solutions in [95]. 

4.4.3 Energy release rate in terms of local measures 

An expression for the energy release rate of the edge-cracked element in Figure 4-3(a) is derived in terms 

of the crack surface relative displacements through the application of the J-integral along the path , shown 

in Figure 4-5(a), which follows the delamination surfaces. The expression is then presented in terms of the  

variables of the multiscale structural theory, which yields the energy release rate of the homogenized edge-

cracked element in Figure 4-3(b) in terms of the crack surface relative displacements.  
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The calculation can be conveniently performed using Bueckner’s superposition principle, Figure 4-5 and 

the procedure presented in [100, 101]. The edge-cracked element, shown in Figure 4-5(a), is considered as 

superposition of an intact element subjected to the end forces, Figure 4-5(b), and an edge-cracked element 

subjected to applied shear and normal tractions,  2x  and   2x , along the crack surfaces, Figure 4-5(c). 

The applied shear and normal tractions in the cracked element are equal but opposite in sign to the shear 

and normal tractions generated by the end forces, at the distance (1)h  from the bottom surface of the intact 

element. 

 

Figure 4-5: (a) the edge-cracked element under mode II dominant assumption, which is created by superposing 
intact (b), and cracked (c) problems. 

An application of the J-integral along a path around the crack surfaces in Figure 4-5(c) yields: 
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where the first two terms on the right hand side of Eq. (4-61) account for the component of the J-integral 

along the lower crack surface and the remaining terms account for the component of the J-integral along 

the upper crack surface. Collecting the terms in Eq. (4-61) multiplying  2x  and   2x , yields: 

    2 2

2 2

0 0 (2) (1)
2 2 2 2 2 3 3 2 2ˆ , , 

 
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   

x x

II x a x a
x v dx x v v dxG  (4-62) 

The second term on the right hand side of Eq. (4-62) is zero, since (2) (1)
3 3v v  in a mode II dominant 

problem. The first term on the right hand side of Eq. (4-62) is defined in terms of the variables of the 

multiscale structural theory to derive and expression for the energy release rate of the homogenized edge-

cracked element in Figure 4-3(b) in terms of the crack surface relative displacements: 

     (1) 1
23 2 3 3 2 2 2 2ˆ ˆ, 0        
post

II x x x v x a v xG  (4-63) 

where    (1) 1
23 2 3 3 2,   post x x x x  is the shear stress calculated a posteriori through the multiscale 

structural theory in the intact problem in Figure 4-5(b), and the crack surface relative displacement is 

obtained through Eq. (4-7) from the homogenized description of the problem in Figure 4-5(a), since the 

relative sliding displacement of the problem in Figure 4-5(c) is equal to that of the specimen in Figure 

4-5(a). 

The expression in Eq. (4-63) defines the energy release rate of the model system in Figure 4-3, as function 

of the crack surface relative displacement. The relative displacement of the crack surfaces is a local 

measure, which is used in cohesive crack modeling to study propagation of delaminations. In cohesive 

crack models, this local measure is usually calculated by through the thickness discretization of the domain. 

In the homogenized model, however, the relative sliding displacement is predicted without through 

thickness discretization, through the homogenized description of the problem, with the same number of 

variables as that needed for modeling a single intact homogenous layer. The accuracy of Eq. (4-63), which 

reflects the accuracy of the multiscale structural theory in predicting relative crack sliding displacements, 

will be investigated in Sect. 4.5 by comparing the results with two-dimensional solutions. 

4.4.4 Energy release rate through total potential energy 

The energy release rate of the homogenized edge-cracked element in Figure 4-3(b) can be derived as total 

potential energy decrease during unit crack extension:  

 
II

d U Vd

da da


   G  (4-64) 

where  , U  and V  are, respectively, the total potential energy, total strain energy and the potential of 

external forces.  The expression in Eq. (4-64) is equivalent to the J-integral and is based on the principle of 

energy conservation, which states that the energy added to and dissipated from the system during the crack 

extension must be the same. 
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Application of Eq. (4-64) to the End Notched Flexural (ENF) specimen in Figure 4-6, yields the 

following well-known expression for the energy release rate: 

2

2II

P dC

da
G  (4-65) 

where P is the applied concentrated load and  0 2 /C w x L P   the compliance of the specimen. 

As it was explained after Eq. (4-14), the multiscale structural theory neglects the shear deformations in 

the delaminated portion, and therefore, the model underestimates the compliance of the specimen. This 

problem then affects the accuracy of the predicted energy release rates through the compliance method, Eq. 

(4-65). In Sect. 4.5.4, the multiscale structural theory is used to define the compliance of a homogeneous 

ENF specimen and calculate the energy release rate through Eq. (4-65); the results are discussed and 

compared with two-dimensional solutions. 

4.5 MODEL APPLICATIONS AND DISCUSSION 

In this section the fracture model formulated in the previous sections is applied to calculate the energy 

release rate of an ENF specimen, Figure 4-6(a). This is an experimental fracture specimen where, for some 

combinations of material properties and layer thicknesses, the delamination is in pure mode II conditions 

or mode II dominant conditions. For example, when the layers of the specimen have the same material 

properties, the delamination is in pure mode II conditions for (1) (2)h h , and in mode II dominant conditions 

when the upper layer is thinner (2) (1)h h , due to localized contact at the crack tip [102]. The problem may 

also be dominated by mode II deformations for incompressible isotropic layers when (2) (1)h h  and the first 

layer is stiffer than the second layer [103], (2) (1) 1E E  with ( )k E  the Young’s modulus of the layer k, 

again due to localized contact at the crack tip.  
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Figure 4-6: (a) The ENF specimen under mode II dominant conditions and (b) the homogenized description of the 
problem. 

Force and moment resultants and sub-resultants in the ENF specimen, Figure 4-6, are derived in closed-

form; the force and moment resultants for 20  x L  are obtained through simple equilibrium 

considerations: 
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Comparing the second equations in Eqs. (4-34) and (4-38) shows that the layers in the delaminated region 

have the same curvature, 2 2, . This yields: 
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Using Eqs. (4-66) and (4-67), and noting that the shear force and moment resultants in (4-66) are the 

summation of the shear force and moment sub-resultants, (0) (1) (2)
22 22 22
b b bM M M   and 

(0) (1) (2)
2 2 2g g gQ Q Q  , the force and moment sub-resultants in the layers are derived as: 
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(4-68) 

Note that the normal force resultants and sub-resultants are zero for the ENF specimen, due to the absence 

of axial forces. 

In the following, the force and moment resultants and sub-resultants derived in Eqs. (4-66) and (4-68) 

will be used along with Eqs. (4-55) and (4-60) to derived, in closed-form, the energy release rates of some 

ENF specimens. 

4.5.1 Energy release rate in a homogeneous ENF specimen with equal thickness layers 

Here, a homogeneous ENF specimen with (2) (1) h h h  is considered. The material properties of the layers 

are: 0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT  (subscripts L and T indicate in-plane 

principal material directions and the L direction coincides with 2x  axis in the layers). The assumed ratios 

between the elastic constants of the layers could represent a graphite-epoxy composite, and provide a 

challenging case, in which the effects of the root-rotations are pronounced. The delamination is under pure 

mode II conditions due to the symmetric layup and the anti-symmetric loading about the delamination line. 

The crack tip force and moment resultants and sub-resultants are obtained through Eqs. (4-66) and (4-68), 

and are substituted into Eq. (4-60) with ( )
44 5 6i k  for i = 0, 1, 2, to calculate the energy release rate of the 

specimen. The normal forces are zero for this problem, and the terms in Eq. (4-60) which depend on the 

shear forces, give a zero contribution, due to the symmetry of the geometry about the delamination line. 

The energy release rate is then defined only by the terms accounting for the contributions of the crack tip 

bending moments: 
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The 2D Linear Elastic Fracture Mechanics solution for the energy release rate has been derived in [95]:  
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The summation of the second and third terms in the square bracket account for the root-rotations 

produced by the bending moments and by the shear forces.  



A HOMOGENIZED APPROACH FOR DELAMINATION FRACTURE 125 

4.5.2 Homogeneous ENF specimen with unequal thickness layers 

A homogeneous ENF specimen with (1) 4 3h h  and (2) 2 3h h  is considered, in this section. In this case 

since (1) (2)h h , the interface between the layers is under compression and the delamination under mode II 

dominant conditions, due to localized contact at the crack tip [102]. The material properties of the layers 

are: 0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT  (subscripts L and T indicate in-plane 

principal material directions and the L direction coincides with 2x  axis in the layers).  

The crack tip force and moment resultants and sub-resultants are obtained through Eqs. (4-66) and (4-68), 

and are substituted into Eq. (4-60) with ( )
44 5 6i k  for i = 0, 1, 2, to calculate the energy release rate of the 

specimen: 
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Unlike the previous example, the geometry is not symmetric about the delamination plane and both shear 

forces and bending moments contribute into the energy release rate. The first term on the right hand side of 

Eq. (4-71), defines the contribution of the crack tip bending moments and the second term, which is 

independent of the delamination length, defines the contribution of the crack tip shear forces. 

The accurate 2D LEFM solution for the energy release rate is obtained in [95]: 
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where the summation of the third and fourth terms account for the effect of the shear forces on the crack 

tip root-rotations generated by the bending moments and the shear forces. The second term, which becomes 

independent of the delamination length after expanding the expression, accounts for the contribution of 

shear deformations along the beam arms. This contribution is captured through the homogenized model, 

thanks to the a posteriori treatment of the shear stresses, which was presented in Sect. 4.3 and allows to 

account for the shear deformations along the delaminated arms where the interfacial tractions vanish. The 

contribution of the root-rotations is instead missing in Eq. (4-71). This example also provides a challenging 

case, in which the contribution of the root-rotations is significant. For instance, for a dimensionless crack 

length equal to 10, the contribution of the root-rotations, is about 18% of the whole energy release rate and 

it remains large also for very long crack lengths. 

4.5.3 Bi-material ENF specimen with equal thickness layers 

A bi-material ENF specimen made of two incompressible isotropic layers with (1) (2) h h h  and 
(2) (1) 2 3E E  is considered. For this geometry and material properties, the interface between the layers is 

under compression and the delamination under mode II dominant conditions.  

An expression for the energy release rate of the bi-material element in terms of the crack tip force and 

moment resultants and sub-resultants can be obtained by removing the terms multiplying the end rotations 
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in Eq. (4-55); using the resulting expression together with the crack tip force and moment resultants and 

sub-resultants in Eqs. (4-66) and (4-68), ( )
44 5 6i k   for i = 1, 2, and (0)

44 1k  , the following equation is 

obtained for the energy release rate of this example: 

2 2(2)

2
0.334 1 0.240

         
     

II Eh a h

P h a

G
 (4-73) 

The first term on the right hand side of Eq. (4-73), defines the contribution of the bending moments and the 

second term, which is independent of the delamination length, defines the contribution of the shear forces. 

The accurate 2D elasticity solution is obtained in [103]: 

2 2(2)

2
0.334 1 0.446 0.060

              
       

II Eh a h h

P h a a

G
 (4-74) 

where the first term defines the contribution of the bending moments, and the remaining terms account for 

the contributions of the shear forces due to the work done on the transverse shear deformations and on the 

root-rotations. 

4.5.4 Numerical results and discussion 

In Sects. 4.5.1, 4.5.2 and 4.5.3, the energy release rates of different ENF specimens were calculated using 

the local fields derived in Sect. 4.3, assuming that the lengths of the crack and the ligament ahead of the 

crack tip, a and c, are sufficiently long. This assumption ensures that the stress fields at the traction-free 

delamination tip depend only on the value of the force and moment resultants and the stress distributions at 

the ends of the element are unaffected by the delamination tip stress field. In order to verify this assumption, 

the multiscale structural theory in [25] is applied here to analyze the ENF specimen in Figure 4-6, and the 

crack tip force and moment resultants and sub-resultants are calculated numerically by introducing a 

cohesive interface governed by the interfacial traction law (4-5), and the solution of the displacement 

variables of the multiscale model. This analysis also allows to investigate the capability of the multiscale 

structural theory to predict the displacements, stresses and interfacial tractions in a specimen with finite 

length delamination. 

The material and interfacial properties are given for each example considered in the following. The 

numerical values for the interfacial stiffnesses in the intact/delaminated portion are chosen as large/small 

as possible, considering that numerical problems do not arise in calculations. The specimen is discretized 

into three portions separated at the coordinates 2 x a  and 2 x L . The global variables in three different 

regions are defined in Eq. (4-26), where the shear correction factor is assumed to be 44 5 6k  for 

homogeneous specimens and 44 1k  for bi-material specimens. The twenty-four integration constants in 

the solution of the global variables are calculated by imposing boundary and continuity conditions. The 

boundary conditions are given in Eq. (4-21), with 0 2 2 0b zSw M M     at 2 0x  and 2L , 2 0N   at 2 0x  

and 02 0v  at 2 2x L . The continuity conditions are imposed at 2 x a  and 2 x L  on the global variables 
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02v , 2 , 0w , 0 2,w , 22N , 22
bM , 2gQ  and 22

zSM . Displacements, strains and stresses in the layers and the 

relative crack sliding displacement along with the force and moment resultants and sub-resultants are 

calculated from the global variables using Eqs. (4-7), (4-9), (4-11), (4-12) and (4-29). The energy release 

rate is then calculated using Eqs. (4-55), (4-60), (4-63) and (4-65). 

It was observed that the crack tip force and moment resultants and sub-resultants calculated numerically 

through the solution of the displacement variables of the multiscale model virtually coincide with those 

derived from equilibrium considerations and given in Eqs. (4-66) and (4-68). Consequently, the energy 

release rates obtained numerically also virtually coincide with the closed-form solutions in Eqs. (4-69), 

(4-71) and (4-73).  

As an alternative, the intact and delaminated portions of the specimen in Figure 4-6 could be described 

by the zero-order solution of the homogenized theory, derived in Appendix H through a perturbation 

expansion of the exact solution of the equilibrium equations of the model, Eq. (4-26). The perturbation 

parameter,  , is chosen as 1 0  SK  to investigate the fully bonded limit (intact region), and as 

0  B , where B  defined in Eq. (4-25) goes to zero with the same order as SK , to investigate the fully 

debonded limit (delaminated region). The procedure for obtaining zero-order solutions are explained after 

Eq. (4-26) and in Appendix H.  

In the fully bonded limit, 1 0  SK , and the coefficients 0
22

SC  defined in  Eq. (G-2) in Appendix G, 

and A , B , C , D  and E  in Eq. (4-25) simplify by substituting  2 1
22 22 3 3 SR x x . The zero-order 

solution of the model are then obtained by substituting the simplified coefficients into Eq. (4-26). The zero-

order equilibrium equations of the model (4-24) has order VIII, and the zero-order solution coincides with 

the solution of the original first order zigzag theory developed in [62] for fully bonded plates.  

In the fully debonded limit, 0  B , and the finite coefficients in Eq. (4-26) are 1A  , 22
rC , E , DB

, 0
22

sC B ; the coefficients 0
22

SC  and D  are instead unbounded. The zero-order equilibrium equations of the 

model (4-24) has order VIII, and the zero-order solution is derived in Appendix H. 

If the specimen in Figure 4-6 is homogeneous, the last boundary condition in Eq. (4-21) becomes an 

identity, in the intact region, and the order of the system of equilibrium equations in the intact region reduces 

to VI, which is lower than the order VIII of the equilibrium equations in the delaminated region, Eq. (4-24) 

[7]. Therefore, the higher order moment 22
zSM  which appears in the last boundary condition in Eq. (4-21),  

2 2 2
zS zSM n M  , should be zero at the delamination tip cross section. The solution of the global variables in 

ENF specimen, which have now twenty integration constants, are derived by imposing boundary 

conditions, 2 0 2 2 0      b zSN w M M  at 2 0x , 02 0 2 0bv w M     at 2L , and continuity conditions at 

2 x a  and 2 x L  on 02v , 2 , 0w , 22N , 22
bM , 2gQ  together with 2 0zSM   in the delaminated region at 

2 x a . 

The difference between the orders of the governing field equations in the fully bonded and fully debonded 

limits in a homogeneous specimen, as explained above, indicates a singularity in the model, as demonstrated 

in [7], and singular behaviors such as boundary layer are expected to form near the regions where the 
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kinematic constraints are imposed. Indeed, boundary layer is found in the solution of the homogenized 

model for the ENF specimen (see Sect. 4.5.6). 

Figure 4-7, Figure 4-8 and Figure 4-9 refer to the examples considered in Sects. 4.5.1, 4.5.2 and 4.5.3. 

The figures present the relative percent error between the energy release rates obtained through the proposed 

homogenized model, Eqs. (4-55), (4-60), (4-63) and (4-65),  and the accurate 2D solutions, Eqs. (4-70), 

(4-72) and (4-74). 

In the solution of the homogenized model, the dimensionless interfacial stiffnesses S LK h E  for the 

intact and delaminated portions of the specimen are set to be 310  and 1010 , respectively. For instance for 

the example in Sect. 4.5.1, percentage change in the energy release rate obtained through Eq. (4-60) by 

increasing the dimensionless interfacial stiffness of the intact region to 410  and decreasing that of the 

delaminated portion to 1110  is less than 510 %. 

Figure 4-7 refers to the homogeneous ENF specimen with the layers with equal thickness considered in 

Sect. 4.5.1, and presents the relative percent error between the energy release rate obtained through the 

proposed homogenized model, Eqs. (4-60), (4-63) and (4-65), and the accurate 2D solution in Eq. (4-70). 

The results of Eq. (4-63), which defines the energy release rate in terms of the crack surface relative 

displacements, virtually coincide with those of Eq. (4-60), which uses sub-resultants. Both solutions are in 

agreement with the accurate 2D solutions and the relative error, caused by the root-rotations contribution, 

is below 6.4% already for 10a h .  

The predictions of the model through the compliance method, Eq. (4-65), have less accuracy compared 

to those made through Eqs. (4-60) and (4-63), as explained in the following. The multiscale structural theory 

underestimates the compliance of the ENF specimen, due to neglecting the shear deformations in the 

delaminated portion of the plate. In this example, the part of the compliance of the specimen associated 

with the shear deformations, or the transverse shear compliance, is independent of the delamination length. 

This is due to the symmetry of the geometry with respect to the crack line. In other words, when the 

delamination grows, the reduction in the transverse shear compliance of the intact region, is the same as the 

increase in that of the delaminated region. This explains why the shear deformations/forces do not 

contribute into the energy release rate for this ENF specimen. However, since the shear deformations of the 

delaminated region are neglected, the homogenized structural model only accounts for the reduction of the 

transverse shear compliance of the intact region, and this gives an incorrect contribution into the energy 

release rates calculated through the compliance method, Eq. (4-65). 

The macro-structural behavior of the specimen will be presented in Sect. 4.5.5. 
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Figure 4-7: Relative percent error between the energy release rates of the homogenized model and 2D solution 

[95] in homogeneous ENF specimen with (2) (1) h h h . Material: 0.071T LE E , 0.033LT LG E , 0.32 LT  

and 0.45 TT  (L and T indicate in-plane principal material directions with L = 2x ). “From sub-resultants Eq. 

(4-60)”, “From crack surface displacements Eq. (4-63)” and “from compliance Eq. (4-65)” refer to relative percent 
errors of energy release rates in Eqs. (4-60), (4-63) and (4-65), and Eq. (4-70). 

Figure 4-8 refers to the homogeneous ENF specimen with the layers with unequal thickness considered 

in Sect. 4.5.2, and presents the relative percent error between the energy release rate obtained through the 

proposed homogenized model, Eqs. (4-60) in terms of the crack tip force and moment sub-resultants and 

(4-63) in terms of the crack surface relative displacements, and the accurate 2D solution in Eq. (4-72). The 

solutions obtained through Eq. (4-60) are more accurate than those obtained by Eq. (4-63), since Eq. (4-60) 

accounts for the contribution of shear deformations into the energy release rate; Eq. (4-63) accounts only 

for the contribution of the bending moments into the energy release rate.  

 

Figure 4-8: Relative percent error between the energy release rates of the homogenized model and 2D solution 
[95] in homogeneous ENF specimen with (1) 4 3h h  and (2) 2 3h h . Material: 0.071T LE E , 0.033LT LG E , 

0.32 LT  and 0.45 TT  (L and T indicate in-plane principal material directions with L = 2x ). “From sub-
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resultants Eq. (4-60)” and “From crack surface displacements Eq. (4-63)” refer to relative percent errors of energy 
release rates in Eqs. (4-60) and (4-63), and Eq. (4-72). 

Figure 4-9 refers to the bi-material ENF specimen with the layers with equal thickness considered in 

Sect. 4.5.3, and presents the relative percent error between the energy release rate obtained through the 

proposed homogenized model, Eqs. (4-55) in terms of the force and moment sub-resultants and (4-63) in 

terms of the crack surface relative displacements, and the accurate 2D solution in Eq. (4-74). 

The predictions of the homogenized model through Eqs. (4-55) and (4-63) are in good agreement with 

accurate solution, Eq. (4-74), and tend to the same values for long delaminations, for which the bending 

moment contribution into the energy release rate dominates those of the shear deformations and root-

rotations. Also for this bi-material example, the results obtained through Eq. (4-63) accounts only for the 

contribution of the bending moments into the energy release rate. 

 

Figure 4-9: Relative percent error between the energy release rates of the homogenized model and 2D solution 

[103] in bi-material ENF specimen made of two incompressible isotropic layers with (1) (2) h h h  and 
(2) (1) 2 3E E . “From sub-resultants Eq. (4-55)” and “From crack surface displacements Eq. (4-63)” refer to 

relative percent errors of energy release rates in Eqs. (4-55) and (4-63), and Eq. (4-74). 

4.5.5 Macro-structural behavior of a homogeneous ENF specimen  

The macro-structural response of the specimen studied in Sect. 4.5.1, is presented here. The specimen is 

homogeneous with (2) (1) h h h , 2 200 3L h  and an initial delamination of length 0 20a h . The 

material properties of the layers are: 22 0.071TE C   and 22 0.033LTG C   (subscripts L and T indicate 

in-plane principal material directions and the L direction coincides with 2x  axis in the layers). In the 

solution of the homogenized model, the dimensionless interfacial stiffnesses 22SK h C  for the intact and 

delaminated portions of the specimen are set to be 310  and 1010 , respectively. Once the global kinematic 

variables in different portions of the specimen are defined, as explained after Figure 4-6, displacements, 

strains and stresses in the layers are calculated through Eqs. (4-7), (4-9), (4-11) and (4-12). 



A HOMOGENIZED APPROACH FOR DELAMINATION FRACTURE 131 

The macro-structural response of the specimen is shown in Figure 4-10. The critical load for the 

propagation of the delamination, CP , is obtained from Eq. (4-69) and the delamination is assumed to 

propagate when its energy release rate equals the fracture energy, IICG : 

022

4

3
C

IIC

P h

ahC

 
  

 G
 (4-75) 

The nonlinear portion of the macro-structural behavior corresponding to the post-peak response, after 

22C IICP hCG  has been reached, is obtained by controlling the crack length from the initial value 

0 20a h   to mid-span 0 100 3a h  ; the corresponding critical loads are calculated from Eq. (4-75) and 

the load point displacements from the solution of the global variable, 0 2( )w x L , Eq. (4-26). The 

homogenized model captures the snap-back instability in the post-peak response, which is inherently a 

discrete fracture event. The crack length control procedure does not require numerical techniques such as 

arc-length procedures to capture the snap-back behavior. The crack length monotonically increases during 

the process. 

The solution of the multiscale model is valid until the delamination reaches the mid-span, where the 

concentrated load is applied; the solution for crack lengths higher than the mid-span is presented in Figure 

4-10 by dots, and is given only to show the limit of the solution which tends to that of a  fully delaminated 

specimen, the dash-dot line in Figure 4-10. 

 

 

Figure 4-10: Dimensionless critical load versus load point displacement of homogeneous ENF specimen with 
(2) (1) h h h , 2 200 3L h  and 0 20a h . Material: 22 0.071TE C  , 22 0.033LTG C   (L and T indicate in-

plane principal material directions with L = 2x ). Shear correction factor, 44 5 6k  . 

The dimensionless load-deflection response is compared in the figure with that obtained through a 

discrete layer model [102]. In this approach, the layers in the delaminated region are modeled separately 

by the first order shear deformation theory and are allowed to freely slide along each other, while they 

remain in contact. The intact portion of the specimen is also modeled by the first order shear deformation 
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theory. The equilibrium equations of the layers are then solved and the boundary and continuity conditions 

are imposed to obtain the solution. This approach, as the multiscale model, neglect the crack tip root-

rotations, which can be accounted for a posteriori for the calculation of the fracture parameters [95]. 

The critical load obtained through the homogenized model coincides with that of the discrete layer 

model, while the deflections are slightly underestimated due to neglecting the shear deformations in the 

delaminated region, which is expected (see Figure 4-10).  

4.5.6 Displacements, stresses and interfacial tractions in a homogeneous ENF specimen 

In this section the capability of the multiscale structural model to predict the displacements, stresses and 

cohesive interfacial tractions in a specimen with a finite length delamination is investigated. A 

homogeneous ENF specimen with material properties, 0.071T LE E , 0.033LT LG E , 0.32 LT  and 

0.45 TT  (subscripts L and T indicate in-plane principal material directions and the L direction coincides 

with 2x  axis in the layer) is considered. The thicknesses of the layers, the specimen and traction-free 

delamination lengths are (1) ( 2 ) h h h , 2 100L h  and 30a h . The delamination is under pure mode 

II conditions due to the symmetric layup and the anti-symmetric loading about the delamination line. In the 

solution of the homogenized model, the dimensionless interfacial stiffnesses S LK h E  for the intact and 

delaminated portions of the specimen are set to be 310  and 1010 , respectively. Once the global kinematic 

variables in different portions of the specimen are defined, as explained after Figure 4-6, displacements, 

strains and stresses in the layers are calculated through Eqs. (4-7), (4-9), (4-11) and (4-12). 

Predictions of the homogenized structural theory are compared with those of a discrete layer interface 

model [20, 104, 105]. In this approach, an interface is introduced along the delamination line; the domain 

is discretized both through the length and thickness directions, at coordinates 2x a , 2x L  and 3 0x  , 

into six sub-layers, which are modeled separately by the first order shear deformation theory. The interfacial 

constitutive law defined in Eq. (4-4) is used with 310S LK h E  ; the two sub-layers within the delaminated 

portion are allowed to freely slide along each other. The same transverse displacements are assumed for the 

sub-layers at each cross sections. In the bonded portion of the specimen, the interfacial shear tractions are 

related to the interfacial relative displacements, through the interfacial constitutive law in Eq. (4-4), and act 

as surface tractions on the upper surface of the first layer and the lower surface of the second layer. The 

coupled equilibrium equations of the layers are then solved and the boundary and continuity conditions are 

imposed to obtain the solution of the discrete problem. 

The transverse displacements obtained through the homogenized model slightly differ from those of the 

discrete model due to neglecting shear deformations in the delaminated portion of the specimen (not 

shown). The longitudinal displacements, bending and transverse shear stresses predicted by the 

homogenized structural theory, coincide with those of the discrete model, but for a very small region ahead 

of the traction-free delamination tip. A comparison between the bending stresses at the lower surface of the 

specimen, predicted by the homogenize model, Eq. (4-12) for k =1 and 0
3 3x x , and the discrete layer 

interface model are shown in Figure 4-11 through the length. The figure shows that the bending stresses 

predicted by the homogenized model coincide with those of the discrete model, except for a very small 
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region at the vicinity and ahead of the traction-free delamination tip; the bending stress predicted by the 

homogenized model is not continuous at the traction-free delamination tip cross-section (see the inset in 

the figure).  

 

Figure 4-11: Comparison of the bending stresses at the lower surface of the plate through the length, calculated 
by the homogenized model and the discrete layer interface model. 

The different predictions of the homogenized structural model in a localized area near the traction-free 

delamination tip, in Figure 4-11, was expected because of the imposition of the continuity conditions on 

the global variables only, which results in satisfying the equilibrium at the delamination tip cross-section, 

only in a global sense. The length of this region decreases by increasing the interfacial stiffness. 

The through the thickness distributions of the bending stresses at the traction-free delamination tip, 

 22 2x a  , in the cracked and intact regions calculated by two models are shown in Figure 4-12. The 

bending stresses in the cracked region predicted by the discrete model are the same as those calculated for 

the intact region and local equilibrium is satisfied in both sub-layers. On the other hand, the bending stresses 

in the delaminated region predicted by the homogenized model, which coincide with those obtained by the 

discrete model, differ from those calculated for the intact region. This behavior is a consequence of the 

imposition of continuity on the global quantities, namely the bending moment, which result in the violation 

of the local equilibrium of the sub-layers. It is interesting to note that, in addition to a correct description 

of the global force and moment resultants at the crack tip sections, which is due to the imposition of the 

continuity conditions, the force and moment sub-resultants in the single layers are correctly predicted and 

it is only at the stress level and in a region very close to the crack tip that the solution of the homogenized 

approach differs from that of the discrete layer interface model. 
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Figure 4-12: Distributions of bending stresses at the traction-free delamination tip in the cracked and intact 
regions. 

A comparison between the interfacial shear tractions calculated a posteriori by the homogenized model 

and those obtained through the discrete model is shown in Figure 4-13, which refers to a very small region 

near the traction-free delamination tip at 2 30x h  . Different predictions of the bending stresses in the 

crack tip region (see Figure 4-11 and Figure 4-12), correspond to different predictions for the interfacial 

shear tractions. The interfacial tractions predicted by the homogenized structural theory differ from those 

obtained by the discrete model within the small crack tip region. The solutions of both models out of the 

boundary region coincide and tend to the constant value -3/8, which is the transverse shear stress of the 

layers at the interface. 

 

Figure 4-13: Comparison between the interfacial tractions calculated a posteriori by the homogenized model and 
those obtained through discrete layer interface model. The dimensionless interfacial shear tractions tend to the 
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constant value -3/8, which is the maximum transverse shear stress of the layers far from the traction-free 
delamination tip. 

A boundary layer similar to that observed in Figure 4-13 at the traction-free delamination tip, was 

observed [26] in the solution of the multiscale model in a region near the clamped end of a symmetric 

cantilevered wide plate with two layers bonded by a linear elastic interface and subjected to a concentrated 

load at the free end. The kinematic boundary conditions of the homogenized model at a clamped end, 

2 0 2, 0w   , yield zero transverse shear strain in Eq. (4-11), transverse shear stress in Eq. (4-12) and 2
bQ  

in Eq. (4-18) at the support; it was demonstrated in [26] that vanishing transverse shear strain and stress at 

the clamped boundary only affects the solutions within a localized region near the boundary and the solution 

of the model out of the boundary layer is accurate; the size of the boundary layer depends on the interfacial 

stiffness and is negligibly small for very stiff and very compliant interfaces [26]. The generalized transverse 

shear force, 2 gQ  in Eq. (4-17), which is related to the first derivative of the bending moment through the 

second equilibrium equation (4-15), accurately describes the shear force at any cross section including 

clamped supports [26]. 

The same phenomenon occurs in the problem considered in this section as a consequence of imposing 

the continuity of 2  and 0 2,w  at the traction-free delamination tip cross-section, which yields a vanishing 

2 0 2, 0w    in the intact region at the delamination tip, while 2 gQ  correctly describes the distribution of 

the transverse shear force at any cross section of the ENF specimen including the traction-free delamination 

tip cross section.  

4.6 CONCLUSIONS  

A homogenized fracture model has been formulated by particularizing the multiscale structural theory 

developed in [25] for laminated wide plates with an arbitrary number of layers and cohesive or traction-

free interfaces, to a bi-material plate with a single delamination under mode II dominant conditions. The 

model has then been used to study a fundamental fracture mechanics model system, an edge-cracked bi-

material element subjected to generalized end forces, for which accurate Linear Elastic Fracture Mechanics 

solutions are available in the literature. 

 The energy release rate has been derived through an application of the J-integral in the homogenized 

problem using the local fields calculated through the multiscale model. The derived expression is similar 

to that derived from 2D analysis but does not account for the contributions of the crack tip root-rotations, 

which however can be calculated a posteriori using the equations derived in [94, 95] once the crack tip 

force and moment sub-resultants have been calculated through the homogenized approach. The energy 

release rate of the model system has been derived also in terms of the relative crack sliding displacements, 

through an application of the J-integral along a path which follows the delamination surfaces.  

The formulated fracture model has been applied to calculate the fracture parameters of different ENF 

specimens. Numerical results have been presented and compared with accurate LEFM solutions to highlight 

the capabilities of the multiscale model to predict the energy release rate and the relative crack sliding 

displacements. It has been shown that the homogenized model captures the load-displacement response of 

the ENF specimen including the snap-back instability, which is a discrete fracture event. 
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A homogenous ENF specimen under pure mode II conditions has been considered to investigate the 

capability of the homogenized model to predict displacements, stresses and interfacial tractions in the crack 

tip region in plates with finite length delaminations. It has been shown that the multiscale structural theory 

is able to accurately predict the global measures, the energy release rate and the local measures everywhere 

but a localized area ahead of the traction-free delamination tip, where a boundary layer forms as a 

consequence of the imposition of the continuity conditions on the global variables only, which results in 

satisfying the equilibrium at the delamination tip cross-section, only in a global sense. It is then expected 

that the extended version of the model [25], which uses a similar kinematic assumptions and accounts for 

the interfacial opening displacements, can adequately model problems characterized by mixed-mode 

conditions. 

Within the framework of Linear Elastic Fracture Mechanics, accurate predictions of the stress sub-

resultants at the delaminations tips in plates with multiple delaminations, enable calculating the energy 

release rates, e.g. through Eq. (4-59). Based on the work presented in this chapter, it is foreseen that the 

homogenized structural model is able to accurately predict the force and moment resultants and sub-

resultants and capture macro-structural response of plates with many layers and delaminations, through the 

homogenized description of the problem, with the same number of variables as that needed for modeling a 

single intact homogenous layer. However, the homogenized structural model underestimates the 

compliances of plates with multiple delaminations and this affects the accuracy of the predicted force and 

moment resultants in statically indeterminate structures.  
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5 A HOMOGENIZED STRUCTURAL THEORY BASED ON THE REFINED 

ZIGZAG THEORY FOR WIDE PLATES AND BEAMS WITH IMPERFECT 

INTERFACES AND DELAMINATIONS  

5.1 INTRODUCTION 

To try and overcome the limitation of the homogenized model [25], i.e. neglecting the shear deformations 

in fully debonded laminates, this chapter aims at formulating a homogenized structural model based on the 

refined zigzag theory (RZT) [27] and on the multiscale approach proposed in [11, 25], for multilayered 

wide plates and beams with an arbitrary number of layers and imperfect interfaces and delaminations. The 

interfaces are assumed to be rigid against relative opening displacements, and governed by a linear elastic 

interfacial constitutive law. The refined theory uses four kinematic variables and allows to accurately model 

all boundary conditions including clamped supports, has enough kinematic flexibility to adequately 

describe the shear deformations through the thickness of an imperfectly bonded laminate with continuous 

interfaces, and requires only 0C -continuous shape functions for finite element implementation.  

In Sect. 5.2, the model assumptions are presented. In Sect. 5.3, the displacement field of the first order 

shear deformation theory is enriched by piecewise linear and discontinuous zigzag functions, which account 

for the zigzag patterns in the longitudinal displacement of the layers, due to the inhomogeneous material 

structure, and the interfacial jumps due to the imperfect interfaces. The homogenized equilibrium equations 

and boundary conditions are then derived through the Principle of Virtual Works. In Sec. 5.4, the model is 

applied to solve simply supported and cantilevered plates with different layups and state of the interfacial 

imperfections, and results are compared with the exact 2D elasticity solutions obtained in Chapter 3, and 

with the solutions of the discrete layer interface model introduced in Sect. 4.5.6 in Chapter 4. A preliminary 

application to delamination fracture problems in Section 5.5 reveals a drawback of the model for studying 

laminates with finite length interfaces. Conclusions are given in Sect. 5.6. 

5.2 MODEL ASSUMPTIONS 

A rectangular multilayered plate with global thickness h, in-plane dimensions L1 and L2 = L with L1 >> L2, 

and 1 2 3 x x x  a system of Cartesian coordinates with origin at the left edge is demonstrated in Figure 

5-1. The plane 3 0x  defines the reference surface of the plate, S . The plate is composed of n linearly 

elastic, homogenous and orthotropic layers with principal material axes parallel to the geometrical axes. 

The layers are joined by 1n  interfaces, which are zero-thickness mathematical surfaces where material 

properties and displacements may be discontinuous. The plate is subjected to distributed static loads acting 

on the upper, lower and lateral bounding surfaces, S , S  and B , and deforms in cylindrical bending 
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parallel to the plane 2 3x x .  The layer k, with k = 1, … n numbered from bottom to top, is defined by 1
3
kx  

and 3
kx , the coordinates of its lower and upper surfaces, ( ) k S  and ( ) k S , and has thickness ( )k h  (the 

superscript (k) on the left of a quantity shows association with the layer k, while the superscript k on the 

right identifies the interface between layers k and 1k ). The layers are assumed to be incompressible in 

the thickness direction and the interfaces to be rigid against relative opening displacements. Under these 

assumptions, the displacement components in each layer can be written as ( )
1 0k v  , ( ) ( )

2 2 2 3( , )k kv v x x  

and ( )
3 0 2( )k v w x  where ( )k

iv  is the displacement component in the layer k in ix  direction and i = 1, 2, 3. 

 

Figure 5-1: Multilayered wide plate/beam with imperfect interfaces and delaminations. 

The transverse normal stresses of the layers, ( )
33k , are assumed to be negligible compared with the other 

stress components. Under this assumption, the 3D constitutive equations for the layer k particularized to 

plane-strain conditions are: 

( ) ( ) ( )
22 22 22

( ) ( ) ( )
23 44 232

 

 





k k k

k k k

C

C
 

(5-1) 

with ( )k
ij

 and ( )k
ij  the stress and strain components, and  ( )( )

22 22 23 32 33 kk C C C C C ,  where ( )k
ijC  are 

the coefficients of the stiffness matrix. The model presented in this chapter is also applicable to beams with 

longitudinal axis 2x , provided that ( )
22

k C  is replaced by the Young’s modulus of the layers in 2x  direction. 

The mechanical behavior of the interfaces is described through a linear elastic interfacial traction law, 

which relates the interfacial shear tractions, 2ˆ ( ) k
S x , to the interfacial sliding jumps: 

( 1) ( )
2 2 3 3 2 2 3 3 2 2 3 3ˆ ( , ) ( , ) ( , )    k k k k k kv x x x v x x x v x x x  (5-2) 

through: 

2 2 2ˆ ˆ( ) ( ) k k k
S Sx K v x  

(5-3) 

with k
SK  the interfacial tangential stiffness. The interfacial shear traction, 2ˆ ( ) k

S x , is the traction generated 

at the interface due to the applied loads and is assumed to be different than that acting along the upper 
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surface of the layer k. This assumption, as it will be shown in Sect. 5.4 through applications of the model 

to simply supported and cantilevered wide plates, allows to adequately account for the shear deformations 

within the layers of a fully debonded plate. 

The interfacial traction law (5-3) well describes the response of thin elastic layers, for which the 

interfacial stiffness will depend on the shear rigidity and thickness of the layer. The law with 0k
SK  which 

results in ˆ 0 k
S , describes fully debonded layers, and with 1 0k

SK  which results in 2ˆ 0kv , represents 

fully bonded layers. 

5.3 HOMOGENIZED STRUCTURAL THEORY 

A homogenized structural theory, based on the RZT [27] and on the multiscale approach proposed in [11, 

25], is formulated in this section for solving the problem in Figure 5-1. The following displacement field is 

assumed in the layer k (Figure 5-2): 

( ) ( )
2 2 3 02 2 3 2 2 2 2 3

( )
3 2 3 0 2

( , ) ( ) ( ) ( ) ( )

( , ) ( )

    



k k

k

v x x v x x x x x

v x x w x
 

(5-4) 

The global variables 02 2( )v x , 2 2( ) x  and 0 2( )w x  define the displacement field of a first order shear 

deformation theory. The third term on the right hand side of Eq. (5-4), ( )
2 2 3( ) ( ) kx x , are local 

perturbations or enrichments, and account for the zigzag contributions due to the inhomogeneous material 

structure, already presented in the theory in [27], and the interfacial jumps due to the imperfect interfaces; 
( )

3( )k x  for k = 1, … n are assumed to be piecewise linear zigzag functions of 3x  with discontinuities at 

the interfaces (see Figure 5-2), and 2 2( ) x , which is a global variable, is the amplitude of the zigzag 

functions. The zigzag functions in Eq. (5-4) are assumed to be discontinuous at the interfaces, 
( ) ( 1)

3 3( ) ( )k k k kx x  , to account for the interfacial jumps. The displacement field (5-4) has four kinematic 

variable, 02 2( )v x , 2 2( ) x , 2 2( ) x  and 0 2( )w x , which is one variable more than that used in Chapter 4, Eq. 

(4-9) [25]. 

 

Figure 5-2: Schematic description of the assumed displacement field in a three layers laminate: global 

displacement and local perturbations. 
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The zigzag function in the layer k for k = 1, … n is given as: 

 ( ) ( ) 1 ( ) 1
3 3 3 3( ) ( )     k k k k kx x x x  (5-5) 

where ( ) ( )
3 3( ), k k x  is the slope, which is one of the unknowns, and ( ) 1

3( ) k kx  is the value of the function 

at the lower surface of the layer k, and is another unknown. The zigzag functions in Eq. (5-5) are fully 

defined through 2n  unknown functions ( )k  and ( ) 1
3( ) k kx  for k = 1, … n. The difference between the 

values of the zigzag function at the upper surface of the layer k, ( )
3( )k kx , and at the lower surface, 

( ) ( ) ( ) 1
3 3( ) ( )k k k k kx x      , is defined by substituting 3 3 kx x  into Eq. (5-5): 

( ) ( ) ( )  k k k h  (5-6) 

where ( )k h  is the thickness of the layer. ( )k   defined in Eq. (5-6) will be used later in the derivation of the 

zigzag functions. 

The interfacial sliding jumps are defined in terms of the zigzag functions and the kinematic variable 2 , 

using Eqs. (5-2) and (5-4): 

( 1) ( )
2 2 2 2 3 3ˆ ( ) ( ) ( ) ( )k k k k kv x x x x       (5-7) 

Once the zigzag functions have been derived, the interfacial sliding jumps are defined by Eq. (5-7). 

5.3.1 Derivation of the zigzag functions 

In order to derive the unknown zigzag functions, the interfaces at the coordinates 3 3 kx x  for k = 1, … 1n  

are considered as thin layers k  for k  = 1, … 1n , with thickness h , which are assumed to be perfectly 

bonded to their lower and upper layers,  k and k + 1 (see Figure 5-3). The thin layers are then considered as 

regular layers of the model. In the new representation of the problem, the lower and upper surfaces of the 

layer k for k = 2, … n , are at the coordinates 1
3
 kx h  and 3

kx , respectively; the lower and upper surfaces 

of the first layer are at the coordinates 0
3x  and 1

3x . In the limiting case of 0h , the thin layers represent 

the zero-thickness imperfect interfaces.  

The zigzag functions are first derived for the system of perfectly bonded layers and thin layers in Figure 

5-3(b), following the RZT for perfectly bonded laminates [27], and then by taking the limit as 0h , the 

zigzag functions for the problem in Figure 5-3(a) are obtained in terms of the thickness and transverse shear 

stiffness of the layers, and the interfacial stiffness of the interfaces.  
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Figure 5-3: (a) Layers joined by imperfect interfaces. (b) Representing imperfect interfaces as thin layers. (c) 

Values of the zigzag functions below and above the thin layer k , perfectly bonded to layers k  and 1k .  

The transverse shear strains within the layers in Figure 5-3(b) are derived by substituting Eq. (5-5) into 

the displacement field in Eq. (5-4), and using linear compatibility: 

 
 

( ) ( ) ( ) ( )
23 2 3 3 2 2 0 2 2

( ) ( ) ( ) ( )
23 2 3 3 2 2 0 2 2

2 , , ,

2 , , ,

   

   

    

    

k k k k

k k k k

v v w

v v w
 

(5-8) 

where the superscript  k  on the left of a quantity shows association with the thin layer k . Following [27], 

a difference function is defined: 

 2 0 2 2,    w  
(5-9) 

Using Eqs. (5-1), (5-8) and (5-9), the transverse shear stresses in the layers in Figure 5-3(b) are written in 

terms of 2 0 2,  w ,  ( )k   and  : 
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  
  

( ) ( ) ( ) ( )
23 44 2 0 2

( ) ( ) ( ) ( )
23 44 2 0 2

, 1

, 1

    

    

     
     

k k k k

k k k k

C w

C w
 

(5-10) 

To define the slopes of the zigzag functions, ( )k  and ( )k , the shear coefficients which multiply 2 0 2,  w  

term in Eq. (5-10), which is the well-known shear strain in the first order shear deformation theory, are 

assumed to be the same for each layer: 

     ( 1) ( 1) ( ) ( ) ( ) ( )
44 44 441 1 1        k k k k k kG C C C  

(5-11) 

for k  and k  = 1, …, 1n . As mentioned in [106], the constraints in Eq. (5-11) can be also derived based 

on the minimization of the shear strain energy. The constraints in Eq. (5-11) allow to relate  the slops of the 

zigzag functions in the layers to G : 

( )
( )

44

( )

( )
44

1

1





 

 

k
k

k

k

G

C

G

C

 
(5-12) 

for k  = 1, …, n ,  and k  = 1, …, 1n .  

In the following, we first derive the value of the zigzag function at the lower surface of the layer k + 1, 

 ( 1)
3 k kx h  in Figure 5-3(b), in terms of the slopes of the zigzag functions in the layers below the layer 

k + 1 and assuming a zero value for the zigzag function at the lower surface of the plate  (1) 0
3 0x  , and 

use the derived expression to determine  ( )
3n nx ; G  is then derived by imposing the value of the zigzag 

function at the upper surface of the plate to be zero  ( )
3 0 n nx  [27]. Imposing    (1) 0 ( )

3 3 0n nx x    

results in zigzag functions with desirable properties, which will be discussed later (after Eq. (5-16)) [27]. 

Since the layers and thin layers are assumed to be perfectly bonded, the following relationships exist 

between the values of the zigzag functions in layers k, k + 1 and k  (see Figure 5-3(c)): 

   
   

( 1) ( )
3 3

( ) ( )
3 3

 

 

   



k k k k

k k k k

x h x h

x x
 

(5-13) 

Subtracting the second equation from the first equation in Eq. (5-13) and using Eq. (5-6) to define the 

difference between the values of the zigzag function of the thin layer k at its upper and lower surfaces, 
( ) ( ) ( ) ( )

3 3( ) ( )k k k k k kx h x h        , yield: 
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   ( 1) ( ) ( )
3 3     k k k k kx h h x  

(5-14) 

Equations (5-6) and (5-14) can be used to further relate  ( 1)
3 k kx h  to the value of the zigzag function 

of the layer k at its lower surface,  ( ) 1
3  k kx h . Repeating this procedure and imposing  (1) 0

3 0 x  result 

in the following expression: 

 ( 1) ( ) ( ) ( )
3

1

  



    
k

k k i i i

i

x h h h  
(5-15) 

for k  = 1, …, 1n . The value of the zigzag function at the top of the plate in Figure 5-3(b),  ( )
3n nx , can 

be defined  by substituting 1 k n  in Eq. (5-15) and using Eq. (5-6) for k n . G  is then derived by 

imposing  ( )
3 0 n nx  and using Eq. (5-12): 

( ) 1

( ) ( )
1 144 44

( 1)
in n

i i
i i

h n h
G

h h
C C



 

 


 
 

(5-16) 

where ( 1)h n h   is the total thickness of the plate in Figure 5-3(b).  

Substituting G  from Eq. (5-16) into the expressions for the slops of the zigzag functions ( )k   and ( )k   

in Eq. (5-12) and integrating the  slopes over the whole thickness of the plate, yield zero [27]. This desirable 

property allows to define the integration of the transverse shear strains in the layers and thin layers in Figure 

5-3(b), Eq. (5-8), through the whole thickness of the plate as   2 0 2( 1) ,h n h w   , where 2 0 2,w  , 

the well-known shear strain in the first order shear deformation theory, represents the average shear strain 

of the cross section [27]. 

The transverse shear strain within the thin layers can be written as: 

( )
( ) 2

23

ˆ
2

k
k v

h
   (5-17) 

where ( )
2ˆ

k v  is the relative sliding displacement across the thin layer k . Therefore, the transverse shear 

stress within the thin layers is: 

( )
( ) ( )44

23 2ˆ
k

k kC
v

h
   (5-18) 
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Comparing Eq. (5-18) with the interfacial constitutive law in Eq. (5-3) and noting that when 0h , ( )
23

k   

and ( )
2ˆ

k v  represent the interfacial traction and jump, yield ( )
44

k k
SK C h . Therefore, Eq. (5-16) when 

0h   becomes: 

( ) 10

( )
1 144

lim
1

 

 
 

in nh

i i
i i S

h
G G

h

C K

 
(5-19) 

Substituting 1 0i
SK   in Eq. (5-19) yields G  for a perfectly bonded laminate, which coincides with that 

derived in [27]. 

The ( )k  for k  = 1, …, n  in the plate in Figure 5-3(a) is calculated through Eqs. (5-12), (5-16) and 

(5-19), and taking the limit as 0h : 

( ) ( )
44 1  k kG C  

(5-20) 

Substitution of ( )k  from Eq. (5-12) into Eq. (5-15) and taking the limit as 0h , yield:  

 ( 1) ( ) ( )
3

1

 



 
  

 


k
k k i i

i
i S

G
x h

K
 

(5-21) 

for k  = 1, …, 1n . The zigzag functions in the layers of the plate in Figure 5-3(a) are defined by Eqs. 

(5-5) and (5-21): 

   
1

( ) ( ) 1 ( ) ( )
3 3 3

1

( )
( )

44

1

k
k k k i i

i
i S

k
k

G
x x x h

K

G

C

  








 
    

 
 

  
 


 

(5-22) 

Substituting 1 0i
SK   in Eq. (5-22) yields the zigzag functions of a perfectly bonded laminate, which 

coincides with those derived in [27]. The interfacial displacement jumps are then derived through Eqs. (5-7) 

and (5-22):  

2
2ˆ


k

k
S

G
v

K
 

(5-23) 

The interfacial traction at the interface 3 3 kx x , ̂ k
S , are derived from the interfacial constitutive equation 

(5-3) and Eq. (5-23): 
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2 2ˆ ( ) k
S G x  

(5-24) 

Substitution of the derived zigzag functions in Eq. (5-22) into Eq. (5-4) yields the displacement field in 

terms of four kinematic variables, 02 2( )v x , 2 2( ) x , 0 2( )w x  and 2 2( ) x : 

1
( ) ( ) ( ) ( ) 1 ( )

2 2 3 02 2 2 2 3 2 2 2 2 3
1

( )
3 2 3 0 2

( , ) ( ) ( ) ( ) ( )

( , ) ( )

k
k i i k k k

i
i S

k

G
v x x v x x h x x x x

K

v x x w x

     






   
                



  
(5-25) 

where ( ) ( )
44 1  k kG C  and G is defined in Eq. (5-19).  

The local rotations of the layers, ( )k  , which are defined as the rotations of the lines perpendicular to 

the reference surface, and correspond to the slope with respect to 3x  of the longitudinal displacement of 

the layers, are: 

( ) ( )
2 2 2 2( ) ( )k kx x      

(5-26) 

Equation (5-26) shows that at a cross section, where two homogenized domains characterized by 

different interfacial stiffness, e.g. plates with finite length delaminations, are joined, the local rotations of 

the layers at the left and right of the joining cross section are different due to different ( )k   defined in Eq. 

(5-20) (the global variables 2  and 2  are continuous at the joining cross section because of the continuity 

conditions, see Eq. (5-34)). The model would also predict different local rotations in layers at the left and 

right of  a cross section, where two domains with the same interfacial stiffness and different shear moduli, 

44C , are joined. 

The strain components in the layer k are derived through the displacement field in Eq. (5-4) with ( )k  

defined in Eq. (5-22) and the linear compatibility equations: 

 

( ) ( ) ( )
22 2 3 2 2 2 3 02 2 3 2 2 2 2

( ) ( ) ( ) ( )
23 2 3 2 3 2 3 3 2 2 3 2 0 2 2

( , ) , ( , ) , , ,

2 ( , ) , ( , ) , ( , ) ,

k k k

k k k k

x x v x x v x

x x v x x v x x w

   

   

   

    
 

(5-27) 

where ( )k  is defined in Eq. (5-20). The normal strain, ( )
22

k  , is piecewise linear through the thickness of 

the plate and discontinuous at the interfaces, while the transverse shear strain, ( )
232 k  ,  is piecewise constant 

through the thickness of the plate, and becomes constant through the thickness of fully debonded laminates, 

since ( ) 1  k  from Eq. (5-20), and homogenous plates, since ( )k  is constant through the thickness, due 

to the same material properties of the layers. The transverse shear strains of the layers in Eq. (5-27) can be 

rewritten in a form similar to that of the equivalent single layer first order shear deformation theory by 

using the local rotations of the layers defined in Eq. (5-26), ( ) ( )
23 0 22 ,k k w    . 
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The stress components in the layer k are derived through the strain components in Eq. (5-27) and the 

constitutive equations (5-1): 

 

( ) ( ) ( )
22 2 3 22 02 2 3 2 2 2 2

( ) ( ) ( )
23 2 3 44 2 0 2 2

( , ) , , ,

( , ) ,

k k k

k k k

x x C v x

x x C w

   

   

    
    

 
(5-28) 

The bending stress, ( )
22

k  , is piecewise linear through the thickness of the plate and discontinuous at the 

interfaces, due to the contribution of the zigzag function, while the transverse shear stress, ( )
23

k  ,  is 

piecewise constant through the thickness of the plate, due to different ( )k  for each layer, and becomes 

constant through the thickness of homogenous plates, since ( )k  is constant through the thickness. The 

transverse shear stress of the layers in Eq. (5-28) can be rewritten in a form similar to that of the equivalent 

single layer first order shear deformation theory by using the local rotations of the layers defined in Eq. 

(5-26), ( ) ( ) ( )
23 44 0 2,

k k kC w     . Accurate prediction of the transverse shear stresses can be made a 

posteriori from the bending stresses in Eq. (5-28) by using local equilibrium ( ) ( )
22 2 23,3, 0  k k post . 

The current structural theory has the ability to account for the shear deformations/stresses within the 

layers even at the presence of fully debonded interfaces and traction-free delaminations. In this limit, the 

term G  defined in Eq. (5-19) vanishes since 0SK , and therefore ( ) 1  k  for k  = 1, …, n ; this does 

not result in vanishing transverse shear strains, Eq. (5-27), and transverse shear stresses, Eq. (5-28). This 

feature of the present model especially improves the accuracy of the predicted transverse displacements, 

which is important in the modeling of statically indeterminate plate, in which the solution depends on the 

compliance of the plate. 

5.3.2 Homogenized field equations 

The homogenized equilibrium equations and boundary conditions are derived through the Principle of 

Virtual Works: 
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1 (
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1
( ) ( ) ( ) ( )
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kn nx k k k k k k
Sx

k k

n B
i i i

S S

S S

S S i iB i

dx dS v dS

F v dS F v dS F v dB

 (5-29) 

with i = 2, 3 and 


i
SF , 



i
SF  and B

iF  the components of the external forces acting along the boundary 

surfaces of the plate, S , S  and B . The symbol   is the variational operator and the virtual displacements 

are independent and arbitrary. The equilibrium equations and boundary conditions are derived by 

substituting strain and displacement components and interfacial displacement jumps from Eqs. (5-4), 

(5-23), and (5-27) into Eq. (5-29)  and using Green’s theorem whenever necessary: 

02 22 2 2:     , 0  v N f  

2 22 2 2 2:     , 0   mM Q f  
(5-30) 
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0 2 2 3:     , 0  w Q f  

2 22 2 2 2ˆ:     , 0   zS zM Q  

where the force and moment resultants and loading terms are: 

 normal force and bending moment, and moment resultant associated to the zigzag functions 

   3

1
3

( ) ( )
22 22 22 22 3 3

1

, , 1, , 





k

k

n xzS k k

x
k

N M M x dx  
(5-31) 

 shear force and shear force associated to the zigzag functions  
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 distributed tangential and transverse loads and couples 

2 2 2

0
2 2 3 2 3

3 3 3

 

 

 

 

 

 

S S

S n S
m

S S

f F F

f F x F x

f F F

 
(5-33) 

The first three equilibrium equations in Eq. (5-30) are the same as those of the first order shear 

deformation theory, while the fourth equilibrium equation defines the equilibrium of bending moment and 

shear force associated to the zigzag functions.  

There are two differences between the equilibrium equations (5-30) and those of the refined zigzag theory 

developed in [27] for fully bonded plates. First, the zigzag functions and ( )k   defined in this chapter, Eq. 

(5-22), which appear in the definitions of the stress resultants in Eqs. (5-31) and (5-32), are different from 

those derived in [27] due to the presence of imperfect interfaces. The second difference is the term 2̂ , 

which appears in the fourth equilibrium equation (5-30) again due to the presence of the imperfect 

interfaces. 

The boundary conditions at the plate edges, 2 0,  x L , with  0, 1,0
T n  the outward normal, are: 

02 22 2 2 02 02:                   or                      v N n N v v  

2 22 2 2 2 2:                 or                       M n M  

0 2 2 3 0 0:                   or                      w Q n N w w  

2 22 2 2 2 2:               or                       zS zSM n M  

(5-34) 
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where the terms with the tilde define prescribed values of displacements, forces and couples at the plate 

edges: 
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(5-35) 

for i = 2 and 3. 

The constitutive equations of the structural theory are derived by substituting the stress components from 

Eq. (5-28), into Eqs. (5-31) and (5-32): 

0 1 0
22 22 22 22 02 2

1 2 1
22 22 22 22 2 2

0 1 2
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0 1
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where 
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The term 2̂  in Eq. (5-32) can be also written in terms of the kinematic variable of the model, 2 , by 

substituting the interfacial tractions from Eq. (5-24) into Eq. (5-32): 

 

2 22 2
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ˆ

1

S
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S

k
k S
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 
 

(5-38) 

A shear correction factor, 44k , is introduced in Eq. (5-36) to improve the approximate description of the 

shear strain of the global model. The introduction of the shear correction factor has some advantages. It 

allows to recover the constitutive equations of the equivalent single layer first order shear deformation 

theory in the limiting case of a fully bonded and homogeneous plate, for which 44 5 6k   is required. If the 

shear correction factor is not needed, for instance in bending problem of fully bonded multilayered plates 
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subjected to static loadings, the shear correction factor should be equal to 1. In this work, 44 1k  is assumed 

for multilayered and 44 5 6k  for homogenous plates. 

The definition of the transverse shear force, 2Q , in Eq. (5-36) and the boundary conditions in  Eq. (5-34) 

highlight a drawback of the proposed theory for solving problems, in which the solution requires the 

imposition of the continuity conditions between domains characterized by different interfacial stiffness, 

e.g. plates with finite length delaminations; in such problems, the solution of the present theory does not 

enforce the continuity condition on the slope of the transverse displacement, 0 2,w , as explained in the 

following. Using Eq. (5-36), the continuity condition of the transverse shear force at the coordinate 2x a

, where the interfacial stiffness of domains at the left, 2x a , and right, 2x a , of the coordinate 2x a  

is different, yields: 

   
2 2

0 1 0 1
44 2 0 2 44 2 44 2 0 2 44 2, ,

x a x a
C w C C w C     
            

(5-39) 

The coefficient 0
44C  defined in Eq. (5-37) is independent of the interfacial stiffness and is the same at the 

left and right of the coordinate 2x a , while 1
44C , defined in Eq. (5-37), depends on the interfacial stiffness 

and is different for the regions at the left and right of the coordinate 2x a . Since 2  and 2  are imposed 

to be continuous at 2x a , as continuity conditions of the global kinematic variables of the model, Eq. 

(5-39) yields the following relationship for the difference between the slopes of the transverse displacement 

of the domains at 2x a ,      0 2 2 0 2 2 0 2 2, , ,w x a w x a w x a         : 

 
   

 2 2

0 2 2 2 20
44

, x a x a
G G

w x a h x a
C


  


     (5-40) 

and G  is defined in Eq. (5-19). The continuity condition on 0 2,w  at 2x a , which results 

 0 2 2, 0w x a   , would be enforced only if the G  of the domains at the left and right of the coordinate 

2 x a , are the same; this happens when the interfacial stiffnesses of two regions are the same. Equation 

(5-40) also shows that if the shear moduli of the domains at the left and right of the joining cross section at 

2x a , are different,  0 2 2, 0w x a    even if the interfacial stiffness of the domains are the same; this is 

because G  defined in Eq. (5-19) depends not only to the interfacial stiffness, but also to the shear modulus 

of the layers. The influence of the violation of the continuity condition of 0 2,w , on the solution of the model 

for plates with finite length delaminations will be investigated in Sect. 5.5. 

Substitutions of the force and moment resultants from Eqs. (5-36), and Eq.  (5-38) into the equilibrium 

equations (5-30) yield the equilibrium equations in terms of the kinematic variables: 

0 1 0
02 22 02 22 22 2 22 22 2 22 2:     , , , 0Sv C v C C f       (5-41) 
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 1 2 1 0 1
2 22 02 22 22 2 22 22 2 22 44 44 2 0 2 44 44 2 2:     , , , , 0          S

mC v C C k C w k C f  

 0 1
0 44 44 2 2 0 22 44 44 2 2 3:     , , , 0     w k C w k C f  

   0 1 2 1 2
2 22 02 22 22 2 22 22 2 22 44 44 2 0 2 44 44 22 2:     , , , , 0          S S S SC v C C k C w k C C  

Substitutions of the force and moment resultants from Eqs. (5-36), and Eq.  (5-38) into the boundary 

conditions (5-34) yield the boundary conditions in terms of the kinematic variables: 

 0 1 0
02 22 02 2 22 2 2 22 2 2 2 2 02 02:     , , ,             or                   Sv C v C C n N v v        

 1 2 1
2 22 02 2 22 2 2 22 2 2 2 2 2 2:     , , ,              or                   SC v C C n M          

  0 1
0 44 44 2 0 2 44 2 2 3 0 0:     ,               or                   w k C w C n N w w        

 0 1 2
2 22 02 2 22 2 2 22 2 2 2 2 2 2:     , , ,            or                   S S S zSC v C C n M          

(5-42) 

Solution of the boundary value problem is defined by the equilibrium equations (5-41) and boundary 

conditions (5-42). 

The asymptotic limit of the equilibrium equations (5-41) and boundary conditions (5-42) corresponding 

to perfectly bonded layers, can be obtained by setting 1 0i
SK   in the equilibrium equations (5-41) and 

boundary conditions (5-42). This yields 22 2ˆ 0SC    in Eq. (5-38), and modifies the zigzag functions ( )k   

and ( )k   defined in Eq. (5-22); the equations of the model then coincide with those of the refined zigzag 

theory developed in [27] for fully bonded laminates. 

The system (5-41) has order VIII. The equations are decoupled by subsequent derivations/substitutions 

and eliminating 0 2,w  through the introduction of a variable   given by 2 0 2,   w . The system of 

decoupled equations, which has the same order of the original system is: 
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 (5-43) 

where: 
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 (5-44) 

The first equation (5-43) is a third order differential equation in 2  whose solution allows cascading 

solutions for   through an algebraic equation, and 02v  and 2  through solutions of two second order 

differential equations. The last equation (5-43), which is a first order differential equation, defines 0w . 

5.4 MODEL VERIFICATION AND APPLICATIONS 

In this section, the accuracy of the homogenized structural theory will be verified against exact 2D elasticity 

solutions derived in Chapter 3 for simply supported unidirectional and multilayered plates deforming in 

cylindrical bending and subjected to sinusoidal transverse loading,  3 3 0 22 sin( )S SF F f x L
 

  , Figure 

5-4. The examples in this section are those considered in [25], to investigate the capabilities of the 

multiscale structural theory. In the examples, the layers are connected by linear elastic interfaces, which 

have the same interfacial stiffnesses. Three cases of perfect bonding, full debonding and partial bonding 

are examined. The plate has three layers and length-to-thickness ratio is 4L h . The origin of the 

coordinate system is placed at the mid-thickness. The elastic constants of the layers are 25L TE E , 

0.5LT TG E , 0.2TT TG E  and 0.25  LT TT  (subscripts L and T indicate in-plane principal material 

directions). The assumed ratios between the elastic constants of the layers could represent a graphite-epoxy 

laminate.  
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Figure 5-4: Three-layered plate with linear elastic interfaces subjected to sinusoidal transverse loading. 

The following boundary conditions are imposed at the edges of the simply supported plate (Eq. (5-34)): 

2 0 02 2 2

2 0 2 2 2

0:  0

:  0

zS

zS

x w v M M

x L w N M M

    

    

  
  

 (5-45) 

The solutions of the displacement variables are then obtained by solving the equilibrium equations (5-41) 

and imposing the boundary conditions (5-45) for the simply supported plate. Once the global variables 

02 2( )v x , 2 2( ) x , 0 2( )w x  and 2 2( ) x  are obtained, the displacements, the bending stresses, the interfacial 

tractions and jumps are defined through Eqs. (5-25), (5-28), (5-24) and (5-23). The transverse shear stresses 

of the layers are derived from the bending stresses by using equilibrium equation ( ) ( )
22 2 23,3, 0  k k post .  

For fully bonded case, the asymptotic limit of the equilibrium equations (5-41), which is obtained by 

setting 1 0i
SK   is solved.  Results for plates with fully debonded layers, are obtained by assuming a very 

small value for the interfacial stiffness, by which the solutions converge. 

Unidirectional plate with imperfect interfaces 

Here, the plate is assumed to be homogenous with stacking sequence  0, 0, 0 . Figure 5-5 shows the through 

thickness variation of the longitudinal displacements at 2 0x  and of the transverse displacements at 

2 2x L . Results for the bending stresses at 2 2x L , and a posteriori calculated transverse shear stresses 

at 2 0x  are shown through the thickness of the plate in Figure 5-6. Three different cases of perfectly 

bonded interfaces, interfaces with intermediate imperfection with dimensionless interfacial stiffness 

0.25S TK h E   and fully debonded interfaces are considered. Results of the present model  and those 

predicted by the homogenized structural model used in Chapter 4 [25] are compared with the exact 2D 

elasticity solutions derived in Chapter 3.  



FORMULATION OF A HOMOGENIZED STRUCTURAL THEORY 153 

 

Figure 5-5: Longitudinal at 2 0x  and transverse at 2 2x L  displacements through the thickness in a simply 

supported three-layer wide plate  0, 0, 0 , 4L h , transverse loading  3 3 0 22 sin( )S SF F f x L
 

  . Elastic 

constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 0.25  LT TT . Shear correction factor 44 5 6k . 

The displacement and the stress fields in the layers are strongly affected by the presence of the imperfect 

interfaces; the longitudinal displacements and the bending stresses of the layers become discontinuous and 

the maximum deflection and transverse shear stress of the plate increase. The structural theory formulated 

in this chapter and the one used in Chapter 4 [25] accurately capture the interfacial displacement jumps due 

to the imperfect interfaces. The longitudinal displacements, and the bending and transverse shear stresses 

predicted by the models are similar and very accurate for all cases examined.  

 Figure 5-5(b) shows the transverse displacements at the mid-span of the perfectly bonded plate; both 

models, which coincide with the equivalent single layer first order shear deformation theory, overestimate 

the exact solutions. At the presence of imperfect interfaces, the present model predicts more accurate 

transverse displacements compared to those predicted by the model used in Chapter 4 [25], Figure 5-5(d) 
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and (f), due to a better description of the shear deformations in the layers of the imperfectly bonded plates. 

The present model adequately predicts the transverse displacements when the plate is fully debonded 

(Figure 5-5(f)). In this case, the layers deform independently as a thinner structure. For thinner plates, e.g. 

10L h  , the solutions of both models significantly improve and are in excellent agreement with the exact 

solution for all interfacial stiffness values (not shown). 

 

Figure 5-6: Bending at 2 2x L  and transverse shear at 2 0x  stresses through the thickness in a simply 

supported three-layer wide plate  0,0,0 , 4L h , transverse loading  3 3 0 22 sin( )S SF F f x L
 

  . Elastic 

constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 0.25  LT TT . Transverse shear stresses are 

calculated a posteriori from bending stresses. Shear correction factor 44 5 6k . 

To further demonstrate the capability of the present model to accurately predict transverse displacements 

for plates with imperfectly bonded layers, a simply supported homogenous plate deforming in cylindrical 

bending, with two identical layers and length-to-thickness ratio 4L h , is considered. This example was 
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considered in [25], to investigate the capabilities of the multiscale structural theory.  The laminate is 

subjected to transverse loading 3 0 2sin( )


SF f x L  on its upper surface, while the lower surface of the 

plate is traction-free. The elastic constants of the layers are 25L TE E , 0.5LT TG E , 0.2TT TG E  and 

0.25  LT TT  (subscripts L and T indicate in-plane principal material directions) and stacking sequence 

 0,0 . Figure 5-7 illustrates the transverse displacements at 2 2x L  on the top of the plate, normalized 

to exact 2D elasticity solutions of a fully debonded plate,  3 2 ,limD
v , on varying the interfacial stiffness 

(decreasing interfacial stiffness from left to right). The transverse displacements predicted by the present 

model are in good agreement with the exact solutions for any value of the interfacial stiffness. As noted 

and explained in [25], the predictions of the model used in Chapter 4 [25] are accurate for large values of 

the interfacial stiffness and deviate from the exact solutions for smaller values; the deviation occurs because 

the transverse shear strains/stresses in the model used in Chapter 4 [25] decrease/vanish on 

decreasing/vanishing the interfacial stiffness, as it can be understood from Eqs. (4-5), (4-11), (4-12) and 

(4-14) [25]. This was discussed in [25] that this behavior is a consequence of the a priori imposition of the 

continuity of the shear tractions at the interfaces and the assumption of a first order global displacement 

field. For small values of the interfacial stiffness, the solution of the homogenized structural model [25] 

tends to the solution corresponding to two layers free to slide over each other and modeled separately by 

the kinematic assumptions of the classical plate theory, in which the shear deformations in the layer are 

neglected [25]. The solution of the model in [25] significantly improves for thinner plates or for plates with 

more layers and interfaces [25].  In [25], it was suggested to modify the shear correction factor of fully 

bonded plates and define a shear correction factor, which depends on the stiffness of the interfaces, to 

account for the missing contribution of the shear deformations to the displacement field.  

 

Figure 5-7: Transverse displacements at 2 2x L  at the top of a simply supported two-layer wide plate  0,0 , 

4L h ; layers connected by a linear elastic interface at the mid-thickness, transverse loading 

3 0 2sin( )


SF f x L  on its upper surface, while the lower surface of the plate is traction-free [25]. The results are 

normalized to those of a fully debonded plate,  3 2 ,limD
v , and shown on varying the interfacial stiffness (decreasing 
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interfacial stiffness from left to right). Elastic constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 

0.25  LT TT . Shear correction factor 44 5 6k . 

Multilayered plate with imperfect interfaces 

Here, the plate in Figure 5-4 is considered with a stacking sequence of  0,90, 0 . The plate is highly 

anisotropic and provides a challenging case to assess the predictive capabilities of the model [25]. This 

example also was considered in [25].   Figure 5-8 and Figure 5-9 illustrate the through thickness variation 

of the longitudinal and transverse displacements, and bending and transverse shear stresses at different 

cross-sections of the plate. Results are presented on varying the interfacial stiffness.  

 

Figure 5-8: Longitudinal at 2 0x  and transverse at 2 2x L  displacements through the thickness in a simply 

supported three-layer wide plate  0,90,0 , 4L h , transverse loading  3 3 0 22 sin( )S SF F f x L
 

  . Elastic 

constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 0.25  LT TT . Shear correction factor 44 1k . 
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The diagrams in Figure 5-8 refer to the longitudinal and transverse displacements at 2 0x  and 2 2x L

; the refined theory and  the model used in Chapter 4 [25] capture the zigzag pattern in the longitudinal 

displacements of the layers and the interfacial displacement jumps. The present model predicts the 

transverse displacements more accurately than the model used in Chapter 4 [25].  

The bending and transverse shear stresses at 2 2x L  and 2 0x  are shown in Figure 5-9. The bending 

and the transverse shear stresses predicted by the models are in good agreement with the exact 2D elasticity 

solution. Through the thickness distribution of the bending stresses, which are characterized by jumps at 

the interfaces, are well captured by both models. For the plate with partially bonded layers, the present 

model predicts the transverse shear stresses with high accuracy, also at the interfaces. For thinner plates, 

e.g. 10L h  , the solutions of both models significantly improve and are in excellent agreement with the 

exact solution for all interfacial stiffness values (not shown). 

 

Figure 5-9: Bending at 2 2x L  and transverse shear at 2 0x  stresses through the thickness in a simply 

supported three-layer wide plate  0,90,0 , 4L h , transverse loading  3 3 0 22 sin( )S SF F f x L
 

  . Elastic 
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constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 0.25  LT TT .  Transverse shear stresses are 

calculated a posteriori from bending stresses. Shear correction factor 44 1k . 

Cantilevered Plate 

To demonstrate the predictive capabilities of the formulated model along the clamped supports, the 

example considered in [26] is used here: a cantilevered plate deforming in cylindrical bending with 

10L h   and two layers connected by a linear elastic interface and subjected to a concentrated transverse 

force at the free end, Figure 5-10. The origin of the coordinate system is placed at the mid-thickness. The 

two identical layers of the plate are connected by a linear elastic interface at the mid-thickness, 3 0x  . The 

elastic constants of the layers are: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 0.25  LT TT  

(subscripts L and T indicate in-plane principal material directions) and stacking sequence  0,0 .  

 The boundary conditions at the edges of the cantilevered plate in Figure 5-10, Eq. (5-34), are: 

2 0 02 2 2

2 2 2
2

2

0 : 0

 0
:

     

    


 
   zS

x w v

N M M
x L

Q F

 
(5-46) 

 

 

Figure 5-10: A cantilevered plate composed of two layers joined by a linear elastic interface at the mid-thickness 

and subjected to transverse load F at the free end [26]. 

The boundary conditions at 2 0x   satisfy the conditions at the clamped end, i.e. zero displacements. The 

solutions of the displacement variables are then obtained by solving the equilibrium equations (5-41) and 

imposing the boundary conditions (5-46).  

Figure 5-11 illustrates the variations of the interfacial shear tractions, Eq. (5-24), along the plate length 

for three different values of the interfacial stiffness; the interfacial tractions calculated through Eq. (5-24), 

ˆ S , coincide with those obtained a posteriori,    (1) (2)
23 3 23 30 0post postx x    . The results of the present 
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model are compared with those of the model used in Chapter 4 [25], and the discrete layer interface model 

presented in Sect. 4.5.6 in Chapter 4 with the interfacial constitutive equation (5-3). 

The interfacial shear tractions predicted by the present structural model coincide with those obtained by 

the discrete layer interface model, for any value of the interfacial stiffness. As noted and explained in [26], 

the interfacial shear tractions predicted through the structural theory used in Chapter 4 [25], have different 

behaviour within a region near the clamped edge, and coincide with the solutions of the discrete layer model 

out of the region; the size of this region depends on the interfacial stiffness and is negligible for very stiff 

and compliant interfaces [26]. 

 

Figure 5-11: Interfacial tractions along the length of a cantilever two-layer with plate  0,0 , 10L h , subjected 

to a concentrated transverse force F at the free end (Figure 5-10) [26]. Two identical layers connected by a linear 
elastic interface at the mid-thickness. The elastic constants: 25L TE E , 0.5LT TG E , 0.2TT TG E  and 

0.25  LT TT . Interfacial tractions predicted by the model used in Chapter 4 [25] are calculated a posteriori 

from the bending stresses. 

5.5 PRELIMINARY APPLICATIONS TO DELAMINATION PROBLEMS 

To preliminarily investigate the applicability of the formulated model to fracture problems, the model is 

applied to analyze the specimen shown in Figure 5-12 with 2 100L h   and 30a h  . The origin of the 

coordinate system is placed at the mid-thickness. The specimen deforms in cylindrical bending, and is made 

of two layers with the same thickness h and material properties 0.071T LE E  , 0.033LT LG E  , 

0.32LT   and 0.45TT   (subscripts L and T indicate in-plane principal material directions and the L 

direction coincides with 2x  axis in the layers), and is subjected to a concentrated load P at the mid-span. 

The layers are bonded with two linear elastic interfaces with different interfacial stiffness for 20 x a   

and 2 2a x L  . The dimensionless interfacial stiffnesses S LK h E  for the portion of the specimen within 

2 2a x L  , is set to be 410  to approximate the perfect bonding of two layers in the intact region. Different 

values of the interfacial stiffness are assumed for the portion of the specimen within 20 x a   to 

investigate the solutions of the formulated model. The terms G  and   defined in Eqs. (5-19) and (5-22) 



160 CHAPTER 5 

are simplified for this example as  2 2S LT S LTG hK G hK G   and  2LT S LTG hK G    ; substituting 

G  and   into Eq. (5-25), the longitudinal displacements of the layers are: 

(1)
2 02 2 3 2 2

(2)
2 02 2 3 2 2

2 2

2 2

LT LT

S LT S LT

LT LT

S LT S LT

G h G
v v x

hK G hK G

G h G
v v x

hK G hK G

  

  

   
          
   

          

 
(5-47) 

where the terms multiply 3x ,  2 2 2LT S LTG hK G    define the local rotations of the layers. 

 

Figure 5-12: ENF specimen with two layers of equal thickness, bonded by two linear elastic interfaces with 
different interfacial stiffness for 20  x a  and 2 2 a x L . 

The specimen is discretized into three portions separated at the coordinates 2x a  and 2x L . The 

solutions of the displacement variables, 02v , 2 , 0w  and 2  in three different regions, are obtained by 

solving the equilibrium equations (5-41) and imposing the boundary conditions at 2 0x   and 2 2x L , and 

continuity conditions at 2x a  and 2x L . The following boundary conditions are imposed at the plate 

edges (Eq. (5-34)): 

2 0 02 2 2

2 0 2 2 2

0 :  0

2 :  0

zS

zS

x w v M M

x L w N M M

    

    

  
  

 (5-48) 

The continuity conditions are imposed at 2x a  and 2x L  on the global variables 02v , 2 , 0w , 2 , 22N , 

22M , 2Q  and 22
zSM , which yield: 
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 where the superscript – and + on the right of a coordinate show association of the global variables with the 

domains at the left and right of that coordinate, respectively. Once the global variables are obtained, the 

displacements, the bending stresses, the interfacial tractions and jumps are defined through Eqs. (5-47), 

(5-28), (5-24) and (5-23). The transverse shear stresses of the layers are derived from the bending stresses 

by using equilibrium ( ) ( )
22 2 23,3, 0k k post   . 

As already explained after Eq. (5-26), Eq. (5-47) shows that at 2x a , where two domains characterized 

by different interfacial stiffness are joined, the imposition of the continuity of the global kinematic variables 

does not enforce the continuity of the longitudinal displacements. The local rotations of the layers at the 

left and right of the coordinate,  2 2 2LT S LTG hK G   , are also different. 

The mid-span deflection predicted by the formulated model for two sets of the interfacial stiffnesses, and 

those predicted by the discrete layer interface model presented in Sect. 4.5.6 in Chapter 4, are shown in 

Figure 5-13. The interfacial stiffnesses are given in the caption of the figure. The trasnverse displacements 

predicted by the present model are in agreement with those obtained through the discrete layer model. 

Diagrams in Figure 5-14 show the distributions of the interfacial tractions and jumps in the specimen 

with 10S LK h E   and 410S LK h E   within 20 x a   and 2 2a x L  , respectively. The results are 

presented for the left side of the plate from 2 0x   to 2x L . The interfacial tractions and jumps obtained 

through the present model coincide with those calculated by the discrete model, except in a region in the 

vicinity of the crack tip at 2x a , which is the cross section where the continuity conditions are imposed; 

a similar boundary region was also observed in Sect. 4.5.6 in the solution of the homogenized model used 

in Chapter 4. The solutions of the present theory coincide with those of the discrete layer interface model 

also near the mid-span cross section; this was expected since the conditions at the mid-span are similar to 

a clamped end, and it was shown previously that the formulated theory is able to accurately model clamped 

boundaries. 
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Figure 5-13: Deflection of the specimen in Figure 5-12 with 2 100L h  and 30a h  made of 0.071T LE E , 

0.033LT LG E , 0.32 LT  and 0.45 TT .  (a) 10S LK h E  for 20  x a  and 410S LK h E  for 2 2 a x L  

(fully bonded), and (b) 310 S LK h E  for 20  x a  and 410S LK h E  for 2 2 a x L . Correction factor 

44 5 6k . 

 
Figure 5-14: (a) Interfacial tractions and (b) interfacial jumps from 2 0x  to 2 x L  in the specimen in Figure 

5-12 with 2 100L h  and 30a h  made of 0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT . 

10S LK h E  for 20  x a  and 410S LK h E  for 2 2 a x L  (fully bonded). Correction factor 44 5 6k . 
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Diagrams in Figure 5-15 refer to the specimen in Figure 5-12 with 310S LK h E   and 410S LK h E   

within 20 x a   and 2 2a x L  , respectively. The interfacial tractions and jumps calculated by the 

present model for 20 x a   are in agreement with the solutions of the discrete model. The discontinuity 

in the interfacial jumps predicted by the present model at 2x a , is due to the imposition of the continuity 

conditions on the global variables only. The solutions of both models coincide in the intact part of the 

specimen, except for the interfacial tractions within a very small region ahead of joining cross section at

2x a . 

 

Figure 5-15: (a) Interfacial tractions and (b) interfacial jumps from 2 0x  to 2 x L  in the specimen in Figure 

5-12 with 2 100L h  and 30a h   made of 0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT . 
310 S LK h E  for 20  x a  and 410S LK h E  for 2 2 a x L  (fully bonded). Correction factor 44 5 6k . 

To model a traction-free delamination, the interfacial stiffness of the region between 2 0x   and 2x a  

should be reduced to a very small number. Figure 5-16(a) refers to the deflection of the specimen with 
410S LK h E   and 410S LK h E   within 20 x a   and 2 2a x L  , respectively. The transverse 

displacements predicted by the present model differ from those obtained through the discrete layer model. 

This discrepancy is due to the absence of the continuity condition on the slope of the transverse 

displacement variable, 0 2,w , in the solution of the present model, as already explained by Eq. (5-40). The 

continuity condition on 0 2,w  at 2x a  would be enforced through the continuity of the transverse shear 

force 2Q  defined in Eq. (5-32),  only if the G defined in Eq. (5-19), of the homogenized domains at the left 

and right of the coordinate 2 x a , are the same; this happens when the interfacial stiffnesses of two regions 

are the same. The violation of the continuity condition on 0 2,w  has negligible effect on the predicted 

transverse displacements in Figure 5-13; the difference between the transverse displacements predicted by 
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two models then becomes noticeable when the interfacial stiffness of the portion of the plate within 

20 x a   is reduced to 410S LK h E  . 

 
Figure 5-16: (a) Deflection of the specimen in Figure 5-12 with 2 100L h  and 30a h  made of 

0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT . 410S LK h E  for 20  x a  and 410S LK h E  for 

2 2 a x L  (fully bonded). (b) Deflection of a perfectly bonded specimen in Figure 5-12 with 2 100L h  and 

30a h  made of 0.071T LE E , 0.033LT LG E , 0.32 LT  and 0.45 TT . The shear modulus in the portion 

of the specimen within 20  x a  is reduced to 0.01 LTG . Correction factor 44 5 6k . 

Equation (5-19) shows that if the shear moduli of the materials within  20  x a  and 2 2 a x L  are 

different, the G would be different in different portions of the specimen. In this case, if the difference is 

large enough, the discontinuity in the first derivative of the transverse displacements would become 

noticeable also in plates with no delamination, Eq. (5-40). Figure 5-16(b) refers to the specimen in Figure 

5-12 with 410S LK h E   everywhere through the length, namely a fully bonded plate; the shear modulus 

of the portion of the specimen within 20  x a  is reduced to be 1% of that of the portion of the plate within 

2 2 a x L , 0.01 LTG . Similar to Figure 5-16(a), the deflection of the specimen is characterized by different 

0 2,w  at 2 x a . 

The above mentioned problem does not arise in applications of the homogenized structural theory used 

in Chapter 4 [25], since one of the global continuity conditions of that model is on 0 2,w  (see Eq. (4-21)). 

The drawback then limits the applications of the present model to Linear Elastic Fracture Mechanics 

problems, in which the difference between the G defined in Eq. (5-19), of the homogenized domains ahead 

and behind the traction-free delamination tip is maximal, due to the very large/small values of the interfacial 
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stiffness in the intact/delaminated regions. However, the model may be applicable to cohesive crack 

modeling, by approximating nonlinear cohesive traction laws by piecewise linear branches [25]. 

5.6 CONCLUSIONS 

In this chapter, a new multiscale structural theory, based on the refined zigzag theory [27] and on the 

multiscale approach proposed in [11, 25] to analyze multilayered plates with imperfect interfaces and 

delaminations, has been formulated for laminated composite wide plates and beams with an arbitrary 

number of layers and imperfect interfaces and delaminations, to overcome the limitation of the 

homogenized model [25], i.e. neglecting the shear deformations in fully debonded laminates.  The interfaces 

are assumed to be rigid against relative opening displacements and their mechanical behaviour are described 

through the linear elastic interfacial constitutive law. A homogenization technique has been used to derive 

the local variables in terms of the global ones; the number of kinematic variables in this model is 

independent of the number of layers and imperfect interfaces, as those of the original models in [11, 25, 

27]. Piecewise linear and discontinuous zigzag functions are derived by modeling the imperfect interfaces 

as thin layers with vanishing thickness. The model allows to account for the shear deformations through 

the thickness of laminates with continuous imperfect or fully debonded interfaces, enables accurate 

modeling of all boundary conditions including clamped ends, and needs only 0C -continuous shape 

functions for finite element implementation. It has been proved that the model runs into difficulties when 

applied to problems, whose solutions require the imposition of the continuity conditions between regions 

characterized by different transverse shear moduli or interfacial stiffness, e.g. a plate with finite length 

imperfect interface or delamination. The problem is just a consequence of the fact that the model cannot 

deal with continuity conditions. 

Applications of the formulated model have been presented for simply supported plates with continuous 

linear elastic imperfect interfaces. Comparisons with the exact elasticity solutions obtained in Chapter 3, 

highlight the accuracy of the proposed model to account for the shear deformations in imperfectly bonded 

laminates. This feature of the new model allows to also accurately predict the transverse displacements 

independent of the status of the interfaces. 

Results have been also presented for a homogeneous cantilevered plate with two layers connected by a 

linear elastic interface and subjected to end concentrated force. It has been shown that the interfacial shear 

tractions predicted by the new homogenized model coincide with those obtained by the discrete layer 

interface model, for any values of the interfacial stiffness. 

To preliminarily investigate the applicability of the formulated model to fracture problems, a simply 

supported plate with two layers and a mid-thickness delamination, subjected to a concentrated force at the 

mid-span, has been studied. The layers are connected by two different interfaces in different portions of the 

specimen, to reproduce a fully bonded portion (on the right of the crack tip) and a partially/fully debonded 

portion (on the left of the crack tip). The transverse displacements, interfacial tractions and jumps have 

been calculated on varying the interfacial stiffness, and compared with those obtained through the discrete 

layer interface model. It has been found that, since the continuity conditions of the formulated model do 

not results in the continuity of 0 2,w , the accuracy of the obtained results depends on the difference between 
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the interfacial stiffnesses of the interfaces. This limitation strongly affects the applications of the model to 

Linear Elastic Fracture Mechanics problems.  
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6 CONCLUSIONS 

Current applications of laminated composite and sandwich structures require withstanding severe 

mechanical loadings and surviving aggressive environments, characterized for instance by very high or 

very low temperatures. To design layered structures and define their load-bearing capacity and life, accurate 

understanding of their mechanical behavior in the elastic and post-elastic regimes is needed. The focus of 

this PhD thesis has been on formulating accurate and efficient methods for modeling the elastic and 

delamination response of layered composite structures subjected to stationary thermo-mechanical loading. 

In the following, the content and the main achievements of the work are summarized. 

A brief introduction has been presented in Chapter 2 on two approaches for studying the mechanical 

behavior of multilayered structures subjected to thermo-mechanical loading. In the first part, some of two- 

and three-dimensional thermo-elasticity models for laminated and sandwich structures with thermally and 

mechanically perfect and imperfect interfaces were introduced. Thermo-elasticity models based on matrix 

methods were also discussed. In the second part of the chapter, two types of structural theories, namely the 

equivalent single layer and the zigzag theories, have been introduced with focus on new multiscale and 

refined models. 

In Chapter 3, a matrix technique has been formulated based on the transfer matrix method [51] and the 

2D/3D thermo-elasticity models in [6, 7], to derive novel explicit expressions for the field variables of 

rectangular simply supported laminated and sandwich plates with thermally and mechanically imperfect 

interfaces subjected to stationary thermo-mechanical loading.  The matrix technique systematizes the 

analysis by relating the integration constants in the solution of a generic layer to those of the first layer, 

through local transfer matrices and continuity conditions at the interfaces. In this manner, the thermo-

elasticity problem of a plate with many layers and imperfect interfaces has been reduced to that of a single-

layer plate whose solution has been obtained by the imposition of the boundary conditions. The expressions 

are valid for plates with any numbers of imperfectly bonded layers in imperfect thermal contact, are 

applicable to limiting cases of fully bonded layers in perfect thermal contact, and fully debonded layers or 

impermeable interfaces. They can be easily applied to generate benchmark solutions and used for the 

verification of numerical models and approximate theories, with no need to solve algebraic systems, as in 

the classical approaches, or to perform extensive matrix multiplications, as in other matrix formulations in 

the literature; the expressions have been used for verification of the structural model formulated in Chapter 

5. Some benchmark solutions have been presented in tabular and graph forms for plates with different 

layups, length-to-thickness ratios, interfacial stiffnesses and thermal resistances, to highlight the efficacy 

of the method and the important effect of the imperfections on the field variables.  

In Chapter 4, a fracture model has been formulated based on the multiscale homogenized structural 

theory [25], which allows to study delamination fracture in layered structures without the through thickness 

discretization which is required and used in discrete-layer cohesive-interface approaches. The multiscale 
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structural theory has been particularized to a bi-material plate with a single delamination under mode II 

dominant conditions and subjected to transverse loading. The model has then been applied to analyze an 

edge-cracked bi-material element subjected to generalized end forces, for which accurate LEFM solutions 

are available in the literature. The energy release rate of the model system has been derived in closed-form 

in terms of the stress sub-resultants and rotations of the delamination arms, through an application of the J-

integral in the homogenized problem using the local fields calculated through the multiscale model. The 

derived expression for the energy release rate neglects the contribution of the crack tip root-rotations, which 

can be calculated a posteriori through the equations and tables given in [94, 95] and the crack tip stress 

resultants predicted by the multiscale model. Apart from the contribution of the root-rotations, the 

expression derived for the energy release rate is the same as those obtained in [94, 95], for bi-material and 

homogeneous plates. The J-integral has been calculated also along a path which follows the delamination 

surfaces, and the energy release rate of the model system has been derived in terms of the relative crack 

sliding displacements, which are local measures and important for cohesive crack modeling.  

The formulated fracture model has been applied to study delamination growth and investigate the 

structural response of different homogeneous and bi-material ENF specimens. The energy release rate has 

been calculated in terms of the crack tip stress sub-resultants and the relative crack sliding displacements 

predicted by the homogenized structural theory, and compared with accurate 2D solutions. It has been 

observed that the energy release rates calculated using the relative crack sliding displacements can account 

only for the contribution of the bending moments due to a limitation of the model in treating shear. 

Furthermore, it has been proved that the multiscale model is able to accurately capture the macro-structural 

response of the ENF specimen, bending and transverse shear stresses and interfacial shear tractions except 

for a very small region localized ahead of the traction-free delamination tip, where a boundary layer forms 

as a consequence of the imposition of the continuity conditions on the global variables only, which results 

in satisfying the equilibrium at the delamination tip cross-section, only in a global sense. Based on the study 

conducted in Chapter 4, it has been concluded that, within the framework of Linear Elastic Fracture 

Mechanics, the multiscale structural theory is expected to be able to accurately predict the energy release 

rates and the structural response of plates with many layers and delaminations; the limitation of the theory 

is its inability to account for the shear deformations in the delaminated portions of the structures, which is 

a consequence of the imposition of continuity between the interfacial tractions and the tractions at the layer 

surfaces. 

In chapter 5, a homogenized structural theory has been formulated which is based on the refined zigzag 

theory [27] and the homogenized structural theory already used in Chapter 4 [25]. The model is formulated 

for plates deforming in cylindrical bending, with an arbitrary number of layers and imperfect interfaces. A 

linear elastic interfacial constitutive law has been used to describe the mechanical behavior of the interfaces, 

which are assumed to be able to slide only. The number of the kinematic variables of the model is 

independent of the number of layers and imperfect interfaces. Homogenized equilibrium equations and 

boundary conditions have been derived using the Principle of Virtual Works. The formulated model is able 

to accurately account for the shear deformations in plates with continuous imperfect interfaces, and model 

all boundary conditions including clamped supports; the theory needs only 0C -continuous shape functions 

for finite element implementation. It has been proved that the model runs into difficulties when applied to 
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problems, whose solutions require the imposition of the continuity conditions between regions 

characterized by different transverse shear moduli or interfacial stiffness, e.g. a plate with finite length 

imperfect interface or delamination. The problem is just a consequence of the fact that the model cannot 

deal with continuity conditions. 

The model has been applied to three different cases to reveal its advantages and limitations. In the first 

case, the model has been used to study simply supported plates with continuous imperfect and fully 

debonded interfaces subject to sinusoidal transverse load. Highly anisotropic plates with small length-to-

thickness ratio have been considered; comparisons with the exact elasticity solutions obtained in Chapter 3 

prove the accuracy of the solutions. In the second case, the model has been applied to a cantilever wide 

plate with two layers connected by a linear elastic interface and subjected to an end concentrated force. It 

has been observed that the interfacial shear tractions predicted by the proposed model coincide with those 

obtained through the discrete layer interface model, for any value of the interfacial stiffness. 

In the third case, a simply supported plate with two layers connected by two different interfaces in 

different portions of the specimen, and subjected to a concentrated force at the mid-span has been studied. 

The predicted transverse displacements, interfacial tractions and jumps have been compared with those 

obtained through discrete layer interface model, on varying the interfacial stiffness. It has been found that, 

since the continuity conditions of the formulated model do not result in the continuity of the slope of the 

transverse displacement variable, the accuracy of the obtained results depends on the difference between 

the interfacial stiffnesses of the interfaces; for cases in which the interfacial stiffness of the delaminated 

portion of the specimen is set to be a very small number to model a traction-free delamination, the transverse 

displacements in the specimen are incorrectly predicted. This limitation strongly affects the applications of 

the model to Linear Elastic Fracture Mechanics problems and has effects in cohesive crack modeling. 

6.1  FUTURE DEVELOPMENTS 

Some aspects of the work presented in the thesis need further investigation in order to achieve more 

generality. The following are some relevant topics which deserve considerations: 

 The transfer matrix method is an efficient technique which can be applied to derive explicit 

expressions for the field variables of layered shell structures with imperfect interfaces subjected to 

thermo-mechanical loads. The technique can be applied also to time-dependent elasticity problems. 

  The homogenized structural model used in Chapter 4, has been formulated in [25] for plates with 

many layers and mixed-mode interfaces. The theory may be applied to problems characterized by 

mixed-mode conditions. 

 The structural model formulated in chapter 5 is able to accurately predict the field variables of wide 

plates with continuous imperfect interfaces and delaminations subjected to static loading. The 

model can be easily extended to plates subjected to dynamically applied loads; it can be also 

extended to plates subjected to thermal loadings. Moreover, through thickness 

compressibility/extensibility of layers may be accounted for to extend the range of applicability of 

the model, e.g. to sandwich structures with soft core and imperfect bonding at the core-face sheets 

interface. 
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7 DERIVATION OF THE UNKNOWN CONSTANTS OF THE HEAT CONDUCTION PROBLEM 

IN CHAPTER 3 

Equation (3-23) is expanded as: 

( ) ( ) (1) ( ) (1)
1 11 1 12 2
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2 21 1 22 2

 
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where: 
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The terms ( )k
irZ , for i, r = 1, 2 are: 
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and  (1) 0
3tjD x  are given in Eq. (3-18) and the ( )k

rtN , for r, t = 1, 2, are defined by the recursive formula:  

2
( ) ( ) ( 1)

1

(1) (1)

 for  = 2, ...,  

= 





k k k
rt rl lt

l

rt rt

N A N k n
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 (A-4) 

where:  
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For perfect thermal contact, the kR  terms in the equations above vanish. The terms given above 

correspond to the coefficients of the matrices   1( ) ( ) 1
3( )

k k k kZ D x J , 
1

( ) ( )



k i

i k

N A  and 

 ( ) ( ) ( ) 1 1
3 3( ) ( ) i i i i i iA J D x D x . Application of the boundary conditions at the top and bottom surfaces of the 

plate and using Eq. (A-1) for k n , result in the following explicit expressions for the unknown constants 

of the first layer: 

( )(1) 0
3 3 3

12 22
(1)

1 ( ) ( )(1) 023 3 3 3 3
11 21 12 22

(1) 0
(1) 3

(1) 1
2 (1) 0

3



 



   
 

        
   




n n nsx sx sx

u l

n nn n n nsx sx sx sx sx

sx

l

sx

T Te F e F e
c

F e F e e F e F e

T c e
c

e

 (A-6) 

 

 



172 APPENDIX B 

APPENDIX B 

8 UNKNOWN CONSTANTS OF THE PARTICULAR SOLUTION OF LAYER K IN CHAPTER 3 

The constants in the particular solution of layer k in Eq. (3-27) are derived as: 
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9 MATRIX ( )k E  IN CHAPTER 3 

Positive discriminant:  
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Zero discriminant:  

This case occurs when the layer is isotropic: 
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where ( )k  and ( )k E  are Poisson ratio and Young’s modulus of the layer k and p m L  with m . For 

plane-stress problems, ( )k  and ( )k E  should be replaced by  ( ) ( )1k k   and    2( ) ( ) ( )1 2 1k k kE   

, respectively. 

Negative discriminant:  

This case occurs when the transverse stiffness of the layer is much higher than the in-plane stiffnesses 
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with: 
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where ( ) ( ) 2
1 0 2( 4 )  k k A A A  and ( )

0
k A , ( )

1
k A  and ( )

2
k A  are defined in Eq. (3-32). 
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10 DERIVATION OF DISPLACEMENTS AND STRESSES IN CHAPTER 3 

Expressions relating the four unknown constants, ( )
11

k a , ( )
21

k a , ( )
12

k a  and ( )
22

k a , to (1) 0
3( )lM x  are derived 

by substituting ( )
3( )k kM x  on the left hand side of (3-44) with Eq. (3-39) and multiplying both sides by 

( ) 1
3( )k kE x : 
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( ) ( ) 1 1 1 ( 1) 1 ( ) 1
3 3 3 3

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

  



     

 

 
       
 
 


 




 

k

k k k i i i i i

i k

ik
j j j j j i i i i i

i j k

a

a
E x B B E x E x M x Q x

a

a

B E x E x B Q x Q x

 (D-1) 

for k = 2, …, n. Inserting the expressions of the unknown in (D-1) into (3-39) yields: 

 

   

  

  

1( ) ( ) ( ) ( ) 1
3 3 3 3

1
( ) ( ) 1 1 (1) 0 (1) 0

3 3 3 3

( ) ( ) 1 1
3 3

2

1 ( 1) 1 ( ) 1
3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )



 



 

 

   

 


 



 


 



 

k k k k k k

i i i i i

i k

ik
j j j j j

i j k

i i i i i

M x Q x E x E x B

B E x E x M x Q x

B E x E x

B Q x Q x

 (D-2) 

Equations (D-2) and (3-37)  define displacements and transverse stresses in the layer k in terms of (1) 0
3( )M x

. The third and fourth elements of the vector (1) 0
3( )M x  are obtained using Eq. (3-37) for 0

3 3x x  and k = 1 

and the boundary conditions (3-12); the first and second elements are obtained using equations (3-44) for 

k = n and the boundary conditions (3-12): 

( ) ( )
(1) 0  32 42

1 3 3 4( )
 42  31  41  32  42

(1) 0 ( ) (1) 0
2 3  41 1 3 4( )

 42

(1) 0
3 3

(1) 0
4 3

( )

1
( ) ( )

( )

( ) 0

 



  
          

     





n n

u n

n
n

l

M x f

M x M x

M x f

M x

 (D-3) 
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where i  for i = 3, 4 are: 

4
( ) (1) 0 ( ) ( ) ( )

 3  3 3
1

( ) ( )


      n n n n n
i ig g i l i i

g

Q x f S Q x  (D-4) 

and ( )
 

k
ig  and ( )k

iS  are defined by the recursive formulas: 

 

4
( ) ( ) ( 1) (1) (1)

   
1

4 4
( ) ( ) ( ) 1 1

3 3
1 1

4 4
( ) ( ) ( 1) ( ) 1 1 ( 1) 1

3 3
1 1

 for  = 2, ...,  ; =

 ( ) ( )

( ) ( )   

            





 

 

    

 

   

 
  

 
    
 



 

 

k k k
ig im mg ig ig

m

k k k k k k
im ip pn nm

n p

k k k k k k k k
i iq q q bqb

q b

U k n U

U B E x E x

S U S Q x B Q x

(1)                                                   for  = 2, ...,  ; =0 ik n S

 (D-5) 

where the elements of ( )k Q  and kB are given in Eqs. (3-40) and (3-43) and those of ( )k E  in Appendix C. 

For fully bonded layers Eq. (D-5) simplifies as: 

4
( ) ( ) ( 1) (1) (1)

   
1

4
( ) ( ) ( ) 1 1

3 3
1

4
( ) ( ) ( 1) ( ) 1 ( 1) 1

3 3
1

 for  = 2, ...,  ; =

 ( ) ( )

( ) ( )   

                                        





 



   



   



    







k k k
ig im mg ig ig

m

k k k k k
im in nm

n

k k k k k k k
i iq q q q

q

U k n U

U E x E x

S U S Q x Q x

(1)      for  = 2, ...,  ; =0 ik n S

 (D-6) 

Explicit expressions for displacements and transverse shear and normal stresses in the generic layer k are 

obtained by inserting (1) 0
3( )M x  from Eq. (D-3) into Eq. (D-2). The expressions are given in Eq. (3-46) in 

Chapter 3. The bending stress is derived using the displacements and constitutive and compatibility 

equations, and is given in Eq. (3-46). 
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11 MATRIX ( )
3( )k E x  IN CHAPTER 3 

Negative discriminant: 

( ) ( ) ( ) ( ) ( ) ( )
11 1 3 12 1 3 13 2 3

( ) ( ) ( ) ( ) ( ) ( )
14 2 3 15 3 3 16 3 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
21 1 1 3 22 1 1 3 23 2 2 3

( ) ( ) ( ) ( )
24 2 2 3

( ), ( ), ( ),

( ), ( ), ( ),

( ), ( ), ( ),

( ), 

  

  

  



k k k k k k

k k k k k k

k k k k k k k k k

k k k k

E C x E S x E C x

E S x E C x E S x

E L C x E L S x E L C x

E L S x ( ) ( ) ( ) ( ) ( )
25 3 3 3 26 3 3 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
31 1 1 3 32 1 1 3 33 2 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
34 2 2 3 35 3 3 3 36 3 3 3

( ) ( )
41

( ), ( ),

( ), ( ), ( ),

( ), ( ), ( ),

 



 

  

  



k k k k k

k k k k k k k k k k k

k k k k k k k k k k

k k

E L C x E L S x

E R S x E R C x E R S x

E R C x E R S x E R C x

E

   

( ) ( ) ( ) ( ) ( ) ( ) ( )
31 1 3 42 31 1 3 43 32 2 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
44 32 2 3 45 33 3 3 46 33 3 3

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
51 55 1 2 1 1 3 52 55 1 2 1 1

( ), ( ), ( ),

( ), ( ), ( ),

( ), (

 

  

   

k k k k k k k

k k k k k k k k k

k kk k k k k k k

Y C x E Y S x E Y C x

E Y S x E Y C x E Y S x

E C m p R S x E C m p R C x

   
   
 

3

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
53 55 2 2 2 2 3 54 55 2 2 2 2 3

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
55 55 3 2 3 3 3 56 55 3 2 3 3 3

( ) (( ) ( ) ( ) ( ) ( ) ( )
61 44 1 1 1 1 1 3 62 44

), 

( ), ( ), 

( ), ( ),

( ), 







   

   

  

k kk k k k k k k

k kk k k k k k k

kk k k k k k

E C m p R S x E C m p R C x

E C m p R S x E C m p R C x

E C m L p R S x E C  
   
   

) ( )
1 1 1 1 1 3

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
63 44 2 2 1 2 2 3 64 44 2 2 1 2 2 3

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
65 44 3 3 1 3 3 3 66 44 3 3 1 3 3 3

( ), 

( ), ( ), 

( ), ( ),







   

   

k k

k kk k k k k k k

k kk k k k k k k

m L p R C x

E C m L p R S x E C m L p R C x

E C m L p R S x E C m L p R C x  

                                                                                                                                             (E-1) 

where, for i = 1, 2 and 3: 

 ( )( )
3 2 23 1 13 33   kk

i i i iY p C p C L m R C  

Zero discriminant: 

This case occurs when the layer is isotropic: 

( ) ( ) ( ) ( )3 3 3 3
11 3 12 3 13 3 3 14 3 3

( ) ( ) ( ) ( ) ( ) 1 3
15 3 16 3 21 3 22 3 23 3 3

2

( ) ( ) ( )1 3 3
24 3 3 25 3 26 3

2

( ) , ( ) , ( ) , ( )

( ) ( ) 0, ( ) 0 , ( ) 0,  ( )

( ) , ( ) , ( )

 

 

   

    

  

cx cx cx cxk k k k

cxk k k k k

cx cx cxk k k

E x e E x e E x x e E x x e

p
E x E x E x E x E x x e

p

p
E x x e E x e E x e

p
( ) 23 3

31 3

( )
( ) ( ) 32 3 3

32 3 33 3
2

, ( )

4 3
( )  ,  ( )





 
  

cxk

k
cx cxk k

p
E x e

c

cxp
E x e E x e

c p
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  

  

( )
( ) ( ) ( )3 1 13 3 3

34 3 35 3 36 3
2

( ) ( ) ( ) ( )3 3
41 3 2 42 3 2

( )
( ) ( ) 3

43 3 3
2

( )
( ) ( )

44 3 3
2

4 3
( ) , ( ) ,  ( )  

( ) 2 , ( ) 2

2
( ) 2 2 1

2
( ) 2 1 2



 

   

   

 





 
   

 

     

     

k
cx cx cxk k k

cx cxk k k k

k
cxk k

k
ck k

cx p p
E x e E x e E x e

p c c

E x p e E x p e

c
E x cx e

p

c
E x cx e

p

   

   

3

( ) ( ) ( ) ( )3 3
45 3 1 46 3 1

2 2

2 2( ) ( ) ( ) ( )3 3
51 3 52 3

( ) ( ) ( ) ( ) ( ) ( )3 3
53 3 3 54 3 3

( ) ( ) 2 1
55 3

( ) 2 , ( ) 2

( ) , ( )

( ) 2 2 1 , ( ) 2 2 1

( )

 

 

   









 

   
       
   
   

     



x

cx cxk k k k

cx cxk k k k

cx cxk k k k k k

k k

E x p e E x p e

p p
E x c e E x c e

c c

E x cx e E x cx e

p p
E x

 

   

( ) ( ) ( ) ( )2 1 2 13 3 3
56 3 61 3

( )
( ) ( ) ( ) ( )2 1 13 3

62 3 63 3 3
2

2( )
1( ) ( ) ( ) ( )1 3 3

64 3 3 65 3
2

( )
66 3

, ( ) , ( )

2
( ) , ( ) 2 1

2
( ) 2 1 , ( )

( )

 

 

  







  

    

 
     
 
 



cx cx cxk k k k

k
cx cxk k k k

k
cx cxk k k k

k

p p p p
e E x e E x e

c c c

p p p
E x e E x cx e

c p

pp
E x cx e E x c e

p c

E x
 2

1( ) 3 
 
  
 
 

cxk p
c e

c

 

                                                                                                                                              (E-2) 

with: 

   2 2

1 2 c p p , ( ) ( ) k k G , 
  

( )

( )

1 1 2


 

 
     

k

k E
 

where ( )k , ( )k E  and ( )k G  are Poisson ratio, Young and shear modulus of the layer k and 1 1p m b , 

2 2p m a ,  and 1 2, m m . 

 

Positive discriminant: 

When the discriminant of the characteristic equation (3-75), 
2 3

( ) ( ) ( )
4 27

 k k f d
H , is positive, the equation 

has two complex conjugate roots, and one real root. This case happens when the transverse stiffness of the 

layer is much higher than the in-plane stiffnesses, for instance in honeycomb cores of sandwich structures, 

and the elements of matrix ( )
3( )k E x  are: 
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( ) ( )
1 3 1 3

( ) ( )
1 3 1 3

( )
1 3

( ) ( ) ( ) ( )
11 3 2 3 12 3 2 3

( ) ( ) ( ) ( )
13 3 2 3 14 3 2 3

( ) ( ) ( ) ( )
15 3 1 3 16 3 1 3

( )( )
21 3 11 2

( ) cos( ), ( ) sin( )

( ) cos( ), ( ) sin( )

( ) ( ), ( ) ( )

( ) cos(

 

 



 

 

 

 

 

 

 



k k

k k

k

x xk k k k

x xk k k k

k k k k

kxk

E x e x E x e x

E x e x E x e x

E x C x E x S x

E x e  
 
 
 

( )
1 3

( )
1 3

( )
1 3

3 21 2 3

( )( )
22 3 12 2 3 22 2 3

( )( )
23 3 33 2 3 43 2 3

( )( )
24 3 34 2 3 44 2 3

( ) ( ) ( ) ( ) ( )
25 3 1 1 3 26 3

) sin( )

( ) cos( ) sin( )

( ) cos( ) sin( )

( ) cos( ) sin( )

( ) ( ), ( )







 

   

   

   







 

 

 

 

k

k

k

kxk

kxk

kxk

k k k k k

x x

E x e x x

E x e x x

E x e x x

E x L C x E x L

 
 
 
 

( )
1 3

( )
1 3

( )
1 3

( )
1 3

( )
1 1 3

( )( )
31 3 11 2 3 21 2 3

( )( )
32 3 12 2 3 22 2 3

( )( )
33 3 33 2 3 43 2 3

( )( )
34 3 34 2 3 44 2 3

( )

( ) cos( ) sin( )

( ) cos( ) sin( )

( ) cos( ) sin( )

( ) cos( ) sin( )









 

 

 

 





 

 

 

 

k

k

k

k

k

kxk

kxk

kxk

kxk

S x

E x e f x f x

E x e f x f x

E x e f x f x

E x e f x f x

   
  

( )
1 3

( )
1 3

( ) ( ) ( ) ( ) ( ) ( ) ( )
35 1 1 3 36 1 1 3

( )( )
41 33 2 3 11 1 21 2 2 3 21 1 11 2

13 2 3 1 11 2 3 1 21 23 2 3 2

( )( )
42 33 2 3 12 1

( ), ( )

cos( ) sin( )

cos( ) sin( ) cos( )

cos( )







     

    

 

 

       

  

 

k

k

k k k k k k k

kxk

kxk

E R S x E R C x

E e C x f f x f f

C x p x p C x p

E e C x f f   
  

   
  

( )
1 3

22 2 2 3 22 1 12 2

13 2 3 1 12 2 3 1 22 23 2 3 2

( )( )
43 33 2 3 33 1 43 2 2 3 33 2 43 1

13 2 3 1 33 2 3 1 43 23 2 3 2

( )
4

sin( )

cos( ) sin( ) sin( )

cos( ) sin( )

cos( ) sin( ) cos( )



   

    

     

    



     

  

        

  

k kxk

k

x f f

C x p x p C x p

E e C x f f x f f

C x p x p C x p

E    
  

( )
1 3

( )

4 33 2 3 34 1 44 2 2 3 34 2 44 1

13 2 3 1 34 2 3 1 44 23 2 3 2

cos( ) sin( )

cos( ) sin( ) sin( )

      

    

        

  

k kxe C x f f x f f

C x p x p C x p
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 
 

    
    

1 3

1 3

( )( ) ( )
45 2 23 1 13 1 1 1 33 1 3

( )( ) ( )
46 2 23 1 13 1 1 1 33 1 3

( )( )
51 55 2 3 11 2 1 2 3 21 2 2

( )( )
52 55 2 3 12 2 2 2 3 22 2 1

(

( )

( )

cos( ) sin( )

cos( ) sin( )









   

   

   

   

      

      

kk k

kk k

k xk

k xk

k

E p C p C L m RC C x

E p C p C L m RC S x

E C e x f p x f p

E C e x f p x f p

    
    

   

1 3

1 3

( ))
53 55 2 3 33 2 1 2 3 43 2 2

( )
( )

54 55 2 3 34 2 2 2 3 44 2 1

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
55 55 1 2 1 1 3 56 55 1 2 1 1 3

( )( )
61 44

cos( ) sin( )

cos( ) sin( )

( ), ( ),







   

   







      

      

   



k x

k xk

k kk k k k k k k

kk

E C e x f p x f p

E C e x f p x f p

E C m p R S x E C m p R C x

E C e     
    
 

1 3

1 3

1 3

2 3 11 1 1 11 2 21 2 3 21 1 1 21 2 11

( )
( )

62 44 2 3 12 1 1 12 2 22 2 3 22 1 1 22 2 12

( )
( )
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where ( )k , ( )
1

k m , ( )
1

k L , ( )
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k R , ( )
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where ( )k A , ( )k B , ( )k C , and ( )k D  are defined in Eq. (3-74). 
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APPENDIX F 

12 CONSTANTS (1) 0
3( )lM x , ( )

 
k

rl  AND ( )k
tS  IN CHAPTER 3 
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where i  for i = 4, 5, 6 are 
6
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the recursive formulas: 
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APPENDIX G 

13 COEFFICIENTS AND TERMS IN THE EQUILIBRIUM EQUATIONS AND BOUNDARY 

CONDITIONS IN CHAPTER 4 

The prescribed values of forces and couples at the plate edges: 
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 (G-1) 

where B
iF  for i = 2 and 3 are the components of the surface forces acting along the plate edges. 

Constant coefficients in the equilibrium equations: 
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 (G-2) 

The homogenized boundary conditions in terms of the global kinematic variables: 
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APPENDIX H 

14 PERTURBATION ANALYSIS IN CHAPTER 4 

Perturbation analysis is applied here to derived the asymptotic limits of the solution of the global variables 

of the homogenized model presented in Sect. 4.2 and given in Eq. (4-26). The relevant asymptotic limits 

correspond to the fully bonded limit (intact region with 1 0SK ) and fully debonded limit (delaminated 

region with 0SK ). The perturbation analysis investigates the solution given in Eq. (4-26) for small 

values of a perturbation parameter,  , which is chosen as 1 0  SK  to investigate the fully bonded 

limit, and 0  B , where B  defined in Eq. (4-25) goes to zero with the same order as SK , is used for 

convenience.  

The global variables of the homogenized model, 02v , 2 , and 0w , and 2 0 2,   w  , which is needed 

to calculate the interfacial relative displacements, Eq. (4-7), are expanded into power series of   up to the 

first-order: 

 
 
 
 
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0 1
2

0 00

0 1
2

2 2 2

0 1
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02 0202

    

 

    

 

  

  

  

  

O

w w w O

O

v v v O

 (H-1) 

where the superscript  .
i

 on the top of a variable indicates the order of the expansion term.  

The integration constants ic  for i =1, 2, 3, in Eq. (4-26), which depend on the interfacial stiffness, have 

finite values, since   in Eq. (4-26) cannot be unbounded; similar to Eq. (H-1), ic  for i =1, 2, 3 are also 

expanded into power series of   up to the first-order,  
0 1

2   i iic c c O . Substitution of the expansions 

of the global variables in Eq. (H-1) and  
0 1

2   i iic c c O  into Eq. (4-26), and taking the limit as 0   

define the zero-order solutions of the global variables in Eq. (4-26). 

Fully bonded limit 

The fully bonded limit describes the intact portions of the plate. In this limit, 1 0  SK  , and 22  in 

Eq. (4-8), 2v̂  in Eq. (4-7) and 22
SC  in Appendix G Eq. (G-2) vanish and 2

22SR  in Eq. (4-10) modifies in 

 2 1
22 22 3 3  SR x x . The constants 22

rSC  and 2
22
SC  in Appendix G Eq. (G-2), and A , B , C , D  and E  in 
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Eq. (4-25) simplify by substituting  2 1
22 22 3 3  SR x x .The zero-order solution of the model are then 

obtained by substituting the simplified coefficients into Eq. (4-26). The zero-order solution coincides with 

the solution of the original first-order zigzag theory developed in [62] for fully bonded plates. 

Fully debonded limit 

The fully debonded limit describes the delaminated portion of the plate, 0  B . The order of the 

coefficients and parameters of the homogenized structural theory are given in Table H-1.  

Table H-1: Orders of the coefficients when 0  B  

Vanishing 

coefficients 

Finite value coefficients Unbounded coefficients 

  : , SO K B    0 1 2
22 22 22 44

1 2
22 1 2 3

1 1

1 2
4 5 6 7

0 0 2
8 22 22 22 3
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, , , , ,

1 1
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
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
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S S
S

O C C C C A

c c
E c c c

B

c c
c c c c

B BB

c C DB C B R

 

 
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2 0
22 22 22

1
22 22

2 2
22

1 : , ,

, ,

1 :





 S
S

S S

S

O R C

C C D

O C

 

 

When 1
22 0C , i.e. when the reference surface 3 0x  coincides with the neutral axis of the intact portion 

of the plate in Figure 4-1(b), substitution of Eq. (H-1) and  
0 1

2   i iic c c O  for i =1, 2, 3, into Eq. 

(4-26) and using the first four terms of the Maclaurin expansion of 2Bxe  and 2 Bxe  yield: 
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(H-2) 

The zero-order solution of the global variables 
0

 , 
0

0w , 
0

2  and 
0

02v , and 
1

  depend also on the first-order 

terms in the expansions of the integration constants, 
1

ic  for i =1, 2, 3. Accounting for the fact that the terms 

in Eq. (H-2), and the interfacial relative displacements, Eq. (4-7), must be finite, allows to draw some 

conclusions on the orders of the integration constants 
1 1

1 2c c , and ic  for i =4, …, 8.  

Substitution of  
0 1

2      O  from Eqs. (H-1) and  
1

22 22 1 (1)
      

O  into the interfacial 

relative displacements given in Eq. (4-7) yield: 

0 1 1

2 22

1
ˆ ( )   



            
v O  (H-3) 
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Since the interfacial relative displacements must be finite, 
0

0  , which results in 
0 0 0

1 2 3 0  c c c  and 

0 0

0 22 ,  w  in Eq. (H-2); substitution of 
1

  from Eq. (H-2) and 22  from Eq. (4-8) into Eq. (H-3) yield: 

   
0 0 0 0

0 1 1 12 (2)1 2 1 2
2 2 2 1 2 3 44 22ˆ 1

2

 
                             

c c c c
v x x c c c C

B
 (H-4) 

Since 
0

2v̂  cannot be unbounded, 
0 0

1 2
  
 

c c B  should be finite, which means that 1 2
  
 

c c B  is also 

finite. The orders of the coefficients given in Table H-1, are determined similarly by imposing the terms in 

Eq. (H-2) to be finite. 

In the examples considered in Sect. 4.5, the calculated constant 
1 1 1

1 2 3
   
 

c c c  does not yield a zero relative 

sliding displacement at the delamination tip. This is due to the imposition of the continuity conditions on 

the global variables only. A non-zero delamination tip relative displacement uniformly shifts the predicted 

relative sliding displacements of the layers in the delaminated portion of the plate, and has no other effect 

on the solutions of the homogenized model. 

The interfacial shear tractions in Eq. (4-14) and the small-scale variable, 2 , in Eq. (4-7) are zero at the 

zero-order in the delaminated portion of the plate, since 
0 0 0

2 0 2, 0   w . This leads the multiscale model 

to predict the same rotations for the upper and lower layers in the delaminated portion of the plate (see Eq. 

(4-27)); the rotations are then equal to the global bending rotation variable, 2 . On the other hand, imposing 

the continuity conditions on 2  and 0 2,w , makes the term 
0 0 0

2 0 2,   w  to be zero also in the intact portion 

of the plat at the traction-free delamination tip cross section. Therefore, the model also predicts the same 

rotations for the upper and lower layers in the intact region at the traction-free delamination tip cross 

section. As a consequence, the rotations of the layers at the delamination tip cross section are all equal, and 

the multiscale model neglects the root-rotations. 
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