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Abstract

Data are influencing every aspect of our lives, from our work activities, to our
spare time and even to our health. In this regard, medical diagnosis and treatments
are often supported by quantitative measures and observations, such as laboratory
tests, medical imaging or genetic analysis. In medicine, as well as in several other
scientific domains, the amount of data involved in each decision-making process
has become overwhelming. The complexity of the phenomena under investigation
and the scale of modern data collections has long superseded human analysis and
insights potential. Therefore, a new scientific branch that simultaneously addresses
statistical and computational challenges is rapidly emerging, and it is known as data
science.

Data science is the evolving cross-disciplinary field that, borrowing concepts from
several scientific areas, aims at devising data-driven decision making strategies
for real-world problems. Data science differs from classical applied statistics as it
generally combines mathematical background with advanced computer science and
thorough domain knowledge. Following the data science philosophy, it is possible
to ask the right questions to the data and to find statistically sound answers in a
reasonable amount of time.

Machine learning can be seen as one of the main components of data science. The
aim of machine learning is to devise algorithms that can recognize and exploit
hidden patterns in some set of data in order to formulate an accurate prediction
strategy that holds for current and future data as well. Thanks to machine learning
it is now possible to achieve automatic solutions to complex tasks with little human
supervision. As of today, machine learning is the workhorse of data science.

This thesis revolves around the application of machine learning and data science
concepts to solve biomedical and clinical challenges. In particular, after a pre-
liminary overview of the main data science and machine learning concepts and
techniques, we will see the importance of exploratory data analysis and how it can
be easily performed on any structured input dataset. Moreover, we will see that, with
sparsity-enforcing linear models, it is possible to predict the age of an individual
from a set of molecular biomarkers measured from peripheral blood. Furthermore,
we will present a nonlinear temporal model that accurately predicts the disease
evolution in multiple sclerosis patients from a set of inexpensive and patient-friendly
measures repeated in time. Finally, we will see how with a continuous glucose
monitor and a kernel machine it is possible to accurately forecast the glycemic level
of type 1 and type 2 diabetic patients, in order to improve their treatment.

With the final aim of devising actionable solutions, that are ready to be applied in
clinical contexts, the predictive performance of the data-driven models proposed
throughout the chapters of this thesis is rigorously assessed exploiting bias-aware
cross-validation schemes.
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1 Introduction

The influence of data pervades our everyday lives. We are literally surrounded by data acquisition
and processing devices that continuously interact with us. The watches at our wrists, the phones
in our pockets, the house where we live and even the cars we drive, everything is equipped with
devices that can automatically collect and process information in order to make data-driven
suggestions affecting our daily routines. This is so pervasive as it often leads to effective,
efficient and actionable solutions to real-world problems.

It sounds remarkable already, but there is more. Data collection and processing are not only
influencing our daily actions, but also every recent discovery in almost every scientific domains,
such as computer science, physics, chemistry, biomedicine and so on.

In these fields, data are so valuable, that it is rather common to achieve different discoveries
from the same data collection. This lead to the development of a new paradigm that can be
expressed by the motto: collect first, ask questions later.

However, this comes at a price. Managing and maintaining infrastructure for data-intensive
applications is expensive in terms of economical and human resources employed. In the last
few years, the amount of generated data rapidly became overwhelming and it superseded human
analysis and insights potential.

Biomedical data are prototypical in this sense. In this field, almost every medical diagnosis
is currently supported by quantitative observations. When a clinician is asked to analyze the
medical records of a patient, he/she needs to deal with a large number of highly heterogeneous
measures that can be hard to understand as they can be missing or incomplete and their interaction
can be circumstantial or unknown.

In these circumstances, classical model, that are only driven by prior knowledge of the problem,
fall short as they may not explain some relevant part of the phenomenon under investigation.

Nowadays, biomedical data are often analyzed with data-driven models. These models are
designed to automatically infer structure and relationships hidden in the data and to use them to
predict some target measure. For instance, models of this class can be used to assign a patient to
a given class (e.g. case/control, or the presence of some phenotype) given a number of blood or
genetic measures, or they can predict some future disease-related event from historical medical
records.

In this thesis, we will see an overview of the data-driven solutions most commonly adopted
to solve biomedical challenges. Theoretical notions with practical examples and real case
studies will be presented. Great effort will be devoted toward the presentation of statistics and
engineering concepts in a unified fashion. The description of each method will balance the
trade-off between providing an intuitive grasp of its behavior and its mathematical foundation,
presented in a more rigorous way.
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1.1 Outline

This thesis is divided in two parts. Part I presents a thorough description of the multi-disciplinary
prerequisites that are relevant for the comprehension of Part II, which describes the original
contributions of the work.

Part I is organized as follows: Chapter 2 introduces the concept of data science and its declination
toward life science and biomedical studies. In this chapter, the major challenges of the field are
presented along with several examples of the most common clinical/biological questions and
their translation to data analysis tasks (Section 2.1).

Chapter 3 summarizes basic notation and definitions adopted throughout the thesis (Section 1.2)
and presents an overview of the statistical and technological tools that are mostly relevant for
this work. In particular, this chapter defines the concept of machine learning from a general
perspective and provides rigorous description of a selection of supervised and unsupervised
learning strategies (Sections 3.1 and 3.3). This chapter also defines the concept of variable/fea-
ture selection (Section 3.2) and introduces the most relevant model selection and evaluation
strategies (Section 3.4). At the end of this chapter, hints on the computational requirements and
implementation strategies are presented (Section 3.5).

Part II describes the contribution of this work which consisted in the process of devising data-
driven strategies to tackle a number of biological data science challenges coming from real-world
clinical environments. For each task, this part shows how the previously introduced tools can be
exploited in order to develop statistically sound models that are capable of providing insightful
answers to different clinical questions.

Part II is organized as follows: Chapter 4 introduces ADENINE, an open-source Python frame-
work for large-scale data exploration. The material covered in this chapter is also available as
conference proceedings paper [Fiorini et al., 2017b]. Chapter 5 describes the preliminary results
of an ongoing work held in collaboration with Istituto Giannina Gaslini Children’s Hospital
(Genoa, IT) on age prediction from molecular biomarkers (paper in preparation).

Chapter 6 describes a work held in collaboration with the Italian Multiple Sclerosis Foundation
(Genoa, IT). This work aims at devising a model to predict the evolution of multiple sclerosis
patients exploiting the use of patient-friendly and inexpensive measures such as patient centered
outcomes. Most of the material covered in this chapter is also available as conference proceeding
paper [Fiorini et al., 2015], and peer-reviewed journal articles [Brichetto et al., 2015; Fiorini
et al., 2016; Brichetto et al., 2016; Fiorini et al., 2017c; Tacchino et al., 2017].

Chapter 7 describes a work held in collaboration with Ospedale Policlinico San Martino. In
this work a machine learning time-series model is used to forecast future glucose sensor data
values. This work is based on data collected by type I and type II diabetic patients. The material
covered in this chapter was recently presented at an international IEEE conference, thus it is
available as proceeding paper [Fiorini et al., 2017a].

Conclusions are finally drawn in Chapter 8.

Every figure and every experimental result obtained in this thesis can be easily reproduced
by using the Python scripts and JUPYTER notebooks1 available on a dedicated GitHub repos-
itory: https://github.com/samuelefiorini/phdthesis, which also keeps track of

1 Source: http://jupyter.org (last visit 2018-01).
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the LATEX source code of the thesis.

1.2 Basic notation and definitions

In this thesis, the following notation is adopted.

For unsupervised problems, datasets D are described as collection of samples X ∈ Rn×d.
Whereas, for supervised problems, datasets are described as input-output pairs, X ∈ Rn×d and
Y ∈ Rn×k, respectively. The i-th row of X is a d-dimensional data point xi belonging to the
input space X ⊆ Rd. The corresponding outputs yi belong to the output space Y .

The nature of the output space defines the problem as binary classification if Y = {a, b} (with
a 6= b), multiclass classification if Y = {α, β, . . . , ω} (with α 6= β 6= · · · 6= ω), regression if
Y ⊆ R and vector-valued or multi-task regression if Y ⊆ Rk. For binary classification problems
common choices for the label encoding are a = 1, b = −1 or a = 0, b = 1. For multiclass
classification problems classes are usually encoded as natural numbers, i.e. α, β, . . . , ω ∈ N.

Predictive models are functions f : X → Y . The number of relevant variables is d∗. In feature
selection tasks, the number of selected features is d̃.

A kernel function acting on the elements of the input space is defined as K(xi,xj) =
〈φ(xi), φ(xj)〉, where φ(x) is a feature map from Rd → Rd′ . In general, feature learning
algorithms project the data into a p-dimensional space.

Whenever possible, real-valued variables are indicated with lowercase letters (e.g. a), unidimen-
sional vectors with lowercase bold letters (e.g. a) and matrices, or tensors, with capital letters
(e.g. A). When the value of some variable/parameter is the result of a data-driven estimation,
such variable will be highlighted with a hat (e.g. â). When used in the context of a data matrix, a
subscript index will be used to identify a sample (row) whereas a superscript index will refer to
a given feature (column). So, for instance, given a data matrix X ∈ Rn×d the j-th feature of the
i-th sample is xji , with 0 ≤ i ≤ n and 0 ≤ j ≤ d.
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2 Data science background

This chapter introduces the general concept of data science and moves the focus of
the thesis toward biomedical problems. Relevant examples on how clinical questions
can be translated in data science problems are also presented.

Data science is an evolving cross-disciplinary field comprising the techniques used to collect
and analyze arbitrarily large quantities of measures. The final aim of a data science application
is to devise data-driven and statistically sound decision making strategies. This new field is of
extreme interest for both industry and academia. In fact, following the data science philosophy,
it is possible to obtain highly efficient solutions and new knowledge at the same time and in the
same framework.

The term data science is nowadays becoming ubiquitous; although, deeply understanding what
really is and, most importantly, why should we care about it, can be difficult. This may be due
to the confusing fuss that generally surrounds trending terms in the Internet era. Several experts,
with different backgrounds and different goals, are simultaneously presenting their opinions on
the topic and often their points of view disagree.

Perhaps, focusing on the skills required to be a data scientist may shed some light on the topic.
To this regard, in September 2010, Drew Conway published on his popular blog the so-called
Data Science Venn Diagram, see Figure 2.1 1. Let us comment this diagram, separately focusing
on each of the three main sets.

The red set, ironically named Hacking Skills, represents all the computer science background that
a data scientist need to do his/her job. As shown in the diagram, this skill is what separates data
science from traditional research. This does not mean that traditional researchers are unaware
of any computer science skill, but rather that achieving good data science solutions can be,
sometimes, a messy task that requires to get hands dirty with several lines of source code.

According to their scope, data collections can have various forms. They may be structured or
unstructured, raw or preprocessed, distributed or centralized, and so on. The branch of data
science that revolves around developing and maintaining data collections is typically called data
engineering. Although of great interest, this aspect will not be analyzed in depth in this thesis.

The green set represents the mathematical and statistical background that is needed by data
scientists to develop predictive models. Interestingly, Machine Learning (ML) is the intersection
between this set with the red one. We will diffusely discuss about ML in Chapter 3, for now we
will just think about it as a set of mathematical models and algorithms that, once implemented
and deployed on computing facilities, are capable of automatically accomplish complex tasks.

Finally, the blue set, named Substantive Expertise, represents the key difference between a data
scientist and a classic statistician/data analyst. The main characteristics of data scientists is that
they know how to ask the right questions to the data. In other words, their domain knowledge
allows them to understand which kind of information may be hidden in the data and which
data-driven conclusions can be made. Data science produces statistically sound results, in which

1 Source: https://goo.gl/m4gwmJ (last visit 2018-01).
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Figure 2.1: Drew Conway’s Data Science Venn Diagram.

potentiality and limits of the drawn conclusion are always highlighted. Data scientists shall
never fell in love with their data, but they should always keep a high level of objectiveness in
their analysis. Otherwise, as brilliantly pointed-out by the diagram, we should fear to fall in the
intersection between blue and red sets, the Danger Zone!

As of today, data are leading recent discoveries in almost every scientific field. In the next
sections of this thesis we will focus on the application of data science techniques to biological
and biomedical domains.

2.1 Turning biological questions into data science problems

One of the main characteristics of data scientists is being able to devise statistically sound
procedures to provide data-driven answers to practical questions. This is very much the case in
applied life science studies, where the biological question usually drives the data collection and
therefore the data science challenge to be solved.

Although, in order to achieve meaningful results, thorough protocols must be followed, as widely
described in Chapter 3. Here, we see an overview of the most recurrent biological questions and
their direct translation into data science tasks.

How to predict phenotypes from observed data? Starting from a collection of input

8



measures that are likely to be related with some known target phenotype (e.g. eyes/hair
color, limbs shape/size, internal anomaly, etc.), the final goal can be to develop a model
that represents the relationship between input and output. Several researches fall in this
class, for instance in molecular (e.g. lab tests, gene expression, proteomics, sequencing)
[Angermueller et al., 2016; Okser et al., 2014; Abraham et al., 2013] or radiomics/imaging
studies (e.g. MRI, PET/SPECT, microscopy) [Min et al., 2016; Helmstaedter et al., 2013].
Biological questions of this class are usually tackled by supervised learning models. In
particular, when the observed clinical outcome is expressed as a one-dimensional continu-
ous value, as in survival analysis, a single-output regression problem is posed. Moreover,
if the outcome is vector-valued, as in the case of multiple genetic trait prediction [He
et al., 2016], the problem can be cast in a multiple-output regression framework [Bal-
dassarre et al., 2012; Argyriou et al., 2008]. Biological studies involving categorical
outcomes translate into classification problems. In particular, if the clinical outcome
assumes only two values, as in the case-control scenario, the classification problem is
said to be binary, whilst, if multiple classes are observed, the classification task becomes
multiclass [Yuan et al., 2016; Ancona et al., 2005] (detailed discussion on this topic is
provided in Section 3.1).

Which variables are the most significant? A complementary question revolves around
the interpretability of the predictive model. In particular, if dealing with high-dimensional
biological data, the main goal can be to identify a relevant subset of meaningful variables
for the observed phenomenon. This problem can be cast into a variable/feature selection
problem [Guyon et al., 2002]. In particular, a predictive model is said to be sparse when
it only contains a small number of non-zero parameters, with respect to the number of
features that can be measured on the objects this model represents [Hastie et al., 2015;
Meier et al., 2008]. This is closely related to feature selection: if these parameters are
weights on the features of the model, then only the features with non-zero weights actually
enter the model and can be considered selected (more details on this topic are presented in
Section 3.2).

How to stratify the data? Collecting measures from several samples, the final goal here
is to divide them in homogeneous groups, according to some similarity criterion. In
data science, this is usually referred to as clustering [Hastie et al., 2009]. This happens
quite often, for instance when the final goal is to identify the number of groups in some
population, or when we look for a single sample which is prototypical of some situation.
More details on clustering are presented in Section 3.3.1.

How to represent the samples? In order to formulate a model of some natural phe-
nomenon, it is necessary to design and follow a suitable data collection protocol. A
natural question that may arise can be whether the raw collected measures are intrinsically
representative of the target phenomenon or if some transformation must be applied in
order to achieve a data representation that can be successfully exploited by a predictive
model. For instance, it may be plausible to assume that the data lie in a low-dimensional
embedding or, conversely, that they can be better represented by a richer polynomial or
Gaussian expansion. A common solution, in this case, is to take advantage of feature
engineering techniques to obtain hand crafted features. However, this process can be
very time-consuming and it may require the help of domain experts. The process of
automatically identifying suitable representations from the data itself is usually referred to
as (un)supervised feature learning [Angermueller et al., 2016; Mamoshina et al., 2016]
(more details on this topic are provided in Section 3.3.2).

9



Are there recurring patterns in the data? Analyzing data coming from complex do-
mains, one may be interested in understanding whether complex observations can be
represented by some combination of simpler events. This typically translates into adaptive
sparse coding or dictionary learning problems [Masecchia et al., 2015; Alexandrov et al.,
2013; Nowak et al., 2011].

How to deal with missing values? Applied life science studies must often deal with the
issue of missing data. For instance, peaks can be missed in mass-spectrometry [Jung et al.,
2014] or gene expression levels can be impossible to measure due to insufficient array
resolution or image corruption [Stekhoven and Bühlmann, 2011; Troyanskaya et al., 2001].
Common strategies, such as discarding the samples with missing entries, or replacing the
holes with mean, median or most represented value, fall short when the missing value
rate is high or the number of collected samples is relatively small. This problem usually
translates into a matrix completion task [Candès and Recht, 2009].
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3 Machine learning state of the art

This chapter defines the concept of machine learning in its two major declinations:
supervised and unsupervised. It continues providing a comprehensive overview
of algorithms, models and techniques relevant for the biomedical data science
applications described in Part II. At the end of this chapter, an overview on the
computational requirements and the most recent machine learning technologies is
given.

The term Machine Learning (ML) first appeared in the late ’50s in the field of computer science
and it is now becoming a buzzword used in several contexts spanning from particle physics and
astronomy to medicine and social sciences [Service, 2017]. With a simple search on Google
Trends1 it is possible to roughly quantify the pervasiveness of this term on the Internet in the last
few years. From Figure 3.1 we can see that the interest toward both the terms machine learning
and data science is growing, with the first consistently superior to the second.

Figure 3.1: The Internet popularity over the past five years of two terms: data science and machine learning. The
vertical axis represents the number of Google searches of an input term normalized with respect to its maximum.

A partial explanation to this phenomenon can be found in a recent article published on Sci-
ence [Appenzeller, 2017], where the authors observed how the explosion of modern data
collection abilities is leading the human kind toward another scientific revolution. Biomedical
applications are prototypical in this sense. For instance, the volume of raw data acquired from
a genome sequencer for a single DNA has a volume of approximately 140 GB [Marx, 2013].
Another example can be the 3D reconstruction of cardiac MRI acquisition which needs around

1 Source: https://trends.google.com (last visit 2017-09).
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20 GB for a single human heart, or the 3D CT scan which has a volume in the order of GB for
each patient, and so on. It has been estimated that an average hospital currently stores more
than 665 TB of data that needs to be analyzed and understood 2. Such massive amounts of data
have long overwhelmed human analysis and insights potential. This makes ML, and artificial
intelligence in general, a key element for clinicians and scientists that try to make sense of
large-scale observations.

But, what is machine learning? And how does it differ from classical statistics?

A unique answer to this question is not easy to provide. In fact, ML can be defined in different
ways and from several standpoints. Let us see three remarkable examples.

1. Kevin P. Murphy in its Machine Learning - A Probabilistic Perspective [Murphy, 2012]
defines ML as follows.

"[. . . ] a set of methods that can automatically detect patterns in data, and then
use the uncovered patterns to predict future data, or to perform other kinds of
decision making under uncertainty [. . . ]"

2. Trevor Hastie, a well-known applied statistician, in a famous seminar3 held in October
2015 at the Stanford University, gave the following three definitions.

Machine Learning constructs algorithms that can learn from data.
Statistical Learning is a branch of applied statistics that emerged in
response to machine learning, emphasizing statistical models and assess-
ment of uncertainty.
Data Science is the extraction of knowledge from data, using ideas from
mathematics, statistics, machine learning, computer science, engineering...

3. Carl E. Rasmussen in the preface of its renowned Gaussian Processes for Machine
Learning [Rasmussen and Williams, 2006] introduces the difference between classical
statistics and ML as follows.

"[. . . ] in statistics a prime focus is often in understanding the data and relation-
ships in terms of models giving approximate summaries such as linear relations
or independencies. In contrast, the goals in machine learning are primarily to
make predictions as accurately as possible and to understand the behaviour of
learning algorithms [. . . ]"

It looks like each author, according to his background, expertise and experience, provides a
slightly different definition of ML. Trying to summarize these three standpoints, we can say that
ML is an interdisciplinary field that borrows the concept of data-driven model from statistics in
order to devise algorithms that can exploit hidden patterns in current data and make accurate
predictions on future data.

As of today ML is the workhorse of data science.

2 Source: https://goo.gl/jMYvwh (last visit 2018-01).
3 Part of Data Science @ Stanford Seminar series. Source: https://goo.gl/UFgqxU (last visit

2018-01).
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3.1 Supervised learning

Humans are remarkably good at learning by examples. When a kid is taught what a pencil looks
like, he will be capable of understanding the concept of pencil from a limited number of guided
observations. Similarly, when future radiologists are trained to distinguish between healthy tis-
sues from tumors in MRI scans, they will be provided with several annotated biomedical images
from which they will be able to generalize. The applied learning paradigm is characterized by
the presence of two key objects: data and labels. In the last example, the MRI scans are the
data, and their annotations (e.g. tumor vs healthy tissue) are the labels.

Supervised learning is the branch of ML in which predictive models are trained on labeled data.
In the ML jargon, and in this thesis, one usually refers to data as collections of samples described
by an arbitrarily large number of predictors (features) that are used as input in a training process
having labels as output.

Input samples throughout this thesis are represented as d-dimensional vectors x belonging to an
input space X , where typically X ⊆ Rd and labels are represented with the variable y belonging
to an output space Y . The nature of Y defines the learning task as binary classification if
Y = {−1,+1}, multiclass classification if Y = {1, 2, . . . , k}, regression if Y ⊆ R or vector-
valued regression if Y ⊆ Rk. The remainder of this section summarizes the methods that
are most relevant with the data-driven strategies adopted to tackle the biomedical data science
challenges described in the second part of in this thesis.

Given a set of input-output pairs D = {xi, yi}ni=1 = (X,y), supervised learning methods aim
at finding a function of the inputs f(x) that approximates the output y. This translates into the
minimization problem defined in Equation (3.1).

argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi) (3.1)

The loss function L(f(x), y) can be seen as a measure of adherence to the available training
data. Several loss functions for regression and classification problems were proposed; Table 3.1
defines the most commonly adopted in biomedical studies while their visual representation is
presented in Figure 3.2. Choosing the appropriate loss function for the problem at hand is crucial
and there is no trivial solution for this problem. Different choices for L(f(x), y) identifies
different learning machines, that are known under different names. The most popular methods
will be presented in the next few sections.

Identifying a reliable data-driven model can be a very tricky task. Many unwanted and concurrent
factors may be misleading and the solution may have poor predictive power for several reasons.
Including:

1. the acquisition devices may introduce random fluctuations in the measures;

2. the amount of collected samples n may be small with respect to the number of observed
variables d;

3. a non-negligible number of the measured variables may not be representative of the target
phenomenon.
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Table 3.1: Definition of the loss functions for regression (top) and classification (bottom) problems represented in
Figure 3.2.

Loss function L(f(x), y) Learning problem

Square (y − f(x))2 regression
Absolute |y − f(x)| regression
ε-insensitive |y − f(x)|ε regression

Zero-one 1{y = f(x)} classification
Square (1− yf(x))2 classification
Logistic log(1 + e−yf(x))classification
Hinge |1− yf(x)|+ classification
Exponential e−yf(x) classification

From a modeling standpoint, every combination of the factors above can be seen as noise
affecting the data. Precautions in the model formulation process must be taken in order to
achieve solutions that are insensitive to small changes in the input data and that are, in general,
robust to the noise effect.

Considering a ML model (f̂ ) fitted on a collection of data (D), the most desirable property of f̂
is that it should be able to achieve good prediction performance not only on D, but also on all
the future, therefore unseen, data points D′. In other words, assuming that the samples in D are
affected by some kind of random4 component, f̂ should be a predictive function that does not
follow the noise, but rather models the true input-output relationship. In ML, a model that fits
well D but performs poorly on D′ is said to be overfitting.

In ML literature, regularization is the most important countermeasure to overfitting and it is
widely adopted, under several forms, to build predictive models out of noisy data.

The original contribution of this thesis mainly relies on the application of data science and
ML concepts to noisy domains. Therefore, regularization strategies are of primary interest in
this discussion. For each learning algorithm described, particular emphasis will be put on the
relevant regularization strategies.

In its broader definition regularization can be seen as the process of introducing additional
information in order to solve a possibly ill-posed problem. As shown in Equation (3.2), this is
typically translated in the use of a regularization penaltyR(f), controlled by a regularization
parameter λ [Tikhonov, 1963; Evgeniou et al., 2000].

argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi) + λR(f) (3.2)

Choosing different R(f) implies inducing different effects on the solution and it also leads
to the definition of different learning machines (see Section 3.1.1). With the regularization
parameter λ it is possible to control the trade-off between adherence to the training data and
strength of the effect induced by R(f). As an example, we can think of using a penalty that
induces smoothness, such as the `2-norm, or sparsity, such as the `1-norm, in the solution. A
pictorial representation of a learning machine working in overfitting, underfitting and optimal

4 Here with random means "uncorrelated with the input-output relationship".
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(a)

(b)

Figure 3.2: An overview on the most common loss functions for regression (a) and classification (b) problems
plotted against the corresponding prediction error.

fitting regime in regression and classification cases can be seen in Figure 3.3 5 and Figure 3.4 6,
respectively.

Supervised learning machines may rely on very different mathematical backgrounds such as
generalized linear models, nonlinear deep neural networks, kernels, trees, ensemble of trees,

5 Source https://losc.ligo.org/events/GW150914/ (last visit 2018-01).
6 Source https://archive.ics.uci.edu/ml/datasets/HTRU2 (last visit 2018-01).
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(a) (b)

(c)

Figure 3.3: An example of underfit (a), overfit (b) and optimal fit (c) for a nonlinear regression problem. The data
are a downsampled version (fs = 546 Hz) of the first observation of gravitational waves from a binary black hole
merger detected on September 14th, 2015, 09:50:45 UTC at LIGO, Hanford (WA).

etc. Nevertheless, disregarding their nature, they all share the common structure defined in
Equation (3.2). The solution of this problem can be achieved either by Empirical (or Structured)
Risk Minimization (ERM) either by Maximum Likelihood/A Posteriori (MLE/MAP) Estimation.
See Appendix A for more details on this two strategies, and their connection.

3.1.1 Regularization methods

Regularization methods is a broad class of models that include linear and nonlinear techniques
for both regression and classification. The main characteristic of the methods falling in this class,
is that they are particularly straightforward to express as in Equation (3.2). In fact, as described
in [Evgeniou et al., 2000], they are easily identifiable by the use of one loss function L(f(x), y)
and one, or more, regularization penaltyR(f).

In the following sections an overview of the most popular regularization methods is presented.
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(a) (b)

(c)

Figure 3.4: An example of underfit (a), overfit (b) and optimal fit (c) for a nonlinear binary classification problem.
Each data point is a pulsar candidate randomly sampled from the High Time Resolution Universe Survey (South)
dataset. The data are standardized and and projected on a two-dimensional plane by the t-SNE [Van der Maaten
and Hinton, 2008].

3.1.1.1 Ordinary least squares

We start this discussion focusing on linear models ŷ = f(x) = xTw and taking into account
the most popular loss function for regression problems: the square loss L(ŷ, y) = (xTw − y)2.
The data fitting problem expressed in Equation (3.3) is known as Ordinary Least Squares (OLS),
or simply as linear regression, and it does not include any regularization term.

ŵOLS = argmin
w∈Rd

1

n

n∑
i=1

(xTi w − yi)2 = argmin
w∈Rd

1

n
‖Xw − y‖2

2 (3.3)

The minimization problem in Equation (3.3) is convex and differentiable and its solution can be
achieved in closed-form as

ŵOLS = (XTX)−1XTy

or by iterative minimization routines such as (stochastic) gradient descent-like algorithms [Boyd
and Vandenberghe, 2004; Sra et al., 2012]. A pictorial representation of the solution of OLS can
be seen in Figure 3.12a.
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In case of multiple regression tasks, the OLS approach can be extended to vector-valued
regression as well. In this case the least squares problem can be written as

ŴOLS = argmin
W∈Rd×k

1

n

n∑
i=1

k∑
t=1

(xTi w
t − yti)2

= argmin
W∈Rd×k

1

n
‖XW − Y ‖2

F

(3.4)

where ‖A‖F =
√∑n

i=1

∑k
t=1 |ati|2 is the Frobenius norm (also known as Hilbert-Schmidt norm)

and it can be considered as an extension of the `2-norm to the matrix case. Lacking of appropriate
regularization penalties, solving the problem in Equation (3.4) corresponds to solving k isolated
regression problems, one for each task. The vector-valued OLS approach, even if theoretically
legit, is rather uncommon in practical applications and a regularized version of Equation (3.4) is
typically preferred (see following sections).

Even though mainly used for regression, the square loss can also be used to solve binary
classification problems (see Table 3.1). In this case, it can be rewritten as

(xTw − y)2 = (1− y · xTw)2 (3.5)

exploiting the fact that the two classes are encoded with binary labels: y ∈ {+1,−1}n. For
multiclass classification problems, strategies such as One-vs-One (OVO) or One-vs-All (OVA)
can be adopted to reduce the problem to multiple binary classifications [Hastie et al., 2009].

OLS is probably the most naïve prediction strategy, nevertheless it is widely adopted in several
studies. Let us see what happens when we use the OLS model on a real regression problem.

For this example, and the following ones, we take into account the dataset Daging =
{(xi, yi)}n=111

i=1 where each input sample xi ∈ R12 presents a set of measures describing the
metabolic state of a healthy subject and yi ∈ N+ is its age expressed in years. For the sake of
this discussion a thorough description of Daging at this point is irrelevant7, we can simply think
as the d = 12 variables as predictors of the outcome y and we look for some linear input-output
relationship. In order to do that, we randomly split Daging in two chunks obtaining a training
and a test set of ntr = 74 and nts = 37 samples respectively. Then, we fit the OLS model on the
training set obtaining the weights vector ŵOLS represented in Figure 3.5. As we can see, in order
to achieve a predictive model, OLS can only spread the weights across all the input variables.
Evaluating ŵOLS on the test set, this model has a Mean Absolute Error (MAE) of 10.598 years
and explains the 74.29% of the variance.

This result looks promising, but we will see in the next sections whether they can be improved
with the use of some regularization penalty.

3.1.1.2 Ridge regression

In its original proposition, ridge regression [Hoerl and Kennard, 1970] is defined as a least
squares problem penalized by the squared `2-norm of the regression coefficients, see Equa-
tion (3.6).

7 This regression problem is widely described and analyzed in Chapter 5.
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Figure 3.5: A pictorial representation of the vector ŵOLS obtained fitting an OLS model on 74 randomly selected
training samples of Daging. Variables associated with positive (i.e. directly proportional to the output) and a negative
(i.e. inversely proportional) weight are represented in blue and red, respectively.

R`2
(w) =

d∑
j=1

(wj)
2 = ‖w‖2

2 (3.6)

Therefore, the ridge regression minimization problem can be written as in Equation (3.7).

ŵ`2 = argmin
w∈Rd

1

n

n∑
i=1

(xTi w − yi)2 + λ
d∑
j=1

(wj)
2 = argmin

w∈Rd

1

n
‖Xw − y‖2

2 + λ ‖w‖2
2 (3.7)

This penalty leads to smooth solutions as it shrinks the coefficients toward zero, but it does not
achieve a parsimonious representation, as it always keep all the variables in the model. The ridge
regression problem of Equation (3.7) is convex and differentiable and a pictorial representation
of its solution in a 2D case is depicted in Figure 3.12b. The ridge coefficients ŵ`2 can be
estimated in closed-form as

ŵ`2 = (XTX + λnI)−1XTy

where I is the d× d identity matrix. An estimate for the ridge coefficients can also be obtained
with gradient descent-like optimization routines [Boyd and Vandenberghe, 2004; Sra et al.,
2012].

The regularization parameter λ plays the fundamental role of balancing the trade-off between
data adherence and smoothness of the solution. Penalizing the `2-norm of the regression
coefficients, their value is shrunk toward zero. This results in an increased robustness of the
solution to the noise affecting the training data.
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In case of multiple outputs, the vector-valued ridge regression problem can be written as in
Equation (3.8).

Ŵ`2 = argmin
W∈Rd×k

1

n

n∑
i=1

k∑
t=1

(xTi w
t − yti)2 + λ

d∑
j=1

k∑
t=1

|wtj|2

= argmin
W∈Rd×k

1

n
‖XW − Y ‖2

F + λ ‖W‖2
F

(3.8)

As already seen for vector-valued OLS, the Frobenius norm penalty does not induce any task
coupling, hence solving the problem in Equation (3.8) still corresponds to individually solve k
regression tasks.

This method can be applied to binary classification problems by using the margin loss function
of Equation (3.5). Nevertheless, for `2-norm penalized classification problems the use of the
logistic loss is usually preferred (see Section 3.1.1.6).

In deep learning literature, penalizing the regression coefficients with the `2-norm is known
as weight decay [Krogh and Hertz, 1992]. Ridge regression can also be considered a form of
Tikhonov regularization [Tikhonov, 1963] and of regularization network [Evgeniou et al., 2000].

Let us see what happens when this method is applied to a real regression problem. For ease of
comparison, we take into account the dataset Daging, introduced in Section 3.1.1.1. Compared to
OLS, ridge regression has the parameter λ that must be fixed before fitting the model. In this
example, we estimated the best value λ̂cv according to a standard grid-search cross-validation
strategy. This consists in fixing a range of 30 possible values for λ (in a logarithmic scale
from 10−3 to 102) and pick the best value as the one achieving the lowest validation error,
estimated via (5-fold) cross-validation (see Section 3.4.1). Therefore, once the best value for
the regularization parameter is fixed (λ̂cv = 20.43), in this case. the experimental setup used for
OLS is preserved.

The ridge coefficients ŵ`2 are represented in Figure 3.6. Comparing Figure 3.6 and Figure 3.5
we can see that the amplitude of the ridge regression coefficients is, in absolute value, decreased
by the use of the `2 penalty. Indeed, several entries of ŵ`2 are very small, but none of them is
exactly zero. This is the expected behavior of the `2-norm penalty. Evaluating ŵ`2 on the test
set, this model has MAE = 8.615 years and explains the 81.19% of the variance, outperforming
OLS.

3.1.1.3 Lasso

The Lasso [Tibshirani, 1996] can be defined as a least square problem penalized by the `1-norm
of the regression coefficients, see Equation (3.9).

R`1
(w) =

d∑
j=1

|wj| = |w|1 (3.9)

Therefore, the Lasso minimization problem can be written as in Equation (3.10).

ŵ`1 = argmin
w∈Rd

1

n

n∑
i=1

(xTi w − yi)2 + λ

d∑
j=1

|wj| = argmin
w∈Rd

1

n
‖Xw − y‖2

2 + λ|w|1 (3.10)
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Figure 3.6: A pictorial representation of the vector ŵ`2 obtained fitting a ridge regression model on 74 randomly
selected training samples of Daging. Variables associated with positive (i.e. directly proportional to the output) and a
negative (i.e. inversely proportional) weight are represented in blue and red, respectively.

The Lasso can be used to perform linear model fitting and, thanks to its desirable properties, it is
a popular choice for embedded variable selection [Guyon and Elisseeff, 2003], as described in
Section 3.2. At first, the `1-norm enforces sparsity in the solution, hence producing compact and
easily interpretable results. Secondly, the Lasso optimization problem is convex and, although
non-differentiable, it is computationally feasible even in very high dimensional scenarios.
Popular minimization algorithms for the Lasso problem are, for instance, the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009] and the coordinate
descent algorithm [Wu and Lange, 2008]. A pictorial representation of the Lasso solution can
be seen in Figure 3.12c.

A popular application of the Lasso is to perform shrinkage and variable selection in survival
analysis for Cox proportional hazard regression [Tang et al., 2017; Gui and Li, 2005; Tibshirani
et al., 1997] and additive risk models [Ma and Huang, 2007]. Such `1-penalized methods are
extensively applied in literature to predict survival time from molecular data collected from
patients affected by different kinds of tumor.

The Lasso can also be extended to vector-valued regression problems by using the mixed
L2,1-norm, defined in Equation (3.11), as regularization penalty [Gramfort et al., 2012].

R`1(W ) =
d∑
j=1

√√√√( k∑
t=1

|wtj|2
)

= ‖W‖2,1 (3.11)
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Figure 3.7: A pictorial representation of the vector ŵ`1 obtained fitting a Lasso model on 74 randomly selected
training samples of Daging. Variables associated with positive (i.e. directly proportional to the output) and a negative
(i.e. inversely proportional) weight are represented in blue and red, respectively.

Therefore, the vector-valued regularization problem can be written as in Equation (3.12)

Ŵ`1 = argmin
W∈Rd×k

1

n

n∑
i=1

k∑
t=1

(xTi w
t − yti)2 + λ

d∑
j=1

√√√√( k∑
t=1

|wtj|2
)

= argmin
W∈Rd×k

1

n
‖XW − Y ‖2

F + λ||W ||2,1

(3.12)

and it is known as Multi-task Lasso [Lee et al., 2010]. Such norm enforces a row-structured
sparsity in the regression weights, hence preserving the interpretability of the solution.

Originally proposed to solve regression problems, the Lasso can also be adopted in binary
classification tasks; although, in this case, sparse logistic regression is often preferred [Wu et al.,
2009] (see Section (3.1.1.6)).

Let us see what happens when the Lasso model is applied to a real regression problem. Once
again, for ease of comparison with OLS and ridge, we take into account the dataset Daging,
introduced in Section 3.1.1.1. The experimental setup in this case is identical to the one
previously applied for ridge regression. The best value for the regularization parameter, chosen
via grid-search cross-valudation, is λ̂cv = 1.27. The Lasso coefficients ŵ`1 are represented in
Figure 3.7.

Comparing ŵ`1 with ŵ`2 and ŵOLS (Figure 3.7, Figure 3.6 and Figure 3.5, respectively) we can
observe that, for the first time, to only 6 variables, out of 12, a non-negative value is assigned.
This is an example of the sparsity-enforcing effect of the `1-norm regularization penalty. The 6
variables with nonzero weight can be considered as selected for the prediction problem at hand.
Evaluating ŵ`1 on the test set, the Lasso has MAE = 8.387 years and explains the 81.51% of
the variance, slightly outperforming ridge.
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Figure 3.8: Profiles of the Lasso coefficients for the aging problem as λ decreases. The vertical dashed line
represents the optimal value λ̂cv estimated by grid-search (5-fold) cross-validation.

When using sparsity-enforcing penalties, such as the `1-norm, an insightful experiment can be to
observe the regularization path. This can be done by iteratively fitting the model with decreasing
values of the regularization parameter λ, usually expressed in logarithmic scale. An example of
the Lasso path for the aging problem is reported in Figure 3.8.

Weights corresponding to features that are more likely to be relevant for the prediction problem
should early move away from the horizontal axis. Conversely, as the regularization parameter
increases, the model should enforce less sparsity, hence tolerating more and more irrelevant
features having nonzero weight. The vertical dashed line in Figure 3.8 corresponds to λ̂cv and it
hits the profiles of the weights consistently with what shown in Figure 3.7.

When used for variable selection, the Lasso has two major drawbacks. First, in presence of
groups of correlated variables, this method tends to select only one variable per group, ignoring
the others. Secondly, the method cannot select more variables than the sample size [Waldmann
et al., 2013; De Mol et al., 2009b]. The effect of such drawbacks is dramatic when using the
Lasso in n � d scenarios. In order to ameliorate this issues, several Lasso-inspired models
were proposed [Meinshausen and Bühlmann, 2010; Hoggart et al., 2008; Zou, 2006]. In the
next section we will describe one of the most popular and straightforward Lasso extensions: the
Elastic-Net [Zou and Hastie, 2005].

3.1.1.4 Elastic-Net

The Elastic-Net method [Zou and Hastie, 2005; De Mol et al., 2009a] can be formulated as a least
squares problem penalized by a convex combination of Lasso (`1-norm) and ridge regression
(`2-norm) penalties, as in Equation (3.13).

R`1`2
(w) =

d∑
j=1

(α |wj|+ (1− α)w2
j ) = α |w|1 + (1− α) ‖w‖2

2 (3.13)
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Therefore, the Elastic-Net minimization problem can be written as in Equation (3.14)

ŵ`1`2 = argmin
w∈Rd

1

n

n∑
i=1

(xTi w − yi)2 + λ

[ d∑
j=1

(α |wj|+ (1− α)w2
j )

]
= argmin

w∈Rd

1

n
‖Xw − y‖2

2 + λ
[
α |w|1 + (1− α) ‖w‖2

2

] (3.14)

with 0 ≤ α ≤ 1, or equivalently as

ŵ`1`2 = argmin
w∈Rd

1

n
‖Xw − y‖2

2 + τ |w|1 + µ ‖w‖2
2 (3.15)

where τ = λα and µ = λ(1−α). The first formulation of the problem, Equation (3.14), is more
convenient when we want to control the overall amount of regularization with λ, given a certain
amount of sparsity α. In fact, it is easy to see that fitting the Elastic-Net model for α = 0 or
α = 1 is equivalent to solve ridge or Lasso regression, respectively. On the other hand, writing
the Elastic-Net problem as in Equation (3.15) is more convenient when we want to separately
control the `1- and `2-norm penalties, as in [De Mol et al., 2009b].

The Elastic-Net8 model is widely adopted to perform linear model fitting and variable selection.
Indeed, the combined presence of the two norms promotes sparse solutions where groups of
correlated variables can be simultaneously selected, hence overcoming the variable selection
drawbacks of the Lasso and making the Elastic-Net suitable for variable selection in n � d
scenarios. As already seen for the Lasso, the minimization problem in Equation (3.14) is convex
and non-differentiable, due to the `1-norm, and it can be efficiently solved either by proximal
forward-backward splitting strategies (e.g. FISTA [Beck and Teboulle, 2009]), or by coordinate
descent [Wu and Lange, 2008]. A pictorial representation of the Elastic-Net solution can be
seen in Figure 3.12d.

The Elastic-Net method is successfully applied in several biomedical fields, including gene
expression [Hughey and Butte, 2015; De Mol et al., 2009b], genome-wide association stud-
ies [Waldmann et al., 2013] and other molecular data [Aben et al., 2016; Hughey and Butte,
2015].

The Elastic-Net can also be extended to vector-valued regression problems by using a convex
combination of the L2,1- and the Frobenius norms. This multiple output regression problem
is known as Multi-task Elastic-Net [Chen et al., 2012] (MTEN) and it can be written as in
Equation (3.16).

Ŵ`1`2 = argmin
W∈Rd×k

1

n

n∑
i=1

k∑
t=1

(xTi w
t − yti)2 + λ

[
α

d∑
j=1

√√√√( k∑
t=1

|wtj|2
)

+ (1− α)
d∑
j=1

k∑
t=1

|wtj|2
]

= argmin
W∈Rd×k

1

n
‖XW − Y ‖2

F + λ[α ||W ||2,1 + (1− α) ‖W‖2
F ]

(3.16)

Even if originally proposed to solve regression problems, as already seen for Lasso and ridge
regression, the Elastic-Net can be adopted in binary classification tasks. Nevertheless, for
classification problems, the use of the logistic loss is usually preferred.

8 Actually, in the original paper the authors refer to Equations (3.14) and (3.15) as naïve Elastic-Net [Zou
and Hastie, 2005] because empirical evidence show that the weights ŵ`1`2 may suffer from over-shrinking when
appropriate rescaling strategies, also described in [De Mol et al., 2009b], are not applied.
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Let us see what happens when the Elastic-Net model is applied to an actual regression problem.
As usually, we tackle the aging task (introduced in Section 3.1.1.1). The experimental setup in
this case is the same already adopted for the Lasso in Section 3.1.1.3. The only difference is that
the grid-search cross-validation routine looks for the optimal values for the two regularization
parameters (λ̂cv, α̂cv) = (0.57, 0.48) in a 2D grid consisting of 30 × 30 values (α candidates
range from 0 to 1 in a linear scale, whilst λ candidates range from 10−3 to 102 in a logarithmic
scale). The Elastic-Net coefficients ŵ`1`2 are represented in Figure 3.9.

Figure 3.9: A pictorial representation of the vector ŵ`1`2 obtained fitting a Elastic-Net model on 74 randomly
selected training samples of Daging. Variables associated with positive (i.e. directly proportional to the output) and a
negative (i.e. inversely proportional) weight are represented in blue and red, respectively.

Comparing ŵ`1`2 in Figure 3.9 with ŵ`1 in Figure 3.7 we can notice that in the Elastic-Net
solution 10 variables have nonzero weight, that is more with respect to the 6 of the Lasso. This is
the expected behavior of the added `2-norm, which helps the model to select groups of collinear
variables. Evaluating the Elastic-Net solution on the test set, ŵ`1`2 achieves MAE = 8.321 years
explaining the 82.13%, slightly outperforming Lasso, hence ranking first in this little challenge
of square loss-based linear regression methods.

As already seen for the Lasso, we can inspect the Elastic-Net weights path, obtained fixing
α = α̂cv for decreasing values of λ, see Figure 3.10. The vertical dashed line in Figure 3.10
corresponds to λ̂cv and it hits the profiles of the weights consistently with the Elastic-Net
solution represented in Figure 3.7. The Elastic-Net, compared to the Lasso, produces smoother
regularization paths in which the allegedly correlated variables enter the solution earlier.

Another comparison between the behavior of OLS, ridge, Lasso and Elastic-Net regression is
presented in Figure 3.11. The four achieved solutions of the same aging regression problem are
represented in a scatter plot where horizontal and vertical axis represents their `2- and `1-norm,
respectively.

As expected,

1. the unpenalized solution ŵOLS shows the highest values for the two norms and it is placed
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Figure 3.10: Profiles of the Elastic-Net coefficients for the aging problem as λ decreases. The vertical dashed line
represents the optimal value λ̂cv estimated by grid-search (5-fold) cross-validation.

in the top-right side of the plot,

2. the ridge solution ŵ`2 has lowest `2-norm,

3. the Lasso solution ŵ`1 has lowest `1-norm and

4. the Elastic-Net solution shows the lowest values for the two norms and it is placed in the
bottom-left side of the plot.

This is consistent with the type of regularization imposed to each method. Interestingly, in this
case, the method that performs better on the test set, Elastic-Net, has lowest norms.

The Elastic-Net penalty is not the only method in which sparsity is enforced on a group level.
For example, (overlapping) group Lasso and graph Lasso penalties can be applied when the
variables are naturally partitioned in (overlapping) groups, or when their interaction can be
modeled by a graph. A detailed description of these methods is beyond the scope of this thesis
and we refer to [Jacob et al., 2009; Witten and Tibshirani, 2009] and references therein for their
comprehensive description.

3.1.1.5 Nuclear norm minimization

Dealing with vector-valued linear regression problems, L2,1- and the Frobenius norms are not
the only options. Another popular sparsity-enforcing penalty is the nuclear norm (also known as
trace norm) that, given the matrix W ∈ Rd×k, is defined as

‖W‖∗ = trace
(√

W TW
)

=

min[d,k]∑
j=1

σj(W )

where σj(W ) is the j th singular value of W . The nuclear norm minimization problem, widely
adopted for instance in matrix completion tasks, can be stated as in Equation 3.17.
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Figure 3.11: A comparison of the value of the `1 and `2 norms of the weights obtained by OLS, ridge, Lasso and
Elastic-Net.

Ŵ∗ = argmin
W∈Rd×k

1

n

n∑
i=1

k∑
t=1

(xTi w
t − yti)2 + λ

min[d,k]∑
j=1

σj(W )

= argmin
W∈Rd×k

1

n
‖XW − Y ‖2

F + λ||W ||∗

(3.17)

With the nuclear norm penalty it is possible to achieve a low-rank solution [Candès and Recht,
2009].

3.1.1.6 Logistic Regression

Logistic regression is one of the most popular linear methods for classification problems9. In
its unpenalized form, it can be simply posed as the problem of minimizing the logistic loss
(see Table 3.1) on a given training dataset. Therefore, logistic regression can be written as in
Equation (3.18),

ŵLR = argmin
w∈Rd

1

n

n∑
i=1

log(1 + e−yi x
T
i w) (3.18)

where the labels yi ∈ {+1,−1},∀i = 1, . . . , n. The minimization problem above is convex
and differentiable, although as the gradient is nonlinear in w, it does not have a closed-form
solution. So, unpenalized logistic regression problems are typically solved by (stochastic)
gradient descent-like techniques [Boyd and Vandenberghe, 2004; Sra et al., 2012].

Unpenalized logistic regression, although theoretically sound, is somewhat uncommon to meet
in recent applied studies. As for the square loss, regularization penalties are typically used. For

9 As counter-intuitive as it sounds.
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(a) (b)

(c) (d)

Figure 3.12: Pictorial representation of the contour lines of the square loss in a 2D regression problem with various
penalties: (a) ordinary least squares (no penalty), (b) ridge regression (`2-norm penalty), (c) the Lasso (`1-norm
penalty) and finally (d) the Elastic-Net (`1- and `2-norm penalties).
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instance, we can have `2-regularized logistic regression,

ŵ`2 = argmin
w∈Rd

1

n

n∑
i=1

log(1 + e−yi x
T
i w) + λ ‖w‖2

2 (3.19)

or various forms of sparse logistic regression such as

ŵ`1 = argmin
w∈Rd

1

n

n∑
i=1

log(1 + e−yi x
T
i w) + λ|w|1 (3.20)

which uses the Lasso penalty, or

ŵ`1`2 = argmin
w∈Rd

1

n

n∑
i=1

log(1 + e−yi x
T
i w) + λ[α|w|1 + (1− α) ‖w‖2

2] (3.21)

which uses the Elastic-Net penalty. The sparse logistic regression minimization problem can be
efficiently solved either by proximal forward-backward splitting strategies, such as FISTA [Beck
and Teboulle, 2009], or by coordinate descent [Wu and Lange, 2008].

Moreover, multi-class classification with logistic regression can be achieved by OVO, AVA
approaches, as well as with the multiclass generalization of logistic regression: softmax re-
gression [Hastie et al., 2009] (also known as multinomial logistic regression), which can be
expressed as

ŴLR = argmin
W∈Rd×k

− 1

n

[ n∑
i=1

k∑
t=1

1{yi = t} log

(
ex

T
i wt∑k

l=1 e
xT
i wl

)]
(3.22)

where the indicator function 1{·} includes in the functional only the correctly classified samples.

3.1.1.7 Support Vector Machines

Support Vector Machines (SVMs) is a class of powerful ML algorithms that can be written
as penalized models and that can used for both regression (SVR) and classification (SVC)
problems [Evgeniou et al., 2000]. In the first case, the adopted loss function is Vapnik’s
ε-insensitive loss:

|y − xTw|ε =

{
0 if |y − xTw| < ε

|y − xTw| − ε otherwise
(3.23)

and in the second case the Hinge loss:

|1− y xTw|+ = max[0, 1− y xTw] (3.24)

as reported in Table 3.1, and shown in Figures 3.2a 3.2b. The standard formulation of SVM
is penalized by the `2-norm [Vapnik, 2013]. Therefore, sticking to linear models, the SVR
minimization problem can be written as

ŵSVR = argmin
w∈Rd

1

n

n∑
i=1

|yi − f(xi)|ε + λ ‖w‖2
2 (3.25)
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while the SVC minimization problem is

ŵSVC = argmin
w∈Rd

1

n

n∑
i=1

|1− yif(xi)|+ + λ ‖w‖2
2 (3.26)

where, as usually, λ controls the trade-off between data adherence and smoothing of the solution.
Equations (3.25) and (3.26) are known as the primal SVM problem. However, in order to
generalize the SVM to nonlinear cases (see Section 3.1.2), it is often convenient to transform
this minimization problem in its dual form. Several algorithms to find the solution of the SVM
minimization problem in both primal and dual forms were developed, such as Newton’s method
or coordinate descent algorithm. See [Smola and Schölkopf, 2004; Shawe-Taylor and Sun,
2011] for an exhaustive review.

The standard formulation of SVM does not cope well with high-dimensional data, as no sparsity-
enforcing penalty is adopted. Recently, `1-norm penalized SVM were proposed as well in [Zhu
et al., 2004; Peng et al., 2016].

As for the square loss-based methods, let us apply (`2-penalized) SVR to the aging problem
(introduced in Section 3.1.1.1). The experimental setup in this case is the same already adopted
for Lasso and ridge regression (see Sections 3.1.1.3 and 3.1.1.2). The weights ŵSVR are
represented in Figure 3.13. As expected, none of the is exactly zero and they look similar
to ridge coefficients in Figure 3.6, as the two model share the same regularization penalty.
Evaluating ŵSVR on the test set, the SVR model has MAE = 9.280 and explains the 77.74% of

Figure 3.13: A pictorial representation of the vector ŵSVR obtained fitting a SVR model on 74 randomly selected
training samples of Daging. Variables associated with positive (i.e. directly proportional to the output) and a negative
(i.e. inversely proportional) weight are represented in blue and red, respectively.

the variance.
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3.1.2 The kernel trick

For ease of reading, all the regularization methods presented so far were focused on learning
linear input-output relationships y = xTw. They can all be extended to the nonlinear case
exploiting an elegant mathematical approach called: the kernel trick.

The basic idea of the kernel trick is to use a map that projects the features on a higher (possibly
infinite) dimensional space in which the prediction problem is, to some extent, easier to solve.
An example of kernel trick for nonlinear classification problem is presented in Figure 3.14.

(a) (b)

(c)

Figure 3.14: Pictorial representation of its kernel trick. Panel (a) shows a 2D classification problem where the
input-output relationship is nonlinear. Panel (b) shows ITS kernel explosion, i.e. the projection of the 2D problem
in a higher (3D) dimensional space in which the two classes are linearly separable, as shown in Panel (c).

We define the nonlinear feature mapping function as φ : X → F ; for instance X ∈ Rd and
F ∈ Rp with p ≥ d, or even p� d. Given φ, the representer theorem [Smola and Schölkopf,
1998], states that the learning problem of Equation (3.2) admits a solution of the form

f̂(x) =
n∑
i=1

k(xi,xj)αi

where α ∈ Rn and the function k behaves like an inner product, i.e. it is: symmetric, positive
definite, ad it can be defined as in Equation (3.27).

k(xi,xj) = φ(xi)
T · φ(xj) (3.27)
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In the ML literature, k is typically called the kernel function and it comes in handy to solve the
dual version of the learning problems.

Let us see a practical example: kernel ridge regression. We recall that standard ridge regression
problem can be rewritten as

ŵ`2 = argmin
w∈Rd

J(w)

where the objective function J(w) is

J(w) =
1

n
‖Xw −w‖2

2 + λ ‖w‖2
2 =

1

n
(Xw − y)T (Xw − y) + λwTw

Therefore, the solution of the ridge regression problem can be evaluated by imposing ∂J(w)
∂w

= 0
which leads to the following linear system of equations.

XTXw −XTy + λnw = 0⇒ (XTX + λnI)w = XTy

This can either be solved with respect to w (see Section 3.1.1.2) obtaining the solution of the
primal form

w = (XTX + λnI)−1XTy (3.28)

or it can be rewritten as
w =

1

λn
XT (y −Xw) = XTα

where α = 1
λn

(y −Xw) is the dual variable. Therefore, the dual formulation of the problem
becomes

α =
1

λn
(y −Xw)

⇒ λnα = (y −Xw)

⇒ λnα = (y −XXTα)

⇒ (XXT + λnI)α = y

⇒ α = (K + λnI)−1y (3.29)

where K is the n× n, symmetric and positive semi-definite kernel matrix, with entries Kj
i =

k(xi,xj). In this case k(xi,xj) = xTi xj , and this corresponds to the linear kernel. Nevertheless,
several other options are available, see Table 3.2 or [Bishop, 2006] for more details. Choosing a
different kernel for ridge regression simply boils down to the choice a different formulation for
the kernel function k. Plugging the obtained kernel matrix K in Equation (3.29) it is possible to
achieve the desired solution.

When the problem cannot be effectively solved with standard kernels, new ones can be easily
built. For instance, a simple way to construct a new kernel is to devise an explicit feature map
φ(x). Otherwise, new kernels can be built by combining simpler kernel used as building blocks.
Furthermore, we can argue that evaluating k(xi,xj) can be compared to a measure of similarity
between the two input samples. Therefore, when a particular notion of similarity between points
is available and this can be exploited to design ad hoc kernels. Exploiting prior knowledge on
the problem to design new kernels is known as kernel engineering [Shawe-Taylor and Cristianini,
2004; Bishop, 2006].

The advantage of the kernel trick is not only statistical, but also computational. Indeed, we
may notice that solving the primal problem (i.e. in w) requires O(n3) operations, while solving
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Table 3.2: Popular kernel functions. RBF stands for Radial Basis Function.

name formulation

linear k(x,x′) = xTx′

polynomial k(x,x′) = (xTx′ + c)d

RBF k(x,x′) = e−γ‖x−x
′‖2

sigmoid k(x,x′) = tanh(γxTx′ + c)

the dual (i.e. in α) requires O(d3) operations which is better for large scale and relatively
low-dimensional problem.

A similar derivation can also be obtained applying the kernel trick to logistic regression and
SVM [Bishop, 2006; Shawe-Taylor and Cristianini, 2004].

3.1.3 Decision trees

Decision trees are simple, yet powerful, methods for regression and classification. They are
based on recursive binary splits of the feature space, in which they fit a very simple model,
such as a constant. Fitting a decision tree on a given dataset results in partitioning the feature
space in cuboid regions with edges aligned to the axes. In each region, there is a separate model
to predict the target variable. In regression problems this can be the average of the samples
falling in the region, whereas for classification problems, it can be the assignment to the most
represented class. In particular, when decision trees are applied to classification problems, the
feature space partitioning aims at keeping samples with the same labels grouped together. In
this thesis, we refer to one of the most popular method for decision tree-based classification and
regression, known as CART [Breiman et al., 1984].

An example of application of this technique for classification and regression is shown in
Figure 3.15.

Fitting a decision tree implies learning from the data the structure of the tree itself, including
the selection of the input variable for each splitting recursion, as well as the optimal splitting
threshold. Moreover, the value of the prediction for each region must also be defined.

Let us take into account the usual setting: D = {(xi, yi)}ni=1 = (X,y). Even when the number
of nodes is fixed, defining at the same time: which variables to split, their splitting threshold and
the predictive value is computationally unfeasible as it has a combinatorially large number of
possible solutions. Therefore, starting from the root note, i.e. the whole input space, and fixing a
maximum tree depth, we resort to a greedy approximation.

Let the data at the nodem be denoted byQm, then for each candidate split θ = (j, sm), consisting
of the j th feature and the threshold sm, we define two half-planes as follows.

Qm1(θ) = (xi, yi)|xji ≤ sm and Qm2(θ) = (xi, yi)|xji > sm

Then, at each node an impurity measure is evaluated using a suitable impurity function H(Qm),
which depends on the given task. Therefore, we can formulate an objective function like

J(Qm, θ) =
n1

nm
H(Qm1(θ)) +

n2

nm
H(Qm2(θ))
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(a)

(b)

Figure 3.15: Two examples of decision tree applications for: (a) 2D multiclass classification, (b) 1D regression.

where n1 and n2 is the number of samples in region Qm1 and Qm2 , respectively, while nm =
n1 + n2. For each node we then select the best parameter solving the optimization problem in
Equation (3.30).

θ̂m = argmin
θ

J(Qm, θ) (3.30)

This procedure is recursively applied to Qm1(θ̂m) and Qm2(θ̂m) until the maximum tree depth,
that we have fixed at the beginning, is reached.
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Dealing with regression problems, a typical impurity measure can be, for instance, the Mean
Squared Error (MSE)

HMSE(Qm) =
1

nm

∑
xi∈Rm

(
yi − ȳm

)2 (3.31)

where ȳm = 1
nm

∑
xi∈Rm

yi, is the average output of Qm, i.e. the training samples in region Rm;
or the Mean Absolute Error (MAE)10, which is simply defined as below.

HMAE(Qm) =
1

nm

∑
xi∈Rm

|yi − ȳm| (3.32)

On the other hand, dealing with (multiclass) classification problems, where the classes are
identified by the index k = 1, . . . , K, typical impurity measures are, for instance, the Gini
criterion

HGini(Qm) =
K∑
k=1

pmk(1− pmk) (3.33)

where pmk = 1
nm

∑
xi∈Rm

1(yi = k) is the proportion of class k observation on the region Rm;
or the Cross-Entropy (CE)

HCE(Qm) = −
K∑
k=1

pmk log(pmk) (3.34)

which is an impurity measure also heavily applied as loss function for other learning machines
(see Appendix A).

The main free parameter of this model is the maximum depth of the tree, i.e. its size. Deeper
trees are capable of modeling complex input-output relationships with respect to shallow ones.
Obviously, too deep trees can overfit the training data. Therefore, the optimal depth of the tree
should be estimated from the data via, for instance, grid-search cross-validation.

Decision trees are important in biomedical data science applications as they are easily inter-
pretable and capable of modeling nonlinear input-output relationships. Indeed, the prediction
is given following a number of binary decisions which, in some cases, may mimic the way
doctors perform diagnosis on their patients. Relatively small decision trees can actually be
represented graphically. For instance, applying a this method to the aging problem presented in
Section 3.1.1.1, we obtain the tree shown in Figure 3.16. As usually, the main free parameter of
the model, i.e. the maximum depth of the tree, is chosen via grid-search cross-validation (and it
is 3, in this case).

A very well-known weakness of decision trees is their instability. In fact, decision trees are
not robust to noise affecting the input data. Even minor perturbations of a single feature may
generate a different split which propagates down to all the splits below. In practice, this is
alleviated by the use of decision trees as base learners of ensemble strategies (see Section 3.1.4).
More details on this learning paradigm and its applications can be found reading Chapter 9
of [Hastie et al., 2009] or Chapter 14 of [Bishop, 2006].

10 We previously came across this measure when evaluating the performance of learning methods on the aging
problem, see Sections 3.1.1.1, 3.1.1.2, 3.1.1.3, etc.
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Figure 3.16: The graph structure learned from the aging problem (see Section 3.1.1.1). The maximum depth of the
tree is 3 and it is chosen via grid-search cross-validation.

3.1.4 Ensemble methods

The key idea of ensemble methods is to build a predictive model by aggregating a collection of
multiple base learners that are trained to solve the same problem [Zhou, 2012].

Bagging is a common ensemble strategy that consists in fitting multiple models fb(x) for
b = 1, . . . , B each one on a bootstrap sampling11 Db of the training dataset D = {xi, yi}ni=1.
For each sample xi, the bagging estimate f̂(xi) is obtained by combining the predictions of
the base learners f̂b(xi). For instance, in case of classification tasks, the bagged model may
select the most predicted class casting a vote among the B base learners. On the other hand,
for regression problems, the bagging estimate can be a (weighted) mean, or the median, of the
predictions of the B base learners. Decision trees (see Section 3.1.3) are typical base learner for
bagged estimators.

Boosting is another popular ensemble strategy that, unlike bagging, performs predictions by
sequentially fitting a collection of base learner that cast a weighted vote [Hastie et al., 2009].
At each boosting step, the weight corresponding to samples that were misclassified at the
previous iterations increases. Therefore, each successive classifier is somewhat forced to learn
the relationships between input and output that were previously missed. From a theoretical
standpoint, it would be possible to boost any learning machine, nevertheless boosting methods
are mainly used with decision trees as base learners [Hastie et al., 2009].

3.1.4.1 Random Forests

Random Forests (RF) are ensembles of decision trees, proposed by Leo Breiman in the early
2000s [Breiman, 2001] to ameliorate the instability of decision trees. In RF each tree is grown
on a bootstrap sample from the training data, typically to its maximum depth. To increase
robustness to noise and diversity among the trees, each node is split using the best split among a
subset of features randomly chosen at that node. The number of features on which the trees are
grown is one of the free parameters of the model. The final prediction is made by aggregating
the prediction of M trees, either by a majority vote in the case of classification problems, or
by averaging predictions in the case of regression problems. Another important free parameter
of the model is the number of trees in the ensemble. RF are a bagging approach, which works
on the assumption that the variance of individual decision trees can be reduced by averaging

11 Random sampling with replacement.
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trees built on many uncorrelated subsamples. Moreover, increasing the number of trees in the
ensemble, RF does not overfit the data. Therefore, this parameter is typically chosen to be as
large as possible, consistently with the available hardware and computational time [Breiman,
2001].

RF can provide several measures of feature importance, computed by looking at the increase in
prediction error when data for a feature is permuted while all other features remain unchanged.
Feature selection based on RF if most often performed using one of these measures. However,
several techniques for applying regularization to random forests have been proposed. These
techniques broadly fall under two categories:

1. cost-complexity pruning, which consists in limiting tree depth, resulting in less complex
models [Ishwaran et al., 2008; Kulkarni and Sinha, 2012];

2. Gini index penalization [Deng and Runger, 2013; Liu et al., 2014].

In addition, [Joly et al., 2012] proposed to use an `1-norm to reduce the space-complexity of RF.

RF naturally handles numerical, ordinal and categorical variables, multiple scales and non-
linearities. They also require little parameter tuning. This makes them popular for the analysis
of diverse types of biological data, such as gene expression, Genome-wide Association Studies
(GWAS) data or mass spectrometry [Qi, 2012]. In practice, feature selection schemes that rely
on RF may be unstable [Kursa, 2014], therefore feature selection stability measures must be
adopted to avoid drawing inconsistent conclusions.

Let us see what happens when RF are applied to the aging problem (see Section 3.1.1.1). The
experimental setup is identical to the one previously applied for ridge and Lasso regression (see
Section 3.1.1.2 and 3.1.1.3), where the only parameter optimized via grid-search cross-validation
is the maximum number of features each tree can grow on (and in this case it is chosen as 4).
The number of trees in the ensemble is fixed to 500. The RF model on the test set achieves
MAE = 6.321 and Explained Variance EV = 88.17%. Figure 3.17 shows the feature importance
measure estimated by this model.

As we can see, the features that are most relevant for RF are comparable to the ones selected
by Elastic-Net (see Figure 3.12d). For RF models it is interesting to investigate the effect of
an increasing value for the number of trees in the forest. As shown in Figure 3.18, increasing
the number of trees in the forest does not lead to overfit. In fact, test error (Figure 3.18a) and
explained variance (Figure 3.18b), after approximately 250 trees, reach a plateau region instead
of growing.

3.1.4.2 Gradient Boosting

Gradient boosting [Friedman, 2001] (GB) is one of the most widely applied boosting methods
in biological problems. This technique iteratively combines the predictions obtained by several
base learners, such as decision trees, into a single model. The key idea behind GB is that, under
some general hypothesis on the cost function, boosting can be seen as an iterative gradient
method for numerical optimization. In particular, in GB at each boosting iteration a new base
learner is fitted on the residuals obtained at the previous boosting iteration. GB has several
desirable properties [Mayr et al., 2014], such as its capability to learn nonlinear input-output
relationship, its ability to embed a feature importance measure (as RF) and its stability in case
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Figure 3.17: A pictorial representation of the feature importance achieved by a RF model with 500 trees growing
on 4, out of 12, features.

of high-dimensional data [Buehlmann, 2006]. When used for feature selection, GB shows
interesting performance when casted in the stability selection framework [Meinshausen and
Bühlmann, 2010], leading to an effective control of the false discovery rate [Everitt, 2006].

As for most of the learning machines, GB may suffer of overfitting. The main regularization
parameter to control is the number of boosting iterations M , i.e. the number of base learners,
fitted on the training data. This is typically optimized by cross-validated grid-search, information
criteria-based heuristics [Tutz and Binder, 2006, 2007] or early stopping [Prechelt, 1998].
Regularization in GB can also be controlled by shrinking the contribution of each base learner
by a constant 0 < ν < 1 that controls the learning rate of the boosting procedure. In order to
achieve comparable predictive power, smaller values of ν imply larger number of M , so there is
a trade-off between them. As usually, the base learners are decision trees and another important
parameter to tune is their maximum depth [Hastie et al., 2009].

In a recent paper [Lusa et al., 2015], the authors show that in high-dimensional balanced binary
classification problems, if the base learner is likely to overfit the training data, the use of
Stochastic GB [Friedman, 2002] is preferable. The latter is a modified version of the original
method, where each base learner is fitted on a random extraction without resubmission of a
fraction η of the training data, where η is another regularization parameter to choose.

Let us see what happens when GB is used to tackle the aging problem (see Section 3.1.1.1).
The experimental setup is identical to the one previously applied for Elastic-Net regression (see
Section 3.1.1.4), where the two parameters optimized via grid-search cross-validation are the
maximum depth of the trees (in a range from 3 to 20) and the number of boosting iterations
(with a maximum value of 500). The selected tree depth is 8 and the number of boosting
iterations is 31. The GB model on the test set achieves MAE = 7.955 and Explained Variance
EV = 84.88%. Figure 3.19 shows the feature importance measure estimated by this model. As
we can see, the features that are most relevant for GB are comparable to the ones relevant for RF
(see Figure 3.17).
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(a)

(b)

Figure 3.18: The effect of the number of trees in a RF model in terms of MAE, panel (a), and EV, panel (b). As
expected, larger forests do not lead to overfit, i.e. the training error does not reach zero.
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Figure 3.19: A pictorial representation of the feature importance achieved by a GB model with learning rate 0.1
after 31 boosting iterations. Each tree has maximum depth of 11 and it grows on 4, out of 12, features.

As already seen for RF, we shall investigate the effect of increasing boosting iterations for GB.
As shown in Figure 3.20, after approximately 50 boosting iterations the model reaches perfect
overfit of the training set, i.e. zero training error (Figure 3.20a) and 100% trained explained
variance (Figure 3.20b).

3.1.5 Deep learning

Deep Learning (DL) is a branch of ML that, in the recent past, is becoming extremely appealing
thanks to the high predictive power that it has empirically shown on real-world problems. This
section is definitely not an attempt to summarize the heterogeneous plethora of the DL methods
presented in literature so far. Indeed, even a dedicated thesis may not be enough to accomplish
this task. In this section we will only get a grasp on the mechanisms behind the supervised DL
methods applied in Part II12.

One of the main characteristics of DL methods is that, starting from raw data, they aim at
learning a suitable data representation (see Section 3.3) and a prediction function, at the same
time. DL methods stand on the shoulders of the classical, and shallow, Neural Networks of the
80s, and they can actually be seen as their extension. In DL the the final prediction is achieved
by composing several layers of nonlinear transformations. The intuition behind DL method is
that, starting from raw data, their multi-layer architecture can achieve representations at a more
abstract level, leading to top performance in prediction tasks. DL architectures can be devised to
tackle binary or multiclass classification [Angermueller et al., 2016; Leung et al., 2014] as well
as single or multiple output regression [Chen et al., 2016; Ma et al., 2015].

12 Unsupervised DL methods were presented in literature as well, but as they are not used in Part II, their
discussion is not presented here. We recall to [Chollet, 2018; LeCun et al., 2015] for a more comprehensive
overview.
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(a)

(b)

Figure 3.20: The effect of the number of boosting iterations in a GB model (learning rate 0.1) in terms of MAE,
panel (a), and EV, panel (b). As expected, increasingly large boosting iterations lead to perfect overfit, i.e. zero
training error.
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3.1.5.1 Multi-Layer Perceptron

In order to understand the principles guiding DL methods, we sketch here the ideas behind the
most basic one: the Multi-Layer Perceptron (MLP), also known as deep Feedforward Neural
Network. Typically, MLPs are structured as fully connected graphs organized in layers that can
be of three different types: input, hidden and output (see Figure 3.21). Each node of the graph
is called unit. The number of units in the input layer matches the dimensionality of the raw
data (d), while number and type of output units are related to the learning task. For multiclass
classification problems, with K classes, the output layer has K units, each one representing
the probability of the input sample to be assigned to one specific class. On the same line, for
multiple-output regression problems, with K tasks, each one of the K units corresponds to the
prediction for a given task. Size and number of the hidden layers can be chosen according to the
problem at hand and the available computational resources.

Figure 3.21: A pictorial representation of the structure of an MLP with two hidden layers having four and three
hidden units, respectively. According to the nature of the output layer, this network topolgy can be adopted either
for regression or binary classification problems starting from raw samples in a three-dimensional space.

x1

x2

x3

y

Hidden layer #1 Hidden layer #2Input layer Output layer

In MLPs the information flows through the graph from the input to the output. Each layer l
transforms its input data xl−1 by composing an affine transformation and an activation function
σ(x) that acts element-wise on its input vector. In other words, defining as pl−i the number of
units in the layer l − i, the layer l applies the transformation

xl = σ(x(l−1)Wl + bl)

where Wl ∈ Rpl−1×pl and b ∈ Rpl are the weights of the model that are learned from the data.

The function σ(x) is known as activation function and it can be defined in different ways. In
classical neural networks, activation functions are modeled as sigmoids (e.g. σ(x) = tanh(x),
σ(x) = (1 + e−x)−1) whilst in modern DL architectures the most used activation function is the
Rectified Linear Unit: f(x) = max(0, x).

Particular attention must be paid when fitting deep models as they can be prone to overfit the
training set [Angermueller et al., 2016]. The network topology itself defines the degrees of
freedom of the model: deeper and wider networks can approximate well very complicated
input-output relationship, but also the noise affecting the data. Although, tuning the number of
hidden layers and their size is not the recommended strategy to prevent from overfitting, as it
may lead to suboptimal solutions.

Regularization in MLPs can be controlled by penalizing the weights of the network. A common
regularization strategy consists in adding an `2-norm penalty in the objective function, as in
Equation (3.2). In the DL community this procedure is known as weight decay [Krogh and
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Hertz, 1992]. Although less common, the `1-norm can also be adopted as regularization penalty,
as in [Leung et al., 2014].

Training MLPs, and deep networks in general, consists in solving a minimization problem via
suitable optimization algorithms [Ruder, 2016]. All these methods iteratively update the weights
of the network in order to decrease the training error. Another fundamental regularization
strategy is the Early stopping [Prechelt, 1998]. This consists in interrupting the fitting process
as soon as the error on an external validation set increases [Angermueller et al., 2016].

Another common regularization strategy in DL is Dropout [Srivastava et al., 2014]. This
techniques consists in temporarily deactivating a defined number of randomly chosen units of
the network at training phase. This reduces the degrees of freedom of the model and it implicitly
allows to achieve an ensemble of several smaller networks whose predictions are combined. The
use of dropout alone can improve the generalization properties, as in [Chen et al., 2016], but it is
usually adopted in combination with weight decay or other forms of regularization, as in [Leung
et al., 2014].

Training MLPs implies dealing with non-convex optimization problems which are usually
tackled via stochastic gradient descend, or similar methods [Ruder, 2016; Sra et al., 2012].

MLP architectures are also used as final layers of another class of DL methods called: Con-
volutional Neural Network (CNN). CNN are a different class of DL methods that exploit
convolutional masks with weights estimated from the data to learn a suitable feature representa-
tion. This class of methods is largely applied to computer vision and image recognition problems.
Describing CNN architectures is beyond the scope of this thesis, as they are not mentioned in
the Part II. A thorough description of CNN can be found here [Chollet, 2018; Goodfellow et al.,
2016].

Let us see what happens when a relatively simple MLP is applied to the aging problem (see
Section 3.1.1.1). The experimental setup is the same used for RF in Section 3.1.4.1, where the
only parameter optimized via grid-search cross-validation is the weight decay constant. The
resulting MLP has 1 hidden layer with 1024 units, ReLu activation and constant weight decay
0.001. Such MLP is trained with early stopping and, after 329 iterations reaches MAE = 9.14
explaining the 78.84% of the variance of the test set. The relatively worse performance of this
method, compared, for instance, to RF, may be due to the fact that this dataset has a reduced
number of samples. It is known that training DL models from scratch, in order to reach optimal
solutions, it is necessary to have more training samples than conventional (shallow) learning
machines.

3.1.5.2 Long-Short Term Memory Network

Long-Short Term Memory Networks (LSTMs) belong to the class of Recurrent Neural Networks
(RNNs) [Goodfellow et al., 2016].

LSTM use special units, called memory cells, which have the ability to learn long-term de-
pendencies [LeCun et al., 2015]. Instead of just applying an element-wise nonlinear function,
such as sigmoid or hyperbolic tangent, to the affine transformation of inputs and recurrent
units, LSTM cells have an internal self-loop together with a system of input, output and forget
gates [Goodfellow et al., 2016]. Compared to standard RNNs, LSTMs can be trained via gradient
descent as they do not suffer from the vanishing/exploding gradient problem [Bengio et al.,
1994]. In the recent past, this deep learning architectures demonstrated to achieve promising
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results in several sequences learning tasks, such as speech recognition [Graves and Schmidhuber,
2005], image captioning [Vinyals et al., 2015], or time-series forecast [Schmidhuber et al.,
2005].

3.2 Feature selection

In real-world data science challenges, it is very often the case that the number of acquired
variables d is high. It may even happen that d heavily outnumbers the number of collected
samples n. This setting is usually referred to as large d small n scenario, or simply n � d.
Practical examples of this case can be easily found in the context of applied life sciences, e.g.
gene expression, DNA sequencing, proteomics, spectroscopy, medical imaging and so on.

In such cases, the main goal of the analysis is often to identify a meaningful subset of relevant
variables that are the most representative of the observed phenomenon. In ML, this is known
as variable/feature selection and several techniques addressing this task were presented so
far [Guyon et al., 2002]. Variable selection does not only increase the prediction power of the
learning machine, but it also promotes model interpretability, that is crucial in biology [Altmann
et al., 2010].

Variable selection techniques are traditionally organized in three groups: filter, wrapper and
embedded methods [Guyon and Elisseeff, 2003].

Filters In these techniques, irrelevant features are filtered out from the feature set before
any learning step. A fair majority of filter approaches is based on some variable ranking
criteria that are usually based on the definition of a scoring function F (xj,y), where
xj is the j − th variable and y is the output vector. Usually high values of the scoring
function correspond to highly relevant features. Once the scoring function is evaluated for
each feature, the entire feature set is sorted by means of their score. Varying the selection
threshold one may generate different set of nested features. The selection of one of such
subsets can be done after an actual learning step, i.e. when a reliable estimate of the
prediction error is available. Variable selection techniques that belong to this class may be
based on some statistical scores, e.g. t-test, ANOVA, Pearson correlation, or some entropy
measures, e.g. the mutual information [Everitt, 2006]. Statistical score-based algorithms
may fail when the assumptions on the probability distribution function does not hold for
the available data. On the same line, information theoretic techniques should need the
probability distribution of the data, which is usually unknown.

Single variable classifiers is another class of methods that, to some extent, may fall into
this family. They still define a scoring function F , but such function is a measure of the
predictive power of each features. For instance, in a classification scenario one may select
the list of variables that, individually, have best accuracy, or false positive or false negative
classification rate. Moreover, in case of regression problems best residual sum of squares
or R2 score may be used (see Section 3.4.3). A major drawback of this class of methods is
that features that are not relevant by themselves will be discarded even if they would have
been relevant used in combination with some other ones.

Wrappers The key idea behind the algorithms of this second family is that the variable
selection process should not only depend on input and outputs, but also on a specified
learning algorithm. These algorithms select a feature subset according to the prediction
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performance achieved by some learning algorithms evaluated on subsamples of the original
feature set. ML methods are here used as black boxes that, given some input, simply return
a prediction performance score. Exhaustive search over the whole space of all possible
features subset, that has cardinality 2d, is clearly unfeasible even in low dimension. In
order to cope with this problem several greedy techniques have been proposed. Among
them, the most popular algorithms are the matching pursuit (also known as forward
stage-wise selection) [Cai and Wang, 2011] and the Recursive Feature Elimination scheme
(RFE) [Guyon et al., 2002]. While the first starts from an empty vector and greedily
incorporate the most relevant features, RFE starts with the whole feature set and then
iteratively exclude the least promising variables.

Embedded The main characteristic of these methods is that they can learn and perform
variable selection simultaneously. Embedded variable selection can be achieved by two
families of learning machines: tree-based and regularization methods. Decision trees can
be used for variable selection as only some of the input variables are used to partition the
feature space and variables not involved in any split are can be discarded, see Section 3.1.3.
Moreover, ensemble of decision trees natively offer a feature importance measure 3.1.4.
On the other hand, regularization methods as extensively discussed in Section 3.1.1, can
easily be used for variable selection by exploiting sparsity enforcing penalties. Only the
variables having nonzero weight will be considered as selected by the model. Regardless
of the learning machine, regularization can be introduced in several ways and it is of
fundamental use in order to achieve the following desired properties [Okser et al., 2014]:

– identify models with good generalization properties, even with a limited amount of
collected samples;

– achieve solutions that are robust to noise;

– learn the data structure when unknown;

– exploit prior knowledge on the data structure;

– reduce the feasible set in order to help solving inverse problems.

Assessing the stability of the selected variables is a major issue that is typically faced when
performing variable selection on high-dimensional problems. This observation is even more evi-
dent in n� d cases. Classical variable selection strategies, e.g. the Lasso (see Section 3.1.1.3),
are sensitive to random sample extraction. This reflects in having a, possibly, very different list
of selected variables each time the algorithm is evaluated on a cross-validation training split of
the data. Variable selection stability is widely studied in literature and different strategies to
achieve stable variable selection were proposed in literature [Kuncheva, 2007; De Mol et al.,
2009a; Hofner et al., 2015; Nogueira and Brown, 2016].

In particular, in [Meinshausen and Bühlmann, 2010] the authors propose the so-called stability
selection framework. For a given variable selection strategy (let us think about the Lasso, for
simplicity) this can be seen as an extension of standard regularization paths (see Section 3.1.1).
For increasing values of the free parameter of the chosen variable selection strategy (e.g.
the regularization parameter λ), a selection probability is estimated for each variable. Such
probability is estimated by evaluating the variable selection algorithm on several random
extractions of a portion of the training set. This produces the so-called stability path. A stable
list of selected variables can therefore be obtained by including the variables that, for a given
value of the free parameter, are selected with high probability. As shown in the original paper,
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this framework is not heavily influenced by the values of free parameter and probability threshold.
However, they can be chosen by validation on an external validation set, which is fundamental
in order to avoid selection bias [Ambroise and McLachlan, 2002]. Similar strategies are also
explored in [De Mol et al., 2009b; Barbieri et al., 2016]

3.3 Unsupervised learning

In Section 3.1 we started the discussion of supervised learning methods with a metaphorical
comparison with the human ability of learning from examples. Actually, in order to understand
concepts, human beings need way less supervision than modern learning algorithms. In some
circumstances it may be even the case that little/no supervision at all is needed to accomplish a
task.

For instance, let us say that a kid growing with a Brittany dog at home visit some friend having
a Bernese Mountain Dog. The kid, so far, has only being taught what his dog looks like and
these two dog breeds definitely look different one another. Nevertheless, the kid will certainly
be able to understand that both of them are animals and, in particular, dogs. Who taught the kid
the appearance of every possible dog breed?

The learning paradigm in which we try to infer some interesting properties, or recurrent patterns
from unlabeled samples is known as unsupervised learning and, quoting Kevin P. Murphy,
"Unsupervised learning is arguably more typical of human and animal learning." [Murphy,
2012].

In this section, given a set of input dataD = {xi}ni=1, with samples represented as d-dimensional
vectors xi ∈ Rd (∀i = 1, . . . , n), our interest will be directed toward two different goals:
(i) grouping similar objects together (Section 3.3.1) and (ii) achieving a meaningful low-dimen-
sional representation of our data (Section 3.3.2). In both cases we will try to infer the properties
of the probability distribution p(x) from which the collected data are assumed to be drawn.

3.3.1 Cluster analysis

Cluster analysis, also known as data segmentation or clustering, is the class of unsupervised
learning algorithm which aim at grouping together similar objects, by some definition of
similarity.

This task is fairly common in biomedical studies, where cluster analysis can be used, for instance,
to perform patients stratification or to find groups of correlated biological measures, such as
gene expression, blood exams, and so on. This section presents an overview on the most popular
clustering algorithms13.

3.3.1.1 The k-means algorithm

k-means is the most intuitive strategy for cluster analysis.

13 A good reference for the clustering algorithms proposed in literature is Section 2.3. - Clustering of the SCIKIT-
LEARN documentation http://scikit-learn.org/stable/modules/clustering (last visit
2018-01).

46

http://scikit-learn.org/stable/modules/clustering


Given n samples xi ∈ Rd, the goal of k-means is to partition the data space into K non-
overlapping groups containing similar samples. Let µk ∈ Rd be the prototypical vector associ-
ated with the kth cluster, we can think of this as the center of mass of the cluster, i.e. its centroid.
Fixing the number of cluster K, the output of the k-means algorithm is a set of cluster centroids
as well as the assignment of each sample to a single, i.e. the closest, cluster. For ease of notation,
we introduce a binary indicator function rk defined as

rk(xi) =

{
1 if xi is assigned to cluster k
0 otherwise

which is known as 1-of-K encoding. Then, we can define the objective function

J(µ) =
n∑
i=1

K∑
k=1

rk(xi)d(xi,µk)

where d(a, b) is some distance measure. In case d(a, b) is the squared Euclidean distance, which
is the typical choice for k-means, the objective function can be rewritten as in Equation (3.35).

J(µ) =
n∑
i=1

K∑
k=1

rk(xi) ‖xi − µk‖2
2 (3.35)

Our goal is to find the centroids µk for k = 1, . . . , K that minimize J(µ). We can argue that,
given the best centroids, the samples can be simply associated to the cluster with the nearest
centroid. So, let us focus on the problem of finding µk. Fixing rk(x) for all k, the objective
function in Equation (3.35) is quadratic in µ, thus the minimization problem can be easily solved
setting its derivative to zero, see Equation (3.36).

2
n∑
i=1

rk(xi)(xi − µk) = 0⇒ µk =

∑n
i=1 rk(xi)xi∑n
i=1 rk(xi)

(3.36)

Intuitively, µk corresponds to the mean of the points assigned to the cluster k.

The k-means algorithm starts with random centroids. Then the points are assigned to the cluster
having the nearest centroid. Successively, the centroids position is updated. At each step the
value of J(µ) is reduced, hence the convergence of k-means is assured. Nevertheless, the
algorithm may converge to a local minimum, achieving a suboptimal solution.

Defining an optimal value of K for any dataset is still an open problem. The k-means algorithm
works with a number of cluster fixed a priori14. K can be given from some prior knowledge on
the problem, or it can be estimated following some heuristics. Otherwise, an estimate of K can
be defined by optimizing data-driven coefficients like the silhouette score (see Section 3.4.3), or
some information criteria, such as AIC or BIC [Bishop, 2006]. These estimates can be done
with or without cross-validation [Fiorini et al., 2017b].

As shown in [Arthur and Vassilvitskii, 2007], smart choices of the initial position of the clusters
can substantially improve the result. For instance, the initial µk, for k = 1, . . . , K, can be
chosen to be far away from each other. This solution is called k-means++ and it follows the
steps summarized below.

14 Some relevant work on automatic cluster discovery is presented in [Ball and Hall, 1967; Pelleg et al., 2000;
Muhr and Granitzer, 2009].

47



1: choose the first centroid µ1 at random from the samples in the dataset;
2: compute the distance between µ1 and all the other points in the dataset: D = d(xi,µ1)
∀i = 1, . . . , n;

3: choose a new data point as centroid µ2 following a weighted probability distribution ∝ D2;
4: update the distance vector as D = min[d(xi,µ1), d(xi,µ2)] ∀i = 1, . . . , n;
5: repeat steps 3 and 4 until k centroids are defined;
6: use this centroids initialization to run standard k-means.

Even though this initial seeding comes with an increased computational time at the beginning,
then the k-means algorithm converges super fast, leading to a decreased overall computational
time. Moreover, the achieved solution has considerably better final cluster reconstruction,
compared to standard k-means, hence k-means++ initialization is usually preferable.

3.3.1.2 Spectral clustering

Spectral clustering is a popular clustering algorithm initially proposed in [Shi and Malik, 2000]
and then further analyzed and explained in [Ng et al., 2002; Von Luxburg, 2007]. Assuming the
usual setup, the problem of clustering can be translated in the problem of inferring a similarity
graph G = (V,E), where each data point xi corresponds to a vertex and the weight sij of the
edge connecting xi and xj , is proportional to the similarity between the two points. For instance,
in the so-called ε-neighborhood graph, the vertexes corresponding to xi and xj are connected
if s(xi,xj) > ε, for a given ε. Our aims is then to achieve a graph structure where the edges
between points of the same group is high and it is low between points belonging to different
groups.

Therefore, let us consider a set of points D = {xi}ni=1, the steps of the unnormalized spectral
algorithm are summarized as follows15.

1: fix a symmetric and non-negative similarity function s(xi,xj) and compute the similarity

matrix S =

 1 . . . s1n
... . . . ...
s1n . . . 1

;

2: construct a similarity graph G from S, let W be its adjacency matrix and D its degree
matrix;

3: compute the unnormalized graph Laplacian L = D −W ;
4: compute the first k eigenvectors v1, . . . ,vk of L and organize them column-wise in the

matrix V ∈ Rn×k;
5: for i = 1, . . . , n let ψi ∈ Rk be the vector corresponding to the ith row of V ;
6: cluster the points {ψi}ni=1 using k-means into K clusters.

As for the k-means algorithm, finding K is a difficult problem. A common solution for spectral
clustering is the eigengap heuristics, described in [Von Luxburg, 2007].

15 Normalized version this algorithm is identical but the formulation of L which is substituted by the normalized
graph Laplacian [Von Luxburg, 2007].
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3.3.1.3 Hierarchical clustering

As suggested by the name, hierarchical clustering techniques produces hierarchical (tree) rep-
resentation of a given dataset, where each level of the hierarchy consist in groups of samples
(clusters). Individual data points can be found at the leaves of the learned tree, while all the data
points are grouped in a single cluster at the root level.

There are two main families of hierarchical clustering: the agglomerative (bottom-up) and the
divisive (top-down) approaches. Both of them are iterative techniques. The first, at each iteration,
groups together the most similar points, hence creating more and more large clusters, while the
divisive strategy works the other way around: by iteratively dividing groups of points. From now
on we will refer to agglomerative clustering only, but similar considerations can be followed for
the divisive approach as well.

Hierarchical clustering techniques have two main degrees of freedom: the choice of point-wise
and group-wise similarity, also known as affinity and linkage, respectively. The first is used to
compute the initial value of the similarity matrix

S0 =

 0 . . . s1n
... . . . ...
s1n . . . 0


while the second is used to update it once the two most similar data points are collapsed into a
single cluster S0 ∈ Rn×n

+ → S1 ∈ Rn−1×n−1
+ . While any symmetric and non-negative function

is a valid affinity, the choices of for linkage function are more interesting and worth mentioning.
Let G and H be two clusters, there are four main linkage options:

Single l(G,H) = maxxi∈G
xj∈H

s(xi,xj)

Complete l(G,H) = minxi∈G
xj∈H

s(xi,xj)

Average l(G,H) = 1
nGnH

∑
xi∈G

∑
xj∈H s(xi,xj)

Ward l(G,H) = nGnH

nG+nH
‖µG − µK‖2

where nA and µA are the number of points and the centroid of the cluster A, respectively.

Interestingly, finding the number of clusters K translates here into the problem of pruning the
tree.

3.3.2 Dimensionality reduction and feature learning

Most of the ML methods aim at learning some hidden relationship in a set of data. Typically,
the dataset at hand is a collection of d measures from n samples xi ∈ X ∈ Rd and we want our
ML algorithms to crunch such data in order to perform some learning task, e.g. classification,
regression, clustering and so on.

It is often the case that the feature space X is not the most suitable to our purposes. Sometimes
projecting the data in a different space X ′ ∈ Rp, maybe with p < d or even p� d, can greatly
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ease the further learning steps. We have already explored a similar concept talking about the
kernel trick in Section 3.1.2.

In particular, heavily decreasing the dimensionality of the data is helpful as it achieves (lossy)
data compression, reducing the computational time of further analyses. Moreover, dimensionality
reduction eases data visualization and understanding. These aspects are really important when
dealing with large scale biomedical data.

This section presents a compact overview of the dimensionality reduction and unsupervised
feature learning algorithms that are most relevant with the biomedical data science projects
presented in the second part of this thesis.

3.3.2.1 Principal component analysis

Principal Component Analysis (PCA) [Jolliffe, 2002] is probably the most popular dimensional-
ity reduction technique. PCA is typically defined as linear projection of the data onto a lower
dimensional space where the variance is maximized.

In order to understand PCA in general, we first focus on how to find the first principal component,
i.e. the main direction in which the data shall be projected in order to preserve as much variance
as possible. Let u1 be the d dimensional vector which identifies the direction of the first principal
component. As we are not interested in the magnitude of this vector, but rather in its direction,
without loss of generality we can assume uT1u1 = 1.

The projection of each data point xi on the direction identified by u1 can easily be found as
x′i = uT1 xi. We shall notice that the variance of the projected data can be expressed as

σ2
x′i

=
1

n

n∑
i=1

[
uT1 xi − uT1 x̄

]2
= uT1 Su1

where x̄ = 1
n

∑n
i=1 xi is the empirical mean of the samples and S is the data covariance matrix,

defined as S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T . Therefore, finding u1 can be casted in the following

optimization problem
max
u∈Rd

[
uT1 Su1 + λ1(1− uT1u1)

]
where λ1 is a Lagrangian multiplier. By setting the derivative with respect to u1 equal to zero
we can easily write

Su1 = λ1u1 ⇒ uT1 Su1 = λ1

which means that the variance is maximum when u1 is the eigenvector of S with maximum
eigenvalue λ1. The eigenvector u1 is hence known as the principal components.

Additional components can be iteratively found by choosing new directions, orthogonal to the
ones already identified, that maximize the projected variance.

3.3.2.2 Multi-dimensional scaling

Multi-dimensional scaling (MDS) [Borg and Groenen, 2005] is a dimensionality reduction
technique which aims at finding a low-dimensional projection that maximally preserves the
pairwise distance between data points.
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Adopting the Euclidean distance metric, MDS is similar to PCA. However, the MDS algorithm
can be extended to a wide range of similarity measures.

3.3.2.3 Isomap

Isomap [Tenenbaum et al., 2000] is a non-linear dimensionality reduction technique that can be
seen as an extension of MDS.

In this algorithm, the similarity between the data points are evaluated as geodesic distances
along some manifold. At first the algorithm finds the k nearest neighbors of each sample. Then
it builds a graph where each sample is a node and the edges of neighboring nodes are weighted
with the Euclidean distance of the corresponding samples. Finally, the geodesic distance is
approximated by summing the weights of the edges corresponding to the shortest path between
each pair of points. The final low-dimensional projection is obtained performing MDS on such
distance matrix.

3.3.2.4 t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) [Van der Maaten and Hinton, 2008]
is a relatively recently proposed nonlinear dimensionality reduction technique specifically
developed for high-dimensional data visualization. t-SNE aims at learning a low-dimensional
data projection that reflects the original data similarities as much as possible.

The algorithm has two main steps. At first t-SNE devises pairwise probability distributions over
high-dimensional samples such that the similar ones are picked together with high probability.
Then, the algorithm defines another probability distribution on a low-dimensional map identified
by minimizing the Kullback–Leibler divergence between the two distributions. The minimization
problem is solved by gradient descent.

3.4 Model selection and evaluation

The previous chapters present an overview of ML techniques and algorithms that are most
relevant with the data science challenges presented in the second part of this thesis. The
described algorithms are very different for both goals and mathematical structure. However, they
all share a common trait: the presence of one, or more, free parameters. These free parameters
must be specified before the actual learning step and, in ML literature, they are usually referred
to as hyperparameters16. As opposed to the model parameters, which are learned from data,
hyperparameters are tuning knobs that must be user-defined.

In order to better understand this difference, let us see a practical example: a regularized least
square approach (such as Ridge or Lasso). In this case, the weights of the input variables wj
(for j = 1, . . . , d) are learned from training data and they are the model parameters; whereas
the regularization parameter λ is the only hyperparameter of the model. This simple example
has only one hyperparameter, but more complicated models, such as gradient boosting or deep

16 This term is inherited from the filed of statistics, where an hyperparameter is a parameter of a prior distribution
probability. This sometimes generates confusion and possible misunderstanding in technical literature.
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architectures (see Section 3.1.5 and 3.1.4.2), present way more hyperparameters to tune (e.g.
depth and size of the tree, learning rate, number of layers, etc).

In order to successfully carry out real-world data science challenges, ML practitioners need
two key ingredients: (i) reliable model assessment strategies and (ii) robust protocols for model
selection. The first point often boils down to the use of a robust cross-validation technique to
estimate the generalization error [Molinaro et al., 2005], whilst the second is typically tackled
with (exhaustive) search over a grid of possible values. In ML jargon, each different choice of
an hyperparameter set corresponds a different model. The process of finding the best performing
set of hyperparameters is typically called model selection.

3.4.1 Model assessment strategies

The performance of a ML model can be assessed by estimating its generalization error, that is
a measure of the performance the model is expected to achieve on future data. As this is, in
general, not possible, the predictive power of a given learning machine should be evaluated
on previously unseen data, simulating future observation. Resampling protocols are the most
popular class of techniques to simulate the acquisition of future data [Molinaro et al., 2005] and
these methods can be successfully applied to estimate the generalization error.

Moreover, particular attention should be paid when the data analysis pipeline embeds a variable
selection step. In fact, as shown in [Ambroise and McLachlan, 2002], an error estimated on the
same set of data used for variable selection can be heavily affected by selection bias. This form
of overfitting leads to an overoptimistic estimate of the model performance. Hence, in order
to avoid too optimistic estimations of the generalization error, ML practitioners should rely on
nested resampling protocols, as shown for instance in [De Mol et al., 2009b].

This section briefly presents the cross-validation resampling routines that are most relevant for
the second part of this thesis.

Monte Carlo cross-validation This strategy repeatedly splits the n samples of the dataset
in two mutually exclusive sets. For each split, n · (1/ν) samples are labeled as validation
set and the remaining n · (1 − 1/ν) as training set. The data points of the two sets
are randomly sampled without replacement from the entire dataset. At each repetition,
the learning machine is fitted on the training set and its predictive power is assessed by
evaluating a performance metric (see Section 3.4.3) on the independent test set. If needed,
a variable selection step can be part of the training phase. Monte Carlo cross-validation
gives the opportunity to assess not only the value of the generalization error, that can
be obtained, for instance, averaging across iterations, but also to infer its probability
distribution. However, a major drawback of this method is its computational burden that
increases with the number of repetitions, that could be arbitrarily large.

Bootstrap This cross-validation strategy is similar to the Monte Carlo approach, but it
presents a substantial difference. In this strategy, new versions of the dataset are generated
by uniform random extraction with replacement of n′ samples out of n. The extracted
data are used as training set, while the left out samples are used for validation. Typically
the value of n′ is chosen close to n. For large n, bootstrapped datasets are expected to
have ≈ 63.2% of unique samples, while the remaining 36.8% being duplicates.
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K-fold cross-validation This strategy splits the data in K non-overlapping subsets that
are iteratively kept aside and used to estimate the prediction error of a model trained on
the remainder of the data. The final estimation of the prediction error on future data can
be done by averaging on the K estimates obtained during the cross-validation procedure.
The number of splits K is here limited by the cardinality of the dataset at hand. The
major advantage of a K-fold with respect to a Monte Carlo cross-validation strategy is
its much lighter computational workload. However, as the number of splits K cannot
be arbitrarily large, this method is not suitable for estimating the probability distribution
of the generalization error. When K = n the validation set has only 1 sample and this
strategy degenerates in the so-called leave-one-out cross-validation scheme.

3.4.2 Model selection strategies

As anticipated at the beginning of this section, hyperparameters tuning is still considered, by the
majority of the ML practitioners, more an art than a science.

Nevertheless, different statistically sound techniques to perform hyperparameters optimization
were presented over the years . At the time of writing, model selection is a hot-topic in ML
research. It often happens that several ML solutions adopted to tackle data science competitions17

are based on the same model. What really makes the difference, and defines the most competitive
prediction strategy, is to adopt an efficient and effective model selection strategy.

The model selection procedure applied in the data science challenges described in this thesis are
carried out by one of the strategies described below.

Grid-search cross-validation This is a very straightforward hyperparameter optimiza-
tion strategy which, for given ML model and cross-validation scheme, takes as input a
multi-dimensional grid of possible hyperparameter values and creates a different model
for each hyperparameter tuple. Then, for each model, a given performance metric (see
Section 3.4.3) is estimated by the adopted cross-validation scheme. The best hyperparam-
eter tuple is chosen as the one achieving top cross-validation prediction score. In other
words, this strategy systematically searches for the best hyperparameters across multiple
possibilities. This brute-force algorithm typically returns top performing models, but its is
very computational demanding.

Randomized-search cross-validation This can be considered as an alternative to stan-
dard grid-search. The main difference is that, instead of trying each possible hyperpa-
rameters tuple of a given grid, this strategy generates a fixed number of models each
having hyperparameters randomly sampled from given distributions. All these models
are then assessed using some cross-validated performance metric (see Section 3.4.3) and
the best hyperparameters tuple is chosen as the one corresponding to the top performing
model. Compared to standard grid-search, this algorithm may perform slightly worse, but
it comes with a way less demanding computational burden.

Interestingly, both these hyperparameters optimization strategies involve independently fitting
multiple models multiple times. In practice, this embarrassingly parallel problem is in practice
often accelerated by parallel computing strategies. This allows to reduce the computational

17 Such as the ones hosted on the Kaggle website: https://www.kaggle.com (last visit 2018-01).
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time needed to test several models exploiting the computing capabilities of modern multi-core
processors, or multi-node high-performance computing facilities, where available. More details
about computational requirements and implementation of modern ML models will be further
discussed in Section 3.5.

3.4.3 Performance metrics

Dealing with real-world datasets, it is very important to have a quantitative and robust way
to assess the performance of the applied algorithm. Of course, according to the learning task,
different performance metrics should be used. We have already met some of them in the
previous section. Here, a comprehensive overview of the most representative performance
metrics is provided. To ease readability, the performance metrics are organized according to the
corresponding learning task.

Regression The ideal metric for a regression task is a quantitative measure of how distant
the predictions ŷ are with respect to the actual output values y. The following list shows
different ways to measure such distance.

(i) Mean Absolute Error (MAE): this is probably the most intuitive way to assess the
regression performance. MAE is very well suited for single task regression and
time-series forecasting problems. MAE is scale-dependent, hence not suitable for
comparisons across different domains.

MAE(ŷ,y) =
1

n

n∑
i=1

|ŷi − yi| (3.37)

(ii) Mean Squared Error (MSE): widely applied to assess the regression performance,
MSE is a second order measure, hence it incorporate bias and variance of the model.
MSE of an unbiased estimator corresponds to its variance. MSE is scale-dependent.

MSE(ŷ,y) =
1

n

n∑
i=1

(ŷi − yi)2 (3.38)

(iii) Root Mean Squared Error (RMSE): this is simply defined as the square root of MSE.

RMSE(ŷ,y) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (3.39)

(iv) Residual Sum of Squares (RSS): this data discrepancy measure is mainly used to
measure the performance of least squares methods, as it corresponds to the square
loss function.

RSS(ŷ,y) =
n∑
i=1

(ŷi − yi)2 (3.40)

(v) Coefficient of determination (R2): this metric measures the proportion of the variation
of the output that is correctly predicted. This metric is not scale dependent, the best
possible score is R2 = 1.0, while a constant model predicting the average of the
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Table 3.3: A prototypical confusion matrix for a binary classification problem. The two classes are encoded as
±1, the number of true positive examples is n+, whereas the number of true negative examples is n−; hats denote
estimated values. The extension for multiclass problems is straightforward, once a positive class is defined.

True
value

Predicted value
n̂+1 n̂−1

n+1
True
Positive

False
Negative

n−1
False
Positive

True
Negative

output achieves R2 = 0.0. R2 is defined as below, where ȳ is the average output,
ȳ = 1

n

∑n
j=1 yj .

R2(ŷ,y) = 1−
∑n

i=1(ŷi − yi)2∑n
i=1(yi − ȳ)2

(3.41)

(vi) Explained Variance (EV): similar to R2, this metric is not scale-dependent and it
can be used to compare the outcome of different regression problems. EV is often
expressed as percentage, best possible value is 100%, lower is worse. EV is defined
as below, where Var(y) = 1

n

∑n
i=1(yi − ȳ)2.

EV(ŷ,y) = 1− Var(y − ŷ)

Var(y)
(3.42)

Classification Compared to regression, assessing the performance of a classifier seems
like a much trivial task. It turns out that this is actually not true; assessing the classification
performance by different metrics may let you draw very different conclusions about the
quality of ŷ. What follows is a list of most important classification metrics, where the
meaning of True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negatives (FN) is illustrated in the prototypical confusion matrix (for binary classification)
represented in Table 3.3.

(i) Accuracy: this is the most intuitive classification metric, it simply consists in the
fraction of correct predictions. The accuracy measure can be used for binary as well
as multiclass classification tasks. The best possible score is 1.0, while the expected
score of a random classifier is the fraction of the most represented class.

Acc(ŷ,y) =
1

n

n∑
i=1

1(ŷi = yi) (3.43)

(ii) Balanced accuracy: for heavily unbalanced binary classification problems this metric
is preferable with respect to the standard classification accuracy, as the balanced
accuracy of the random classifier is 0.5 by construction.

Bacc(ŷ,y) =
1

2
·
[

TP
TP + TN

+
TN

TN + FP

]
(3.44)
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(iii) Precision, also known as positive predictive value: this is the fraction of TP over
the total number of samples classified as positive. Precision is defined for binary
classification, but it can be extended to multiclass problems selecting the positive
class.

Prec(ŷ,y) =
TP

TP + FP
(3.45)

(iv) Recall, also known as sensitivity or True Positive Rate (TPR): this is the fraction of
TP over the total number of actually positive samples. Recall is defined for binary
classification, but it can be extended to multiclass problems selecting the positive
class.

Rec(ŷ,y) =
TP

TP + FN
(3.46)

(v) F1-score, also known as F-measure: this is the harmonic mean of precision and
recall and it can be used to control both of them at the same time.

F1(ŷ,y) =
2TP

2TP + FN + FP
(3.47)

(vi) Matthews correlation coefficient (MCC), also known as ϕ-coefficient: MCC values
ranges from −1 to +1, where MCC = 1 is the optimal classification, MCC = 0 is
the score achieved by the random classifier, even in cases of unbalanced problems,
and MCC = −1 is the inverse prediction. MCC is defined for binary classification,
but it can be extended to multiclass problems selecting the positive class.

MCC(ŷ,y) =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(3.48)

(vii) Area Under Receiver Operating Curve (AUC): the Receiver Operating characteristic
Curve (ROC) is a plot used to assess the performance of a binary classifier as its
classification threshold is varied. In ROC analysis, the horizontal axis is the False
Positive Rate (FPR), also known as fall-out, which is defined as

FPR(ŷ,y) =
FP

FP + TN
(3.49)

while the vertical axis is the recall, defined in Equation (3.46). An example of ROC
analysis is reported in Figure 3.22. The ROC of a random classifier is simply the
bottom-left to top-right diagonal Plots in the upper triangular area indicate good
classifiers. A fundamental metric for classification problems is the AUC. AUC
ranges from 0 to 1, where optimal classification leads to AUC = 1 and the random
classifier achieves AUC = 0.5.

Clustering Quantitatively measuring the output of a clustering algorithm is not a trivial
task, in particular when no ground truth on the clusters is provided. We report here a list
of the most common clustering performance metrics.

(i) Silhouette: the main characteristic of this metric is that it can be used when no
ground truth on the clustering is provided [Rousseeuw, 1987]. The silhouette
coefficient ranges from −1 to 1 and it is higher for compact and well-separated
clusters. Silhouette score around 0 are associated to partially overlapping clusters.
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Figure 3.22: An example of ROC analysis on the MNIST dataset [LeCun et al., 2010]. In this example a linear
SVM is trained on only 1% of the dataset, where 200 additional noisy features were added to make the classification
problem harder.

Let a(xi) be the average dissimilarity of xi with all the other points in the same
cluster; let also be b(xi) be the average distance of xi to all the points in the nearest
cluster. We can interpret a(xi) as a measure of point-to-cluster assignment, where
the higher a(xi) is, the more the point xi is correctly assigned. On the other hand,
b(xi) can be seen as a clusters separability index. The silhouette coefficient is defined
as follows.

s(xi) =
b(xi)− a(xi)

max[a(xi), b(xi)]
(3.50)

The quality of the achieved clustering can be graphically assessed visualizing the
silhouette coefficient for each sample, as in Figure 3.2318, or it can be globally
measured by its average score s̄ = 1

n

∑n
i=1 s(xi).

(ii) Homogeneity: a clustering satisfies the homogeneity property if each cluster contains
only members of a single class. In order to evaluate the homogeneity, the clustering
ground truth must be provided. In this sense, this can be seen as a supervised
measure.

(iii) Completeness: a clustering satisfies the completeness property if all members of
a given class are assigned to the same cluster. As for the homogeneity, this is a
supervised measure.

(iv) V-measure: this is simply defined as the harmonic mean of completeness and homo-
geneity.

(v) Adjusted Rand Index (ARI): this index is a chance normalized measure of the simi-
larity between two cluster assignments which is robust with respect to permutations
of the cluster identifier. This index ranges from −1 and 1, where −1 stands for
independent cluster assignments and 1 is perfect match. As it requires the clusters

18 Image created with ADENINE, see Chapter 4.
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ground truth, this is a supervised metric. Let y and ŷ be a ground truth and an
estimated cluster assignment, respectively, ARI is defined as follows.

ARI(ŷ,y) =
RI− E[RI]

max(RI)− E[RI]
(3.51)

where RI (the unadjusted Rand Index) is given by

RI =
g + h

ψ

where g is the number of pairs of elements that are in the same set both in y and ŷ,
h is the number of pairs of elements that are in different sets in both y and ŷ and ψ
is the total number of pairs (without ordering).

(vi) Adjusted Mutual Information (AMI): similar to ARI, this is an information theory-
based metric to measure the similarity between two cluster assignments. Let Y =
{y1, . . . ,yR} and Ŷ = {ŷ1, . . . , ŷS} be a ground truth and an estimated clustering
partitions, respectively, AMI is given by

AMI(Ŷ , Y ) =
MI− E[MI]

max[H(Ŷ ), H(Y )]− E[MI]
(3.52)

where H is the entropy and MI is the Mutual Information, defined as

MI(Ŷ , Y ) =
R∑
i=1

S∑
j=1

P (i, j) log

[
P (i, j)

P (i)P ′(j)

]
where P (i) is the probability that a randomly picked sample falls in yi, likewise for
ŷ and P ′(j). While, P (i, j) is the probability that a random sample falls in both
clusters yi, ŷj .

3.5 Hardware and software solutions

ML is currently experiencing a renewed wave of interest. Several new technologies, both
software and hardware, are specifically designed for ML applications. The number of ML
practitioners and researcher is growing fast and the number of problems that are now tackled
with ML is rapidly evolving. Therefore, a description of the current ML technological state of
the art is completely pointless as it would become outdated in no time.

Nevertheless, describing the philosophy that the most appreciated ML software solutions are
currently adopting is more interesting, as it may last longer. The vast majority of ML and data
science software libraries presents two stacks: a high level interface, mainly developed for
Python, R, Julia or Lua, and a set of highly optimized algorithms, written in C++ or Fortran,
that take care of the heavy computational workloads.

In modern ML algorithms, linear algebra operations are the most common and computational
demanding tasks to run. In order to carry them out as efficiently as possible ML software
developers are currently following two different strategies: (i) exploiting the computational
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Figure 3.23: An example of Silhouette analysis where a 10 clusters k-means runs on a randomly sampled 80% of
the MNIST dataset [LeCun et al., 2010].

power offered by multi-core CPUs by using optimized BLAS libraries (such as OpenBLAS or
Intel® MKL), or (ii) reducing the computational time by offloading the heavy linear algebra
operations on GPU cards.

The first solution is inherited from standard scientific computing and it is adopted from the
very beginning of ML diffusion. Instead, the second is a relatively recent solution and it is
currently a hot-topic in ML software development. This is mainly due to the diffusion of deep
learning applications that started to exponentially rise from 2012, when AlexNet [Krizhevsky
et al., 2012], a deep CNN implemented in CUDA, ranked first in the ImageNet large scale visual
recognition challenge achieving a dramatically improved top-5 accuracy with respect to the
previous editions. Since then, the interest of ML researcher toward GPU computing is heavily
grown.

Another key aspect that characterize ML applications is the high number of independent tasks
that need to be executed. As an example, we can think about hyperparameters optimization via
grid-search cross-validation (see Section 3.4.2), where a large number of independent models is
trained on the same set of data. In large-scale ML research, this computationally heavy workload
can be distributed on the computing nodes of HPC architectures. A popular library in ML
that exploit this parallel programming paradigm is Dask, a dynamic task scheduling manager
developed for large-scale data intensive applications (see Chapter 4).

All the data science challenge described in the second part of this PhD thesis are tackled with
Python-based software solutions. In particular, the numerical computations are carried out by
NUMPY19 and SCIPY20, while the data management is left to PANDAS21. Moreover, for the
vast majority of standard ML models (such as generalized linear models or ensemble learning

19 Source: http://www.numpy.org (last visit 2018-01).
20 Source https://www.scipy.org (last visit 2018-01).
21 Source https://pandas.pydata.org (last visit 2018-01).
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strategies) I took advantage of SCIKIT-LEARN [Pedregosa et al., 2011]22, which is one of the
most popular ML libraries available online. I also relied on custom solutions, such as L1L2PY23

and MINIMAL24, for ML models that are not available via SCIKIT-LEARN API.

22 Source http://scikit-learn.org (last visit 2018-01).
23 Soruce: https://github.com/slipguru/l1l2py
24 Source https://github.com/samuelefiorini/minimal
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"Machine learning isn’t mathematics or physics, where major advances can be
done with a pen and a piece of paper. It’s an engineering science."

François Chollet, Deep Learning with Python [Chollet, 2018]





4 ADENINE: a HPC-oriented tool for biological
data exploration

This chapter presents the first original contribution described in this thesis, which
is the development of a ML framework designed for biological data exploration and
visualization called ADENINE. The goal of this framework is to help biomedical data
scientists achieving a first and quick overview of the main structures underlying their
data. This software tool encompasses state of the art techniques for missing values
imputing, data preprocessing, dimensionality reduction and clustering. ADENINE
has a scalable architecture which seamlessly work on a single workstation as well
as on a high-performance computing facility. ADENINE is capable of generating
publication-ready plots along with quantitative descriptions of the results. The end
of the chapter presents an exploratory analysis of a biological dataset carried out
with ADENINE.

4.1 Exploratory data analysis

In biology, as well as in any other scientific domain, exploring and visualizing the collected
measures is an insightful starting point for every analytical process. For instance, the aim of a
biomedical study can be detecting groups of patients that respond differently to a given treatment,
or inferring possible molecular relationships among all, or a subset, of the measured variables.
In both cases, data scientists will be asked to extract meaningful information from collections of
complex and possibly high-dimensional measures, such as gene sequencing data, biomedical
imaging, patients assessment questionnaires, and so on.

In these cases, a preliminary Exploratory Data Analysis (EDA) is not only a good practice,
but also a fundamental step to run before further and deeper investigations can take place.
Representative examples are, for instance, Kaggle competitions (source: www.kaggle.com).
Kaggle is the most popular community-based data science challenge platform online. Browsing
through the hosted competitions, we can see that people run EDAs to get a grasp on the datasets
before testing their own prediction strategy.

Running EDA, despite being a valuable and widely applied data science practice, is definitely a
nontrivial task. Indeed, for a given dataset, it is usually unclear which algorithm will provide the
most insightful results. A common practice is to empirically test some of them and compare
their results from a qualitative/quantitative standpoint. However, applying EDA methods on
large-scale data can be burdensome or even computationally unfeasible.

In the last few years, a fair number of data exploration software and libraries were released.
Such tools may be grouped in two families: GUI-based and command-line applications.

Among the first group we recall Divvy [Lewis et al., 2013], a software tool that performs
dimensionality reduction and clustering on input data sets. Divvy is a light framework; however,
its collection of C/C++ algorithm implementations does not cover common strategies such as
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kernel principal component analysis or hierarchical clustering (see Section 3.3.2), it does not
offer strategies to perform automatic discovery of the number of clusters and it is only available
for macOS. One of the most popular GUI-based data analysis software is KNIME1. KNIME
has a rather user-friendly interface where creating EDA pipelines is as simple as drawing small
trees, where each node is a box representing some algorithm. KNIME is also suitable for
large datasets as it can distribute the computation on Oracle Grid Engine2 clusters. The main
drawback of such GUI-based softwares is that they do not allow to automatically generate EDA
pipelines. Moreover, plugging in hand-crafted algorithm is not easy. One possibility is to use
KNIME Meta Nodes, but programming relatively complex algorithms completely relying on
this tool can be cumbersome.

Nextflow3 is a command-line workflow framework that allows to easily distribute the compu-
tations of complex pipelines. One of the strength of Nextflow pipelines is that they are made
by chaining together differently many processes that can even be written in differently many
languages. Nextflow is not just a simple computational framework, it is also a proper Domain
Specific Language (DSL) which extends Groovy4. Although very powerful, Nextflow is more
tailored toward the bioinformatics and computational biology area than a more general biomedi-
cal data science audience. Using Nextflow, everything must be hard-coded, therefore plugging
in custom algorithms is as hard as using standard libraries. Similar considerations can be made
for Snakemake5, which is a pythonic workflow management system which is mainly tailored for
the parallelization of the analysis of DNA data.

The most notable project that spans between the two families is Orange6 [Demšar et al., 2013],
a data mining software suite that offers both visual programming front-end and Python APIs. In
the context of data exploration, Orange can be successfully employed. However, in order to test
different data analysis pipelines, each one must be manually created as it does not support their
automatic generation. Moreover, large data sets are difficult to analyze as it can run only on a
single workstation, lacking of distributed computing support.

4.2 ADENINE overview

This chapter introduces ADENINE7, a command-line Python tool for data exploration and
visualization that, combining different EDA methods, creates textual and graphical analytical
reports of large scale, data collections.

Missing data imputing, preprocessing, dimensionality reduction and clustering strategies are
considered as building blocks for data analysis pipelines. The user is simply required to specify
the input data and to select the desired blocks. ADENINE, then, takes care of generating and
running the pipelines obtained by all possible combinations of the selected blocks. Table 4.1
shows the list of building blocks available in the current release. Every algorithm implementation
in ADENINE is inherited, or extended, from SCIKIT-LEARN [Pedregosa et al., 2011] which, as
of today, is definitely the most complete ML open source Python library available. Moreover,

1 Source: www.knime.com.
2 Source http://www.univa.com/products/.
3source: www.nextflow.io.
4 Source http://groovy-lang.org/.
5 Source https://snakemake.bitbucket.io.
6 If I have to pick one, this is definitely my favorite – Ed.
7Source : http://slipguru.github.io/adenine.
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virtually any custom algorithm can be easily plugged in an ADENINE pipeline, as long as it is
implemented following the SCIKIT-LEARN standard, see Section 4.3.

Step Algorithm Reference

Imputing mean
median
most frequent
k-nearest neighbors [Troyanskaya et al., 2001]

Preprocessing

recentering
standardize
normalize
min-max

Dimensionality
reduction

principal component analysis (PCA) [Jolliffe, 2002]
incremental PCA [Ross et al., 2008]
randomized PCA [Halko et al., 2011]
kernel PCA [Schölkopf et al., 1997]
isomap [Tenenbaum et al., 2000]
locally linear embedding [Roweis and Saul, 2000]
spectral embedding [Ng et al., 2002]
multi-dimensional scaling [Borg and Groenen, 2005]
t-distributed stochastic
neighbor embedding [Van der Maaten and Hinton, 2008]

Clustering

k-means [Bishop, 2006]
affinity propagation [Frey and Dueck, 2007]
mean shift [Comaniciu and Meer, 2002]
spectral [Shi and Malik, 2000]
hierarchical [Hastie et al., 2009]
DBSCAN [Ester et al., 1996]

Table 4.1: Pipeline building blocks currently available in ADENINE.

ADENINE is developed with the aim of speeding-up EDAs on large biomedical data collections.
It has a scalable architecture, that allows its pipelines to seamlessly run in parallel as separate
Python processes on a single workstation or as separate tasks in a High-Performance Computing
(HPC) cluster facility. This remarkable feature allows to explore and visualize massive amounts
of data in a reasonable computational time. Moreover, as ADENINE makes large use of NUMPY
and SCIPY, it automatically benefits from their bindings with optimized linear algebra libraries
(such as OpenBLAS or Intel® MKL). Thanks to this hybrid parallel architecture, with ADENINE it
is possible to get a grasp on the main structures underlying some data in a reduced computational
time.

In ADENINE, any tabular data format (.csv, .tsv, .json, and so on) can be given as
input. Moreover, as genomic is one of the major sources of data in the biological world,
ADENINE also natively supports data integration with the NCBI Gene Expression Omnibus
(GEO) archive [Barrett et al., 2013]; which datasets can be simply retrieved by specifying their
GEO accession number.

4.3 Software description

ADENINE is developed around the data analysis concept of pipeline. An ADENINE pipeline is a
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sequence of the following fundamental steps:

1. missing values imputing;

2. data preprocessing;

3. dimensionality reduction and

4. unsupervised clustering.

For each task, is it possible to use either the off-the-shelf algorithms in Table 4.1, either any other
custom algorithm as long as it is implemented in Python as a SCIKIT-LEARN Transformer
object. A Transformer is simply a Python class having a fit_transform method, see
for instance snippet below.

class DummyTransformer(object):
"""A dummy transformer class."""

def fit(self, X, y):
"""Fit DummyTransformer."""
return self

def transform(self, X):
"""Transform X."""
return X

def fit_transform(self, X, y=None):
"""Fit to data, then transform it."""
return self.fit(X, y).transform(X)

SCIKIT-LEARN also provides an utility object called FunctionTransformer that returns a
Transformer given any arbitrary input callable (i.e. function), which can be very resourceful
for our purposes.

Data collected in biomedical research studies often present missing values and devising imputing
strategies is a common practice to deal with such issue [De Souto et al., 2015]. ADENINE offers
an improved version of the Imputer class provided by SCIKIT-LEARN. In addition to the pre-
existent feature-wise "mean", "median" and "most_frequent" strategies, this extension
adds "nearest_neighbors", i.e. an implementation of the k-nearest neighbors imputing
method proposed for microarray data in [Troyanskaya et al., 2001].

Collecting data from heterogeneous sources may imply dealing with variables lying in very
different numerical ranges and this could have a negative influence on the behavior of further data
analysis techniques. To tackle this issue ADENINE offers different strategies to preprocess data,
such as re-centering, standardizing or rescaling. We recall here that any other preprocessing step,
such as feature exclusion, log-transformation and so on, can be implemented as Transformer
to be easily chained in an ADENINE pipeline.

ADENINE includes a set of linear and nonlinear dimensionality reduction and manifold learning
algorithms that are particularly suited for projection and visualization of high-dimensional
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data. Such techniques rely on the fact that it is often possible to decrease the dimensionality
of the problem estimating a low-dimensional embedding in which the data lie, as described in
Section 3.3.2.

Besides offering a wide range of clustering techniques, ADENINE implements strategies and
heuristics to automatically estimate parameters that yield the most suitable cluster separation.
The selection of the optimal number of clusters in centroid-based algorithms follows the B-
fold cross-validation strategy8 presented in Algorithm 1, where S(X, ŷ) is the mean silhouette
coefficient of the input samples, see Equation (3.50).

Algorithm 1 Automatic discovery of the optimal clustering parameter.
1: for clustering parameter k in k1 . . . kK do
2: for cross-validation split b in 1 . . . B do
3: X tr

b , X
vld
b ← b-th training, validation set

4: m̂← fit model on X tr
b

5: ŷ ← predict labels of Xvld
b according to m̂

6: sb ← evaluate silhouette score S(Xvld
b , ŷ)

7: end for
8: S̄k = 1

B

∑B
i=1 si

9: end for
10: kopt = argmax k(S̄k)

For affinity propagation [Frey and Dueck, 2007] and k-means (see Section 3.3.1.1) clustering pa-
rameters can be automatically defined ("preference" and "n_clusters", respectively).
Mean shift [Comaniciu and Meer, 2002] and DBSCAN [Ester et al., 1996] offer an implicit
cluster discovery. For hierarchical and spectral clustering (see Sections 3.3.1.3 and 3.3.1.2), no
automatic discovery of clustering parameters is offered. However, graphical aids are generated
to evaluate clustering performance such as dendrogram tree and a plot of the eigenvalues of the
Laplacian of the affinity matrix9, respectively.

In order to speed-up EDA on large-scale datasets, ADENINE exploits two main parallel computing
paradigms: multiprocessing and multithreading. The latter is provided by the use of optimized
linear algebra libraries of NUMPY and SCIPY and it comes for free. So, let us focus on
multiprocessing. This simply consists in dividing the workload among different tasks which can
possibly run on different nodes of an HPC infrastructure. The input of each ADENINE pipeline
is the raw dataset to which successive transformations and algorithms are applied. Therefore,
each pipeline is independent and this makes ADENINE suitable for the application of simple
distributed computing schemes. ADENINE offers different job distribution strategies.

1. When ADENINE is running on a single workstation (or on a single node of an HPC
architecture), each pipeline is parallelized by using the standard multiprocessing Python
library. Each pipeline run is mapped to a job. All the jobs are organized in a queue and the
multiprocessing library automatically assigns the cores available to the next job. In this
way, ADENINE is capable of exploiting all the cores of the machine in which it is running.

2. When an HPC architecture is available, ADENINE is capable of distributing its pipelines
across multiple nodes. In particular, the following two options are available.

8 We call it B-fold instead of K-fold, as in Section 3.4.1, to avoid confusion with the number of clusters, which
is indicated with the letter "K" as well.

9 See the eigengap heuristics [Von Luxburg, 2007].
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MPI ADENINE implements an MPI-based10 master/slave job distribution strategy.
A single master task T0 creates a queue of jobs Q = {J1, . . . , JM}, where M is the
number of pipelines. The jobs inQ are assigned to a pool of slaves S = {T1, . . . , TS}.
Once the slave Tj (with j > 0) has completed its task, it communicates the results
to T0 and becomes idle. At this point, T0 assigns to Tj the next task in Q. This
procedure is repeated several times, until Q is empty. The number of slaves S can
be controlled by the user with the parameter np of the mpirun command. S must
be carefully chosen according to the size of the dataset, the number of pipelines
generated and the available hardware. Thanks to MPI, the assignment of each task
to its node is completely transparent to the user. When all the computation is done,
the results are collected in a single result folder.

Dask ADENINE can also exploit the Dask parallel computing library11. While MPI is
a recognized standard in the HPC world, Dask is relatively recent project developed
for dynamic task scheduling focused on big data applications. In particular, ADENINE
exploits the Dask-based backend of Joblib12, which is the parallel computing library
mainly used in SCIKIT-LEARN to parallelize independent tasks. Dask can be used
by simply running a dask-scheduler executable process on one node and the
dask-worker executable on several processes, which can run on other nodes
of the HPC architecture. After an initial hand-shake between the scheduler and
its workers, a list of jobs to run can be sent to the scheduler which automatically
distributes the workload among its workers and collects the results. Using Dask in
ML applications, where communications between tasks is usually negligible, can be
easier with respect to MPI.

4.4 Usage example

In this section we show how ADENINE can be used to perform two EDAs on a gene expression
microarray data set obtained from the GEO repository (accession number GSE87211). This data
set was collected in a recent medical study that aimed at understanding the underlying mechanism
of colorectal cancer (CRC) as well as identifying molecular biomarkers, fundamental for the
disease prognostication. It is composed of 203 colorectal cancer samples and 160 matched
mucosa controls. The adopted platform was the Agilent-026652 Whole Human Genome
Microarray, which was used to measure the expression of 34127 probe sets.

ADENINE offers a handy tool to automatically download the data set from the GEO repository
given only its accession name. It also let the user select phenotypes and/or probe sets of interest.
Given these preferences, ADENINE automatically converts the data set from the SOFT format to
a comma-separated values text file. To download the remote GEO data set specifying the tissue
type as phenotype of interest we used the following command.

$ ade_GEO2csv.py GSE87211 --label_field characteristics_ch1.3.tissue

This automatically creates GSE87211_data.csv and GSE87211_labels.csv which
contain gene expression levels and tissue type of each sample, respectively.

10Source: http://mpi-forum.org/.
11Source: https://dask.pydata.org.
12 Source: https://pythonhosted.org/joblib/.
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The first EDA aims at stratifying the samples according to their tissue type (mucosa or rectal
tumor) this can be performed by executing the following command.

$ ade_run.py config.py

Where config.py is a configuration file which should look like the snippet below.

from adenine.utils import data_source
data_file = 'GSE87211_data.csv'
labels_file = 'GSE87211_labels.csv'
X, y, feat_names, index = data_source.load(
'custom', data_file, labels_file, samples_on='rows', sep=',')
step1 = {'Recenter': [True]}
step2 = {'KernelPCA': [True, {'kernel': ['linear', 'rbf', 'poly']}],

'Isomap': [True, {'n_neighbors': 5}]}
step3 = {'KMeans': [True, {'n_clusters': ['auto', 2]}]}

Each step variable refers to a dictionary having the name of the building block as key and a
list as value. Each list has a on\off trigger in first position followed by a dictionary of keyword
arguments for the class implementing the corresponding method. When more than one method
is specified in a single step, or more than a single parameter is passed as list, ADENINE generates
the pipelines composed of all possible combinations.

The configuration snippet above generates eight pipelines with similar structure. Each one has
samples centered in zero, then projected on a 2D space by isomap or by linear, Gaussian or
polynomial kernel PCA. k-means clustering with K = 2 and with automatic cluster discovery is
eventually performed on each dimensionality-reduced data set, as in Algorithm 1. Results of
such pipelines are all stored in a single output folder. Once this process is completed, plots and
reports can be automatically generated running the following command.

$ ade_analysis.py results/ade_output_folder_YYYY-MM-DD_hh:mm:ss

The aim of the second EDA is to uncover the relationships among a set of genes known from
the literature to be strongly associated with CRC. Specifically this signature is composed of
the following genes: APC, KRAS, CTNNB1, TP53, MSH2, MLH1, PMS2, PTEN, SMAD4, STK11,
GSK3B and AXIN2 [Schulz, 2005]. We also considered probe sets measuring expression level of
the same gene, and we labelled them with a progressive number. Three partially overlapping
sublists compose this signature.

S1) Genes fundamental for the progression of CRC (i.e. APC, KRAS, CTNNB1, TP53).

S2) Genes relevant in the Wnt signaling pathway, which is strongly activated in the first phases
of CRC (i.e. APC, CTNNB1, GSK3B, AXIN2).

S3) Genes involved in hereditary syndromes which predispose to CRC (i.e. APC, MSH2, MLH1,
PMS2, PTEN, SMAD4, STK11) [Schulz, 2005].

A reduced version of the GEO data set that comprises only such genes can be easily created call-
ing ade_GEO2csv.pywith the option --signature GENE_1,GENE_2,...,GENE_N.
Moreover, the option --phenotypes P_1,P_2,...,P_M can be used to keep only mu-
cosa or rectal tumor samples. To run such experiment, one simply needs to select and activate
the hierarchical clustering building block and to follow the same steps presented above.
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4.5 Results

In the first EDA, we compared the clustering performance achieved by the eight ADENINE
pipelines and we reported in Figure 4.1 an intuitive visualization of the results achieved by
the top three, evaluated in terms of silhouette score [Rousseeuw, 1987]. As expected, the top
performing pipelines show a clear separation between the two sample groups, as the k-means
algorithm devises a domain partitioning that is consistent with the actual tissue types.

For the second EDA, the relationships among the probe sets corresponding to the genes of the
signature are separately explored learning a different hierarchical clustering tree for mucosa
(Figures 4.2a) and CRC samples (Figure 4.2b), separately. The two trees are learned from
different tissues, nevertheless they show some remarkable similarities. For instance, the pairs
TP53-TP53.1 and MSH2-PMS2.1 always share a common parent. Interestingly, the first is a
relationship between probe sets of the same gene, and the second is confirmed in literature, as
MSH2 and PMS2 are both involved in hereditary non-polyposis CRC, a syndrome that predisposes
for CRC. Moreover, two probe sets of the the genes of S1, namely APC and CTNNB1, are
consistently close to the root of the two trees. This suggest that the expression level of these two
genes highly differs from the others. Two interesting differences between the two trees can also
be noticed. First, most of the elements of the sublist S3, which contains genes that enhance the
risk of developing CRC, tend to be grouped together in Figure 4.2b, while the same observation
cannot be done for Figure 4.2a. Secondly, probe sets of the genes belonging to sublists S2 and
S3 tend more to be closely connected in Figure 4.2b than in Figure 4.2a.

4.6 Conclusions

In this Chapter we presented ADENINE, a biomedical data exploration and visualization tool that
can seamlessly run on single workstations as well as on HPC clusters. Thanks to its scalable
architecture, ADENINE is suitable for the analysis of large and high-dimensional data collections,
that are nowadays ubiquitous in biomedicine. This software natively supports the integration
with the GEO repository. Therefore, a user provided with the accession number of the data set
of interest can select target phenotypes and genotypes and ADENINE takes care of automatically
downloading the data and plugging them into the computational framework. ADENINE offers
a wide range of missing values imputing, data preprocessing, dimensionality reduction and
clustering techniques that can be easily selected and applied to any input data. We showed
ADENINE capabilities performing two EDAs on a CRC gene expression data set. From the
obtained results we can observe that a clear discrimination between CRC and control samples
can be achieved by unsupervised data analysis pipeline. Moreover, a meaningful description of
the relationships among the group of genes strongly associated with CRC can be represented as
hierarchical trees.

ADENINE is developed for biomedical data scientists, with it can be used for any kind of
tabular data. Hence meeting the needs of a more general purpose class of scientists that aim at
understanding complex high-dimensional data.
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(a) (b)

(c)

Figure 4.1: Three different 2D projections of the samples of the GEO gene expression data set used in this
work. Projections on the left (a), middle (b) and right (c) panes are obtained via linear PCA, Gaussian PCA and
isomap, respectively. The color of each point corresponds to the actual tissue type, while the background color is
automatically learned by the k-means clustering algorithm. White hexagons correspond to cluster centroids.
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(a)

(b)

Figure 4.2: An example of hierarchical trees visualization learned by two ADENINE pipelines on mucosa (a) and
CRC (b) samples. Each probe set is color coded according to the corresponding sublist. This visualization provides
insights on the underlying structure of the measured gene expression level.

74



5 Machine learning-based molecular aging clock

In this chapter, we study the changes of energy metabolism during the physiological
aging. To this aim we measure a set of molecular biomarkers from peripheral blood
mononuclear cells obtained from healthy volunteers with age between 8 and 106
years. With such biomarkers it is possible to quantify oxidative phosphorylation
efficiency, ATP/AMP ratio, lactate dehydrogenase activity and level of malondi-
aldehyde. After a thorough preliminary data exploration, we develop a regression
model that, starting from such measures, is capable of predicting the age of an
individual.

5.1 Introduction: aging and metabolism

In this chapter we present the first biomedical data science challenge of the thesis. This consists
in devising a ML model capable of predicting the age of an individual starting from a set of
molecular biomarkers collected from 118 volunteers1.

This chapter describes the extensive EDA and the thorough model selection procedures which
lead to the development of the final predictive model. Before diving into the details of the
experimental setup, let us see some preliminary biological notions of how aging influences our
metabolism.

Aging is a multifactorial process characterized by a progressive decline of physiological func-
tions [Campisi, 2013] which leads to an increment of vulnerability and the relative risk of disease
and death [Bratic and Trifunovic, 2010].

Aging represents the primary risk factor for several chronic pathologies, such as cancer, car-
diovascular disorders, diabetes and neurodegeneration [López-Otín et al., 2013]. Different
molecular pathways seem involved in the aging process, including deregulated autophagy,
mitochondrial dysfunction, telomere shortening, oxidative stress, systemic inflammation and
metabolism dysfunction [López-Otín et al., 2013; Riera et al., 2016].

For several years, aging has been considered the result of damages accumulation due to an
excessive production of reactive oxygen species. A recent paper, [Thompson et al., 2017]
proposed an involvement of epigenetic modifications. This led to the development of an aging
clock based on the degree of DNA methylation, which increases with age [Horvath, 2013].

The Mitochondrial Theory of Aging [Harman, 1972; Sastre et al., 2000] derives from the
concept that mitochondria are the main source of oxidative stress [Cadenas and Davies, 2000;
Turrens, 2003; Dai et al., 2014] and the fact that mitochondrial DNA displays a great rate of
mutation together with a less efficient repair machinery with respect to nuclear DNA [Short
et al., 2005]. After some mitochondrial DNA mutation threshold, irreversible oxidative damages
propagate throughout the genome. This phenomenon leads to dysfunction of mitochondrial
metabolism [Genova et al., 2004] accelerating the oxidative stress production [Wallace, 2010].

1 This was referred to as the aging problem throughout Chapter 3.
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As shown in [McKerrell et al., 2015], mononuclear cells isolated from peripheral blood, are an
excellent model to evaluate the metabolic status of an entire organism. In fact, the molecular al-
terations identified in peripheral blood cells of aged normal subjects are known to be statistically
correlated with degenerative diseases [Jaiswal et al., 2014].

5.2 Data collection

The study presented in this chapter is performed on mononuclear cells isolated from peripheral
blood obtained from a population of 118 volunteers2 with age between 8 and 106 years. In
order to preserve the collected blood samples, the vacutainer tubes were transferred into the
laboratory and analyzed within 24 hours from collection. All chemicals were purchased from
Sigma Aldrich (St. Louis, MO, USA) and Ultrapure water (Milli-Q; Millipore, Billerica, MA,
USA) was used throughout. All other reagents were of analytical grade. Data collection and
further analysis were managed by a team of specialized biologists at the IRCCS Istituto G.
Gaslini, Genoa, IT. The following quantities were measured on each blood sample.

ATP This complex molecule is the main responsible for storing and exchanging energy in
cells and it is often referred to as the energy currency of the cell. From a chemical point of
view, ATP is made of an adenine base attached to a ribose sugar, which, in turn, is attached
to three phosphate groups. ATP is heavily involved in the cellular aerobic respiration
pathway. High levels of ATP correspond to high energetic state. ATP intracellular
concentration, measured in mM/ml, is an important molecular biomarker to evaluate the
energetic state of a cell.

AMP This molecule is one of the main derivatives of ATP. In fact, AMP ca be obtained
when two phosphate groups are removed from ATP, releasing energy that can be trans-
ferred to other molecules to trigger further cell reactions. So, when a cell is in good health,
i.e. high energetic level, AMP is low and ATP is high. AMP intracellular concentration
is measured in mM/ml and it is considered as an important molecular biomarker for the
cellular energetic state. ATP and AMP quantification was based on the enzyme coupling
method presented in [Ravera et al., 2013].

ATP/AMP ratio Measuring ATP and AMP cellular concentration may not be enough to
predict the age of an individual by assessing the energetic state of the peripheral blood
cells. A more representative and interesting quantity can be their ratio, so ATP/AMP
ratio was calculated and added to the feature set.

Oxygen consumption Aerobic cellular respiration requires oxygen to produce ATP.
Therefore, the cellular oximetric level is an important molecular biomarker for the
metabolic assessment. Oxygen consumption was measured with an amperometric elec-
trode in a closed chamber, magnetically stirred, at 37°C. The oxygen consumption measure,
expressed in nmol O2/(min ·mg), is repeated in two versions, adding two different sub-
strates, i.e.: (i) a combination of 5 mM pyruvate with 2.5 mM malate or (ii) 20 mM
succinate. In the first oximetric measure, which from now on will be referred to as
CO-PYR/MAL, the substrate stimulates the pathway composed by Complexes I, III and

2 All participants provided their written informed consent to participate in this study, which was approved by
the Ethics Committee of the IRCCS Istituto G. Gaslini, Genoa, IT.
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Table 5.1: The 12-dimensional feature set.

Measure Feature name

Gender of the individual GENDER

ATP intracellular concentration ATP
AMP intracellular concentration AMP
ATP/AMP ratio ATP/AMP
Oxygen consumption under pyruvate + malate CO-PYR/MAL

Oxygen consumption under succinate CO-SUCCINATE

ATP synthesis under pyruvate + malate ATP-PYR/MAL

ATP synthesis under succinate ATP-SUCCINATE

P/O ratio under pyruvate + malate PO-PYR/MAL

P/O ratio under succinate PO-SUCCINATE

Glycolytic flux LDH
Lipid peroxidation MDA

IV. On the other hand, in the second oximetric measure, which we call CO-SUCCINATE,
the substrate activates the pathway composed by Complexes II, III and IV, as described
in [Cappelli et al., 2017].

ATP synthesis We already covered the importance of ATP to evaluate the metabolic state
of cells. So, we also measured ATP synthesis, expressed in nmol ATP/(min · mg), by
the highly sensitive luciferin/luciferase method. The same two substrates used for the
oximetric evaluation were adopted. In the remainder of the chapter we refer to such
measures as ATP-PYR/MAL and ATP-SUCCINATE, accordingly.

P/O ratio In order to assess the efficiency of oxidative phosphorylation, we also evaluated
the ratio between ATP synthesis and oxygen consumption under both the substrates. We
call the two obtained features as PO-PYR/MAL and PO-SUCCINATE, respectively.

Glycolytic flux In order to assay the glycolytic flux, we measured the activity of the
Lactate Dehydrogenase (LDH), expressed in U/mg. This enzyme is important to evaluate
the other metabolic pathway not mentioned so far, i.e. the anaerobic respiration.

Lipid peroxidation The uncoupled oxidative phosphorylation metabolism is often as-
sociated with an increment in the oxidative stress production [Dai et al., 2014], which
induces damages on proteins, nucleic acid and membrane. Therefore, we evaluated the
level of malondialdehyde (MDA) as a marker of lipid peroxidation. The measure of MDA,
expressed in µM/mg, follows the protocol in [Ravera et al., 2015].

The categorical feature GENDER is encoded as [0, 1] for male ad female, respectively. Each
example of this dataset is then described by the 12-dimensional feature set summarized in
Table 5.1.

5.3 Exploratory data analysis

In this section we investigate the relationship between the collected molecular biomarkers and
the age of 118 healthy individuals which volunteered to participate to this study. Unfortunately,
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Figure 5.1: Age distribution of the 118 individuals involved in the study.

7 subjects presented missing values (in the features LDH and GENDER). These subjects were
excluded from EDA.

The data collection process entirely ran on voluntary basis. So, it is interesting to observe the
resulting age distribution. As we can see from the histogram in Figure 5.1, the decades of age
are not equally represented. Ideally, we would have collected samples uniformly distributed
with respect to their age, but this was unfortunately not possible. Therefore, in this data science
challenge we shall adopt robust resampling schemes in order to ameliorate possible biases
induced by this phenomenon.

Next, we aim at investigating how the distribution of the molecular biomarkers is influenced
by the age of individuals. To this aim we perform a preliminary univariate analysis. We group
the measures per decade and we represent their distribution with boxplots, see Figure 5.1. As
we can see, most of the biomarkers are clearly influenced by the age. Let us start the visual
inspection from the variables related to the mitochondrial aerobic metabolism, i.e. Figure 5.2a
to 5.1i.

In particular, focusing our attention on the ATP/AMP ratio (Figure 5.1i), which is known to
be an energy status monitor of the cells, we can see that the values decrease progressively with
the decades, with a drastic drop between 40 and 50 years. Moreover, from an observation of
ATP and AMP intracellular concentration (Figure 5.1g and Figure 5.1h, respectively) we can
sense how the decrease of the ATP/AMP ratio is mainly due to the growth of AMP in the aging
process. Similar considerations can be made for the efficiency of oxidative phosphorylation,
evaluated by PO-PYR/MAL and PO-SUCCINATE. In particular, PO-PYR/MAL oscillates around
its reference level of 2.5 nmol O2/(min · mg) [Hinkle, 2005] in subjects having from 0 to 30
years starting to decrease afterwards. Moreover, PO-PYR/MAL, similarly to ATP/AMP, is
fairly stable at its lowest level for elderly (age ≥ 70).

Let us now focus on the activity of LDH (Figure 5.1k). As we can see, this metabolic biomarker
almost monotonically increases with the aging process. This is mainly due to the fact that
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LDH is involved in the glycolysis metabolism, which is a metabolic pathway chosen by the
cell to compensate its altered aerobic metabolism. Finally, let us focus on the distributions
of MDA (Figure 5.1j). As expected, MDA has an opposite trend with respect to ATP/AMP
and PO-PYR/MAL. In fact, it increases from 21 to 80 years. This can be due to the increased
oxidative stress production induced by uncoupled oxidative phosphorylation [Dai et al., 2014].
MDA is more stable for elderly, mainly because of their physiological metabolic slowdown.

So far, we have investigated the relationship between the collected measures and the age of the
individuals. Let us now focus on the relationship between the variables themselves. In order
to investigate possible collinearities in the data, we can evaluate for each pair of variables the
Pearson correlation coefficient

ρ(a, b) =

∑n
i=1(ai − ā)(bi − b̄)√∑n

i=1(ai − ā)2
∑n

i=1(bi − b̄)2

where c̄ = 1
n

∑
i=1 ci is the empirical mean any variable c. To ease the visualization, we restrict

this analysis to a subset of 5 molecular biomarkers, namely: PO-PYR/MAL, PO-SUCCINATE,
ATP/AMP, LDH, MDA. This results in a symmetric 5 × 5 correlation matrix. We split the
data in 5 groups, one for each two-decades, and we represent the collinearity in each group with
a symmetric heatmap in which dark red cells are associated with strong positive correlation,
white cells represent no correlation and dark blue cells correspond to strong negative correlation,
see Figure 5.2. Thanks to this visualization, we can see that ATP/AMP and PO-PYR/MAL
have positive correlation until the 6th decade, while showing a negative correlation for elderly.
This suggests that, up to approximately 60 years, most of the cellular energy is produced by the
mitochondria, while in older subjects this contribution decreases. The same observation can
be made for ATP/AMP and PO-SUCCINATE, although in this case it is less evident. On the
other hand, the correlation between ATP/AMP and MDA or LDH activity is negative in young
subjects, while flipping it sign after approximately 60 years. This is in line with the cellular need
to increase the anaerobic metabolism that compensates the inefficiency of aerobic metabolism
and the increment of oxidative stress which usually occurs for elderly.

Let us now try to visualize the collected data in a scatter plot. In order to do that, we shall first
reduce the dimensionality of the problem, as described in Section 3.3.2. In this EDA, most of the
variables showed strong inner linear correlation and correlation with the age. We then reduce the
dimensionality of the problem following a two step pipeline: (i) data standardization followed
by (ii) linear PCA. Our hope is to recognize some quasi-linear temporal structure. The resulting
scatter plot is presented in Figure 5.3. Each point in the scatter plot represents a subject that is
color coded according to the age. Let us read the image from left to right. As we can see, it looks
like the subjects are partially grouped according to their age. In the top left corner of Figure 5.3
subjects with approximately 20 years (or less) are clustered together. At the center bottom of
the plot we can recognize individuals around their thirties. Then, following an approximately
linear law from center bottom to top right we can see that the age increases until reaching the
elderly, color coded in dark red. The insightful data visualization in Figure 5.3, lets us sense that
it is possible to devise a supervised strategy to predict the age of a given individual from the
collected molecular biomarkers.
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(g) (h)

(i) (j)

(k)

Figure 5.1: Distribution of the collected molecular biomarker values grouped per decade: CO-PYR/MAL panel
(a), CO-SUCCINATE panel (b), ATP-PYR/MAL panel (c), ATP-SUCCINATE panel (d), PO-PYR/MAL panel (e),
PO-SUCCINATE panel (f), ATP panel (g), AMP panel (h), ATP/AMP panel (i), MDA panel (j) and LDH panel
(k).
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(a) (b)

(c) (d)

(e)

Figure 5.2: The 5×5 symmetric heatmaps representing the Pearson correlation coefficient of the collected variables
in the 5 age groups: [1− 20] (a), [21− 40] (b), [41− 60] (c), [61− 80] (d), > 81 (e).
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Figure 5.3: Scatter plot obtained after projecting the data in a 3D space via linear PCA. The color-coding represents
the age of the individuals.

5.4 Metabolic age prediction

This section presents the development of the regression model for the age prediction task
presented in this chapter.

To this aim, we imputed the small fraction of missing values following the k-nearest neighbors
(with k = 3) proposed in [Troyanskaya et al., 2001]. So, the development of the predictive
model can take advantage of the total number of individuals (n = 118).

The fist question we pose is whether the collected dataset is large enough for our purpose, or
if we should keep enrolling new volunteers. Providing a definitive answer for this question is,
in general, unfeasible. Nevertheless, we can investigate toward this direction by evaluating the
so-called learning curves [Murphy, 2012].

Such graphical insight is obtained by iteratively fitting a given regression model on increasingly
large chunks of the entire dataset. Horizontal axis corresponds to the number of training samples,
while vertical axis represents mean values of some cross-validated regression metric, such
as MAE. The shape of the obtained learning curve provides relevant information about the
prediction problem at hand. For instance, if the cross-validation error keeps decreasing we
may sense that there may be more to learn about the input/output relationship and that the
regression performance would benefit from a larger dataset. Conversely, if the cross-validation
error initially decreases, eventually reaching a plateau, it may be that the number of samples
is large enough and collecting more data would not or would only marginally improve the
prediction performance. This may happen mainly because:

1. the available feature set only partially explains the input/output relationship and more/bet-
ter variables should be observed to improve the regression performance;

2. the selected model is incapable of capturing some of the input/output relationship hidden
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in the data;

3. data are too noisy.

Learning curves plot gives also information on the amount of bias and variance affecting a given
predictive model. Four our purpose, we rely on the use of standard Ridge regression model (see
Section 3.1.1.2) and 100-splits Monte Carlo cross-validated MAE to evaluate each point of our
learning curves (see Section 5.5).

In EDA we realized that most of the input variables show a quasi-linear relationship with the
age. Moreover, we also realized that many molecular biomarkers present a strong pairwise linear
correlation. Therefore it seems sensible to investigate whether a polynomial feature expansion
of degree D could be beneficial for the age prediction. To this aim, we devised the following
experimental design.

A cross-validated estimate of the empirical distribution of four regression scores: R2, MAE,
MSE and EV (defined in Section 3.4.3) is evaluated on 500 Monte Carlo random splits. This
strategy consists in iteratively extracting ntrain = 0.75 · n random samples multiple times3. A
supervised learning model is fitted on each obtained training set. Once the model is fitted, the
four regression scores are evaluated on the remaining ntest = n− ntrain samples.

The adopted supervised model consists in a pipeline having two steps: (i) data standardization
and (ii) regression model fitting. The first step simply consists in subtracting the mean from each
feature and dividing them by their standard deviation. Nesting this preprocessing step inside the
Monte Carlo cross-validation scheme improves the empirical estimate of the regression scores.
In fact, for each cross-validation iteration, the mean and the standard deviation are estimated
from the training set only. This allows to have, each time, a genuine score, estimated only on
data points that were never seen before by the current supervised regression pipeline.

Moreover, for the second step of the pipeline we adopted the following regression models:
(a) Ridge, (b) Lasso, (c) Elastic-Net, (d) Linear SVM, (e) RBF Kernel SVM, (f) RBF Kernel
Ridge, (g) Random Forests, (h) Gradient Boosting and (i) Multilayer Perceptron. The free
parameters of each model, including the degree of the polynomial expansion D, are optimized
via grid-search 5-fold cross-validation.

This Monte Carlo cross-validated procedure is evaluated two times: with and without a prelimi-
nary polynomial feature expansion. We expect linear models to benefit more from the polynomial
expansion than the nonlinear ones. Then, for each model and for each metric, we evaluated
the p-value obtained from the one-tailed two-sample Kolmogorov–Smirnov test [Everitt and
Skrondal, 2002]. This let us understand in which cases the scores obtained after a polynomial
expansion are significantly better than their counterpart, obtained only with linear features.

The final goal of this section is to find the best age prediction model. Therefore, it is important to
understand which are the most predictive variables. So, as a side result of the previous analysis,
we ranked the features according to their selection frequency. The most important features are
more likely to be selected more often. This strategy is known in literature as selection stability
framework (see Section 3.2) and, for our purposes, it let us get a preview of which features will
likely appear in the final model.

Finally, the proposed age predicting model is achieved by fitting the best regression strategy on a

3 The fraction of data to use for training is chosen accordingly to the learning curve in Figure 5.4a, as described
in Section 5.5.
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training set obtained by randomly extracting 75% of the whole dataset. This model is eventually
tested, by the usual metrics, on the remaining 25%.

5.5 Results

Figure 5.4a shows the obtained learning curves. Interestingly, the average cross-validation
error (blue line), reaches a plateau around MAE ≈ 9 years a little bit after 80 samples. This
suggests that adding more training examples would not significantly improve the predictions.
This justifies the choice of dimensioning the Monte Carlo training sets as 75% of the input
data, as described in Section 5.4. Moreover, we can see that the gap between training and
cross-validation error becomes smaller as the number of sample increases. This suggests that
the linear regression model is generalizing well. We can also notice that the training variance
decreases from left to right. This suggests that, as expected, increasing the number of training
examples induces a stabilization effect on the learned function.

We repeated the learning curve experiment after a degree D = 2 polynomial feature expansion,
see Figure 5.4b. At a first glance, we can see two main differences: (i) at the right hand side of
the plot, the cross-validation curve (blue line) is still, slowly, decreasing as it does not reach any
plateau, (ii) the gap between training and cross-validation curves is wider. Therefore, we suspect
that increasing the number of collected sample would significantly improve the regression
performance in this case. For consistency with the previous case, we opted to anyway randomly
extract training sets of 75% of the dataset after the polynomial expansion as well. What we
describe here is a real-world case study and, at the time of writing, expanding the data collection
is unfortunately not possible. Nevertheless, we strongly believe that it would be beneficial for
the study, therefore we mark this as future work.

Table 5.2 shows the results of the model assessment performed as described earlier. Focusing
on linear features (top half of the table), we can see that Random Forests is the top performing
method (in bold). We can also notice that RF is immediately followed by SVM with RBF
kernel. This suggests that some nonlinear input/output relationship is hidden in the data. So, we
shall investigate whether a simple 2nd-degree polynomial expansion exposes such hidden data
structure.

Looking at the bottom half of the Table 5.2, we can see that all the linear models benefit from
the polynomial expansion. Quite surprisingly, two linear methods, namely linear SVM and the
Lasso, even outperform Random Forests, according to almost every metric.

Table 5.3 highlights the cases in which the metrics evaluated after the polynomial expansion are
statistically significantly better than their counterpart evaluated with linear features only (with
p-value < 0.01). As expected, the polynomial expansion is beneficial for all the linear method,
while it is not for almost every nonlinear method. A separate comment can be made for MLP. In
this context, given the reduced number of training samples, we opted for a shallow network with
only one hidden layer. The number of hidden units in the hidden layer is considered as a free
parameter of the model and it is therefore chosen via grid-search cross validation. As we can see
from Table 5.2, MLP is consistently the worst performing regression method. This can partially
be explained with the fact that neural networks are known to be more powerful when trained
with large datasets, which is not the case. Interestingly, MLP is the only nonlinear method
that statistically significantly benefits from the polynomial feature expansion. This result looks
quite surprising at a first glance, but actually we can speculate that the effect of the polynomial
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(a)

(b)

Figure 5.4: Learning curves obtained on the aging problem by fitting a Ridge regression model on 100 Monte
Carlo random splits and evaluating the MAE on each training (orange line) and test (blue line) sets. Panel (a) shows
the learning curves obtained using only the original features, whereas panel (b) shows the results achieved after a
degree 2 polynomial feature expansion.
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PF MAE MSE EV R2

Ridge 7 8.85±1.17 141.04±43.49 0.82±0.06 0.81±0.06
Lasso 7 8.76±1.19 134.29±40.43 0.83±0.06 0.82±0.06
Elastic-Net 7 8.82±1.19 137.74±42.66 0.82±0.06 0.82±0.06
Linear SVM 7 8.72±1.39 149.79±55.16 0.80±0.08 0.80±0.09
RBF Kernel SVM 7 7.86±1.35 126.29±47.62 0.84±0.06 0.83±0.07
RBF Kernel Ridge 7 8.37±1.31 143.93±56.30 0.82±0.07 0.81±0.08
Random Forests 7 7.66±1.26 121.16±44.47 0.84±0.06 0.84±0.06
Gradient Boosting 7 8.26±1.31 146.31±56.86 0.81±0.08 0.80±0.08
MLP 7 1.00±1.40 166.30±47.47 0.79±0.06 0.77±0.08

Ridge 3 8.21±1.27 135.94±52.26 0.83±0.08 0.82±0.08
Lasso 3 7.87±1.21 116.61±39.34 0.85±0.06 0.84±0.06
Elastic-Net 3 7.87±1.30 118.27±40.51 0.85±0.06 0.84±0.06
Linear SVM 3 7.54±1.30 120.03±46.97 0.86±0.07 0.84±0.07
RBF Kernel SVM 3 7.91±1.34 131.00±49.34 0.83±0.07 0.82±0.07
RBF Kernel Ridge 3 8.22±1.31 141.23±54.79 0.82±0.08 0.81±0.08
Random Forests 3 7.61±1.23 118.20±43.99 0.85±0.06 0.84±0.06
Gradient Boosting 3 8.19±1.46 142.00±58.45 0.82±0.08 0.81±0.08
MLP 3 9.40±1.78 183.53±107.98 0.76±0.15 0.75±0.16

Table 5.2: The performance assessment of various ML methods on the problem described in this chapter. Values are
expressed as: mean ± standard deviation. The PF flag is 3 for metrics obtained after a second degree polynomial
features expansion, and 7 for linear features only. Bold digits correspond to column-wise best values.

p-value MAE p-value MSE p-value EV p-value R2

Ridge 4.44 · 10−14 6.22 · 10−03 5.06 · 10−03 6.22 · 10−03

Lasso 1.09 · 10−28 3.39 · 10−12 8.49 · 10−12 3.27 · 10−11

Elastic-Net 1.76 · 10−22 9.92 · 10−10 9.92 · 10−10 4.96 · 10−09

Linear SVM 6.20 · 10−26 5.07 · 10−11 4.33 · 10−10 2.84 · 10−10

RBF Kernel SVM 4.65 · 10−01 9.54 · 10−02 1.96 · 10−02 8.29 · 10−02

RBF Kernel Ridge 3.28 · 10−02 1.80 · 10−01 2.75 · 10−01 2.75 · 10−01

Random Forests 2.75 · 10−01 3.01 · 10−01 3.28 · 10−01 3.81 · 10−01

Gradient Boosting 1.60 · 10−01 7.18 · 10−02 1.25 · 10−01 7.18 · 10−02

MLP 1.95 · 10−13 2.33 · 10−08 8.31 · 10−07 8.31 · 10−07

Table 5.3: One-tailed p-value resulting from the two-sample Kolmogorov-Smirnov test used to investigate whether
or not these ML methods perform better after a second degree polynomial expansion. The green cells indicate the
cases that benefit from the polynomial expansion (p-value < 0.01).

expansion could be compared to the effect of the addition of another hidden layer. In fact, it is
known that deeper architectures, even if harder to train, usually lead to better results.

From the insights above it is clear that the proposed model uses a degree 2 polynomial feature
expansion. However, Table 5.2 indicates two possible linear regression models: linear SVM
and the Lasso. In this context we choose to use the Lasso to accomplish the age prediction task
for two main reasons: (i) it outperforms linear SVM for 3 metrics out of 4 and (ii) its sparsity
enforcing penalty leads to a more compact and interpretable model.
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Figure 5.5: The feature ranking obtained via stability selection on the aging problem adopting the Lasso regression
model.

Figure 5.6: The coefficients of the proposed age prediction model.

Analyzing the feature selection frequency of the Lasso, Figure 5.5, we can see that all the
top-ranked variables are features that arise from the polynomial expansion. This is a further
evidence of the importance of such step.

The final Lasso model, fitted on a 75% of the dataset after the 2nd degree polynomial expansion
and a feature-wise standardization leads to the coefficients of Figure 5.6. Such model, evaluated
on the test set, achieves MAE = 6.40 years, MSE = 97.24 years2, R2 = 0.81 explaining the
82% of the variance. Which is consistent with what we expected from Table 5.2.

Nevertheless, as the Lasso regression model is trained on preprocessed data, the coefficients in
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Figure 5.6 cannot be used to predict the age from raw measures. To this purpose, we also report
the prediction model, with raw data-ready coefficients, in Equation (5.1).

ˆage = 1.13× 10−1 · (GENDER · CO-PYR/MAL) + 9.63× 10−3 · (CO-SUCCINATE ·MDA)−
1.91× 10−1 · (ATP-PYR/MAL · AMP) + 3.31× 10−2 · (ATP-SUCCINATE ·MDA)

1.17 · (PO-PYR/MAL · ATP)− 1.45× 10−2 · (PO-PYR/MAL · LDH)−
6.73× 10−1 · (ATP · AMP) + 5.03× 10−1 · (ATP ·MDA)+

9.52× 10−2 · (AMP · LDH) + 5.30× 10−1 · (ATP/AMP ·MDA)−
2.28× 10−2 · (ATP/AMP · LDH) + 8.08× 10−4 · (MDA · LDH)+

1.84× 10−4 · LDH2 + 29.1
(5.1)

5.6 Conclusions and future works

This chapter presented the first biomedical data challenge of the thesis. The goal of this task is
to investigate the changes of energy metabolism during the physiological aging by means of a
set of metabolic biomarkers obtained from mononuclear cells isolated from peripheral blood.

After a preliminary, and insightful EDA, we realized that the measured variables are highly
correlated and that they also show a strong trend with the age. Therefore, we investigated the
use of several linear and nonlinear regression models used in combination with a degree 2
polynomial feature expansion.

We devised a Lasso-based regression model that, once trained on the 75% of the dataset,
predicted the age of the remaining 25% with MAE of 6.591 years (MSE = 82.182, R2 = 0.901
and EV = 0.902). This result is in line with what observed in the experiments summarized in
Table 5.2.

To the best of our knowledge this is the first attempt to build an age predicting model that
takes into account such metabolic biomarkers. Our goal here is not to devise an accurate and
ready-to-use age prediction model, whereas we aimed at verifying that the energetic state of
blood cells by itself is already a good predictor of the age of a subject.

In the next future we plan to extend this study by enrolling more volunteers in order to expand
the number of samples in the dataset. We also plan to exploit this method to investigate possible
metabolic alterations of adult patients that suffered from blood tumor in their childhood, were
treated with chemotherapy and are currently considered in remission.
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6 Temporal prediction of multiple sclerosis evolu-
tion from patient-centered outcomes

In this chapter, we investigate the use of patient-centered outcomes to predict the
evolution of multiple sclerosis and to assess its impact on patients’ lives. Multiple
Sclerosis is a degenerative condition of the central nervous system that affects
nearly 2.5 million of individuals in terms of their physical, cognitive, psychological
and social capabilities. Despite the high variability of its clinical presentation,
relapsing and progressive multiple sclerosis are considered the two main disease
types, with the former possibly evolving into the latter. Recently, the attention of
the medical community toward the use of patient-centered outcomes in multiple
sclerosis has significantly increased. Such patient-friendly measures are devoted to
the assessment of the impact of the disease on several domains of the patient life. To
this aim, we build a novel temporal model based on random forests classification and
multiple-output elastic-net regression. The model provides clinically interpretable
results along with accurate predictions of the disease course evolution.

6.1 Introduction: the evolution of multiple sclerosis

Multiple Sclerosis (MS) is a neurodegenerative and chronic disease of the central nervous system
characterized by damages to the myelin sheaths, resulting in a wide range of symptoms, such as
fatigue, numbness, visual disturbances, bladder problems, mobility issues and cognitive deficits.

People with MS (PwMS) are mainly classified according to their disease course: relapsing-
remitting (RR), secondary-progressive (SP), primary-progressive (PP), progressive-relapsing
(PR) and benign (B) [Giovannoni et al., 2016] . Neurological disability in RR patients is
mainly due to the development of multifocal inflammatory lesions and it results in relapses, that
are attacks of neurological worsening (i.e. relapses), followed by partial or complete recovery.
Disability accrues predominantly in progressive courses (SP, PP, PR) that are more characterized
from diffuse immune mechanisms and neurodegeneration. Benign MS occurs when the patient
remains fully functional in all neurologic systems for at least 15 years after the onset. Figure 6.1
shows a representative disability progression of MS patients according to their disease course.

An estimated 15% of PwMS have a PP or PR course at the onset, the remaining 85% is diagnosed
with a RR course. About 80% of RR patients develop SP course within 15–20 years if untreated,
or if the adopted pharmacological and rehabilitative protocols are not continuously adjusted
according to the evolution of the disease [Scalfari et al., 2014].

For this reason, the prediction of the transition from RR to SP is one of the most important
methodological gaps that MS researchers are currently addressing. The availability of a statistical
model able to predict disease worsening is one of the major unmet needs that could significantly
improve timeliness, personalization and, consequently, the efficacy of the treatments. Nowadays,
there are no clear clinical, imaging, immunologic or pathologic criteria to foresee the transition
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(a) (b)

(c) (d)

Figure 6.1: Disability evolution of the four main MS courses: panel (a) shows a prototypical RR patient, character-
ized by time-limited attacks which may or may not leave permanent deficits; panel (b) shows SP typical disability
progression, that is steady with no more relapses; panel (c) represents a typical PR disability evolution, which is
characterized by steady disability progression from the onset; panel (d) shows a PR patient; which has a steady
disability progression from the onset with relapses.
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from RR to SP [Lublin et al., 2014]. Several clinical factors relating to possible SP course
predictors have been identified [Bergamaschi et al., 2015; Dickens et al., 2014]. However, as
showed by [Vukusic and Confavreux, 2003], studies investigating on prognostic factors for MS
course evolution generally suffer from two shortcomings: they report a higher proportion of
RR patients not monitored enough to reach progressive course and they lead, to some extent, to
contradictory results. Currently, MS research mainly focuses on developing and assessing drugs
and rehabilitative protocols for RR patients disregarding progressive courses.

6.2 PCOs data collection

In the recent past, researchers explored the potential role of Patient-Centered Outcomes (PCO)
to follow the progression of neurodegenerative diseases and to take timely decisions [Black,
2013]. PCOs comprise self- and physician-administered tests, questionnaires and clinical scales
consisting of either ordinal or categorical scaled answers. As opposed to stressful, not frequently
repeatable and expensive clinical exams, like magnetic resonance imaging or blood tests, PCOs
are patient-friendly and low-cost measures that could allow to investigate the individual changes
and disease impact on several aspects such as physical, cognitive, psychological, social and
well-being domains [Fiorini et al., 2015]. To date, PCOs are extensively used to assess general
health status, to support diagnosis and monitor progress of disease and to quantify the patients’
perception of the effectiveness of a given therapy or procedure [Nelson et al., 2015]. Nevertheless,
it is still unclear which are the most informative PCOs and, contextually, whether they can be
used as predictors for disease evolution.

The biomedical data science challenge presented in this chapter is based on a PCO dataset
acquired from a cohort of PwMS progressively enrolled within an ongoing funded project 1.

Each patient is evaluated every four months through the items of the PCOs reported in Table 6.1
which cover physical, cognitive and psychosocial domains. PCO data are intrinsically noisy due
to the subjectivity of self-reported measures provided by the patients that can be influenced by
personal feelings and opinions. In order to ameliorate this issue, 4 questionnaires out of 10 are
administered by medical staff which is trained to keep a homogeneous level of evaluation. A
comprehensive description of the PCOs involved in the study is presented below.

MFIS This is a 21-item self-reported questionnaire typically administered in 5 to 10
minutes. MFIS provides an assessment of the effects of fatigue in terms of physical,
cognitive, psychosocial functioning and it is considered a valuable tool by clinicians.

HADS This is a 14-item self-reported questionnaire typically administered in 2 to 6
minutes which aims at detecting clinically significant symptoms of depression and anxiety
in patients. HADS consists in 7 questions for depression and the remaining 7 for anxiety.

LIFE This is an 11-item self-reported questionnaire which investigates patients quality
of life. LIFE can be administered in approximately 5 minutes. To each of the 11 items, the
patient can assign an ordinal score 0, 1, 2 which corresponds to "disagree", "not sure" and
"agree" answers.

1 Ethical review committee approval 023REG2014 was obtained for this work.
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Acronym Full name Reference

MFIS Modified fatigue impact scale [Flachenecker et al., 2002]
HADS Hospital anxiety and depression scale [Honarmand and Feinstein, 2009]
LIFE Life satisfaction index [Franchignoni et al., 1999]
OAB Overactive bladder questionnaire [Cardozo et al., 2014]
EDINB Edinburgh handedness inventory [Oldfield, 1971]
ABILH Hand ability index [Arnould et al., 2012]

FIM Functional independence measure [Granger et al., 1990]
MOCA Montreal cognitive assessment [Dagenais et al., 2013]
PASAT Paced auditory serial addition task [Aupperle et al., 2002]
SDMT Symbol digit modality test [Parmenter et al., 2007]
EDSS Expanded disability status scale [Kurtzke, 1983]

Table 6.1: The set of available PCOs. The first 6 are self-reported, while the last 5 are administered by trained
medical staff. In our analysis all PCOs were used, with the exception of EDSS.

OAB This is an 8-item self-reported questionnaire which investigates patients bladder
control. OAB can be administered in approximately 5 to 8 minutes and it is a reliable
tool to investigate possible stress or discomfort lead by unexpected urinary urgencies that
patients may experience during day or night.

EDINB This 10-item self-reported questionnaire can be used to assess dominance of a
person’s right/left hand during daily activities. The items are very straightforward, so
EDINB can be administered in 3 to 5 minutes.

ABILH This is a 23-item self-reported questionnaire which can be used to measure hand
ability in adults with upper limb impairments. ABILH assesses a person’s ability to manage
daily activities that require the use of the upper limbs, whatever the strategies involved.
ABILH is usually administered in 5 to 10 minutes.

FIM This is 19-item clinical scale assessing the amount of assistance required for the
patient to carry out activities of daily living. FIM is typically administered by trained
examiner in 35 to 40 minutes and it covers both motor and cognitive domains.

MOCA This is an 11-item clinical scale assessing several cognitive domains such as short-
term memory recall, visuospatial abilities, phonemic fluency, attention, concentration and
so on. MOCA is typically administered in less than 10 minutes.

PASAT This clinical scale is a measure of cognitive function that assesses patients’
auditory processing speed and flexibility, as well as their calculation ability. It can be
administered in 10 to 15 minutes and it consists in audio stimuli in which single digits
are presented every 3 seconds. The patient is asked to add each new digit to the one
immediately prior to it. PASAT must be administered by trained examiner.

SDMT This clinical scale is a test for organic cerebral dysfunctions. This test simply
involves a substitution task: using a reference key the patients has few seconds to pair
specific numbers with specific geometric measures. SDMT is typically administered by
trained examiner in less than 5 minutes.
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Figure 6.2: Bar chart of the number of MS patients in each disease form at different examinations.

EDSS This is probably the oldest assessment instrument for MS. EDSS is based on a
neurological examination consisting of 7-items. Each item rates a different function, all
the items are then combined in the final EDSS score which is an ordinal scale ranging from
0 (normal neurological examination) to 10 (death due to MS), in half-point increment.
The use of EDSS in modern MS assessment is somewhat controversial. Although usually
adopted as an index of the disability level, EDSS focuses mainly on deambulation disability
without taking into account other aspects that could impact patient disability, such as
upper limb or cognitive functions [Meyer-Moock et al., 2014; Uitdehaag, 2014].

In our analysis we considered all these PCOs except EDSS.

The collected PCO dataset comprises additional information such as: i) number of relapses in the
last four months (NR), ii) educational level expressed in terms of total years of education (EDU),
iii) height (H) expressed in cm and iv) weight (W) expressed in kg. Moreover, a neurologist
assigns to each patient the corresponding disease course.

6.3 PCOs exploratory data analysis

In this work we analyze PCOs data acquired every four months from a cohort of MS patients
enrolled in a funded study. Currently, we have collected data for 11 examinations and, as
patients enrollment is still ongoing, the number of individuals for each time point is successively
decreasing, as shown in Figure 6.2.

The collected dataset comprises a grand total of 3991 patients, with 1451 RR, 1947 SP, 503 PP,
53 PR and 37 benign cases, as shown in Figure 6.3.

Each sample of the dataset is represented by a vector containing the 145 predictors summarized
in Table 6.1. As the missing data ratio amounts to 1.61% of the entire dataset, we resort to the

95



Figure 6.3: Representation of the distribution of the total amount of acquisitions, divided according to the disease
form.

k-nearest neighbor data imputing strategy (with k = 3) proposed in [Troyanskaya et al., 2001].

Analyzing PCO data is challenging from several respects. For instance, items belonging to
different questionnaires are encoded with numerical values in different ranges. For example, the
items of the MFIS questionnaire have ordinal scale values in [0− 4], whereas the SDMT outcome
is the global number of correctly answered items of the test (max 110) and the EDINB test
consists in 10 categorical items measuring the dominance of right or left hand in the activities of
daily living. To tackle such issues, in this EDA we opted for a preliminary data preprocessing of
the ordinal answers and a binary one-hot-encoding of the categorical ones, the latter increases
the dimensionality of the samples, leading to d = 165 variables in the dataset. The adopted
data preprocessing strategy, namely min-max scaling, consists in casting each feature xj in a
fixed range, i.e. xj

′ ∈ [0, 1]. The min-max scaling is obtained by the transformation described in
Equation (6.1).

xj
′
=

xj −min(xj)

max(xj)−min(xj)
(6.1)

The effect of the data preprocessing on the ordinal input variables is visually represented in
Figure 6.4. As we can see, this preprocessing step allows to compare more easily the input
features.

Furthermore, in order to visually inspect the data we investigate how to reduce their dimensional-
ity. To this aim, we project the data in a 3D space with linear PCA and Isomap (see Section 3.3.2).
These algorithms are sensitive to outliers, which we expect to affect our dataset. Therefore,
we follow a preliminary isolation forests-based anomalies detection and removal as described
in [Liu et al., 2008, 2012]. The obtained scatter plots are shown in Figure 6.5. As we can see,
both the obtained projections hint suggest a class separation between RR and SP subjects, while
the same conclusion cannot be drawn for the other classes. Moreover, considering only the first
three principal components, PCA explains only the 37.4% of the variance of the dataset. This
suggests that most of the information, which may be useful for classification purposes, is spread
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Figure 6.4: The effect of the data preprocessing on the input PCOs. The left panel (a) shows the distribution
of the raw collected variables, whereas the right panel (b) shows the distribution of the same variables after the
preprocessing step.
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across several input variables.

(a)

(b)

Figure 6.5: A random extraction of the 20% of the MS dataset projected on a 3D space by linear PCA, on panel
(a), and Isomap, on panel (b).

This EDA raised our hopes to successfully perform a further supervised MS course classification.
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Figure 6.6: A visual representation of the temporal structure assumed in the collected data. When the two functions
f (CCA) and g (PEP) are learned, the FCA model f ◦ g can be used to predict the evolution of the disease course
for future time points yt+1

i .

6.4 Supervised analysis

In order to develop a temporal model of MS evolution, we assume that our data can be modeled
according to the temporal structure outlined in Figure 6.6. Therefore, predicting the MS course
evolution can be split in three different related tasks, which we call: Current Course Assignment
(CCA), PCOs Evolution Prediction (PEP) and Future Course Assignment (FCA).

CCA Given the 165-dimensional representation of a patient at a fixed time point xti, this
task consists in assigning the corresponding disease course yti . CCA can be translated into
a binary classification problem which can be solved by learning a discriminative function
f(xti) = yti .

PEP Given the historical representation of a patient xti for t = 1, . . . , τ , this task consists
in predicting the patient representation xτ+1

i . PEP can be seen as a multiple-output
regression function and it can be solved by learning an appropriate function g(xti) = xt+1

i .

FCA This task can be seen as foreseeing the MS disease course yτ+1
i from xti for t =

1, . . . , τ . Once f̂(x) and ĝ(x) are learned by training on historical PCO data, the FCA
problem is finally solved by the temporal model f̂ ◦ ĝ(xti) = yt+1

i . In time-series data
analysis, this is known as one-step-ahead forecast. Notably, the FCA model allows to
foresee if the patient at the next time point is likely to experience a transition from RR to
SP, or not.

6.4.1 Experimental design

Our final goal is predicting MS course evolution of RR and SP patients, hence the subjects with
PR, PP and benign forms are not further taken into account.

We considered all the patients with a minimum of 1 time point (the most recently enrolled) up to
T = 11 time points for a total of 3398 samples, of which 1451 RR and 1947 SP. Following the
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EDA, we opted for a preliminary feature-wise min-max scaling. However, to promote unbiased-
ness of the results, this preprocessing phase is not performed on the entire data collection, but it
is embedded into the model fitting procedure. This trick, jointly applied with cross-validation
techniques, guarantees that even the feature-wise range used for data preprocessing is learned
from training set and it is applied on previously unseen validation sets. However, the experimen-
tal design adopted to learn f(x) and g(x) is slightly different. Therefore, they are separately
discussed in the remainder of this section.

CCA The CCA model f(x) solves a binary classification problem: to each input xti is
associated an output yti that encodes the corresponding MS disease course (RR or SP) with
a binary label. We split the dataset in three temporal chunks, namely training, validation
and test sets, consisting of all samples collected at time points t = 1, 2, 3, t = 4 and
t = 5, 6, 7, 8, 9, 10, 11, respectively. Accordingly, we used 1993 samples for training
f(x), 463 for validation leaving the remaining 942 for test.

Seven candidate models, see Section 6.4.2, for f(x) are fitted on 100 Monte Carlo random
sampling of the training set each time keeping 1

4
of the samples aside, see Section 3.4.1.

For each Monte Carlo sampling the fitting procedure is performed on the remaining 3
4

of the
samples and it includes an inner parameter optimization via grid-search cross-validation, as
described in Section 3.4.2. In particular, we require the MS course prediction to be based
on a reduced number of variables, therefore we enforce sparsity in each candidate model.
Leveraging on this Monte Carlo-based stability selection strategy, we rank the variables
according to their selection frequency, see Section 3.2. Once a variable ranking is achieved
for each candidate model, the list of selected variables is identified by thresholding the
corresponding ranking with the threshold that maximizes the MCC on the validation set.
Finally, the last training step consists in fitting each candidate model on the union of
training and validation sets taking only into account the corresponding reduced subset of
selected variables. The final CCA model f̂(x) is chosen as the one that performs better on
the previously unseen test set in terms of accuracy, MCC, precision, recall and F1 score.
These performance metrics for classification are defined in Section 3.4.3.

PEP On the other hand, learning the PEP model g(x) implies solving a multiple-output
regression problem as to each input xti is associated the output vector xt+1

i . Therefore,
we can only consider samples at time point t with an available follow-up at the next time
point t+ 1, which reduces the overall number of available samples. The dataset splitting
is consistent with the one followed for learning f(x), although in this case there is no
need for a separate validation set, as learning g(x) does not require any variable selection
process. We used the samples collected at time points t = 1, 2, 3, 4 for training and those
at t = 5, 6, 7, 8, 9, 10, 11 for test, resulting in 1946 and 714 samples, respectively. The
fitting procedure includes an inner parameter optimization via grid-search cross-validation.
Each candidate model is a function g : R165 → Rk where k is the number of variables
selected by the best CCA model. Three candidate models are evaluated to solve this
problem. The final PEP model ĝ(x) is chosen as the candidate model that performs better
on the previously unseen test set in terms of MAE, defined in Section 3.4.3.

FCA The predictive capability of the FCA model f̂ ◦ ĝ(x) is finally evaluated on the test
set. The CCA model f̂(xti) predicts the MS course ŷti from the PCO data vector x̂ti that,
in turn, is predicted by the PEP model ĝ(xt−1

i ). We shall notice here that the predictions
f̂ ◦ ĝ(xti) = yt+1

i for t = 11 are foreseeing possible RR to SP transitions that are beyond
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our data observation, hence predictions at the last time point cannot be used to assess the
FCA model performance. Therefore, its performance is evaluated on 616 test samples.

6.4.2 Learning f(x)

We imposed f(x) to be sparse. This requirement is helpful from two distinct respects: (i) pre-
dictive model performance increases thanks to a reduced effect of the course of dimension-
ality [Hastie et al., 2015] and (ii) the identification of a reduced subset of meaningful PCOs
provides easily interpretable results for the clinicians.

In order to achieve a sparse model, we take advantage of two variable selection strategies:
embedded and wrapper methods, see Section 3.2. When using embedded methods, we exploited
the sparsity inducing penalties of three models:

• Elastic-Net, that presents square loss and a penalty which is a convex combination of `1-
and `2-norm of the variable weights (see Section 3.1.1.4),

• sparse logistic regression, which combines the logistic loss with a Lasso penalty on the
variable weights (see Section 3.1.1.6),

• `1-penalized SVM (see Section 3.1.1.7).

We expect Elastic-Net to exploit correlations between PCOs, which we assume in our dataset.
On the other hand, the use of sparse logistic regression and `1-penalized SVM can benefit from
the renowned classification capability of their loss function. Moreover, we applied the RFE
wrapper method to four other methods:

• logistic regression, that achieves smooth solutions thanks to its `2-norm penalty;

• SVM, which also has an `2-norm penalty;

• Random Forests (RF), a tree-based bagging ensemble that: (i) can capture nonlinear
relationship between PCOs and disease course, (ii) it is well suited to deal with cate-
gorical/ordinal variables and (iii) thanks to the inner bagging strategy, it is less prone to
overfitting;

• Gradient Boosting (GB), a tree-based boosting ensemble that has recently demonstrated
to be an excellent nonlinear model for structured data [Chollet, 2018], but it is more prone
to overfitting.

As shown in Section 3.2, using embedded methods it is possible to achieve a list of selected
variable for each Monte Carlo iteration. Conversely, RFE produces a variable ranking. The
list of selected variables, in this case, is obtained by a further nested K-fold cross-validation
optimization (with K = 3).

6.4.3 Learning g(x)

As no prior information on the relationship between PCOs evaluated at different time points was
available, to learn g(x) we investigated the use of both linear and nonlinear models.
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MCC Accuracy Precision Recall F1-score

GB 0.688 ± 0.035 0.846 ± 0.017 0.863 ± 0.021 0.858 ± 0.023 0.860 ± 0.016
RF 0.687 ± 0.032 0.845 ± 0.016 0.865 ± 0.019 0.853 ± 0.021 0.859 ± 0.014
Elastic-Net 0.612 ± 0.029 0.804 ± 0.015 0.850 ± 0.031 0.789 ± 0.047 0.817 ± 0.018
`2 LR 0.620 ± 0.032 0.809 ± 0.016 0.857 ± 0.020 0.787 ± 0.027 0.820 ± 0.016
`1 LR 0.632 ± 0.031 0.814 ± 0.016 0.867 ± 0.019 0.786 ± 0.026 0.824 ± 0.016
`2 SVM 0.621 ± 0.032 0.808 ± 0.016 0.863 ± 0.019 0.779 ± 0.026 0.819 ± 0.017
`1 SVM 0.632 ± 0.030 0.814 ± 0.015 0.872 ± 0.020 0.779 ± 0.025 0.823 ± 0.016

Table 6.2: Classification performance scores of the seven candidate models (for the CCA problem) achieved on
100 Monte Carlo cross-validation iterations and expressed in terms of average ± standard deviation. GB and RF
outperform linear models, while performing almost identically.

Concerning the linear models, we explored two different solutions: Nuclear Norm Minimization
(NNM) and Multi-task Elastic-Net (MTEN), see Section 3.1.1.5 and 3.1.1.4, respectively. The
first imposes a low-rank prior on the result. The second is a natural multiple-output extension of
Elastic-Net, hence it induces a row-structured sparsity pattern on the solution where collinear
variables are more likely to be included in the model together. For nonlinear prediction, we
resorted to a Multi-layer Perceptron (MLP) approach, see Section 3.1.5.1.

6.5 Results and discussion

We shall separately discuss the results achieved in terms of CCA, PEP and FCA models.

CCA The first step toward the definition of this model consisted in the Monte Carlo-based
stability selection assessment of the seven candidate models. Table 6.2 summarizes the
performance scores obtained by the seven models across the 100 cross-validation iterations,
expressed in terms of average ± standard deviation. The two tree-based methods perform
quite similarly and consistently outperform the linear models.

The stability selection procedure leads to the definition of a variable ranking for each
of these models (results not shown). Such variable rankings are then cut according to
the threshold of the selection frequency that gives best MCC on the validation set. The
number of variables selected by each model is then represented in Figure 6.7. Interestingly,
RF and GB achieve the most parsimonious representation (only 33 variables out of 165)
and the top cross-validation scores. This confirms that the relationship between PCOs and
disease course is better represented by a nonlinear estimator and that the CCA problem
can be solved by observing a reduced number of PCO variables.

The second step consisted in refitting each model on the union of training and validation
sets always considering only the corresponding relevant features. The seven candidate
models on the test set reach the performance summarized in Table 6.3 and visually
represented in Figure 6.8. In this case, the RF method outperforms the other candidate
models, therefore we chose it as CCA model f̂(x).

Insights on the use of PCOs for MS assessment are provided by the sparsity of the CCA
model induced by the RFE schema with RF. The 33 selected variables are reported in
Table 6.4. Comparing the full list of PCO questionnaires of Table 6.1 with Table 6.4, we
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Figure 6.7: The number of variables selected by each of the seven candidate models.

MCC Accuracy Precision Recall F1-score

GB 0.664 0.839 0.873 0.858 0.865
RF 0.712 0.860 0.904 0.860 0.881
Elastic-Net 0.588 0.785 0.900 0.725 0.803
`2 LR 0.596 0.792 0.895 0.744 0.812
`1 LR 0.594 0.794 0.885 0.758 0.817
`2 SVM 0.600 0.789 0.892 0.740 0.809
`1 SVM 0.594 0.792 0.891 0.747 0.813

Table 6.3: Classification performance scores of the seven candidate models (for the CCA problem) achieved on the
test set.
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Figure 6.8: Classification performance scores of the seven candidate models (for the CCA problem) achieved on
the test set.
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Figure 6.9: Heatmap displaying the distance between the lists of variables selected by each model in terms of their
hamming distance.

observe that each PCO used in this study is represented at least once, except EDINB, and
the most represented is FIM. We also see that, whenever possible, the model tends to select
aggregate scores (total and subtotal) rather that single items. This is consistent with the
clinical practice, where neurologists are more likely to assess patient’s health status by
using the aggregate scores, rather than the single questions. Quite surprisingly, the recent
number of relapses is the only additional information not selected by the model. Finally,
we note that all the domains that are known to be affected by the disease are well covered:
mobility (upper and lower limbs), cognition, emotional, fatigue, bladder and psychosocial.

The heatmap in Figure 6.9 shows the Hamming distance of the lists of variables selected by
the seven CCA candidate models. Observing this figure, a block structure clearly emerges.
Interestingly, at a higher level, we can see that linear methods are more prone to select
similar variables with respect to tree-based methods. Moreover, across linear methods,
`1-based and RFE-based methods select more similar variables, as their Hamming distance
is lower. Whereas, as expected, Elastic-Net selects collinear variables and its Hamming
distance from the other linear models is higher.

PEP MTEN outperforms the other candidate models in terms of MAE (MAEMTEN =
0.099, MAENNM = 0.101, MAEMLP = 0.107), hence we select it as our PEP model ĝ(x).

FCA Finally, the FCA model f̂ ◦ ĝ(x), obtained by combining MTEN and RF achieves
the following performance scores on the 616 test samples: accuracy 0.826, precision
0.882, recall 0.828, F1-score score 0.854 and MCC score of 0.642. Predicting the MS
course at the next time point is of course a harder task than the predictions at the current
time. However, the performance loss of FCA with respect to CCA, mainly due to the
accumulation of errors introduced by PEP, are relatively small.
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Selected item Description

ABILH (12) Hammering a nail
ABILH (TOT) Sum of all the ABILH subscores
EDU Total years of formal education
FIM (10) How much assistance is required for toilet transfer
FIM (11) How much assistance is required for shower transfer
FIM (12) How much assistance is required for locomotion (ambulatory)
FIM (14) How much assistance is required for locomotion (wheelchair)
FIM (SUB3) FIM subtotal measuring global sphincter control
FIM (SUB4) FIM subtotal measuring global personal care
FIM (SUB5) FIM subtotal measuring global locomotion
FIM (SUB6) FIM subtotal measuring global mobility
FIM (TOT) FIM total score
HADS (7) I can sit at ease and feel relaxed
HADS (SUB1) HADS subtotal measuring global level of anxiety
HADS (SUB2) HADS subtotal measuring global level of depression
HADS (TOT) HADS total score
H Height of the individual in cm
LIFE (TOT) LIFE total score
MFIS (2) I have had difficulty paying attention for long periods of time
MFIS (SUB1) MFIS subtotal measuring global cognitive level
MFIS (SUB2) MFIS subtotal measuring global physical level
MFIS (SUB3) MFIS subtotal measuring global psychosocial level
MFIS (TOT) MFIS total score
MOCA (1) MOCA visuoconstructional skill test
MOCA (9) MOCA memory test
MOCA (SUB1) Sum of all the MOCA subscores
MOCA (TOT) MOCA score corrected for individuals with less than 12 years of formal education
OAB (1) Frequent urination during the daytime hours
OAB (4) Accidental loss of small amounts of urine
OAB (TOT) OAB total score
PASAT PASAT score
SDMT SDMT score
W Weight of the individual in kg

Table 6.4: The list of PCOs items selected by GB with RFE.
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6.6 Conclusions and future works

This chapter describes a temporal model based on PCOs and ML for disease form prediction in
MS. In particular, we address the tasks of current course assignment, PCOs evolution prediction
and future course assignment. The model is built on a collection of PCOs acquired on a cohort
of individuals enrolled in an ongoing funded study (DETECT-MS PRO).

The proposed temporal model was able to correctly assign the current MS form and to foresee
future ones with accuracy of ≈ 86.0% and ≈ 82.6%, respectively. This demonstrates that PCOs
can effectively be used to build an effective ML-based MS disease course predictor.

In the next future, we plan to further investigate the predictive capabilities of the proposed model
with longer temporal horizons and to compare it with different approaches, such as probabilistic
graphical models.

Given the achieved promising results, the proposed model is soon going to be validated in
clinical practice, where it will assist the clinicians involved in this study to foresee possible
disease course transition and to take important decisions concerning treatment and therapies that
can substantially improve the quality of life of their patients.

In the context of neurodegenerative diseases, clinicians typically use PCOs data to corroborate
evidences coming from standard quantitative exams [Black, 2013]. Interestingly, in our case
the absence of clear SP predictors makes the information extracted from PCOs data the only
available resource.

In the era of precision medicine, the problem of predicting MS course evolution still relies on
stressful exams and clinical judgment. To the best of our knowledge, this is the first work that
aims at solving this delicate task leveraging only on patient-friendly measures and ML.

107





7 Data-driven strategies for robust forecast of con-
tinuous glucose monitoring time-series

Over the past decade, continuous glucose monitoring (CGM) has proven to be a
very resourceful tool for diabetes management. To date, CGM devices are employed
for both retrospective and online applications. Their use allows to better describe
the patients’ pathology as well as to achieve a better control of patients’ level of
glycemia. The analysis of CGM sensor data makes possible to observe a wide
range of metrics, such as the glycemic variability during the day or the amount
of time spent below or above certain glycemic thresholds. However, due to the
high variability of the glycemic signals among sensors and individuals, CGM data
analysis is a non-trivial task. Standard signal filtering solutions fall short when
an appropriate model personalization is not applied. State of the art data-driven
strategies for online CGM forecasting rely upon the use of recursive filters. Each
time a new sample is collected, such models need to adjust their parameters in
order to predict the next glycemic level. In this chapter we will see that the problem
of online CGM forecasting can be successfully tackled by personalized machine
learning models, that do not need to recursively update their parameters.

7.1 Introduction: modern diabetes care

Diabetes is a chronic metabolic disorder affecting nearly 400 million of individuals worldwide.
The number of diabetic patients is increasing and it is expected to reach almost 600 million in the
next future [Guariguata et al., 2014]. According to the World Health Organization [Organization
et al., 2016], the global prevalence of diabetes among adults has nearly doubled in the last few
decades, rising from 4.7% in 1980 to 8.5% in 2014. If not treated correctly, diabetes may cause
several permanent complications, such as visual impairment and kidney failure.

Hypoglycemia is a severe risk in diabetes therapy. The mean incidence of hypoglycemia in
patients with type 1 diabetes (T1D) is 1-2 events per week, while severe hypoglicemia occurs
0.1-1.5 episodes per year [van Beers and DeVries, 2016]. Moreover, hypoglycemia interferes
with the quality of life and increases the risks of cardiovascular events in type 2 diabetes (T2D)
patients [van Beers and DeVries, 2016]. On the other hand, hyperglycemia associates with an
increased risk of diabetes complication as well.

The most common glucose monitoring solutions are self blood glucose meters and Continuous
Glucose Monitoring systems (CGM). CGM devices are minimally-invasive, and can be used
in daily life for retrospective or online applications [Vigersky and Shrivastav, 2017]. CGM
systems measure interstitial glucose concentration at fixed time intervals, enabling an accurate
observation of glycemic variability during the day as well as the ratio of time spent in hypo/hy-
perglycemia. When CGM is employed online, an improvement of the therapy can be achieved
by embedding in the system a tool that foresees glucose levels using suitable time-series models
trained on past CGM data [Sparacino et al., 2007]. In this case, alarms can be generated when
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the glucose concentration exceeds the normal range [Vigersky and Shrivastav, 2017].

To model patient-specific Blood Glucose (BG) levels, several approaches, integrating various
information, were proposed [Bunescu et al., 2013; Zecchin et al., 2011]. However, the problem
of glycemic level prediction is still challenging, due to the high CGM signal variability among
patients and acquisition devices.

This chapter describes the third, and last, biomedical data science challenge of the thesis.
Throughout this chapter we assume that CGM signals have structural information on time-
changes of BG concentration [Sparacino et al., 2007; Bunescu et al., 2013] and we perform
glycemic level forecasting exploring the performance of a set of purely data-driven techniques
for time-series analysis.

Data-driven forecasting approaches, as opposed to models driven by an a-priori description of
the underlying phenomena, are capable of modeling input/output relationships without requiring
prior knowledge on the field of use. This family of approaches can be successfully employed to
obtain reliable predictions without modeling complex, and possibly not completely understood,
environments. Data-driven forecasting models are widely applied in real-world scenarios often
employing a moving-window paradigm, i.e. the system keeps track of the last w acquisitions
using them to forecast future values.

In this chapter, we focus on two main groups of data-driven methods for online time-series
forecasting: recursive filters and, of course, ML models. The first group includes linear
stationary models, such as Autoregressive Moving Average (ARMA), non stationary models,
such as Autoregressive Integrated Moving Average (ARIMA) and adaptive filtering techniques,
such as the Kalman Filter (KF). These methods are well-established and extensively used, but
they require recursive parameters adjustment for every new collected sample [Box et al., 2015].
As these methods are note covered in Chapter 3, a quick overview is provided in Section 7.3.

The second group comprises regularized kernel methods, such as Kernel Ridge Regression
(KRR) (see Sections 3.1.1.2 and 3.1.2) and deep learning methods, such as Long Short-Term
Memory networks (LSTM), see Section 3.1.5.2.

As we have seen in the previous chapters, ML methods showed very promising results in several
applications, also including time-series forecasting [Bunescu et al., 2013; Schmidhuber et al.,
2005]. To achieve a predictive model, they need to learn the model parameters from a training
set. This learning process is done only once and it conveys a model that does not require further
parameter adjustments to predict future values. This remarkable advantage makes machine
learning models more suitable to be delivered on embedded portable systems.

This chapter aims at understanding whether purely data-driven machine learning methods can
be successfully employed to forecast glucose values of diabetic patients.

7.2 Temporal forecasting problem setting

In the previous chapters we fixed the notation for regression and classification problems. The
temporal forecasting can be seen as a special regression case, therefore some additional notation
is needed.

Given a set of data S , we refer to data-driven models with hyperparameters θ asMS(θ). Given
the time-series y(t) we aim at predicting y(t+ ∆T ), where ∆T is some prediction horizon.
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A well-known issue of CGM sensor data analysis is that signal properties, such as the signal-
to-noise ratio, may vary among devices and individuals [Facchinetti et al., 2010]. In order
to achieve an accurate forecast of the glucose level of a given individual from past samples,
any prediction modelMS(θ) must be personalized. Such model personalization procedure is
two-fold: hyperparameters (θ) optimization, also known as model selection (see Section 3.4),
and parameter estimation, or model fitting. In this work we fixed a common strategy for
hyperparameters optimization whilst the actual model fitting procedure is defined differently
according to the model.

7.3 Recursive filters overview

Recursive filters are the most widely adopted class of temporal forecasting strategies. In
this chapter we make CGM temporal prediction by exploiting two different recursive filters
approaches: ARIMA and KF. Providing a comprehensive overview of temporal forecasting
strategies is beyond the scope of this thesis, therefore Chapter 3 does not cover this topic. This
section sketches the main ideas behind this two strategies, providing the information that are
necessary to understand this last biomedical data science challenge.

7.3.1 Autoregressive Integrated Moving Average

ARIMA methods can be used to perform linear forecasting of non stationary time-series assum-
ing that its d-th difference is a stationary ARMA process [Box et al., 2015]. The output of an
ARMA process, with white input noise u(t) ∼ N (0, σ2), can be expressed as in Equation (7.1).

y(t) = −
p∑

k=1

aky(t− k) +

q∑
k=0

bku(t− k) (7.1)

The output of an ARMA(p, q) model can be seen as the sum of p autoregressive and q moving
average terms. This strategy requires the modeled processes to be stationary. On the other hand,
when a time-series can be considered stationary after d differentiations, ARIMA(p, d, q) models
can be used. This is the case for non stationary time-series that exhibit local stationary behavior.
In general, (p, d, q) are unknown and we will consider them as hyperparameters of the ARIMA
model.

The cross-validation index (see Section 7.6) for ARIMA models can be defined as J(θ) =
AIC(MS(θ)) + ε̄cv, where AIC stands for Akaike Information Criterion [Box et al., 2015] and
ε̄cv is the MSE evaluated via cross-validation, see Section 3.4.3. We refer to [Box et al., 2015]
for a detailed description of ARIMA model fitting.

The application of this class of models to predict CGM sensor data was also explored in
[Sparacino et al., 2007; Bunescu et al., 2013].

7.3.2 Kalman Filter

The KF addresses the problem of estimating the state x ∈ Rd of a discrete-time process governed
by the linear stochastic difference equation x(t+1) = Fx(t)+w(t) with measurements y ∈ Rk,
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y(t) = Hx(t) + v(t), where w(t) and v(t) are independent random variables representing
state and measurement noise, respectively [Welch and Bishop, 1995]. It is usually assumed
that w(t) ∼ N (0, Q) and v(t) ∼ N (0, R), with both Q and R unknown. In the context of
CGM sensor data prediction, we can safely assume that the state space is two-dimensional,
hence x1(t) = u(t), x2(t) = u(t− 1) where the unknown signal u(t) is described a-priori as
an integrated random-walk u(t) = 2u(t− 1)− u(t− 2) + w(t) as in [Facchinetti et al., 2010].
Consequently, the state space transition matrix F can be written as

F =

[
2 −1
1 0

]
(7.2)

while the measurement vector is
H =

[
1 0

]
the process noise covariance is

Q =

[
λ2 0
0 0

]
(7.3)

and the measurement noise covariance is R = σ2, as in [Facchinetti et al., 2010]. Both λ2 and
σ2 are unknown and we will consider them as hyperparameters of the KF forecasting strategy.

In this case, the cross-validation index (see Section 7.6) can be defined as J(θ) = ε̄cv.

The application of KF to predict CGM sensor data was also explored in [Facchinetti et al., 2010;
Knobbe and Buckingham, 2005].

7.4 CGM data collection

We acquired CGM samples from a group of 148 T1D and T2D patients wearing the iPro®2
Professional CGM sensor (Medtronic), which reported glucose values every 5 minutes. Patients
were monitored for up to 7 days in free living conditions, keeping track of their treatments.
From this initial cohort, we excluded the 18 individuals which acquisitions lasted for less than
3.5 days as well as the 24 time-series that presented artifacts due to incorrect use of the CGM
acquisition device. Hence, our final dataset comprises 106 subjects of which 72 T1D and 34
T2D. On average, glycemic variability is relatively high, with 170.7± 70.0 mg/dL for T1D and
158.4± 43.6 mg/dL for T2D. Figure 7.2 shows two examples, one for each diabetes type.

7.5 CGM exploratory data analysis

For each patient, the risk of hypo/hyperglycemia is determined by computing the Low Blood
Glucose Index (LBGI) and the High Blood Glucose Index (HBGI), defined as in [Fabris et al.,
2016]. LBGI and HBGI are summary statistics, extracted from a series of CGM data, that
increases when the frequency and/or the extent of low CGM or high CGM readings increases.
These two indices are heavily influenced by the frequency and extent of hypo- and hyper-
glycemic episodes. To estimate LBGI and HBGI from CGM data we followed [Kovatchev et al.,
1997]. Figure 7.1 shows the LBGI and HBGI distributions for T1D and T2D. The green areas at
the bottom of each boxplot represents the low risk area for hypo/hyperglycaemia, as reported in
literature [Kovatchev et al., 1997]. As expected, the fraction of T1D patients experiencing risks
of hyperglycaemia episodes is higher than T2D patients.
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Figure 7.1: Plots reporting the distributions of LBGI (left) and HBGI (right) for T1D and T2D. Green areas at the
bottom of each plot represents low risk of hypo/hyperglycemia events.

Figure 7.2: An example of two glycemic profiles obtained from T1D and T2D patients. The glucose target range is
set between 70 mg/dL and 140 mg/dL (dashed lines). The yellow area at the left hand side of the plot is the initial
burn-in interval used for model personalization.
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7.6 Experimental design

We shall now focus on the hyperparameters optimization strategy. Given y(t) for time points
t = 1, . . . , T , we split the time-series in two chunks: an initial burn-in of T ′ = 300 CGM
observations and the experiment set made of the subsequent T − T ′ samples (see Figure 7.2).
For each model MS(θ), and for each subject, we use the burn-in samples to optimize the
hyperparameters θ via grid-search cross-validation. In other words, the best hyperparameters
θ∗ are chosen as the ones that minimize an index J(θ) estimated on cross-validation splits and
defined differently according to the model, as anticipated in the previous sections.

In the context of time-series, the cross-validation training splits consist only of observations
occurred before the corresponding validation samples; such cross-validation flavor is sometimes
referred to as rolling forecasting origin [Tashman, 2000]. The grid-search cross-validation
scheme promotes the identification of models capable of returning robust predictions.

Once the best hyperparameters θ∗ are identified, the model MS(θ∗) is fitted on the whole
burn-in and it is used to perform online forecasting on the data points of the experiment set (i.e.
for t = T ′ + 1, . . . , T ).

For each personalized modelMS(θ∗) we calculate the accuracy for prediction horizons ∆T
of 30, 60, and 90 minutes. The performance is estimated by RMSE and MAE, defined in
Section 3.4.3, that in the context of temporal forecasting, and assuming n samples in the
experiment set, can be rewritten as in Equation (7.4) and (7.5).

RMSE =

√∑
t(y(t+ ∆T )− ŷ(t+ ∆T ))2

n
(7.4)

MAE =

∑
t |y(t+ ∆T )− ŷ(t+ ∆T )|

n
(7.5)

We use w = 36 as the size of the window in the moving-window paradigm and we indicate
with {xi, yi}Ni=1 the input/output pairs for machine learning model. Therefore, each input xi is a
w-dimensional vector made of the CGM samples acquired at times t = ti−w, . . . , ti, while the
corresponding output yi is the CGM acquisition at time ti+1.

7.7 CGM forecasting results

Taking into account the available information on treatments, we divided the dataset into four
groups, namely T1D with microinfusion pump (32 subjects), T1D with insulin injection (40
subjects), T2D with rapid acting insulin (10 subjects) and T2D with other therapies (24 subjects).

For each group, we applied all forecasting models whose performance, expressed in term of
MAE and RMSE, is presented in Table 7.1. The forecasting errors clearly increase with the
prediction horizon as the errors accumulate at each predicted time step.

KRR achieves the most accurate prediction overall and for almost every group of patients,
although ARIMA results are comparable. Moreover, KRR loss of reliability from the first to the
last prediction horizon is lower than for ARIMA.
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Figure 7.3: Online time-series forecasting obtained by KRR model. One-step-ahead prediction (left): the green
solid line shows the available samples; the dashed line represents one-step-ahead predictions that are obtained
by applying the model on a moving window of 36 time-points. Open-loop forecast (right): with passing time,
the moving-window incorporates an increasing number of predicted points, accumulating errors; the dashed line
represents forecast with a prediction horizon of 90’. Absolute prediction errors are evaluated with respect to future
measures (red solid line).

Figure 7.3 displays an example of time-series forecast obtained with KRR showing the three
different prediction errors at 30, 60 and 90 minutes.

7.8 Conclusions and future works

This chapter presented the last biomedical data science challenge of the thesis.

We compared the performance of two types of data-driven strategies for online CGM forecasting:
recursive filters and ML models. We also illustrate a general procedure for model personalization
based on cross-validation with hyperparameters optimization via grid-search.

Finally, we showed that reliable CGM predictions can be obtained with ML models that do not
need to recursively adjust their parameters along time.

In the future, to improve the performance on long prediction horizon, we plan to investigate
sparse data representations with deeper architectures or regularized dictionary learning ap-
proaches.

115



Table 7.1: Prediction errors (standard deviation) of the forecasting models for increasing prediction horizons,
overall and on the four groups. MP = Microinfusion Pump, II = Insulin Injection, RAI = Rapid Acting Insulin,
Other = Other therapies. Bold numbers indicate best result.

ARIMA
MAE mg/dL RMSE mg/dL

30 60 90 30 60 90
Overall 11.5 (5.2) 25.6 (12.5) 37.2 (20.3) 16.7 (7.9) 37.1 (19.3) 53.8 (31.8)
T1D - MP 13.3 (3.6) 30.3 (7.4) 45.3 (12.5) 19.5 (5.4) 43.9 (10.9) 64.9 (18.1)
T1D - II 13.4 (6.3) 31.0 (16.2) 46.1 (27.1) 19.7 (10.6) 45.1 (27.0) 66.6 (45.7)
T2D - RAI 11.0 (3.3) 23.8 (6.5) 33.2 (8.5) 16.2 (4.8) 34.1 (8.3) 46.9 (10.9)
T2D - Other 10.0 (5.1) 21.4 (10.4) 29.2 (12.5) 13.6 (6.0) 29.6 (12.7) 41.3 (16.5)

KF
MAE mg/dL RMSE mg/dL

30 60 90 30 60 90
Overall 46.8 (23.2) 50.8(25.4) 159.6 (43.5) 58.3 (27.7) 63.1 (30.3) 169.9 (47.1)
T1D - MP 56.6 (15.9) 59.5 (15.2) 163.5 (26.7) 70.5 (19.0) 74.3 (18.4) 177.5 (29.9)
T1D - II 59.9 (24.5) 67.9 (26.7) 179.2 (38.9) 74.4 (28.7) 83.5 (31.3) 193.8 (40.4)
T2D - RAI 48.6 (20.4) 50.9 (20.8) 195.2 (63.1) 60.4 (22.9) 63.6 (24.1) 204.4 (63.8)
T2D - Other 33.0 (12.1) 35.6 (15.8) 145.0 (30.4) 41.3 (14.2) 44.3 (17.7) 150.1 (31.8)

KRR
MAE mg/dL RMSE mg/dL

30 60 90 30 60 90
Overall 11.1 (4.3) 25.1 (10.4) 35.2 (15.4) 15.5 (6.7) 33.6 (13.8) 45.8 (19.7)
T1D - MP 12.9 (3.4) 30.2 (8.4) 43.1 (12.6) 17.9 (5.1) 40.2 (10.9) 56.0 (16.1)
T1D - II 13.1 (4.9) 30.3 (10.6) 43.1 (14.5) 18.6 (8.4) 40.5 (14.5) 55.8 (18.6)
T2D - RAI 11.2 (2.9) 24.1 (5.5) 33.2 (7.1) 16.0 (4.7) 32.7 (7.5) 43.7 (9.5)
T2D - Other 8.7 (2.3) 19.8 (6.9) 27.7 (11.8) 11.9 (3.4) 26.5 (8.9) 36.2 (14.4)

LSTM
MAE mg/dL RMSE mg/dL

30 60 90 30 60 90
Overall 19.9 (10.6) 44.0 (25.9) 61.3 (36.5) 26.2 (13.4) 55.0 (30.0) 74.7 (41.3)
T1D -MP 22.9 (9.1) 51.6 (21.5) 71.6 (27.0) 30.6 (11.6) 65.7 (27.0) 89.8 (33.5)
T1D - II 24.5 (12.9) 56.5 (33.1) 81.4 (45.8) 31.2 (14.9) 68.8 (35.9) 97.0 (48.4)
T2D - RAI 18.3 (6.7) 39.4 (14.8) 54.1 (21.0) 25.7 (10.1) 51.6 (21.7) 67.7 (29.1)
T2D - Other 16.8 (8.9) 35.0 (17.7) 47.0 (26.5) 22.2 (12.1) 43.4 (19.0) 56.5 (27.3)
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8 Conclusions

Data science is an evolving cross-disciplinary field that has recently gained the attention of both
industry and academia. The main goal of data science is to analyze and understand arbitrarily
large data collections in order to devise data-driven and statistically sound decision making
strategies. The main characteristics of data scientists is to be are domain experts joining a strong
mathematical background with advanced computer science programming skills.

In this context, machine learning is undoubtedly one of the most important data science tools.
In fact, machine learning models and algorithms are capable of uncovering hidden structure
in the data with the final aim of devising some data-driven prediction strategy. Thanks to this
approach, it is possible to tackle complex real-world tasks with little/no human supervision.

In machine learning and data science applications everything revolves around analysis and
interpretation of a data collection. However, as it often happens, reaching the desired insights or
predictive power is not straightforward. This can happen for several reasons: e.g. data can be too
large-scale or too high-dimensional, measures can be noisy, different unstratified populations
may be represented, etc. In this context, exploratory data analysis is a fundamental and insightful
procedure that should be carried out in order to guide further predictive model developments.

Chapter 4 is dedicated to the description of ADENINE: an open-source data exploration tool
developed for large-scale structured data that can seamlessly run on a single workstation as well
as on HPC cluster facility. With ADENINE it becomes easy to run exploratory data analysis on
large datasets and to generate publication-ready plots and reports.

Moreover, in this thesis we have discussed three different biomedical data science challenges.

First, we have seen that it is possible to predict the age of healthy individuals by exploiting a
sparsity-enforced linear model fitted on a polynomial expansion of a set of molecular biomarkers
that are measured from peripheral blood mononuclear cells. Accurate data exploration, model
development and assessment for this problem are described in Chapter 5.

Then, we have explored the use of patient centered outcomes for the assessment of quality of
life in multiple sclerosis patients. These tests consist in a set of self-reported questionnaires
and clinical scales administered by trained clinical staff. In Chapter 6 we presented a temporal
model that can predict the disease evolution from the initial relapsing-remitting course, to the
secondary-progressive form, from the answers provided by an individual to a number of patient
centered outcomes. The use of this temporal model will soon be validated in clinical practice.
where it can be used to take timely decisions aimed at improving management and treatment of
the disease, hence increasing patients’ quality of life.

Finally, in Chapter 7 we have investigated the use of continuous glucose monitoring systems and
data-driven forecasting models of the glycemic level in type 1 and type 2 diabetic patients. We
have empirically shown that it is possible to achieve reliable predictions, at increasing prediction
horizons, exploiting personalized kernel-based machine learning model that, as opposed to
recursive filters strategies, do not need to recursively adjust their parameters in time.

Throughout the chapters of this thesis, particular attention is paid towards providing a rigorous
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cross-validation-based performance assessment of the proposed data-driven models. This
approach is fundamental in order to tackle biomedical data science challenges with actionable
solutions, that can be effectively applied in clinical practice.
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A Appendix

As already pointed out at the beginning of Chapter 3, ML is a cross-disciplinary field and
the statistical tools used in literature to describe models and algorithms heavily depend on
the academic background of the author. This can make the approach to ML fascinating and
somewhat cumbersome at the same time.

The goal of this appendix is to shed light on some of the statistical tools and definitions that
are typically left unsaid, or given for granted, by most of the authors. In particular, in the
following sections insightful statistical details on the formulation of the supervised learning
problem expressed in Equation (3.2) will be provided.

A.1 Useful theorems and definitions

This first section lists the theorems and the definitions that are useful for the comprehension of
the following sections [Keener, 2011; Everitt and Skrondal, 2002].

Theorem 1 (Law of the unconscious statistician) Given two continuous random variables
(a, b) ∈ A × B with joint probability distribution p(a, b), the expected value of the function
g(a, b) can be stated as follows.

E[g(a, b)] =

∫∫
A×B

g(a, b) p(a, b) dadb

Definition 1 (Conditional probability) Given two events A and B, the conditional probability
of A given B is defined as

P (A|B) =
P (A ∩B)

P (B)

where B is not an impossible event, i.e. P (B) > 0.

Theorem 2 (Bayes rule) Given A and B two events with probability P (A) and P (B) 6= 0, the
conditional probability of observing A given that B is true is

P (A|B) =
P (B|A) · P (A)

P (B)

where P (B|A) is the probability of observing B given that A is true.

Definition 2 (Well-posed problem) A problem is well-posed if its solution: (i) exists, (ii) is
unique, (iii) depends continuously on the data (e.g. it is stable).

Definition 3 (Ill-posed problem) A problem is ill-posed if it is not well-posed.

Definition 4 (Likelihood function) Let a be a continuous random variable with probability
distribution p(a,φ) depending on the parameter φ; then the function L(φ|ā) = p(ā,φ) is the
likelihood function of φ given that ā is the outcome of a.
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A.2 Empirical risk minimization

In Section 3.1 we introduced the concept of supervised learning as the branch of ML in which
predictive models are trained on labeled data. The final goal of supervised learning is to find a
function of the input variables f : X → Y that provides a good approximation of the output
y. In order to measure the adherence between predictions ŷ = f(x) and actual output y, we
introduced the concept of loss function L(ŷ, y), see Table 3.1. For a fixed choice of the loss, the
ideal estimator, also known as the target function, f ∗ is the minimizer of the (true) expected risk
E(f) i.e.

f ∗ = argmin
f∈F0

E(f) (A.1)

where F0 is the (huge) class of functions f : X → Y such that E(f) is finite.

Applying the law of the unconscious statistician, stated in Theorem 1, the expected risk E(f)
can be written as in Equation (A.2), where (x, y) are two random variables with joint probability
distribution p(x, y).

E(f) = E[L(f(x), y)] =

∫∫
X×Y

L(f(x), y) p(x, y) dxdy (A.2)

In real situations, a direct computation of E(f) is unfeasible as the joint probability distribution
p(x, y) is unknown. Although, we assume to be provided with a collection of input-output
pairs D = {(xi, yi)}ni=1 that are supposed to be sampled i.i.d. from X × Y according to p(x, y).
In statistical learning theory, as introduced by Vapnik [Vapnik, 2013], the dataset D can be
used to build a stochastic approximation of E(f) called empirical risk ED(f) and defined in
Equation (A.3).

ED(f) =
1

n

n∑
i=1

L(f(xi), yi) (A.3)

As D is drawn according to the probability distribution p(x, y), our hope is that the empirical
risk can be used as a proxy for the expected risk, hence ED(f) ≈ E(f). The solution of the
supervised learning problem is then found by Empirical Risk Minimization (ERM), defined in
Equation (A.4)

f̂(x) = argmin
f∈F

E(fD) = argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi) (A.4)

Where F is a suitable small subset of F0. In practice, minimizing E(fD) instead of E(f) comes
at a price. The central problem is whether the first is a good approximation of the second. For
instance, when p(x, y) is too complex, the number of examples is too small and/or the class of
functions F is too large, f̂(x) will be far from the target function f ∗(x), even when its empirical
error is 0. In real circumstances, it is impossible to control the true probability distribution and it
is often extremely difficult to collect a very large number of examples. The only element we
can control is the class of functions F and, in particular, its size. Since Tikhonov [Tikhonov,
1963] it is known that, for an arbitrary function space F , the ERM problem is ill-posed (see
Definition 3). A possible way to ensure well-posedness is to impose a constrain that restricts
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the function space. Hence, the constrained ERM problem assumes the form in Equation (A.5),
where λ 6= 0.

argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi)

subject toR(f) <
1

λ

(A.5)

Applying the Lagrange multipliers technique1 Equation (A.5) can be finally written as Equa-
tion (A.6).

argmin
f∈F

1

n

n∑
i=1

L(f(xi), yi) + λR(f) (A.6)

The penalty termR(f) acts as regularizer 2 and, according to its definition, it can ensure well-
posedness of the problem and it can enforce different interesting properties on the achieved
solution, see Section 3.1.1. It can also be shown that the use of appropriate regularizes promotes
generalization, hence increases our chance to find a f̂(x) close to f ∗(x).

According to the choice made for L(·) and R(·), the minimization problem posed in Equa-
tion (A.6) can have very different properties; it can be convex or non-convex, it can include
differentiable as well as non-differentiable terms. A rigorous review of the most common
optimization methods for ML is beyond the scope of this thesis and can be found here [Boyd
and Vandenberghe, 2004; Vito et al., 2005; Bach et al., 2012; Sra et al., 2012; Nesterov, 2013].

A.3 Maximum likelihood estimation

In this section we will see a different approach to tackle the supervised learning problem. Once
again, let the training data be made of input-output pairs D = {(xi, yi)}ni=1, with (xi, yi) ∈
X × Y , ∀ i = 1, . . . , n. This approach relies on the expression of the uncertainty over the value
of y with a probability distribution p(y|x,θ) parameterized by θ ∈ Θ. Applying Definition 4,
and assuming that the samples are drawn i.i.d., we can write the likelihood function for θ as in
Equation (A.7).

L(y|x,θ) =
n∏
i=1

p(yi|xi,θ) (A.7)

Equation (A.7) can be considered as the probability of observing the output yi, given the input
xi and the parameters θ (∀i = 1, . . . , n). This statistical setup suggests a strategy to obtain an
estimate for θ known as Maximum Likelihood Estimation (MLE), see Equation (A.8).

1 For a thorough description of this technique, see Appendix E of Bishop’s book [Bishop, 2006].
2 R(f), in general, can be thought as R(f) = ‖f‖2K where ‖·‖2K is the norm defined by the kernel K in a

Reproducing Kernel Hilbert SpaceH [Evgeniou et al., 2000; Vito et al., 2005].
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θ̂MLE = argmax
θ ∈ Θ

L(yi|xi,θ) = argmax
θ ∈ Θ

n∏
i=1

p(yi|xi,θ) (A.8)

Instead of maximizing the likelihood it is often convenient to minimize the negative log-
likelihood3. Equation (A.8) can then be rewritten as Equation (A.9).

θ̂MLE = argmin
θ ∈ Θ

−
n∑
i=1

log p(yi|xi,θ) (A.9)

Moreover, if some prior knowledge on θ is available, it is possible to incorporate it in the form
of a prior distribution p(θ). Applying the Bayes rule (Theorem 2) it is possible to write the
posterior distribution p(θ|y,x) as in Equation (A.10).

p(θ|y,x) =
p(y|x,θ) · p(θ)

p(y|x)
(A.10)

The normalizing constant in Equation (A.10) p(y|x) is independent from θ. It is known as the
marginal likelihood and it can be estimated as in Equation (A.11).

p(y|x) =

∫
p(y|x,θ) · p(θ) dθ (A.11)

Equation (A.10) suggest a new strategy to achieve an estimate for θ that takes into account the
prior distribution. This criterion is stated in Equation (A.12) and it is known as Maximum A
Posteriori (MAP).

θ̂MAP = argmax
θ ∈ Θ

p(θ|y,x) = argmax
θ ∈ Θ

p(y|x,θ) · p(θ) (A.12)

Finally, given that p(y|x,θ) is the likelihood of θ (see Definition 4), we can assume i.i.d. samples
and apply the negative log-likelihood trick to rewrite Equation (A.12) as in Equation (A.13).

θ̂MAP = argmin
θ ∈ Θ

−
[ n∑
i=1

log p(yi|xi,θ) + log p(θ)

]
(A.13)

Fixing the two distributions, the predictive model can be achieved solving the minimization
problem in Equation (A.13). For the solution of this minimization problem the same observations
provided at the end of the last section for Equation (A.6) hold.

A.4 ERM vs MLE/MAP

The goal of this last section is to show that the approaches described in Section A.2 and in
Section A.3 look very different, but they actually are two sides of the same coin.

3 Approaching information theory or deep learning literature, the negative log-likelihood is often referred to as
cross-entropy.
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Assuming that we have the usual collection of i.i.d. samplesD = {(xi, yi)}ni=1, where (xi, yi) ∈
X × Y ∀ i = 1, . . . , n, our aim here is to learn a good input-output relationship f : X → Y .
The function f may depend from some parameters that, for ease of writing, will be temporary
omitted. If we decide to proceed by MLE, we can find f̂MLE solving the optimization problem
in Equation (A.14).

f̂MLE = argmax
f ∈ F

n∏
i=1

p(yi|xi, f) (A.14)

Applying the negative log-likelihood trick, Equation (A.14) can be rewritten as Equation (A.15).

f̂MLE = argmin
f ∈ F

− 1

n

n∑
i=1

log p(yi|xi, f) (A.15)

As we can see here, we are naming negative log-likelihood what in Section A.2 was called loss
function. In fact, using L(f(x), y) = − log p(y|x, f) Equation (A.15) can be rewritten as in
Equation (A.16), which is the ERM problem.

f̂ERM = argmin
f ∈ F

1

n

n∑
i=1

L(f(xi), yi) (A.16)

In Section A.2 we have seen that introducing R(f) reduces the space of functions F and
prevents the achieved solution from overfitting. Intuitively, the same effect can be achieved
by introducing a prior p(f) as in the MAP estimate. Following Equation (A.13) we can write
Equation (A.17).

f̂MAP = argmin
f ∈ F

− 1

n

[ n∑
i=1

log p(yi|xi, f) + λ log p(f)

]
(A.17)

Finally, as for Equation (A.16), we can express the penalty as R(f) = −λ
n

log p(f) and Equa-
tion (A.17) becomes Equation (A.18), which is the classical Loss + Penalty formulation of
the ERM problem.

f̂ERM = argmin
f ∈ F

1

n

n∑
i=1

L(f(xi), yi) + λR(f) (A.18)

In this section an intuitive explanation of the connection between two popular supervised
learning approaches is provided. For a more rigorous overview on ERM and MLE/MAP we
refer to [Hastie et al., 2009] and to [Rasmussen and Williams, 2006], respectively.

A.4.1 Linear regression revisited

To clarify the connection between ERM and MLE/MAP we can revisit the simple linear regres-
sion problem.
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Once again, we have a collection of i.i.d. samples D = {(xi, yi)}ni=1 = (X,y), where (xi, yi) ∈
X ×Y ∀ i = 1, . . . , n and our aim is to learn an input-output relationship f : X → Y . Moreover,
we assume that the outputs yi is affected by additive Gaussian noise, hence yi = f(xi)+ε where
ε ∼ N (0, σ2

n). Interestingly, this corresponds to the assumption that f is modeling the mean of
the outputs yi, while its standard deviation σn remains unknown, therefore yi ∼ N (f(xi), σ

2
n)

(∀ i = 1, . . . , n). In Section A.2 we have seen that the ERM solution can be estimated as in
Equation A.16. For the sake of simplicity we can restrict to the Ridge Regression case (see
Section 3.1.1), i.e. we look for a model that can be written as ŷ = f(x) = xT ŵ minimizing the
square loss L(ŷ, y) = 1

n
‖y −Xw‖2

2 penalized by the `2-norm R(w) = ‖w‖2
2. Therefore, the

minimization problem is stated in Equation (A.19).

ŵ`2 = argmin
ŵ∈Rd

J(y, X,w) = argmin
ŵ∈Rd

1

2n
‖y −Xw‖2

2 +
λ

2
‖w‖2

2 (A.19)

In Section A.4 we have seen that the regularized minimization problem corresponds to a MAP
estimate with an appropriate choice for negative log-likelihood and prior distribution (on w)
which correspond to loss function and regularization penalty, respectively. So, considering
J(y, X,w) as a negative log-posterior and factoring out λ we can write

exp

[
− J(y, X,w)

]
∝ exp

[
− 1

2nλ
‖y −Xw‖2

2

]
· exp

[
− 1

2
‖w‖2

2

]
which can be seen as

p(w|y, X) = p(y|X,w) · p(w)

where p(y|X,w) = N (Xw, nλI) and p(w) = N (0, I). So, in this probabilistic interpretation,
the variance of the noise affecting the output y plays the role of the regularization parameter
λ ≈ σ2

n.

A.4.2 Logistic regression revisited

In this section we revisit binary classification via logistic regression from a probabilistic per-
spective.

In binary classification problems we are provided with a collection of input-output pairs D =
{(xi, yi)}ni=1 = (X,y), where xi ∈ X and yi ∈ {+1,−1}, ∀i = 1, . . . , n. Once again we are
looking for a model f : X → Y that associates each input sample with its corresponding class.
For the sake of simplicity we restrict to the case of linear functions ŷ = f(x) = xT ŵ.

The main idea behind logistic regression is to use a loss function having a [0, 1] range to estimate
the probability that a sample xi belongs to one of the two classes. As suggested by its name, the
function of choice is the logistic σ(z) = [1 + exp (−z)]−1.

In this context, we model our outputs yi as Bernoulli random variables, which implies that

P (y = 1|x) = σ(−f(x)) =
1

1 + exp (−f(x))

and
P (y = −1|x) = σ(f(x)) =

1

1 + exp (f(x))
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consequently, we can write the general form as in Equation (A.20).

P (y = ±1|x) =
1

1 + exp (−yf(x))
(A.20)

Therefore, assuming a Gaussian prior on the weights w ∼ N (0, I), we can perform a MAP
estimate of f̂ solving the problem in Equation (A.21).

ŵLR = argmax
ŵ∈Rd

n∏
i=1

p(w|yi,xi) = argmax
ŵ∈Rd

n∏
i=1

1

1 + exp (−yi xTi w)
· exp (−1

2
‖w‖2

2) (A.21)

Log-transforming Equation (A.21), and applying some elementary linear algebra, we can write
Equation (A.22).

ŵLR = argmin
ŵ∈Rd

1

2nλ

n∑
i=1

log
[
1 + exp (−yixTi w)

]
+
λ

2
‖w‖2

2 (A.22)

The minimization problem expressed in Equation (A.22) is known as Regularized Logistic
Regression. It can be casted in the regularization framework of Equation (A.18) where the
logistic loss function L(f(x), y) = log [1 + exp (−yf(x))] is penalized by the `2-norm.
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