
Dipartimento di Informatica, Bioingegneria,
Robotica ed Ingegneria dei Sistemi

Spatio-Temporal Video Analysis
and the 3D Shearlet Transform

by

Damiano Malafronte

DIBRIS, Università di Genova
Via Opera Pia, 13 16145 Genova, Italy http://www.dibris.unige.it/



Università degli Studi di Genova

Dipartimento di Informatica, Bioingegneria,

Robotica ed Ingegneria dei Sistemi

Ph.D. Thesis in Computer Science and Systems
Engineering

Computer Science Curriculum

Spatio-Temporal Video Analysis
and the 3D Shearlet Transform

by

Damiano Malafronte

May, 2018



Dottorato di Ricerca in Informatica ed Ingegneria dei Sistemi
Indirizzo Informatica

Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi
Università degli Studi di Genova

DIBRIS, Univ. di Genova
Via Opera Pia, 13

I-16145 Genova, Italy
http://www.dibris.unige.it/

Ph.D. Thesis in Computer Science and Systems Engineering
Computer Science Curriculum

(S.S.D. INF/01)

Submitted by Damiano Malafronte
DIBRIS, Univ. di Genova

Date of submission: February 2018

Title: Spatio-Temporal Video Analysis and the 3D Shearlet Transform

Advisors:

Francesca Odone
Dipartimento di Informatica, Bioingegneria, Robotica ed Ingegneria dei Sistemi

Università di Genova
francesca.odone@unige.it

Ernesto De Vito
Dipartimento di Matematica

Università di Genova
devito@dima.unige.it

Ext. Reviewers:

Gerd Teschke
Neubrandeburg University of Applied Science

teschke@zib.de

Raffaella Lanzarotti
Department of Computer Science
Università degli Studi di Milano
lanzarotti@di.unimi.it

mailto:francesca.odone@unige.it
mailto:devito@dima.unige.it
teschke@zib.de
lanzarotti@di.unimi.it


Abstract

The automatic analysis of the content of a video sequence has captured the
attention of the computer vision community for a very long time. Indeed,
video understanding, which needs to incorporate both semantic and dynamic
cues, may be trivial for humans, but it turned out to be a very complex
task for a machine. Over the years the signal processing, computer vision,
and machine learning communities contributed with algorithms that are
today effective building blocks of more and more complex systems. In
the meanwhile, theoretical analysis has gained a better understanding of
this multifaceted type of data. Indeed, video sequences are not only high
dimensional data, but they are also very peculiar, as they include spatial as
well as temporal information which should be treated differently, but are
both important to the overall process. The work of this thesis builds a new
bridge between signal processing theory, and computer vision applications. It
considers a novel approach to multi resolution signal processing, the so-called
Shearlet Transform, as a reference framework for representing meaningful
space-time local information in a video signal. The Shearlet Transform
has been shown effective in analyzing multi-dimensional signals, ranging
from images to x-ray tomographic data. As a tool for signal denoising, has
also been applied to video data. However, to the best of our knowledge,
the Shearlet Transform has never been employed to design video analysis
algorithms. In this thesis, our broad objective is to explore the capabilities of
the Shearlet Transform to extract information from 2D+T-dimensional data.
We exploit the properties of the Shearlet decomposition to redesign a variety
of classical video processing techniques (including space-time interest point
detection and normal flow estimation) and to develop novel methods to better
understand the local behavior of video sequences. We provide experimental
evidence on the potential of our approach on synthetic as well as real data
drawn from publicly available benchmark datasets. The results we obtain
show the potential of our approach and encourages further investigations in
the near future.
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Introduction

The Shearlet Transform [LLKG05, KL12, DDMGL15] is a multiresolution analysis
framework possessing several properties which make it suitable for the analysis of
multidimensional signals. Amongst these, we recall its ability to characterize anisotropic
structures, together with a straightforward way to capture and encode signal singularities.
These properties have been exploited by various authors in the image processing domain,
see for instance [YLEK08, GLL09, YLEK09a, KL10, EL12, DODV15, DPNODV17],
where the Shearlet Transform has been successfully employed to enhance and detect
different low-level singularities within 2D digital images.

In this thesis we explore the possibility of using the Shearlet Transform in a video
analysis scenario. Part of the results that we present within this document can be found in
[MODV17a, MODV17b, MGV+17, MODVar]. We tackle a variety of computer vision
tasks, all related to the local analysis of 2D+T-dimensional signals. From the theoretical
standpoint, the Shearlet framework is very appropriate for the analysis of a signal in a
local neighborhood at different scales. Moreover, our work shows that it is possible to
extract very different types of information from a video sequence by exploiting the result
of a single decomposition of the signal, namely the Shearlet coefficients.

Within this general goal, the specific objectives of this thesis are:

• to assess the capabilities of the 3D Shearlet Transform as a tool to analyze 2D+T
signals, in terms of its ability to describe the local spatio-temporal neighborhood
of a space-time point.

• to model the spatio-temporal local structures which may arise in the space-time
domain, through the development of a simple taxonomy which may inspire future
research.
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• to understand the amount of information carried by the Shearlet coefficients
calculated on a video sequence, so to develop novel Shearlet-based approaches to
carry out video analysis tasks.

State of the art

The rise of Shearlets traces its roots back to the early 2000s, when the use of wavelets
in signal analysis and computer vision had proved almost optimal for one-dimensional
signals in many ways, and the mathematics behind classical wavelets had reached a
high degree of elaboration. While considering signals in dimension two and above,
wavelet systems act worse in encoding and characterizing anisotropic singularities, over
the years this situation has led to the development of a new class of representations.
Among these, a few representatives of such approaches are directional wavelets [AM96],
ridgelets [CD99], curvelets [CD04], wavelets with composite dilations [GLL+04], con-
tourlets [DV05b], Shearlets [LLKW05], reproducing groups of the symplectic group
[CDMNT06], Gabor ridge functions [GS08] – and more.

The reason why Shearlets stand out is due to the several properties they possess: they
provide optimal sparse representations, are sensitive in characterizing singularities while
still being stable against noise in the signal and they provide optimal sparse repre-
sentation. These are just a few of all the properties that characterizes Shearlets, see
[KL12, DDMGL15] for an overview and a complete list of references. From the purely
mathematical perspective, their construction is based on the well-established theory of
square-integrable representations (see, for example, [F0̈5]), just as wavelets are, and
because of this many powerful mathematical tools are available [DST10, DHST15].

From the application standpoint we mention previous works exploiting the properties of
the 2D Shearlet Transform to develop approaches for edge detection [YLEK09b, KP15],
image inpainting [KKL13], image denoising [ELC09, CHS13], image separation [KL10]
and anomaly detection [GPLC14]. Shearlets have also been employed in the biomed-
ical imaging domain, to developed advanced compressed sensing techniques [PKG15,
MMF+17] and for phase retrieval purposes [PLPS16]. As for applications based on the
3D Shearlet Transform, we mention, for example, video denoising [NL12a, GPLC14],
but to our knowledge there are a few previous attempts to exploit a proper construction of
the 3D Shearlet Transform to enhance, highlight or describe three-dimensional structures
[GL11].
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One of the objectives of our work is to define a taxonomy of the spatio-temporal structures
which might arise in the spatio-temporal domain. Previous work on space-time local
analysis include some early approaches to describe locally the behavior of points lying
on two-dimensional surfaces [KvD92][BBC13], other works have also considered an
element within a 2D+T sequence as a 3D object, by considering its evolution over time,
and defined a set of indexes on it [BGS+05] so that to carry on an action recognition task.
We will introduce in this document a work where the author has been able to define the
nature of spatio-temporal corners [Lap05], but that approach only gives sparse labels,
giving a name to a few points within the signal.

The methods that will be presented in this thesis are of different nature. One of them
is related to a dense analysis of the video sequence searching for points which can be
considered more interesting that the others. This is often a fundamental step in a video
analysis pipeline, and several works have tried to do this in different ways. In the first
case, spatial points are tracked over frames and their behavior is considered meaningful
for a given task in case they possess an interesting behavior (like in [WKSL11][WS13]);
secondly, points are tagged interesting by considering their actual spatio-temporal neigh-
borhood, by looking at the signal as a three-dimensional function varying along the x, y
and t axis. We start by considering the seminal work by Laptev et al [Lap05] which set
the basis for the understanding of the meaning of spatio-temporally interesting points in
the same way we intend them in our work. Laptev defined what a spatio-temporal corner
is, in a way that we explore more in depth in the following sections, by extending existing
algorithms and theory developed and applied previously in the image processing field
[Lin96]. Dollàr et al [DRCB05] have developed the so called cuboid detector, a method
to detect elements not only representing spatio-temporal corners but also space-time
points around which the signal changes repetitively within a given span of time. An even
different technique has been developed by Willems et al [WTG08], by exploiting the idea
of integral video (as defined in [KSH05]) and by redefining a saliency measure based
on the determinant of the Hessian of each given spatio-temporal point within the video
sequence. There have been other tentatives to develop spatio-temporal interest points
detectors in the years following this work [WC07, CHMG12]. However, in the following
chapters we take inspiration from the idea conceived by Laptev, and we develop our own
approach exploiting the information available from the Shearlet Transform to carry out
our analysis.
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The last set of works that we consider is related to the estimation of the motion which
characterizes the subject in the scene. On this respect there is a vast literature one could
explore, starting from seminal work such as the one carried out by Lukas and Kanade
[LK+81], Horn and Schunck [HS81], Farneback [Far00] or a set of other approaches
relying on the use of variational methods [BBPW04, BWF+05, BBM09, WPZ+09].
For a broader overview of the several approaches developed in this direction in the
past, we refer to [FBK15]. More recent ones have considered the use of deep learning
[WRHS13, IMS+17], achieving state-of-art results and improving the speed at which the
result of the calculation is provided.

Most of the approaches mentioned above have developed methods focused on considering
a single kind of information, derived from the input signal. Our approach relies on the use
of the Shearlet Transform to extract different types of information from a video sequence,
so to combine them to obtain a description of how elements within the scene are evolving
over time. More similar to our methods are the ones introduced in [DNL09, SZ14], which
try to improve the results achieved in an action recognition task by combining different
kind of inputs (appearance/semantic and dynamic).

Thesis contributions

We ground our work on the result obtained in previous approaches in the 2D signal
processing scenario [YLEK09c, DODV15, KP15]. Those works strengthened the basis
for a more in-depth use of the Shearlet Transform in image and video processing scenarios.

From the results obtained within those works, we consider the applicability of the 3D
Shearlet Transform to analyze 2D+T data, that is when our signal is characterized by two
spatial dimensions and a temporal one, thus we focus on the analysis of video sequences.

Our contributions are:

• the definition of the mathematical ground needed to support our analysis so that
to show how it is possible to derive a better low-level understanding of the content
within video sequences by exploiting the properties of the 3D Shearlet Transform
[MODV17b, MODVar].
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• the development of a framework1 for the analysis of video signals.

• the reproduction of a few existing techniques developed in the past in the field,
by means only of the information carried by the Shearlet Transform, like the
detection of spatio-temporal interest points [MODV17a] or the estimation of the
apparent motion happening in the scene.

• a set of experimental evaluations to validate preliminarily our approach [MGV+17].

Thesis structure

This document is structured in the following way:

• In Chapter 1 we introduce the Shearlet Transform, the framework on which we
base our work.

• In Chapter 2 we recap quickly which spatial singularities have been described the
most in the past, we then proceed with one of our contributions, the description
and the modeling of primitives in the 2D+T-dimensional case, also showing how to
exploit the information brought by the Shearlet Transform to analyze such a kind
of signals.

• In Chapter 3 we present the Shearlet-based framework that we have developed,
devising different video processing methods to exploit the information carried by
the Shearlet Transform, showing a set of experimental results for the techniques
that have been developed.

• Finally, we conclude this document with our final considerations and the possible
future developments of our work, while also remarking the limitations which have
characterized our approach within this research.

1which implementation is publicly available online,
https://github.com/damianomal/Shearlet-Framework

8

https://github.com/damianomal/Shearlet-Framework


Chapter 1

Shearlets

In this Chapter we introduce the Shearlet Transform, the main tool we base our work on,
together to the formulas and the definitions needed to characterize its properties. By doing
so, we set the ground for a better understanding of the techniques and the algorithms that
we have developed, and which will be described in the following chapters.

1.1 Introduction

In this thesis, and for all the properties it owns, we decide to use the Shearlet framework
and we investigate its applicability in a video processing scenario. To better understand
all its fashions and to justify our choice, this chapter gives a quick overview of the needed
mathematical theory, of how to construct a Shearlet system and of the corresponding
Shearlet Transform, the main tool which we exploit to develop our work.

Though Shearlets were first introduced for 2D-signals [LLKG05], they were extended
to arbitrary space dimensions in the seminal paper [DST10]. For 3D signals a digital
implementation can be found in [KLR16], which is the main reference for this chapter.

While the notation that we introduce in the following sections is related to the one used
in the above-mentioned paper, we make a few choices for the sake of clarity within our
work.
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1.2 Notation and Definitions

We start by reviewing the construction of the Shearlet frame for 3D signals. We denote
by L2 the Hilbert space of functions f : R3 → C such that

∫
R3

|f(x, y, z)|2 dx dy dz < +∞,

where dx dy dz is the Lebesgue measure of R3, by ‖f‖ the corresponding norm and
〈f, f ′〉 is the scalar product between two functions f, f ′ ∈ L2.

Given an element f ∈ L2, we denote by f̂ its Fourier transform, i.e.

f̂(ξ1, ξ2, ξ3) =

∫
R3

f(x, y, z)e−2πi(ξ1x+ξ2y+ξ3z) dx dy dz

provided that f is integrable, too. Conversely, we define the inverse Fourier transform of
a signal ĝ as

g(x1, x2, x3) =

∫
R3

ĝ(ξ1, ξ2, ξ3)e2πi(ξ1x+ξ2y+ξ3z) dξ1 dξ2 dξ3

We also recall the definition of frame, which provides us with an analytic setting to
generalize the idea of orthonormal bases, since Shearlet systems do not form bases but
require an extension of this concept.

A frame for L2 is a countable family F = {φi}i∈I such that each φi is in L2 and

A‖f‖2 ≤
∑
i∈I

|〈f, φi〉|2 ≤ B‖f‖2 ∀f ∈ L2,

where A,B are constants so that 0 < A ≤ B <∞, called lower and upper frame bound.
We are interested in this definition as we consider the Shearlet frame as an analysis tool,
since we try to study the associated frame coefficients 〈f, φi〉 to extract information from
our starting signal.
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One application of frames is the analysis of elements in a Hilbert space, which can be
carried on by the analysis operator, given by

T : L2 → `2(I), T (f) = (〈f, φi〉)i∈I

Even if we do not consider it within this work, it is relevant to report here what is called
the frame reconstruction formula, defined by

f =
∑
i∈I

〈f, φi〉S−1φi ∀f ∈ L2,

where Sf =
∑

i∈I〈f, φi〉φi is the frame operator associated with the frame (φi)i∈I .

1.3 Discrete Shearlet Transform

The Shearlet Transform is based on three geometrical transformations: dilations, trans-
lations and shearings. These operators are used together to generate waveforms with
anisotropic supports and different orientations, while preserving the integer lattice (see
[KLR16] for details).

We introduce the notation for the two-dimensional case1, then we move to the three-
dimensional setting. A Shearlet system consists of a given generating function on which
a set of transformations is applied, such as a parabolic scaling matrix A`,j , defined by

A1,j =

(
2j 0
0 2j/2

)
and A2,j =

(
2j/2 0
0 2j

)
,

and a orientation-changing transformation, namely a shearing S`,k, defined

1here the notation introduced in Section 1.2 still holds, with trivial modifications to adapt it to R2
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S1,k =

(
1 k
0 1

)
and S2,k =

(
1 0
k 1

)
,

plus a translation, which rules its position. The matrices defined above depend also on an
index `, since we consider a specific case where the Shearlet system we build is referred
to as cone-adapted, for the frequency domain is partitioned into cone-shaped partitions
(as shown in Figure 1.1).

Figure 1.1: Cone-like partition of the Fourier domain.

The Shearlet system F consists of three families

F = F0 ∪ Fh ∪ Fv

where F0 = {φm : m ∈ Z2} is associated with the low frequency region

P0 = {(ξ1, ξ2) ∈ R̂2 | |ξ1| ≤ 1, |ξ2| ≤ 1}

and is given by the functions

φm(x, y) = φ(x− cm1, y − cm2).
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where m = (m1,m2) ∈ Z2 represents the translations, c > 0 a step size. The other two
subfamilies Fh and Fv corresponds each to a different pair of cone-like partitions as
shown in Figure 1.1, and they take care, respectively, of the two sets of high-frequency
regions

Ph = {(ξ1, ξ2) ∈ R̂2 | |ξ1| > 1, |ξ2

ξ1

| ≤ 1} (1.1)

Pv = {(ξ1, ξ2) ∈ R̂2 | |ξ2| > 1, |ξ1

ξ2

| ≤ 1} (1.2)

These two partitions are associated with a set of functions ψ`,j,k,m ∈ L2(R2) which are
explicitly defined as

ψ`,j,k,m(x, y) = 2
3
4
jψ(S`,kA`,j

(
x−c1m1
y−c2m2

)
),

where c` = c and the other parameter cα = ĉ with α 6= `, ĉ is another step size,
|k| ≤ d2j/2e is the shearing parameter, m = (m1,m2) ∈ Z2 determines the translation
and matrices S`,k and A`,j are the ones introduced in the opening of this section.

In the definitions above, the function φ is chosen to have compact frequency support
near the origin, so that the function φm will be associated with the low frequency region
P0 in Figure 1.1. Similarly, the functions ψ are chosen so that the family of functions
ψ1,j,k,m is associated with the two horizontal cones denoted Ph, and the system ψ2,j,k,m is
associated with the cones Pv.

The corresponding Shearlet Transform of a signal f ∈ L2(R2) is the mapping

SH[f ](`, j, k,m) =

{
〈f, φm〉 if ` = 0

〈f, ψ`,j,k,m〉 if ` = 1, 2

Where ψ ∈ L2(R2) is defined through its Fourier representation as

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2( ξ2
ξ1

), (1.3)

13



and ψ1 ∈ L2(R2) is a discrete wavelet, satisfying the discrete Calderón condition

∑
j∈Z

|ψ̂1(2−jξ)|2 = 1 for a.e. ξ ∈ R,

with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−1
2
,− 1

16
]∪[ 1

16
, 1

2
], and ψ̂2 ∈ L2(R) is a bump function

for which

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1, 1],

where ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1]. Within this setup, ψ is called a classical

shearlet.

We consider the implementation of the Shearlet Transform as introduced in [KLR16], by
noting that the family of functions φm is associated with the low-frequency component of
the signal and is strictly dependent only on the parameter m, thus it is sufficient to focus
on the creation of Shearlets in ψ`,j,k,m.

Following [KLR16], the generator function ψ is chosen such as

ψ̂(ξ) = P (ξ1/2, ξ2)ψ̂sep(ξ) (1.4)

where P is suitable polynomial 2D Fan filter [DV05a, DCZD06], and where to achieve
better numerical results ψ is chosen to be non-separable. More precisely, with a suitable
choice of the 2D fan filter P , it holds that

P (ξ1/2, ξ2)φ̂1(ξ2) ≈ ψ̂2( ξ2
ξ1

) (1.5)

and
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P (ξ1/2, ξ2)ψ̂1(ξ1)φ̂1(ξ2) ≈ ψ̂1(ξ1)ψ̂2( ξ2
ξ1

) (1.6)

relating this construction of the generator function ψ with the definition of classical
Shearlets as in 1.3. Here ψ1 and φ1 are defined so that ψsep = ψ1 ⊗ φ1, with ψ1 and φ1

being respectively a 1D wavelet and a 1D scaling function. To ensure F to be a frame it is
necessary to have some technical condition on the smoothness of φ1 and on the vanishing
momenta of ψ1, see [KL12].

Similarly to what we have introduced in the two-dimensional case, to move to the three
dimensions scenario we consider the case in which we adopt a pyramidal-like partition

of the frequency domain.

The Shearlet frame F is now defined in terms of four different subfamilies F` with
` = 0, . . . , 3 as it follows. The first family F0 = {ϕm} takes care of the low frequencies
cube

P0 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ1| ≤ 1, |ξ2| ≤ 1, |ξ3| ≤ 1}

and it is given by

ϕm(x, y, t) = ϕ(x− cm1, y − cm2, z − cm3),

where m = (m1,m2,m3) ∈ Z3 labels the translations, c > 0 is a step size, and

ϕ(x, y, z) = φ1(x)φ1(y)φ1(z),

where φ1 is a 1D-scaling function.

The other three families F` are associated with the high frequency domain. Each of them
corresponds to the pyramid whose symmetry axis is one of the Cartesian axes ξ1, ξ2, ξ3 in
the Fourier domain, see Figure 1.2. Thus, the three pyramids are

15



P1 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ1| > 1, |ξ2

ξ1

| ≤ 1, |ξ3

ξ1

| ≤ 1},

P2 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ2| > 1, |ξ1

ξ2

| ≤ 1, |ξ3

ξ2

| ≤ 1},

P3 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ3| > 1, |ξ1

ξ3

| ≤ 1, |ξ2

ξ3

| ≤ 1},

(a) (b) (c)

Figure 1.2: The three pyramids P1, P2 and P3, with displayed in black the area belonging
to the positive part of the corresponding symmetry axis and in red the one related to its
negative part, the low frequency cube P0 is not shown here.

Fixed ` = 1, 2, 3, each F` = {ψ`,j,k,m} is defined in terms of parabolic dilations

A1,j =

2j 0 0
0 2j/2 0
0 0 2j/2

 , A2,j =

2j/2 0 0
0 2j 0
0 0 2j/2

 , A3,j =

2j/2 0 0
0 2j/2 0
0 0 2j

 ,

where the index j refers to the dyadic scale (note that j = 0 corresponds to the coarsest
scale), and shearings

S1,k =

1 k1 k2

0 1 0
0 0 1

 , S2,k =

 1 0 0
k1 1 k2

0 0 1

 , S3,k =

 1 0 0
0 1 0
k1 k2 1

 ,

where the index k = (k1, k2) ∈ Kj controls the shearing and runs over

Kj = {k = (k1, k2) ∈ Z2,max{ |k1|, |k2| } ≤ d2j/2e}.

16



Explicitly, in this case the functions ψ`,j,k,m are given by

ψ`,j,k,m(x, y, z) = 2jψ`

(
S`,kA`,j

(
x−c1m1
y−c2m2
t−c3m3

))
, (1.7)

where c` = c and cα = cβ = ĉ if α, β 6= `, ĉ is another step size as in the two-dimensional
case and, as for the family F0, m = (m1,m2,m3) ∈ Z3 labels the translations.

Following [KLR16], the generating vector ψ1 is of the form

ψ̂1(ξ1, ξ2, ξ3) = ψ̂1(ξ1)

(
P (
ξ1

2
, ξ2)φ̂1(ξ2)

)(
P (
ξ1

2
, ξ3)φ̂1(ξ3)

)
, (1.8)

where, P is a suitable polynomial 2D Fan filter similarly to the 2D case, ψ1 is the 1D
wavelet function associated with the scaling function φ1 defining the family F0. Similar
equations hold for ` = 2, 3 by interchanging the role of ξ1, ξ2 and ξ3.

The 3D Shearlet Transform of a signal f ∈ L2 is given by

SH[f ](`, j, k,m) =

{
〈f, ϕm〉 if ` = 0

〈f, ψ`,j,k,m〉 if ` = 1, 2, 3

where j ∈ N, k ∈ Kj, m ∈ Z3. In the experiments we use the digital implementation
of the 3D Shearlet Transform described in [KLR16], which is based on the well known
relation between the pair (φ1, ψ1) and the quadrature mirror filter pair (h, g), i.e.

φ1(x) =
√

2
∑
n∈Z

h(n)φ1(2x− n) (1.9)

ψ1(x) =
√

2
∑
n∈Z

g(n)φ1(2x− n). (1.10)
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Furthermore, a maximum number J of scales is considered and it assumed that the signal
f at the finest scale is given by

f(x, y, z) =
∑
m∈Z3

fJ,m 23J/2φ1(2Jx− cm1)φ1(2Jy − cm2)φ1(2Jz − cm3).

so that fJ,m ' f(cm12−J , cm22−J , cm32−J) since φ1 is well localized around the origin.
The digital Shearlet Transform depends on the number of scales J+1, the directional Fan
filter P in (1.8) and the low pass filter h associated with the scaling function φ1 by (1.9).
A further degree of freedom is the possibility to fix for each scale j a different number of
shearings k ∈ Z2.

Our algorithm is based on the following nice property of the Shearlet coefficients. As
shown in [GL11, GL12, KLL12, KP15, DST10] if the signal f is locally regular in a
neighborhood ofm, then SH[f ](`, j, k,m) has a fast decay when j goes to infinity for any
` 6= 0 and k ∈ Kj . Suppose now that f has a surface singularity at cm with normal vector
(1, n1, n2) ∈ P1 and set k∗ = (d2j/2n1e, d2j/2n2e). If ` = 2, 3, then SH[f ](`, j, k,m)

has a fast decay for any k ∈ Kj , whereas if ` = 1 we have the same good behavior only
if k 6= k∗, whereas if k = k∗ the Shearlet coefficients have a slow decay (a similar result
holds if the normal direction of the surface singularity belongs to the other two pyramids).

This behavior of the Shearlet coefficients allows to associate to any shearing vector
k = (k1, k2) a direction (without orientation) parametrized by two angles, latitude and
longitude, α and β given by

(cosα cos β, cosα sin β, sinα) α, β ∈ [−π
2
,
π

2
]. (1.11)

The correspondence explicitly depends on ` and, for the first pyramid, is given by

tanα =
2−j/2k2√
1 + 2−jk2

1

tan β = 2−j/2k1 α, β ∈ [−π
4
,
π

4
]. (1.12)

For ` = 2, 3 the angles α and β are calculated in the same way, plus an additional rotation
of 90 degrees around an axis, which depends on `.
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In real applications, the ability to detect singularities strongly depends on the choice of
the generating function ψ1 and, hence, on the mirror filter pair (h, g). In this thesis, we
adopt the mirror filter introduced in [MZ92] in the context of wavelets, which behaves
like a bank of first derivative of Gaussians. In this way, every single Shearlet ψj,k,m will
extract some information about how our signal is varying along the direction associated
with the shearing parameter k and with a level of granularity (∼scale) j, allowing us to
highlight the discontinuities characterizing our signal.

1.4 Geometrical Interpretation of Shearlet Coefficients

The sensitivity of the Shearlet coefficients of a signal to the spatial singularities contained
in is has been deeply explored in the past for the two-dimensional case [DODV15, ELL08,
YLEK09c]. The Shearlet Transform has shown itself to be a good tool in characterizing
locally the behavior of two-dimensional singularities in images, and we want to move
on to understand its capabilities in the three-dimensional case. Thus, in this section we
explore the possibility to use the information carried by the Shearlet Transform so to
understand the nature of spatio-temporal primitives in the three-dimensional domain.

For this aim, we consider synthetic spatio-temporal signals, representing a black object
embedded in a white (background) space. The synthetic entity we are considering can be
seen as a three-dimensional cube, while the white part of the signal can be seen as "empty"
space around it. An example of a single slice of the object is represented in Figure 1.3(a),
where the black part on the left represents the content of the three-dimensional cube,
while the white portion on the right is the space in which the object has been embedded.
We base our work on the ShearLab3D framework, and thus we can treat separately the
Shearlet coefficients which belong to the three different pyramidal partitions P1, P2 and
P3.

We begin our analysis on a specific point on a side of the cube parallel to the yz plane (the
green dot in Figure 1.3 and following ones), which we know belongs to one of the surface
characterizing the synthetic object. We then compute the Shearlet coefficients while we
move our focus along the normal direction outside the cube (which is represented by the
red line in Figure 1.3). The behavior of the coefficients is shown in Figure 1.3, where
on the first column we show a sample of a xz-section of the synthetic cube at a given
depth z. In the second column we plot the value of the Shearlet coefficients in the first
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pyramid P1 (corresponding to the partition aligned along the x-axis) at the point selected
on the surface, while we vary the shearing parameter. Note that the number coefficients
in this plot is related to the number of shearings corresponding to the partition P1, which
is associated with a grid of 5x5 shearings. The coefficients of the other two pyramids
contain negligible values in the order of ∼ 10−16, thus we do not show the same plots
in the case of P2 and P3. In the third column, we fix the shearing k∗ corresponding to
the peak value in Figure 1.3(b) and see how the coefficients evolve by moving along the
normal direction corresponding to the red line in Figure 1.3(a), which also corresponds
to the direction associated with the shearing k∗. The coefficients decay as we move away
from the discontinuity, giving us an empirical evidence of the appropriateness of the
analysis of the 3D Shearlet coefficients to localize interest points in correspondence of
three-dimensional surfaces.

(a) (b) (c)

Figure 1.3: Coefficients analysis on a 3D surface (see text). (a) A section of a surface
parallel to the yz plane. (b) A plot representing the coefficients varying at different
shearings, on the x axis there are the indexes corresponding to all the shearings in Kj

for the pyramid P1. (c) The coefficients decay for neighboring points along the surface
normal (the red line), which corresponds to the shearing parameters k=(0,0) and the index
12 in the coefficients vector unrolled in (b).

We now consider a slightly different synthetic object. Figure 1.4 shows a similar analysis
on a 3D edge produced by two surfaces, one which is parallel to plane xz and the other
parallel to plane yz. In this case we identify two significant peaks in two different
pyramids (the main peaks in (b) and (e), corresponding to pyramids P1 and P3).

Within the two pyramids P1 (in Figure 1.4 (a-c)) and P3 (in Figure 1.4 (d-f)) we see a
similar behavior to the case of the 3D surface in Figure 1.3 (b). However, the secondary
peaks have higher values, for the spatio-temporal neighborhood around the point has a
richer behavior. These peaks are also due to the fact that we visualize two-dimensional
information (the Shearlet coefficients associated with a 2D grid of directions) as a 1D
function, thus they appear to be distant on the one-dimensional visualization.

20



The plots we show have been obtained thanks to the a priori information we have on
the normal direction which is in general not available in real data. This issue will be
addressed in the following sections, where we identify a procedure applicable to all points
of an image sequence.

(a) (b) (c)

(d) (e) (f)

Figure 1.4: Coefficients analysis on a 3D edge (see text). (a) and (d) show a section of the
edge parallel to xy plane, where we highlight the two normal vectors. (b) and (e) show
the coefficients varying at different shearings in the two meaningful pyramids. (c) and (f)
show the decay of coefficients for neighboring points along the corresponding normal
directions.

In the previous examples we have considered a single scale, while displaying the behavior
of the Shearlet coefficients while the shearing and the translation parameters vary. As
explained in the first chapter Shearlets provide a multi-scale representation and, for
2D signals, this property allows to efficiently implement many algorithms2 in image
processing as deblurring [FB12, HHZ14], denoising [ELC09, NL12b, ELN13, EL12],
blob detection [DPNODV17, DNOD17] and signal reconstruction [GL13], to name a
few. From a theoretical point of view the same framework holds for 3D signals, however
the computational cost of the 3D Shearlet transform forces to have only a few scales
available. For this reason a complete analysis of the behavior of the Shearlet coefficients
across scales is out of the scope of this thesis. Here, we only focus on what happens when
we consider more than one scale and when the signal is also characterized by blurring.

2and a publicly available framework to carry on experiments, which is also the one we consider within
this thesis, is available at http://www.shearlab.org/
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What we suppose is that the coefficients at the finer scales (the ones corresponding to
higher-frequency details) should be affected by the fact that the blurring effect spreads
the finer details in the neighborhood of each point.

In Figure 1.5 we have an example of this behavior. In Figure 1.5(a-b) we show both the
second and the third scale coefficients (in different colors, check the caption for details),
trying to understand what happens to them while we focus our attention on the spatio-
temporal point marked by the green dot and we vary the shearing parameter. We can see
that the coefficients for the third scale are higher than the ones for the second one. In the
case we introduce some blurring in our synthetic signal, as in Figure 1.5(c-d), the third
scale coefficients decrease considerably, falling almost to zero, while those associated
with the second scale (the coarser one, capturing lower frequency singularities) maintain
higher values.

(a) (b) (c) (d)

Figure 1.5: A comparison of the coefficients for the two different scales, in the case a
signal has or not blurring artifacts: in blue the ones corresponding to the second scale,
and in red the ones corresponding to the third scale (corresponding to higher frequency
details).

These simple experiments give us insights about the fact that the coefficients of the 3D
Shearlet Transform of a three-dimensional signal are meaningful to characterize the local
behavior of a spatio-temporal point, belonging it to surface-like or to more complex
singularities. We limited our analysis to a small number of scales for computational
reasons, for the calculation of the shearlet coefficients is demanding both in memory and
in time, with the former limiting the most. All this is also related with the number of
shearings considered, thus we will fix it for the experiments that we will carry on in the
next sections.

Here we have considered only synthetic examples, so we need to move on and develop
the basis about how to carry on the same kind of analysis on real data.
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Chapter 2

Spatio-Temporal Structures

The idea of modeling spatial structures has been addressed in the image processing
community since its early days. In this chapter, we quickly review the main contributions
made in the field, starting from the two-dimensional case and describing which spatial
elements have been analyzed and universally recognized in the past. Usually, these
spatial elements have been the "building blocks" for further processing, for this reason the
approaches developed have tried to extract and represent them more and more precisely
over the years. We then proceed introducing one of the contributions in our work, the
description and the modeling of primitives in the 2D+T-dimensional case, that are relevant
in the analysis of video sequences. Within this scenario, we will show how to exploit the
information brought by the Shearlet Transform to analyze such a kind of signals.

2.1 Singularities in 2D Signals

While the scientific community started to explore the image processing field, the first steps
have been taken in the direction of exploring and understanding which types of spatial
singularities could be meaningful to detect, analyze and describe in the two-dimensional
scenario. Here, meaningful refers to the fact that these elements characterize the scene
being analyzed, thus allowing for a better understanding of its content.

A large amount of work was devoted to try to understand how physical quantities could
influence the way three-dimensional shapes in the real world are mapped on an hypo-
thetical image plane [BT78, SA93]. After putting a lot of effort into wondering how to
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model these physical and optical transformations, researchers moved on to a more algo-
rithmic approach, with the objective to describe mathematically the appearance of a set
of specific elements within an image so that, for each given task, to separate meaningful
parts characterizing it from portions with no interesting behavior. The work leading this
direction is the one carried on by D. Marr, which notes have been gathered in [MV82].
He explored several aspects of the problem of representing, recognizing and modeling
elements mapped from the 3D world to images, setting the ground for the research in the
years to come.

Seminal papers in this field tried to categorize and identify really simple elements within
the image frame. The first methods developed have been related to the detection of region
boundaries (namely "edges") [Can86, PM90, MZ92, Lin98a], corners (or, more generally,
interest points) [FG87, HS88, TK91, WB95, LSC95], ridges [EGM+94, Lin98a] and
subregions of pixels with similar characteristics [Lin98b, Low04] (which might refer to
groups of adjacent pixels with a similar behavior in terms of light intensity). Amongst
these methods, a few of them are more of interest to us, in particular the approaches
grounded on wavelets [MZ92, LSC95] or those which base their computation on scale-
space theory [PM90, Lin98b]. Examples of the elements that we listed above can be seen
in Figure 2.1. The wide range of works made in this direction showed the feasibility of
a taxonomy of the spatial singularities which can be found in a two-dimensional image
signal, thus setting the ground for further developments.

(a) image (b) edges (c) corners (d) regions

Figure 2.1: Examples of different kinds of spatial singularities.

The majority of the approaches developed in the past relied on the definition and the
creation of ad hoc solutions for the analysis of each given type of singularity. On the
other hand, more recent approaches have tried to learn meaningful features from data,
trying to rely on less as possible a priori information about their shape. In this scenario,
we report here only two main kinds of approaches: the ones based on dictionary learning,
and those relying on neural architectures.
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Dictionary learning, in the image processing scenario, refers generally to a set of tech-
niques with the aim to find a sparse representation of a signal and adapting to the data
being analyzed by learning which features are the most representatives. This kind of
approach has been considered in the past to carry on object categorization and image
classification tasks [WCM05, YYGH09], to infer discriminative features for different
types of objects [MBP+08], for image denoising tasks [EA06], to learn a hierarchy of
spatial primitives [JMOB10], and many others.

Methods based on deep learning architectures [LBBH98, KSH12, ZF14] have developed
a set of models able to learn and infer the spatial primitives which are descriptive the most
of what is represented in a given dataset of images. This has been possible by exploiting
a precise type of networks, namely the convolutional neural networks. While a nontrivial
subset of all these learnt primitives can be often associated with existing, well-known
interesting elements (i.e. edges, corners or intersections, and so on), the features to which
the hidden units in the deeper layers of these networks become more sensitive to represent
more complex behaviors characterizing the data these architectures have been trained on.
An example of low-level features learnt from such a network is represented in Figure 2.2,
where it is possible to see edge-like objects and regions of constant color, together to
elements with a more complex behavior.

Figure 2.2: Examples of features learned in the first layer of a CNN architecture (from an
implementation of AlexNet [KSH12]).

While this has shown the capabilities of such a kind of architectures, which are able to
adapt themselves to the various nuances which can arise in each set of data, these models
lack interpretability. We would like to be able to visualize the set of features which we are
learning from our data, while at the same time being confident about the kind of objects
we are looking at.
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For their sensitivity in capturing anisotropic features, we consider the Shearlet framework
to carry on such a task. We want to exploit their ability to detect spatial singularities in
the spatio-temporal domain, while processing video sequences. In the next section, we
try to understand the kind of information the Shearlet coefficients are carrying with them,
as a ground base to build our further approaches onto.

2.2 Video Sequences as 3D Signals

Since we are considering the analysis of video sequences, we have to think about how to
extend the previous ideas also to the 2D+T-dimensional case. In this thesis we consider
a whole sequence as a three-dimensional object, the content of which changes along
three different dimensions (two spatial and a temporal one). We don’t perform tracking
of matching tasks between different images, so that to correlate temporally elements
which belong to subsequent frames. Previous papers in this field have followed a similar
approach, exploiting the ability to calculate a foreground mask and to cut off the target
from the whole scene [BGS+05][Dav01] or actually considering a sequence in the same
way we do [Lap05], as an actual three-dimensional object.

A video sequence can be regarded as 3D signal by stacking each 2D frame along the
third direction (the t/z-axis). A region of interest moving in time generates a 3D volume.
For example, in the sequence in Figure 2.3, taken from a popular action recognition
dataset [SLC04], the boxing man generates the green volume depicted in Figure 2.3(d).
This shape is obtained by selecting, for every frame in the sequence, only the pixels
corresponding with the body of the boxer. This produces a binary mask representing
pixels within the subject (value 1) or outside it (value 0). If we stack all the binary masks
we obtain the three-dimensional shape as in Figure 2.3(d), which can be analyzed to
understand what the actor in the scene is doing (e.g. which action it is executing).

This is just an example of visualization of how a single object evolves within the sequence.
In this thesis, while developing our spatio-temporal analysis framework, we consider
video sequences as real three-dimensional signals, without an a priori knowledge about
the concept of background/foreground for them.

Regarding a video sequence as a 3D signals, it is natural to identify spatio-temporal
primitives as the boundaries of the volumes generated by the regions of interest in the
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(a) frame 13 (b) frame 33 (c) frame 37 (d) resulting shape

Figure 2.3: (a-c) Sample frames of the boxing sequence and (d) corresponding shape
generated from the movement.

video. Surfaces, edges and vertices of the 3D shape correspond to different behaviors in
space and time.

The volume in Figure 2.3(d) is clearly representative of the motion happened in the scene.
The building block which is missing is a formal definition of the different elements which
characterize the surface of such volume, which is the topic of the next Section. While
doing this, we have to keep into account of the fact that we are not working exactly with
three-dimensional data, since one of the dimensions that we are considering (the temporal
one) has a strong, different meaning w.r.t. the other two.

2.3 Primitives in 3D Signals

One of the first questions we have to ask ourselves was how to extend the idea of
singularity (or primitive) to the spatio-temporal domain, since this is the scenario that
we are considering. We have been able to address this problem by means of an in-depth
understanding of the information that the Shearlet Transform is extracting through the
corresponding decomposition of a video signal.

Therefore, if we analyze the behavior of the signal in space-time, we may observe that
several different types of primitives arise (see also Figure 2.4):

• Spatio-temporal surfaces, caused by 2D edges with a smooth velocity profile,
thus spanning surfaces in space-time.
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• Spatio-temporal edges either caused by 2D corners moving smoothly or by 2D
edges undergoing an abrupt velocity change. These two primitives could be
discriminated by detecting the orientation of the 3D edge, see Figure 2.4 (b) and
Figure 2.4 (c).

• Spatio-temporal corners or vertices caused by 2D corners undergoing a strong
velocity change.

These spatio-temporal primitives are easily associated with classical 3D features: surfaces,
edges, and vertices, and can be analyzed by adapting 3D signal representation models.
It should be observed, though, that 2D+T features have a very specific nature that
characterizes them beyond their three-dimensional structure. For instance, we could
further cluster these primitives in still and moving entities (corresponding to different
orientations in the 2D+T space). Also, the third component (corresponding to the time
dimension) has a different intrinsic scale, and very precise constraints, since spatial
features do not disappear all of a sudden and the time dimension can only proceed
forward.

In the reminder of the work we refer to 2D edges when considering image discontinuities
and 3D or spatio-temporal edges when discussing the behavior in space-time. As for
corners, we will refer to 2D corners in space and to vertices, 3D corners or spatio-temporal
corners in space-time.

(a) (b) (c) (d)

Figure 2.4: Spatio-temporal primitives which can take place in the space-time domain, by
considering how the image in the background of each one of these moves over time: (a) a
2D edge moving smoothly spawns a spatio-temporal surface (b) a 2D edge undergoing
a velocity change thus producing a 3D edge, (c) a 2D corner moving smoothly also
producing a 3D edge, (d) a 2D corner undergoing a velocity change providing a 3D
vertex.

We assume that the region of interest is a rigid planar body C moving in the time interval
[0, T ] (in Figure 2.5 (a) we can see a visualization of the object at time t, with a few
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quantities depicted on it). We further assume that the boundary of C can be parametrized
at the initial time t = 0 by the simple closed curve

γ(s) = x(s)i + y(s)j s ∈ [0, L],

where L is the length of the boundary, s is the oriented arc-length and the curve is oriented
so that the interior of the body is on the left side, see Figure 2.5. We denote by i and j the
canonical unit vectors of the x-axis and y-axis, respectively. Since we assumed that the
body is rigid the time evolution of each point γ(s) is given by

γ(s, t) = r(t) +R(t)(γ(s)− r(0)) = x(s, t) i + y(s, t) j,

where r(t) is the time evolution of the center of mass of the body and R(t) is the
time-dependent rotation around the center of mass.

The evolution of the body in time describes a 3D-volume (see Figure 2.5 (b)) whose
boundary is the surface parametrized by

σ(s, t) = x(s, t) i + y(s, t) j + tk s ∈ [0, L], t ∈ [0, T ],

where k is the canonical unit vector of the t-axis.

We now compute the normal vector to the surface at spatial-temporal point σ(s, t)

N(s, t) =
∂σ

∂s
(s, t) ∧ ∂σ

∂t
(s, t) = det

 i j k
∂x
∂s

(s, t) ∂y
∂s

(s, t) 0
∂x
∂t

(s, t) ∂y
∂t

(s, t) 1

 (2.1)

= n(s, t) + τ(s, t) ∧ v(s, t) (2.2)
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where we have

τ(s, t) =
∂x

∂s
(s, t)i +

∂y

∂s
(s, t)j

n(s, t) =
∂y

∂s
(s, t)i− ∂x

∂s
(s, t)j

v(s, t) =
∂x

∂t
(s, t)i +

∂y

∂t
(s, t)j

Here, τ(s, t) and n(s, t) are the tangent and normal external unit vectors to the boundary
of C at spatial point (x(s, t), y(s, t)) and v(s, t) is the corresponding velocity, and all of
them are regarded as 3D vectors. Since s is the arc-length, the tangent vector τ(s, t) has
norm 1 and n(s, t) corresponds to the external normal unit vector, for it is obtained by
clockwise rotating the tangent vector τ(s, t) by π/2, see Figure 2.5.

Figure 2.5: (left) A body at time t with the main relevant geometrical and dynamical
quantities, (right) the spatio-temporal surfaces spanned by the movement of the body
over time.

We now consider four prototypical setups (or "behaviors"), thanks to which we try to
relate the evolution over time of the rigid body C with the Shearlet coefficients calculated
for a given point γ(s, t):

1. The boundary is smooth, so that both τ(s, t) and n(s, t) are smooth, and the velocity
is always smooth. Then the surface parametrized by σ is everywhere smooth and
in each point there is a tangent plane whose normal vector is given by N(s, t),
(see Figure 2.4 (a)); if the velocity is zero, then the normal vector N is simply
given by n. Here we expect a single coefficient to have an high value, exactly
the one corresponding to the shearing parameter associated with the direction
corresponding to the surface normal.
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2. The boundary is smooth, so that both τ(s, t) and n(s, t) are smooth, but the velocity
at time t = t0 is not regular. Hence, the two surfaces

{σ(s, t) | s ∈ [0, L], t ∈ [0, t0]} and {σ(s, t) | s ∈ [0, L], t ∈ [t0, T ]}

create a 3D edge in the plane t = t0 and N(s, t) is discontinuous at t = t0 for all
s ∈ [0, L] with sharp variation given by

∆N(s, t0) = τ(s, t0)×∆v(s, t0) ∀s ∈ [0, 1],

where ∆f is the jump of f (with respect the second variable) at t0, i.e.

∆f(s, t0) = lim
t→t+0

f(s, t)− lim
t→t−0

f(s, t),

and ∆N(s, t0) has a non-zero component only along the t-axis and lives on the 3D
edge (see Figure 2.4 (b)). In this case the Shearlet coefficients would include two
maximum values, associated with the shearing parameters corresponding to the
normals of the two surfaces.

3. The velocity is smooth, but (x(s0), y(s0)) is a 2D corner of the boundary, then the
two surfaces

{σ(s, t) | s ∈ [0, s0], t ∈ [0, T ]} and {σ(s, t) | s ∈ [s0, L], t ∈ [0, T ]}

create a 3D edge parametrized by the temporal evolution of the 2D corner (x(s0), y(s0)).
Hence, N(s, t) is discontinuous at s0 for all t ∈ [0, T ] with sharp variation given
by

∆N(s0, t) = ∆n(s0, t) + ∆τ(s0, t)× v(s0, t) ∀t ∈ [0, T ],

where ∆N(s0, t) is the jump of N (with respect the first variable) at s0 and it has
two contributions: the former is in the xy-plane and the latter along the t-axis. As
above the vector ∆N(s0, t) lives on the 3D edge (see Figure 2.4 (c)). Again, the
Shearlet coefficients would include two maximum values associated with the two
surfaces described above.

4. The boundary has a 2D corner at point (x(s0), y(s0)) and there is a (significant)
change of velocity at time t = t0 either in the direction or in the speed. At the
spatio-temporal point (x(s0, t0), y(s0, t0), t0) there is a vertex, which is the junction
of the four surfaces
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S1 = {σ(s, t) | s ∈ [0, s0], t ∈ [0, t0]} S2 = {σ(s, t) | s ∈ [s0, L], t ∈ [0, t0]}

S3 = {σ(s, t) | s ∈ [0, s0], t ∈ [t0, T ]} S4 = {σ(s, t) | s ∈ [s0, L], t ∈ [t0, T ]},

where S1 has a 3D edge in common with S2 and it has a 3D edge in common
with S3 (and a similar relation for the other three surfaces). At the vertex there
are four normal vectors (see Figure 2.4 (d)) corresponding to four maxima in the
coefficients.

This toy model may be adapted to real data, as we will see in the next sections. Here
we provide a few examples of different behaviors in real video sequences. In Figure 2.6
(top) we may observe the evolution of the tip of a foot changing direction at the end of a
step; this object, which actually looks like a 2D corner, behaves in a way so to produce
a spatio-temporal corner, or 3D vertex. In the center of the figure we analyze the tip of
a fist in the extension phase of a punching action, producing a spatio-temporal (or 3D)
edge. Finally, at the bottom, we may observe the side of an arm translating as a person is
walking, producing a spatio-temporal surface.

Figure 2.6: Space-time features in real data. Top: the tip of a foot changing direction
at the end of a step produces a spatio-temporal corner; middle: the tip of a fist in the
extension phase of a punching action produces a spatio-temporal edge; bottom: the side
of an arm translating as a person is walking leads to a spatio-temporal surface.
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Chapter 3

A Video Analysis Framework based on
Shearlets

In this chapter we present one of the main contributions of this work: the development
of a set of video analysis functionalities solely based on Shearlets. We devise different
video processing methods to exploit as most as possible the information carried by the
Shearlet Transform, showing a set of experimental results for every technique that has
been developed.

3.1 Introduction

An important aim of this thesis is to provide evidence of the richness of information
provided by the Shearlet decomposition of a signal. Indeed thanks to this, starting from a
single, shared computational baseline (the decomposition itself), we are able to analyze a
video signal at different levels, extracting appearance as well as dynamic information.

We start by addressing feature detection, and then consider feature representation. Here
we include both appearance and motion. More specifically, we propose these methods:

• the selection of the points in a sequence which are interesting in the space-time,
as a preprocessing step for sparser analysis of a video sequence,
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• the development of a shearlet-based representation, so that to understand to
which kind of spatio-temporal primitive each point belongs, following the theoreti-
cal analysis of Section 2.4,

• the estimation of the apparent motion, by analyzing the information related to
the temporal changes which occur within the signal.

The three approaches have been developed incrementally, by an increased understanding
of the capabilities of the Shearlet Transform after each experiment. We first focused on
the detection of spatio-temporal singularities [MODV17a], inspired by some approaches
developed in the past in the field [YLEK09a, DODV15]. We observe how the directional
sensitivity of the Shearlet decomposition is an efficient tool to capture local spatio-
temporal meaningful behaviors, and we exploited this property for the sake of finding
elements with a behaving interestingly both in space and in time.

The results we obtain bring to the question whether this sensitivity could be exploited
further also to describe every point in a video sequence with respect to its spatio-temporal
behavior. This leads us to the development of a shearlet-based pointwise representation
[MODV17b], grounded on the theory reported in Section 2.4.

We finally observe that while analyzing the feature behavior on the temporal axis, we are
in fact considering its dynamics. Thus, we develop an algorithm for the extraction of the
information related with the motion which is happening in the scene. While doing so, we
notice that the amount of motion information which we can estimate is limited, due to
some properties of the Shearlet transform that we better highlight in the corresponding
section.

The following sections dive deeper and describe the methods that we have developed, by
also showing their capabilities by means of a set of examples, for which we drew a set of
sequences from several datasets, some of them which have been widely adopted in the
past in the video processing community to carry on action or gesture recognition tasks.
The reason for we chose such sequences is related to the fact that each one of them is
helpful in highlighting the properties of the different methods that we introduce in the
next sections. For more details, refer to the Appendix at the end of this thesis.
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3.2 Detection of Spatio-Temporal Interesting Points

In this section, we introduce the shearlet-based dense method that we have developed to
detect a sparse set of points which can be considered interesting, by first summarizing
the approach which inspired us.

3.2.1 Spatio-Temporal Corners

Following the seminal work carried out by Laptev and his co-workers [Lap05] we are
interested in structures which behave meaningfully both in the spatial and in the temporal
dimension.

We start by considering a single given frame, where it has been shown by Shi and Tomasi
[ST94] that corners posses good properties in terms of detection over scales, stability,
and more. These points are also considered interesting in the spatial domain since they
usually have been considered to be easier to track and describe, for in the past a lot of
effort has been put into understanding which features would have been the best to be
followed over time.

To extend the analysis to the temporal dimension, in their novel definition, and extending
the work made by Harris and Stephens [HS88], a new family of points called spatio-

temporal corners is described, representing spatial corners which direction of movement
changes abruptly over time. Within their work and in following articles [LMSR08,
MLS09] it has been shown how these points are meaningful to sparsify the analysis of a
given sequence while still understanding efficiently which kind of movement or action
was performed in it.

This approach is appropriate to our research, because of the strong directional sensitivity
of the Shearlet decomposition. Following these considerations, we propose a method able
the select points which vary considerably along three directions, the two spatial and the
temporal ones, and the information carried by the Shearlet decomposition suits perfectly
with our needs.
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3.2.2 Shearlet-based Detection Method

As we have shown in Section 1.2, points that belong to a surface singularity are character-
ized by a slow decay of the corresponding Shearlet coefficients, as the scale parameter
j grows and the shearing parameter k (and the pyramid label `) corresponds to the the
normal vector to the surface. A similar behavior holds true for singularities along the
boundary of the surface, where two or more shearings can be meaningful [HL16]. Hence,
we expect that the points of interest of a video are associated with high values of the
Shearlet coefficients and different spatial/temporal features can be extracted by looking
to different pyramid labels `.

These observations suggest to extend to video signals the edge detector introduced in
[MZ92] for wavelets and in [YLEK09a, DODV15] for shearlets, by taking inspiration
from and revisiting the algorithm developed in the latter one. More precisely, we consider
the details in [MZ92] during the construction of our Shearlet system, adapting the work
in [DODV15] to the video analysis case, following a standard procedure [MODV17a].

More in details, we first define an interest measure IM representing a response function
calculated for each point m = (x, y, t) in our signal. We want this measure to rise in case
the point m is placed on a spatio-temporal point with a rich behavior, thus we combine
the contributions related to the different shearings, belonging to the three pyramidal
partitions P`. At a fixed scale j:

IMj[f ](m) =
3∏
`=1

∑
k=(k1,k2)

|SH[f ](`, j, k,m) |

Our detection algorithm is based on the use of the measure IM as a feature enhancement
process. The space-time feature detection procedure is summarized in four steps, shown
in an example in Figure 3.1 and summarized in Algorithm 1:

a) We compute IMj[f ] for j = 1, 2 - for we want to control the computational cost
of the procedure, by limiting the number of scales. We skip the scale j = 0 as it
does not enhance properly the meaningful information in the signal, because it is
related to really low-frequency information about the signal and it is not helpful in
characterizing locally the behavior of a spatio-temporal point.
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b) Then, we define an overall interest measure by multiplying the values calculated for
IMj[f ], for j = 1, 2

IM [f ](m) = IM2[f ](m) · IM1[f ](m)

c) We perform non-maxima suppression in a spatio-temporal window Nm of size w ×
w × w by setting to 0 non-maxima coefficients.

d) Finally, we detect meaningful points m on the signal by means of a thresholding step
IM [f ](m) > τ .

Input: The coefficients SH[f ](`, j, k,m) for a video sequence f ,
a window size w, a threshold τ

Output: The interest points selected in the signal
for j ← 1 to 2 do

for m = (x, y, t) in f do
IMj[f ](m) =

∏3
`=1

∑
k=(k1,k2) |SH[f ](`, j, k,m) |

end
end
IM [f ](m) = IM2[f ](m) · IM1[f ](m) Fig. 3.1(b)
maxima = NonMaximaSuppression (IM [f ], w) Fig. 3.1(c)
return Threshold (maxima, τ ) Fig. 3.1(d)

Algorithm 1: Spatio-Temporal Interest Point Detection.

(a) frame (b) interest measure (c) candidate points (d) refined points

Figure 3.1: A summary of the detection pipeline we developed shown on an example.
(a) a frame It from the original video (from ChaLearn dataset [EBG+14]); (b) interest
measure IM derived from 3D Shearlet coefficients enhancing interesting elements on It;
(c) candidate local features surviving a non-maxima suppression on a space-time local
neighborhood; (d) the detected meaningful points obtained by hard thresholding.

Since we only have three scales, the analysis across scales in [MZ92] is not meaningful.
We observe experimentally that the points of interest produce high values in both the
scales j = 1, 2 and this observation is the root of the above definition.
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Notice that in Figure 3.1 (b) the IM measure is shown for a fixed time step t, then it
includes values that appear to be high relative to all values in t (e.g. the areas correspond-
ing to the elbows). Those points do not appear to survive the non-maxima suppression
procedure (they are not highlighted in Figure 3.1 (c)) as they are not maxima with respect
to the temporal direction (i.e. they will be marked as candidates in some neighboring
time instant).

3.2.3 Experimental Assessment

In this section we discuss the potential of our approach to feature detection on a variety of
different applications. In what follows the neighborhood size w is set to 9, and threshold
τ is chosen on an appropriate validation set.

Detecting features in action sequences

We start by considering the use of a synthetic sequence, built on purpose to spawn a
shape which contains a precise and well-localized set of 3D vertices (or spatio-temporal
corners). The sequence represents a stationary square, which at frame 64 starts to move up
with constant speed until frame 108, when the square stops to move. To avoid boundary
problems, the sequence is composed of white frames before frame number 20 and after
frame number 108. Figure 3.2 (a-c) shows a selection of meaningful frames in the
synthetic sequence, while Figure 3.2 (d) shows the 3D shape we obtain by stacking the
video frames one on top of the other, finally Figure 3.2 (e) shows the spatio-temporal
corners detected by our approach. Our method precisely detects the 12 spatio-temporal
elements which represent the 3D corners belonging to this scene.

We also show examples of the extracted features in human action sequences. Figure
3.3 shows the results on a walking sequence from the KTH dataset, in two different
visualization modalities: a 3D shape of the person silhouette evolving in time, where the
detected features are marked as blue ellipsoids; a map where the positions of detected
points across the whole sequence are merged, centering them with respect to the centroid
of the silhouette of the subject. It can be noticed how all meaningful points (in particular
all the points corresponding to a change in direction of the foot) have been nicely detected.
Similarly, Figure 3.4 shows an example of a different human action, a handwaving one,
where most spatio-temporal interest points are detected on the tip of the hands, on the
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(a) 20-64 (b) 65-107 (c) 108 (d) resulting shape (e) detected corners

Figure 3.2: (a-c) Sample frames of the video sequence used to generate the shape taken
into account in this section, (d) the shape resulting from the behavior of the black square
within the sequence and (e) the spatio-temporal points detected by our method.

elbows and on the armpits.

(a) (b) (c)

Figure 3.3: A walking action (a) observed as (b) feature detection on a 2D+T surface
(where we flipped the surface upside down to better show the points detected) and (c)
summarized on a reference time instant (detected features are translated w.r.t the body
centroid).

(a) (b) (c)

Figure 3.4: A handwaving action (a) observed as (b) feature detection on a 2D+T surface
(in this case there is a subset of features which are not visible, the ones lying within the
surface and corresponding to the “claps”) and (c) summarized on a reference time instant.
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For the sake of evaluating our method, we compare its results with the STIPs detector
developed by Laptev and colleagues [Lap05]. In Figure 3.5(a) and (b) we slightly varied
the parameters of our detection method, while in Figure 3.5(c) we report the results of
the STIPs detector. It is possible to see how the set of points overlap in several points,
in correspondence of the tip of the feet changing velocity and on the fist of the subject,
swinging back and forth during the strides.

(a) (b) (c)

Figure 3.5: Spatio-temporal interest points detected on a walking action by (a,b) our
method with two different settings of the parameters, and (c) Laptev’s STIPs detector.

Our methods achieves similar results with respect to the STIPs detector. Both approaches
can be tuned at the parameters level, leading to different results, and our approach is able
to behave similarly to the STIPs detector given that we tune in advance the parameters of
our procedure.

Another comparison is the one in Figure 3.6, where we consider a boxing sequence.
In both visualization it is possible to see how the movement of a fist might cause the
detection of two spatio-temporal interest points, for it stops its movement, so that to start
again a few seconds later. Our method in Figure 3.6(a) misses the first spatio-temporal
point, on the fist on the top of the visualization. This is due to the fact that we ignore a
few frames at the beginning of every sequence, so to avoid the boundary conditions which
characterize the Shearlet coefficients when near to the boundaries of a signal. While the
STIPs detector fires only for the points belonging to the arms and to the fists, our method
also detects the lower corner of the jacket worn by the subject, which oscillates during
the execution of the movement.
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(a) (b)

Figure 3.6: Spatio-temporal interest points detected on a boxing action by (a) our method
and (b) Laptev’s STIPs detector.

Salient frames extraction

The space-time interest points we are detecting correspond to a "special" point in the
scene (a corner) as it is undergoing some significant velocity change. The presence of
these points is a cue of some interesting movement going on in the sequence [Lap05].
Their presence can be used as a guideline on the importance of a given frame in a video
summarization process. We evaluate the number of space-time interest points detected
in each frame and select the most meaningful frames as the ones containing a large
number of those points. While doing so we also apply a non maxima suppression on a
spatio-temporal neighborhood of size ω to avoid the selection of frames too close in time.

Figure 3.7 shows examples of the number of detected interest points across time in two
sequences we considered, the walking (from KTH) and the che vuoi (from the ChaLearn
dataset) ones.

For the sake of the experiment, we select three frames in the sequences with the highest
number of points detected. Figure 3.8 shows the most meaningful frames of a walking

sequence, corresponding to the beginning of a new stride in the walk executed in the
sequence.

Figure 3.9 shows the three most meaningful frames of the che vuoi sequence, where a
male subject is executing a gesture in which he raises both his hands, shakes them, and
then moves them back in the starting position. Similarly to the previous case, the three
frames identified highlight very peculiar elements of the acquired action.
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Figure 3.7: Distribution of interest points found over time (a) in the walking and (b) in
the che vuoi sequences.

Figure 3.8: Salient frames selected for the walking sequence (KTH) .

Figure 3.9: Salient frames selected for the che vuoi gesture sequence (ChaLearn).

Detecting gesture primitives in HMI

We conclude with a reference to a human-machine interaction (HMI) problem. An artifi-
cial agent is observing a human performing a set of predefined planar activities (drawing
different shapes). Each activity must be divided into smaller action primitives, similarly
to [RYS02]. Figures 3.10 and 3.11 show candidate frames corresponding to extrema of
action primitives (where the hand features are undergoing a major velocity change): the
former shows the results on a sequence of repeated line drawing actions performed on a
frontal transparent surface (artificial agent view), the latter the crucial points of the action
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of drawing a rectangle on a table (human view). In both cases the points where the pen is
changing direction have been detected.

Figure 3.10: Frames corresponding to a change in action primitive on the drawing line
sequence.

Figure 3.11: Frames corresponding to a change in action primitive on the drawing
rectangle sequence.

3.3 Local Spatio-Temporal Representation

In the previous sections we have seen how Shearlet coefficients can be descriptive of
the local spatio-temporal behavior of every point in a 2D+T signal. We can exploit this
property of the Shearlet Transform to develop a novel method to represent a space-time
point by means of the corresponding Shearlet coefficients, which entangle how the signal
varies in its neighborhood. We carry out this procedure in a dense way, for the Shearlet
Transform of a signal provides us with the coefficients associated for every point in the
signal and for every value of the scale parameter j and for all the shearings in the sets Kj

we are considering.

Our objective is to explore the possibility to better understand the nature of the spatio-
temporal singularities which may arise in the 2D+T domain, as we described them in
Section 2.4. Within this section we detail all the steps needed to build our representation
and we show some brief results on the descriptive power of the approach we built.
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3.3.1 Representation Analysis

The experiments we have discussed in Section 3.2 both on synthetic and real data showed
us how sensitive the Shearlet coefficients are in correspondence of local changes in the
signal, thus helping us to highlights singularities within it. We exploit this sensitivity to
develop a local spatio-temporal description for every point.

In this section we describe a method which allows us to aggregate the local spatio-
temporal information provided by the Shearlet Transform in order to enhance different
types of discontinuities within a 2D + T signal.

We consider a spatial temporal point m̂ = (x̂, ŷ, t̂) for the fixed scale ĵ and the subset of
shearings

Kĵ =
{
k = (k1, k2) | k1, k2 = −d2ĵ/2e, . . . , d2ĵ/2e

}
, (3.1)

where M = 2d2ĵ/2e+ 1 is the cardinality of Kĵ , where we suppressed the dependence
on ĵ from Kĵ and M . The procedure we carry out in the discrete case is depicted in
Figure 3.12 and consists of three parts, which we describe in the following. In the first
part we merge the coefficients obtained from the different pyramids, in the second one
we derive a representation for the point neighborhood considered, finally we reduce the
dimensionality of our representation by aggregating meaningfully the information carried
by the Shearlet coefficients. This representation should be meaningful of a specific
space-time primitive. The following steps detail what is described in Algorithm 2.

1 - Reorganize the Shearlet coefficients at the point m̂.

(a) We reorganize the information provided by SH[f ](`, ĵ, k, m̂) in three M ×M matri-
ces, namely C1, C2 and C3, each one associated with a pyramid `= 1, 2, 3, where
each entry is related to a specific shearing. The association is given by the following
formula, C`(r, c) = SH[f ](`, ĵ, krc, m̂) with ` = 1, 2, 3, where r, c = 1, . . . ,M

and krc is the corresponding shearing in Kĵ defined in 3.1. As usual in this kind
on analysis, we discard the information related to the Shearlet coefficients in the
low frequency pyramid ` = 0 since they are related to the smoothness of the signal.
Figure 3.12 (a) shows the three matrices for a specific space-time point.
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(b) We merge the three matrices in a single one, by recombining them relatively to
the maximum Shearlet coefficient (Figure 3.12 (b)). For a given scale j and a
fixed set of shearings Kĵ , the three matrices C1, C2, C3 are tiled in a bigger matrix
C, which is then shifted both horizontally and vertically, so that the obtained
overall representation C is centered on kmax, the shearing corresponding to the
coefficient with the maximum value in the set SH[f ](`, ĵ, k, m̂), with ` ∈ {1, 2, 3}
and k ∈ Kĵ . This property is needed to obtain a rotation invariant representation
in the next steps of this pipeline, since the values in C are redistributed similarly
when considering two similar spatio-temporal primitives, even if they are oriented
differently in the space-time domain. The matrix C models how the Shearlet
coefficients vary in a neighborhood of the direction where there is the maximum
variation, and it is built in a way so that coefficients which are referred to shearings
which are close one to the other end up being close in C. We will see how different
kinds of spatio-temporal elements can be associated with different kinds of local
variations in C.

2 - Compute a rotation-invariant representation

(a) We group the available shearings in subsets s̄i, according to the following rule: s̄0

= {kmax} and s̄i will contain the shearings in the i-th ring of values from kmax in
C (as highlighted in Figure 3.12 (c)). We extract the values corresponding to the
coefficients for s̄1 (by looking at the 8-neighborhood of kmax), then we consider
the adjacent outer ring (that is, the 24- neighborhood without its 8-neighborhood)
to have the coefficients corresponding to s̄2, and so on (Figure 3.12 (e)). By
construction the elements of C are grouped in subsets, each of them associated
with a ring, and the first and last element of each subset are close each other. For
the subsets s̄i for i > 2 not all the coefficients are selected, this is due to the way
the object C is built. Selecting all elements would introduce redundancy in the
representation, hence only some parts of them are considered to build it.

(b) We build a vector concatenating the values of the coefficients corresponding to each
set as it follows. We first define coeffs̄i to be the set of coefficients associated with
each shearings subset s̄i:

coeffs̄0 = SH[f ](`kmax , ĵ, kmax, m̂)

coeffs̄i =
{
SH[f ](`s̄i , ĵ, ks̄i , m̂), ks̄i ∈ s̄i

}
,
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where `kmax is the pyramid associated with the shearing kmax and where `s̄i repre-
sents the pyramid associated with each shearing ks̄i . Then, we set

D(m̂) = coeff _
s̄0

coeff _
s̄1

coeff _
s̄2

. . . ;

where _ denotes the concatenation between vectors. The size of the representation
is strictly dependent on the number M of shearings and it depends on the chosen
scale, as we introduced previously.

3 - Derive a final reduced representation The representation D(m̂) entangles the re-
lationships between the direction of maximum variation kmax for a given point m̂ and
the directions corresponding to the other shearings k 6= kmax, organized in squared rings
of increasing side, see Figure 3.12 (c) where the colors label the different rings. In
real applications, in order to ensure stability it is often useful to have a more compact
representation.

(i) To this aim, the final compact representation F(m̂) is obtained by summing up the
Shearlet coefficients in the same squared ring (see Figure 3.12 (e)). For example,
the first entry of the vector F(m̂) is simply the Shearlet coefficient corresponding
to kmax (the yellow pixel in Figure 3.12 (c)), the second entry of F(m̂) is the sum
over the eight Shearlet coefficients associated with the shearings in the second ring
(the blue pixels in Figure 3.12 (c)), and so on. We consider two instances of the
representation F(m̂):

• Fi(m̂), built by only considering the representation D(m̂) at a single scale i,

• Fi,j(m̂), obtained by concatenating the reduced representations Fi(m̂) and
Fj(m̂), at scales i and j.

In the next section we show how this representation can be useful to characterize each
point in our signal with respect to its spatio-temporal nature.
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Input: The coefficients SH[f ](`, j, k,m) for a video sequence f ,
the selected scale ĵ of the coefficients

Output: The Shearlet based representation D(m̂) for every point in the signal
for m̂ = (x, y, t) in f do

for `← 1 to 3 do
C` = GatherCoefficients (SH[f ](`, ĵ, k, m̂)) Fig. 3.12(a)

end
C = TileMatrices (C1,C2,C3)
Ĉ = ShiftMatrix (C) Fig. 3.12(b)
D(m̂) = UnrollMatrix (Ĉ) Fig. 3.12(c-d)

end

Algorithm 2: Calculation of the representation D(m̂).

Figure 3.12: The main steps of the 2D + T signal representation procedure: (a) we
compute matrices C1(r, c), C2(r, c) and C3(r, c), (b) we create the object C, (c-d) we
map subsets of elements (i.e. Shearlet coefficients) of C to different parts of a vector,
(d) we obtain the representation D(m̂) for our point, finally (e) we create the compact
descriptor F(m̂).

3.3.2 Geometrical Representation

At this point, the object D(m̂) entangles the relations between the direction of maximum
variation kmax for a given point m̂ and the directions corresponding to the other shearings
k 6= kmax. Geometrically, it contains all the information provided by the Shearlet
coefficients and related to how the signal changes around the selected spatio-temporal
point.
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(a) selected points (b) edge (c) corner

Figure 3.13: Example of visualization in 3D of the result of the process, for these example
we selected a static spatial edge (the blue circle) and a static spatial corner (the red circle),
which are characterized by two different behaviors of change.

Coherence with respect to Manually Detected Point Sets

Figure 3.13 shows a possible way to visualize the values contained in the matrix C for
two different points, the idea is to view the object C as a height-map so that to have an
insight about the directions in which we found the highest variations (the visualization in
Figure 3.13 (c) is the one corresponding to the object C shown in Figure 3.12 (b)).

The very simple synthetic sequence represented in Figure 3.2 contains three spatio-
temporal features, which can be easily identified on the 3D shape: 3D corners, 3D edges,
and surface points. We test the shearlet-based representation introduced in the previous
section on these three classes of points. These elements are highlighted in Figure 3.14
(a-c), while in Figure 3.14 (d-f) we show our representations averaged over all the points
of a specific class.

These figures show that our representation is very distinctive and easily allows to detect
the nature of different spatio-temporal features.

We now consider a real video from the KTH dataset [SLC04]. In the video sequence
a subject is executing a boxing action, repeatedly moving his arms back and forth. In
Section 2.3 (Figure 2.3) we introduced the idea of stacking the subject’s silhouette as the
action takes place, and this will come in handy now.

As in the case of synthetic data, we select points which are associated with a different
spatio-temporal behavior and, for each of them, we compute our shearlet-based descriptor.
The results can be appreciated in Figure 3.15, this time we sampled four points located
on the red line in Figure 3.15 (b) to create the corresponding representation in Figure
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(a) 3D corners (b) edges (c) surface points

(d) (e) (f)

Figure 3.14: Examples of points on the 3D shape considered (a-c) and corresponding
average shearlet-based representation (d-f).

3.15 (e), while in the two other cases the points used are only the ones shown in the
corresponding pictures on the upper line.

(a) 3D corners (b) edges (c) surface points

(d) (e) (f)

Figure 3.15: Examples of points on the 3D boxing shape (a-c) and corresponding average
shearlet-based representation (d-f).
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While for surface points the behavior is similar both in the synthetic and in the boxing
scenario, things are a little bit different in the two other cases. This is because both spatial
and temporal variations in real data are less significant, and the signal discontinuities are
not as strong as in the synthetic case.

This can be seen in Figure 3.15 (d), where the Shearlet coefficients corresponding to
the changes occurring on the time dimension are less pronounced (these changes are
highlighted with the yellow overlay). However, our representation correctly handles the
cases in which there is not any temporal change, keeping the corresponding values near
to zero (as in Figure 3.13 (c), where the changes along the temporal dimension contribute
for values lower than 10−3).

Coherence with respect to Automatically Detected Feature Sets

As a further evidence we analyze the average C over sets of key points automatically
detected by well know algorithms in image processing and computer vision. We consider
two spatial features, edges [Can86]1 and corners [HS88]1 and a space-time feature, STIP
[Lap05]2.

Edges. Figure 3.16 shows the average object C for all edge points obtained by the Canny
detector applied to a 2D frame extracted from a video sequence. It is worth noting
that, since the algorithm described in [Can86] (when applied to a single frame
of a whole sequence) also detects elements which like corner points and moving
edges (over time, but at a frame level, this behavior cannot be detected), the 3D
visualization also includes small lateral peaks.

Corners. Figure 3.17 shows the behavior of corner points, automatically detected by
the classical Harris algorithm. In this case we report the visualization for the
subset of still and moving corners, which are more distinctive as expected, since
our representation takes into account the space-time information which the Harris
corner detector does not.

STIP. Figure 3.18 shows the average descriptor for the points selected by Laptev STIP
detector on a different image frame. It is well known that the STIP detector
identifies very few points, which are meaningful both in space and time. The

1we considered MATLAB’s implementation of these algorithms
2implementation available at https://www.di.ens.fr/~laptev/actions/
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choice of this specific image frame has been done considering the limitations of
the detection algorithm, which performs particularly well only in the presence of
very sharp space-time variations. This is clearly identified by the behavior of the
neighborhood coefficients, indeed we observe strong peaks both in space and time
directions.

(a) edges mask (b) average descriptor

Figure 3.16: (a) Frame points automatically extracted by Canny edge detector; (b) a 3D
visualization of C averaged on all the edge points.

(a) still corners (b) average descriptor

(c) moving corners (d) average descriptor

Figure 3.17: Harris corners. (a) Still Harris corners (b) and the shape visualization of
their average descriptor. (c) Moving Harris corners (d) and the shape visualization of
their average descriptor.
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(a) STIPs (b) average descriptor

Figure 3.18: Laptev STIPs and a 3D visualization of C averaged on all the edge points.

3.3.3 Identifying Groups of Coherent Spatio-Temporal Primitives

In the previous section we saw how points with a different spatio-temporal behavior are
actually characterized by shearlet coefficients which behave differently. Here we discuss
how we can group sets of points by similarity, with the goal of identifying automatically
possibly new types of spatio-temporal primitives.

To do so, we follow this method:

(a) we select a frame t in the sequence.

(b) we calculate the chosen representation (D(m̂) or F(m̂)) for all the points at time t.

(c) we group the representations in p clusters via k-means.

We consider the resulting p cluster centroids as an unsupervised estimate of the space-
time primitives which can be found within the selected video frame. The reason for we
chose an unsupervised method (in particular, k-means) is that we do not have an a priori
exact knowledge about the spatio-temporal primitives which may arise in the space-time
domain. About these, we introduced several definitions in Section 2.3, and we consider
the use of our shearlet-based representation to discover more about this, by means of a
set of experiments.

As a first thing, we can again consider one of the synthetic shape we introduced before.
We try to classify each point of its surface by calculating the distance between its repre-
sentation D(m) and the three average representations in Figure 3.14, then each point is
colored on the basis of the representation it is most similar to. The results are shown in
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Figure 3.19, where it is possible to see the clear separation between the three kinds of
spatio-temporal primitives.

(a) shape (b) classification

Figure 3.19: Example of classification of the surface points of our shape: surface points
(blue), edges (red) and 3D corners (green).

Figure 3.20 shows the results obtained for different choices of p while clustering the
points belonging to a single frame of a boxing sequence, Note that the color code used
is not associated with the nature of each spatio-temporal primitive, while instead it
represents the frequency of appearance of every given kind of primitive (the ordered color
code is the following, from the most present to the rarest: blue, red, green, yellow, black,
cyan, purple, white).

(a) frame (b) p = 2 (c) p = 3 (d) p = 4

(e) p = 5 (f) p = 6 (g) p = 7 (h) p = 8

Figure 3.20: Clusters of space-time primitives for different choices of p, the color code is
unrelated with respect to the type of the primitive while it only depends on the cardinality
of each cluster being shown.
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The sequence is acquired by a still camera and represents a subject boxing in the air.
The frame we selected to present the results represents the exact moment in which the
subject is inverting the direction of movement of his arm — as in Figure 3.20 (a). Let us
briefly comment the results for different choices of p, which highlight space-time points
at different granularities:

• p = 2: the first partition obtained creates two groups, a set of points containing
almost all the points in the sequence without a significant local change neither in
space nor in time (background points and those belonging to the inner part of the
body of the subject) and another one containing points which are undergoing some
spatio-temporal change.

• p = 3: the clustering process better separates the points belonging to the back-
ground and those related to the shape of the subject, without additionally dif-
ferentiating these points. Background is divided in two parts, depending on the
texture.

• p = 4: the additional cluster allows us to separate points that belong to spatio-
temporal elements with a higher dynamics, for example the arm of the subject
boxing in the air.

• p = 5: a new cluster does not provide significant changes.

• p = 6: different elements are now separated in a very nice way, the edges belonging
to the arm are grouped in a separate cluster with respect to the edges belonging to
the back and the legs, also, it is possible to see how points which look like spatial
corners are grouped together (in the yellow cluster), without any differentiation
regarding their spatio-temporal behavior.

• p = 7: no additional information.

• p = 8: the points colored in white represent the last cluster added within this trial,
we can see how these elements could correspond to spatial corners with particular
dynamics (the fist is inverting direction, the corners joining the arm to the head and
to the chest undergo some changes, and the front tip of the jacket is moving while
the subject is punching). These points are also highlighted in Figure 3.21, where
we also show the average C, and their similarity with the STIP points shown in
Figure 3.18 is apparent.
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(a) cluster # 8 from p=8 (b) average C

Figure 3.21: The points in the cluster corresponding to the most severe space-time
variations, and the corresponding average object C (see text).

This result highlights many nice properties of our representation: the separations of all
the points of the image frame into different sets, with respect to their spatio-temporal
behavior, is obtained thanks to a space-time continuity of the representation inherited by
the shearlet transform; as p grows we may identify an interesting nested structure; even
in an entirely unsupervised approach most of the points clusters automatically detected
can be associated with known feature points, such as edges or corners.

The results shown here above are due to the analysis of the single representation D(m̂).
We want to compare the results of the clustering process considering as input data both
the original Shearlet coefficients and the compact representation F(m̂) we introduced in
Section 3.2.2.

While carrying on this comparison, it can be noticed how in Figure 3.22 (a), where
we show the result of the clustering process for the raw Shearlet coefficients, points
belonging to similar primitives (the arms moving back and forth, and the moving front
side of the jacket) are separated in two different groups. Also, points distributed along the
back of the subject are not grouped in the same set, even if their spatio-temporal behavior
is the same.

Instead, if we consider our representations built on top of Shearlet coefficients, we can see
how the clustering process correctly separates points which are associated with different
spatio-temporal primitives, by grouping together the elements which are moving in two
different sets with respect to their spatial appearance (see the white and magenta point
sets). Also the points along the back of the subject and belonging to the other straight and
still edges are coherently grouped together (this is particularly effective with the reduced
representation F2(m̂), see the black-colored points in Figure 3.22 (c)). In this last case
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(a) SH[f ] (b) D(m̂) (c) F2(m̂) (d) F2,3(m̂)

Figure 3.22: Results of a k-means clustering executed with k=8 clusters, on a boxing
action: (a) using the Shearlet coefficients as they are provided by the 3D Shearlet
Transform, (b-c) exploiting our representation and considering a single scale, (d) using
our representation and considering the two finest scales available.

we have considered only the coefficients belonging to a single scale j = 2, if we also
consider the ones belonging to a finer one j = 3 representing the behavior of the signal at
higher frequencies, and we concatenate the two representations, we obtain an even more
precise separation of all the points of the previously selected frame (see Figure 3.22(d)).

Similar considerations can be done by considering a different action, the walking one,
from the same dataset. Figure 3.23 considers a specific instance of that execution. In
the frame selected the subject is executing a stride, moving from right to left within
the image frame. While carrying on a clustering process based on the original Shearlet
coefficients (Figure 3.23(a)) and on the representation D(m̂) (Figure 3.23(b)) separates
the subject from the background, it fails in characterizing the different parts of the shape,
for it has a behavior which spreads more over time, with respect to the boxing action.
The reduced representations (Figure 3.23(c-d)), instead, better capture the local nature
of the primitives contained in the video sequence, by also highlighting elements with a
more peculiar behavior, like the hands or the feet of the subject.

(a) SH[f ] (b) D(m̂) (c) F2(m̂) (d) F2,3(m̂)

Figure 3.23: Results of a k-means clustering executed with k=8 clusters, on a walking
action: (a) using the Shearlet coefficients as they are provided by the 3D Shearlet
Transform, (b-c) exploiting our representation and considering a single scale, (d) using
our representation and considering the two finest scales available.
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3.3.4 Building a Dictionary to Encode Video Sequences

After evaluating the capability of our method in describing the local behavior of each
point of a video sequence, we now assess its behavior over time to understand whether it
can be used to describe the evolution of a movement within a sequence over time. The
objective is to evaluate to which spatio-temporal primitive each point can be associated,
and to consider how this association evolves over time and whether it may help us in
understanding the kind of action carried on in the scene. The reason to build a dictionary
of such primitives is also to understand whether exist commons spatio-temporal structures
which can be found within different video sequences, and maybe in heterogeneous
scenarios.

We start by introducing the concept of a dictionary of spatio-temporal primitives, so that
to evaluate their presence within each frame of the video sequence being analyzed. The
method is reminiscent of classical bag-of-words [CDF+04], for we look for representative
elements within our signal so that to gather their distribution over frames and extract
some meaning out of it. Our approach has also been described in [MGV+17], where we
also carry on some additional experiments that can be found within the Conclusion and
Further Work section at the end of this thesis.

Learning a dictionary of space-time primitives

The dictionary creation procedure is detailed in Algorithm 3, and can be described as
follows:

(a) We consider a set of meaningful frames in a (set of) sequence(s) V (Figure 3.24(a)).
The frames are chosen automatically through the spatio-temporal detection proce-
dure we introduce previously. We select the Nf frames with the highest number
of interest points, for a chosen scale ĵ, and we assume that these are the most
representative of an action event.

(b) We represent each point m̂ of every selected frame by means of D(m̂), for a fixed
scale ĵ. On each frame, we apply k-means and obtain a set of K cluster centroids,
which we use as space-time primitives or atoms (Figure 3.24(b)). The number
K is chosen empirically, with the objective to obtain a set of centroids which is

57



meaningful and which captures the different interesting spatio-temporal behaviors
within the sequences that we are considering.

(c) We re-apply K-means on all the previously obtained atoms. We end up with a
dictionary D of Na space-time primitives (Figure 3.24(c)). Here, Na is chosen
so that the dictionary is rich enough and at the same time to avoid too much
redundancy in its components.

Input: A set of sequences V, a number of frames to select Nf ,
the number K of cluster to build per selected frame,
a number Na of clusters in the final dictionary, the selected scale ĵ

Output: The dictionary D of spatio-temporal primitives
C = empty set of clusters
for v in V do

salient = FramesWithMostInterestPoints (v,Nf , ĵ) Fig. 3.24(a)
for t in salient do

clusters = KMeansForPointsAtTime (v,t,K, ĵ) Fig. 3.24(b)
C = C ∪ clusters

end
end
D = KMeans (C, Na) Fig. 3.24(c)

Algorithm 3: The creation of a dictionary of spatio-temporal primitives.

Figure 3.24: Learning the dictionary. (a) Automatic selection of meaningful frames from
the training set; (b) Atoms learnt by each sequence; (c) Dictionary summarization on the
whole training set.

Our assumption is that the elements resulting in the dictionary D are representative of the
spatio-temporal primitives which characterize the set of sequences on which the creation
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process is based. To evaluate such a descriptive capability, we have to consider it to
understand how the primitives within a sequence evolve over time.

Encoding a video sequence with respect to a dictionary.

We now consider a sequence v representing a given action. The aim of this method is to
build a description of what happens in a scene by combining the information that we are
able to extract thanks to all the techniques that we have developed. To do so:

(a) For each image frame It ∈ v we follow a bag-of-words approach and quantize points
of It w.r.t the dictionary atoms in D, obtaining F t

i frequency values (how many
points in frame It can be associated with the i-th atom).

(b) We filter out still primitives that are not useful to our purpose. To do so, we exploit
the information about the motion happening in a scene carried by the Shearlet
coefficients (this technique will be introduced in detail in Section 3.4). Finally, we
compute temporal sequences of frequency values across time, obtaining Na time
series or profiles {Pj}Na

j=1, which summarize the content of the video sequence.

In Figure 3.25 we show an example of the result of this procedure. Figure 3.25 (a)
represents a sample frame at time t of a mixing sequence from a dataset of in-house
recorded cooking actions, and Figure 3.25 (b) shows a color-coded example resulting
after associating every point at time t with one of the atoms in the reference dictionary D.
Several elements are associated with points belonging to the background, or to structures
with a less interesting behavior. However, it is possible to display the occurrence of
only a subset of the atoms in D, and Figures 3.25 (c-f) show the profiles associated with
the 4 less frequent atoms, showing how their periodic behavior might highlight some
characteristics of the movement being executed.

The reason for we show only the less occurring atoms in Figure 3.25 is that the most
frequent ones are usually related with the most present primitives in the sequence, which
also are the one which characterize the less the movement occurring in the scene. This
statement also holds for the sequence displayed above, since the most frequent points are
the ones characterized by a non interesting behavior (like background, still elements, or
far away from the strongest edges in each frame).
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(a) (b)

(c) (d) (e) (f)

Figure 3.25: Encoding of a mixing action: (a) A sample frame; (b) The quantization
with respect to the dictionary D atoms; (c-f) Examples of temporal profiles (see text for
details).

As additional examples, we also consider two sequences from the KTH dataset, a walking

and an handwaving one, and we follow the same approach. Figures 3.26 and 3.27 show
the results for this second experiment. It is possible to see the profile in Figure 3.26 (f) is
the less representative of the periodicity of the strides within the walk, similarly to the
profile in Figure 3.27 (d) for the handwaving case. In this last situation, it is also possible
to see how the primitives represented by profiles P7 and P8 follow an antagonist behavior,
with one raising when the other is decreasing.

In the two previous examples, we considered two different dictionaries. In the first case,
we only considered sequences from the cooking actions dataset for the creation of D,
while for the other two videos we have used samples from the KTH dataset for the
construction of the dictionary.

These experiments showed us that our representation and the use of dictionaries of spatio-
temporal built on top of it could be meaningful to represent the dynamic events which are
taking place within video sequences. Each spatio-temporal primitive is associated with
a specific spatio-temporal behavior of different moving parts belonging to the subject
executing the actions. We further explore this in [MGV+17], where we consider the
use of dictionaries of shearlet-based primitives to compare actions coming both from
the same dataset the dictionaries are created from, and from sequences belonging to
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(a) (b)

(c) (d) (e) (f)

Figure 3.26: Encoding of a walking action: (a) A sample frame; (b) The quantization
with respect to the dictionary D atoms; (c-f) Examples of temporal profiles (see text for
details).

(a) (b)

(c) (d) (e) (f)

Figure 3.27: Encoding of an handwaving action: (a) A sample frame; (b) The quantization
with respect to the dictionary D atoms; (c-f) Examples of temporal profiles (see text for
details).

different datasets and scenarios. In those preliminary experiments, we notice that a set
of spatio-temporal primitives created on top of a given dataset can be used to describe
meaningfully also sequences belonging to a different setting.
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3.4 Motion Estimation

To estimate the motion taking place within an images sequence means to understand how a
pixel’s position evolves over time. This procedure is the first step towards more complex
motion analysis tasks, like tracking[CZLK98, SES12], segmentation[SM98, MP02],
structure from motion[LH81, KVD91] or 3D motion estimation[AKW+17]. We want to
explore how much information about the motion happening within the scene we are able
to extract only starting from the information provided by the Shearlet Transform.

We introduced the geometrical meaning of the Shearlet coefficients in Chapter 2, and we
ground the development of our motion estimation algorithm on that. In the following
we explain what are the elements of our signal for which we can estimate the motion,
showing also some brief results on existing datasets.

The Shearlet coefficients associated with every spatio-temporal point give us information
about how the point varies with respect to its neighborhood, but we focus only one of the
three dimensions, the temporal one, since it contains the information related to what is

changing within the sequence, which is strictly related to dynamic information, and may
help in motion estimation.

3.4.1 Normal Flow

In this section we summarize the main background concepts, necessary to understand the
reminder of the section. The interested reader is referred to text books such as [TV98].
We focus on the problem of estimating the motion field from image sequences. To do
so, we start by introducing one of the key assumptions in this scenario, which is that
the appearance of the image patches within the frame do not change over time. This
assumption is called the image brightness constancy equation, and is defined as:

d I

d t
=
d I(x, y, t)

d t
= 0 (3.2)
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where the image I is regarded as a function of three coordinates, two spatial and a
temporal one. By applying the chain rule of differentiation, we rewrite

d I(x, y, t)

d t
=
∂ I

∂ x

d x

d t
+
∂ I

∂ y

d y

d t
+
∂ I

∂ t
= 0 (3.3)

The partial spatial derivatives Ix = ∂ I
∂ x

and Iy = ∂ I
∂ y

are nothing else than the components
of the gradient ∇I of the image. The components u = d x

d t
and v = d y

d t
are called the

motion field, which we denote as u, they are the unknown variables which we want to
calculate and the aim is to estimate them as most precisely as possible. We can now write:

Ixu+ Iyv + It = 0

∇ITu = −It (3.4)

By isolating the known and unknown components of the Eq. (3.4):

∇ITu
‖∇I‖

= − It
‖∇I‖

= v⊥. (3.5)

Thus the only components of the motion field which can be estimated are the ones along
the direction of the spatial image gradient, which we denote v⊥, since we are trying to
calculate two unknowns with the help of a single equation [TV98].

3.4.2 Shearlet-based Normal Flow Estimation

The algorithm we developed is based on the formalisms that we introduced in Chapter 1.
For the sake of this explanation, we consider a rigid body (shown in Figure 3.29(a))
which describes a 3D volume while moving over time. Recalling the results shown in
Section 1.2, we can relate to any shearing vector k∗ = (k1, k2) the direction (without
orientation) of the normal vector N to the surface, for any point belonging to it. If we
consider the body in Figure 3.29, we can parametrize unit vector corresponding to N

(which we recall is the normal vector to the surface at spatial-temporal point σ(s, t)) by
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(a) (b) (c)

Figure 3.28: The aperture problem: (a) two bars and their real velocity v, (b-c) the
apparent velocity v⊥ once the information about the structure of the two objects is
limited.

the latitude angle α and longitude angle β as

N = ±‖N‖(cosα cos β, cosα sin β, sinα) (3.6)

Figure 3.29: (left) A body at time t with the main relevant geometrical and dynamical
quantities, the quantity highlighted in red is the projected component of the velocity on
the normal vector n(s, t)), (right) the surface spanned over time by the movement of the
body and the normal vector on the surface N(s, t).

Eq. (2.2) shows that the xy-component of N is the normal vector n to the boundary of
the body, so that it depends only on the geometry of the object, whereas the t-component
of N is

N(s, t) · k = −v(s, t) · n(s, t) = −v⊥(s, t), (3.7)

we recall the definition of N from Eq. (2.2)

N(s, t) = n(s, t) + τ(s, t) ∧ v(s, t) (3.8)

64



i.e. v⊥(s, t) is the normal component of the velocity, up to a sign. Hence it depends
both on the geometry and the dynamics, and the sensitivity of the Shearlet Transform
to orientation can be used to extract both geometric and dynamic informations. More
precisely, denoted by α the latitude angle of N as in (3.6), then

sinα = − v⊥(s, t)√
1 + v⊥(s, t)2

(3.9)

from which we derive

v⊥(s, t) = − sinα√
1− sin2 α

(3.10)

so that it is possible to reconstruct the normal velocity from the direction of N, whereas
the longitude angle β of N gives the direction of the normal vector n(s, t).

From an algorithmic point of view, we fix the scale j on the basis of the sequence
chosen, with respect to the characteristics of the motion taking place, be it represented
by large scale movements or small ones. Then, for every spatio-temporal point m̂ in
the video sequence, we choose the shearing k∗ = (k1, k2) associated with the maximum
absolute value of the Shearlet coefficient vector {SH[f ](`, j, k, m̂) | ` = 1, 2, 3, k ∈ Kj}.
According to Eq. (1.12), k∗ defines two angles, the latitude α(k∗) ∈ [0, π] and the
longitude β(k∗) ∈ [−π, π], associated with the normal vector N to the surface at the
point m̂. Hence we get

n(s, t) = (cos β(k∗), sin β(k∗)) v⊥(s, t) = − tanα(k∗). (3.11)

We note that Eq. (3.8) implies that N is oriented “inside” the volume generated by the
evolution of the body and this allows us to choose the correct sign in Eq. (3.6) and, hence,
in Eq. (3.11). We want to stress the fact that, with this formulation, we are only able to
estimate the velocity component v⊥(s, t) projected on the normal vector n(s, t). This
limitation is related to the kind of information the Shearlet coefficients are carrying, and
it is similar to the situation in which we rely solely the assumption leading to the image
brightness constancy.
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Input: The coefficients SH[f ](`, j, k,m) for a video sequence f ,
the selected scale ĵ of the coefficients

Output: The estimate of the direction and of the magnitude of the motion for
every point in the signal

for m̂ = (x, y, t) in f do
k∗, `∗ = argmaxk,` SH[f ](`, ĵ, k, m̂)

k̂1, k̂2 = NormalizeShearings (k∗)

num = 2−
j
2 ∗ k̂2

den =

√
1 + 2−

j
2 ∗ k̂2

1

α = arctan
(num
den

)
β = arctan

(
2−

j
2 ∗ k1

)
α̂, β̂ = AdjustByPyramid(α, β, `∗)

direction(m̂) = (cos(β̂), sin(β̂)) Fig. 3.30(b)
magnitude(m̂) = − tan(α̂) Fig. 3.31(c)

end

Algorithm 4: Estimation of the motion.

The above formulas hold if the maximum belongs to the pyramid with ` = 1, otherwise
one needs to perform a suitable rotation. Equations (3.11) show that it is possible to
recover the orientation of the boundary and the normal component of the velocity directly
from the Shearlet coefficients without any further processing of the representation.

3.4.3 Experimental Assessment

To provide an intuition of the applicability of our estimates to real world scenarios, Figures
3.30(b,d), 3.31(b), 3.32(b,d) and 3.33(b) report color-coded maps of the estimated normal
flow v⊥. In these visualizations, the estimated direction of motion for every point is
represented with a different color taken from the color wheel on the upper left of each
picture, where every color is associated with a specific direction of motion. For Figures
3.30, 3.32 and 3.33 we have considered the contributions coming from scale j = 2,
while for the sequence in Figure 3.31 and Figure 3.34 we have used the coefficients
calculated at scale j = 3. The reason for this choice is due to the intrinsic nature of the
movement represented in the sequences we considered, since in the motorway scenario
the movements are executed at a different pace with respect to the other two cases, thus
the choice of a finer scale, more sensitive to high frequency space and time changes.
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Since we want to understand the capability of our method to extract relevant motion
information, we carry on a few experiments to evaluate how precisely our approach can
estimate the direction and the intensity of the apparent motion in the scene.

(a) (b) (c) (d)

Figure 3.30: Two frames (a) and (c) from the mixing sequence and overlaid examples of
the corresponding motion taking place; (b) and (d) show the motion estimated along the
normal for each point v⊥, with direction and orientation color coded with respect to the
color wheel on the top left of each map.

In Figure 3.30 the recorded subject is mixing flour in a bowl, executing a circular move-
ment with her right arm, while holding a spoon. Here it is possible to see one of the
characteristics of our approach. For the way we analyze the Shearlet coefficients, we
are able to extract some information about the motion occurring only in presence of
spatio-temporal singularities. The inner uniform part of the arm, which lacks texture
is depicted as black in Figures 3.30(b), meaning it has not been possible to extract any
motion information about it.

(a) (b) (c)

Figure 3.31: (a) A frame from the motorway sequence; (b) our approach segments the
moving parts in the image; (c) it also gives an estimate about the speed of the different
objects (a brighter object is associated with a higher speed).

A very nice result is the one shown in Figure 3.31 (c). In this motorway sequence, several
cars are moving far away from the camera, each one crossing the scene at a different
speed. Here our approach has not been only able to detect correctly which parts of the
scene are moving (in this case, the cars), but also we could roughly estimate the speed
of the elements. So objects which are actually both quick and near to the camera are
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shown in bright colors, meaning an higher speed (please refer to the color map in the
figure). Further object, appearing slow and moving toward the camera, are shown in
darker colors, meaning a lower velocity.

(a) (b) (c) (d)

Figure 3.32: Two frames from the boxing sequence and the corresponding estimated
motion; the two frames look similar, but in the first one the subject is extending his arm
while in the other one he his contracting it, our method correctly labels the two set of
points differently.

In Figure 3.32 we show how our method correctly labels two similar groups of points as
"moving leftwise" or "moving rightwise", respectively the cyan and green ones in Figure
3.32 (b) and the red and purple ones in Figure 3.32 (d). By focusing on the frame in
Figure 3.32(a-b), it is also possible to notice the sensitivity of our method, which is also
able to capture and show the motion happening to the rear side of the jacket, which is
oscillating while the subject is punching in the air.

(a) (b) (c)

Figure 3.33: (a) A frame from a walking sequence; (b) the estimated direction for the
different parts of the subject; (c) the estimated speed for the subject walking.

Figure 3.33 represents a walking action from the KTH dataset, with a subject crossing the
scene from right to left with a few strides. Here it is possible to see how different parts
within the body, moving in different directions, are color coded accordingly. In Figure
3.33(b) the body is colored in cyan, since it is moving on toward the left side of the scene,
the front foot is stomping on the ground, and it is moving downward, thus is it colored in
violet. The knee of the leg on the back is slowly advancing and moving downward, so it
is represented in blue.

68



(a) (b) (c)

Figure 3.34: (a) A frame from a dancing sequence; (b) the estimated direction for the
different parts of the subject; (c) the estimated speed for the dancer.

Finally, Figure 3.34 shows a sample sequence in which a dancer is waving is body left
and right, continuously. In this particular frame, the subject is raising her right arm above
her head, while slowly starting to move her body on her left. As a consequence, the arms
is drawn in green, representing a movement on the upper direction, while the body is
painted in red, for it is starting a movement on the right part of the image. The magnitude
of the movement is also estimated correctly, with the arm shown to be quicker than the
body of the dancer.

We want to focus on the fact that the information that we are extracting from these video
sequences can be rough, but the way we are analyzing these signals makes everything
trickier. We have to remember that, while estimating the speed of one of the cars in the
previous pictures, we are actually analyzing a three-dimensional volume, checking how
things evolve inside it. However, the descriptive power of the Shearlet Transform and the
framework that we have developed shows how it is possible to extract a very rich amount
of information from this single decomposition.
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Conclusion and Further Work

Within this thesis, we have explored the capabilities of the three-dimensional Shearlet
Transform to extract meaningful information about a video signal. Our aim has been to
understand the level at which it is possible to inspect a given sequence only through the
information carried by its Shearlet decomposition.

What we have seen is really encouraging. We have successfully used the 3D Shearlet
Transform to carry out different tasks, by developing novel algorithms, inspired by the
previous works made in the field. The information extracted also helped obtain a better
understanding about the analysis of spatio-temporal primitives. Our initial formalization
of what happens in the 3D domain has been confirmed and validated by our experiments
both on synthetic and on real world sequences.

The sensitivity to anisotropic singularities of the Shearlet Transform has been exploited
in several ways.

At first, we have considered it as a mean to look for spatio-temporal meaningful points in
a classical feature detection task. This led to a preliminary approach aimed at selecting a
sparse set of points from a whole video sequence, so that to understand which elements
could have been key into understanding what is represented in the scene.

Since the results we obtained showed us the potential of such an analysis, we moved
on and developed a novel way to represent a spatio-temporal point with respect to its
behavior in the space-time domain. This helped us to understand better the spatio-
temporal which may arise in the space-time domain, spanned by the spatial elements
which evolve over time within the scene. In this direction, we have seen that our shearlet-
based representation was really powerful in describing which spatio-temporal elements
appear in the sequences we analyzed. Also, this representation showed some stability,
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giving us the ability to recognize patterns related to how these structures appear and
disappear over time.

During the experiments related to the representation that we have developed, we also
noticed that we were able to separate coherently elements which belong to structures
which are moving from those which are not. This gave us an insight, which finally
evolved into an algorithm for the estimation of the motion taking place into a scene.
While afflicted by some limitations, this approach showed some really nice results while
considering different sequences drawn from different scenarios. The capability of the
Shearlet decomposition to describe the direction and the magnitude characterizing a
movement exceeded our expectations, and opened the door for further developments.

Even if our achievements are satisfactory, further work could extend the results that we
obtained within this thesis. In the next sections, we highlight some of the limitations of
our method which we discovered carrying on the work for this thesis, and we propose
which paths could be followed to further improve the results that we have obtained.

Limitations of Our Approach

Computing the Shearlet Transform of a video signal is an expensive operation, in terms
of both memory space and time required. First, to calculate the Transform one needs to
have available the whole sequence to be analyzed, since the calculation of the coefficients
regarding a given point m = (x, y, t) is carried out by both considering previous, current,
and future information (i.e. frames in the sequence). This brings to the fact that the whole
video sequence has to be considered within each of these calculations, and since each
operation involves the calculation of a few forward and backward 3D Fourier Transform
(see [KLR16] and the available code for details) it is trivial to see how the memory and
space requirements of the whole computation explode easily.

For the same reason, another issue of this whole approach is that the computations can not
output information in real-time, for to calculate the information at time t both previous
and future frames are needed.

Moreover, computing all the Shearlet coefficients for a whole video is way too much
memory consuming. Thus, we had to slice long sequences in subsequences, a few seconds
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long. This is needed to contain the space required in memory to store all the results of
the decomposition, this making the calculation feasible.

We put a lot of effort into improving the speed at which the computations are carried
out (see Appendix for details), by understanding better the nature of the framework
we have been using and by optimizing the source code for matrix-matrix operations
(a "good practice" when developing code in the MATLAB environment). However,
the calculations involved in the Shearlet decomposition of a 3D signal are time costly,
keeping our method far away from real-time performance.

Studying the use of Spatio-Temporal Dictionaries

In [MGV+17] we considered the use of the dictionaries of spatio-temporal primitives
that we introduced in Section 3.3.4 to gain more insights about them. In that work,
we mainly used a dataset of cooking actions acquired by Vignolo and colleagues [Vig]
and we carried on a set of experiments to evaluate preliminarily some properties of our
shearlet-based representation.

First, we wanted to understand how a dictionary of primitives learnt on a given set of
sequences could be meaningful in representing the spatio-temporal primitives (and their
evolution) on another set of videos. To do so, we considered a dictionary D built from
instances drawn from the KTH dataset [SLC04] to classify spatio-temporal points and to
calculate their shearlet-based representation when belonging to sequences drawn from a
different dataset. In particular, we used D to classify and describe the evolution of points
in sequences from the Cooking Action dataset. Again, the results have been encouraging,
with particular instances of actions which have been better represented with respect to
other ones.

Another characteristics that we wanted to evaluate in [MGV+17] was the invariance of
the spatio-temporal primitives learnt while changing point of view on the scene. The
Cooking Action dataset is equipped with 3 different points of view for every instance of
an action, thus we had the chance to understand a little bit more about the fact that while
a given primitive looks in a particular way -while looking at the scene from a set point
of view- it may look differently when changing the point of view of about 90 degrees.
Within these experiments, we only considered a subset of the actions available, but we
obtained promising preliminary results which opened the door for further investigation.
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Figure 3.35: Acquisition setup for the Cooking Action dataset, where for each recordings
three synchronized tracks are available, each one associated with a different camera
displayed here.

Different Ways to Learn Meaningful Features

We considered a single method to build what we have called a dictionary of spatio-
temporal primitives. While the results we have obtained are promising [MGV+17], the
approach we developed can be further refined to keep into account alternative methods to
learn a sets of meaningful features.

This can be done at two levels, when:

• learning a subset of representative primitives.

• analyzing the evolution over time of the profiles representing the number of points
associated with the primitives belonging to the dictionary of reference.

In the first case, the dictionary learning has been carried out in a completely unsupervised
way. The reason we followed such an approach is due to the fact that we did not have
an a priori knowledge about the nature of the structures which may belong to such
spatio-temporal signals. We formalized a subset of elements, as we did in Section 2.3,
but we were unaware of the results that we might have achieved.

While discovering the primitives arising in the 2D+T domain, we started to notice some
patterns. The strength of our shearlet-based representation is to coherently represent
similarly elements which behave in a similar way in space-time. Thus, the results
we obtained showed us how different learnt primitives could be associated with the
same "kind" of spatio-temporal structure, but behaving in a slightly different way. As
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an example, strong edges (i.e. sharp ones, characterizing an high frequency change
in the signal) can have to the same shearlet-based representation of soft (∼smooth)
ones, the only difference lying on the absolute value of the coefficients composing the
representation, or the coefficient scale at which the primitive turns out to be highlighted
the most.

For the second entry of the previous list, as we experimentally showed in Section 3.3.4,
repetitive actions show some interesting patterns in the evolution of the profiles of
occurrence of each primitive within the dictionary. One step ahead in this direction
could be to employ dictionary learning based techniques to learn sub-atoms within the
evolution of these profiles, so that to be able to develop a "global" description of what is
happening in the scene. For example, the sequences contained in the KTH dataset contain
repetitive, periodic movements which reflected onto precise patterns in the evolution of
the associated primitives distribution profiles. A more in-depth study of these behavior
could lead to an approach able to segment and recognize the single instances of each
movement, bringing our ability of analysis to the next level, for example the one of
understanding what is happening in the scene.

An Improved Way to Estimate Motion

The method to estimate motion that we have developed within this thesis has a few
limitations. First of all, it only produces the normal flow even for points that are not
affected by the aperture problem, allowing us to estimate solely the velocity component
along the normal to the spatio-temporal structure each given point is lying onto. Secondly,
our method is very local, since at each time, to estimate the normal flow at a given
point m̂, we only consider the information provided by the shearlet transform (i.e. the
coefficients) for the point m̂. In this way, we can not overcome the problem of being
unable to estimate any motion component beside the one along the normal at the point.

One solution could be to combine for every point the information given us by the
representation D(m̂) and from the motion estimation algorithm. We know that there are
a set of points for which it is possible to give more confidence to the motion estimated
for them [LK+81, TV98]. We find ourselves in a similar scenario, for there are spatio-
temporal points where it is surely harder to give a detailed and precise information about
the kind of motion they belong to. Other points, like spatio-temporal corners, have a
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more characteristic and less ambiguous behavior, so it is possible to rely more on the
information extracted by our approach. Thus, we believe that further effort could be put
into developing a refined algorithm, able to improve the quality of the estimated motion
for a subset of all the spatio-temporal points in the scene, more precisely the ones which
are characterized by a richer behavior in the space-time domain.
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Appendix

Computational Details

The information provided by the shearlet transform of a three-dimensional signal is very
rich. The parameters chosen while executing the decomposition influence directly the
amount of processing which is required. In this section, we focus on one of the aspects
which required the most of the engineering, namely the computation of the pointwise
local representation that we have introduced in Section 3.3.

Computing the Representation

The computation of the representation requires quite a bit of resources to be allocated for
it. Within this section, we show how the computation is carried on, then we explain how
these operations have been optimized.

The initial coefficients, calculated through the shearlet decomposition of the input signal
f , are passed through different steps before reaching the final form D(m̂), or F(m̂), of
the representation. To explicitly detail these steps, we need to introduce a little bit of
notation, and we will strictly refer to the implementation in ShearLab3D and to the way
we have considered its use.

Let M,N be, respectively, the number of rows and columns in each frame belonging
to the sequence f that we are considering. Let T be the number of total frames in the
sequence, S the total number of shearlet in our system (which is related to the number
of shearings per scale, and to the number of scales considered) and Sj the number of
shearlets associated with the scale of index j. Finally, SP,j is the dimensionality of the
side of each matrix Ci represented in Figure 36(a) for a given scale j.
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Given an input video sequence f ∈ RM×N×T , the corresponding shearlet decomposition
gives as a result an object SH ∈ RM×N×T×S . This means that, for each frame in the
sequence, for every spatial point within that frame, we have S coefficients as a result
of this decomposition. To create the grid of shearings as in Figure 36(a), we have to
consider only a subset of these S coefficients, precisely the ones associated with the scale
parameter ĵ of interest. Once we have extracted these Sj coefficients, we gather them in
three matrices C1,C2 and C3 with respect to the pyramidal partition Pi they belong to.
This first step induces one mapping, which we refer to as

φ1(SH[f ](·)) = (C1, C2, C3) : RM×N×T×S → RSP,j×SP,j×3

taking the raw coefficients as an input and producing the three foretold matrices.

The next step is represented by the first red arrow in Figure 36 between (a) and (b). This
steps represents how the three matrices are transformed in the object C. Again, this is a
transformation defined as

φ2(C1, C2, C3) = C : RSP,j×SP,j×3 → R(3·SP,j)×(3·SP,j)

The factor 3 in the resulting dimensionality of the mapping φ2 is related to an implementa-
tion choice, in particular to the way we unroll this object, which is the following. Starting
from the object C, knowing that it is representative of the spatio-temporal behavior of
the selected point in space-time, we unroll it to the 1-dimensional vector D(m̂) (the
second arrow in Figure 36) in this way: starting from the central element (which also
corresponds to the shearing associated to the coefficient with the maximum value among
those resulting for the selected point) and we unroll the matrix in a counter-clockwise
manner. This unrolling procedure can be associated with a mapping

φ3(C) = D(m̂) : R(3·SP,j)×(3·SP,j) → RSj

All these steps turn out to be computationally heavy, for they involve several matrices
tiling, shifting, and unrolling operations, which have to be carried on for all the M ×N
pixels in a given frame at time t. These computations can be sped up, by considering that
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in case two different points m̂1 and m̂2 have their corresponding maximum coefficient
associated with the same shearing parameter kmax, the mappings φ1, φ2 and φ3 will
permute the input shearlet coefficients from SH[f ](·) to D(m̂) in the same exact way.
Thus, it is possible to precompute the effect of the three subsequent mappings on the
order of the input raw coefficients that leads to the final representation D(m̂) given kmax.

φ(SH[f ](·)) = D(m̂) : RM×N×T×S → RSj

φ(SH[f ](·)) ≡ φ3(φ2(φ1(SH[f ](·)))).

This consideration led to a quicker implementation of the whole representation creation
algorithm. The whole framework, both the algorithmic and experimental part, has
been implemented in MATLAB3, which is well-known for handling in a better way
matrix operations w.r.t. iterative methods. Thus, the mapping φ(SH[f ](·)) has been
implemented in a way to exploit this characteristic of the programming environment we
chose.

Figure 36: The representation creation pipeline, in red the two arrows the text in this
section refers to, while describing the algorithm (see text for details).

3https://www.mathworks.com/products/matlab.html
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Datasets

To show the potential of our approach, we have selected sequences from benchmark
datasets. Some of them are widely known, others have been recorded with the specific
purpose of carrying on a precise task, and we consider their use for our needs. Here we
report the main characteristics of each dataset, with a few sample frames to give an hint
of the dynamic which characterize each sequence. We want to specify that we selected
only a few sequences from each dataset, which are acquired with heterogeneous sensors,
in different environments, in various illumination conditions and that represent distinct
kinds of motion. We followed this approach so that to highlight the different capabilities
of our framework.

KTH dataset

The KTH dataset [SLC04] is characterized by videos belonging to six different full-body
actions: walking, boxing, handwaving, clapping, running, jogging. In a sequence only a
single action is reproduced and repeated for several times. We considered only a subset of
all them, so to highlight the most important characteristics and capabilities of the methods
that we have developed. The three sequences in Figure 37, 38 and 39 represent three
different kinds of motion, which however share a common characteristic, that is they are
related only to the upper or the lower part of the body. Thus, for example, spatio-temporal
interest points arise only in a subpart of the corresponding 2D+T-dimensional structure,
allowing for a better visualization.

Figure 37: A boxing action, where the subject extends his arms in front of him repeatedly.
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Figure 38: Frames from an handwaving action.

Figure 39: A walking action, with the subject crossing the scene in a few strides.

ChaLearn dataset

The ChaLearn dataset [EBG+14] has been developed and enriched over the years for a
human action recognition contest. The sequences contains several instances of different
Italian gestures, each one of them which is modeled on the basis of what is commonly
used within spoken Italian. Even if we considered only the RGB stream between all
the ones available, the ChaLearn dataset also contains both the depth and the Microsoft
Kinect skeleton data associated with the recordings. Again, we considered such a se-
quence since spatio-temporal interest points are really sparse, and exist only around the
only parts of the subject which are moving, the arms and the fists.

Figure 40: Frames from a che vuoi gesture: the male depicted raises bot hands and shakes
them, before lowering them again.

Cooking and Close-up Actions datasets

These two human-robot interaction dataset have been recorded by Vignolo and colleagues
[VNR+17]. One of the datasets contains close-up registrations of cooking actions, while
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the second one represents a set of prototypical movements carried on in front of the cam-
era, with the subject performing periodic movements following a different patterns. These
have been chosen for two different reasons. Figure 41 represent a sequence in which the
movement can be clearly segmented in left-to-right and right-to-left executions, so it is a
good candidate to try to extract meaningful frames from it. Figure 42 has been chosen
because the video sequence it is associated with represent a periodic motion, where the
subject is mixing flour in a bowl: this leads to periodic movements, thus it is meaningful
to inspect how the points in a sequence are associated with different spatio-temporal
primitives over time, looking for a periodicity pattern within the corresponding profiles
(as shown in Figure 3.25 and following ones).

Figure 41: Frames from a drawing line action, with the subject drawing an horizontal
line in front of her, keeping her arm raised.

Figure 42: Frames from a Mixing action, where the subject is mixing flour in a bowl with
a periodic circular motion.

DANCE dataset

This dataset has been recorded by Casa Paganini research lab4 team for the objectives
of the European funded DANCE project [CVP+16], which investigates how affective
and relational qualities of human full-body movement can be expressed by the auditory
channel. We consider a single sequence from it, one in which a dancer oscillates back
and forth and develops a fluid, smooth movement over time with her body.

4http://www.casapaganini.org/
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Figure 43: Frames from a sequence where a dancer is moving slowly, describing an arc
with her right arm.

Roadway sequence

This sequence does not belong to any particular dataset, it has been downloaded from
the Internet specifically to evaluate the sensitivity of our method to more than a single
element moving at different speed within the same time frame. The sequence in Figure
44 is the one considered in Figure 3.31.

Figure 44: Frames from a roadway sequence, the vehicles depicted appear as moving at
different speed.
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