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Abstract

The “swing-and-dock” (SaD) model for realizing displacements has
been invented for and is used by the mobile robotic fixtures developed
in the SwarmItFix European project. This form of locomotion can
be a valuable capability for material handling agents, and fixturing
agents enabling simultaneous handling in a non-linear fashion and
increasing manufacturing flexibility. The thesis focuses on the design of
SaD path planning algorithms for the motion of the agent. Five major
objectives for the SaD agent are identified, namely task allocation,
minimizing the makespan (total time till last agent/robot reaches
its goal), minimizing the total steps/movement of each agent (idle
states), handle orientation constraints and action planning when a
trajectory is provided. The contribution of this thesis are as follows: The
planning problem is modeled as a graph and first single agent planning
problem is addressed. Various local search techniques were employed,
the results suggest that a Nearest Neighbor with a Random Insert
Heuristic approach allows the generation of good solution sequences
for a single agent visiting a varied size of destinations. This result
can be extended to address the task allocation objective. For the
multi-agent path planning (MPP) with makespan, idling, and multiple
goals objectives: two Integer linear programming (ILP) formulations
based on vertex and edge of a graph are developed. Computation
results show that the vertex based approach proved to be superior
in the SaD agent context. The vertex-based approach is extended to
address the orientation constraints for the SaD agent when the agent
payload is not completely symmetrical. Formulation’s effectiveness is
shown with measures such as time and distance optimality ratio, where
experiments display solutions closer to 1.x of the optimal solution.
Finally, constrained optimization is employed for motion planning of
the agents in a fixturing environment. The formulations, tailored to
the SaD system, are general enough to be applicable for many other
single- and multi-agent problems over discretized networks.
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Chapter 1

Introduction

This thesis is based on a sub-system developed for the Self reconfigurable intelligent

swarm fixtures (SwarmItFix), a mobile robotic fixture assembly project. Swar-

mItFix, was a project funded by the European Union (EU FP7-214678) within

the 7th Framework Program. The SwarmItFix developed a mobile autonomous

fixturing agents capable of periodically repositioning in order to support large

dimension sheet metal workpieces in aerospace manufacturing. The mobile agents

comprise of a head, a Parallel Kinematic Machine (PKM), and a mobile base.

Two agents were commissioned and installed on a stationary bench. These agents

were proposed as an alternative flexible solution [5, 6] for fixturing compliant

sheet metals during machining operations in place of traditional mould fixtures

or (multi-point positioning tooling [7] or pin-bed type with a matrix of support

elements to provide support by conforming to irregular shaped sheet metals [8]).

A virtual assembly of the SwarmItFix and its commissioned prototype is shown

in Fig 1.1 and 1.2 respectively.

The mobile base (sub-system) developed for the SwarmItFix was used to carry

an hybrid architecture PKM and accurately position the fixture heads at the

points where the workpiece needed support. The mobile base acted as the major

contributing factor for the reconfigurability of the fixture. A novel locomotion

method was developed for the base [1], where robots swing around stationary pivot

pins on the bench, was invented and patented [9] in the current project. We coin

the term ”Swing and dock” (SaD) [3] to refer the locomotion of these base agents.

1



Figure 1.1: Virtual assembly of prototype: SwarmItFix

Figure 1.2: SwarmItFix Prototype (a) SwarmItFix under a five axis CNC Machine-tool;
(b) Two agents supporting a workpiece (c) Close up of the heads (d) Through all-milling
(e) Final Contour

The mobile base consists of three legs placed on mounting pins, in an equilateral

triangle arrangement. For movement of the robot, rotations in multiples of 60°

are performed around one of the legs while the other two legs are disengaged

and lifted from the docking pins. Electric and pneumatic supply is available to

the robot through the docking pins. A manufactured sample prototype of the

2



1.1 Multi-robot system

base is shown in Figure 1.3. Upon investigating the architecture of the base, it is

observed that these agents, even as a separate entity are valuable to the class of

Multi-robot systems (MRS). By identifying the core characteristics of MRS, we

can objectively state if the SaD system can be a part of the MRS class.

Figure 1.3: Prototype of the mobile base

1.1 Multi-robot system

MRS are becoming one of the important topic in current robotics research. The

increased expertise in sensors, electronics and hardware technology has fueled

the growing interest in MRS. MRS have applications in various domains such as

autonomous sensor networks, building surveillance, transportation of large objects,

air and underwater pollution monitoring, search and rescue operations in large-

scale disasters, and several other areas [10]. In these application scenarios, MRS

can often deal with tasks that are difficult, if not impossible, to be accomplished

by an individual robot. Hence, implying redundancy in number of robots to be a

major contributing factor towards cooperatively solving an assigned task. MRS are

used when they can perform an assigned task in a more reliable, faster, or cheaper

way beyond what is possible with single robots [11]. Such a collection of smaller,

simpler robots are sometimes described [11] as swarm [12], a colony, or the robots

may be said to exhibit cooperative behaviour [13]. While referring to MRS, we

3



1.1 Multi-robot system

signify a fairly complex mobile platforms, equipped with sophisticated sensors

and actuators, able to execute complex tasks rather than a simple machine/low

level entity [14].

1.1.1 Characteristics

Various authors have established taxonomies in different research axes to un-

derstand multi-robot systems such as; Dudek et al. [13] presented a taxonomy

that classified multiagent efforts according to communication, computational and

other abilities, Cao et al. [15] provided classification based on: group architecture,

resource conflicts, origins of cooperation, learning and geometric problems, and

finally Iocchi et al. [16] proposed a taxonomy based on: a cooperation level, a

knowledge level, a coordination level, an organization level, communication and

team composition.

From literature, it is evident that the core requirement to be considered as a

MRS is the availability of a control architecture which can either be centralized

or decentralized, communication to enable either explicit or implicit interaction

between mobile agents, and locomotion capabilities. It is also observed that

homogenous multi agents result in a less complex system rather than heterogenous

systems. SaD system exhibits all the mentioned characteristics, where a central

control architecture has been established between the agents (on-board computer)

and a central coordinator (host computer) through Controller Area Network (CAN)

bus, and Multi-Robot Research-Oriented Controller (MRROC++) [17]; a dedicated

robot programming framework. The host computer and the on-board computers

communicate through the wireless Ethernet. The software distributed over this

network is agent-based [18]. Also the SaD system possess a locomotion capability

similar to the modular reconfigurable robots, where agents are homogenous in

nature and can dock with each other. Hence, it is clear that the SaD base can be

considered as an MRS agent. A very specific application for the SaD system for

MHS is discussed in the further chapters.

4



1.1 Multi-robot system

1.1.2 Task Objectives

Multi-agents generally deal with different types of task objectives. Ota [19],

categorizes the types of tasks based on various dimensions of the tasks and the

number of tasks that need to be achieved. The word ’dimension’ was used to

compare the expressive form of the task goal. Ota [19], enlists three different

types of dimensions of goal state: Point-reaching tasks (zero-dimension), Region-

sweeping tasks (more than one-dimension), compound tasks. Point-reaching tasks

express a specific configuration of the robot/point of the robot in a certain

coordinate system as the goal state. This is the most common motion planning

problem for multi-robot systems. Point-reaching tasks are stated to be zero-

dimension due to their corresponding point in the configuration space, Eg. Motion-

planning, and Pattern formation. Region sweeping tasks, as the name suggests,

the goal task for the agent was to reach a specific region (considered to be multi-

dimension, Eg. Sweeping, Map generation). Compound tasks were defined to be a

combination of Point-reaching and Region sweeping tasks. The number of iterations

of tasks that need to be performed were classified as: one-time, and many-times.

When reviewing the literature on the research carried out in multi-robot systems,

most involved ’one-time’ and ’point-reaching tasks’. Several strategies of path

planning/motion planning were developed for this particular scenario, such as

the Visibility graph [20], Dynamic priority method [21], several methods which

are found in this survey [22]. By observing the SaD system we can arrive at the

conclusion that a point-reaching task objective would be most suitable, since

the positions a SaD agent can reach is discrete in space and also the operating

scenario is a known environment. Most common objective for these scenarios

are (i) Generate a path/trajectory for each agent to reach their corresponding

goals (ii) Avoid collisions among the robots and the environment. Apart from

these, secondary objectives are addressed simultaneously during the planning

such as: from scheduling literature: makespan minimization (total time till last

agent/robot reaches its goal) [23, 24], minimize total number of moves of each

agent, minimize overall path length [25, 26], and minimize total mission cost

(energy consumption) [27,28]. To prove the effectiveness of the method/algorithms

implemented, computation times are reported.
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1.2 Contributions

In the further chapters, the thesis would aim to address specifically the

makespan minimization and the total distance traveled by the agents.

Below, I outline briefly the contribution in this thesis and the general approach

taken in the thesis to solve them. A more detailed introduction to the locomotion

methodology, is given in Chapter 2, where the SaD locomotion is presented.

1.2 Contributions

The detailed contribution of this thesis are:

1. Using pins for docking is by no means new (see for example [29]); the SaD

approach is novel in the way a pin is employed as a pivot and support during

the motion. We identify the possible extension of the applications scenarios

for SaD agents such as MHS and to act as independent MRS.

2. A new path planning framework was developed specifically for the SaD based

approach. The Multi-agent path planning (MPP) problem was addressed by

developing ILP formulations, tailored specifically for the SaD system. The

formulations are general enough to be applicable for many other single- and

multi-agent problems over discretized networks. The formulations developed

performed on par with the state of the art in computation time.

3. To extend the SaD agents planning, they are proposed to use these agents

mounted with static fixture heads instead of a parallel manipulator (Swar-

mItFix EU FP7) used in previous works. Such a modification would ease

the planning complexity and also would be cost-effective alternative. Con-

strained optimization with aid of integer linear programming is employed to

ensure accurate positioning of the agents in time to provide adequate support

during machining. Multi - agent path planning w.r.t the tool trajectory,

collision avoidance, and time - relevant action plan is implemented.
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1.3 Thesis Structure

1.3 Thesis Structure

This thesis is organized as follows.

Chapter 1: This chapter introduces various possible multi-robot systems in

manufacturing and their corresponding locomotion. The motivation towards using

SaD locomotion in a manufacturing scenario and the need to develop planning

algorithms is explained in detail.

Chapter 2: This chapter details the design and characteristics of SaD loco-

motion.

Chapter 3: This chapter discusses the possibility of using SaD agents for a

material handling system (MHS) environment. Such a justification supports the

extension of SaD agent application from a very narrow operating scenario such as

the fixturing system to a more generic operation scenario.

Chapter 4: This chapter proposes the planning framework for SaD agents.

Design of SaD path planning algorithms for a single agent planning is discussed,

where the planner aims at identifying minimum agent displacements to reach

multiple assigned targets. Several possible strategies and solutions are presented,

elaborated and tested via simulations.

Chapter 5: This chapter presents the multi-agent path planning for SaD

agents with multiple goals. Two integer linear programming formulation based

on extended temporal graph is introduced: Vertex based formulation and edge

based formulation, to address the path planning problem. Simulation and com-

putational results demonstrate and compare the effectiveness of these formulations.

Chapter 6: This chapter deals with planning for SaD agents taking into

account the orientation symmetry of the goal states. The agents would be required

to carry tools/materials/manipulators, where the orientation in which the agent

arrives at the goal location becomes of prime importance. This article deals with
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1.3 Thesis Structure

labeled legs describing the orientation of the agents on the mounting pins, hence

taking into account the orientation of the agent w.r.t the bench. Integer Linear

Programming (ILP) formulations are extended to model this particular planning

problem. Simulation results are presented.

Chapter 7: This chapter discusses the motion planning for the SaD agents. A

multi - agent path planning w.r.t the tool trajectory, collision avoidance, and time

- relevant action plan is implemented. We propose to use these agents mounted

with fixture heads instead of a parallel manipulator (SwarmItFix EU FP7) used in

previous works. Integer linear programming optimization techniques are employed

to ensure accurate positioning of the agents in time to provide adequate support

during machining. Constrained optimization are implemented to generate the

action plan. Optimization results prove the effectiveness of the formulation and

also provide insight for parameter tuning, based on which design decisions for

selection of geometry of the fixture head, base, and tool speed can be made.

Chapter 8: Finally, this chapter summarizes the results observed in this thesis

and presents the possible future research direction.
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Chapter 2

Swing and Dock Locomotion

The term “swing and dock” (SaD) was coined [3] to refer to the locomotion

method of the mobile agents, where every agent docks on fixed pins on a bench

and moves by swinging around one of these fixed pins. The characteristics of the

SaD agents are as follows:

2.1 Locomotion Methodology

A fixed base or bench is equipped with mounting pins placed in a particular

pattern. Mobile SaD agents with leg like structures are docked on these mounting

pins. The legs of the agent can engage/retract from the mounting pins with the

aid of linear actuation. A central harmonic drive as shown in Fig. 2.1 with a

central gear and a spur gear mechanism is used to transmit motion from the

central drive to the mounting legs. The legs produce a rotary action around the

mounting pins. For a rotation to be executed, only one leg should be docked onto

the pin. The agent rotates around the docked pin to reach adjacent pins/locations.

All displacements are realized by sequences of such swing steps. The locomotion

methodology is described in Fig. 2.2. A schematic of the working principle is

shown in Fig. 2.3.
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2.1 Locomotion Methodology

Figure 2.1: Locomotion components

Locomotion Final StateInitial State

Three Legs 

Docked Onto Pins
Release

Leg from

Pins

Lift

Up Legs

Rotate

Around

One Fixed

Leg

Move

Legs

Down

Clamp

Leg onto

Pins

Three Legs 

Docked onto 

Pins

Figure 2.2: Locomotion methodology [1]
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2.2 Design Characteristics

Figure 2.3: Schematic of the locomotion principle

(a) Male single pin connector

Female 

electrical 

pin 

Mobile base

(b) Female electrical housing

Figure 2.4: SaD design elements

2.2 Design Characteristics

Two SaD agents were manufactured for prototype purpose. Two sub-systems

can be identified from these agents: an active mobile agent (SaD), and a passive

docking base (bench). The bench is made of steel with 52 docking pin modules. The

agents are connected to the base with at least one engaged pin. The fixed bench

accommodates all the components associated with providing pneumatic power to

the mobile agent. And the bench pin houses a male electrical pin connector as

shown in Fig. 2.4a. The active mobile agent consists of the female electrical pin

connector as shown in Fig. 2.4b. As there is constant contact between the two

sub-systems through the connected pin, there exists constant air and power being

supplied to the active subsystem. An exploded view of the pin housing in Fig. 2.5

provides a clear view of the components.

The mobile base consists of three legs placed along the vertices of an equilateral
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2.2 Design Characteristics

Figure 2.5: Exploded view of docking pin housing

triangle. Agents rotate by (α)(60)°, α = {1, 2, 3} clockwise or counter-clockwise

around the docking pin resulting in a new position of the agent. A pneumatic

cylinder with a stroke of 45 mm which can be traversed in 0.5 seconds lifts the legs

from the bench. Electric and pneumatic supply is available to the robot through

the docking pins. This forms a cable- free environment and hence contributes to a

Plug and Play type robot system. Rotation is around only one leg, the clamping

force between the leg and the pin has to be greater than 10 kN. The current design

enables a holding force of 75 kN. The docking pin (Fig. 2.5) components provide

the necessary holding force of 75 kN and draw in force of 18 kN with accuracy

close to 0.005 mm. Future requirements may demand different specifications which

can be addressed by the hardware. Unlike common practice, the female electrical

pin connector is placed underneath the agents to avoid accumulation of metal

swarf produced during any manufacturing process. A detailed specification of the

hardware is provided in Appendix A.

The bench also employs a device to blow the swarf generated during machining

before the leg engages, hence maintaining a dust-free environment for the docking

pins.

The SaD approach enables other possible configuration of the bench apart

from flat surface (such as the ceiling or an inclined or vertical wall).
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2.3 Proposed Extension

(a) Design (b) Prototype

Figure 2.6: Mounting pins on SaD base [2]

Positional accuracy of the agents are very high as there is natural centering of

the agent when docking. The harmonic drive with zero-backlashes further improves

this accuracy.

The pin design also permits engaging the robot even if it tilts by an angle

or with eccentricity. The base contributes for the high positioning accuracy of

the robot without the need for an external sensor network and complex control

system. The linear speed of SaD agents in the current design is 166.67 mm/s.

Although the speed of these agents may be comparatively slow w.r.t state of the

art gantry robots which achieve speeds of 2500 mm/s, they would be ideal in a

multi-agent environment.

2.3 Proposed Extension

In principle, agents with two or more legs can be realized, and similarly other

grid patterns on the bench could be used. Assuming an equilateral-triangle lattice,

a regular-polygon agent base can be obtained for a three-leg mount (equilateral

triangle) and a six-leg mount (regular hexagon) only. Various irregular polygons

can be used as the base of an agent performing SaD locomotion with sixty-degree

turns; some are shown in Fig 2.7.
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2.3 Proposed Extension

Figure 2.7: Various agent shapes on the same bench [3]
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Chapter 3

Swing and Dock Locomotion for

Material Handling

This chapter presents the characteristics of the SaD locomotion for the material

handling system (MHS).

With rapid changes in current markets, designing for flexible manufacturing

has become the norm. Technology supporting and aiding a Flexible Manufacturing

System (FMS) have evolved over time with this key idea. Material handling

systems (MHSs) development is an important part of this process.

Material handling plays a crucial role in many manufacturing processes. Hence,

the analysis and design of systems that realize it efficiently has been of contin-

uous research interest. Although conventional MHSs for transport and transfer

of equipment remain important, there is an increasing interest in agent based

flexible material handling [30]. This approach is based on the use of robots and

manipulators, whose coordination and mobility play a key role in achieving flexi-

bility. This chapter addresses precisely the agent’s ability to move in a planned

and coordinated manner within the manufacturing environment.

The most commonly used MHSs in the FMS environment are: (i) material-

handling robots, (ii) Automated Guided Vehicles (AGVs), and (iii) Gantry

robots [31]. Material handling robots/manipulators currently in use are stationary,

working in a cellular layout. AGVs are typically researched and developed as

transport equipment, and almost universally designed as wheeled locomotion
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systems. With some adaptations they are used for material handling tasks as

guide-path mechanisms. They may be wire-, tape-, or paint-guided, or free ranging

with a software-controlled path [32]. Gantry robots mounted on traversal beams

are also common in practice.

Looking beyond these conventional agents for new approaches in flexible

material handling has been an interesting research topic. Luntz and Messner [33],

proposed a transfer table MHS referred to as Highly Distributed Coordination

Control System (HDCC). It uses a conveyor-like array of actuators to manipulate

objects in the plane while agents remain stationary. The Reconfigurable mobile

robot for manufacturing applications (REMORA) [29] proposed a quadruped robot

platform base with a novel locomotion locking strategy. Though wheeled robots

are the norm in material handling, the efficient coordination framework established

by Sugar and Kumar [34] provides a novel perspective to MHSs. A mechatronic

mobile platform for flexible material handling has also been developed in [35].

The Low-Cost-Robot-Co-Workers (LOCOBOT) is a mobile robot with locomotion

enabled by mecanum wheels which support longitudinal, latitudinal and rotation

without steering [36]. The LOCOBOT was devised to act as a general-purpose

co-worker and it can be used as a material handling device.The Kinetic Science Inc

(KSI) tentacular manipulator uses a novel locomotion, mimicking tentacles, for

general purpose material handling [37]. Systems aiding manual material handling

based on exo-skeleton structures [38] have also been proposed. However, our focus

here is on autonomous MHSs.

In this chapter, we propose the use of the SaD locomotion as the basis of a

mobile-agent-based MHS. In this method, displacements are realized by 60-degree

rotations about a discrete set of stationary pins. The use of a finite set of reachable

locations is a novel approach diverging from more conventional solutions employing

vehicles capable to continuously vary their paths. It can be asserted that this

discrete locomotion ability is more than sufficient for the considered applications.

Indeed, typically the displaced platform is adapted either (i) as the base on which

a manipulator, with its own mobility, is mounted, or (ii) to transport materials to

be used by a robotic system stationed at the final location. Hence, the locomotion

system is needed respectively (i) to place the agent within reach of its next task,

or (ii) to locate materials within a manipulator’s workspace. Therefore, even when
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3.1 Feasibility of the locomotion for MHS

the system is gantry- or AGV-based, a continuous or high-density set of reachable

positions is unnecessary and hence inefficient.

Thus, the proposed approach is an attractive alternative allowing fast and

agile motions, for both transfer positioning and transport, with simpler and more

robust control. Since the position of each pin is known a priori, SaD enables simple

and precise localization without the uncertainties and complexities of odometry

and external sensors. Figure 3.1 illustrates schematically the use of SaD agents

for material handling in a manufacturing scenario with several machine centers.

Figure 3.1: SaD agent in a Manufacturing Scenario [3]

3.1 Feasibility of the locomotion for MHS

In this subsection, the proposed model is compared with well-established ap-

proaches [39] to estimate its basic feasibility in an MHS environment. In Table
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3.1 Feasibility of the locomotion for MHS

Table 3.1: Comparison of characteristics between SaD system and other MHSs

AGVs Gantry Rail
System

Convey-
ors

Robot Forklift SaD
System

Load Type Discrete Discrete Discrete Contin-
uous

Discrete Discrete Discrete

Flow Path Bi-
direction

Bi-
direction

Uni-
direction

Uni-
direction

Station-
ary

Bi-
direction

Bi-
direction

Load Ca-
pacity

Medium Low-
Medium

High Low-
Medium

Low-
Medium

High Low-
Medium

Size Medium Medium
Medium-
Large

Small-
Medium

Medium Large Low-
Medium

Nature Solid-
Fragile

Solid Solid Solid Solid-
Fragile

Solid Solid-
Fragile

Speed of
system

Medium Low High
Medium-
High

Low-
Medium

Medium Low-
Medium

Accumu-
lation Re-
quirements

No No No Yes No No No

Distance Medium Medium High Short-
Medium

Short High Short-
Medium

Frequency
of move

Often Low Low Low Often High Often

Flexibility
of path

High Low Low Low Low High Medium

Load/Un-
load

High High Medium Medium High High Medium
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3.1 Feasibility of the locomotion for MHS

Table 3.2: MHS Characteristic [4]

Characteristics SaD Model

Responsive Changes in product being handled, work
schedule, and load are met by modifications
of agent geometry, number of agents and
platform design. All these are controllable
parameters in the current system

Flexible Capability of transforming handling require-
ments is high due to SaD’s flexibility in
path

Autonomous Distributed Control Architecture is possible
Highly Automatic Capable to become highly automatic with

efficient sensor network
Multi-Functional Multi-function capability with manipulator

mounting on platform
Modularized Base platform modularization is possible

resulting in different geometry lattice space
for path

Multi-level SaD can be integrated as a sub-system of
a multi-level MHS cooperating with other
independent material-handling equipment
including AGVs and mobile robots.

Compatible With ceiling mount, capability to interact
with other MHSs is high but restricted to
envelope of the agent

3.1, characteristic comparison is made between SaD and other non-manual MHSs

as specified in [40]. Table 3.2 shows that the SaD system has the characteristics

required for an Intelligent Manufacturing Environment [4].

Comparative ranking is performed on Table 3.1 on the basis of desirable

attributes, such as having a flexible flow path, high load capacity, optimum size,

solid robust nature, high speed, no accumulation requirements, high travel distance

and low frequency moves, high flexibility in path, and high loading/unloading

abilities. An SaD system falls in the category between robots and conveyors.

The agent could be described as a type of AGVs with operational capability

and without any human operator. The comparison suggests that the proposed
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3.1 Feasibility of the locomotion for MHS

MHS model can offer a good solution for short-to-medium distance material

handling. SaD can be particularly useful for realizing material movement in a

U- or O- shaped cell layout. The system can effectively and accurately carry

machine vises/materials to machining centers achieving the required MHS transfer

equipment capabilities.

The SaD approach can provide locomotion capabilities for manipulators, which

are similar to those of gantry-mounted robots, but with the added advantage of

allowing simultaneous movement of multiple manipulators across the bench.

In principle, the SaD locomotion system can be miniaturized. For example,

one could use micro spur gears for rotary motion of the legs [41], miniaturized

harmonic drives for precision positioning [42], and piezoelectric (Piezo-electric

(PZT)) translator/servo to enable linear translation for docking and undocking

from the pins [43]. This would enable applications in the domain of desktop or

micro/meso-scale manufacturing.

The locomotion setup with its regularly spaced docking points can be easily

adapted to the grid-base on which micro-manufacturing units commonly operate.

Precision is a very important technical aspect in the micro-factory concept [44],

which SaD’s priori knowledge of the exact docking positions will help to achieve.

The pattern of the regularly spaced pin design can be altered to inculcate modu-

larity [44] into the desktop manufacturing layout.

Micro-factories have an efficient utilization of space aiming to fit more machines

in a limited space [44]. Hence, a transfer/handling system will need to access

an increased number of destinations. Research has been carried out on carrier

based transport systems such as the Automated Inter-Machine Material Handling

system for the Integration of manufacturing systems for mass-manufacture of

miniature/micro-products (MASMICRO) Project [45], Miniaturized Co-operative

Robots advancing towards Nano Range (Miniaturised Co-operative Robots ad-

vancing towards the Nano range (MiCRoN)) [46], and many other MHSs.
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3.2 Discussion

3.2 Discussion

A novel “swing and dock” locomotion has been proposed for MHS agents. Com-

parative study between the properties of the existing MHSs and SaD indicates

that the new system can act effectively as either transfer equipment or a mobile

manipulator base. We propose a path planning framework for the SaD agent in

the following chapter.
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Chapter 4

Single Agent Planning

A path planner for SaD is quintessential to carry out material handling activities.

From a material handling/positioning perspective, the primary objective is the

displacement of the SaD agent towards an assigned set of transfer/machine stations.

When an agent is assigned more than one goal station to visit, arriving at a decision

of which order to follow becomes a task allocation problem. In essence, this is also

a Traveling Salesman Problem (Traveling Salesman Problem (TSP)), where all the

cities relate to the transfer/output stations and the agent represents the salesman

which has to visit all output stations/cities within the shortest tour possible.

Within the SwarmItFix project, a Constraint Satisfaction Problem (Con-

strained Satisfaction Problem (CSP)) based motion planning has been proposed

and implemented [47–49] for a pair of SaD-mobile fixturing robots supporting

a machined thin sheet-metal part. Because of the many differences between the

fixturing and material handling applications, efficiency requires the development

of a new locomotion planner specifically targeted to the MHS conditions.

Indeed, the CSP planner is focused on its particular application, which imposes

a wide variety of constraints, some of them not relevant to material handling.

For instance, the locomotion of the mobile fixtures is planned on the basis of

a given path/sequence of machine-tool poses [48]. Moreover, the SwarmItFix

planner must guide not only displacement on the bench, but also, in an integrated

way, the motion of the parallel manipulator (carried by the mobile SaD agent),

whose end-effector must be precisely placed at the appropriate time to support
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4.1 Path Planning Model

adequately the machined part.

For the TSP-type task in material handling, we propose a planner which aims

at identifying minimum agent displacements to reach the given targets. Hence,

the planner is designed to consider the SaD agent as an individual entity and

to plan its locomotion independently, rather than as an integrated part of the

motion of a complex multi-stage and multi-agent system. In contrast, the CSP

planner in [47], a complex multi-layered planning algorithm, guides two mobile

SaD agents integrated with their mounted manipulators in a synchronized and

coordinated manner, for a prescribed timed tool trajectory.

Unlike in the control of the SwarmItFix system, in the present MHS context

one can identify two separate planning problems, with manipulator motion being

performed after the agent (SaD) locomotion. This approach enables the use

of simpler, faster, and more efficient algorithms. The separation of the tasks

means that the planner we propose herein can be used both when the SaD agent

transports materials and when it carries a manipulator.

4.1 Path Planning Model

As each SaD agent swings and docks on a bench with finite number of pins, the

positions it can reach is discrete. Hence, the path planning can be modeled on a

graph, G = (V,E), Fig. 4.1. The graph is considered un-directed as the material

handling agent executes bi-directional path movement.

The set of vertices (or nodes), V , are the possible positions of the centroid of

the agent’s footprint (e.g an equilateral triangle), Fig. 4.1.

The edges, E, of the graph indicate which vertices can be connected with one

locomotion step, i.e, with a single rotation (of ±(α)(60°), α = {1, 2, 3}) around

either of the legs, Fig. 4.1. In the current planning model in this chapter, we

assume that there is no need to distinguish two different possible poses of the

agent if they can be obtained from each other by rotation about the centroid. In

some applications, this may not be the case, requiring a re-definition of G with a

higher number of vertices, which will be discussed in the later chapters.
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4.2 Problem Formulation

Accessible Centroid/Adjacent Node (V)

Rotation Around Mount Leg 

(CW/CCW)

CW- Clockwise

CCW- Counter- Clockwise

Current Node
Edge (E)

Figure 4.1: Planar representation of nodes in SaD

4.2 Problem Formulation

All notations and symbols used in this chapter will have its scope restricted to

this chapter.

The MHS planning problem requires an agent to visit various target destina-

tions with minimum total travel distance, i.e., the Non-deterministic polynomial

time (NP)-hard TSP.

A Breadth First Search (BFS) is run on Graph G to determine the shortest

path with the knowledge of the adjacency node list Adj(v). A BFS yields the

shortest path between the start node and goal node if all edges in the graph are

of equal weight/un-weighted. In the current graph G, every edge is of unit length.

Hence, it is convenient to utilize BFS to determine the shortest path between

nodes.

BFS is run (q + 1) times where q is the number of goal states, to compute

the shortest path between the initial and each goal state, as well as between goal

states.

The worst case time complexity for this BFS process would be similar to the

All Pairs Breadth First Search complexity in an un-weighted graph, which is

O(mn) [50] when the number of goals equals the number of vertices in graph G (m

and n denote the numbers of edges and vertices, respectively). This is comparable

with the O(n3) complexity of algorithms such as the popular Floyd-Warshall for

weighted directed graphs [51] and the O(mn + n2logn) Johnson Algorithm for
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4.3 Heuristic Algorithms

weighted directed graphs without negative cycles [52]. However, BFS has the

advantage of computing shortest path only between source node and goal nodes

unlike an all-pair comparison, which reduces both space and time complexity.

The cost distance matrix (M) for the computation of the shortest path is

described in Procedure 1. The coordinates of the obstacles (K = {K1, K2, · · · , Kλ},
where Ki ∈ R2) with respect to the bench are known; hence the nodes/centroids

(C = {C1, C2, · · · , C|V |}, where Ci ∈ R2) in G inside the obstacle geometries

are detected using the inpolygon function of Matlab solver which implements

the Winding Number Algorithm [53]. The algorithm identifies the centroids

inside/outside the obstacle geometry, where the centroids inside the obstacle are

removed in the corresponding graph G, resulting in an obstacle free graph G′. The

BFS is run considering each goal/source state in G′ as the initial root node to find

the minimum nodes to reach all other goal states in G′ as described in Procedure

1 to provide both the minimum distance matrix, M , between origin S = {1} and

destinations T = {2, 3, · · · , q + 1} and also the path sequence, P , where Pi ∈ V ′

to reach the goal states. G′′ is representative of the shortest distance between

the source node S and T ′ = {2, 3, · · · , q′ + 1}. TSP formulation and associated

heuristics are performed on G′′. The stages of graph G are represented in Fig. 4.2.

4.3 Heuristic Algorithms

The brute-force solution to the TSP compares the distances of all node permuta-

tions, calculated with the knowledge of M . It generates an optimal path sequence

P .

Brute- force solving suffices when n = |V | is small, e.g., 10 goal nodes with a

Matlab solver. The time complexity is O(n!) and so, for higher numbers of nodes

heuristic algorithms are needed to obtain good solutions within a limited working

time. For many large-scale MHSs, the brute-force approach is feasible. However,

in some applications, such as micro-manufacturing, or when multiple orientations

of the agent need to be considered, the number of nodes may be high. Moreover,

when planning the coordinated displacements of several cooperating agents, the

size of the equivalent TSP will grow considerably. With this motivation, in this
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Figure 4.2: Graph evolution [3]

and the following section we analyze the use of various local-search heuristics for

this planning problem.

The Nearest neighbor (NN) heuristic to determine solutions for higher instances

greater than 10 is described in Procedure 4. NN heuristic starts searching for the

nearest goal state from the initial/source state. The nearness between goal states

and source state is evaluated with the knowledge of Cost-Distance Matrix M .

The nearest goal state is then considered as the next current state in the solution

sequence ϕsol.

Similar iterations are done till all reachable goal states are available in the

solution sequence ϕsol. A constructive heuristic such as NN provides a quick initial

solution although the solution is greedy in nature and sub-optimal, local search

heuristics can improve the incumbent solution available. Basic moves such as

swap and insert have been used for local search to improve the TSP solution.

Local search being compared for the TSP are Systematic Swap (AlgA′), Random

26



4.3 Heuristic Algorithms

Procedure 1 Cost-Distance Matrix (M) Determination
Input Geometric Properties and coordinates of Base mount,W and agent

1. Connected Graph G = (V,E)

2. Get Positions Pd of initial state S & goal destinations T , where Pd ∈ R2

3. Get number of Obstacles (λ) and Coordinates of each Obstacle Ki w.r.t
bench.

4. Edge Deletion in graph G based on winding algorithm [53] with knowledge
of obstacle coordinates Ki and centroid coordinates Ci

5. Obstacle free graph G′ = (V ′, E ′)

6. BFS is run (q + 1) times to obtain the shortest path between nodes (S, T )
in G′ using Adjacency list Adj(v)

7. All pair shortest path matrix (M) represented in graph G′′ and path sequence
is obtained

Swap (AlgA′), Systematic Insert (AlgB), Random Insert (AlgB′), Random Swap

Random Insert (AlgC) which are described in the heuristic Procedure 6.

The Swap function described in Procedure 2 and Fig. 4.3 depicts the procedure

to swap two goal state positions in the solution sequence ϕ giving a new solution

sequence ϕnew. The Swap positions are adjacent for a Systematic Swap (AlgA)

and random for a Random Swap (AlgA′). A restart of the Swap function is done

if the new distance dnew computed by fD in Procedure 5 improves on the best

known distance dbest. The best distance is then updated with the new distance,

dbest = dnew and so is the solution sequence ϕbest = ϕnew. The restart offers a

better neighborhood for the search process to continue.

27



4.3 Heuristic Algorithms
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(a) Systematic Swap (b) Random Swap

Figure 4.3: Representation of Swap function

Procedure 2 Swap Function fswap

Input: Current solution sequence (ϕ),j, k
1: function fswap(ϕ, j, k)
2: ϕnew = ϕ
3: ϕnew(k, j) = ϕnew(j, k) . Swap on k and j indices of ϕnew
4: dnew = fD(M,ϕnew) . Total Distance function fD for new solution ϕnew
5: if dnew < dbest then
6: dbest = dnew . Update new best distance
7: ϕbest = ϕnew . Update new best solution sequence
8: ϕ = ϕbest . Do further swap on the new current solution sequence
9: break

10: else
11: ϕnew = ϕ
12: end if
13: return ϕ, dbest
14: end function

The Insert function described in Procedure 3 and Fig. 4.4 is similar to the

Swap function described above except that a selected Goal state is inserted into

particular position rather than a swap.
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(a) Systematic Insert (b) Random Insert
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Figure 4.4: Representation of Insert function

These local searches are tested with an initial NN solution and a random

solution (Random (R)). The time for one iteration titer is based on the maximum

time to execute a systematic swap (AlgA) or systematic insert (AlgB). This time

limit titer was obtained after repeated experiments on the data set to find an

appropriate time limit titer to minimize premature termination of the systematic

swap/insert.

4.4 Simulations

4.4.1 Setup

Simulations were conducted to test the effectiveness of the local searches Random

Swap (AlgA′)/Insert (AlgB′), Systematic Swap (AlgA)/Insert (AlgB) and Random

Swap Random Insert (AlgC) with initial solution as a Random Solution (R) and a

Nearest Neighbor Solution (NN) and compare which local search heuristic provides

the minimum travel distance for the SaD system.

For Random Swap (AlgA′), Random Insert (AlgB′) and Random Swap Random

Insert (AlgC) heuristic, the procedures perform 10 iterations for each initial

solution ϕsol. Mean of best distances dbest from the 10 iterations were represented
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Procedure 3 Insert Function finsert

Input: Current solution sequence (ϕ),j, k
1: function finsert(ϕ, j, k)
2: ϕsol = ϕ
3: if j < k then
4: b = ϕsol(1,j) . Insert node b into solution array to get ϕnew
5: ϕnew = (ϕsol(1, 1 : k) ∪ b ∪ ϕsol(1, k + 1 : end)) . Total distance

function fD for new solution ϕnew
6: dnew = fD(M,ϕnew)
7: if dnew < dbest then
8: dbest = dnew . Update new best distance
9: ϕbest = ϕnew . Update new best solution sequence

10: ϕ = ϕbest . Do further insert on the new current solution sequence
11: break
12: end if
13: else if j > k then
14: b = ϕsol(1, j)
15: ϕnew = (ϕsol(1, 1 : k − 1) ∪ b ∪ ϕsol(1, k : end)) . Insert node b into

solution array to get ϕnew
16: dnew = fD(M,ϕnew) . Update new best solution sequence
17: if dnew < dbest then
18: dbest = dnew . Update new best distance
19: ϕbest = ϕnew . Update new best solution sequence
20: ϕ = ϕbest . Do further insert on the new current solution sequence
21: break
22: end if
23: end if
24: return ϕ, dbest
25: end function
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Procedure 4 Nearest Neighbor (NN) Heuristic

Input: All Pair Shortest Path Matrix (M)
1: Initialize array (S ∪ T )
2: Set starting index of S and T , i = S(1, 1)&j = T (1, 1)
3: Initialize empty ϕsol
4: function fQ(i, ϕsol)
5: while length(ϕsol 6= length(S ∪ T )) do
6: for j = 1 to length((S ∪ T )− ϕsol) do
7: if (i 6= j)&(j 6= ϕsol(:, :)) then
8: Dij = Mij

9: end if
10: end for
11: Get Minimum of Dij & corresponding j, where jmin = j
12: Update i = jmin
13: Call Function fQ(i, ϕsol)
14: end while
15: end function
Output: ϕsol is the sub-optimal solution sequence

Procedure 5 Total Travel Distance Evaluation fD

Input: Cost-Distance Matrix (M) and solution sequence ϕnew
1: function fD(M,ϕnew)
2: for i = 1 to length(ϕnew)) - 1 do
3: D = Mϕnew(1,i),ϕnew(1,i+1)

4: d = d+D
5: end for
6: dnew = d
7: return dnew
8: end function
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Procedure 6 Local Search Heuristic
Input: Iteration time titer
Input: c = Choice of Heuristic

1: ϕsol = Nearest Neighbor Heuristic/ Random Solution
2: ϕ = ϕsol
3: ϕbest = ϕ
4: dbest = fD(M,ϕbest)
5:
6: switch c do
7: case A Systematic Swap (AlgA)
8: while tclock ¬ titer do
9: for j = 2 to length(ϕ) do

10: for k = j + 1 to length(ϕ) do
11: Call fswap
12: end for
13: end for
14: end while
15: case A′ Random Swap (AlgA′)
16: while tclock ¬ titer do
17: j = random(2, length(ϕ))
18: k = random(2, length(ϕ))
19: if j 6= k then
20: Call fswap
21: end if
22: end while
23: case B Systematic Insert (AlgB)
24: while tclock ¬ titer do
25: for j = 2 to length(ϕ) do
26: for k = 1 to length(ϕ) do
27: if (j 6= k) ∩ (j 6= (k − 1)) then
28: Call finsert
29: end if
30: end for
31: end for
32: end while
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33: case B′ Random Insert (AlgB′)
34: while tclock ¬ titer do
35: j = random(2, length(ϕ))
36: k = random(2, length(ϕ))
37: if (j 6= k) ∩ (j 6= (k − 1)) then
38: Call finsert
39: end if
40: end while
41: case C Random Insert Random Swap (AlgC)
42: while tclock ¬ titer do
43: P = random(0, 1)
44: switch P do
45: case 0 Random Swap
46: c = A′

47: Goto Switch Case c, titer = tclock

48: case 1 Random Insert
49: c = B′

50: Goto Switch Case c, titer = tclock

51: end while
Output: ϕbest, dbest
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by (A′), (B′) and (C) and the least value of dbest among 10 iterations are represented

as (A′A′), (B′B′) and (CC) respectively. For Systematic Swap and Systematic

Insert the best distance dbest are recorded for a time interval titer which are

represented as (A) and (B) and set of recordings when the systematic swap/insert

terminates are represented as (AA) and (BB) respectively.

A number of conventional abbreviations are used in describing the simulation

results in a concise way. In each name, the initial solution designation is followed

by that of the local search heuristic. Thus, NNA – represents NN initial solution

with Systematic Swap heuristic (AlgA), similarly RA–represents R initial solution

with Systematic Swap heuristic (AlgA).

The iteration time for the while loop in the Local search heuristic Procedure

6 (titer) is assumed as 15, 30, 45 seconds. The number of nodes on the bench

hbench is taken as three sets as 50, 150, and 250 nodes respectively. The choice is

made after repeated trials to minimize systematic swap/insert termination before

completion. The upper limit on the number of goal nodes to visit is assumed

to be (δout = 0.5hbench). Three instances of the number of outputs, with lower

number δlow = random(1, δout/3), medium δmedium = random((δout)/3, 2(δout)/3),

and higher number of output instances δhigh = random(2(δout)/3, δout).

Obstacles are randomly generated λ = random(0.015hbench). A sample with

n = 180 iterations is simulated for each bench size, with 60 iterations for δlow
,δmedium, and δhigh respectively. Relative Percent Deviation (RPD) is used as a

measure for the performance of the heuristics.

RPD =
Valg − Vbk

Vbk
(100)(%) (4.1)

where Valg = dbest is the total distance calculated by the specific heuristic

procedure for a corresponding ϕbest, and Vbk is the best known minimum total

distance among all heuristic procedure.

The confidence interval (Confidence Interval (CI)) of the RPD for the heuristic

is calculated as follows:

CI = µ+ (x)(sx) (4.2)
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where x is Student’s t inverse cumulative distributive function

x = F−1(p|ν) (4.3)

p = F (x|ν) =
∫ x

−∞

Γ( (ν+1)2 )
Γ(ν2 )

1√
νπ

1

(1 + t2

v
)
ν+1
2
dt (4.4)

where in Equation 4.4, p lies in the range (0.025,0.975), ν = n, and Γ(.) are the

desired probability, the degrees of freedom, and the gamma function respectively.

The mean µ and standard error of the mean Sx are defined by the following

equations

µ =
∑n
i=1 (RPD)i

n
(4.5)

Sx =
s√
n

(4.6)

The standard deviation, s is as follows

s =

√√√√ 1
n− 1

n∑
i=1

|(RPD)i − µ|
2 (4.7)

4.4.2 Results

RPD is plotted for all heuristics versus their respective number of outputs. For 10

target nodes, the brute-force (abbreviated B.F in the figures) always provides the

optimal solution. Results show that for less than 11 goal states in a 50 nodes bench,

all the heuristic compared lie within 0.1% RPD from the optimal brute-force

solution, with NN initial solution local searches even reaching optimality. The R

initial solution with the local search heuristic starts to vary above 50% RPD for

outputs lesser than 11 in a bench node size of 150 and 250 as shown in Fig. 4.9

and 4.12, whereas NN initial solution based heuristic continues to perform well

within average 5% RPD for the above conditions as shown in Fig. 4.8 and 4.11.

The B′,A′, and C with NN consistently generate optimal solution in this range of

goal outputs with random insert outperforming the rest.
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Figure 4.9: RPD with R initial solution - 150 Nodes
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Figure 4.13: Confidence Interval of heuristics on bench size - 250 Nodes

The constructive heuristic NN generated an average RPD of 3.006%, 8.212%,

and 7.36% for hbench nodes respectively. Local search heuristic results are tested

with this NN solution. Heuristics with NN initial solution as shown in Figs. 4.5,

4.8, 4.11 have significantly lower RPD compared to the R initial solution which is

depicted in Figs. 4.6, 4.9, and 4.12. For an NN initial solution, Random Insert

(NNB′) outperforms the other heuristics with an average RPD of 0.479%, 1.403%,

and 1.455% as shown in Figs. 4.7, 4.10, and 4.13, respectively. The Random

Insert heuristic (NNB′) is followed by Random Swap Random Insert (NNC) in

performance with an average RPD of 1.640%, 4.489%, and 4.044% for hbench nodes

respectively. The Random Insert Heuristic (B′) also performed the best among

local searches with R initial solution (RB′) as shown in Figs. 4.7, 4.10, and 4.13

with average RPD of 24.109%, 82.56%, and 131.11% for corresponding hbench

nodes.

Hence a Random Insert heuristic (B′) with an NN solution (NNB′) provides a

good solution compared to other local search heuristics (NNA, NNA′, NNB, and

NNC) in the given interval on the SaD based bench design with a single agent

with varied obstacle sizes and geometry.
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4.5 Summary

Hence, in this chapter a planning protocol for the locomotion was established based

on a centroid definition of agent geometry with a graph-theoretical model for the

search space. BFS was employed on the graph network for providing the shortest

distance between loading and machining centers for agent movement planning.

This is followed by the implementation of a Nearest Neighbor constructive heuristic.

Local search moves of swap and insert were tested with the constructive heuristic

incumbent solution. Simulation results show that the Nearest Neighbor heuristic

provides a good head start over a random solution. Further improvement is

obtained by a Random Insert heuristic, which gave better results compared to

the other tested heuristics in the simulated interval node sizes. These insights can

be used to efficiently define the task/goal allocation for the SaD agents during

path planning. The following chapters would extend the path planning model to

a multi-agent based planning.
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Chapter 5

Multi-Agent Planning

This chapter introduces a new, intrinsically discrete path planning and collision-

avoidance problem, with multiple SaD agents and multiple goals. Each agent must

visit an array of goal positions in minimal time while avoiding collisions. The

corresponding off-line path-planning problem is NP-hard. We model the system

by an extended temporal graph and introduce two integer linear programming

(ILP) formulations for the minimization of the makespan, with decision variables

on the nodes and the edges, respectively.

5.1 Previous work

Multi-agent path planning problems have been widely researched over the years.

The approaches have often been classified into coupled [54–56], where the agent

path is computed in a combined configuration space, and decoupled [57,58], where

the motion of the individual agents/robots is planned. Coupled solutions often

use centralized planners and artificial potential field [26], while rapidly-exploring

random tree (Rapidly-exploring random tree (RRT)) [59] and other heuristic

methods are preferred for a decoupled planner.

Centralized planners provide near-optimal solutions but are computationally

expensive. Decoupled planning is very fast but loses out on optimality and also

results in many deadlock and livelock situations. Detailed reviews [60,61] describe

planning algorithms for multi-robot systems; here we only refer to literature more
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relevant to our problem formulation.

Planning can be online or offline. The former usually requires extensive sensor

systems for perceiving the environment and computing collision free paths. In the

application herein, the objective is simplicity of method and equipment. Hence

our focus is on offline solvers.

The time-optimal path planning for multi-robots on a graph has been shown

to be NP-hard [23]. Although most applications require a feasible rather than an

optimal path, in a real MHS environment saving energy and time is important.

Thus, some degree of optimality is desirable especially in an industrial environment

where there may be cascading effects from planning decisions.

MPP has been pursued both on discrete and continuous domains. Continuous

planning [62] uses approaches such as velocity-obstacles [63], mixed integer linear

programming (Mixed integer linear programming (MILP)) [64, 65] and many

others.

The SaD system is, by design, an inherently graph-based discretized network.

Discrete MPP has attracted a very wide research community since the abstraction

of continuous to discrete domain allows a relaxed computation to be performed

at a faster rate. Discretization enables the use of graphs, a very well studied

research area with many guaranteed techniques for various objectives. MPP solving

methodologies for discrete domains are numerous: M* [66], complete algorithms

with Operator Decomposition and Independence Detection [67], Cooperative A*

[68], Hierarchial Cooperative A* [68], Windowed Hierarchical Cooperative A* [68],

Pebble Motion on graphs [69], subgraphs for planning [70], and Probabilistic Road

Map [70].

In this thesis, the focus is on Integer linear programming (ILP) based planning

methods [71]. Such methods, when implemented with advanced solvers are capable

of producing very good and complete solutions in least amount of time [71].

Various integer programming approaches have been applied to MPP: ILP based

on Network flow [71], MILP formulation for specified trajectory [72], and mixed

integer programming [64]. After thorough study of the state of the art, ILP based

methods would be very suitable to formulate the constraints of a SaD based MPP

as the environment and objectives are highly constrained.

The ILP model is particularly suitable for multi-goal planning, which is our
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focus herein but is not common in the MPP literature. (A rare example is [73],

where multiple unordered destinations are visited by the agent before it reaches

its goal.)

5.2 Problem Definition

A single SaD agent multi-goal path-planning framework was discussed in chapter

4. The current chapter* would deal with the multi-agent, multi-goal planning

problem.

Thus, the MPP problem herein involves R > 1 agents, each with Nr labelled

goals, r = 1, . . . , R. It is assumed that task allocation is already done and hence

an assignment of ordered goals is available for each agent. This eases the planning

as finding an optimal task allocation for the agents is NP-hard [74].

The problem we pose is to minimize the makespan, i.e., the total number of

steps (individual rotations) required until the last robot reaches its goal [75]. This

objective function ensures that all tasks are completed.

In MPPs, the strategies for collision avoidance are idling and detour. The SaD

agent prefers idling to reduce wear and tear between gears.

Goal locations for different agents are not necessarily distinct. Hence, it is

explicitly required that agents move away to accommodate others.

The planner takes into consideration all constraints and produces a flexible and

feasible plan. Finding even a feasible solution for the MPP is Polynomial Space

(PSPACE)-hard [76] even for a simplified two-dimensional case of the problem.

Hence, the objective here is obtaining a near-optimal solution.

5.3 Problem Formulation*

5.3.1 Graph Representation

The bench has m pins in an equilateral triangular lattice with coordinates P =

{p1, p2, · · · , pm}, pi = (xi, yi). A graph G = (V,E) is defined with nodes (or graph

* All mathematical notations and symbols declared in this section will have its scope
restricted to chapter 5.
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vertices), V = {vi|i = 1, . . . , |V |}, identifying the centroids of the triangles of

the lattice, i.e., the possible agent positions. (Agent orientation is ignored.) A

connecting edge, (vi, vj) ∈ E, indicates the possibility to move between nodes vi
and vj using only one pivot, i.e., their triangles are adjacent (share a side or a

vertex). The representation of SaD agent on an equilateral triangle lattice bench

is depicted in Fig. 5.1

Figure 5.1: Nodes and edges in SaD [3]

The adjacency list of the vertex v is Adj(v) ⊆ V , where v ∈ V and w ∈ Adj(v)

iff connecting edge e = {(v, w)} ∈ E. Each node has 13 adjacent nodes, including

itself, Fig. 5.1. Some adjacent nodes have two pins that can be used as pivots.

One node is selected at random during the decision. The initial locations of SaD

agents is an injective map aI : {1, · · · , R} → V , where R < |V |.

5.3.2 Obstacle Representation

The edges of G are pruned by removing nodes inside obstacles, which are considered

to be stationary and convex in the graph. A Minkowski sum operation is performed

between the obstacle geometry and the circular agent diameter to obtain a safe

zone for collision avoidance. Practical agents can be modelled as disc-shaped. The

complexity of the Minkowski sum of a polygon with n vertices with a disc is

45



5.3 Problem Formulation*

always O(n) [77].

The Computational Geometry Algorithms Library (CGAL) library provides

functions to perform these actions, whereas this work implements the Shapely

library buffer feature in Python 2.7 to obtain the buffer zone. The point in polygon

test is later performed to identify all the centroid vertices inside the obstacle [53].

They are utilized to relax the ILP formulations. The centroids inside obstacles are

K = {k1, k2, · · · , kn}, ki ∈ V .

5.3.3 Multi-goal Representation

The requirements of the current problem demand ordered task assignments for

the agents. Therefore, a time-based ILP is used: G is extended to a temporal

graph, or a time-expanded network, as in [78]. The network is based on a fixed

discrete time horizon, T , creating T copies of the vertices of G [75]. Fig. 5.2

shows a representation of the temporal graph. To achieve sequential visiting of

destinations, the goal set should be a unique list of nodes. The ordered list of

tasks to be visited by agent r is Wr = {w1, w2, · · · , wNr}, wi ∈ V .

Figure 5.2: Temporal graph

Two ILP based formulations are presented for the multi-agent path planning

in the following sections.
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5.4 Vertex based formulation

A vertex based formulation with three indices, for the node, time, and agent, are

presented. Binary variables xi,t,r are created with space complexity of O(|V |TR):

we have xi,t,r = 1 iff agent r is in vertex i at time step t. A graphical representation

of the binary variable assignment is shown in Fig. 5.3. For convenience, vertex

based formulation would be referred to as Formulation I in all further text in this

chapter.

Figure 5.3: Binary variable representation for Vertex based formulation

5.4.1 Makespan minimization

The objective function is to minimize the makespan. In a time expanded network,

a fixed time horizon T , is required. As T provides a suitable lower bound for the

objective function, the shortest path between the agents and the task goals [75] is a

suitable initial value for T . The problem being a multi-task assignment, an all-pair

shortest path (All Pair Shortest Path (APSP)) is implemented with Floyd Warshall

algorithm [79] with complexity of O(|V |3). APSP gives the distance matrix di,j
(the shortest path distance between vertices i and j; every edge is assumed with

length 1), computed offline. Floyd-Warshall algorithm implementation is shown

in Algorithm 7.
The shortest path between the node and itself is di,i = 0 in the standard

implementation but the assumption of di,i = 1 is made for inclusion of time. For
an agent r and a task-allocation list Wr = {w1, w2, w3, · · · , wNr}, the minimum
number of steps Dr for agent r to visit all goal states in Wr is calculated with
APSP distance matrix neglecting other agents on the graph as follows

Dr = daI(r),Wr(1) +
Nr−1∑
n=1

dWr(n),Wr(n+1) 1 6 r 6 R, Nr > 1 (5.1)
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Procedure 7 Floyd Warshall Algorithm [79]

Input: Adjacency matrix of graph G, Adj(i, j)
1: Let n = |V | . The number of vertices in the graph
2: Initialize shortest distance matrix d[],[]
3: Let di,j = 0, for all i
4: Let di,j =∞ if Adj(i, j) = 0
5: Let di,j = 1 if Adj(i, j) = 1 . All edges of graph G are of unit weight
6:
7: for k := 1 to n do
8: for i := 1 to n do
9: for j := 1 to n do

10: di,j = min(di,j, di,k + dk,j)
11: end for
12: end for
13: end for
14: Output d . The shortest path matrix between every pair of vertices in G

The maximum of all the Dr, tmin = max(Dr), is the lower bound for time horizon

T for makespan minimization [75]. The formulation assumes that all agents are

initiated at the same instant.

5.4.1.1 Objective Function

The objective is to minimize the makespan f1 of all the agents. Time horizon T

is initially set to tmin and increased iteratively to find a feasible solution. The

feasible makespan time solutions generated by these ILP formulations are always

optimal since the graph system is discrete and has finite number of states [75].

Minimize f1 =
∑
i∈V

T∑
t=0

xi,t,r (5.2)

for some arbitrary agent r, 1 6 r 6 R.

subject to:
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5.4 Vertex based formulation

5.4.1.2 Constraints

Agent initiation

The agents’ positions are initiated

xaI(r),0,r = 1 0 6 r 6 R (5.3)

where aI(r) is the initial centroid position of agent r, aI(r) ∈ V

Goal Assignment

Single- or multi-goals are assigned:

T∑
t=0

xj,t,r > 1 ∀j ∈ Wr,∀r (5.4)

Collision Avoidance

Similar to the “meet” and “head-on-head” scenarios in [75], we show in Fig. 5.4

two possible collisions in an SaD system. The initial position of the agents is in a

collision-free state if no two agents share the same pin. A collision state occurs if

either one agent moves to a vertex occupied by another, or if two agents reach a

vertex at the same time step.

R∑
r=1

xi,t,r 6 1 0 6 t 6 T,∀i ∈ V (5.5)

Obstacle avoidance

Stationary obstacles in the bench are represented by

xi,t,r = 0 ∀i ∈ K (5.6)

0 6 t 6 T, 1 6 r 6 R,whereK is centroid list inside obstacles
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5.4 Vertex based formulation

Figure 5.4: Collision scenario in SaD

Bench pin collision

The use of each pin is restricted to one agent at a time:

R∑
r=1

∑
∀k∈Adj(i)

xk,t,r 6 1 ∀i ∈ V, 0 6 t 6 T (5.7)

Continuity

The following constraint ensures that an agent leaves only from the node that it

has entered in the previous step hence maintaining the continuity of the path. Fig.

5.5 depicts a continuity constraint violation.

xi,t,r + xj,t+1,r 6 1 (5.8)

0 6 t 6 T − 1, 1 6 r 6 R, i ∈ V, ∀j 6∈ Adj(i)
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5.4 Vertex based formulation

Figure 5.5: Continuity constraint violation

Enforcing Sequence

The task allocation, Wr, for every agent is done prior to the path planning. This

is realisic in an MHS, where loading/unloading stations are known for each agent.

Hence, the planning assumes that ordered goals are available for each agent to

visit. Successive goals in the task list can only be visited after their predecessors.

H∑
t=0

xi,t,r > xj,H+1,r (5.9)

0 6 H 6 T − 1, 1 6 r 6 R, i ∈ Wr(k), j ∈ Wr(k + 1)

Prevent agent disappearance

It is necessary to write constraints for agents to stay in the planning graph until the

last agent has reached its destination. This prevents an agent from disappearing

after it reaches its goal state and makes the node it occupies available. The

formulation provides the agent the freedom to move once it has satisfied all its

goal states if demanded. This actively prevents deadlocks.

∑
∀i∈V

xi,t,r = 1 (5.10)

0 6 t 6 T, 1 6 r 6 R
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5.4 Vertex based formulation

5.4.2 Idling Preference

To reduce mechanical problems, it is better for an agent to idle than to detour.

Idling of agent r in node i at time step t is represented by xi,t−1,r = 1 and xi,t,r = 1.

This constraint leads to a multi-objective formulation, where the model tries to

minimize both the total makespan and the total distance traveled by each agent.

The current model follows a lexicographic multi-objective optimization approach

where the total makespan is minimized first, followed by maximizing the number

of idling states. Dmax, the minimum total moves needed by all the agents to reach

their goals provides a suitable lower bound for the objective function .

Dmax =
R∑
r=1

Dr (5.11)

Dmax is calculated using APSP between each agent and its corresponding goal

states, and Dr is obtained from Eq. 5.1.

5.4.2.1 Objective Function

Makespan minimization is followed by the second objective (f2) of idling maxi-

mization. This is converted into a minimization of the non-idling moves performed

by the agents. These are represented by a binary variables, ct,r = 1, for every

agent r at time step t, 0 6 t 6 T , 1 6 r 6 R. Their sum, y, is to be minimized

f2 = y

subject to y =
R∑
r=1

T∑
t=0

ct,r

y > Dmax

ct,r ∈ {0, 1}

(5.12)

5.4.2.2 Constraints

Idling constraints

A binary variable bi,t+1,r is assigned to represent all non-idle moves; bi,t,r = 1

means that the agent was present in node i at time instant t− 1 and not available
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5.4 Vertex based formulation

in node i at time instant t. A grahical representation of the binary variable bi,t,r
for the idling constraint is shown in Fig. 5.6.

Figure 5.6: Graphical representation of binary variable bi,t,r

xi,t,r +
∑

∀j∈Adj(i)
∀j 6= i

xj,t+1,r − 1 6 bi,t+1,r (5.13)

bi,t+1,r 6 xi,t,r (5.14)

bi,t+1,r 6
∑

∀j∈Adj(i)
∀j 6= i

xj,t+1,r (5.15)

0 6 t 6 T − 1, 1 6 r 6 R, ∀i ∈ V

Non-idling of each agent in each time instant

∑
∀i∈V

bi,t,r 6 ct,r (5.16)

0 6 t 6 T, 1 6 r 6 R

5.4.2.3 Linear Program

The solution from the makespan function model is set as the incumbent solution

for the idling function. Hence, the second objective function starts with a feasible

solution.
Minimize f2

subject to constraints (5.12) to (5.16)

f1 = t∗

where t∗ is the minimum makespan value obtained for f1.
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5.5 Edge based formulation

5.5 Edge based formulation

Edge based formulation is constructed with a four index binary variable xi,j,t,r
of space complexity O(|E|TR) . Binary decision variable xi,j,t,r = 1 iff agent r

moves from vertex i to vertex j at time step t. The binary variable zi,r represents

the initial position of the agent in the graph. zi,r = 1 if agent r is in vertex i

during initiation. For convenience edge based formulation would be referred to as

Formulation II in all further text

5.5.1 Makespan minimization

The objective as previously formulated, is to minimize the makespan f1 for all

the agents.

5.5.1.1 Objective Function

The objective function f1 is the makespan.

Minimize f1 =
∑
i∈V

∑
j∈Adj(i)

T∑
t=0

xi,j,t,r (5.17)

for some arbitrary agent r, 1 6 r 6 R.

subject to:

5.5.1.2 Constraints

Agent initiation

An additional variable zi,r is required to initiate the agents on the planning graph,

compared to the vertex based formulation.

∑
∀i∈V

zi,r 6 1 zi,r ∈ {0, 1}, 1 6 r 6 R (5.18)

zaI(r),r = 1 1 6 r 6 R (5.19)

where aI is the initial centroid position of agent r, aI(r) ∈ V
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5.5 Edge based formulation

We have

zi,r =
∑

j∈Adj(i)
xi,j,0,r 1 6 r 6 R, ∀i ∈ V (5.20)

Output/Goal Assignment

All goals for each robot Wr should be reached within the time planning horizon.

Hence the below constraint requires the goal states to be visited at least once by

its corresponding agent before T time steps is reached.

T∑
t=0

∑
i∈Adj(j)

xi,j,t,r > 1 1 6 r 6 R, ∀j ∈ Wr (5.21)

Collision Avoidance

Each edge in the planning graph at any time instant, can have at-most only one

robot, hence avoiding collision.

R∑
r=1

∑
i∈Adj(j)

xi,j,t,r 6 1 0 6 t 6 T,∀j ∈ V (5.22)

Bench pin collision

Possible agent positions as mentioned earlier are represented as centroids. To avoid

bench collision, adjacent centroids cannot be assigned to two different agents at

any time step.
R∑
r=1

∑
j∈Adj(i)

∑
k∈Adj(j)

xj,k,t,r 6 1 (5.23)

0 6 t 6 T,∀i ∈ V

No trees/No Bifurcation

Each agent is constrained to leave to only one node. This constraint restricts

branching. A depiction of the scenario is shown in Fig. 5.7

R∑
r=1

∑
j∈Adj(i)

xi,j,t,r 6 1 0 6 t 6 T,∀i ∈ V (5.24)
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5.5 Edge based formulation

Figure 5.7: Tree/Bifurcation scenario

Continuity

Similar to the vertex based formulation, each agent can leave only from the node

it has entered in the previous time step. A representation of the constraint is

shown in Fig. 5.8 ∑
j∈Adj(i)

xj,i,t,r >
∑

j∈Adj(i)
xi,j,t+1,r (5.25)

1 6 r 6 R, 0 6 t 6 T − 1,∀i ∈ V

Figure 5.8: Continuity constraint

Enforcing Sequence

As mentioned for the vertex based formulation, all ordered goals need to be visited

in sequence. The constraint below ensures that the planner makes assignment to

the binary variables accordingly.

H∑
t=0

∑
j∈Adj(i)

xj,i,t,r >
∑

l∈Adj(p)
xl,p,H+1,r (5.26)
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5.5 Edge based formulation

where 0 6 H 6 T − 1, 1 6 r 6 R, i ∈ Wr(k), p ∈
Wr(k + 1), Wr is the task allocation list of agent r, 0 6 k 6 length(Wr)− 1

Prevent agent disappearance

Till every agent has visited its corresponding assigned goals, all other agents need

to be present in the planning graph.

∑
∀i∈V

∑
∀j∈Adj(i)

xi,j,t,r =
∑
∀i∈V

∑
∀j∈Adj(i)

xi,j,t,r+1 (5.27)

0 6 t 6 T, 1 6 r 6 R− 1

5.5.2 Idling Preference

As in the vertex-based formulation, the secondary objective is to maximize the

number of idle states for all agents.

5.5.2.1 Objective function

As above, the objective is to maximize the number of idle states for each agent r.

This is converted to a minimization problem, where each non-idle state of each

agent at each time step is minimized. These non-idle states at each time step are

represented by a binary variable ct,r.

f2 = y

subject to y =
R∑
r=1

T∑
t=0

ct,r

y > Dmax

ct,r ∈ {0, 1}

(5.28)

5.5.2.2 Constraints

At a time step t, when an agent r has moved from its current node to its adjacent

node then binary variable ct,r = 1 is assigned. Hence minimizing the number of
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5.6 Simulations

instances where ct,r = 1 would result in the required idling maximization.

∑
∀j∈Adj(i)
j 6= i

xi,j,t,r 6 ct,r (5.29)

0 6 t 6 T, 1 6 r 6 R

5.5.2.3 Linear Program

The minimal value, t∗, of the makespan is set as a constraint for the secondary

optimization.
Minimize f2

subject to constraints (5.28) to (5.29)

f1 = t∗

The two ILP models presented in this section are tested via simulations in the

following chapter. Experimental results are presented in the following chapter to

discuss the effectiveness of the formulation in computing the objective functions

described in this section.

5.6 Simulations

5.6.1 Setup

Simulations are performed on an Intel Xeon Dual Core Processor 2.0 Ghz 64-bit

OS with 16.0 GB RAM. Mathematical models are implemented on Gurobi 6.5.1

with Python 2.7 as interface.

The number of pins in the actual SaD bench in the SwarmItFix prototype is

52. To have a symmetrical grid for computation, 36 pins are considered for the

first grid where the graph has 49 vertices and 491 edges. A second grid with 190

pins is considered with |V | = 323 and |E| = 3805.

To compare the formulations for a general scenario, the bench pin collision

constraint is not taken into consideration and all agents need to visit only one

goal. The results can therefore directly be related to any graph-based MPP with
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5.6 Simulations

Figure 5.9: Motion trajectory of SaD agent

single-goal objectives. Agents are randomly initiated on the graphs with random

obstacles.

5.6.2 Results

Tables 5.1 and 5.2 present the computation times of the first and second grids for

10 and 20 randomly generated initial states, respectively. Shown are the times (in

seconds) for optimizing the makespan function f1 and, in parentheses, the idling

function f2. For each computation, termination is triggered by a time limit of

1500 s or an optimality gap of 10%. The number of cases which failed to generate

a feasible solution are displayed as superscipts.

To understand the performance of the ILP models time optimality [62] ratio

and total number of idle states is computed for the dataset.

Time Optimality ratio =
f1
tmin

(5.30)
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Figure 5.10: Makespan time optimality
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Figure 5.11: Average agent idling States - Formulation I
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Figure 5.12: Average agent idling States - Formulation II
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Table 5.1: First grid computation time (s)

No. of Obstacles Number of Agents

Formulation
I

5 10 15 20
0 0.49 (1.05)0 1.33 (3.06)0 2.14 (11.10)0 3.36 (49.19)0

5 0.56 (1.47)1 1.53 (54.11)0 2.98 (179.33)0 5.68 (382.02)0

10 0.34 (1.38)0 1.47 (13.01)1 6.09 (669.11)5 4.67 (366.09)1

Formulation
II

5 10 15 20
0 0.84 (6.16)0 1.35 (35.52)0 2.10 (151.71)0 3.52 (544.38)0

5 0.61 (34.22)1 1.31 (261.17)0 2.15 (581.70)0 26.15 (1268.98)0

10 0.53 (34.20)0 1.41 (345.50)1 14.52 (997.33)5 6.83 (1401.24)1

Table 5.2: Second grid computation time (s)

No. of Obstacles Number of Agents

Formulation
I

10 20 30 40
0 25.00 (250.30)0 140.69 (1077.59)0 481.60 (1500.0)0 351.33 (1500.0)1

10 29.60 (288.89)0 109.90 (1500.0)0 267.0 (1500.0)0 329.16 (1500.0)4

20 15.45 (106.22)1 65.79 (1202.8)0 84.09 (1455.40)5 233.375 (1500.0)2

Formulation
II

10 20 30 40
0 4.430 (413.33)0 11.115 (1320.90)0 40.715 (1500.0)0 50.45 (1500.0)1

10 4.956 (230.19)0 10.850 (1489.14)0 9.894 (1500)0 112.32 (1500.0)4

20 4.638 (123.92)1 9.894 (1205.60)0 45.03 (1500.0)5 405.42 (1500.0)2

Total idle states = (f1R)− f2 (5.31)

The optimality ratio shown in the graphs are based on a 95% confidence interval.

As discussed earlier, if the computation is run without a termination time, the

assignment solution obtained for a makespan objective is always an optimal one.

Termination time were included for these experiments for practical purpose, and

we observed both the formulations obtain the same minimum makespan.

Fig. 5.10 shows that both the formulations provide near optimal solution for

the single goal planning without SaD bench constraints. When computation time

performance is recorded (Table 5.1 and 5.2 )), it becomes evident that Formulation

II is a stronger model for the current scenario. Though Formulation II required

higher computation time for secondary optimization, it outperformed Formulation

I in makespan computation and average idle states produced without secondary

optimization (Figs. 5.11a, 5.11b and 5.12a, 5.12b). Most single goal MPP problems

are generally directed towards makespan minimization; the idling function is just
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Table 5.3: Multi goal no sequence enforcing

Computation time (s)
Formulation I

No. of Agents 5 4 3 2
No. of Goals 1 2 3 4

No.
of
Obstacles

0 669.91 (1384.86)11 391.31 (1003.75)2 29.58 (411.19)0 2.963 (2.627)1

2 NA (NA)20 NA (NA)20 7.25 (44.21)18 2.58 (5.92)10

Formulation II

No.
of
Obstacles

0 1181.62 (1253.12)12 317.85 (1389.85)7 150.55 (612.049)0 6.50 (5.28)2

2 NA (NA)20 NA (NA)20 33.5 (124.50)18 7.22 (1.78)11

Table 5.4: Multi goal with sequence enforcing

Computation Time (s)
Formulation I

No. of Agents 5 4 3 2
No. of Goals 1 2 3 4

No.
of
Obstacles

0 676.85 (1276.77)11 365.46 (1372.63)6 255.39 (810.55)0 14.21 (127.19)2

2 NA (NA)20 NA (NA)20 44.58 (1145.08)18 235.08 (647.360)10

Formulation II

No.
of
Obstacles

0 1319.14 (1265.71)13 1028.91 (1500)8 860.0 (1377.76)3 259.05 (838.05)2

2 NA (NA)20 NA (NA)20 420.5 (892.5)18 941.57 (1280.71)13

a feature and not a mere necessity. Hence, the four index formulation is ideal for

less constrained single goal MPP scenarios with bigger grids. These results can be

extended to all graph structures with similar constraints.

The formulations are further extended to the SaD agent constraints: bench

pin collision and multi-goal.The computational time results are provided for 20

randomly generated instances for the first grid in Tables 5.3 and 5.4. Smaller

number of agents are the main scope for the SaD multi-agent path planning

problem since the agents are considered to be physical entities. Convex polygonal

obstacles are placed on the graph, where each polygon encapsulates 10 nodes.

Experiments were also made to study the Gurobi’s task allocation capability,

when no ordering sequence is provided to the goals for each agent to visit. The

minimum makespan achieved by relaxing the sequence constraints is shown in

Fig. 5.13a. Results show that the solver provides near optimal solution for smaller

62



5.6 Simulations

5 4 3 2
Number of agents

1.0

1.5

2.0

2.5

3.0

T
im

e
 O
p
ti
m
a
lit
y
 R
a
ti
o

0 Obstacles

2 Obstacles

(a) No sequence constraint

5 4 3 2
Number of agents

1.0

1.5

2.0

2.5

3.0

T
im

e
 O
p
ti
m
a
lit
y
 R
a
ti
o

0 Obstacles

2 Obstacles

(b) With sequence constraint

Figure 5.13: Multi-goal time optimality

number of agents at a reasonable time (Table 5.3).

Solver times in Tables 5.3 and 5.4, clearly show that Formulation I performed

better: it produced usually fewer and never more failures than II.
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Figure 5.14: With sequence idle state comparison

For the idling function objective (numbers in parentheses), both Formulations

take a long time to converge to the lower bound or do not terminate at all. The

model was tested with lower termination times comparing limits of 60, 360, and

1500 seconds.

Results are summarized in Figs. 5.14 and 5.15: with the introduction of idling

function f2, Formulation FI performs better than FII with the sequence constraint.

Without the sequence constraint both formulations performed nearly identically.
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Figure 5.15: No sequence idle state comparison

Also there existed only a 10 to 15% difference between solutions with 360 and

1500 s solver time: a good tradeoff favoring reducing time.

Hence, during real-time execution of the SaD system planner, a vertex-based

three-index formulation with termination time of 360 s would be a preferable

choice.

5.7 Summary

A “swing and dock” locomotion system is proposed for a multi-agent system. A

collision-free path-planner based on a temporal graph with integer linear program-

ming is introduced. A lexicographic multi-objective optimization is required where

minimizing of the makespan time of the agents is followed by maximizing the num-

ber of idle states. Two ILP formulations are presented, vertex-based three-index

and edge-based four-index. Both actively address livelock and deadlock situations.

The edge-based approach performs best for a makespan objective in a conven-

tional graph-based MPP with single goals yielding better computational times

and higher numbers of idle states.

However, with multiple goals and the SaD agent constraints, the vertex-

based approach is clearly superior. Though both formulations produced identical
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makespan solutions, FI has shorter computation times, fewer failures, and per-

forms well on the idling function. Simulation results also suggest that a smaller

termination time is sufficient for the idling function to get a close estimate of the

total idling states.

Hence, the three-index formulation will implemented in the SaD planner on

the existing prototype.

The ILP formulations, tailored to the SaD system, are general enough to

be applicable for many other single- and multi-agent problems over discretized

networks.

The following chapter will address path planning with orientation constraints,

which arise when the agent pay-load is not completely symmetrical.
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Chapter 6

Orientation Planning

Previous chapter dealt with permutation invariant goal states to address a gen-

eral case. In a real world scenario, the SaD agents would be required to carry

tools/materials/manipulators, where the orientation in which the agent arrives

at the goal location becomes of prime importance. This chapter deals with la-

beled legs describing the orientation of the agents on the mounting pins, hence

taking into account the orientation of the agent w.r.t the bench. Integer Linear

Programming (ILP) formulations are used to model the path planning problem.

The mathematical formulations are implemented and tested using GUROBI solver.

Computational results display the effectiveness of the formulations.

The previous chapter 5 dealt with accommodating multi-agent planning with

multiple goals. The planning problem was expressed as a temporal graph, where

centroids: agents position on a graph is used to represent the nodes, and all

connection to adjacent centroids (edges of the graph): represented reachable pins

by swinging around the docked leg. The legs were unlabeled in the previous work,

hence not accounting for the agent’s orientation definition. The current chapter

deals with these specific constraints, i.e the orientation at which each agent arrives

at its desired task/goal location.
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6.1 Problem Definition

The MPP problem herein involves R > 1 agents, with L > 2 legs. Each agent is

assigned with Nr labelled goals, r = 1, . . . , R. Task allocation is assumed to be

provided prior to planning, hence simplifying the planning as finding an optimal

task allocation for the agents is known to be NP-hard [74].

Similar to the previous chapter 5 with multiple goals, the current objective

in this chapter � is to minimize the makespan, i.e.,the total number of steps

(individual rotations) required until the last robot reaches its goal [75]. Ordered

goal assignments are provided for each agent, such a constraint is ideal for

manufacturing scenarios. Most of the assumptions are similar to the previous

chapter 5 : where the strategies for collision avoidance are idling and detour.

The SaD agent prefers idling over detour since mechanical components in gear

drives are involved. The increased wear and tear of gear components may affect

performance of the agents over time, hence idling of agents would be desirable.

In literature, most MPP have unique goals for each agent whereas in a practical

scenario, goal locations for different agents are not necessarily distinct. Hence

current work does not assume agents to have unique goals. Formulations are

modeled such that agents move away to accommodate other agents to reach their

goals. The planning approach would aim to achieve only near-optimal solution.

6.2 Problem Formulation�

Observing the SaD design leads us to formulating the problem as a discrete MPP.

Discrete MPP is a well studied research area, with numerous proven techniques

such as Pebble Motion on graphs [69], Probabilistic Road Map [70], Windowed

Hierarchical Cooperative A* [68], Cooperative A* [68], Hierarchial Cooperative A*

[68], ILP based on Network flow [71], and many other methodologies. The results

provided by [71], where the uilization of ILP methods coupled with commercial

solvers proved very useful to plan large instances of multi-agents in graphs with

minimal computation time. However, most research is carried out considering

� All mathematical notations and symbols declared in this section will have its scope
restricted to chapter 6.
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agents to be point objects and represented by nodes in a graph. This chapter

would build upon the methodologies provided by [71] to take into account the

orientation of the agents while computing a collision-free multi-agent path plan.

6.2.1 Graph Representation

In a plane, two points define a rigid body pose. We derive the orientation of a

SaD agent when any two leg placement of the SaD agents on specific pins are

provided. This enables us to deviate from the previous work where centroid was

used to describe the location of an agent, wherein here it suffices to just provide

the position of two legs of the SaD agent. Hence the graph is modified as follows.

(a) 60° rotation around pins (b) 60°, 120° and 180° rotations

Figure 6.1: Graph G

The bench has m pins in an equilateral triangular lattice with coordinates

P = {p1, p2, · · · , pm}, pi = (xi, yi). A graph G = (V,E) is defined with nodes (or

graph vertices) V = {vi|i = 1, . . . ,m}, identifying the docking pins of the fixed

bench, i.e., where an agent’s leg can be mounted. The graph G in the current

work differs from the previous work where the vertices V were representative of

the centroids of the triangles of the lattice (agent’s positions with respect to the

bench pins). The graph G used in the current work aids to formulate accurately

the current pose of the agent i.e. which agent’s leg is on which pin. A connecting

edge, (vi, vj) ∈ E, indicates the possibility of a leg to move between nodes vi and

68



6.2 Problem Formulation�

vj by rotation around a pin in a single step. The adjacency list of the vertex v is

Adj(v) ⊆ V , where v ∈ V and w ∈ Adj(v) iff e = {(v, w)} ∈ E.

A representation of the graph is shown in Fig. 6.1. In Fig. 6.1a, a SaD agent

is represented by dotted red circle circumscribing an equilateral triangle ABC.

The pose of the agent can be described by specifying the position of side AB in

graph G. A new edge in graph G represents the various orientations side AB can

achieve when the eq. triangle ABC is rotated by ±60° around the vertices A,B,

and C. Current pose of side AB is shown in black color. The new configuration of

the edge AB possible are depicted in Fig. 6.1a by subscripted numbers such as eg:

A1, B1 and different colors. All possible orientation of the side AB when rotated

in multiples of 60° is shown in Fig. 6.1b. From Fig. 6.1b, we can observe that

there exists 15 edges, two edges have overlapping colors. For the 180° rotation,

the edges overlap over themselves indicating both clockwise and anti-clockwise

rotation provide the same pose. Hence, by observation it is clear that there exists

at-most 18 adjacent nodes for a given node in graph G. When considering each

node is adjacent to itself, we get ”at-most” 19 adjacent nodes

The centroids still play an important role in defining the agent position at a

particular time instant t. A graph G′ is defined to represent all possible centroids

of the bench pins. A representation of G′ is shown in Fig.6.2. G′ = (V ′, E ′),

V ′ = {v′i|i = 1, . . . , |V ′|}, identifying the centroids of the triangles of the lattice.

Connecting edge (v′i, v
′
j) ∈ E ′ when there exists a common pin between two

centroids/vertices in G′. In Fig. 6.2, the centroids/vertices which lie on the hexagon

(green, yellow and pink) are all adjacent to the centroid at the intersection of all

the 3 hexagons. Hence by representation, it is clear that a vertex in graph G′ can

have at most 13 adjacent vertices (including itself).
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Figure 6.2: Graph G′: v′ represents the current centroid where the agent ABC is
located on the bench. v′1, v

′
2, v
′
3, · · · , v′12 represent the adjacent centroids/vertices of v′

6.2.2 Obstacle Representation

Obstacles are represented as convex polygons in a 2D environment. A pentagon

or a hexagon which encapsulates 3 pins each, are placed at random. Similar to

previous work, a Minkowski sum operation is performed between the obstacle

geometry and the circular agent diameter to obtain a safe zone for collision

avoidance. Also, a point in polygon test is performed to identify all pins/ vertices

inside the obstacle region [53]. The ILP formulations are relaxed accordingly. The

centroids inside obstacles are listed with the array K = {k1, k2, · · · , kn}, ki ∈ V .

6.2.3 Multi-goal Representation

Each agent is allowed to have multiple goal assignments. Goals in the current

context indicate the agents legs on a particular set of pins. For this scenario,

it is important to introduce a centroid list which has all the permutations of

the pins with respect to its corresponding legs and centroids. The centroid list

for agents with L legs is represented as: δ = {δ1, · · · , δq}, where q = L!|V ′| ,

δi = {δi1, δi2, · · · , δiL} and ∀i, ∀j, δij ∈ V and ∀i every δij is unique. For example,

when an agent with L = 3 legs is mounted on three pins k, l,m: their corresponding
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centroid is represented as c , then their corresponding entry in the centroid list is as

follows δ1 = {k, l,m}, δ2 = {k,m, l}, δ3 = {l, k,m}, δ4 = {l,m, k}, δ5 = {m, l, k},
δ6 = {m, k, l}.

Each element in δ represents all possible positions of the agent’s legs on the

fixed pin base (similar to centroids) and δij represents the vertex/pin occupied

by the jth leg of an agent. Hence, f : δ � V ′ is a surjective function, where all

possible leg positions on pins are mapped to their corresponding centroids.

The planning problem requires visiting of ordered goals. Hence, a time-based

ILP [80] is used: G is extended to a temporal graph, or a time-expanded network,

as in [78]. The network is based on a fixed discrete time horizon, T where T copies

of the vertices of G [75] are created. All ordered goal assignments for each agent is

unique. The ordered list of tasks to be visited by agent r is Wr = {w1, w2, · · · , wNr},
wi ∈ δ. With surjective function f we can obtain the corresponding centroids of

the goal states Cr = {c1, c2, · · · , cNr}, ci ∈ V ′.
The initial locations of SaD agents is an injective map aI : {1, · · · , R} → δ,

where R < |V | and all assignments in aI are distinct.

6.3 Integer Linear Programming Formulation

An integer linear programming formulation with four indices, for the node, leg,

time, and agent, is presented. Binary variables xi,l,t,r of size (|V ||L|TR) are created:

we have xi,l,t,r = 1 iff agent r's leg l is in vertex/pin i at time step t. As mentioned

in section 6.1, the objective function for the ILP is to minimize the makespan and

maximize the number of idle states for each agent.

6.3.1 Makespan minimization

With a fixed time horizon network approach, T provides a suitable lower bound

for the objective function. The shortest path between the agents and the task

goals [75] provides a suitable estimate value for T . All-pair shortest path (APSP)

provides the distance matrix di,j (the shortest path distance between vertices i

and j in G′; every edge is assumed with length 1). For a time expanded network

it is reasonable to make the assumption that di,i = 1. For an agent r and a
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task-allocation list Wr = {w1, w2, w3, · · · , wNr}, the minimum number of steps

required by agent r to reach its Nr goals is calculated with APSP distance matrix

neglecting other agents on the graph as follows:

dr = daI(r),Cr(1) +
Nr−1∑
n=1

dCr(n),Cr(n+1) (6.1)

1 6 r 6 R, Nr > 1

The maximum of all the dr, tmin = max(dr), provides the lower bound for

time horizon T for makespan minimization objective [75]. dr also provides the

information if the graph is connected, i.e there exists a path between the input

state and the corresponding output goals.

6.3.1.1 Objective Function

The objective is to minimize the makespan f1 of all the agents. Formulation starts

with an initial time horizon T = tmin and increased iteratively until a feasible

solution is found. All assumptions from the previous chapter 5 is applied to the

current formulation.

Minimize f1 =
∑
i∈V

T∑
t=0

xi,l,t,r (6.2)

for some arbitrary agent r, 1 6 r 6 R and some arbitrary leg l, 1 6 l 6 L.

subject to constraints:

6.3.1.2 Constraints

Agent initiation

The agents’ positions are initiated with each leg on their respective docking pins.

The formulation assumes that all agents are initiated at the same instant. The

initial position of agent r with its corresponding legs l on the pins are an element of

the matrix aI , where r and l correspond to the element and index of aI respectively.

xaI(r,l),l,0,r = 1 (6.3)

1 6 r 6 R, 1 6 l 6 L
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Figure 6.3: Collision scenario in SaD

Goal Assignment

Single- or multi-goals for each agent and their corresponding leg positions are

assigned. This assignment enables the orientation planning:

L∑
l=1

xWr(k,l),l,t,r − (L− 1) 6 yk,t,r (6.4)

yk,t,r 6 xWr(k,l),l,t,r 1 6 l 6 L (6.5)

1 6 k 6 Nr, 0 6 t 6 T, 1 6 l 6 L, 1 6 r 6 R

The following constraint ensures that the assigned goals are reached at least once

before the planning time horizon is completed.

T∑
t=0

yk,t,r > 1 (6.6)

1 6 k 6 Nr, 1 6 r 6 R
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Collision Avoidance

Collision scenario occurs (Fig. 6.3) when a pin is occupied by two different agents

in a given time step t. Hence only one agent is allowed to occupy a given node.

L∑
l=1

R∑
r=1

xi,l,t,r 6 1 (6.7)

0 6 t 6 T,∀i ∈ V

Obstacle avoidance

Stationary obstacles in the bench are represented by the list K. Over the time

horizon, they are instantiated to not be used by the agents.

xi,l,t,r = 0 ∀i ∈ K (6.8)

1 6 l 6 L, 0 6 t 6 T, 1 6 r 6 R

Move/wait Constraint I

The decision to move/wait is modeled with a binary variable zi,l,t,r, where zi,l,t,r = 1

would represent the leg l of agent r is present both at time step t and t+ 1 on the

pin i. The corresponding constraint is modeled as follows:

xi,l,t,r + xi,l,t+1,r − 1 6 zi,l,t,r (6.9)

zi,l,t,r 6 xi,l,t,r (6.10)

zi,l,t,r 6 xi,l,t+1,r (6.11)

1 6 l 6 L, 0 6 t 6 T − 1, 1 6 r 6 R, ∀i ∈ V
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Move/wait Constraint II

The decision to either rotate around one leg (move)/ all legs L to be stationary

(wait) at a particular time step t is described as below. The move/wait choice are

made with corresponding binary variables ut,r (move) and vt,r (wait).

∑
∀i∈V

L∑
l=1

zi,l,t,r = ut,r + Lvt,r (6.12)

ut,r + vt,r = 1 (6.13)

0 6 t 6 T, 1 6 r 6 R

Continuity

The following constraint ensures that an agent leaves only from the node that it

has entered in the previous step hence maintaining the continuity of the path.

xi,l,t,r + xj,l,t+1,r 6 1 (6.14)

1 6 l 6 L, 0 6 t 6 T − 1, 1 6 r 6 R, i ∈ V, ∀j 6∈ Adj(i)

Adjacent set

Adjacent nodes in graph G on which a SaD agent can be placed is enlisted and

constraints are developed accordingly. A binary variable pk,t,r is defined to show

that all possible assignments of the legs to their corresponding pins is from the δ

array.
L∑
l=1

xδ(k,l),l,t,r − (L− 1) 6 pk,t,r (6.15)

1 6 k 6 len(δ), 0 6 t 6 T, 1 6 r 6 R

pk,t,r 6 xδ(k,l),l,t,r (6.16)

1 6 k 6 len(δ), 0 6 t 6 T, 1 6 r 6 R
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One of the many configurations of the legs on the pins needs to be true for every

time step t.
len(δ)∑
k=1

pk,t,r = 1 (6.17)

1 6 r 6 R, 0 6 t 6 T

Enforcing Sequence

The task allocation, Wr, for every agent is done prior to the path planning. This

is realistic in an MHS, where loading/unloading stations are known for each agent.

Hence the planning assumes that ordered goals are available for each agent to

visit. Successive goals in the task list can only be visited after their predecessors.

γr is a vector containing indices of elements δ which are common between δ and

Wr.
H∑
t=0

pj,t,r > pk,H+1,r (6.18)

0 6 H 6 T − 1, 1 6 r 6 R, 1 6 k 6 length(γr), i ∈ γr(k), j ∈ γr(k + 1)

where Wr is the task allocation list of agent r and length(γr) is the size of the

vector γr.

Prevent agent disappearance

It is necessary to write constraints for agents to stay in the planning graph until the

last agent has reached its destination. This prevents an agent from disappearing

after it reaches its goal state and makes the node it occupies available. The

formulation provides the agent the freedom to move once it has satisfied all its

goal states. This actively prevents deadlocks.

∑
∀i∈V

xi,l,t,r =
∑
∀i∈V

xi,l,t,r+1 (6.19)

0 6 t 6 T, 1 6 l 6 L, 1 6 r 6 R− 1
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6.3.2 Idling Preference

The maximization of idling of agents are modeled as below.

Dmax, the minimum total moves needed by all the agents to reach their goals

provides a suitable lower bound for the objective function .

Dmax =
R∑
r=1

dr (6.20)

Dmax is calculated with APSP between each agent and its corresponding goal

states (Cr).

6.3.2.1 Objective Function

The second objective f2 is to maximize the number of idle states for each agent of

idling maximization. The formulation is converted into a minimization problem

by minimizing the non-idling moves performed by the agents. The non- idle moves

are a binary choice in each time step defined by ut,r in Eq. (6.12) and (6.13).

Constraints are as follows:

f2 = y

subject to y =
R∑
r=1

T∑
t=0

ut,r

y > Dmax

ct,r ∈ {0, 1}

(6.21)

6.3.2.2 Linear Program

The solution from the makespan function model is set as the incumbent solution

for the idling function. Hence the second objective function starts with a feasible

solution. This makes it faster for the solver to converge to a solution.

Minimize f2

subject to (6.21)

f1 = t∗
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where t∗ is the minimum makespan value obtained for f1.

6.4 Simulations

6.4.1 Setup

Simulations are performed on a similar environment as in chapter 5, with an Intel

Xeon Dual Core Processor 2.0 Ghz 64-bit OS with 16.0 GB RAM. Mathematical

models are implemented on Gurobi 6.5.1 with Python 2.7 as interface.

There are 52 pins in the actual SaD bench in the SwarmItFix prototype. To

have a symmetrical grid for computation, 36 pins are considered, where the graph

G has |V | = 36 vertices and |E| = 461 edges. For the given graph G, the centroid

graph G′ has |V ′| = 49 and |E ′| = 491 edges. A sample motion trajectory of two

SaD agents is represented in Fig. 6.4

Agents are randomly initiated on the graphs with random obstacles. Connec-

tivity between the initial states and the goal states are verified with APSP matrix.

If connectivity does not exist between the goal nodes and the initial state of agents,

the agents and obstacles are re-initiated until a connected graph is obtained.

To understand the performance of the ILP models time optimality [81] ratio

and distance optimality ratio is computed for the dataset. These optimality ratios

provide an insight into the gap between optimal solution and the objective solution

generated.

Time Optimality ratio =
f1
tmin

(6.22)

Distance Optimality Ratio =
f2

Dmax
(6.23)

Smaller number of agents are the main scope for the SaD multi-agent path

planning problem since the agents are considered to be physical entities. Convex

polygonal obstacles are placed on the graph, where each polygon encapsulates 3

nodes in graph G. It represents a highly constrained environment since 16% of

the graph is now covered with obstacles when 2 polygons are placed.
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Figure 6.4: Motion trajectory of SaD agent

Table 6.1: Multi goal with sequence enforcing

Computation Time (s)
Formulation

No. of Agents 5 4 3 2
No. of Goals 1 2 3 4

No.
of
Obstacles

0 69.46 (0) 528.99 (6) 885.116 (11) 649.06 (8)

2 139.95 (12) 608.25 (17) 1112.59 (17) 685.194 (11)

6.4.2 Results

Table 5.4 present the average of the computation times of 20 randomly generated

initial states, respectively. Shown are the times (in seconds) for optimizing the

makespan function f1. For each computation, termination is triggered by a time

limit of 1500 s or an optimality gap of 10%. The number of cases which failed to

generate a feasible solutions are displayed in parenthesis. 2 sets of computation

time readings are recorded and the average displayed in the tables.

The optimality ratio shown in the graphs are based on a 95% confidence

interval.

The task allocation problem where the required goal-sequence is not provided,
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Figure 6.5: Time Optimality Ratio

Table 6.2: Multi goal no sequence enforcing

Computation time (s)
Formulation

No. of Agents 5 4 3 2
No. of Goals 1 2 3 4

No.
of
Obstacles

0 69.695 (0) 480.181 (2) 621.870 (3) 321.701 (0)

2 146.875 (12) 349.097 (15) 644.78 (13) 178.631 (7)
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Figure 6.6: Distance Optimality Ratio

is also studied. Experiments were made to study the computation time when

the goal-sequence constraint was relaxed for the same dataset. The minimum

makespan achieved by relaxing the sequence constraints is shown in Fig. 6.5b

and computation times are displayed in Table. 6.2. Results show that the solver

provides near optimal solution at a reasonable time (Table 6.2).

The computation time results in the current study shows that the ILP model

has shown an improvement from the previous chapter [80]. In previous chapter,

experiments had failed to produce feasible solutions for many cases such as (5

agents, 2 obstacles: 4 agents, 2 obstacles) whereas the current model generates

feasible solution. The computation time as observed for the multi-goal with

sequence constraint seems to increase linearly with increase in number of goals.

This is a clear indicator that the system becomes highly constrained. This is also

evident from the multi-goal no-sequence condition, where the computation time is

far lesser compared to the with-sequence constraint. These observations can be

utilized to develop special heuristics to reduce the computation time. Although

the computation time for an offline solver is not a very critical requirement, a

better heuristic model can aid when there is limited resources and requirement

for quicker solutions.

For the idling function objective, in previous chapter it was shown that a lesser

termination time is sufficient to achieve results closer to 10 - 20 % of the optimal

solution. Hence, the model was tested with lower termination times comparing

distance optimality ratio achieved within 360 and 720 seconds. Results observed
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for both the time (360 and 720 seconds) were very similar. Fig. 6.6 shows the

distance optimality ratio with sequence and no-sequence constraint (720 seconds).

The observations made from Fig. 6.6 shows that the solutions obtained are within

1.x of the optimal solutions for most of the cases.

6.5 Summary

A multi-agent system with “swing and dock” locomotion system posed a unique

planning problem of MPP on graphs. A collision-free path-planner based on a

temporal graph with integer linear programming is developed. Constraints are

defined for aiding the agents to achieve required orientation/positioning of legs

on specific vertices in a graph. A lexicographic multi-objective optimization was

computed where minimizing of the makespan time of the agents is followed by

maximizing the number of idle states. The ILP formulations effectiveness is shown

with measures such as time and distance optimality ratio, where experiments

display solutions closer to 1.x of the optimal solution. The computational time

observed were reasonable for an offline planning problem. The current work was

solely focused on generalized formulations for the SaD problem, wherein future

work with specific heuristics can greatly reduce the computation time.
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Chapter 7

Trajectory Planning

In sheet metal manufacturing, re-configurable fixtures significantly reduce the lead

time and cost. In this chapter, robotic agents with discrete-step locomotion and

interchangeable supporting heads are proposed to act as fixturing locators. These

agents swing (rotate) around fixed pins on a bench to reach adjacent reachable

pins, such a locomotion avoids slip and provides accurate localization of the

agent. Due to their simplicity in design and movement, they can be scaled to a

multi-agent system. We propose to use these agents mounted with static fixture

heads instead of a parallel manipulator (SwarmItFix EU FP7) used in previous

works. Such a modification would enable to scale to a multi-agent systems and

also would be cost-effective alternative. Integer linear programming optimization

techniques are employed to ensure accurate positioning of the agents in time to

provide adequate support during machining. Multi - agent path planning w.r.t the

tool trajectory, collision avoidance, and time - relevant action plan is implemented.

Mathematical formulations for the constrained optimization are implemented with

GUROBI solver. Simulation and optimization results are presented and also they

provide insight for parameter tuning, based on which design decisions for selection

of geometry of the fixture head, base, and tool speed can be made.
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7.1 Introduction

Sheet metals are the most commonly used raw material in manufacturing industry.

The size of sheet metals are dependent on the industries: the aerospace, automobile

and naval industries consume them in large dimensions. When the length to

thickness ratio is too high, these sheet metals tend to sag under self-weight, since

they need to undergo lot of manufacturing operations, fixture development for

these large sized sheet metals has been a very widely research topic.

Specific fixtures for sheet metal/ thin walled objects have been proposed and

developed such as reconfigurable modular fixturing system [82]: fixturing thin

walled flexible objects subject to a discrete number of point forces , Single structure

flexible fixture system (SSFFS): matrices of support (”bed of nails” system) for

the sheet metal, Robotic Fixtureless assembly (RFA): sensor guided robots to

cooperatively fixture the workpiece.

From observation of these system it is clear that the core components of these

fixture systems are: a specially designed base plate, a locator and a clamping

mechanism. Various combinations of these components generate a new class of

fixtures. One of the most relevant fixture to the current work being discussed

is of the pin-type fixture, where [83] several axially actuating rods/pins are

placed in a grid like pattern on a mounting base to support different workpiece

geometry ( Flexible tooling apparatus [84], Variable contour securing systemm [85],

Universal holding fixture [86], POGO Flexible tooling). The EU FP7 project

(SwarmItFix) [2,5,6], an improved version of the RFAs, where a reconfigurable

mobile fixture consisting of a parallel manipulator mounted on a mobile base

was developed to cater to fixturing of large aerospace sheet/skin materials. The

SwarmItFix project was successful in automating the entire fixturing option. The

usage of parallel manipulators to locate and clamp the sheet metals/skins has

made the planning procedure quite complex and expensive to scale to a multi-agent

system. The reconfiguration time of the parallel manipulator and their intersecting

workspaces limit their ability to fixture sheet metal with different tool speeds and

geometry. This work proposes to extend the concept of the SwarmItFix, where

the mobile base is mounted with a static fixture head. Such a modification would

simplify the overall design of the system, reconfiguration time can be reduced,
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Figure 7.1: Schematic of the SaD base with a fixture head

more complex geometries can be fixtured, and the overall cost of each agent can

be reduced.

7.2 Design

The SaD base is proposed to be extended to mount a static fixture head rather

than an expensive PKM. This concept of having a reconfigurable locator was

intially proposed by Selena [82], where a novel reconfigurable modular system

for the fixturing of thin-walled, flexible objects subject to a discrete number of

point forces was presented. Several other pin-type fixtures operate on a similar

principle where a bench consists of fixtures placed in a grid like pattern which

extend to provide support to sheet metals. These designs served as a basis during

the development of the SwarmItFix fixture. A simple schematic of the proposed

design shows the swinging locomotive agents carrying fixture heads which can

extend and retract in one dimension to support sheet metal parts.

7.3 Problem Definition

In this chapter, we develop the high level planning of the SaD agents for the

fixturing purpose. Apart from this application, such a planner would be useful to

locate SaD agents at a given instant in time along an arbitrary trajectory.
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7.3 Problem Definition

7.3.1 Graph Representation

The planning graph G is similar to the graph G considered in chapter 5. The

bench has m pins in an equilateral triangular lattice with coordinates P =

{p1, p2, · · · , pm}, pi = (xi, yi). A graph G = (V,E) is defined with nodes (or graph

vertices), V = {vi|i = 1, . . . , |V |}, identifying the centroids of the triangles of

the lattice, i.e., the possible agent positions. (Agent orientation is ignored.) A

connecting edge, (vi, vj) ∈ E, indicates the possibility to move between nodes vi
and vj using only one pivot, i.e., their triangles are adjacent (share a side or a

vertex).

7.3.2 Workpiece

Sheet metal workpieces in the scenario are not planar, but have complex 3d

contour shapes. CAD data of the workpiece to be machined is obtained prior

to the planning process. They are converted into IGES format to extract the

point cloud data of the surface to be fixtured. The point cloud data are easy to

manipulate and use in the Python environment. Fig. 7.2a and 7.2b The distance

between the SaD agent in the current prototype and the bench is 500 mm, in

SwarmItFix design the maximum height the PKM could reach was 1100 mm from

the mounting base. We assume that the static fixture head can reach a distance

of 1000 mm from the bench. The workpiece points are projected onto the base of

the SaD bench. The workpiece needs to be oriented in a manner where maximum

number of mounting points can be placed. Point in polygon test is performed

to identify all pins/vertices inside the projected workpiece region [53], the same

method employed to identify obstacles in the bench. Hence, we can obtain the

optimal placement of the workpiece for fixturing.

7.3.2.1 Workpiece Segmentation

Similar to the work carried out for the SwarmItFix planner [49], we discretize the

contour points. Machine tool data is provided, where the tool speed is provided.

In most conditions tool speed are assumed to be uniform. Hence, we segment the

contour based on the location of the tool at every second. We assume this strategy
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Figure 7.2: Vertical fin model

would provide a good estimate of the contour points. APSP algorithm provides

the nearest possible position of the agent w.r.t the contour points.

7.4 Integer Linear Programming Formulation

The vertex based formulation presented in chapter 5 with three indices, for the

node, time, and agent, are extended to formulate the current problem. Unlike the

previous cases, in the current problem the planning time horizon is fixed, hence

the ILP would either return a solution or would terminate stating in-feasibility of

the model or violation of constraints. The environment is a known environment,

hence the scenario is considered to be obstacle-free. When nodes in graph G are

further away from contour points, the nodes and their corresponding edges are

deleted. This significantly improves the computation time for the solver. The

ILP formulation implemented in the previous chapters 5 and 6 required the time

step of all agents to be uniform, i.e if an agent has to move or idle, it has to

perform that action for the same amount of time. Most MPP in literature adhere

to these relaxations as it is easy to model in a planning graph. But for a real

world environment such a constraint would hinder the performance of the system.

Hence, we model the constraints for the agent such that asynchronous movement

is possible for each agent and its corresponding action.
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7.4 Integer Linear Programming Formulation

7.4.1 Objective Function

The objective function f1 is to maximize the support provided to the sheet metals.

The cost function is defined here to be the distance between the support points

and the tool trajectory. The cost-distance matrix provides the weighted coefficients

cj,t for the minimization function. It is clear from the assumption, that only one

contact point is sufficient to provide adequate support at any time instant [49].

The objective function is independent of the number of agents.

Minimize f1 =
∑
j∈V

T∑
t=0

(cj,t)(xj,t)

subject to constraints:

7.4.1.1 Constraints

Choice of support points

Only one support point is sufficient to provide adequate fixture support (assump-

tion) for every time step (t). This assumption is derived from the SwarmItFix

system, where when one agent was providing support the other agent was either

in reconfiguration or had already reached its next desired position.

∑
j∈V

xj,t = 1 (7.1)

0 6 t 6 T

Agent initiation

All agents are initiated at time step (t = 0) at required centroid j based on the

cost. This constraint ensures that two agents are not in collision while the planning

starts in the planning graph. No priority is assigned to any agent manually/by

the user. ∑
j∈V

yj,0,r = 1 (7.2)

1 6 r 6 R
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7.4 Integer Linear Programming Formulation

Same support point at next time step (t)

When the tool progresses around the trajectory, it may suffice to assign an

robot/agent to be positioned strategically to provide continuous support over a

length of the trajectory. In such cases, the same support point j needs to be chosen

for an extended time period rather than a single step. When such a scenario exists,

the binary variable sj,t. is enabled.

xj,t + xj,t−1 − 1 6 sj,t−1 (7.3)

xj,t > sj,t−1 (7.4)

xj,t−1 > sj,t−1 (7.5)

∀j ∈ V, 1 6 t 6 T

Relating agent to the support point

One of the agents are assigned for each support point. This constraint ensures

that there exists fixturing agents available throughout the machining process.

xj,t 6
R∑
r=1

yj,t,r (7.6)

∀j ∈ V, 1 6 t 6 T

Collision Avoidance constraint

A centroid j can at-most be occupied by only one agent. Two/more agents

occupying the same centroid will lead to agent collision.

R∑
r=1

yj,t,r 6 1 (7.7)

∀j ∈ V, 0 6 t 6 T
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7.4 Integer Linear Programming Formulation

Agent move/dock at time step (t)

We declare a binary variable mt,r to represent if an agent r is moving at a particular

time step t. mt,r = 1, if agent r is moving/rotating at time step t. The following

constraint defines that every agent r should be moving or docked in a centroid j

at every time step t.

∑
∀j∈V

yj,t,r +mt,r = 1 (7.8)

0 6 t 6 T, 1 6 r 6 R

Ensuring agent (r) moves for Tm steps before docking

We define the time taken by each agent to reach its adjacent node to be Tm, where

Tm ∈ Z+. When the agent takes the decision to move, i.e mt,r = 1 in Eq. 7.8, the

agent continuous to be in the move state in the consecutive time steps until Tm
steps elapse.

(Tm − 1)−
t+Tm−1∑
tn=t+1

mtn,r 6 M((1−mt,r) + (1− yj,t−1,r)) (7.9)

∀j ∈ V, 1 6 t 6 T − Tm, 1 6 r 6 R

Agent needs to dock after Tm moves

Agent (r) needs to dock after Tm steps if it is moving in the current time step t.

This is explicitly modeled in the following constraint:

m(t+Tm),r 6 M(Tm −
t+Tm∑
tn=t

mtn,r) (7.10)

0 6 t 6 T − Tm, 1 6 r 6 R

Ensuring agent (r) docks after Tm moves in adjacent centroid (j)

Every agent (r) after making Tm moves, docks in one of the adjacent centroid

of current centroid j. This constraint is also similar to the continuity constraint
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7.4 Integer Linear Programming Formulation

modeled in the previous chapters, where agent moves to its adjacent node in the

graph.

1−
∑

∀i∈Adj(j)
yi,(t+Tm+1),r 6 M((1−mt,r) + (1− yj,t−1,r)) (7.11)

∀j ∈ V, 1 6 t 6 T − Tm − 1, 1 6 r 6 R

Agent idle at time step (t)

A binary variable zt,r is declared to represent the agent idling. When zt,r = 1 in

the current time step t, agent (r) idles at centroid (j) in the next time step .

1− zt+1,r 6 M((1− yj,t,r) + (1− yj,t+1,r)) (7.12)

∀j ∈ V, 0 6 t 6 T − 1, 1 6 r 6 R

Agent moves if idling not enabled in previous time step

As described in the previous constraint Eq. 7.12, zt,r denotes the idling of agent r,

when zt,r = 0 at time step t, it implies that agent needs to move in the next time

step t+ 1.

Tm −
t+Tm∑
tn=t+1

mtn,r 6 M(zt,r) (7.13)

0 6 t 6 T − Tm, 1 6 r 6 R

Two different centroids cannot be assigned to same agent (r) in con-

secutive time steps (t)

Agents need to move for certain time steps before they can reach their adjacent

nodes. This is considering the time to move (Tm > 1). The following constraint is

modeled as follows:

yj,t,r +
|V |∑
i=0
∀i 6=j

yi,t+1,r 6 1 (7.14)

∀j ∈ V, 1 6 t 6 T − 1, 1 6 r 6 R
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7.4 Integer Linear Programming Formulation

Assignment of docking decision variable

A docking decision variable lj,t,r is required in the first place to distinguish between

moving and docked agent. A docked agent in centroid j i.e. yj,t,r = 1 invariably

assigns lj,t,r = 1. Hence, the pin around which the agent moves can be clearly

identified with this constraint.

1− lj,t,r 6 M(1− yj,t,r) (7.15)

∀j ∈ V, 0 6 t 6 T, 1 6 r 6 R

Agent needs to be docked/rotating around some mounting pins

All pins on which the agents are mounted in every time step can be monitored by

the binary variable lj,t,r. Hence, we constrain the variable lj,t,r to be assigned to

any one centroid (j) at all time steps.

∑
∀j∈V

lj,t,r = 1 (7.16)

0 6 t 6 T, 1 6 r 6 R

Assignment of docking decision variable

If agent is moving in the current time step mt,r = 1, then assign the centroid j

from the previous docked time step t− 1.

1− lj,t,r 6 M((1−mt,r) + (1− lj,t−1,r)) (7.17)

∀j ∈ V, 1 6 t 6 T, 1 6 r 6 R

Collision avoidance for the usage of docking pins

Since each agent occupies 3 docking pins, for a given centroid j all its adjacent

centroids are restricted to only one agent. This avoids collision caused due to the
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7.5 Simulations

usage of the mounting pins.

∑
∀i∈Adj(j)

R∑
r=0

li,t,r 6 1 (7.18)

∀j ∈ V, 0 6 t 6 T

7.5 Simulations

Simulations were performed on an Intel Xeon Dual Core Processor 2.0 Ghz 64-bit

OS with 16.0 GB RAM. Mathematical models are implemented on Gurobi 6.5.1

with Python 2.7 as interface.

The number of pins in the actual SaD bench in the SwarmItFix prototype is

52. The exact dimensions of the bench was modeled in Python.

The cost function variable cj,t was penalized when the distance between the

tool point and the agent centroid position were more than 700 mm. This constraint

arises based on the dimension of the head of the fixtures.

Termination time was not fixed while performing the simulation. This enables

the solver to search the entire branch and bound tree to arrive at the optimal solu-

tion. Simulations were run to first understand if the ILP solver always terminates

with the current constraint optimization problem. When the constraints were

violated for the cost-function cj,t, the model terminated immediately. When the

number of agents were less, the solver took longer time to find a feasible solution.

After the feasible solution was determined, finding a near -optimal solution (10

% gap) took long hours with the current formulation. Few instances the optimal

solution were reached within minutes, whereas in few other contours and with

lesser agents, the solver took days to reach the optimal solution. The solver also in

a particular case took 226 hours to report infeasible model. Two major parameters

that contribute towards an infeasible solution: number of agents and support

function. Less number of agents may result in less time to reconfigure, whereas

very high number of agents would result in no possible motion. When the support

function is concerned, in the current research we have considered the geometric

constraints, whereas Finite Element Method (FEM) constraints can play a major

factor in this scenario. In this optimization problem we try to achieve a feasible
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7.6 Discussion

solution by changing the parameters such as: number of agents, time to move and

tool speed.

We present the simulation of a contour with 5 fixturing SaD agents in Fig.7.15.

The planning horizon is determined by the tool speed. We arbitrarily chose 25

mm/s as the tool travel speed along the cutting contour. Hence, the trajectory

was segmented into 51 points, representing 51 seconds for the tool to traverse

the entire contour. The motion planning of the agents are displayed in the below

figures. The centroids are represented as blue and the docking pins are represented

as red. The contour on which the tool travels is represented in green color. All

SaD agents are represented as hollow circles (light green, light blue, red, pink, and

black). Cyan colored circles represent the tool position on the contour. A filled

mocassin circle represents the current agent which is supporting the workpiece

at that particular instant of time. From graphical representation in Fig.7.15, it

becomes evident that the ILP formulation provide a feasible solution with no-

collisions among agents at any time step t.

A feasible solution for the above contour was obtained within 3 hours, but to

reach the optimality criterion of 10 % minimum gap, the solver took 387 hours.

This shows that the model can be vastly improved from its current state by

exploring in-depth the methods to search the branch and bound tree. Various

heuristics can fairly reduce the computation time. This would be a potential

research direction to take when this planner is implemented.

7.6 Discussion

We have proposed to extend the SaD agent to act as a reconfigurable fixture

with a simple fixture head. Such a solution would be easy to scale to multi-agent

support and also would be a cost-effective solution. We have implemented constrain

optimization techniques to locate these fixtures along the tool path trajectory . We

have only included geometric constraints while modeling the mathematical models,

but the optimization can easily take into account finite element constraints if

required. We display the motion planning of the agents when a trajectory for a

workpiece is provided. The ILP techniques ensure there is only a 10% gap between
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Figure 7.15: Motion planning of SaD agents along the contour
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7.6 Discussion

the obtained solution and the optimal solution. The motion planning formulations

resulted in an asynchronous planning for the agents diverging from the previous

chapters, where each time step had to be uniform, hence we can take into account

the time required for each agent to move.
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Chapter 8

Conclusions

8.1 Conclusions

We have observed that SaD locomotive agents architecture are ideal candidates for

multi-robot systems. We have identified few of the potential applications for the

SaD system such as: Material Handling, and fixturing agents and provided detailed

analysis justifying the suitability. These specific applications required dedicated

planner for generating feasible paths, hence we developed ILP techniques based

mathematical models to achieve the multi-agent path planning for the SaD agents.

The main focus during the MPP were to achieve two major objectives: minimize

the makespan and maximize the number of idle states for each agent. Simulations

were performed to test the ILP models for these specific objectives. A state of

art ILP solver ”GUROBI” was used to perform all the simulations. Experimental

results suggested near optimal solution with the implemented models. We further

extended the ILP model to address a more specific constraint of orientation for the

agents, where we observed makepsan solutions close to 1.x of the optimal solution.

These type of MPP problem are very unique to the multi-robot system community.

The results and methodology developed in this work can provide good insight into

similar problems in MPP community, where most traditionally only point objects

are considered as agents. Apart from the path planning we also address another

specific motion planning problem, where SaD agents act as fixture agents. The

ILP techniques are implemented as constrained optimization for addressing this

problem. Simulation results prove the effectiveness of the solution. The developed
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8.2 Future Research

methodology is a holistic method which integrates both the motion planning and

the selection of design parameters for the fixturing agents. All the mathematical

models developed in this work are general and can be easily extended to address

similar single-goal or MPP problems.

8.2 Future Research

There exists lots of research possibilities with SaD agent system. One of the central

focus should lie upon moving towards a distributed architecture, where each agent

takes decision based on its surrounding environment and task objectives. The ILP

formulations presented in this thesis can be modeled with specific heuristics to

achieve very fast computation.
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Appendix A

Specification of SaD agents

A.1 Hardware Specification

Table A.1: SaD Hardware Specification

Specification SaD Agent

Dimensions of SaD agent Cylinder (�550 mm,
height: 500 mm)

Harmonic Drive
Rated motor speed 3500 RPM
Motor torque constant 0.57 Nm
Motor stall torque 1.8 Nm
Controllers Maxon EPOS2
Locking pin (required) Locking force > 10 kN
Holding force (available) 75 kN
Draw - in force (available) 18 kN
Interface Multi-Robot research

oriented controller
(MROCC++)
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