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Abstract 

The word “dyad” defines the interaction between two human or 

cybernetic organisms. During such interaction, there is an 

organized flow of information between the two elements of the 

dyad, in a fully bidirectional manner. With this mutual knowledge 

they are able to understand the actual state of the dyad as well as 

the previous states and, in some cases, to predict a response for 

possible scenarios. In the studies presented in this thesis we aim to 

understand the kind of information exchanged during dyadic 

interaction and the way this information is communicated from one 

individual to another not only in a purely dyadic context but also in 

a more general social sense, namely dissemination of knowledge 

via physical and non-physical interpersonal interactions. More 

specifically, the focus of the experimental activities will be on 

motor learning and motor control mechanisms, in the general 

context of embodied motor cognition. 

Solving a task promotes the creation of an internal representation 

of the dynamical characteristics of the working environment. An 

understanding of the environmental characteristics allows the 

subjects to become proficient in such task. We also intended to 

evaluate the application of such a model when it is created and 

applied under different conditions and using different body parts. 

For example, we investigated how human subjects can generalize 

the acquired model of a certain task, carried out by means of  the 

wrist, in the sense of mapping the skill from the distal degrees of 

freedom of the  wrist to the proximal degrees of freedom of the 

arm (elbow & shoulder), under the same dynamical conditions. 

In the same line of reasoning, namely that individuals solving a 

certain task need to develop an internal model of the environment, 
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we investigated in which manner different skill levels of the two 

partners of a dyad interfere with the overall learning/training 

process. It is known indeed that internal models are essential for 

allowing dyadic member to apply different motor control strategies 

for completing the task. Previous studies have shown that the 

internal model created in a solo performance can be shared and 

exploited in a dyadic collaboration to solve the same task. In our 

study we went a step forward by demonstrating that learning an 

unstable task in a dyad propitiates the creation of a shared internal 

model of the task, which includes the representation of the mutual 

forces applied by the partners. Thus when the partners in the dyad 

have different knowledge levels of the task, the representation 

created by the less proficient partner can be mistaken since it may 

include the proficient partner as part of the dynamical conditions of 

the task instead of as the assistance helping him to complete the 

experiments. For this reason we implemented a dyadic learning 

protocol that allows the naïve subject to explore and create an 

accurate internal model, while exploiting, at the same time, the 

advantage of working with an skilled partner. 
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Introduction 

Dyad is being defined as the interaction between two individuals. 

Such interactions are present in the everyday life of people, and it 

can include physical or not physical interaction. Haptic dyads are 

the interactions where there is a sensory feedback that guides the 

interchange of actions between individuals.  

Lots of tasks of the daily living like moving objects or even 

dancing with a partner can be considered as haptic dyads, in fact it 

is been stated that persons are able to do more things when 

cooperating with other individuals than solo (van der Wel et al. 

2011). Unlike the solo performance of this activities, the persons 

involved in the interaction cannot accurately predict the outcome 

of their actions, since there is an unknown action coming from the 

partner that can contribute to the task or can induce undesired 

perturbations (Reed & Peshkin 2008). Moreover, the forces exerted 

by the individuals allow an understanding of the mutual intentions 

that results in a coordinated behavior with a common goal (Groten 

et al. 2013). 

In the last years a lot of importance has been given to the human – 

robot and the human – human dyads mediated by robots (Ganesh 

et al. 2014). The study of those dyads had shown an improvement 

in the task performance in comparison with a solo performance 

(De Santis et al. 2014; Ganesh et al. 2014). The studies of 

(Melendez-Calderon et al. 2015; Reed et al. 2005) showed that an 

advantage in the dyad performance is not always detectable 

without a compliant interaction, which allows the better partner to 

avoid following a worse partner, yet may even benefit from this 

interaction (Melendez-Calderon et al. 2015). The differences in the 
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results are dependent of the experimental conditions, thus arriving 

to a conclusion requires deeper investigations. 

Despite the differences in the aforementioned results, it is certain 

that humans can communicate relevant information of the task 

through physical interaction, and, even more, while performing as 

a team, the individuals have the opportunity to divide 

responsibilities and focus in a particular subset of actions (Reed & 

Peshkin 2008). This division of responsibilities can be 

accomplished thanks to the individual ability of using the haptic 

feedback channels to indirectly communicate with the partner and 

negotiate intentions and motions (Groten et al. 2013). The 

combination of motions coming from both partners lead to a single 

action known as a “joint action” (Masumoto & Inui 2013). Even 

though behavioral and neural processes underlying such joint 

action are still poorly understood, it is well known that humans 

rely in this kind of actions to complete tasks or even to learn new 

skills (Melendez-Calderon et al. 2015; Melendez-Calderon et al. 

2011). An example of this is the interaction between a 

physiotherapist and a patient, where the contact between them 

comes together with information about the muscle tone, force and 

motion to the therapist, and a delivery of force and motion by the 

therapist (Melendez-Calderon et al. 2015; Reed et al. 2005). 

In the same way that a therapist can train a patient to recover 

certain motions, a skilled individual can transfer the knowledge to 

another naïve or less skilled individual through different 

communication channels. For the scope of this thesis, let us focus 

in the process of learning a new task in either individual or dyadic 

configuration. The learning process is characterized by the creation 

of an internal model of the task, learning in a dyad propitiates the 

creation of a shared representation (Ganesh et al. 2014; Masumoto 
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& Inui 2013; Melendez-Calderon et al. 2015; van der Wel et al. 

2012). During the learning, the accuracy of the internal model 

depends on physical and psychological factors as the sense of 

agency (the sensation of being in control) (van der Wel et al. 

2012), and the motor adaptation involving both neural and 

muscular systems (Pizzamiglio et al. 2017). Although when a 

skilled partner assists a naïve one in the learning of a task, it is 

necessary to put special attention to the level of assistance 

provided, since a high level of assistance generate a fake sense of 

agency in the naïve, feeling that is in control of the task while it is 

the expert compensating for the performance errors (Moore & 

Obhi 2012). In the work presented by (van der Wel et al. 2012) the 

results suggest that, when both subjects in the dyad learn a task 

together, and when a subject learn the task alone, there is no 

significant difference in the senses of agency of the partners 

performing in dyads or solo. Instead, the sense of agency increases 

in the dyad subjects after they learn a task and then they perform 

the same task individually.  

Previous experiments had shown that the internal model of an 

unstable task acquired in a solo training can be correctly applied in 

a dyad performance (De Santis et al. 2014), such study was 

performed in a robotic device. Working in a robotic device allows 

the researchers to represent novel tasks in a virtual environment 

and to be able to have a quantitative insight of the subjects 

performance by analyzing the state variables of the end effector of 

the device (Shakra et al. 2006), which can be modulated in a way 

that the motions don’t interfere with the natural patients’ dynamics 

(Krebs et al. 1998), this characteristic allows also the dyads to have 

a more natural interaction when the interactions is mediated by a 

robotic device, namely haptic mediated dyads.  
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In the studies discussed in this thesis, we focused first in the 

muscular strategies adopted by individually trained subjects while 

performing in haptic dyads and we managed to partially 

corroborate the claim that the subjects increase the limb stiffness to 

counteract the external disturbances during the task resolution 

(Pizzamiglio et al. 2017), this increment of stiffness was present as 

muscular co-contractions. Posterior experiments aimed to study the 

effects of learning a new task in a dyad configuration, where the 

dyads were formed by subjects with different levels of knowledge 

of the task. More specifically we created several groups formed by 

dyads in which the partners may or may not have previous 

experience in the resolution of the task they were required to solve, 

two groups were formed by couples of naïve subjects while 

another pair of groups were formed by couples expert – naïve (read 

naïve as the subject without previous knowledge of the task), for 

one of the naïve – naïve groups and one of the expert – naïve 

groups, the naïves where allowed to have an individual task 

familiarization session while the other groups performed directly 

as dyads from the first session. The results of these experiments 

showed the advantages and disadvantages of working with an 

expert partner. And in the last part of this document, we present an 

study in which we aim to exploit the advantages of the expert – 

naïve dyad while learning an unstable task, and even more we 

apply a protocol that in an effort for removing the disadvantages of 

such interaction. In the same last study we vary the experimental 

conditions to corroborate that an accurate internal representation 

can be recalled to pursuit the same objective under the same 

dynamical conditions but with the use of different muscle 

strategies 

The dynamical characteristics used along our study are presented 

in Chapter 1, together with the general measures used to quantify 
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the performance of the subjects. In Chapter 2 we address the 

identification of the differences in the muscular strategies used by 

expert subjects when they work dyadic or individually. The results 

of the experiments related to the knowledge transfer from dyad to 

solo are presented in Chapters 3, 4, and 5, where Chapter 3 is 

focused in the muscular differences found between learning with a 

more skilled partner and learning with a partner with the same skill 

level; Chapter 4 shows the generalization of the acquired 

knowledge (solving a different task in the same dynamical 

environment); and Chapter 5 presents the effects of a dyadic 

training when the partners have different levels of expertise in the 

task. In an ambitious attempt to evaluate how fast the internal 

representation of a task can be accurately acquired, in Chapter 6 

we present the results of experiments in which the specific 

behaviors of the subjects where limited or encouraged in order to 

propitiate optimal learning conditions.  
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CHAPTER 1 TASK AND VIRTUAL 

ENVIRONMENT 

To evaluate the learning process of a new skill is a challenging 

procedure when the studies focus in an everyday task. Previous 

knowledge of similar tasks can promote or have interference with 

the acquisition of new skills; this interference can be either 

physical or psychological. To avoid the influence of previous 

knowledge, a new unstable task had been created in order to 

evaluate the learning process for which a person goes through 

while learning a new ability. The present task considers the 

presence of a challenging but understandable force field that 

provides a completely new environment for the participants in the 

experiments, and it is being implemented in an haptic device 

capable to give to the subjects the sensation of being immersed in a 

virtual reality. 

1.1 Haptic Scenario and Virtual tool  

The subjects were trained to use a Virtual Underactuated Bimanual 

Tool (VUBT) as depicted in Figure 1-1: that consists of three 

elements: a virtual point mass and two non-linear elastic linkages, 

or virtual springs, which connect the virtual mass and the user(s). 

The general task for the user is to indirectly control the position of 

the tool-tip �⃗� = [𝑥, 𝑦] in order to reach a target �⃗�𝑇 = [𝑥𝑇 , 𝑦𝑇] in 

the workspace by acting on the position of the two spring terminals 

(�⃗�𝑅 = [𝑥𝑅 , 𝑦𝑅] and �⃗�𝐿 = [𝑥𝐿 , 𝑦𝐿]). The users can control the 

position of two free extremes of the springs by operating two 

planar robotic arms. The tool-tip has a virtual mass M and it is 

under the action of the two elastic forces �⃗�𝑅 ,  �⃗�𝐿 generated by the 
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Figure 1-1: Experimental robot configurations. The left part of the figure 

corresponds to the bimanual configuration while the right part corresponds to 

the dyadic one. The intermediate panel illustrates the structure of the virtual 

tool: two non-linear virtual springs controlling the motion of a virtual mass 

(the end-point of the tool), affected by a saddle-like force field. The single 

user, in the bimanual configuration, or the pair of users, in the dyadic 

configuration, all receive the same visual feedback on a computer screen: the 

position of the virtual mass (green circle) with respect to the target (white 

circle), the positions of the hand-grasped terminals of the two virtual springs 

(yellow circle for the left spring and red circle for the right spring, 

respectively), and the lines of action of the two springs (white lines). The 

distances between the yellow (or red) circle and the white circle are 

proportional to the lengths of the corresponding springs, whose magnitudes 

increase linearly with length. 

two springs and the destabilizing force �⃗�𝑢, due to a position-

dependent force-field with saddle-type instability in the origin 

[𝑥0, 𝑦0]. The overall dynamics of the virtual tool is then 

characterized by the following equation, where �⃗� is the controlled 

variable and �⃗�𝑅 , �⃗�𝐿 are the two control variables: 

𝑀
𝑑2𝑝

𝑑𝑡2
+ 𝐵

𝑑�⃗�

𝑑𝑡
= 𝐹𝑢⃗⃗ ⃗⃗ (�⃗�) + 𝐹𝑅⃗⃗⃗⃗⃗(�⃗�, 𝑝𝑅⃗⃗⃗⃗⃗) + 𝐹𝐿⃗⃗ ⃗⃗ (�⃗�, 𝑝𝐿⃗⃗⃗⃗⃗) (1.1) 

{
 
 

 
 𝐹𝑢⃗⃗ ⃗⃗ = [

+𝐾𝑢 0
0 −𝐾𝑢

] [
𝑥 − 𝑥0
𝑦 − 𝑦0

]

�⃗�𝑅 = (𝐾𝑠𝐿𝑅 + 𝜌𝑠𝐿𝑅
2 )�⃗�𝑅      𝐿𝑅 = |𝑝𝑅 − 𝑝|; �⃗�𝑅 = (𝑝𝑅 − 𝑝) 𝐿𝑅⁄

�⃗�𝐿 = (𝐾𝑠𝐿𝐿 + 𝜌𝑠𝐿𝐿
2)�⃗�𝐿      𝐿𝐿 = |𝑝𝐿 − 𝑝|; �⃗�𝐿 = (𝑝𝐿 − 𝑝) 𝐿𝐿⁄

 (1.2) 
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The x-axis of the workspace is aligned medio-laterally and is the 

unstable manifold of the field; the y-axis is aligned in a posterior-

anterior way and it is the stable manifold of the field. A viscous 

field (characterized by the parameter B) carries out a damping 

action. 𝐿𝑅 , 𝐿𝐿 are the lengths of the two springs; 𝐾𝑠, 𝜌𝑠 are the 

spring parameters.  

1.2 Motion of the tool under the effect of the force-

field 

The action of the unstable saddle-type force-field in the workspace 

can be decomposed in two vector fields that act on the mass along 

two manifolds; a stable manifold parallel to the y-axis induced by a 

convergent force-field towards the origin and an unstable manifold 

oriented along the x-axis induced by the divergent component of 

the force-field: 

{
𝑀�̈� + 𝐵�̇� − 𝐾𝑢𝑥 = 0
𝑀�̈� + 𝐵�̇� + 𝐾𝑢𝑦 = 0

 (1.3) 

The motion along the stable manifold is a damped oscillation with 

natural frequency 𝜔𝑛 and damping factor 𝜁. The motion along the 

unstable manifold is characterized by two exponentials, one with a 

negative time constant and the other with a positive (unstable) time 

constant 𝜏𝑢. These three coefficients are related to the parameters 

of the virtual tool by the following equations: 
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{
 
 
 

 
 
 

𝜔𝑛 = √
𝐾𝑢
𝑀

𝜁 =
𝐵

2𝜔𝑛𝑀

𝜏𝑢 =
2𝑀

−𝐵 + √𝐵2 + 4𝑀𝐾𝑢

 (1.4) 

1.3 Stiffness of the virtual tool 

The interaction between the mass and the environment can be 

characterized computing the overall stiffness of the virtual tool as: 

𝐾𝑉𝑈𝐵𝑇 = [
𝐾𝑥𝑥 𝐾𝑥𝑦
𝐾𝑦𝑥 𝐾𝑦𝑦

] =
𝜕�⃗�

𝜕�⃗�
 (1.5) 

where �⃗� is the resultant of the external forces applied to the virtual 

mass in the absence of perturbation. The four elements of the 

stiffness matrix explicitly depend on the coefficients of elasticity 

(𝐾𝑠, 𝜌𝑠) and the positions of the two hands with respect to the tool-

tip. Therefore, the subject can indirectly determine the size and 

orientation of the stiffness ellipse of the tool in order to achieve 

equilibrium and/or stability. If we define ∆𝑥𝑅 = 𝑥𝑅 − 𝑥; ∆𝑦𝑅 =

𝑦𝑅 − 𝑦; ∆𝑥𝐿 = 𝑥𝐿 − 𝑥; ∆𝑦𝐿 = 𝑦𝐿 − 𝑦 we can derive the analytical 

expression of the stiffness matrix coefficients: 

{
  
 

  
 𝐾𝑥𝑥 = [𝑍1 + 𝑍2] − 𝜌𝑠 [

∆𝑦1
2

𝐿1
+
∆𝑦2

2

𝐿2
]

𝐾𝑦𝑦 = [𝑍1 + 𝑍2] − 𝜌𝑠 [
∆𝑥1

2

𝐿1
+
∆𝑥2

2

𝐿2
]

𝐾𝑥𝑦 = 𝐾𝑦𝑥 = 𝜌𝑠 (
∆𝑥1∆𝑦1
𝐿1

+
∆𝑥2∆𝑦2
𝐿2

)

 (1.6) 
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Whenever the tool is affected by the position-dependent force-

field, the user has to manipulate the tool stiffness in order to 

stabilize it in the space. In particular, the critical element for the 

stabilization is the component of stiffness aligned with the x-axis. 

This can be easily seen If we linearize equation (2.1) in the 

neighborhood [𝛿𝑥, 𝛿𝑦] of an equilibrium state [𝑥𝑒 , 𝑦𝑒]: 

𝑀 [
𝛿�̈�
𝛿�̈�
] + 𝐵 [

𝛿�̇�
𝛿�̇�
] + [

(𝐾𝑥𝑥 − 𝐾𝑢) 𝐾𝑥𝑦

𝐾𝑦𝑥 (𝐾𝑦𝑦 + 𝐾𝑢)
] [
𝛿𝑥
𝛿𝑦
] = 0 (1.7) 

A necessary and sufficient condition for the asymptotic stability of 

the equilibrium point is for the eigenvalues of the elastic matrix to 

be negative, hence, 𝐾𝑥𝑥 > 𝐾𝑢. We can therefore define 𝐾𝑥𝑥 = 𝐾𝑢 

as the condition of ‘marginal (asymptotic) stability’. By acting on 

the configuration of the springs relative to the tool-tip, the user can 

orient and scale the ellipse associated to the stiffness matrix of the 

tool.  

As it can be noted in equation (2.2), the two elastic elements are 

non-linear. In particular, the stiffness of each elastic linkage grows 

linearly with the degree of stretch: 

{
𝑍1 = 𝐾𝑠 + 2𝜌𝑠𝐿1
𝑍2 = 𝐾𝑠 + 2𝜌𝑠𝐿2

 (1.8) 

The choice of nonlinear springs against linear springs has several 

advantages. From the point of view of the task, springs that 

increase the stiffness linearly with the strain allow the subjects to 

exert enough force to stabilize the tool at the extremes of the task 

space (that is where the force-field is maximum, 50N) while 

keeping the robot arm within its operative workspace. Moreover, 

the values for the minimal stiffness were computed to be 

insufficient to provide asymptotic stability of the tool-tip, which 
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oscillates around the equilibrium position. Therefore, from the 

point of view of the control strategies, such nonlinear springs allow 

the users to manipulate the magnitude and orientation of the 

stiffness of the tool in multiple ways. For instance, they add a 

higher cost to the control strategy that aims at a generalized 

increase in the stiffness of the tool to counteract the background 

force-field, pushing subjects to explore other solutions to the 

balancing tasks that are less energetically expensive. On the other 

side, for low strains, the spring stiffness increases less than 

linearly, challenging the subjects to accurately predict the time 

response of the system in different positions of the space. 

1.4 Rationale for the haptic environment 

Divergent force-fields have been extensively adopted in motor 

control studies to analyze how the sensorimotor system adapts to 

novel dynamic environments and responds to perturbations (i.e. 

modulating limb stiffness). The haptic environment in equation 

(2.2) represents a divergent force-field that pushes the state of the 

system away from an unstable equilibrium point along the x-axis. 

This choice allows replicating the dynamics of an inverted 

pendulum that oscillates along the x-axis while the force-field 

along the y-axis tends to attract the pendulum to the equilibrium 

point. This particular choice allowed us to mimic an ecologically 

inspired environment similar to upright bipedal stance. In order to 

balance the pendulum, subjects can in principle adopt two 

stabilization mechanisms: i) increasing the overall stiffness of the 

tool (and therefore the arms) virtually eliminating the effect of the 

instability or ii) exploit the sensory feedback to implement an 

intermittent control strategy that injects forces in the system at 

specific time instants through a predictive control. Moreover, the 

presence of a convergent vector field superimposed to a divergent 
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one sets the conditions for subjects to choose to differentially 

modulate the magnitude and orientation of the tool impedance. In 

one case, subjects might primarily increase the tool stiffness along 

the x dimension to compensate for the instability and move the tool 

as if only under the action of the convergent component of the 

force-field. In another case, they might reorient the stiffness ellipse 

to counteract the force-field locally. We can call the first category 

of strategies Stiffness Stabilization Strategies (SSS) and the second 

one Positional Stabilization Strategies (PSS) (Morasso et al. 2014). 

1.5 Experimental setup 

The experimental setup (Figure 1-2) consists of a bimanual haptic 

manipulandum (BdF2, Celin srl, La Spezia, Italy, an evolution of 

the unimanual “Braccio di Ferro” robot (Casadio et al. 2006)), used 

to simulate the elastic bilateral tool and emulate the dynamics of 

the task, and an amplifier (OTBiolab EMG-USB2+) for acquiring 

surface electromyographic signals using Ag/AgCl electrodes with 

a diameter of 26 mm (Figure 1-2 C). As regards BdF2, the main 

features are that each planar arm of the robot has a large planar 

workspace (0.8x0.4 m ellipse) and they are actuated by two direct-

drive brushless motors resulting in a low intrinsic mechanical 

impedance and large range of forces. Moreover, a real-time control 

architecture based on 3 nested loops is implemented in a QNX 

machine: 1) an inner 16 kHz current loop, 2) an intermediate 1 kHz 

impedance control loop to render the haptics, and 3) an outer 100 

Hz loop for virtual reality and data storage. The two arms are 

mounted in a mirror configuration on the same rigid frame with 

their horizontal separation computed to allow working 

simultaneously with one or two subjects: the distance between the 

axes of the motors is 0.38 m (bimanual configuration, Figure 1-2 

A) and 0.98 m (dyadic configuration, Figure 1-2 B), respectively. 



 

13 

 

The recording system is used to acquire electromyographic signals 

from the muscles of the arm and trunk, which are responsible for 

the movements of the shoulder, elbow, and wrist in the specific 

experiment. The selected muscles for the first part of the study are: 

A)  

B)  

C)  

Figure 1-2: Experimental set up for the unstable stabilization 

experiments. A) Bimanual configuration. The subject is able to control both 

handles of the BdF2 robot and complete the task. B) Dyad configuration. The 

handles of the BdF2 robot are manipulated by a couple of subjects who solve 

the task in a collaborative way. C) Placement of the Ag/AgCl electrodes for 

the recording of the EMG signals. 
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Anterior Deltoid (AD), Medial Deltoid (MD), Posterior Deltoid 

(PD), Biceps Brachii (BL), Triceps Brachii Lateral Head (TL), 

Triceps Brachii Long Head (TM), Pectoralis Major (TM), 

Infraspinatus (IS), Latisimus Dorsi (LD), Brachioradialis (BR), 

Flexor Carpi Radialis (FR), Extensor Carpi Ulnaris (EU), and 

Extensor Carpi Radialis (ER). After the analysis of the muscular 

activity, and the relevance of the acquired information, the selected 

muscles for the rest of the experiments are: Upper Trapezius (UT), 

to detect movements in the sternoclavicular joint; Anterior Deltoid 

(AD), Lateral Deltoid (LD), Posterior Deltoid (PD), Pectoralis 

Major (PM), Infraspinatus (IS), which control the movements of 

the shoulder; Biceps Brachii Lateralis (BL), Triceps Lateralis (TL), 

responsible of elbow flexion and extension; Extensor Carpi 

Radialis (ER) and Flexor Carpi Radialis (FR), for analyzing the 

grip and the movements of the wrist. The Maximum Voluntary 

Contraction (MVC) for each muscle is recorded at the beginning of 

each experimental session. The signals are sampled at 2048Hz, and 

band pass filtered (Fc = [10-900] Hz) in order to avoid aliasing. 

1.6 The unstable task 

The task (adopted in (Zenzeri et al. 2011; Saha & Morasso 2012; 

Zenzeri et al. 2014; De Santis et al. 2015)) consists of a sequence 

of reaching movements performed by controlling the tip of the 

virtual tool (a 15 kg mass, visualized on the screen as a 1 cm 

diameter circle) under the action of a position dependent force-

field. The targets, distributed on a circle of 10 cm diameter (Figure 

1-3), are presented in randomized order. A trial includes a reaching 

movement to a peripheral target from the starting position (the 

center of the workspace), 4 s of stabilized maintenance of the 
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virtual mass in the target area
1
, reaching back to starting position, 

and 4 s of stabilized maintenance of the virtual mass in the central 

target. The handles of the robot (and the corresponding grasping 

hands) are attached to the virtual mass through a couple of 

nonlinear virtual springs, generating two force vectors, directed 

from each handle to the virtual mass, whose magnitudes are 

computed according to the following equations: 

{
�⃗�𝑅 = (𝐾𝑠𝐿𝑅 + 𝜌𝑠𝐿𝑅

2 )�⃗�𝑅 

 �⃗�𝐿 = (𝐾𝑠𝐿𝐿 + 𝜌𝑠𝐿𝐿
2)�⃗�𝐿

 
(1.9) 

where L represents the distance between the virtual mass and the 

corresponding hand location, 𝐾𝑠 = 148𝑁 𝑚⁄  and 𝜌𝑠 =

1480𝑁 𝑚2⁄  are the spring parameters. Moreover, the virtual mass 

is persistently immersed in a saddle like unstable force-field 

described by: 

�⃗�𝑢 = [
+𝐾𝑢 0
0 −𝐾𝑢

] [
𝑥

𝑦
] (1.10) 

where 𝐾𝑢 = 592𝑁 𝑚⁄  is the stiffness of the field. The force-field 

is centered in the origin of the workspace; the unstable manifold of 

the force-field is aligned with the x-axis while the stable manifold 

is aligned with the y-axis. From equation (2.1), the dynamics of the 

task can be summarized in this way: 

𝑀 [
�̈�
�̈�
] + 𝐵 [

�̇�
�̇�
] + �⃗�𝑢 = 𝐹𝑅⃗⃗⃗⃗⃗ + 𝐹𝐿⃗⃗ ⃗⃗  (1.11) 

                                                 
1
More specifically, during stabilized maintenance of a target position against 

the destabilizing action of the force field the virtual mass is allowed to oscillate 

within the target area of 2 cm diameter. The time counter for the stabilization 

resets every time the mass exits the area. 
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where 𝐵 = 132𝑁 𝑚⁄ /𝑠 is the viscosity coefficient of the end-

point of the virtual tool and 𝑀 = 15 𝑘𝑔 is the corresponding mass. 

The values of the parameters of the tool and the features of the 

force field were chosen to make the task challenging but solvable. 

Moreover, since no unique solution to the balancing task exists, the 

users are free to explore different coordination strategies. A 

detailed analysis and description of the task dynamics can be found 

in (Saha & Morasso 2012; Zenzeri et al. 2014). 

 

In order to stabilize the virtual tool in a specific location, the 

subject has to control the intensity and orientation of the stiffness 

matrix of the tool by modulating the degree of stretch of the two 

elastic linkages and adjusting the position of the hands in space. In 

particular, the subject can choose between two ‘optimal’ strategies 

previously described and presented in (Saha & Morasso 2012): (i) 

 

Figure 1-3: Representation of the distribution of the targets in the 

unstable force field. Blue and red dots represent left and right handles of the 

robot respectively, the yellow dot represents the virtual mass, and the orange 

lines are the virtual springs used by the subject to control the virtual tool. The 

hidden targets are presented as pink circles and the active target is presented 

with a gray circle. The blue arrows represent the direction and intensity of 

the force field for every position of the workspace. 
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the Stiffness Stabilization Strategy, SSS, and (ii) Positional 

Stabilization Strategy, PSS. The first strategy optimizes the 

stability of the system providing a faster response to perturbation, 

the second strategy optimizes the mechanical effort at a cost of a 

reduced control bandwidth. Depending of the experiment or the 

phase of the experiment, the subjects are constrained to use one of 

the two aforementioned strategies, or free to choose the one they 

consider the best option (Zenzeri et al. 2011). Visual feedback of 

the target, the tool position, the hand positions and the elastic 

linkages connecting the hands to the tool were displayed at 60 Hz 

on a 24.5” LCD monitor positioned in front of each subject at a 

distance of 30 cm from the center of the workspace (Figure 1-2). 

The experiments are organized into target sets. Each target set 

includes a series of at least 16 stabilizations, 8 in the central target 

and 8 in each one of the peripheral targets with an out-center-out 

sequence. The peripheral targets are presented randomly.  

1.7 Main outcome indexes 

The completion of the task is characterized by several metrics that 

can describe either the kinematic or the muscular performance of 

the subjects during the resolution of the task. The most general 

metrics are: 

Effort Index (EI, [N]): it measures the total force magnitude that 

the two arms exert on the virtual mass. Given �⃗�𝑅 and �⃗�𝐿, it 

represents the sum of the norms of the elastic forces between the 

virtual mass and the handle of each manipulandum is computed as 

follows: 

𝐸𝐼 = ‖�⃗�𝑅‖ + ‖�⃗�𝐿‖ (1.12) 
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This metrics is strictly related to the strategy subjects adopt to 

solve the balancing task. Whenever the subjects increase the 

stretch in the elastic elements connecting the hands and the virtual 

mass they increase the stiffness of the tool and therefore the 

responsiveness of the system to the applied forces being either the 

background dynamics or the force applied by the hand at the robot 

handles. This control strategy (SSS) comes at the cost of a greater 

effort but allows a faster stabilization of the tool even at the initial 

stages of the learning process. Alternative strategies can be 

adopted, that require a much lower overall effort by the subjects. 

For instance, the subjects might exert a couple of forces that 

counteract the background disturbance by minimizing the 

component of the total elastic force orthogonal to the force field in 

each point of the tool space. This second family of strategies (PSS) 

results in a lower overall stiffness of the tool and therefore a 

system that has a smaller control bandwidth compared to the 

previous example (meaning that the response to an applied force is 

considerably lagged). This latter strategy takes a longer time to be 

mastered than the previous one, since requires a deeper 

understanding of the dynamics of the system but is more energy-

efficient (the reader is invited to refer to (Zenzeri et al. 2014) for 

more details).  

In order to quantify the performance of the subjects in the task 

independently of their choice of the force strategy we considered 

the following indicator: 

Time to target (TT, [s]): it measures the total trial duration from 

the time instant when the peripheral target appears to the instant in 

which the subjects achieve a complete stabilization in the central 

target (duration of a center-out-center sequence).  
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In general, the stabilization is more challenging for subjects that 

adopt a positional stabilization strategy than for subjects who adopt 

a stiffness stabilization strategy due to the greater phase-lag in the 

response of the system. Therefore, in the initial phases of the 

learning the time required to complete a trial can be greater 

depending on the strategy the subjects adopted.  

Inefficiency Index (II): this index of performance combines the 

previous two measures of effort and reaching time independently 

of the specific stabilization strategy a dyad or a subject adopts. It is 

computed as the product of effort and reaching time in percentage 

with respect to the maximum effort and reaching time in the course 

of whole experiment: 

𝐼𝐼 =
𝐸𝐼 ∙ 𝑇𝑇

𝐸𝐼𝑀𝐴𝑋 ∙ 𝑇𝑇𝑀𝐴𝑋
∗ 100 (1.13) 

According to this index, the subjects will be most efficient (lowest 

score) if they are able to complete a trial in the minimum time 

possible using the lowest possible force to counteract the 

background force acting on the tool. This implies also a 

minimization of the interaction forces between the tool handles. 

The rationale is that subjects may choose to prioritize effort 

minimization over time minimization or time over effort (Saha & 

Morasso 2012) and Dyads may also change their strategy in time. 

However, whatever strategy they adopt, there is evidence that 

either single subjects (Zenzeri et al. 2014) or dyads (Iandolo et al. 

2015) tend to minimize both effort and time to target in the course 

of the training. Therefore, we assume that the best performer 

would jointly minimize both measures in time. 
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Average RMS (Root Mean Square value): the RMS envelope of 

the EMG of a muscle. It represents the effective muscular activity 

during the task and it is computed as the RMS envelope of the 

EMG signal normalized by the maximum RMS value of the MVC: 

𝑅𝑀𝑆 =  (
1

𝑁
∑ 𝐸𝑀𝐺2(𝑛)

𝑁

1
)
1/2

 (1.14) 

More specifically, the EMG signals are band pass filtered with a 

Butterworth digital filter at Fc=[20-500] Hz and the RMS 

envelopes are calculated for each muscle on a moving window of 

length 100 ms over a single target set. Finally, we computed one 

value for each target set as the average of the RMS activation of 

the muscles. 

When a body part is destabilized by a unexpected perturbation, 

subjects tend to increase the stiffness of their limb co-contracting 

agonist and antagonist muscles (Shemmell et al. 2010). This 

strategy provides an immediate opposition to the external force and 

allows maintaining movement accuracy, but comes at a high 

metabolic cost. Limb stiffness, however, is progressively reduced 

and skillfully manipulated when the subjects acquires more 

knowledge of the task (Balasubramanian et al. 2009; Ethienne 

Burdet et al. 2001). Moreover, it is likely that dyads will exert 

higher forces than single individuals overlap to overcome the high 

coordination requirements of the balancing task (van der Wel et al. 

2011). 

This metrics are able to describe the general behavior of the 

subjects while performing the unstable task, the particulars are 

explained by special metrics presented in their corresponding 

analysis for every experiment are presented. 
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The experimental protocol changed during the different 

experiments we performed along our studies. With exception of 

our last experiment, the task was performed entirely in the BdF2 

robot (Casadio et al. 2006) For the last experiment, one group of 

subjects completed the task using the BdF synchronized with the 

Wristbot (WB) (Masia et al. 2009) when the subjects were working 

in dyads, and the bimanual configuration of the BdF when the 

subjects where working individually (further details can be found 

in Chapter 6). 
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CHAPTER 2 MUSCULAR AND 

KINEMATIC STRATEGIES OF EXPERT 

SUBJECTS DURING UNSTABLE TASKS 

Several studies have shown that, when dealing with instabilities in 

a bimanual manipulation paradigm, humans modulate the stiffness 

of the arms according to feedforward or feedback mechanisms as a 

function of the dynamics of the task. In the case of human-human 

interaction, the haptic sensory feedback plays a primary role in the 

construction of a shared motor plan, being the channel for the 

mutual sharing of intentions. This chapter aims to complement 

these results getting insights on how the central nervous system 

controls the muscles to achieve the aforementioned control 

strategies in a solo performance, and the strategy selection in 

contexts in which instability is arising both from the environment 

and from the interaction with a partner. Results suggest the 

existence of an intermittent muscle ensemble recruitment that 

follows two distinct activation patterns, namely synchronous co-

contractions and independent activations. The observed EMG 

patterns were independent of the motor control strategy applied in 

the task. These findings therefore suggest the existence of separate 

control strategies for the tool stabilization and the control of hand 

movements at the muscular level during a balancing task in the 

presence of a disturbing force-field. 

Unstable tasks are very common in activities of daily living such 

as screwing/unscrewing, drilling, inserting a peg in a hole, 

chiseling, balancing a pole etc. These tasks are difficult to carry 

out because they are sensitive to different initial conditions and 

factors as neuromotor noise and external perturbations that can 
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cause an unpredictable and unsuccessful performance. Since any 

small internal or external perturbation can lead to unpredictable 

behaviors and unsuccessful performances, careful integration of 

feedback information is fundamental. These peculiarities make 

them suitable for investigating kinematic strategies used by 

humans to solve problems of stabilization. On a higher level of 

complexity, during the interaction with another person, it is 

required a predictive response to the behavior of the partner which 

requires a certain level of mutual understanding of intentions 

(Groten et al. 2013). Moreover, the dynamics of the interaction 

may drive the two partners to explore new strategies that allow 

them to comply with or take advantage of the constraints posed by 

the dyadic interaction (Ganesh et al. 2014). 

A biomechanical system that comprises muscles, dynamics of the 

human body and environment is unstable if starting from an 

equilibrium configuration any small perturbation is generally 

capable to induce boundless growth of state variables. By using a 

combination of control strategies (Lakie et al. 2003; Etienne 

Burdet et al. 2001), the Central Nervous System (CNS) is able to 

compensate the biomechanical instability and bring the controlled 

system to stability, such as asymptotic, meta or bounded stability. 

As mentioned in Chapter 1, several studies have shown that in the 

control of a bimanual unstable tool emerges the existence of 2 

main strategies (Saha & Morasso 2012): the Stiffness Stabilization 

Strategy (SSS), a feedforward mechanism where the subject uses 

high levels of effort to accomplish the task, and the Positional 

Stabilization Strategy (PSS) characterized by low levels of effort 

and a feedback mechanism. After the demonstration of the 

existence of the two strategies it has been proven that naïve 

subjects can be trained to become expert in both strategies and to 

be able to switch from one to the other in a natural way (Zenzeri et 
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al. 2014). Even so, the mechanisms that simultaneously 

accommodate kinematics and muscular aspects to achieve stability 

still remain unclear. To look into this interrelation we performed 

the analysis of the kinematic and electromyographic data from the 

so called “experts”, which allowed the characterization of the two 

strategies from a kinematic point of view. The aim of this chapter 

is to explore the intrinsic characteristics of the muscle control 

during a bimanual stabilization task in an unstable dynamic. 

2.1 Description of the experiments 

For the experiments of this study we used the experimental setup 

and the task described in Chapter 1. We divided the experiments in 

target sets and each target set included 24 stabilizations, 12 in the 

central target and 12 in the peripheral ones. The subjects 

completed 6 target sets, alternating the SSS and PSS strategy, and 

they were allowed to rest between sets. 

During the task, surface EMG signals were collected from 13 

muscles for each arm. The signals were recorded and processed as 

described in Chapter 1, and later they were segmented in pairs of 

targets (peripheral-center). RMS envelopes of the raw signals 

where acquired using a window of 100 ms. In the stabilization 

phase the raw signals were normalized with the MVC while the 

RMS envelope was normalized with the envelope of the MVC. 

Due to the ECG contamination in both Pectoralis and the left 

Infraspinatus and Latisimus Dorsi, the entropy of the raw signals 

for every trial was estimated using a window length of 128 ms and 

a step of 8 ms, as proposed in (Zhang & Zhou 2012). 

SampEn (Sample Entropy (Zhang & Zhou 2012)) is calculated 

along the EMG signals to facilitate highlighting the muscle 

information when the ECG peaks are present: 
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𝑆𝑎𝑚𝑝𝐸𝑛(𝑥,𝑚, 𝑟) = − ln (
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
) (2.1) 

where m is the dimension of the expected vector and r is the 

tolerance; A
m
(r) and B

m
(r) are probability matrixes; and x is the 

original signal. The probability B
m
(r) that two vectors match for m 

points is then computed by counting the average number of vector 

pairs, without self-matching allowed. The match of two vectors is 

defined as their distance lower than a tolerance r. Similarly, the 

other probability A
m+1

(r) can also be computed for m+1 points. We 

used: r = 0.20*σ(trial) and m = 2. 

The SampEn values were estimated for each muscle and used to 

represent the intensity of the EMG contractions. After the 

computation of the correlation among each muscle, we averaged 

the result in each trial in order to find the global correlations of all 

the muscles during the experiment. Moreover, we can define co-

activation as the level of synchronous activation of the muscles 

inside the considered timeframe. 

In order to better understand how the CNS selects an appropriate 

strategy to deal with environmental instabilities, two concurrent 

experiments were performed: 

 In the first experiment (Experiment 1: Bimanual Training) 

three subjects (1F, 2M; 29 ± 1 years, 2 right-handed, 1 left-

handed), previously trained to become expert users of the 

virtual tool, were monitored while performing the 

balancing task. 

 In the second experiment (Experiment 2: Dyadic 

cooperation), the EMG and kinematic data were recorded 

while the same three subjects repeated the task acting in 
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cooperation 2 by 2. Each subject grasped the 

manipulandum with their right hand. The dyads where 

formed as: 

o Dyad 1: S3 – S1. 

o Dyad 2: S2 – S1. 

o Dyad 3: S2 – S3. 

 A) 

 

B) 

 
Figure 2-1: Summary of the performance of the expert subjects when 

performing individually compared to the dyadic condition. A) Effort 

index at the beginning and at the end of the bimanual training sessions of the 

individual subjects; B) Effort index computed for the dyadic combinations of 

the three expert subjects in the first and in the last target set. 
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One experimental session consisted of 3 target sets. Subjects first 

performed Experiment 1 and subsequently Experiment 2 in the 

following order: S1, S2, S3 for Experiment 1; S3+S1, S2+S3, 

S2+S1 in Experiment 2, where the first subject handled the left 

arm of the manipulandum and the second one the right arm. 

2.2 Muscular and kinematic performance of the expert 

subjects 

Kinematic results show that when comparing the performance of 

the three dyads with the performance of the three expert subjects 

executing the task bimanually, and despite the subjects not having 

followed a training phase as dyads, they employ on average a 

comparable or lower time to complete a single trial in both 

stabilization strategies in the shared configuration (Experts: SSS = 

6.03 ± 0.59 s, PSS = 7.41 ± 0.62 s, Dyads: SSS = 6.29 ± 0.49 s, 

PSS = 6.90 ± 0.61 s) (Figure 2-2). Moreover, consistently with our 

previous work (De Santis et al. 2014), the three dyads are able to 

minimize the average total employed effort to a greater extent than 

in the bimanual task (Experts: SSS =  27.14 ± 3.4 N, PSS = 15.25 

± 0.78 N, Dyads: SSS = 26.32 ± 2.29 N, PSS = 14.67 ± 0.39 N) 

(Figure 2-1 B).  

In the analysis of the time to target we can observe that the dyad 

performance resembles the performance of an expert working 

bimanually. As can be seen in Figure 2-2, with the level of 

dexterity presented by our subjects, the reaching time and, by 

default, the ability to stabilize the virtual tool in the different 

targets depends only on the imposed kinematic strategy and not in 

the interaction with the partner. 
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In line with the behavior presented by the effor index, the muscular 

activity during the bimanual resolution of the task is higher for the 

SSS than it is for the PSS (Figure 2-3 A). On the other hand, dyads 

do not minimize the the muscular activity as a function of the 

kinematic strategy, there is no evidence that during the dyadic 

performance the muscular activity is linked to a specific kinematic 

strategy. When the subjects were working in a dyad, the levels of 

muscular activity are similar for both kinematic strategies and the 

variability of such levels is low compared with the variability 

during the bimanual part of the experiment (Figure 2-3 B). 

 

Figure 2-2: Average time to target during the experiment for both 

kinematic strategies: SSS in gray and PSS in white. The time consumed 

in the resolution of the task with the PSS is longer independently if the 

expert (E) subject is working solo or if the subjects are working as dyads 

(D). 
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A) 

 
B) 

 
Figure 2-3: Muscular activity of the PSS and SSS during the task. A) 

Mean RMS values and standard error by single subject during the whole 

experiment for the SSS (grey) and the PSS (white). B) Mean muscular 

activity (SampEnt) and standard error by subject (blue) and by dyad (red) 

during the whole experiment as a percentage of the maximum voluntary 

contractions.,  
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A) SSS 

 

B) PSS 

 

Figure 2-4: Influence of the partnership in the RMS values of the 

muscular activation in subject 3. It is shown the performance during the 

Dyad 3 (blue), Dyad 1(magenta), and bimanual.  A) Muscular activity during 

the SSS. B) Muscular activity during the PSS.  
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However the partnership in dyads has a detectable influence 

detectable in the RMS values. Either changing the partner during 

the dyadic performance or else during the bimanual performance, 

the dominant activation of different muscles can be apreciated 

independently of the kinematic strategy used to solve the task. 

Also, the In Figure 2-4 we present the RMS correspondent to the 

most representative subject (subject 3), here we can see that the 

difference in the RMS values when the subject 3 is working 

together with subject subject 1 (Dyad 1) are similar to the ones of 

the bimanual performance, moreover while working with subject 2 

(Dyad 3) there is an general increment in the activation of the 

muscles, mainly observable in the pectoralis (PM) and the extensor 

ulnaris (EU). 

Despite of the lack of evidence of the existence of a muscular 

strategy correspondent to each kinematic strategy, the EMG data 

reveal the existence of two different mechanisms at the muscular 

level. The first muscular strategy is presented in the performance 

of subject 1, where we observed the presence of high co-

contractions of all the muscles in both arms during the SSS and the 

PSS. Figure 2-5 shows a color map where it can be noted that co-

activations are present in a synchronous way in both arms, which 

resulted in high correlation coefficients when calculating the 

correlation among muscles of each arm with a Lag = 0. The second 

muscular strategy is showed in Figure 2-6, and it was used mainly 

by subject 2 during both kinematic strategies, in this strategy we 

can find independent contractions of the muscles and there are not 

correlation peaks among muscles. 
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A) 

 

B) 

 

Figure 2-5: Color map of the co-activation muscular strategy used by the 

subject 1 for both kinematic strategies during the 4 seconds of 

stabilization in the center target. A) Co-activation strategy while solving 

the center targets using the SSS. B) Co-activation strategy used to solve the 

center targets for the PSS. 
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Figure 2-7 shows the values of the average correlations of all the 

muscles of the right arm of Subject 1 along 24 targets ordered 

chronologically. As can be observed in the color map in Figure 2-7 

A, the correlation among muscles activations decreased with time. 

In Figure 2-7 B, the linear regression shows a decrement of 60% in 

A) 

 

B) 

 

Figure 2-6: Color map of the muscular strategy used by the subject 2 for 

both kinematic strategies during the 4 seconds of stabilization in the 

center target. A) Independent contractions strategy while solving the center 

targets using the SSS. B) Independent contractions strategy used to solve the 

center targets for the PSS. 
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the peaks of the correlation values after 24 targets. Such decrement 

indicates a change in the muscular strategy, allowing the subject to 

complete the task in a more efficient way. This is suggested by the 

decrease in the average RMS values calculated for each target set 

that is mirrored by a reduction of the estimated effort applied by 

the subject (Figure 2-9). 

 

 

A) 

 

B) 

 

Figure 2-7: Average correlations of the muscle contractions during 24 

consecutive stabilization phases on the center target. A) Subject 1 during 

SSS: Color map showing a decrement in the muscle correlations. B) S1 

during SSS: Peaks of the average correlations from the top figure and their 

linear regression, with R
2
 = 0.635. 
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On the other hand, Subject 2 exhibited a very low correlation 

among muscles activities during the whole experiment (Figure 2-8 

A). Figure 2-8 shows that subject 2 choosed the strategy of low 

correlation since the beginning of the experiment. In the linear 

regression in Figure 2-8 B, it can be observed that the correlation 

peaks maintain a value below 0.2, even if at the end of the 

experiment the peak value increased by 2.4%. Lastly, the behavior 

of Subject 3 during the experiments is characterized by the 

A) 

 

B) 

 

Figure 2-8: Average correlations of the muscle contractions during 24 

consecutive stabilization phases on the center target. A) Subject 2 during 

PSS: Color map showing low correlations. B) Subject 2 during PSS: Peaks 

of the average correlations from the top figure and their linear regression, 

with R
2
 = 0.033. 



 

36 

 

presence of both muscular strategies with no direct link to the 

kinematic strategy being used. 

It is important to observe that all the subjects were experts in the 

task, and were able to solve it in a similar kinematic way, despite 

using completely different muscular strategies.  

 

2.3 The lack of correlation between muscular and 

kinematic strategies in unstable tasks. 

The results presented in this chapter suggest that in unstable 

dynamic environments that allow for multiple control strategies, 

subjects adopt two different neuromuscular stabilization strategies. 

Moreover, the choice of the control strategy at the muscular level 

A) 

 

B) 

 

Figure 2-9: RMS contraction (A) and kinematic effort (B) in the first 

(S1) and last target set (S3) of each of the two strategies (grey bar->SSS 

and white bars->PSS). Each bars represents average across muscles and 

subjects (mean±SD). 



 

37 

 

seems not to depend on the specific bimanual coordination strategy 

used. 

In particular, at the task level, expert subjects can solve the 

balancing problem manipulating the stiffness of the virtual tool so 

as to apply a mainly feedforward control strategy or a feedback 

control strategy (Morasso et al. 2014). At the muscular level, the 

control of the hand position can be achieved in two ways: i) a 

muscular recruitment strategy equivalent to a stiffness strategy that 

makes use of co-contraction patterns, ii) a strategy in which 

different muscles can be recruited independently one from the 

other. However, when it comes to stabilizing an unstable load, both 

strategies make use of intermittent muscular activation patterns in 

time. 

This result is consistent with previous works supporting the 

existence of intermittent feedback response mediated by 

discontinuous muscular activation in postural unstable tasks such 

as human standing (Loram et al. 2011; Vieira et al. 2012), as well 

as the statements that the performance is prioritized over the 

energy used to solve the task (Balasubramanian et al. 2009) and 

that the impedance of the limb gets optimized after achieving a 

skillful level of performance (Ethienne Burdet et al. 2001). In 

addition, the observation that in low stiffness conditions the 

behavior of the muscles is not necessarily related to the mechanics 

of the load appears to be in close relationship with the finding that, 

in the maintenance of posture, the modulation of intrinsic stiffness 

acts as a decoupling mechanism between muscle and the body 

(Lakie et al. 2003). 

As in the case of the two bimanual coordination strategies, also the 

two muscular coordination strategies are characterized by different 
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levels of effort. As easily predictable, the co-contraction scheme is 

characterized by higher levels of muscular energy compared to the 

independent contraction one. The latter control paradigm is 

therefore advantageous when the stabilization task has to be 

performed for a longer time. Our results suggest that independent 

muscular recruitment is preferred over the synchronous muscle 

activation when the stabilization task has to be performed for a 

longer time. 
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CHAPTER 3 TRANSFERRING 

KNOWLEDGE DURING THE DYADIC 

INTERACTION: THE ROLE OF THE 

EXPERT IN THE LEARNING PROCESS 

The enhanced performance of the dyads respect to the individuals 

has been the center of interest of many studies. However, the 

factors that result in this higher performance are still poorly 

understood. The aim of this chapter is to investigate how the 

learning of a stabilization task gets affected by the difference in 

skill levels when one of the participants in the dyad is already an 

expert in that task. For the experiments conducted for this study, 

twelve subjects, divided in two groups, trained in couples in a joint 

stabilization task. In the first group the couples were composed of 

two naive, while in the second a naive was trained together with an 

expert. Results show that training with an expert result in the 

greatest performance in the joint task. However, this benefit is not 

transferred to the individual when performing the same task 

bimanually. A distinctive feature that makes joint actions in a 

haptic task particularly interesting, is their capacity to induce an 

increment in the sense of agency (i.e. experience of being in 

control of an action) proportional to the performance of the 

interacting subjects (van der Wel et al. 2012). Let us make an 

insight on the main findings presented previously about this topic. 

On one side, physical coupling between two subjects has shown to 

be an advantageous solution in many cooperative contexts 

(Masumoto & Inui 2015; van der Wel et al. 2011; Ganesh et al. 

2014; Masumoto & Inui 2013). However, the behavior and 

performance was strongly dependent on the individual capabilities 
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of the two partners. For instance, interacting with a partner that is 

more skilled would result in an improvement respect to the 

individual performance. Interestingly though, when it comes to a 

novel task, the interaction between partners with a similar skill 

level leads to better performance than the interaction with a more 

skilled partner (Ganesh et al. 2014).  

On the other side, little is known about how two people mutually 

exchange information to exploit the coupling. Some findings 

suggest that dyads may adopt “force amplification” as a possible 

strategy to improve their performance especially in contexts that 

are challenging from the point of view of coordination (Melendez-

Calderon et al. 2015; van der Wel et al. 2011). Some other studies 

have shown that dyads may have a disadvantage in coping under 

the presence of noise or unforeseen disturbances (Reed & Peshkin 

2008).  

We have previously observed that complex balancing skills can be 

transferred from a bimanual to a dyadic paradigm and that dyadic 

training or simple dyadic practice brings to an improvement in 

performance when the subjects have a similar skill level (De Santis 

et al. 2015; De Santis et al. 2014). 

For the study presented in this chapter, we were interested in 

testing how the presence of an expert partner affects the skill 

learning process of a naive in a challenging dyadic stabilization 

task. In particular, we focused our attention on how learning 

develops in a context where training of a novel skill occurs in 

pairs. We asked subjects to learn to jointly manipulate a compliant 

tool under the action of an unstable force-field, rendered by a 

haptic bimanual interface. The dynamics of the tool allowed the 

dyads to select multiple control strategies to accomplish the task. 
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In order to characterize the learning process, we compared the case 

of two interacting individuals to one alone. Ten naïve subjects 

were trained in the unstable task presented in Chapter 1 for 5 days. 

The first day served as familiarization whiles the fifth one for the 

ability evaluation of each naive to perform the task in a solo 

condition. Our objective was to evaluate whether the shared 

internal representation of the task built during the interactive 

period could be sufficiently accurate to allow for a solo execution. 

Both skilled subjects previously trained for 10 sessions according 

to the protocol presented in (Zenzeri et al. 2011). The analyses 

were conducted on the end-effector kinematics and the 

electromyographic signals from 10 relevant muscles of the arm and 

trunk. 

3.1 Experimental setup 

The experiments where conducted using the task and the 

experimental setup previously described in Chapter 1. In this study 

the target sets where considered as a sequence of 16 stabilizations 

in out – center – out sequence. The experiment was divided in 5 

sessions having an approximate duration of 2.5 hours. Sessions 

from 1 to 4 were the training sessions, while session 5 was 

considered as the assessment session. Every session was divided 

into a variable number of target sets (TS). The complete protocol 

was structured as follows: 

1. Session 1: 

i) Familiarization: 6 TS, unstable force-field off. 

ii) Adaptation: 6 TS, unstable force-field on. 

iii) Wash-out: 3 TS, unstable force field off. 

2. Session 2-3: 

i) Training: 10 TS, unstable force-field on. 

3. Session 4:  
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i) Training: 10 TS, unstable force-field on. 

ii) Wash-out: 3 TS, unstable force field off. 

4. Session 5:  

i) Familiarization: 6 TS, unstable force-field off. 

ii) Adaptation: 6 TS, unstable force-field on. 

iii) Wash-out: 3 TS, unstable force-field off. 

Twelve right-handed (according to the Edinburgh test) subjects 

took part in the experiment (26±4 year-old): 5 male and 5 female 

naïve in the stabilization task, and 1 skilled male and 1 skilled 

female. We called these skilled subjects “expert” (a subject that 

completed the learning process described in (Saha & Morasso 

2012; Zenzeri et al. 2014) previous to the experiment. The subjects 

were divided in 2 different groups. In the Naïve – Naïve group (N-

N) each dyad was made by 2 subjects with no experience in the 

task. The dyads in the Expert – Naïve group (E-N) were formed by 

an expert, and a naïve subject. The subjects were assigned to each 

group upon their gender: 3 naïve males and 3 naïve females were 

selected to be part of the N-N group (dyad 1: female-female, dyad 

2: male-male, dyad 3: male-female) and the remaining subjects 

were assigned to the N-E group (dyad 1: expert female-naïve 

female, dyad 2: expert female-naïve male, dyad 3: expert male-

naïve female, dyad 4: expert male-naïve male). 

During the sessions 1, 2, 4, and 5, surface EMG signals were 

recorded from 10 relevant muscles from the arm and the trunk (see 

Chapter 1.). The recorded EMG signals were band pass filtered 

within 20-500 Hz, and separated in targets. For this analysis, only 

the stabilization phases of the peripheral targets were considered. 

The segmented signals were grouped according to the position of 

the corresponding outer target. In the post-processing of the EMG 

signals, the raw signals were normalized with the maximum values 
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of the MVC recordings. Then, the normalized signals were 

rectified and low-pass filtered at 10 Hz. We also computed a 

Principal Component Analysis (PCA) on the enveloped EMG 

signals to understand which muscles contribute mostly to the 

corrective movements produced in the stabilization phases of the 

task. 

3.2 The expert – naïve and the naïve – naïve learning 

difference 

As shown in Figure 3-1, both groups of subjects were able to 

complete the training and significantly improve their performance 

at the end of Session 3. The N-N group in particular reduced the 

time to target faster and more consistently than the E-N group 

troughout the target sets. Moreover, the E-N group employed a 

much lower effort than 2 over 3 N-N dyads since the first session. 

As the training proceeded, however, the N-N dyads greatly 

decreased the overall effort compared to the initial phases of the 

training. The great initial difference in the effort values for the two 

groups could be accounted for by the adopted strategy of 

stabilization. The N-N dyads employed more effort by stretching 

the springs much more than the E-N group with the objective of 

increasing the overall stiffness of the hand-mass-hand system. 

Indeed, by amplifying the forces acting on the mass, the system 

was less compliant and more stable in face of unforseen 

perturbations coming from the force-field or from the partner’s 

motion. The E-N dyads, instead, tended to adopt a feedback 

strategy to compensate for the perturbations, exerting a total force 

oriented mainly in the direction of the force-field. This strategy 

required more coordination among the partners but resulted in the 

reduction of the overall effort. 
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Figure 3-2 depicts the performance of the subjects during the 

exposure to the force-field in the bimanual task. Since the very first 

target set the 6 subjects in the N-N group has been able to reach the 

A) 

 

B) 

 

Figure 3-1: Average performance during the training for the N-N and 

E-N groups. The N-N group is shown in black, while the E-N group in red. 

A) The solid line represents the mean over the dyads and the deviation 

stands for the corresponding standard error along the target sets. A) Mean 

and standard deviation of the effort index in the 7 dyads. Trials 1-6 

correspond to unstable force-field off condition; trial 9-38 corresponds to 

the unstable force-field on condition and the final 3 trials correspond to the 

wash-out phase. 
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8 targets within half of the time needed to the 4 naive subjects of 

the E-N group (N-N: 21.2 ± 2.2 s; E-N: 48.6 ± 14.4 s). The N-N 

subjects did not achieve this performance at the cost of a greater 

effort. In fact, both at the beginning and at the end of the 

assessment phase, with the unstable force-field on, they employed 

a much lower effort than the naive subjects who trained with the 

experts (N-N7: 41.5 ± 3.8 N; E-N7: 33.5 ± 2.4 N; N-N12: 39.1 ± 

2.3 N; E-N12: 30.6 ± 2.6 N). Moreover, in the solo condition the 

N-N naive were actually able to apply less effort than when 

interacting with a partner. The behavior of the naïve subjects in the 

E-N group was more etherogeneous, with the tendency to apply a 

greater effort compared to the N-N group and almost double the 

effort they employed in the training. It is interesting to notice that, 

despite not reducing the effort index, they were able to accomplish 

the stabilization within much less time since the very beginning of 

the session. This result was consistent with the evidence that the 

Central Nervous System tends to first optimize the performance 

and later the effort (Balasubramanian et al. 2009). An explanation 

for the observed difference among groups could be that the E-N 

naive were subject to an ‘interference effect’ of the previuos 

training with an expert, while the N-N naives experienced a 

positive transfer of the acquired skills.  

In order to find a possible explanation for the observed kinematic 

performance, we conducted further analysis on the EMG data 

during the stabilization phase for the task. A PCA was used in 

order to identify the muscles that could account more for the 

observed corrective actions during the stabilization interval inside 

the target area. The PCA reconstructions in Figure 3-3 represent 

the muscles for which the variation in the EMG signal envelope 

accounts for at least 80% of the total variability of the signal in a 

group of representative subjects when reaching the target number 5 
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(180 deg, which was the most representative among the group of 

targets solved during the task). In general, the E-N group showed 

concurrent activation of synergistic muscles for flexion or 

extension of the arm (i.e. IS+ER, PM+FR+AD) rather than couples 

of antagonistic muscles (i.e. ER+FR, IS+PM, TL+LD). The N-N 

group showed more co-contraction of agonist and antagonist 

muscles, at least in the initial phases of the training. This 

observation was consistent with the higher effort index in this 

group during the training. Nevertheless, whilst the E-N subjects 

seemed to settle on a characteristic muscular pattern (PM+FR) 

since the first one or two sessions, subjects in the N-N group 

tended to explore diverse combinations. This difference in 

exploration during the training phase may have favored the N-N 

subjects over the E-N during the assessment phase, since the expert 

partner may have restricted the exploration of disadvantageous (in 

terms of effort) configurations. 

 

 

Figure 3-2: Average performance during the bimanual test for the naïve 

subjects. The subjects who trained in the N-N group are shown in black, 

while the E-N group is in red. The solid line represents the mean over the 

dyads and the deviation stands for the corresponding standard error along the 

target sets. 
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The main findings of the present work can be summarized as 

follows: dyads are not only susceptible to adaptation, but can also 

quickly learn new skills in a shared context; the amount of 

knowledge that can be transferred from a dyadic to an individual 

condition is limited by the interaction itself. Therefore, in addition 

to what already stated in the introduction, physical interactions are 

not always beneficial to the individual performance of the 

interacting partners. 

 

 

Figure 3-3: Reconstruction of the muscle activation in the projection of 

the first 3 Principal Components for the N-N group (top two rows) and 3 

representative subjects of the E-N group (bottom two rows). The muscles 

whose projection over the  first 3 components was greater or equal to the 

80% is shown in magenta and in green, respectively. In each group of panels 

the top row shows the subject manipulating the left arm and the bottom row 

the subject on the right. 
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Our results suggest that the initial level of the performers has a 

strong impact on the learning of a context-independent 

representation of the dynamics of the task. In particular, the 

interaction with an expert can be detrimental in this sense. While 

interacting with an expert brought to a greater advantage over 

working with a pair, it partially manipulated the dynamics that the 

naïve perceived. As a consequence, the naïve subjects may have 

learnt how to cope with a leading expert rather than to master the 

background task. 

In general, the results of the experiments show that the protocols of 

haptic interaction can influence critically the capability of skill 

acquisition and skill transfer, in a subtle manner. As a 

consequence, specific interaction protocols are likely to be 

necessary in different applications as in surgery or rehabilitation. 
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CHAPTER 4 MOTOR KNOWLEDGE 

GENERALIZATION AFTER ROBOT – 

MEDIATED DYADIC TRAINING 

Several studies have investigated how the interaction between two 

people or between a person and a robot can be harnessed to 

improve the skills of the partners. Indeed, solving a task as a dyad 

can lead the individual to perform better than by himself. The goal 

of this work is to investigate how the skill level of the partner and 

different interactive conditions affect learning of a novel task. In 

particular we considered the case of partners with different initial 

skill level (naïve or experts) and the influence of prior individual 

practice. Twenty two subjects trained in a joint stabilization task 

for 4 days. On the last day we tested their ability to perform the 

same task individually. The results show that training with a 

skilled partner, despite bringing to a faster learning in the joint 

task, does not facilitate skill transfer in the absence of individual 

prior practice. This suggests that the physical coupling with an 

expert partner may interfere with learning due to the formation of a 

non-veridical internal representation of the task. 

In our previous works we studied skill transfer from a bimanual to 

a dyadic paradigm. Furthermore, we showed that a dyadic training 

can help partners with similar skill levels to improve their 

performance in complex stabilization tasks (De Santis et al. 2015; 

De Santis et al. 2014). 

In this chapter we further expand our study on the transfer of skills 

from the dyadic to the bimanual paradigm but we mainly focus our 

attention on the generalization abilities of the subjects after the 
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training. The training consisted of solving a stabilization task under 

different conditions of interaction. These conditions included the 

training in dyads with a partner with the same skill level or with a 

partner proficient in the task and the acquisition of an a priori 

knowledge of the task itself. The ultimate goal was to evaluate 

whether the shared internal representation of the task built during 

the interactive period could be sufficiently accurate to allow for a 

solo execution. Kinematic and electromyographic data have been 

used to evaluate the performance of the subjects. 

4.1 Methods 

The subjects solved the task described in detail in Chapter 1 using 

both configurations of the BdF2 during the different stages of the 

experiments. In addition to the measures presented in Chapter 1, 

we also calculated the Tracking Error, which measures the 

average distance between the mass and the moving target during 

each repetition of one trajectory (explained below). 

 

 

Figure 4-1: Task diagram. Left panel: Distribution of the targets for the 

stabilization task during the training and the bimanual evaluation. Right 

panel: Trajectories followed for the moving target during the generalization 

phase: Horizontal Ellipse (HE, black), Vertical Ellipse (VE, yellow), Clover 

(C, blue), and Spiral (S, red). 
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The protocol was divided in three different stages. The first stage 

(training) consisted in the stabilization of the virtual mass in 9 

different target locations for 4 seconds. The targets were equally 

distributed around a circle of 10 cm of diameter (Figure 4-1, left 

panel) and were presented in a random order in an out–center–out 

schema. A target set (TS) consisted of 16 different stabilization 

trials. The training stage lasted 3 sessions, during which the 

subjects had to complete a sequence of 3 TS of familiarization with 

the tool in the absence of instability (Fu = 0), 30 TS (10 per day) of 

stabilization in the presence of the instability, and 3 TS of washout, 

again in the absence of instability.  

In the second stage of the experiment (tracking), the subjects had 

to control the virtual tool while tracking a moving target along 4 

different trajectories, as represented in Figure 4-1 (right panel, 

horizontal ellipse, vertical ellipse, clover, and spiral). Each 

trajectory was repeated three times, the first of which in the 

absence of the unstable force-field. The objective of the task was to 

test how well the skills acquired during the balancing task could be 

generalized to a novel task that shared the same intrinsic dynamics 

as the trained task.  

In the last stage of the experiment all the subjects had to 

bimanually solve the balancing task. The protocol was the same as 

in the training stage with the difference that the subjects had to 

complete only 6 TS in the presence of the unstable force-field. This 

stage was used to evaluate whether the internal model developed 

during the training phase was sufficiently accurate to allow for a 

bimanual execution.  

The subjects (22 persons, 25.7 ± 3.8 years old, all right handed 

according to the Edinburgh test, from which 2 of them were 
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experts in the task (Zenzeri et al. 2014; Zenzeri et al. 2011)) were 

separated in 4 different groups, as depicted in Figure 4-2. In two of 

these groups subjects trained together with an expert (NE and NE-

a) while the other subjects trained in pairs of naïve (NN and NN-

a). In order to test the effect of prior individual experience of the 

task in both dyadic conditions, subjects in the NN-a and NE-a 

groups performed an additional stage before training in pairs. Each 

subject performed a session of adaptation to the force field using a 

protocol identical to the last stage of bimanual evaluation. 

 

 

Figure 4-2: Four groups were formed to evaluate motor learning under  

different conditions. NN: 3 couples formed by 2 naïve subjects that 

complete the training working always in a dyadic configuration. NN-a: 3 

couples of naïve subjects with one session of bimanual experience before the 

training. NE: 4 couples naïve – expert which completed the training in a 

dyadic configuration. NE-a: 4 naïve – expert couples where the naïve 

subjects had one session of bimanual experience previous to the dyad 

training. 
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The kinematic data of the robots and of the virtual tool were 

recorded at 100Hz. Moreover, surface EMG signals of 10 muscles 

responsible for the movement of the shoulder, elbow, and wrist 

were recorded and processed as explained in Chapter 1. The RMS 

envelopes of these signals were used to analyze the muscular 

activity of the subjects.  

4.2 Generalization of the acquired skills 

The Figure 4-3 summarizes both kinematic and electromyographic 

measures during the tracking phase of the experiment. Figure 4-2 

A shows the average kinematic performance by group for every 

trajectory of the moving target. Compared to the bimanual control 

group, the NE-a group was the best performer, while the NN-a 

group committed the greatest error in all figures. The NN group, 

instead, performed worse only in the easier figures (ellipses). One 

may expect that the groups with a higher tracking error also 

present higher levels of muscular activity, related to the difficulty 

in solving the task. Interestingly, the above observation is true only 

for the NN-a group. Indeed, the RMS values of the NN-a group are 

considerably higher than NE, NE-a, and NN groups. An opposite 

tendency can be observed for the bimanual control group that 

displayed a high average RMS value but committed small tracking 

errors. Unfortunately the tracking average RMS value over the 

muscles is affected by a big variability, making considerations 

relative to the muscular activity for every single group difficult. 

Figure 4-4 shows the effects of training on the activity of 

individual muscles for representative subjects in groups NN, NN-a, 

NE, and NE-a. The effect of the different interaction conditions 

can be seen during the bimanual evaluation of the task (blue areas). 

From the muscular point of view, it can be detected a difference 

among the groups in which the expert subject is present in the dyad 
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and the groups in which is not. In Figure 4-4 A) the first session of 

training presents higher muscular activity than the last one. Figure 

4-4 B) shows that, for subjects who trained with a peer with 

previous experience of the task (NN-a), the muscular activity is 

quite low since the first day of training These levels decrease 

considerably the last day of training and did not increase in the 

bimanual evaluation. On the contrary, the muscular strategy 

adopted by the NN group during the bimanual test is similar to the 

one used during the first day of training, it requires the intervention 

of the same muscles but with different levels of intensity. 

 

The polar plots presented in Figure 4-4 C) and D) show the 

evolution of the muscular activity for the subjects of group NE and 

NE-a respectively. The presence of the expert since the beginning 

of the training in the group NE helps the naïve subject to 

“optimize” the muscular activity. By the end of the training, the 

naïve subject shows an increment in solving the RMS values, 

A)  B) 

 

Figure 4-3: Kinematic and EMG results of the generalization task. a) 

Average tracking error for each group in every trajectory of the moving 

target. b) Average RMS (Normalized Units, N.U.) during the performance of 

the tracking task. VE = Vertical Ellipse; HE = Horizontal Ellipse; C = 

Clover; S = Spiral. 
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meaning a higher muscular contribution in the task. However, this 

subject increased the muscular activation during the bimanual 

evaluation. We can also observe that the muscular contribution to 

the movement is different for every stage represented in the polar 

graphs.  

 

A) NN 

 

B) NN-a 

 

C) NE 

 

D) NE-a 

 

Figure 4-4: Average RMS (by muscle) of the most representative subjects 

of the dyad groups during the first day of training (red), during the last day 

of training (black), and during the bimanual evaluation (blue). a) Muscular 

activity of the subject from NN group. b) Corresponds to the subject of the 

NN-a group. c) Shows the muscular activity of one of the naïve subjects in 

group NE. d) Muscular activity of a naïve subject from group NE-a. 
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The analysis of the kinematic data can give us a wider view of the 

impact of the expert in the dyadic training. In Figure 4-5 we can 

see the comparison of the Inefficiency Index from the bimanual 

evaluation of the NN, NN-a, NE, and NE-a groups against the 

adaptation phase of the BIM group. Here it is important to notice 

that while the Inefficiency Index values of the NN-a, NN, and NE-

a groups are low and similar to each other, the values of NE group 

are much closer to the ones of the BIM (adapt) ones (The data 

corresponds to a group where the subjects performed the whole 

training and generalization of the task in a bimanual configuration, 

the adaptation phase was considered as illustration of the 

Inefficiency Index evolution when the task is novel to the subjects. 

Further details are presented in Chapter 5). Despite having been 

 

Figure 4-5: Inefficiency index values to measure the kinematic 

performance during the bimanual evaluation. At difference of the rest of 

the data, the data corresponding to the BIM group were taken from the first 

day of training. 
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training for several days, the subjects of NE group seem to 

progress into the adaptation as if the task was novel to them. 

4.3 Expert stablished limitations in the Knowledge 

transfer 

The overall results of the training confirm the theory that the 

presence of the expert in the dyad helps to improve the 

performance while solving the task. The kinematic results of the 

experiment show a better performance for the dyads in which the 

expert was present, even if the naïve subject did not have any 

previous experience in the task. In both tracking and training 

stages of the experiment, the muscular activity seems to be lower 

in the NE and NE-a groups, suggesting that the contribution of the 

expert in solving the task helps optimizing the muscular strategy 

needed to complete the experiment. Apart from the bimanual 

control group, the common condition in the groups with the lowest 

tracking error is the presence of the expert in the dyad. One of the 

reasons for the bigger error in the NN and NN-a groups can be the 

perception of the partner as an extra perturbation. In fact, in the NE 

and NE-a groups the expert was probably responsible for 

compensating the perturbations coming from the naïve subject. 

On the other side, both kinematic and electromyographic data of 

the bimanual evaluation stage show how the subjects from NN and 

NN-a groups were able to generalize the acquired knowledge from 

the dyadic to the bimanual condition. At the same time, the naïve 

subjects from the NE-a group improved their performance 

(decreased the muscular activity) with respect to the first session of 

training but, differently of what happened with the NN and NN-a 

groups, the muscles contributing to the movement were different in 

both the first and the last session. In this case the naïve subjects of 

the NE-a group were able to generalize the kinematic strategy but 
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not the muscular one (Avila-Mireles et al. 2015). On the other side, 

NE subjects were not able to transfer either the kinematic skills or 

the muscular skills learnt during the interaction with the expert to 

the bimanual condition. In this case, the presence of the expert 

constrains the exploration from the naïve of the virtual 

environment and imposes a sort of bias on the force field. The 

expert subjects have a wide knowledge of the task and are able to 

correct the perturbations from both the naïve subject and the virtual 

environment, and this forces the naïve subject to create an 

erroneous internal model of the conditions of the task due to a 

distorted perception of the virtual environment. As a consequence, 

the naïve subject cannot learn to handle the perturbations coming 

from the unstable force field alone. 

The results show how the interaction of two subjects mediated by a 

haptic interface can be helpful in the knowledge transfer and skill 

acquisition. However, it is necessary to be careful during the 

design of any dyadic protocol, since a wrong interaction condition 

can be of no advantage or even counterproductive. 
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CHAPTER 5 SKILL LEARNING AND 

SKILL TRANSFER MEDIATED BY 

COOPERATIVE HAPTIC INTERACTION 

It is known that physical coupling between two subjects may be 

advantageous in joint tasks. However, little is known about how 

two people mutually exchange information to exploit the coupling. 

Therefore we adopted a reversed, novel perspective to the standard 

one that focuses on the ability of physically coupled subjects to 

adapt to cooperative contexts that require negotiating a common 

plan: we investigated how training in pairs on a novel task affects 

the development of motor skills of each of the interacting partners. 

The task involved reaching movements in an unstable dynamic 

environment using a bilateral non-linear elastic tool that could be 

used bimanually or dyadically. The main result is that training with 

an expert leads to the greatest performance in the joint task. 

However, the performance in the individual test is strongly 

affected by the initial skill level of the partner. Moreover, 

practicing with a peer rather than an expert appears to be more 

advantageous for a naive; and motor skills can be transferred to a 

bimanual context, after training with an expert, only if the non-

expert subject had prior experience of the dynamics of the novel 

task. 

In the recent years it has become evident that skilled behavior 

emerges from embodied cognition, namely an intimate perception-

action loop, supervised by physically grounded cognitive 

processes. The fronto-parietal mirror neuron circuit in the cerebral 

cortex (Rizzolatti et al. 1997) emphasizes the unitary nature and 

complementarity of “Action and Action-Observation”. A further 



 

60 

 

step in this direction is the recognition of the unitary nature of 

overt and covert actions, that lead Marc Jeannerod (Jeannerod 

2001) to posit that skilled behavior is part of a simulation network 

related to action, whose function is not only to shape the motor 

system for preparing an action (either overt or covert) but also to 

provide the self with information on the feasibility and the 

meaning of potential actions. A natural consequence of this 

approach is the notion of body schema (Morasso et al. 2015) 

formulated as a generalization of the Equilibrium-Point Hypothesis 

(Mussa Ivaldi et al. 1988) to include covert and overt actions as 

well as actions involving the skilled use of tools (Maravita & Iriki 

2004). Summing up, research on embodied cognition demonstrates 

that individuals rely on their bodies and their individual action 

generation mechanisms both to improve the effectiveness of their 

own actions and to understand others’ actions and predict their 

chance of success. 

Nevertheless, embodied cognition, being the source of skilled 

behavior, would be unable to express its full potential without 

involving two crucial aspects: 1) the social nature of purposive 

action (Knoblich & Sebanz 2006), namely the fact that joint 

actions between two or more cooperating individuals are more 

likely to be successful than solo actions and may be an effective 

channel of skill transfer; 2) the ecological permeability of skills, 

namely the intrinsic human capability to synch up with strong, 

external dynamics, rhythms, pulses or beats, a phenomenon known 

as entrainment (Keller 2008; Keller & Appel 2010; Clayton 2012). 

These two aspects are different but deeply complementary at the 

same time. Moreover, we should consider that joint actions are 

conscious, in the sense that cooperating individuals may learn to 

share representations, predicting each other’s actions, and 

ultimately achieving the capability to jointly plan ahead. On the 
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other hand, physiological/psychological entrainment implies an 

autonomic mechanism that is largely unconscious. 

The transfer of a skill from an expert to a naïve person is a typical 

example of social interaction. In many cases, the kind of 

knowledge that is transferred from the expert to the novice is to a 

great extent implicit, in the sense that it is hard to express it 

verbally but it is much more natural to exploit a physical/haptic 

interaction between the two actors.  

Recently, there has been a great deal of interest in addressing skill 

learning and skill transfer during dyadic interaction. The problem 

is that measuring dyadic interaction during daily life activities is 

quite complex and this is the reason for which the use of robotic 

haptic interfaces is a very promising way to study in a detailed way 

the subtle aspects of dyadic interaction. In the 90’s, indeed, the 

introduction of robotic interfaces made it possible (and quite 

popular) to study the human mechanism of adaptation to unknown 

dynamic environments by using robot generated force-fields 

(Shadmehr & Mussa-Ivaldi 1994). The study of dyadic physical 

interaction through robotics has benefited from several notable 

contributions. Ganesh et al. (Ganesh et al. 2014), developed a 

system where the two users of a dyad are engaged in the same task 

(tracking independently the computer generated target) without 

any knowledge of each other’s performance. However, the two 

robotic manipulanda were dynamically linked by a virtual spring, a 

linkage of which the two individuals were unaware. In a sense, this 

is an example of interaction through ecological influence, namely a 

common haptic environment that induces a kind of haptic 

entrainment, in the absence of a cooperative task. In another study, 

van der Wel et al. (van der Wel et al. 2011) designed a simple 

cooperative tasks that consists of balancing a physical inverted 
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pendulum through two cables operated by two individuals or by a 

single individual in a bimanual arrangement: the results suggest 

that dyads amplify their forces to generate a haptic information 

channel. In the same framework, Groten et al. (Groten et al. 2013) 

devised a similar task to specifically asses the mechanisms of 

intention integration through haptic communication: the subjects 

had to complete a tracking task of a virtual mass using a haptic 

knob and, in addition to the visual feedback of the cursor, they 

could receive force feedback only related to the inertia or to both 

the inertia and the partner’s action. The results suggest  that 

subjects could negotiate intentions through haptic communication 

and that the difficulty of the negotiation process was proportional 

to their physical effort. 

In the aforementioned cases, however, the tasks faced by the 

interacting subjects are rather simple and not particularly 

challenging. In contrast, the study presented in this chapter 

addresses a very challenging balancing task that somehow 

resembles real life problems like coordination/cooperation in 

minimally invasive surgery. The task is strongly unstable (reaching 

and stabilizing in a saddle like force field) and non-linear (the 

virtual tool manipulated bimanually by a single user or bilaterally 

by two cooperating users has a variable stiffness) and was designed 

in such a way to allow the user/users to adopt solutions bounded by 

two different limit strategies: an open loop stiffness strategy, 

simple but energetically expensive, or a closed loop positional 

strategy, complex but energetically efficient. In the studies of 

(Saha & Morasso 2012; Zenzeri et al. 2014) it was presented an 

investigation of the stabilization strategies and the strategy-

switching mechanisms involved by this kind of experimental setup 

in the case of bimanual, solo operation. In a following study some 
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preliminary results of a dyadic operation in the same setup were 

presented (De Santis et al. 2015). 

In this study we further expanded this research line by seeking to 

answer the two following questions: 

1. When a novice is engaged in learning to carry out a complex 

task, such as controlling an unstable tool, to which extent and 

under which conditions a dyadic interaction with a cooperating 

expert partner can be beneficial for achieving an optimal 

performance level? 

2. If the assistance of the expert is indeed effective, under which 

circumstances can the trained user maintain the level of 

performance reached during assisted training when performing 

solo in the same task? 

The underlying issue is to find the optimal trade-off between 

exploration and exploitation: curiosity-driven exploration of the 

unknown dynamics of the task at hand by the novice, accepting 

low performance levels, vs. exploitation of the assisting action of 

the expert that may improve performance but also reduce the 

chance of the novice to experience a wide-range of dynamic 

contingencies, crucial for generalization and for a robust 

consolidation of the acquired skill. 

5.1 Organization and implementation of the 

experimental methodology 

We asked subjects to learn to jointly manipulate a virtual 

compliant tool under the action of an unstable force-field, rendered 

by a haptic bilateral interface that can be operated bimanually by a 

single user or bilaterally by a dyad. A single novice can become an 

expert user after a rather long learning process, thus incorporating 

in some internal model a working knowledge of the instability and 
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non-linearity of the tool and the capability to carry out 

manipulation tasks with the tool using a combination of different 

control strategies (Saha & Morasso 2012; Zenzeri et al. 2014). The 

issue, addressed by the experiments, was to ascertain if and how 

dyadic interaction of a novice with an expert can facilitate skill 

transfer, namely speed up skill acquisition. The experimental 

setup, the task description, and the details of the virtual 

environment used for this study have been described in detail in 

Chapter 1 together with the specifics of the muscular and 

kinematic data recorded. 

5.1.1 Subjects 

Thirty young volunteers took part in the study (25.25±3.85 years of 

age, 64.4±11.16 kg of weight, and 171.5±8.7 cm of height). 

Twenty-eight of them were naïve to the task (subjects without 

previous knowledge of the task) and 2 were experts in the task 

(subjects trained and skilled in the task, following the protocol 

reported in (Zenzeri et al. 2011)). The subjects were balanced as 

regards gender: 14 Nf (Naïve females), 14 Nm (Naïve males), 1 Ef 

(Expert female), and 1 Em (Expert male). All the subjects were 

right handed according to the Edinburgh laterality test, and did not 

have known neurological impairments of the upper limbs. The 30 

subjects were randomly assigned to 5 groups, characterized as 

follows: 

 NN (naïve-naïve group): it is composed of 3 males and 3 

females with no previous experience of the task. These subjects 

were paired to form 3 dyads. 

 NN-b (naïve-naïve group with bimanual prior): also in this 

group there are 3 males and 3 females with no previous 

experience of the task, who are paired to form 3 dyads, but in 
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this case the subjects were trained separately in the bimanual 

paradigm, during a preliminary priming phase. 

 NE (naïve-expert group): it is composed of 3 naïve males, 3 

naïve females and the 2 expert users (1 male and 1 female), 

who were paired to form 6 dyads, with the male expert training 

4 naïve subjects (2M+2F) and the female expert training 2 

(1M+1F). 

 NE-b (naïve-expert group with bimanual prior): it is composed 

in a similar manner as the NE group, with the difference that 

the 6 naïve subjects were trained separately in the bimanual 

paradigm, during a preliminary priming phase. After this phase 

they were paired with the 2 expert subjects to form 6 dyads. 

Again, 4 subjects (2M+2F) were paired with the male expert 

and 2 (1M+1F) with the female expert. 

 BIM: it is composed of 4 naive subjects (2 males and 2 

females) who never operated in dyads. 

5.1.2 Experimental protocol 

For all the experimental groups the protocol was organized into 5 

days: the first day was considered a priming session, 3 days of 

training sessions, and 1 day of final test session. Each session 

included a number of target sets (TS), which were the basic 

module of the experimental protocol: each TS was composed of 8 

trials (center-out-center sequences), one per target direction. More 

specifically, the session of the experimental protocol consisted of 3 

phases:  

- PRIMING SESSION (Day 1) 

1) Familiarization: 6 TS, unstable force-field off 

2) Adaptation: 6 TS, unstable force-field on 

3) Wash-out: 3 TS, unstable force field off 

- TRAINING SESSIONS (Day 2-4) 
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1) Familiarization: 3 TS (Day 2 only), unstable force-

field off 

2) Training: 10 TS, unstable force-field on 

3) Wash-out:  3 TS (Days 4 only), unstable force-

field off 

- BIMANUAL TEST SESSION (Day 5) 

1) Familiarization: 6 TS, unstable force-field off 

2) Adaptation: 6 TS, unstable force-field on 

3) Wash-out: 3 TS, unstable force-field off 

Table 5-1 summarizes the distribution of subjects into the 4 the 

experimental groups (NN, NN-b, NE, NE-b) and in the control 

group (BIM).  

 

The experimental protocol followed by each group is detailed in 

the three rightmost columns. The priming session occurs on Day 1, 

the training session spans 3 days and bimanual test session occurs 

on Day 5. Each day, the subjects might perform the task either in 

dyads (D) or bimanually (B) according to the group. As outlined in 

Table 5-1, the NN and NE groups always trained in dyads. In the 

NN-b and NE-b groups the naïve subjects performed alone in a 

bimanual way during the priming session and were exposed to 

dyadic interaction in the training sessions. The BIM group always 

performed in a bimanual way, without any dyadic interaction. The 

 

Table 5-1: Experimental groups and experimental protocol 
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rationale of this procedure was to test for the effect of the initial 

skill level of the partners on skill transfer after dyadic practice. 

The EMG signals of the 10 muscles listed above were collected 

during Day 1 to characterize the initial activation patterns, on Day 

2 and Day 4 (to characterize the activation patterns at the 

beginning and at the end of the training sessions, and at Day 5 

(bimanual test). 

The kinematic and EMG performance of the subject was analyzed 

using the measures detailed described in Chapter 1. For this study 

we also included the Mutual Information (MI), which is a 

measure that quantifies the mutual dependence between two 

random variables for which a joint probability is known. In our 

case, we exploit the concept of Mutual Information to identify the 

nonlinear causal relationship between the action of the force-field 

on the virtual mass and the elastic force generated in each of the 

two spring elements attached to the virtual mass. If the two forces 

are highly correlated (MI is high), the action of the force-field on 

the mass is largely responsible for the forces that drive the motion 

of the tool. We can hypothesize that in this case the subject is 

“passive” to the action of the force-field. On the contrary, if the 

subject actively counteracts the divergent drive induced by the 

force-field and leads the motion of the tool, the elastic force 

generated in the spring will be virtually uncorrelated with the local 

direction of background perturbation acting on the mass. Let us 

define 𝐹𝑢𝑥 the divergent component of force-field and 𝐹𝑥 the 

component of the elastic force of one spring along the unstable 

manifold. We can therefore compute the mutual information of the 

two forces as: 
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𝑀𝐼 =  ∑∑
log (𝑝(𝐹, 𝐹𝑢))

𝑝(𝐹)𝑝(𝐹𝑢)
𝑥𝐹𝑢𝑥𝐹

 (5.1) 

where 𝑝(𝐹𝑢 , 𝐹𝑢𝑥) is the joint probability distribution function 

computed over the forces acting along x in a target set (8 trials) 

and 𝑝(𝐹𝑥) and 𝑝(𝐹𝑢𝑥) are the corresponding marginal probability 

density functions. 

Our expectation is that when individuals perform the task 

bimanually both limbs will actively participate to the balancing 

and there will be no significant difference between the values of 

MI computed for the right and for the left springs. However, in 

dyadic actions it is likely that the balancing responsibilities are 

unequally distributed between the two partners (Reed et al. 2005; 

Stefanov et al. 2009). We therefore computed the Mutual 

Information Difference between the two partners 𝑀𝐼𝑟𝑖𝑔ℎ𝑡 −𝑀𝐼𝑙𝑒𝑓𝑡, 

being 𝑀𝐼𝑟𝑖𝑔ℎ𝑡 the mutual information computed for the rightward 

spring/subject and 𝑀𝐼𝑙𝑒𝑓𝑡 the one computed for the leftward 

spring/subject. 

5.1.3 Data Analysis and statistics 

Data from the robot and virtual reality were collected at 1kHz and 

saved at 100Hz for subsequent analysis. Hand trajectories in 

Cartesian coordinates were reconstructed from the primary encoder 

measurements (17-bit, positional end effector resolution lower than 

0.01 cm). We computed the elastic forces transmitted from the 

hand to the robot as in equation (1.9): 

{
�⃗�𝑅 = (𝐾𝑠𝐿𝑅 + 𝜌𝑠𝐿𝑅

2 )�⃗�𝑅 

 �⃗�𝐿 = (𝐾𝑠𝐿𝐿 + 𝜌𝑠𝐿𝐿
2)�⃗�𝐿

 

The measures of performance were calculated for each trial 

separately and then averaged within the target set (8 directions).  
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Statistics was performed on the target set values obtained for each 

subjects in the force-field phase. Normality was assessed using the 

Kolmogorov-Smirnov test. We compared the performance 

measures within a same target set among groups using a one-Way 

Analysis of Variance. When comparing the average performance 

along multiple sessions we adopted a repeated measures ANOVA 

having time as within factor and groups as between factors. We 

used a paired t-test whenever comparing only two targets sets (i.e. 

first and last of a session). Significance level was set to 0.05. The 

sphericity condition for repeated measures ANOVA was assessed 

using the Mauchly test. When deviation from sphericity occurred, 

we applied the Greenhouse-Geisser correction. In this case the p-

values for the statistics are reported as 𝑝𝐺𝐺. Post-hoc comparisons 

were assessed using the Bonferroni correction for multiple 

comparisons. 

5.2 How does the skill level of the partner conditions 

the skill learning? 

The first part of this section compares the performance of the two 

groups who executed the priming session always in dyads (NE and 

NN), without any experience of the naïve subjects of the bimanual 

paradigm, and the three groups where naïve subjects experienced 

the bimanual paradigm, at least in the priming session (BIM, NN-

b, NE-b). The second part focuses on skill learning and 

performance during the training sessions. The third and last part 

presents the results of the bimanual test session to evaluate the 

amount of skill transfer for the naïve subjects in the four dyadic 

groups (NN, NN-b, NE and NE-b). 

5.2.1 PART 1: Priming session 

During the priming phase, the subjects practiced the stabilization 

task for 6 TS (48 trials). In this phase, only naïve subjects from the 
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groups NN-b and NE-b performed the task with a partner, while 

the remaining naïve subjects performed the task bimanually. We 

are therefore interested in comparing the performance of the dyads 

with the performance of the individual subjects and test if any 

difference can be identified between conditions.  

In the left part of Figure 5-1 is represented the evolution of the 

Inefficiency Index in different sessions of the experimental 

protocol. For the moment, let us focus on the priming session (P1-

P6). From the figure we can see that naïve subjects working with 

an expert are the better performers both in the first TS (NE: 

1.95±0.53; NN: 10.16±6.99; NN-b: 6.37±2.54; NE-b: 9.38±5.81) 

and at the end of the force-field adaptation phase of Day 1 (NE: 

1.48±0.61; NN: 3.30±2.02; NN-b: 3.98±1.18; NE-b: 3.54±1.82). 

Naïve-naïve dyads seem to represent the least favorable condition. 

While the subjects in both the NE and bimanual condition 

significantly improved their performance from P1 to P6 (NE: T(5) 

= 4.730, p = 0.005; BIM+NN-b+NE-b: T(15) = 3.011, p < 0.001), 

the NN group improved to a lesser extent throughout the priming 

session (T(2) = 2.342, p = 0.144). Indeed, a repeated measures 

ANOVA conducted over the 6 TS of force-field adaptation of Day 

1 supports the hypothesis that working with a skilled partner in the 

priming session allows to have significant performance benefits 

(F(1.9,42.2) = 3.29, 𝑝𝐺𝐺 = 0.022, group - target set interaction) 

compared to working in a solo condition (-3.25 [-5.76; -0.74], p = 

0.008) or with a peer naïve (-3.73 [-7.41; -0.05], p = 0.046). 
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Figure 5-1: Summary of performance measures. Left panels: Average 

variation of the Inefficiency Index between the first and the last training set 

in the three phases of the experimental protocol (P = priming; T = training; 

B = bimanual test), separately for the four dyadic groups (NN-b; NN; NE-b; 

NE). Grey lines depict the performance of a single subject/dyad; dispersion 

bars represent standard deviation; asterisks denote significant differences 

(p<0.05) according to a paired t-test. Top-right panel: Average Inefficiency 

index during the 30 training sets of the training sessions. The graph reports 

the evolution of the different dyadic groups (blue = NN-b; green = NN; red = 

NE-b; yellow = NE) and the bimanual control group (black = BIM); vertical 

bars represent the standard error of the mean (n=3 for NN-b and NN; n=4 for 

NE-b, NE, and BIM). Bottom-right panel: difference of the average Mutual 

Information index between the two virtual springs of the haptic 

manipulandum during the priming (P) and the training (T) phase. In the NE 

and NE-b groups the spring on the right side is grabbed by expert subject of 

the dyad and the spring on the left by the naïve subject: positive (negative) 

values indicate that the subject/spring on the left (right) is more responsible 

for compensating the instability; values close to zero indicate equal 

contribution from right and left subjects/springs. 
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A) 

 

B) 

 

Figure 5-2: Evolution of the average muscular activity index (RMS) of 

the different experimental groups during all the target sets of the 

experimental protocol. A): Comparison among the groups where the naive 

subjects could have bimanual experience of the task during the priming 

session (NN-b and NE-b, blue and red line respectively), with respect to the 

control group (BIM) that never operated in dyadic condition. B): Comparison 

among the dyadic groups where the naive subjects never had bimanual 

experience of the task (NN and NE, green and yellow line respectively), with 

respect to the control group (BIM). Each plot is divided in the 3 blocks that 

correspond to the experimental sessions: (P = priming; T = training; B = 

bimanual test). The dispersion bars represent the standard error. 
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As regards the EMG signals, Figure 5-2 shows the average RMS 

values of the subjects in groups NN-b and NE-b (bimanual 

priming, panel a) and NN and NE (dyadic priming, panel b) 

compared to the bimanual control group throughout the sessions 

(force-field on phase only). If we focus our attention on the effect 

of the priming session (P1 - P6) in the dyadic priming condition 

(right panel), we can observe a tendency to decrease the overall 

average muscular activation in subjects who practiced with a 

skilled partner compared to the control condition. Conversely, 

subjects who trained with a less skilled subject tended to increase 

the overall muscular activity with respect to the bimanual 

condition 

5.2.2 PART 2: Training sessions 

In the training sessions, the dyads practiced for 240 trials over 

three days, corresponding to 30 target sets with perturbation in 

total. All the dyads showed improvement (reduction) on the 

Inefficiency Index (Figure 5-1, T1-T30) and the two groups of 

naïve-expert dyads improved significantly (NE, p = 0.002: (T1) 

1.95±0.53; (T30) 0.90±0.18; NE-b, p = 0.003: (T1) 1.19±0.20; 

(T30) 0.76±0.07).  

In Figure 5-2 the RMS values of the NN and NN-b groups at the 

beginning of the training sessions show a decrement with respect 

to those of the end of the adaptation session. Moreover, the NE and 

NE-b groups started the training session at the same level observed 

at the end of the adaptation session.  

A decrement in the average RMS values can be noticed in the NN 

and NE-b groups. This is particularly remarkable for the NE-b 

group at the beginning of Day 2 and at the end of Day 4 and for the 

NN group from Day 2 to Day 4. The values of the NE group do not 
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present significant variations during training (Figure 5-2 B), with 

similar values of the NE-b group (Figure 5-2 A). Consistently with 

what was found in the kinematic data, the groups NE and NE-b 

show lower values than the NN and NN-b groups during training. 

However, a repeated measure ANOVA did not show any 

significant difference among the groups (F(6.7,30.1) = 1.507, 

𝑝𝐺𝐺 = 0.05) and only a mild effect of time (F(1.7,30.1)=3.510, 

𝑝𝐺𝐺 = 0.050). 

The overall results of the training sessions suggested in a natural 

way the following question: Did the training with an expert differ 

from training with a naïve or in a bimanual condition in terms of 

performance?  

In order to test if the skill level of the partner led to different 

performance compared to the control group during the training 

(Figure 5-1, top-right panel), we compared the Inefficiency Index 

of the BIM group first against NE and NE-b and then against NN 

and NN-b (repeated measure ANOVA, target sets as within factor). 

The results suggested an advantage of working with an expert over 

bimanual training (F(2.5,16.5) = 7.830, pGG = 0.003, group - target 

set interaction). No difference could be found comparing bimanual 

performer to naïve-naïve dyads. However, if we consider the 

Mutual information difference between the partners in Figure 5-1, 

we notice that in both NE and NE-b groups the expert subject has a 

major role in compensating for the instability. No systematic 

evidence of a similar separation can be found in the naïve-naïve 

dyads and control groups, indicating a homogeneous distribution 

of the balancing effort. 

Moreover, the data suggest and additional question: Was there any 

advantage due to the bimanual experience prior to the training? 
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In order to answer the question, we tested if bimanual priming 

interfered with the early training performance in the NN-b and NE-

b groups. We compared NE and NN dyads in the priming session 

to NE-b and NN-b dyads in the first 6 target sets of dyadic training 

using a repeated measure design. The groups presented significant 

differences in performance (F(5.1,24) = 5.94, 𝑝𝐺𝐺 < 0.001, group - 

target set interaction) having the NE-b and NE group, the best 

performers, being significantly different from the NN group, the 

worst performer (NE-b - NN = -4.30 [-7.17; -1.42], p = 0.003; NE 

- NN = -3.73 [-6.61; -0.86], p = 0.008). Naïve-naïve dyads with 

bimanual prior were only moderately different from the subjects in 

the NN group (-2.9704 [-6.29, 0.35], p = 0.094) and no difference 

could be found between the NE and NE-b conditions. Overall, 

these results suggest a positive interference effect of the skill level 

but no strong effect of prior bimanual experience on the dyadic 

performance during the first session of training. 

5.2.3 PART 3: Bimanual test session 

In the last day of the experimental protocol we asked all the naïve 

subjects who trained in dyads to perform a session of bimanual 

adaptation to the force-field (6 target sets with perturbation, 48 

trials). In this phase we wanted to probe if there is any evidence of 

skill transfer from the dyadic to the bimanual condition and if 

partnership (naïve vs. expert) could be a significant factor. 

Our hypothesis is that if skills did transfer to the bimanual 

condition, the performance of the naive in the bimanual test would 

differ from the bimanual controls on Day 1. Therefore, we 

compared the performance of the naïve subjects who trained in 

dyads to the performance of the control group in the priming 

session. We found significant differences between groups 

(F(5,110) = 3.847, pGG = 0.006 group - target set interaction) and 
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in particular that all the groups but NE performed significantly 

better than the bimanual controls. This suggests that no transfer 

occurred for naïve who trained with an expert and who had no 

previous bimanual experience of the task dynamics.  

 

As we can notice in Figure 5-1, bottom-right panel, the NE dyads 

in the bimanual session (left panels, orange lines) did not differ 

from bimanual controls in the priming session in effort or in time 

measures (see Figure 5-3). The NE dyads, on the contrary, 

benefited from the presence of the expert in minimizing the time 

 

Figure 5-3: Comparison of the average Time to Target (T2T) and Effort 

Index (EI) between the naïve subjects with no bimanual prior (NE = naïve-

expert group, NN = naïve-naïve group) and the control subjects (BIM) in the 

priming session (P, right panels) and in the bimanual session (B, left panels); 

vertical bars denote standard error of the mean. Target sets from 1 to 3 

correspond to the null-force condition (NF), target sets from 4 to 10 

correspond to the force field condition (FF), and target sets from 11 to 13 

correspond to the wash-out phase (WO). 
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(initial effect) and the effort throughout the session. Hence, the 

absence of transfer does not appear to be dependent on the absence 

of prior bimanual experience alone. In fact, the lack of transfer 

seems to depend on the combination of an expert partner and lack 

of bimanual experience. After comparing the Inefficiency Index 

scores in the end of the bimanual test among groups, we found that 

naïve subjects who trained with an expert without bimanual prior 

performed significantly worse than the others when asked to 

perform the same task bimanually (one-way ANOVA, F(3) = 

9.825, p < 0.001; NE = 3.096±0.616; NE-b = 1.582±0.653; NN = 

1.645±0.514; NN-b = 1.657±0.498). Moreover, as Figure 5-4 

shows, they performed significantly worse than in the end of the 

priming session when working with the expert (panel NE).  

 

From the point of view of the EMG signals (Figure 5-2), the effect 

of switching to a bimanual condition is reflected by an initial 

generalized increase in the RMS. In the end of the bimanual test 

session, however, the values of the NN and NN-b groups 

approached the same levels of the training phase. No EMG activity 

 

Figure 5-4: Average Inefficiency Index in the end of the adaptation phase on 

Day 1 (priming session, P6 – white bar) and in the end of the adaptation phase 

in the bimanual test session on Day 5 (B6 – gray bar) for the naïve-naïve and 

naïve-experts dyads with and without bimanual prior. Blue markers represent 

the individual subjects values of the Inefficiency Index; vertical bars represent 

standard deviation; asterisks denote significant differences (p<0.05) according 

to a paired t-test (NN-b: p = 0.013; NE-b = 0.050; NN = 0.099; NE = 0.005). 
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decrease took place in the groups that worked with an expert 

during training, whose RMS returned back to the initial level of the 

priming (Figure 5-5). Figure 5-5 emphasizes that the naïve-naïve 

dyads distinctively reduced the RMS session-by-session and were 

able to retain the improvement when switching to the bimanual 

condition.  

 

The statistical analysis performed for the RMS values did not show 

any significant differences among groups. 

5.3 Understanding the advantages and disadvantages 

of working with a skilled partner 

Previous studies reported that prior practice with a partner allows 

for improving the performance of the individual in the same task 

 

Figure 5-5: Differences in the RMS values during the experiment respect 

to the mean value of the priming phase. The results are divided in groups, 

and the dispersion bars represent the standard errors. 
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(Ganesh et al. 2014). The main objective of this work is to 

understand if motor skills, acquired during dyadic practice with a 

cooperating partner in a challenging unstable task, could be 

transferred back to the solo performance in the same task. In order 

to test the hypothesis that training on a novel task with a peer 

allows for greater performance improvements (Ganesh et al. 2014), 

we trained naïve subjects to perform a challenging balancing task 

either jointly with a peer naïve or together with an expert subject. 

We assumed that prior knowledge of the task would influence the 

amount of skill transfer from a dyadic to a bimanual condition so 

that subjects who were previously exposed to the unstable 

dynamics would benefit more from training in pairs.  

Our results seem to partially corroborate the hypothesis that 

greatest performance benefit comes from training with a partner 

with a comparable skill level, since subjects who trained with a 

peer performed better than subjects who trained with an expert, 

regardless of the initial difference in the priming session. 

Therefore, it seems that working with a partner with a similar skill 

level allows for a positive transfer to the bimanual task. On the 

contrary, when working with a skilled subject who has an accurate 

knowledge of the dynamics of the task, positive transfer occurs 

only if the subjects had at least some previous experience with the 

task dynamics, namely a chance to explore to novel task without 

any guidance. 

Hence, there are two main aspects we should carefully consider, 

namely i) the influence of the expert and ii) the effect of a brief 

exposure of the naïve to the task dynamics (in our case the unstable 

force field) prior to the training. 
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5.3.1 Effect of training with an expert 

The group of naïve subjects who trained with an expert without 

having any previous knowledge of the task dynamics displayed no 

skill transfer. Indeed their performance closely resembled the 

behavior of naïve subjects facing the task for the first time during 

the priming task (Figure 5-3). 

Motor control studies report that existing knowledge can interfere 

with the acquisition of new motor skills (Berniker, Mirzaei, et al. 

2014; Schweighofer et al. 2011; Boutin & Blandin 2010; Pauwels 

et al. 2014). In our case, prior learning with a partner may affect 

the subsequent learning of bimanual motor skills by the interacting 

subjects. This interference could either be positive, so that it 

facilitates subsequent adaptation to a new condition with related 

characteristics, or negative. In the latter case, the predictions from 

the consolidated motor memories collide with the actual 

sensorimotor experience and may result in impaired transfer of the 

skills to the new task condition.  

Adaptation may be triggered by a change in the visual 

representation of the task as well as it may occur in response to a 

change in the dynamic characteristics of the environment 

(Shadmehr & Mussa-Ivaldi 1994). Ranganathan et al. 

(Ranganathan et al. 2014) showed that positive skill transfer 

between two tasks is maximized if their task spaces shared 

dimensionality. Whenever changing the mechanical characteristics 

of the environment change, e.g. introducing a force perturbation, 

the transfer of the dynamic model has been shown to be limited 

and tends to be sensitive to the limb configuration (Krakauer et al. 

1999; Malfait et al. 2005; Malfait et al. 2002). 
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In the present work, neither the visual representation of the task 

nor the task dynamics per se were altered. Indeed, interference was 

probably due to the mismatch between the internal representation 

that naïve subjects built of the task dynamics during the training 

with an expert and the actual dynamics of the interaction with the 

environment. This interpretation leads us to consider the 

fundamental role that haptic feedback played in shaping the 

internal model of the joint task dynamics (Groten et al. 2013). 

The mechanisms and the coding protocol underlying learning the 

dynamical properties of the interaction with the environment have 

been long debated. The traditional view posits that learning of the 

dynamic and kinematic properties of movement is mediated by 

independent mechanisms and that the brain encodes information 

about the limb dynamics in intrinsic coordinates (Shadmehr & 

Mussa-Ivaldi 1994), (Schweighofer et al. 2011), (Ranganathan et 

al. 2014). On the other hand, there is recent evidence (Krakauer et 

al. 1999), (Malfait et al. 2005) that multiple coordinate 

representations are involved in motor learning, a view that fully 

agrees with the multi-referential nature of the body-schema 

suggested in (Morasso et al. 2015). In particular, internal models of 

dynamics greatly draw on proprioceptive feedback rather than 

visual feedback during the task (Malfait et al. 2002), (Wang & 

Sainburg 2004), and haptic feedback shares the same pathways as 

proprioception and kinesthesia to the brain, although the ultimate 

criterion of success of the task (knowledge of results) is driven by 

exteroceptive information (visual or acoustic). Learning through 

exploration, as in our case, is affected by “Sensorimotor 

Contingencies” (Berniker, Franklin, et al. 2014), namely causal 

relationships that an agent tends to attribute to his own action, as 

well as and the perceived sensory consequences. It is therefore 

likely that the sensorimotor contingencies experienced by subjects 
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in the naïve-expert condition did not reflect the primary causal role 

of the force field. Indeed, subjects who interacted with an expert 

performer, who partially compensated the destabilizing dynamics 

experienced a completely different kind of perturbation and learnt 

a model that incorporated the action of the partner, thus masking 

the true dynamics of the tool. Notably, this ambiguity was not 

present when the subject was interacting with a peer naïve. In this 

case, since neither subject could dominate the dynamics of the tool 

more than the disturbance, they were both exposed to a similar 

type of feedback to which they reacted in a similar manner and 

with the same amount of effort (see Figure 5-1, bottom-right 

panel). This helps explaining the absence of skill transfer 

experienced by the group of naïve who solely interacted with an 

expert, which was presented with a completely different tool 

dynamics from the one they learnt to manipulate. 

5.3.2 Effect of prior exposure to a novel dynamics 

When considering the performance of the dyads in the Day 2 of the 

experiment, naive subjects who experienced bimanual priming 

prior to training in pairs had a significant performance advantage 

over the other groups, regardless of the partner’s skill level. Hence, 

there seems to be a positive transfer from the bimanual to the 

dyadic condition. Moreover, no distinction could be found between 

subjects who performed the priming session bimanually and 

subjects who practiced in pairs. In the previous section we saw 

that, although practicing with a partner with a higher skill level 

allowed naïve subjects to perform better than with a peer, such 

practice does not necessarily translate into performance benefits in 

the bimanual context. The factor influencing the direction of the 

transfer, positive or negative, seems to be the modality of the first 

approach with the new dynamics. When facing a novel dynamics, 
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the development of motor skills advances through different time 

scales (Kim et al. 2015), (Hirano et al. 2015). Initially, a fast-

learning process (within a single session) takes place and during 

this process subjects explore the possible motor solutions that lead 

to succeed in the novel task. This phase appears to be crucial for 

the formation of a first rough internal model of the task dynamics 

through feedforward trial-and-error mechanisms and relies mainly 

on input from the somatosensory system (Bernardi et al. 2015). 

After a consolidation phase, a slow-learning mechanism takes 

place along with repetitive practice in which the internal model is 

progressively refined and allows for small incremental gains in 

performance (Dayan & Cohen 2011), (Karni et al. 1998). In our 

case, the fast learning phase coincided with the priming session. 

Therefore, it is likely that subjects who performed the priming 

session bimanually exploit the physical interaction with the virtual 

environment to start building a model of the tool dynamics that 

was unbiased by the action of a partner. Since the structure of the 

task did not change during training, their initial representation was 

sufficiently accurate to allow for a positive transfer of the 

consolidated initial skills to the dyadic context. 

In synthesis, our results show that training with an expert leads to 

the greatest performance in the joint task. However, the 

performance in the individual test is strongly affected by the initial 

skill level of the partner. In learning a new skill, having practiced 

with a peer rather than an expert appears to be more advantageous 

to the individual performance. After training with an expert, motor 

skills can be transferred to a bimanual context only if the non-

expert subject has prior experience of the dynamics of the novel 

task. 



 

84 

 

More generally, the results also suggest a possible “didactic” 

approach for teaching an expert user to become also an expert 

teacher. The idea is that the expert teacher should intervene as 

little as possible, leaving enough freedom to the naïve user for 

exploration of the dynamics of the task. In other words, the expert 

teacher should provide an assistive action in an intermittent not a 

continuous manner. On the other hand, intermittency in the control 

of unstable tasks is well established, either in the stabilization of 

upright standing (Bottaro et al. 2005; Asai et al. 2009) or in the 

stabilization of unstable tasks similar to the one used in this study 

(Morasso et al. 2014; Zenzeri et al. 2011). In general, the need of 

intermittent control is primarily driven by the destabilizing effect 

of sensory delay. Thus, teaching an expert to support a naïve 

partner in an intermittent manner is a natural aspect of master-pupil 

interaction. We can arrive at similar conclusions also in 

neuromotor rehabilitation: in this case, the expert/master is a 

physical therapist and the novice/pupil is a patient and the same 

principle applies if the expert/master is a robot: it is indeed 

common wisdom that the level of guidance of the robot must be as 

low as possible, in order to avoid the phenomenon of “slacking” 

(Reinkensmeyer et al. 2009) and induce some kind of 

generalization. However, our results provide a step beyond it: not 

only the teacher should minimize the level of guidance in general, 

but it should also restrain temporarily from any guidance at all 

leaving full freedom (and full responsibility of failure) to the pupil. 
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CHAPTER 6 KNOWLEDGE 

TRANSFER AND MOTOR MEMORY 

OVERLAP 

We had shown in previous studies that, when the subjects work in 

couples, it is advantageous to work with a more skilled partner 

(Avila-Mireles et al. 2017; Avila-Mireles et al. 2016) but only 

when the less skilled subject has the chance to explore the task by 

himself before coupling with the skilled partner. This has been 

demonstrated by (Galofaro et al. 2017) in a work in which was 

enough to limit the contribution of the expert subject to allow the 

more naïve to explore the task and let him/her perform almost at 

the same level than the expert after a relatively short training. 

The studies presented by (De Santis et al. 2015; De Santis et al. 

2014) the results show the effectiveness of the knowledge transfer 

from an individual performance to a dyadic collaboration. The 

opposite direction of the knowledge transfer was analyzed in 

(Avila-Mireles et al. 2016; Avila-Mireles et al. 2017; Avila-mireles 

et al. 2016) where the subjects passed from a dyad collaboration to 

an individual performance. In both paradigms there were results 

showing that the learning experimented by the subjects went 

beyond the tactile stimulation received during the experiment. 

In this chapter we studied an experimental condition in which the 

training and the testing of the subjects share the same dynamical 

properties but differ in the way in which the task is performed. The 

subjects were separated in 2 groups that followed the dyadic to 

bimanual paradigm, with the difference that one of these groups 

was trained to perform the task using the wrist while the other one 
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was trained to use the muscles of the elbow and shoulder. At the 

end both groups where tested in the performance of the task using 

the muscles of the elbow shoulder. The kinematic data was 

analyzed to evaluate if the internal representation of the task 

created during training is enough to be able to develop the 

necessary skills to transfer the knowledge from the wrist to the 

elbow – shoulder. 

 

6.1 Experimental protocol 

The task used for the experiment is a direct evolution of the 

exercise presented in (Zenzeri et al. 2014; De Santis et al. 2014) 

with the addition of the modifications implemented by (Galofaro et 

al. 2017). For this study the task was completed using the Braccio 

di Ferro (BdF2) (Casadio et al. 2006) synchronized with the 

WristBot (WB) (Masia et al. 2009) when the subjects were 

working in dyads (Figure 6-1), and the bimanual configuration of 

 

Figure 6-1: Experimental setup Braccio di Ferro – WristBot. The left 

handle of the Braccio di Ferro was substituted by the WristBot, in this way 

the subjects can share the same virtual reality while working in different 

haptic devices. 
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the BdF2 when the subjects where working by themselves (Figure 

1-2 A). The task used in this experiment is the one described in 

Chapter 1, and in this case the target set was considered as a serial 

of 16 stabilizations in the out – center – out sequence. The 

experiment was divided in two stages. During the first stage the 

subjects work in dyads, one of the subjects (considered as the 

expert) takes control of the right spring using the BdF2 while the 

other one (considered as the naïve subject) takes control of the left 

spring using the WB. For the second stage the naïve subject works 

bimanually using only the BdF2 robot (Figure 1-2 A). 

6.1.1 WB – BdF Synchronization Protocol: 

The two devices used for this study have different characteristics in 

both software and hardware. For such reason it was necessary to 

develop a protocol capable of stablish a communication stable 

enough to let the subjects work on the same task simultaneously. 

The BdF system is programmed on a Windows XP operative 

system using the Simulink tool box from Matlab, while the WB 

runs over a C++ platform implemented over Linux Mint 18. Both 

devices have a Sensoray Acquisition Board (826 model for the WB 

and 626 model for the BdF) that allowed us to send and receive 

data from both devices. We took advantage of this and managed to 

establish a direct electrical connection between the two cards. We 

used the 48 digital channels of each card in parallel for continuous 

broadcast/reading of the dynamical states of both devices with a 

rate of 1KHz (which is the minimum refresh rate required for force 

control and haptic algorithms); 24 channels were used to broadcast 

information and 24 were used to read the data broadcasted for the 

other device. At the same time, for each 24 bits, 12 bits were used 

for the x values and 12 more for the y values. 
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The WB’s CPU was used only as slave terminal and its function 

was to read the encoder positions for the degrees of freedom 

corresponding to the x and y axis, to broadcast them to the BdF, 

and to read and apply the force values received from the BdF to the 

motors. On the other side, BdF’s CPU was in charge of the main 

processing of the task, it read and used the positions broadcasted 

by the WB to complete the haptic calculations, broadcasted the 

updated force values to the WB, and then displayed the virtual 

reality using the information from both robots. 

Because of the mechanical differences between the 2 devices, and 

as consequence the difference in the workspaces, the position 

values coming from the WB to the BdF where adjusted as:  

𝑥𝐿 = 𝛼𝑥𝑤𝑏 𝑦𝐿 = 𝛽𝑦𝑤𝑏 (6.1) 

where 𝑥𝑤𝑏 and 𝑦𝑤𝑏 are the coordinates of the end effector in the 

WB’s workspace position, 𝑥𝐿 and 𝑦𝐿 are the corresponding BdF 

workspace coordinates values of the left manipulanda (see Chapter 

1.1 for details), and α and β are the constant transformation factors 

from WB to BdF workspaces.  

The 𝑥𝐿 and 𝑦𝐿 values were used as parameters for the haptic 

algorithm and the force �⃗�𝐿 (from equation 1.9 in Chapter 1.6) 

corresponding to the left spring was sent back to the WB. �⃗�𝐿 

consisted in 2 components: �⃗�𝐿𝑥 and �⃗�𝐿𝑦 which were adjusted to be 

coherent with the WB’s mechanical characteristics, and scaled to 

compensate the difference in the muscle strength between the wrist 

and the elbow – shoulder. The conversion was made as: 
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𝜏𝑥 = (
𝐹𝐿𝑥

2⁄ ) 𝑟 𝜏𝑦 = (
𝐹𝐿𝑦

2
⁄ ) 𝑟 (6.2) 

where 𝜏𝑥 and 𝜏𝑦 are the torques applied to the end effector of the 

WB; and 𝑟 stands for the rotation ratio of the WB’s degrees of 

freedom correspondent to flexion – extension  and adduction – 

abduction. 

6.1.2 Experimental protocol:  

For this experiment, 21 subjects (25±5 years old, 175±7.4 cm tall), 

all right handed according to the Edinburgh test, were recruited. 

Two of these subjects were considered experts in the task  after 

been completed the protocol described in (Zenzeri et al. 2014), the 

rest of the participants were completely novel to the task and were 

considered as naïve subjects. The naïve subjects were separated in 

2 groups, known as Control Group and Test Group. Both groups 

followed the same protocol but under different experimental 

conditions. 

The experiment was organized in a way that the subjects had to 

complete 16 stabilizations of the virtual mass, 8 in the peripheral 

targets and 8 in the central target, each group of 16 stabilizations is 

called a target set (TS). Each naïve subject was requested to 

complete a full session consisting in 2 stages, a training stage and a 

testing stage. 

 Stage 1 (Training): The naïve subject works together with an 

expert subject as dyads completing a total of 10 TS. In all the 

cases the expert subject was manipulating the right spring 

while the naïve subject manipulates the left spring. In the 

control group, both subjects used the BdF in a dyad 
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configuration, while in the Test Group the naïve subjects used 

the WB and the expert used the BdF in bimanual 

configuration. In both cases the expert subject takes control of 

the right spring of the virtual reality, and in order to give the 

same contribution in the two group, the expert has to maintain 

a constant length in the spring, stablished at 7±1 cm with 

which the contribution from the expert is around 18N. As 

visual help for the expert, the color of the spring was changed 

every time the length of the spring was out of the optimal 

range (Figure 6-2).  

 

 Stage 2 (Testing): Immediately after the Training, the naïve 

subjects complete a series of 3 TS in which they have to work 

with the BdF in a bimanual configuration. For this case the 

visual assistance of the right spring is removed and the subject 

has to control both right and left springs. 

6.1.3 Analysis: 

To the measures described in Chapter 1, we added the following:  

Stiffness Size Index (SSI): It is a dimensionless parameter that 

identifies the stabilization strategy used to solve the task: Stiffness 

Stabilization Strategy (SSS when SSI>1) or Positional 

Stabilization Strategy (PSS when SSI<1). 

 

Figure 6-2: Visual Feedback for the expert subject implemented on the virtual 

tool. a)  𝑳𝒓< 6 cm, right spring becomes red; b) : 𝟔 𝐜𝐦 < 𝑳𝒓< 8 cm, right spring 

remains white; c): 𝑳𝒓>8 cm, right spring becomes red. 
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Bimanual Separation Index (BSI): 𝐵𝑆𝐼 =  |𝑝𝑅⃗⃗⃗⃗⃗ − 𝑝𝐿⃗⃗⃗⃗⃗| (cm). This 

index tends to be small in the PSS, with low levels of effort and 

almost round stiffness ellipses. It measures the separation between 

the virtual representations of the end effectors of the haptic devices 

used for the task. 

The rationale and the detailed description of these measures can be 

found in (Zenzeri et al. 2014). 

6.2 Data analysis of the training and the test stages 

In the first part of this section, we present the results of the 

Training stage of the experiment, and the second section 

corresponds to the results of the Testing stage. It is important to 

remember that, for the Training stage, the naïve subjects in the 

Test Group solve the task using the WB and subsequently they 

were tested by using the BdF. This means that they are being 

trained to solve a task using the wrist muscles while being assisted 

by an expert, while the test is completed using the muscles 

correspondent to the shoulder and elbow of both arms without any 

assistance, but using only the knowledge recently acquired.  

6.2.1 Training stage 

Because of its dynamical characteristics, the SSS allows the naïve 

subjects to be capable of solving the unstable task in a shorter time 

respect to the PSS. The naïve subjects where trained by the experts 

to become proficient in the SSS. Giving the visual assistance 

during the training session, the experts where capable to give the 

same assistance to all the subjects by keeping a constant separation 

between the extremes of the virtual springs, and to assure that the 

kinematic strategy used is correspondent to the objective of the 

experiment (Control BSI = 0.1005 ±0.0049 cm; Test BSI = 0.0916 

±0.01 cm) (Figure 6-3). Even if during the training of the control 
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group the SSI values slightly tend to be in the values correspondent 

to the PSS (Control SSI = 0.9009 ±0.0164), the difference with the 

Test group made them valid since the Test group is in the limit or 

under the limit values of the separation of the two kinematic 

strategies (Test SSI = 0.9932 ±0.0461) (Figure 6-4). 

 

As it is been said before, the Effort Index depends of the longitude 

of the virtual springs, for this reason the separation between the 

ends of such springs, measured by the BSI, is directly related to the 

effort exerted by the subjects. It was expected the controlled 

assistance of the expert given during the training to limit the effort 

applied by the naïve subject and hence the total effort applied by 

the dyad to solve the task, resulting in a low variation and very 

similar Effort Index for both groups (Control EI = 29.4974 

±1.2085 N; Test EI = 28.4093 ±2.3252) (Figure 6-5 A). Moreover, 

despite the fact that the change in the values of the EI from the first 

 

Figure 6-3: Bimanual Separation Index of the control group (blue) and 

the test group (red). Thanks to the visual assistance given to the expert 

subjects both groups are able to maintain the same separation between the 

ends of the springs during the training stage. The separation of the springs 

and its variability increase during the testing stage of the experiment. 
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to the last Target Set of the training stage is small, we can observe 

how the time to target decreases along the experiment. Even if 

during the whole training the Control group takes less time to 

complete each target, the Test group tend to decrease the 

difference between groups from 7.92 s at the first TS of the 

training to 0.95 at the last TS of the same stage (Control T2T = 

10.5 ±1.1 s first TS, T2T = 7.76 ±0.44 s last TS; Test T2T = 18.43 

±4.93 s first TS, T2T = 8.72 ±1.15 s last TS)(Figure 6-5 B). 

 

The fact that the values of the EI are similar in both groups leaves 

the T2T as the variable dictating the behavior of the Inefficiency 

Index, and this can be observed in the graphic presented in Figure 

6-6. The II reflects an improvement in the task performance along 

the target sets of the Training stage. Since the EI is limited by the 

expert subjects, the naïve subjects show their understanding of the 

task by solving it faster, which also guides to lower levels of 

 

Figure 6-4: Stiffness Size Index values for the for both control group 

(blue), and test group (red). During the training stage the values of the SSI 

are not determinant in the differentiation between the SSS and the PSS. For 

the test stage it is noticeable the use of a SSS for the resolution of the 

unstable task. 



 

94 

 

inefficiency in the last TS(Control II = 0.912 ±0.0513; Test II = 

0.9848 ±0.2049). 

 

6.2.2 Testing stage 

Unlike the training stage, during the testing stage all the subjects of 

both groups perform the experiments under the exact same 

A) 

 

B) 

 

Figure 6-5: Time to Target and Effort Index values for the control 

(blue) and the test (red) groups. A) The effort index remains in similar 

levels for both groups in both stages of the experiment. B) In general during 

the training stage the subjects on the control group were able to solve the 

task faster, instead during the testing stage the subjects of the test group 

solved the task in shorter times than their counterparts in the control group. 
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conditions. Moreover for the subjects in the test group it was their 

first time using the BdF2 robot and the relation from the wrist to 

the elbow – shoulder motion had to be explained to avoid 

confusion. 

 

From the beginning of the testing stage it was noticeable the 

increment in the ends of the spring’s separation, and because of the 

lack of limitation from the expert also the variability in the 

separation increased. Despite of the increments in the mean and the 

standard error of the BSI, the values for both groups remained 

similar even during the testing stage (in average: Control BSI = 

0.1531 ±0.0165 m; Test BSI = 0.1626 ±0.0149) (Figure 6-3). As 

mentioned in the previous section the subjects were trained to 

perform using the SSS but during the training stage it was not 

possible to distinguish the use of SSS over PSS by analyzing the 

 

Figure 6-6: Inefficiency index of the control group (blue) and the test 

group (red). At the beginning of the training session the global performance 

of the test group was higher than the performance of the control group, this 

behavior was maintained along the target sets even if at the end of the 

training stage the difference is almost unnoticeable. Opposite to what 

happens on the training stage, during the testing stage the subjects in the test 

group perform generally better than the control subjects. 
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SSI values, instead during the testing stage the values of the SSI let 

no doubt about which kinematic strategy is being used for the 

subjects to solve the task (in average: Control SSI = 1.1718 

±0.0984; Test SSI = 1.3261±0.0659) (Figure 6-4). 

The similarity found in the BSI and SSI values was reflected in the 

EI. In Figure 6-5 A we can observe how the effort applied by the 

subjects of both groups is similar, even more we can observe a 

decrement in the values of the EI along the 3 TS of the testing 

stage (Control EI = 53.2041 ± 4.2355 N first TS, EI = 45.4059 ± 

6.5072 N last TS; Test EI = 54.5795 ± 7.3416 N first TS, EI = 

47.96 ± 4.3727 N last TS). This can be interpreted as the beginning 

of an optimization of the kinematic strategy used to solve the task. 

This optimization is more clear in the time that takes the subjects 

complete the targets, in the case of the T2T the decrements in both 

groups show an understanding of the dynamical characteristics of 

the task. Surprisingly the subjects of the Test group were generally 

faster as solving the task than their peers in the control group 

(Control T2T = 10.5 ±1.1 s first TS, T2T = 7.76 ±0.44 s last TS; 

Test T2T = 18.43 ±4.93 s first TS, T2T = 8.72 ±1.15 s last TS) 

(Figure 6-5 B). In the same way that happens during the first stage, 

the differences in the general performance were determined by the 

time to target, since the effort exerted by the subjects was similar 

for both groups. The EI show a better overall performance of the 

task during the testing stage of the experiment (Control II = 4.6629 

±1.4498 first TS, II = 2.5185 ±0.686 last TS; Test II = 2.6096 ± 

0.4506 first TS, II = 2.0335 ±0.2596 last TS) (Figure 6-6), 

suggesting higher proficiency and better understanding of the force 

field and virtual tool from the subjects trained using the WB even 

if they had to change device to be evaluated, changing device also 

meant to change the muscle strategy used to complete the task. 
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6.3 Insight of the joint learning 

In the study presented in this chapter groups were trained under 

different conditions; the control group was trained using the dyadic 

configuration of the BdF2, while the test group was trained using 

the WristBot. After a short training constrained by the expert 

subjects, all the subjects were evaluated using the bimanual 

configuration of the BdF2. 

The measures used to quantify the proficiency of the subjects 

during the whole experiment showed an equivalent performance 

for both groups during the training stage, making valid the further 

comparison between groups during the testing stage. The only 

difference between groups was present in the time spend by the 

subjects to complete the task, which difference became 

inconsiderable at the end of the tenth TS. It was expected to find 

considerable differences among subjects of the two groups. 

Controversially the evaluation of the subjects during the testing 

stage showed a similitude among subjects that was only 

distinguishable by the time they took to solve the task. The overall 

performance suggests a better learning of the task from the subjects 

in the test group than the ones in the control group. 

The test groups was able to perform better than the control group 

even when they were trained in a different experimental condition, 

which force them to transfer the knowledge acquired from the 

muscles of the wrist to the muscles of the elbow – shoulder. This 

adaptation to the task dynamics is achievable only if the internal 

model of the task created by the subject is accurate enough and 

unrelated to the muscular strategy applied during the experiment. 

In previous studies the naïve subjects had shown problems to 

transfer the knowledge acquired after training with an expert 

partner from a dyad to a bimanual configuration (Avila-Mireles et 
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al. 2017). In the other side, solving different tasks under the same 

dynamical conditions is better performed while the naïve subject is 

still collaborating with the expert (Avila-mireles et al. 2016). In 

our current study the naïve subjects were able to apply the 

knowledge acquire as dyads in the bimanual configuration even 

when they were working with an expert subject since the beginning 

of the training. The constrains intentionally induced by the expert 

subjects during training propitiate this adaptation to the different 

conditions (Galofaro et al. 2017). Even with this constrains, it 

remains unclear how a subject trained with the wrist is able to 

solve the task with the elbow – shoulder. The work of (Hirashima 

& Nozaki 2012) suggest the learning of novel movements 

perturbed by force fields as the learning of primitive joint 

kinematics to achieve the desired movement. In our experiment the 

subjects may not be aware of specific movements to counteract the 

effects of the force field, but instead they may have the visual 

perception and the understanding of how to reach the equilibrium 

points on the different targets together with a blurry notion of the 

force field directions and intensities in such positions (Morasso et 

al. 2015; Kuo et al. 2010; Gribble & Ostry 2000). This basic 

understanding of the task may be enough to allow the subjects to 

use a combination of feed forward control and feedback control, 

and adapt them to achieve the stabilization of the virtual tool in the 

different targets in a different configuration (Doya et al. 2001; 

Shadmehr & Mussa-Ivaldi 1994). 

In summary our results suggest that the ability of the naïve subjects 

to create an internal representation of the task goes beyond the 

tactile feedback that they can get from the haptic devices. Instead 

we observed that the motor learning of an unstable task is more 

dependent of the understanding of the dynamical conditions of the 

environment in which the task is taking place.  



 

99 

 

CHAPTER 7 CONCLUSIONS 

The word “dyad” defines the interaction between two people or 

two things. During such interaction, there is a variable amount of 

data flowing from/to the individuals of the dyad. With this 

information they are able to understand the actual and previous 

states of the interaction and, in some cases, to predict a response 

for possible scenarios. 

Recently, great attention has been given to the studies focused in 

physical interaction of human – human dyads and human – robot 

dyads. In general these studies show that show that, in general, the 

human – human dyads perform better than the human – robot 

dyads even if the human partner is perceived as a hindrance (Reed 

& Peshkin 2008). The main objective of the studies presented in 

this thesis was to understand the kind of information exchanged 

during the dyadic interaction and the way that this information is 

communicated from one individual to another in order to achieve 

that advantageous performance. 

Solving a task as an individual promotes the creation of an internal 

representation of the dynamical characteristics of the working 

environment. And understanding the dynamical characteristics of 

the environment allows the subject to become proficient in such 

task. It has been proved that individuals are able to project this 

representation to a dyad configuration (De Santis et al. 2014). 

Taking this as reference, our second objective was to evaluate if a 

dyadic training can promote a shared internal representation of the 

task accurate enough to allow the subjects for a solo execution. 
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We performed a sequence of experiments using variations of the 

task outlined in Chapter 1. Firstly we trained several subjects to 

make them become experts in the task, working individually. In the 

next experiment those subjects were asked to work in dyads, and 

we analyzed the muscular strategies corresponding to two specific 

kinematic strategies. Once these strategies were identified we 

recruited 5 groups of naïve subjects to be trained by the experts, 

each group was trained under different experimental conditions 

and they were free to use any kinematic strategy. Posterior to this 

we included a reinforcement learning algorithm and it was tested in 

2 more groups. To this point, all the experiments were performed 

exclusively in the BdF robot. In the last study presented in this 

thesis the naïve subjects were trained by the experts, who were 

provided of visual assistance in order to increase the amount and 

quality of knowledge transferred to their naïve dyad partners. 

Around 70 subjects have taken part in our experiments along this 

project, they were placed in several groups which followed 

different protocols based on the results of the preliminary 

experiments and focused on getting closer to our objectives. The 

common characteristic of the protocols was the transition from 

dyad to bimanual paradigm during the experiment.  

In the preliminary experiments we found that together with the two 

main kinematic strategies used to solve the unstable task proposed 

for this project (Stiffness Stabilization Strategy, SSS; and 

Positional Stabilization Strategy, PSS) (Zenzeri et al. 2014), there 

are also two muscular strategies that seems to be independent of 

the kinematic strategies (Avila-Mireles et al. 2015). One of the 

muscular strategies found shows a correlated contraction of the 

arm muscles, the analysis showed a series of contraction and 

relaxation periods that seem to be followed by all the muscles at 
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the same time. The main characteristic of the second muscular 

strategy is the absence of correlation among the muscular 

contractions. It is important to mention that all the subjects on this 

experiment were considered experts in the task after completing 

the training specified in (De Santis et al. 2014). 

For our main study we put together five different groups of naïve 

subjects which completed a sequence of training, generalization 

(subjects work in dyads for these two stages) and evaluation 

(subjects work bimanually) stages of the experiment. The protocol 

for each group was slightly different, this differences allowed us to 

study the effect of coupling in a dyad with an expert partner or 

with a partner with similar skill level. In addition to this, the 

subjects of a couple of groups had the chance to try by themselves 

the task before coupling with their respective partner. To start with 

the analysis of all these groups we first focused our attention in the 

groups last mentioned in which the subjects were working in dyads 

formed by a couple of naïve subjects (NN-b) or by a naïve and an 

expert (NE-b). During the training stage of the experiments these 

groups show the advantages of training with an expert partner, 

even if during the evaluation stage the subjects in the NE-b group 

had a rough start, they quickly adapted to the new condition in the 

task (Avila-Mireles et al. 2016). 

After finding the main differences of the NN-b and the NE-b 

groups, we proceed to include the groups without previous 

experience before the dyad training, namely NN and NE. We also 

include a control group whose subjects completed all the stages of 

the experiment working always as individuals (BIM). EMG signals 

from each subject were recorded along the experiment. However, it 

was in the kinematic data that we found the most relevant results. 

We designed the so called Inefficiency Index which considers the 
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effort applied by the subjects to solve the task and they take from 

the completion of one target to the next one.  

We compared the performance of the naïve subjects who trained in 

dyads to the performance of control group in the adaptation 

session. We found significant differences between groups and in 

particular that all the groups but NE performed significantly better 

than the bimanual controls. This suggests that no knowledge 

transfer occurred for naive who trained with an expert and that had 

no previous bimanual experience of the task dynamics. The 

absence of knowledge transfer does not appear to be dependent on 

the absence of prior bimanual experience alone. In fact, the lack of 

transfer seems to result from the combination of the presence of an 

expert and lack of bimanual experience. Moreover they performed 

significantly worse than in the end of the adaptation session when 

working with the expert. 

From the point of view of the EMG signals, the effect of switching 

to a bimanual condition is reflected by an initial generalized 

increase in the RMS. In the end of the bimanual test session, 

however, the values of the NN and NN-b groups approached the 

same levels of the training phase. No EMG activity decrease took 

place in the groups that worked with an expert during the training 

(Avila-Mireles et al. 2017). 

The analysis of the generalization stage of the training gave us an 

insight of how the knowledge acquired during the training stage 

can be applied in a different task where some of the dynamical 

characteristics remain the same. In this case the task consisted in 

tracking a moving target inside of the same force field used for the 

stabilization task. Interestingly the group that showed the highest 

error during the tracking was NN-b, giving us the idea of a 
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competition between the subjects who are aware of the force field 

but which internal representation of it was acquired separately, 

opposite case to what happens with the NN group in which the 

internal representation of the task was created in collaboration with 

the partner (Avila-Mireles et al. 2016). 

With these results we can sustain the claim that the knowledge 

acquired during a dyad interaction, while solving an unstable task, 

is solid enough to allow the individuals to perform solo in the same 

task. In the last study presented in this thesis we test the ability of 

subjects who were trained to perform the unstable task using the 

wrist to use the acquired internal representation of the task to solve 

it with the elbow – shoulder. Surprisingly the subjects who tried 

this particular protocol performed better than the subjects who got 

trained and evaluated solving the task with the elbow – shoulder. 

In general, our results partially corroborate the hypothesis that the 

best performance in a novel task comes from training with a 

partner with a similar skill level. It can be posit that working with a 

peer partner allows for a positive knowledge transfer to the 

bimanual task. On the contrary, when working with a partner who 

has an accurate knowledge of the dynamics of the task, positive 

transfer occurs only if the naïve has at least some solo experience 

with the task dynamics. Another way to promote the transfer is by 

limiting the contribution of the expert to the task, avoiding over – 

guidance. Regarding skill learning in a dyad interaction, we 

demonstrated the advantages for the less skilled individual to train 

with a more proficient partner (Avila-Mireles et al. 2017; Avila-

Mireles et al. 2016). This advantages were found only when the 

subject has the chance to explore the task individually before 

coupling with the skilled partner, otherwise the over – guiding of 

the expert ends up being detrimental. 
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Despite the fact of not identifying the exact amount and the kind of 

data exchanged during dyad interactions, we had managed to 

understand under which circumstances these kind of interactions 

can be beneficial or detrimental to the learning process of a novel 

task. With this understanding, we are able to continue with the 

development of a platform capable to promote learning and 

ultimately to create efficient rehabilitation protocols that include 

dyad training mediated by haptic devices and adapt to the needs of 

every patient. 
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