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Introduction  

Gliomas 

Gliomas constitute a heterogeneous group of tumor originating in the brain. Gliomas represent 

almost 80% of the primary cerebral tumors and are composed by cells similar to glial cells. The 

heterogeneity of the different phenotypes of glial cells are reflected on that of gliomas, 

including tumors composed from astrocytes, oligodendrocytes, choroid plexus cells or radial 

glia cells [1]. The incidence of gliomas is 6 cases per 100’000 people every year, higher in male 

than in female (7.14/100’000 and 5.06/100’000 respectively, [2]). 

Historically, gliomas have been diagnosed and classified based on histopathology, although 

over time the information regarding the molecular nature of the tumor lesions has been added 

to the classic grading for a better classification. In the updated central nervous system (CNS) 

tumor classification, published in 2016 by the World Health Organization (WHO), some tumors 

are defined by a combination of microscopic morphologic and molecular and genetic factors, 

whereas others continue to be defined by morphology alone (Figure 1). 

The main classification recommended by WHO is based on the resemblance of cellular 

component of gliomas to normal isotypes (astrocytomas, oligodendrogliomas and mixed 

oligoastrocytomas) and their grade of malignancy, from I to IV, that depends by tumor 

aggressiveness and the histopathological features of tumor tissue, such as cellularity, 

cytonuclear atypia, mitotic activity, microvascular proliferation and necrosis [3].  

Grade I is applied to lesions with low proliferative potential and the possibility to cure following 

surgical resection alone. Grade II is referred to generally infiltrative tumors that, despite low -
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level proliferative activity, often recur. Some type II tumors tend to progress to higher grades 

of malignancy, for example, low-grade diffuse astrocytomas that transform to anaplastic 

astrocytoma and glioblastoma. Similar transformation occurs in oligodendroglioma and 

oligoastrocytomas. Patients with grade II gliomas typically survive more than 5 years. 

Neoplasms designated grade III are lesions with histological evidence of malignancy, including 

nuclear atypia and brisk mitotic activity, and are most often lethal for patients within 3 years. 

Grade IV is assigned to cytologically malignant, mitotically active, necrosis-prone neoplasms 

typically associated with rapid pre- and postoperative disease evolution and a fatal outcome. 

Widespread infiltration of surrounding tissue and a propensity for craniospinal dissemination 

characterize some grade IV neoplasms. Not more than 30% of patients with grade IV gliomas 

survive more than two years. 

Recent molecular advances revealed that canonic histologically defined categories of gliomas 

correlate well with relatively few recurrent molecular features [5, 6]. Thus, these alterations 

have become entity-defining features, overcoming the more conventional histologic 

assessment. Gliomas of all histologic grades can be subdivided broadly into 3 groups dependent 

on only 2 parameters: the deletion of both the short arm of chromosome 1 (1p) and the long arm 

of chromosome 19 (19q, 1p/19q co-deletion), and the mutational status of isocitrate 

dehydrogenase 1 (IDH1), or its mitochondrial cousin, isocitrate dehydrogenase 2 (IDH2). 

We can define three main groups of gliomas: i) astrocytoma, IDH-mutant; ii) astrocytoma, IDH–

wild type; and iii) oligodendroglioma, IDH-mutant and 1p/19q-codeleted (Figure 2). The fourth 

possible category, that of 1p/19q-codeleted tumors lacking IDH mutation, represents an 

exceedingly rare entity. 
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Figure 1 

A simplified algorithm for classification of the diffuse gliomas based on histological and genetic 

features from 2016 CNS WHO project. A caveat to this diagram is that the diagnostic “flow” does 

not necessarily always proceed from histology first to molecular genetic features next, since 

molecular signatures can sometimes outweigh histological characteristics in achieving an 

“integrated” diagnosis [4]. 

Glioblastomas 

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, 

accounting for approximately 60%–70% of gliomas [7] and about 210,000 new cases are 

diagnosed each year worldwide [2], usually occurring after the age of 40 years and with a peak 

of incidence between 50 and 70 years of age. Many genetic and environmental factors have 

been studied in GBM but no risk factor that accounts for a large proportion of GBM has been 

identified and like many cancers are sporadic [8]. 
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Figure 2 

World Health Organization classification of infiltrating gliomas. The diagram represents the 3 major 

categories of adult diffusely infiltrating gliomas based on IDH1/2 mutational status and 1p/19q 

codeletional status, along with representative additional recurrent somatically altered genes for 

each group, and histologic images stained with hematoxylin-eosin [9]. 

GBMs are typically poorly-marginated, diffusely infiltrating necrotic masses localized to the 

cerebral hemispheres. The surrounding brain tissue usually shows marked edemas. The 

supratentorial white matter is the most common location. GBMs have a significant variability in 

size from only a few centimeters to lesions that replace a hemisphere. Infiltration beyond the 

visible tumor margin is always present. The microscopic appearance of GMBs is characterized 

by a heterogeneous composition of cells with various morphological features, including 
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astrocyte-like cells, fusiform cells, small anaplastic and pleomorphic multinuclear giant cells, 

with marked atypia and numerous mitoses. Necrosis and microvascular proliferation are often 

observed. Microvascular proliferation results in an abundance of new blood vessels. Two types 

of necrosis may be distinguished: large ischemic necrosis and small, often multiple, irregularly 

shaped ban-like or serpiginous foci of necrosis, typically surrounded by glioma cells in a 

pseudopalisading pattern [10]. 

GBMs have traditionally been divided into primary and secondary. The majority of GBMs (90%) 

arises de novo in elderly patients (primary GBMs), with no clinical or histological evidence of a 

previous lesion of lower malignancy, whereas secondary GMB form develops from a pre-existing 

lower grade gliomas (low-grade diffuse astrocytoma or anaplastic astrocytoma), usually 

occurring in younger patients below 45 years of age [11]. Histologically and morphologically, 

primary and secondary GBMs are not distinguishable, but they differ in their genetic and 

epigenetic profile. Primary GBMs are almost invariably IDH wild-type. Secondary GBMs are often 

IDH mutant, associated with a hypermethylation phenotype, a mutation shared by over 80% of 

grade II and III astrocytomas [12-14]. 

Molecular characterization of glioblastomas 

Several approaches alternative to histopathologic one were employed in GBMs classification, 

starting from large-scale profiling studies based on gene or protein expression the molecular 

profile studied in the different GMB subtypes to identify transcriptional or proteomic signatures, 

in an attempt to better understand GBM biology and to identify new clinically relevant markers. 

Verhaak et al. used the data obtained by The Cancer Genome Atlas (TCGA) to correlate gene 

expression-based GBM subtypes with alterations in DNA sequences and copy numbers. They 
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identified 840 genes differentially expressed in GMB samples and have thereby established a 

classification of GBM into Classical, Mesenchymal, Proneural and Neural subtypes 

demonstrating that these subtypes are associated with specific genomic alterations (Figure 3). 

The Classical subtype is characterized by Epidermal Growth Factor Receptor (EGFR) 

amplification and the absence of p53 mutations. The Proneural subtype is characterized by IDH1 

and tumor protein (TP53) mutations and Platelet Derived Growth Factor A (PDGFR-A) 

amplification. The Neural subtype was typified by the expression of neuron markers such 

as neurofilament light chain gene (NEFL), Gamma-Aminobutyric Acid Type A Receptor 

(GABRA1), Synaptotagmin 1 (SYT1) and Solute Carrier Family 12 Member 5 (SLC12A5). Finally, the 

Mesenchymal subtype is characterized by deletions or mutation of the Neurofibromin 1 gene 

(NF1) [15]. By comparing these subtypes with their response to therapy, it was possible to 

correlate the classification with the response to treatment, increasing the importance of this 

molecular classification. 

Interestingly, using a proteomic approach based on unsupervised hierarchical clustering 

obtained without forcing a predetermined number of classes, Brennan et al. showed that 

gliomas can be divided into three main subtypes associated with EGFR activation, PDGFR 

activation and NF1 loss [16], and having close relationships with the classes identified by Verhaak 

et al. (Figure 4). Such integrated work has revealed that GBMs can be classified into a few major 

subtypes on the basis of a small number of molecular aberrations, also identified by using IHC-

based techniques [17, 18]. 
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Figure 3 

Integrated view of gene expression and genomic alterations across glioblastoma subtypes 

identified by Vheraak and al. from TGCA gene expression data [15]. 

Gain of gene expression or amplification in receptor tyrosine kinases (RTKs) such as EGFR and 

PDGFR resulted in constitutively activated receptor signaling in cancer cells [19]. EGFR (ErbB1, 

HER1) is a transmembrane tyrosine kinase on chromosome 7p12 whose downstream signaling 

pathways modulate a wide range of cellular activities, including growth, migration, and survival 

[20]. It belongs to the HER superfamily, together with ErbB2 (HER2, neu in rodents), ErbB3 

(HER3) and ErbB4 (HER4). These receptors are structurally related single chain transmembrane 

glycoproteins, consisting of an extracellular ligand-binding ectodomain, a transmembrane 

domain, a short juxtamembrane section, a tyrosine kinase domain and a tyrosine-containing C-

terminal tail. Binding of soluble ligand to the ectodomain of the receptor promotes homo- and 

heterodimer formation between receptors, that activate the intracellular tyrosine kinase 
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domain and the phosphorylation of the C-terminal tail [21]. Phosphotyrosine residues activate, 

either directly or through adaptor proteins, downstream components of signaling pathways 

including Ras/Raf/Mitogen Activated Protein Kinase (MAPK), Phospholipase C (PLCγ1), 

Phosphoinositide 3-kinase/Protein kinase B (PI(3)kinase/Akt), and Signal Transducer and 

Activator of Transcription (STAT) pathways [22]. 

 

Figure 4 

Unsupervised hierarchical clustering of gene expression from 243 GBM samples in The Cancer 

Genome Atlas analyzed by Brennan et al. revealed four transcriptomal clusters, three of which are 

enriched for alterations of PDGFRA, NF1, and EGFR respectively. A fourth cluster lacks clear 

enrichment for any specific mutation or CNA. 

EGFR gene amplification occurred in about 40% of patients with GBM, it is expressed at very low 

levels in health brain [23]. EGFR amplification is more common in primary as compared to 
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secondary GBMs [14, 24]. In GBMs, EGFR signaling promotes cell division, tumor invasiveness, 

and resistance to RT and chemotherapy [25, 26]. 

Alteration of the EGFR gene, results in over-expression of varied mutations, including the most 

common mutation, EGFR variant III (EGFRvIII), as well as wild-type EGFR [27, 28]. EGFRvIII is the 

most common mutation among EGFR amplified GBMs and has been described in 60–70% of 

these tumors [29, 30], and in 20-30% of all GBMs [31]. EGFRvIII exhibits the deletion of exons 2-

7, lacking a portion of the extracellular ligand-binding domain and resulting in a constitutively 

autophosphorylated receptor [32]. EGFRvIII has not been found in any normal tissue [33], and 

its over-expression was found to be a strong predictor of poor prognosis in presence of EGFR 

amplification [34]. Accumulating evidences have implicated EGFR signaling as a pivotal player in 

the initiation and recurrence of GBMs, identifying it as attractive target for molecular therapy 

[35]. 

The most common ligands for HER2 receptors are the transforming growth factor alpha and 

those belonging to the epidermal growth factor family. Interestingly, there are not known 

ligands for HER2, which is believed to undergo ligand-independent activation [36]. HER2 is 

expressed in a fraction of gliomas, variably from 15 to 80% depending on the technology 

employed for receptor detection [37-39], whereas it is not expressed in adult NCS in healthy 

conditions [40]. IN GBMs, HER2 expression increases with the level of anaplasia and has been 

associated with poor survival [38, 41, 42]. 

Platelet-derived Growth Factors (PDGF) constitute a family of six subunits assembled into 

heterodimer and homodimer ligands and tyrosine kinase receptors, which are enrolled in 

physiological embryogenesis, hematopoiesis, neuroprotection and glial cell development 

besides of being identified as part of the GBM molecular panel. Overexpression/hyperactivity of 
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PDGF ligands and receptors are frequent events in human gliomas of all grades [43-45], and their 

expression pattern in tumors suggests the presence of autocrine and paracrine stimulatory 

loops [46]. Amplification of PDGF and PDGFR genes is not as common as the amplification of 

EGFR [47] and occurs only in 11% of GBs.  

Retinoblastoma (RB) and TP53 pathways, which regulate the cell cycle mainly at the level of the 

G1/S checkpoint, are main targets of inactivating mutations in GBM. 

Aberration in Cyclin Dependent Kinase Inhibitor 2A (CDKN2A), p16-Cyclin Dependent Kinase 4 

(p16INK4A) and 6-RB pathway are common in GBMs and are reported to be critical in 

gliomagenesis (Ichimura et al, 1996). P16 is able to bind CDK4, preventing its association with 

cyclin D. CDK4 and cyclin D form a complex which, among others, is able to phosphorylation of 

critical substrates necessary for G1/S phase transition. P16 subtracts CDK4 by this association, 

inhibiting cell progression. The TGCA project showed that this pathway is altered in about 80% 

of primary GBMs. Nevertheless, several studies showed that the alteration of this pathway is 

not sufficient to induce cellular transformation, suggesting that other cell cycle regulation 

pathways integrate its activities in avoiding gliomagenesis [48]. 

TP53 is a well-known tumor suppressor gene that has been widely studied over these past 

decades in many cancers. The gene encodes a 393-amino acid tumor suppressor protein (p53), 

that is involved in cell cycle regulation and prevents the proliferation of genetically damaged 

cells. Mutation of the TP53 gene has been found in 60% to 70% of secondary GBMs, 25% to 30% 

of primary GBMs and occurs more frequently in younger patients [14]. Besides, p53 activation is 

regulated p14ARF, an alternate reading frame protein product of the CDKN2A locus, that 

neutralizes mouse double minute 2 MDM2 protein. MDM2 is an E3 ubiquitin ligase responsible 

for the ubiquitination and degradation of p53. Loss of p14ARF expression was often observed 
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in GBMs, and it correlates with homozygous deletion or promoter hypermethylation of p14ARF 

locus. 

NF1 is a tumor suppressor gene encoding a negative regulator of Ras and mammalian target of 

rapamycin (mTOR) signaling in astrocytes. Genetic alterations of NF1 such as deletions and 

inactivating mutations were observed in GBMs. NF1 loss results in increased cells proliferation 

and migration, due to Ras mediated hyperactivation of mTOR. 

Finally, approximately 70% to 80% of secondary GBMs have somatic mutation in the isocitrate 

dehydrogenase 1 (IDH1) gene, which are absent in primary GBMs [49]. Mutations 

in IDH1 associated with GBMs map to the highly conserved residue R132 in the enzyme active 

site. Somatic mutations in the corresponding codon (codon R172) of the IDH2 gene was 

observed in a minor extent of GBMs. Five genes encode for three human IDH catalytic isozymes: 

IDH1, IDH2, and IDH3. The IDH1 and IDH2 proteins act in the cytosol and mitochondria, 

respectively, generating reduced nicotinamide adenine dinucleotide phosphate (NADPH) from 

NADP+ by catalyzing the oxidative decarboxylation of isocitrate to alpha-ketoglutarate outside 

of the Kreb cycle [50]. IDH mutations seem to be early events in gliomagenesis, followed by 

acquisition of TP53 mutations [13]. 

Glioblastoma prognosis and current therapies 

Due to its fast and infiltrative pattern, the outcome for patients with GBM is poor, with a median 

survival period of less than 15 months. Only a few patients reaching long-term survival status of 

2.5 years and less than 5% of patients survive 5 years post diagnosis [51], despite aggressive 

multimodality therapy. 
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GBM has a poor prognosis with quite low relative survival estimates [2, 52]. The relative survival 

for the first year after diagnosis is 35% and it falls in the second year post diagnosis (13.7%) and 

thereafter [2, 53]} (Figure 5). A population based study found that the first quarter of the second 

year post-diagnosis is considered to be the peak incidence of mortality and the risk of death 

decreases to half of its rate at 2.5 years [52]. Patients surviving past 2 years from diagnosis have 

a relatively favorable conditional probability of survival into the future compared to newly 

diagnosed patients [54, 55]. 

One of the causes leading to low survival of patients is cancer own localization. The brain is an 

organ extremely delicate, which undergoes important damage by only pressure from tumor 

mass. Moreover, tumor is poorly accessible, so tumor is difficult to remove by surgery. 

Advances in imaging, neuronavigation and fluoroscopic guidance have increased diagnostic 

accuracy, improved safety and decreased deficits associated with surgery, allowing for extent 

of tumor resection, with more accurate surgical margins [56]. However, about 90% of GBM 

patients develop tumor recurrence following resection. 

 

Figure 5 

Relative Survival Rates for Glioblastoma, estimated by CBTRUS using SEER Program, 1995–2010 

[53]. 
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GBM is also isolated by most of macromolecules and hydrophilic molecules, due to the blood 

brain barrier (BBB), hindering the use of many classes of drugs including much of the biological 

ones. 

Despite the knowledge about the molecular nature of gliomas has increased extremely in recent 

years and we are able to separate them into many different subtypes, the current clinical 

therapy is rather backward: the most common treatment is the removal of the tumor mass, 

when it is possible, and the subsequent treatment with radiotherapy and chemotherapy using 

temozolomide (TMZ [57]). TMZ is an alkylating agent with not specific targeting of tumor cells. 

It is toxic for all the cells in active replication. The main advantage of TMZ is its ability to cross 

the blood brain barrier. The effect of TMZ is significant, albeit mild: as regards GBMs, 

temozolomide combined with radiotherapy increases the survival median of 2.5 months with 

respect to alone radiotherapy, extending life expectancy from 12 months to 14.5 [57]. 

An advantage acquired by the molecular analysis of GBMs was obtained by studying the 

correlation between the presence of mutation in the O6-methylguanine-DNA methyltransferase 

(MGMT) gene and the response to TMZ. MGMT is involved in DNA repair of O06-alkylating 

agents, such as TMZ. The MGMT promoter is methylated in approximately 50% of newly 

diagnosed glioblastomas overall and more commonly in secondary glioblastoma [58]. MGMT 

promoter methylation has prognostic and predictive significance in patients with GBM, with 

longer survival rates in newly diagnosed patients treated with radiotherapy and subsequent 

adjuvant temozolomide [59].  

Although the introduction of anti-angiogenic therapies, with bevacizumab being the lead drug 

in class, initially appeared to be a striking approach, successive clinical trial experience has been 
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disappointing. Bevacizumab is a humanized monoclonal antibody directed against Vascular 

endothelial growth factor (VEGF). Initial studies for recurrent GBM demonstrated that 

treatment with bevacizumab was associated with higher response rates, clinical improvement, 

and longer time to progression than historical controls employing chemotherapy [60]. Two 

randomized prospective trials in which bevacizumab was used in combination with the standard 

chemo-radiation followed by adjuvant TMZ failed in demonstrating a benefit in overall survival 

for the bevacizumab arm [61, 62]. Phase 2 trials evaluating bevacizumab in combination with 

cytotoxic chemotherapies then failed to demonstrate an advantage in overall survival with the 

combination therapy, compared to bevacizumab alone [63]. Currently, outside of clinical trials, 

the role of bevacizumab in the treatment of GBM is in treating patients with neurologic 

symptoms and signs related to the size of the tumor or the surrounding edema. This benchmark 

for overall survival with bevacizumab is only eight to nine months [60]. 

Imatinib is a kinase inhibitor od PDGFR, of mast/stem cell growth factor receptor (SCFR) and of 

the oncogene fusion protein breakpoint cluster region/Abelson gene (BCR/ABL). Imatinib 

monotherapy against malignant glioma seems to have only minimal activity. In a phase II study 

in recurrent BGM with patients stratified by their PDGFR expression, a 6-months progression 

free survival rate of only 3% of patients was reported [64]. Several other multicenter trials failed 

to show efficacy of imatinib in GBM treatment [65]. 

These single agent tyrosine kinase inhibitors for recurrent GBM, as imatinib or bevacizumab, 

have proved to be insufficient to induce significant inhibition and, although efficient, they are 

not able to reach their target in a sufficient concentration, due to intratumoral pressure o efflux 

pumps and BBB obstruction. More, the inhibition developed by these agents is overtaken by the 
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activation of downstream pathways. Nevertheless, ongoing trials are applying insights into 

mechanisms of resistance and better understanding of driver mutations. 

Translational clinical trial approaches for recurrent and newly diagnosed GBM include other 

molecular targeted therapeutics, immunotherapies, and somatic gene therapy [66]. 

Monoclonal antibodies directed towards EGFR and EGFRvIII have been developed as therapy 

against GBM. The most used is the unconjugated antibody cetuximab, which works preventing 

signal transduction mediated by EGFR, interfering with ligand binding end receptor extracellular 

dimerization [67]. The observed effects of EGFR inhibitors in the treatment of patients with 

GBM are generally weak. Better results could possibly be achieved by stratification of patients 

by presence of overexpression or specific mutations of EGFR in their tumor tissue [68]. For 

example, while cetuximab alone has limited clinical efficacy among GBM therapies, data suggest 

that it may be more promising agent for patients harboring specific EGFR mutations [69]. 

After a generation of persistent investigation by immunologists in the face of multiple negative 

trials, discoveries elucidating the mechanisms of tumor-induced immunosuppression in the 

tumor microenvironment have been translated into the clinic [70]. The first immunomodulatory 

drug trials in solid tumors have focused on the immunosuppressive signals Programmed cell 

death protein 1 (PD1), Programmed death-ligand 1 (PDL-1), Cytotoxic T-Lymphocyte Antigen 4 

(CTLA4) and indoleamine 2,3-dioxygenase (IDO). PD-1 inhibitors and CTLA-4 inhibitors have been 

FDA approved for melanoma and non-small-cell lung cancer trials. Nivolumab, pembrolizumab, 

and ipilimumab are humanized monoclonal antibodies with molecular weight and lipid/water 

solubility characteristics that likely limit penetration into the tumor microenvironment, 

especially in regions neighboring tumor mass where the blood–brain barrier is almost intact. 

Targeting PD-1 may not require intratumoral drug delivery, since PD-1 is expressed on T cells 
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rather than tumor cells. Ongoing trials of these checkpoint inhibitors in recurrent GBM have 

reported encouraging preliminary data [71-73]. However, in a clinical trial, nivolumab did not 

meet the primary endpoint for overall survival compared to bevacizumab alone. Trials of 

checkpoint inhibitors, single drugs and combinations, are currently under phase I trial for newly 

diagnosed GBMs. 

Antitumor vaccines have been developed with the aim to eradicating tumor cells while limiting 

toxicity. Numerous studies of vaccines for recurrent and newly diagnosed GBMs have been 

recently completed or are ongoing. Current vaccine strategies include different combination of 

autologous vaccines generated from the patient’s tumor at resection, peptide-based vaccines, 

and a new generation of vaccines using dendritic cells exposed to tumor cell RNA [74, 75]. 

Definitely, additional investigations aimed to better define the clinical and biologic subtypes of 

glioblastoma and an improved disease control are necessary to identify new biomarkers and 

potential therapeutic targets. 

Oncolytic virotherapy 

Oncolytic virotherapy is a promising new therapeutic approach for cancer treatment. Oncolytic 

virotherapy uses the virus itself as an active drug reagent, employing viruses with a genetically 

engineered or a natural ability to selectively replicate in and kill tumor cells avoiding the healthy 

tissues.  In the last three decades, advances in understanding of tumor biology and virology 

have increased the possibilities and the interest in using oncolytic viruses for cancer therapy 

(Figure 6),  

Replication-competent oncolytic viruses have the striking capacity to induce tumor lysis through 

the release of viral progeny, which can subsequently infect nearby tumor cells. Among 
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replication-competent oncolytic viruses, Herpes Simplex Virus-1 (HSV-1) is perhaps the best 

studied and one of the most promising for cancer therapy. It is a double-stranded DNA virus, 

natural pathogen of humans that can cause serious, and on rare occasions, lethal disease, such 

as encephalitis in the brain [76]. HSV-1 has a large (>150 kb), fully sequenced and well 

characterized genome, with multiple nonessential genes amenable for genetic engineering and 

making it attractive for cancer therapy. HSV-1 does not integrate in the host genome, and is 

actually cytotoxic, killing cells through varied mechanisms at low multiplicities of infection. 

Moreover, effective antiviral drugs, such as acyclovir of ganciclovir, are available to treat 

unexpected replications, improving the safety profile of the virus when used in clinical trials [77]. 

 

Figure 6 

Breakthroughs in oncolytic virotherapy development [78]. 

The first generations of genetically engineered oncolytic HSV-1 (oHSV) for the treatment of high 

grade glioma have been developed by using engineering strategies to reduce neurotoxicity 

while retaining the ability to infect and lyse actively dividing tumor cells. These attenuating 

mutations involve deletion of both copies of γ134.5 an essential gene for neurovirulence, or 
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disruption of UL39, encoding the large subunit of ribonucleotide reductase, which is essential 

for DNA replication in postmitotic cells such as the neuron [77]. 

Three oHSVs (G207, 1716 and G47Δ) have entered clinical trials for GBM; all contain deletions of 

both copies of the γ34.5 gene, as well as an inhibitor of interferon-induced host protein 

synthesis shut-off [79]. Following encouraging results of murine and nonhuman primate studies 

[80-82], 3 early-phase trials have been completed using G207 alone or in combination with 

radiation [83-85]. In parallel, HSV1716 has been evaluated by a group in the UK [86]. A further 

HSV was built from G207 by the deletion of the α47 gene [87], enhancing major 

histocompatibility complex class I presentation and viral replication. The results of a phase I/II 

Japanese study in recurrent and progressive GBM (JPRN-UMIN000002661) are pending. 

Oncolytic herpes simplex virus (oHSV) has been shown to be safe when administered 

intratumorally to glioblastoma patients. However, studies on virus deleted in γ34.5 gene 

showed that the lack of response to the virus in some tumors was subsequently ascribed to 

tumor heterogeneity in Protein Kinase R (PKR) activation, as a function of MEK (MAP/ERK 

kinase) levels. A low MEK activity, typical of normal cells, leads to high PKR activity thus 

preventing replication and oncolytic activity of the HSV deleted in γ34.5 gene. In xenografts, a 

virus deleted in γ34.5 gene infected, selectively replicated, and inhibited tumor growth in cells 

with a high MEK activity, either endogenous or after gene transduction, but the virus was rapidly 

lost when tumor cells expressed a dominant negative form of MEK and this occurred even 

following intratumoral administration. Accordingly, the heterogeneity of MEK status poses a 

serious limitation to strategies based on viruses deleted in γ34.5 gene and various alternative 

approach have been developed to restore late viral protein synthesis [88]. 
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A third advance in the oncolytic virotherapy with oHSVs has been the employment of viruses 

that express foreign genes to enhance the antitumor immune response. Genetically engineered, 

attenuated HSV expressing trans-genes coding for cytokines have been shown to provide a 

survival benefit in murine brain tumor models via combination of oncolytic effects and 

immunologic effects mediated by T cells [89]. A phase I clinical trial is currently enrolling at the 

University of Alabama Birmingham (NCT02062827) evaluating the safety of M032, a second 

generation oHSV conditionally replicative by the deletion of both γ134.5 gene copies and armed 

with an expression cassette encoding human IL-12. 

 

Table 1 

Oncolytic herpes simplex viruses used for brain tumor therapy [90]. 

Other different strategies were employed to engineer oHSVs, and viruses used in preclinical 

brain tumor models (Table 1). To gain tumor specificity preserving the full lytic ability typical of 

wild-type oHSVs, a retargeting approach to specific receptors was employed. The safety of 

oHSV Parental strain Mutated/deleted HSV genes Transgenes/inserted genes In clinical use

1716 17+ γ34.5 N Y

R3616 F γ34.5 N N

C134 F γ34.5 HCMV IRS1 N

hrR3 KOS ICP6 LacZ N

R7041 F US3 N N

G207 F γ34.5  and ICP6 LacZ Y

MGH1 F γ34.5  and ICP6 LacZ N

3616UB F γ34.5  and UNG LacZ N

DM33 McKrae γ34.5  and LAT GFP N

rHsvQ1 F γ34.5  and ICP6 GFP N

Δ68H-6 17+ γ34.5  (BBD) and ICP6 LacZ N

rQnestin34.5 F Endogenous γ34.5 , ICP6 Nestin promoter-driven γ34.5, GFPN

KeM34.5 F Endogenous γ34.5 , ICP6 Musashi promoter-driven γ34.5 N

G47Δ F γ34.5 , ICP6 , α47 LacZ Y

MG18L F US3  and ICP6 LacZ N

R-LM113 F gD scFv  anti-HER2 N

HCMV: Human cytomegalovirus; HSV: Herpes simplex virus; oHSV: Oncolytic herpes simplex virus; N: No; Y: Yes.
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attenuated viruses is achieved at the expense of potency. These viruses are characterized by 

much lower replication and killing capacity than wild-type viruses, as well as non-stringent 

specificity of entry into tumor cells. To overcome these limits, the virus tropism can be modified 

and the viruses can be detargeted from their natural receptors and retargeted to receptors 

specifically overexpressed in tumor cells. 

The glycoprotein gD mediates the binding of wild-type HSV-1 and the two entry receptor Nectin-

1 and HVEM, present on the surface of cells (herpesvirus entry mediator) and triggers the virion-

to-cell fusion [91]. The basis for tropism retargeting is the genetic engineering of recombinants 

oHSV in which gD is fused to a heterologous ligand able to interact with the tumor-specific 

receptor.  In the first series of experiments, the targeted tumor-specific receptor was IL-13Rα2, 

expressed in malignant gliomas [92]. Another receptor of interest is uPAR, targeted with two 

different strategy in R5181 and R5182 recombinant virus [93]. A further receptor indicated for 

tropism retargeting is HER2, since it is expressed in a large fraction of HGGs [37-39]. HER2 is an 

orphan receptor, without available natural ligand. The selected ligand for the retargeting 

toward HER2 of an oHSV, named R-LM113, was a single-chain antibody. The glycoprotein gD 

tolerated the scFv insertion and could mediate virus entry into cells expressing HER2. For 

detargeting the HVEM tropism was readily abolished by deletion of the most N-terminal region 

and overall access through the Nectin-1 binding site was simply hindered by the large insert [94]. 

Several oHSVs entered clinical trial in the past decades, but now the rationale in cancer therapy 

is that no single drug or treatment will cure definitively cancer, hence research is rather moving 

towards combination therapies [95], and it is realistic to consider combining oncolytic 

virotherapy with current or novel therapies, which by themselves often fail.  
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EGFRvIII and PDGF driven Glioma mouse models: genomic 

characterization and comparison 

The research on gliomas, as well as oncological research in general, requires the establishment 

of reliable disease models, making possible to study its biology and to find new effective 

therapies. Glioma models can result from subcutaneous or orthopedic grafts of tumor cells 

derived from patients in immunodeficient mice, or can be induced directly into the animal by 

unspecific carcinogens (alkylating agents, radiations) or by cell type-specific modulation of the 

expression of oncogenes or oncosuppressor genes. During the last years, syngeneic modeling 

increased in complexity. Modeling gliomas with well-defined genetic summarizes the biological 

mechanisms in human tumors and may validate the causes of genetic disorders occurring in 

gliomagenesis [96]. 

Over the years, several mouse high grade glioma models have been developed based on human 

genetic alteration, with the hypothesis that genetic aberrations responsible for gliomagenesis 

play an important role in tumor maintenance too. By modeling cancer with defined genetics, it 

is thus possible to identify causative mutations and relationships between them. 

Among them, EGFR gene amplification and overexpression are a striking feature of in high grade 

glioma. Enhanced activation of EGFR can occur through a variety of different mechanisms, both 

ligand-dependent and ligand-independent. Numerous evidence has suggested that EGFR is 

overexpressed in most of primary glioblastomas and some of the secondary glioblastomas and 

is characteristic of more aggressive glioblastoma phenotypes. Mutations of EGFR occur in 

roughly one-third of all classical tumors and often in mesenchymal, proneural and neural 

glioblastomas as well [15]. 
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In murine models, it was provided that transgenic mice overexpressing an active homolog of 

the EGFR (v-erbB), develop low-grade oligodendogliomas, without requiring a tumor 

suppressor loss. However, EGFR over-activation induces gliomas only when it is combined with 

the loss of p53 or the INK4a/ARF  locus [97]. When v-erbB overexpression occurs together with 

loss of Ink4a/Arf or p53, it resulted in a shorter tumor latency and increased tumor grade and 

penetrance [98]. 

In a model elaborated by Holland and colleagues, gliomas were induced by transfer of EGFRvIII 

gene, a cancer specific mutation making the receptor constitutively active, in Ink4a/Arf deficient 

Gt-a or Ntv-a transgenic mice [99]. They noticed that EGFRvIII induced lesions, occurred in these 

background and having many similarities to human gliomas, appeared more frequently with 

gene transfer to Ntv-a mice than to Gtv-a mice, suggesting that, since in this context tumors 

arise more efficiently from immature cells in the glial lineage, glial progenitors may be generally 

more prone to malignant transformation. 

However, it was reported that the transduction of Ink4a/ARF -/- astrocytes with EGFRvIll induced 

high-grade gliomas too [100], identifying astrocytes as permissive compartments for 

gliomagenesis, similarly to progenitors of Ntv-a mice. 

Furthermore, mice derived from a transgenic mouse astrocytoma model established by using 

the GFAP promoter to express RAS in astrocytes were crossed with a population expressing 

EGFRvIIl under the control of the GFAP promoter. The double transgenic mice developed 

aggressive oligodendroglial or mixed gliomas, although GFAP-EGFRvIll single transgenic mice 

did not exhibit tumor growth. This observation indicates that astrocyte-specific expression of 

EGFRvill alone is not sufficient for gliomagenesis, but contributes to glioma progression in the 

context of existing predisposing genetic changes [101]. 
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These studies highlight the importance of cell lineage in gliomagenesis together with genetic 

alteration required for glioma development. 

As first demonstrated by Uhrbom and colleagues, in vivo PDGF overexpression in neonatal 

mouse neural stem cells efficiently induces the formation of gliomas [102-104]. 

In our laboratory, a murine model of induced gliomagenesis was developed by overexpression 

of the platelet-derived growth factor B (PDGF-B) in neural progenitor cells. The injection of 

replication deficient Moloney Murine Leukemia Virus (MMLV) expressing PDGF-B into lateral 

telencephalic ventricles of mouse embryos at mid neurogenesis led to development of tumors 

in 100% of mice [105, 106]. Tumors showed the typical features of high-grade gliomas: 

widespread necrosis, massive neovascularization, hemorrhagic regions and cells often arranged 

into pseudopalisades around necrotic foci. Noteworthy, despite transducing such a highly 

heterogeneous progenitor population, able to generate all mature cell types in central nervous 

system, PDGF-B overexpression led to the formation of pure oligodendrogliomas and, 

importantly, the homogeneity of the tumors induced by PDGF-B at embryonic stages was 

defined by its fate specification activity [105]. 

A different strategy to obtain PDGF-B induced glioma model exploits neural precursor cells 

(NPCs) explanted at embryonic day 14, namely the same time of in vivo injection, that are 

transduced in vitro with retroviruses encoding PDGF-B [107]. When transplanted in adult mouse 

brains, this cells population able to generate tumors resembling human high grade gliomas, in 

terms of molecular markers expression, histological phenotype and tumorigenic potential and 

maintaining their tumorigenic features after in vitro culture. 
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Materials and methods 

Animal Procedures 

Mice were handled in agreement with the guidelines conforming to current Italian regulations 

for the protection of animals used for scientific purposes (D.lvo 27/01/1992, no. 116). Procedures 

were approved by the Ethical Committee for Animal Experimentation of the National Institute 

of Cancer Research and by the Italian Ministry of Health. The experiments were performed with 

the BALB/c mouse strain, both wild-type and p16/p19 knock-out. 

Anesthetized animals were injected by means of a stereotaxic apparatus. Up to 2 µl of 

suspension, containing 2e4 cells, were injected using a Hamilton syringe (Bregma coordinates: 

anterior-posterior, 1.0 mm; lateral, 1.5 mm left and 2.5 mm below the skull surface). Resorbable 

suture was used before awakening the animals. Animals were monitored daily after transplant, 

and killed at first sign of neurological distress. Their brains were then explanted and 

photographed under a Leica fluorescence stereomicroscope (Wetzlar, Germany). Survival 

curves were determined using Kaplan–Meier survival between groups. 

Cell cultures and transfection 

mHGGpdgf and mHGGegfrvIII brain tumors expressing DsRed fluorescent reporter were obtained 

as follows. Embryonic neural precursors were obtained from embryonic day (E14) mouse 

embryos as described [107]. Cells were plated at a density of 3e5 cells/cm2 onto Matrigel matrix 

(1:200; BD Biosciences, Franklin Lakes, NJ) coated 24-well plates in DMEM-F12 added with B27 

supplement, human bFGF and EGF (10 ng/ml). Immediately after plating, cells were transduced 

with pCAG:DsRed-EGFRvIII and pCAG:DsRed-PDGF retroviral vectors already described [108-
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110]. After 7 days 2x104 transduced cells were intracranially inoculated in adult BALB/c mice. 

Tumor cell cultures derived from explanted mHGGpdgf and mHGGegfrvIII brain tumors were 

maintained in the medium described above. 

Immunostainings 

For histological analyses, brains were fixed with 4% paraformaldehyde, cryoprotected in 20% 

sucrose and sectioned with a Leica CM3050 S cryostat. Immunostainings were performed using 

the following antibodies: mouse monoclonal antibodies against nestin (1:100, BD Pharmingen, 

San Diego, CA, USA), GFAP (1:100, Sigma-Aldrich, Milano, Italy); rabbit polyclonal antibodies 

against Olig2 (1:500, Sigma-Aldrich, Milano, Italy), Ng2 (1:200, Chemicon, ThermoFisher 

Scientific, Waltham, MA, USA) and EGFR (1:500, Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

Binding of primary antibodies was revealed with appropriate secondary anti-rabbit IgG Dylight 

488-conjugated (1:500, Jackson Immunoresearch, Milano, Italy), cy2-conjugate anti-mouse IgG 

(1:100, Jackson Immunoresearch, Milano, Italy). Nuclei were stained through 10 min incubation 

in Hoechst 33342 solution (1 µg/ml, Sigma-Aldrich, Milano, Italy). 

Microarray and RNA sequencing analyses 

RNA extracted from cultured cells from 2 mHGGpdgf and 4 mHGGegfrvIII tumors were hybridized 

on Affymetrix GeneChip Mouse Genome 430 2.0 Array (GEO Accession Number GSE108955) by 

AROS Applied Biotechnology (Aarhus,Denmark). Data from transcriptome database for murine 

astrocytes, neurons, and oligodendrocytes [111] and from data of wide gene expression profile 

of cells from sub ventricular zone (SVZ, [112]) and murine adult olfactory bulb stem cells [113], 

performed on the same microarray platform were obtained from literature and analyzed with 

the same procedures of our samples. 
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Data were analyzed using the R3.4.2 software and BioConductor version 3.5 35. Expression 

values were extracted from raw data files using the RMA method built in the affy 1.54.0 library 

package. Differentially expressed genes were ranked by using RankProd 3.2.0 library. The entire 

dataset was eventually quantile normalized [114]. 

For whole-exome sequencing, dissociated cells from 3 mHGGpdgf and 3 mHGGegfrvIII secondary 

tumors were sorted for DsRed with FACSAria II in Trizol (Invitrogen) directly, where they were 

harvested in for RNA extraction. at least 0.01 µg RNA derived from three ex-vivo primary tumor 

sample, sorted by FACS for DsRed reporter and harvested in Trizol, was send to BGI genomics 

(BGI, Shenzhen, China) and sequenced on BGISEQ-500 RS generating 50 base-pair single-end 

reads. Data from Glia, Neurons, and Vascular Cells of the Cerebral Cortex transcriptome 

database present in the literature [115] were obtained as fastq files and analyzed in parallel with 

our data. The high-quality clean tags were mapped to reference genome (mm10) using STAR 

[116]. To quantify the gene expression level, RSEM analysis was carried out [117], acquiring 

expected read count of each gene of each sample, based on the mapping results and used for 

successive analyses. Normalization, data trimming and differential expression analysis were 

performed by edgeR [118]. Genes were ranked by their fold enrichment in each cell type of 

neuronal/glia database and successively confronted with data from mHGGpdgf and mHGGegfrvIII 

tumors. Raw and processed data are available on GEO Dataset (Accession number GSE109614). 
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Results 

Mice transplanted with mHGGpdgf and mHGGegfrvIII cells developed high grade gliomas. 

The mHGGpdgf model was generated by transplanting in adult BALB/c mouse brains 2e5 murine 

neural progenitor cells explanted at embryonic day 14 (E14) and transduced with a PDGF-B 

overexpressing retroviral vector as described [119]. 

To generate the mHGGegfrvIII model, murine neural progenitor cells from p16/p19 knock-out 

mouse were explanted at embryonic day 14 (E14). Cell obtained were infected in vitro with 

replication-deficient retroviruses carrying both EGFRvIII and DsRed coding sequences. After ten 

days, we orthotopically transplanted 2e5 cells in syngeneic adult BALB/c mice. The same 

procedure was used to overexpress PDGF-B in NPCs derived from p16/p19 knock-out mice too 

(mHGGpdgf-ko). 

Neurological symptoms appeared in all mice (n=17) injected with mHGGpdgf cells between 15 and 

169 days after transplant, and in all mice (n=20) injected with mHGGegfrvIII between 27 and 196 

days after transplant (Fig. 1a).  All mice (n=5) injected with mHGGpdgf-ko cells developed signs of 

neurological distress within 26 days after transplant. Tumor cells from these tumors were not 

used in the successive steps of the study. 

Mice were killed as soon as they showed the first hint of symptoms. Brains were explanted and 

showed invariably large DsRed positive tumor masses. Cell derived from microdissectection 

mHGGpdgf and mHGGegfrvIII tumors were systematic transplanted in adult BALB/c mice (2.5e5 

cells/mouse). All mice transplanted with mHGGpdgf cells showed symptoms of neurological 

distress within 39 days (n=11). Masses of DsRed-positive cells were observed in all the brains 

from this cohort after explantation. On the contrary, not all mice transplanted with mHGGegfrvIII 
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(n=37) developed neurological symptoms. Anyhow, all mice were killed within 161 days after 

transplant and the analysis of explanted brains showed 70% (n=26) of the to be DsRed-positive 

cells free (Fig. 1b).  

HGG obtained from transplant of mHGGpdgf and mHGGegfrvIII cells histologically closely resemble 

each other and human HGGs. They are characterized by a compact structure and wide necrotic 

areas. Highly proliferating cells forms pseudopalisades structures around necrotic foci. 

Immunoistochemical characterization of PDGF-B-driven HGG was provided [105, 120]. Here, 

immunofluorescence analysis showed that mHGGegfrvIII primary tumors express progenitor/stem 

cells marker Nestin as well as oligodendroglial maker Olig2, together with EGFR. In contrast, 

they express low levels of astroglial marker GFAP (Fig. 1c). 

Molecular profiling of mHGGpdgf and mHGGegfrvIII cells maintained in culture revealed 

close similarity between the two models and OPCs. 

Cells obtained from both mHGGpdgf and mHGGegfrvIII primary and secondary tumors were 

maintained in culture in a serum-free medium optimized for the growth and in vitro 

differentiation of neural stem cells. Primary tumor cells were tested to generate secondary 

tumors after up to 15 passages in culture (data not showed). 

Gene-expression profiling was performed by microarray analysis starting from biological 

replicates of cells grown in vitro derived from mHGGpdgf (n=2) or mHGGegfrvIII (n=4) different 

tumors. Differential expression analysis revealed a strong similarity between the two groups. A 

gene annotation enrichment analysis on BP-GOTERM, based on differentially expressed genes 

between the two models (identified by RankProduct using as cutoff pfp=0.05) highlighted the 

functional class of cellular response to interferon-beta, enriched in mHGGegfrvIII (fold change 
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3.7E1), suggesting that this class of tumor could be more immunogenic than mHGGpdgf, but failed 

to identify other strong enriched functional clusters. 

Therefore, in order to correlate data obtained from our tumors and genome profiling of cells 

derived from several neural-glial lineages, we took advantage of a transcriptome database for 

murine astrocytes, neurons, and oligodendrocytes [111] and from data of wide gene expression 

profile of cells from sub ventricular zone (SVZ, [112]) and murine adult olfactory bulb stem cells 

[113], performed on the same microarray platform. 

We achieved a principal component analysis (PCA) on all samples, based on most differently 

expressed genes between astrocytes, neurons, oligodendrocytes, SVZ and OB cells. The first 

two components were able to explain the 65% of the differences between samples. In the PCA 

representation, mHGGpdgf and mHGGegfrvIII tumor cells appeared to be closest to oligodendrocyte 

progenitor cells (OPCs). After OPCs, the group most contiguous to our sample was represented 

by SVZ and OB cells. These classes of cells, however, are farer than HGGs cells from OPCs. We 

validated mRNA levels observed in several genes mildly differentially expressed in mHGGpdgf and 

mHGGegfrvIII, by comparing them with murine NPCs (data not shown). This analysis showed that 

expression profile of NPCs is very close to that of SVZ and OB cells. This suggests that mHGGpdgf 

and mHGGegfrvIII tumors are more similar to OPCs than wild-type NPCs. 

The heat map generated from unsupervised hierarchical gene clustering of samples (taking 

count of the most differently expressed genes between astrocytes, neurons, oligodendrocytes, 

SVZ and OB cells) confirmed and highlighted that both mHGGpdgf and mHGGegfrvIII tumor cells 

clustered together with OPCs. Interestingly, OPCs expression profile was more correlated to 

that of murine HGG cells than to the profile of adult neural stem cells. 
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RNA-seq analysis from ex-vivo samples confirmed that our models clustered with 

OPCs. 

Because of murine tumor cells underwent to some passages in culture before being collected 

for genome-expression analyses, we speculated on if the high similarity revealed between 

mHGGpdgf and mHGGegfrvIII profiles was due to biases related to culture conditions and did not 

reflect the real composition of tumor transcriptomes. 

Thus, we collected cells from ex-vivo samples of three mHGGpdgf and three mHGGegfrvIII primary 

tumors to obtained a more realistic genome-wide transcriptional profiling. Brain tumors were 

dissociated and cancer cells were separated by fluorescence activated cell sorting (FACS), based 

on the expression of the fluorescent reporter DsRed. RNA from purified cell populations was 

extracted and RNA-Seq was performed with the BGISEQ-500 RS platform, obtaining 41.3±3.7 

million 50bp reads. We decided to analyze our samples by Next Generation Sequencing (NGS) 

approach due to its higher sensitivity and more extended dynamic range compared to 

microarray technology [121-123]. A first unsupervised hierarchical clustering of our 

transcriptome data showed two different clusters belonging to the two classes of tumors. We 

compared again transcriptome profiling of our murine tumor samples with that of the major cell 

classes present in the brain, take advantage of transcriptome database present in the literature 

[115]. Dendrogram and unsupervised hierarchical clustering heat map constructed starting from 

most differentially expressed genes between the different classes of brain cells confirmed us 

that both mHGGpdgf and mHGGegfrvIII tumor cells are mostly similar to OPCs. Furthermore, we 

performed PCA analysis on these samples. The first three components were able to explain the 
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86% of the differences between samples. PCA analysis showed us a strong closeness between 

OPCs, mHGGpdgf and mHGGegfrvIII cells. 

Conclusions 

In recent years, extensive molecular profiling has afforded an increasing understanding of the 

genomic landscape of high grade gliomas. Whole genome analyses have provided new data on 

molecular changes in gene expression, copy number, somatic mutations, and epigenetic 

signatures in high grade gliomas [124, 125]. Based on signature genome-wide gene expression 

changes, coupled with somatic mutations and copy number changes, high grade gliomas were 

classified into four subtypes: proneural, mesenchymal, classical, and neural subtypes [15, 125]. 

In addition to exhibiting characteristic mutational and gene expression profiles, mutations 

in EGFR are prevalent in the classical subtype, mutations in NF1 in the mesenchymal subtype 

and alteration of PDGFR-A and IDH1 in the proneural subtype. These subtypes are also found to 

bear resemblance with gene expression profiles of normal brain cells, with proneural tumours 

enriched for the oligodendrocyte development signature. 

A variety of animal models have been developed that incorporate signature mutations found in 

human patients. Genetically engineered mouse models are powerful tools in investigating 

glioma origins and development and also as preclinical models, although most of the existing 

animal systems mimic just one of the human molecular classes, known as "proneural" [103, 105]. 

HGGs induced by overexpression of PDGF-B in neural progenitors is a well characterized model, 

used in many studies worldwide. Here, we generate PDGF-B driven HGG by overexpressing that 

growth factor in neural precursor cells (NPC) immediately after explant from BALB/c embryos 

at embryonic day 14, and transplanting them in brain of adult BALB/c mice after ten days from 
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transduction. Tumors obtained were compared with gliomas generated with the same protocol, 

but induced by overexpression of EGFRvIII. This receptor alone, however, is not sufficient to 

induce malignant transformation in NPCs. Therefore, we transduced EGFRvIII in NPCs derived 

from p16/p19 knock-out BALB/c mice. These cells, when orthotopically transplanted in wild-type 

BALB/c mice, are able to give rise to tumor resembling human glioblastoma. 

Interestingly, the features of PDGF-B and EGFRvIII driven models are highly similar, although the 

penetrance of secondary HGGegfrvIII is lower. The similarity is very striking when considering data 

obtained from microarray and the NGS analyses. The resemblance observed between the cells 

derived by the two models is not due to adaptation to culture condition. It was observed, 

indeed, both in samples from culture and in samples analyzed immediately after the tumor 

explant. The comparison between gene expression profiles of our tumors with published 

datasets from neural cell types shows a strong similarity between oligodendrocyte progenitor 

cells (OPCs) and HGGegfrvIII tumor cells which maps close to HGGpdgf tumors but further from 

neural stem cells.  

While the similarity between HGGpdgf gliomas and OPCs fits with the role of PDGF-B in 

oligodendrocyte lineage specification, EFGR is less clearly connected with such cell lineages thus 

our results suggest a deeper and more general connection between OPC-like phenotype and 

gliomas. 
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Figures 

Fig 1.1 
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Figure 1.1 

(A,B) Experimental design of generation of mHGGpdgf(A) and mHGGegfrvIII (B). (C) Kaplan-Meyer 

survival curves of mice transplanted with primary mHGGpdgf (green line), mHGGpdgf-ko (purple line) 

or mHGGegfrvIII (red line) cells. Mice from mHGGpdgf and mHGGegfrvIII arms invariably developed 

tumors, with similar median survival. Tumors from mHGGpdgf-ko developed tumor masses that lead 

mice to death much faster. (D) Kaplan-Meyer survival curves of mice transplanted with secondary 

mHGGpdgf (green line) or mHGGegfrvIII (red line) cells, showing differences in overall penetrance and 

in median survival. (E-H) Representative dorsal images of brains from mice bearing primary (E,F) or 

secondary (G,H) tumors after mHGGpdgf (E,G) or mHGGegfrvIII (F,H) cell transplant. In micrographs the 

DsRed fluorescent reporter expressed by mHGG cells is represented in the red channel for HGGegfrvIII 

and in green channel for mHGGpdgf tumors.  
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Fig 1.2 

 

Figure 1.2 

Immunofluorescence stainings of brain section of mice that developed mHGGegfrvIII tumors. 

High presence of EGFR, stemness marker and OPC marker were observed. On the contrary, 

mHGGegfrvIII express low levels of GFAP. 
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Fig. 1.3 

 

 

Figure 1.3 

(A) Principal component analysis (PCA) plot of the mRNA data that characterizes the trends 

exhibited by the expression profiles of purified CNS cell types and cultured cells from our mHGGs, 

showing a strong similarity between oligodendrocyte progenitor cells (OPCs) and HGGegfrvIII tumor 

cells which maps closer to HGGpdgf tumors than from neural stem cells. (B) Dendrogram, sample 

clustering and expression of the top type-specific genes (for CNS cells) of purified CNS cell types 
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and cultured cells of mHGGs. Hierarchical clustering reveals the high similarity between our 

tumors and the OPCs. Each individual gene expression level was normalized and plotted on a log2 

color scale, with blue representing low expression and red representing high expression. Color 

bar and sample labels describe each individual sample type (brown, neurons; yellow, OPCs; green, 

mHGGpdgf; red, mHGGegfrvIII; purple, oligodendrocytes; orange, neural stem cells; cyan, astrocytes).  
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Fig. 1.4 

 

Figure 1.4 
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 (A) 3-D PCA plot of the transcriptome NGS data that characterizes the trends exhibited by the 

expression profiles of purified CNS cell types and our mHGGs from ex-vivo samples, confirming the 

extreme similarity between oligodendrocyte progenitor cells (OPCs) and HGGegfrvIII tumor cells. (B) 

Dendrogram, sample clustering and expression of the top type-specific genes (for CNS cells) of 

purified CNS cell types and mHGGs from ex-vivo samples, analyzed by RNA-seq. Hierarchical 

clustering confirms the similarity between our tumors and the OPCs. Each individual gene 

expression level was normalized and plotted on a log2 color scale, with blue representing low 

expression and red representing high expression. Color bar and sample labels describe each 

individual sample type (brown, neurons; cyan, astrocytes; purple, oligodendrocytes; green, 

mHGGpdgf; yellow, OPCs; red, mHGGegfrvIII). 
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Noninvasive Monitoring of Glioma Growth in the Mouse 

Malignant gliomas are among the hardest challenge of modern oncology. Despite all the efforts 

of scientific community, only modest improvements have been achieved in the last decades. To 

break the current deadlock, an important tool is represented by in vivo models of gliomas. To 

be reliable, these models have to grow orthotopically inside the brain of animals, and this make 

their development not easy to monitor. The available options to monitor the orthotropic growth 

of gliomas are NMR [126], microPET [127] and bioluminescence analysis on tumors engineered 

to express a luciferase [128]. All these methods are generally time consuming, expensive and, 

most importantly, extremely invasive, requiring risky procedures for anesthesia and substrates 

administration. This greatly limits the frequency of measurements, preventing a reliable analysis 

of tumor growth dynamic.  

A possible alternative to the aforementioned methods is the employment of reporter proteins 

secreted in liquid fluids, which can be measured frequently over the time, therefore providing a 

large amount of data with minimally invasive procedures. 

Secreted alkaline phosphatase (SEAP) and Gaussia luciferase (Gluc) are the most used liquid 

fluid reporters. These enzymes can be exploited for different applications and have been used 

to monitor several processes, including the growth of tumor masses in inaccessible locations 

[129-131]. 

Gluc is one of the smallest luciferase (19.9 kDa), isolated from the copepod Gaussia princeps. 

Unlike the first generation of luciferases, like Photinus pyralis luciferase (Fluc) and Renilla 

reniformis luciferase (Rluc), Gluc is naturally secreted by cells. Moreover, Gluc activity does not 

require ATP and, in vitro, is linear with the number of cells [132]. Gluc has a flashing kinetics and 



 

44 

its activity tends to rapidly decrease when reacting with its substrate celenterazine [133]. This 

disadvantage is, however, largely compensated by its initial activity per mole, that is about 100 

times higher than that of Rluc and 1000 times higher than that of Fluc [134-136]. This makes Gluc 

an excellent choice as body fluid reporter, since its assay is extremely sensitive, about 20,000-

fold higher than that of SEAP [137]. Few microliters of blood taken from the mouse tail tip are 

sufficient to obtain an accurate measurement, making possible to perform daily assays.  

A few studies have already reported the use of Gluc as biomarker to monitor neoplastic cell 

proliferation in various tumor models including intracranial gliomas [132, 138, 139]. However, the 

extent of the correlation between Gluc levels in blood and tumor burden has not been 

thoroughly analysed. 

The aim of this work is to test the efficiency of Gluc as a blood reporter system to dynamically 

estimate the tumor size and to monitor the intracranial growth of gliomas in both 

immunodeficient and immunocompetent mice. 

We found that the assay of Gluc in the blood of immunodeficient mice allows the detection of a 

tumor graft as early as ten days from transplant, and, in average, 60 days before mice showed 

the first hint of neurological symptoms. We also observed a good correlation between Gluc 

activity and tumor size evaluated with morphometric and weight analyses. In 

immunocompetent mice, however, the use of Gluc is limited by the development of immune 

response that inhibits Gluc activity, impairing its correlation with tumor size. 
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Materials and Methods 

Animal procedures 

Mice were handled in agreement with guidelines conforming to current Italian regulations for 

the protection of animals used for scientific purposes (D.lvo 27/01/1992, no. 116). Procedures 

were approved by the Ethical Committee for Animal Experimentation of the IRCCS San Martino-

IST and by the Italian Ministry of Health. The experiments were performed on the Nod/Scid and 

BALB/c mouse strains. Anesthetized animals were injected by way of a stereotaxic apparatus. 

Up to 5 µl of suspension, containing from 4x104 to 105 cells preparations, were injected using a 

Hamilton syringe (Bregma coordinates: anterio-posterior, 1.0 mm; lateral, 1.5 mm left and 2.5 

mm below the skull surface). Resorbable suture was used before awakening the animals. 

Animals were then monitored daily and killed at first sign of neurological symptoms or, in some 

instance, before it, as soon as they reached planned levels of Gluc activity. Their brains were 

then explanted and photographed under a Leica fluorescence stereomicroscope (Wetzlar, 

Germany). 

Gluc assays were carried on twice a week, by collecting about 5 µl of blood from the tail tip of 

mice in tube containing 0.5M EDTA. Mice sera were obtained by centrifuging at 500 RCF blood 

samples preincubated without EDTA at 37°C for 30 minutes. 

To estimate the volume of the tumors inside the brains, the apparent feret diameters of the 

tumor were calculated from two pictures taken from the dorsal- (upper feret) and from the 

ventral- (lower feret) side of the brain. We then approximated the tumor volume to that of a 

sphere with a diameter equal to the average between the upper and lower feret diameter. 



 

46 

Survival curves were determined using Kaplan–Meier analysis and survival between groups was 

assayed by log-rank test. 

Retroviral Vectors 

pCAG:DsRed-EGFRvIII and pCAG:DsRed retroviral vectors were previously described [108]. 

pCAG:mGFP-Gluc vector was obtained as follows. The coding sequence of Gaussia luciferase 

from the pCMV-GLuc 2 Control Plasmid (New England BioLabs, Hitchin, UK) was cloned into the 

pCAG:GFP vector (kindly provided by Dr. M. Goetz) upstream the IRES-GFP region. GFP 

sequence was replaced with a mutated, non-fluorescent, GFP (mGFP) that is detectable by 

immunostaining techniques. mGFP was obtained by substitution of three nucleotides inducing 

the mutations T66A and Y67A by PCR. 

Cell cultures and Transduction Procedures 

Human glioma initiating cells (hGIC) L0306, kindly provided by Dr. R. Galli [140], were engineered 

with pCAG:DsRed and oCAG:mGFP-Gluc and maintained as spheres in Neurocult Medium 

supplemented with NeuroCult NS-A (StemCell Technologies, Vancouver, British Columbia, CA), 

human recombinant fibroblast growth factor 2 (10 ng/ml; PeproTech, Rocky Hill, USA), 

epidermal growth factor (20 ng/ml; PeproTech, Rocky Hill, USA) and Heparin (2µg/ml, Sigma-

Aldrich, Milano, Italy). 

mHGGegfrvIII-7 cells were obtained from INK4a/ARF knock-out BALB/c mice intracranially injected 

with syngeneic neural progenitor cells transduced with pCAG:DsRed-EGFRvIII as previously 

described [107]. Cells were maintained in Dulbecco's modified Eagle's medium-F12 (Invitrogen, 

Carlsbad,CA) with B27 supplement (Invitrogen, Carlsbad,CA), human basic fibroblast growth 

factor (10 ng/ml, Peprotech, London, UK) and epidermal growth factor (10 ng/ml, Peprotech, 



 

47 

London, UK) and plated on Matrigel (1:200; BD Biosciences, Franklin Lakes, NJ). Cultures from 

tumors were established microdissecting DsRed-positive areas under a fluorescence 

microscope and trypsinizing them for 20 minutes. Cells were maintained in the medium 

described above. 

Gaussia luciferase assay 

Gluc activity was evaluated in a reaction set up obtained by combining 5µl of blood sample with 

a buffer constituted by 17.5 µl of Stop & Glo® Buffer (Promega, Milano, IT) supplemented with 

coelentherazine , and 17.5 µl of a buffer containing HEPES 75mM; DTT 20 mM, EDTA 100 µM, pH 

8.0. The luminometer (Promega Glomax 20/20n) was set to acquire a series of 40 consecutive 

measures with an integration time of 1 second. Data analysis was performed in R environment 

3.4.2 [118] with software built in house. 

Results 

Gluc expression does not alter cell proliferation rate and tumor latency of different 

glioma models 

To be employed as tool for monitor glioma growth, a reporter gene should not induce 

alterations on cell behavior. A recent report addressed specifically this point on a model of 

glioma expressing firefly luciferase [141] showing not gross alteration on cell proliferation and 

in vivo growth. To assess whether also Gluc expression does not perturb glioma cells, we 

compared the doubling time of the human glioma initiating cells L0306, with that of L0306 

transduced with pCAG:mGFP-Gluc construct expressing Gluc (L0306-Gluc). This analysis showed 
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that Gluc does not grossly alter glioma proliferation rate, since the doubling time of L0306 was 

3.8±1.3 days before transduction and 3.1±0.6 days after transduction.  

Most significantly, the median survival time of Nod/Scid mice following intracranic 

transplantation of L0306-Gluc (81 days, Figure 2.1A) did not significantly differed from that of 

mice transplanted with non-transduced L0306 cells (78 days). Similar results were obtained with 

one population from the mouse glioma model induced by EGFRvIII overexpression (mHGGegfrvIII-

7), as previously described, where the median survival time was 42 days for Gluc-transduced- 

(Figure 2.1A) and 41 days for untransduced-mHGGegfrvIII-7 cells. 

Correlation between glioma growth and Gluc activity 

To evaluate the reliability of Gluc quantification as a method to monitor the growth of 

intracranic gliomas in mice, 105 L0306-Gluc cells were orthotopically transplanted in 18 Nod/Scid 

mice. Starting from two days after transplant, 5 µl of blood were collected twice a week from 

the tail tip and assayed for Gluc activity. 

Since Gluc has a flashing kinetics, its activity (herein referred as [Gluc]) under substrate excess 

conditions changes rapidly during time. An analysis of our experimental data showed that 

[Gluc], which value is proportional to the luminescence, decreases over time following the 

relation: 

[𝐺𝑙𝑢𝑐](t) = {[𝐺𝑙𝑢𝑐]𝑇0
(1−α)

+ (𝛼 − 1) 𝑘  𝑡}
1

1−α 

To standardize the way of measuring [Gluc] in all blood samples, a series of measurements of 

luminescence over time was recorded for each sample and used to extrapolate by linear 

regression from the former relationship the starting activity of Gluc ([Gluc]T0; Figure 2.1B). This 

method allows fully exploiting the initial activity of the enzyme, thus making the assay very 
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sensitive compared to methods relying on stabilization of the luciferase activity, which lowers it 

of one or more order of magnitude. 

In 40% of the mice, the level of Gluc activity crossed the detection threshold already at the first 

experimental point, and the levels became detectable in all mice within 43 days after transplant. 

By plotting [Gluc]T0 values versus time after transplant, we obtained exponential curves (Figure 

2A), suggesting that the tumors were expanding at an exponential rate, with a doubling time of 

113±19 hours. 

To measure the correlation between [Gluc]T0 and tumors burden, mice were killed when 

showing different levels of [Gluc]T0. Brains were photographed under an epifluorescence 

stereomicroscope that allows the visualization of the tumor mass thanks to the DsRed reporter 

gene expressed by L0306-Gluc cells. A morphometric analysis was then performed to estimate 

the volume of the tumors. Additionally, tumors were microdissected and weighted. These two 

independent measurements were combined to obtain an estimated tumor burden and to 

analyse its correlation with [Gluc]T0. This analysis showed that tumor burden is linearly related 

to [Gluc]T0 and the regression has a R2 of 0.79 (Figure 2.2B) independently from the localizations 

of the tumor that varied from mostly dorsal- to mostly ventral-localization and even partly 

extraencephalic (Figure 2.2B). This suggests that the localization of the tumor has a minor 

impact on the level of Gluc activity found in the blood. It should be noticed that the estimation 

of tumor burden is invariably affected by an error due to the variable tumor cell density inside 

the tumor masses. This may explain why the trend line of the logarithm of [Gluc]T0  over the time 

in each animal shows a better correlation coefficient (R2=0.97±0.03; Figure 2.2A) than that 

between [Gluc]T0 and the estimated tumor burden in different animals.  

Similar results were obtained using a different line of hGIC transplanted in NOD/Scid mice. 
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Gluc activity assay in immunocompetent mice 

We then tested the suitability of Gluc assay in immunocompetent mice, by using the murine 

glioblastoma stem cells mHGGegfrvIII-7, induced by the overexpression of EGFRvIII and the DsRed 

reporter gene in p16/p19 knock-out neural progenitor cells and orthotopically transplanted in 

syngeneic adult BALB/c mice. Such a model is more aggressive than the L0306 in Nod/Scid mice, 

and the median survival time of transplanted animals is about 41 days. In contrast to the L0306 

transplants, not all the mHGGegfrvIII-7 transplants resulted in the development of a glioma and 

the overall penetrance was about 75%. 

We therefore transplanted a pool of 24 mice with 4x104 mHGGegfrvIII-7 cells engineered to express 

Gluc (mHGGegfrvIII-7-Gluc). During the first 4 weeks from transplant, 9 animals showed growing 

levels of [Gluc]T0, consistent with a doubling time of the tumor mass of 51±20 hours, which 

reflected the higher aggressivity of the model. Thanks to the very dense series of 

measurements, in five additional animals we had the possibility to observe irregular patterns of 

Gluc levels, which underwent to a sudden decrease following a previous phase of growth. The 

remaining mice did not show any detectable level of Gluc (Figure 2.3A). From day 27, mice 

displaying higher Gluc levels started to develop neurological symptoms and were therefore 

killed. Mice were found to harbor large gliomas expressing DsRed reporter gene (Figure 2.4A). 

Unexpectedly, however, from day 36 some animals with low levels of [Gluc]T0 also started to 

display neurological symptoms. Four of them belonged to the group of animals with irregular 

pattern of Gluc activity, two showed a slight increase of [Gluc]T0 just before developing 

symptoms, and other two never showed any detectable level of Gluc. When analyzed, all these 

animals showed DsRed-expressing tumor masses similar in size to those found in the animals 
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displaying high-level of [Gluc]T0 (Figure 2.4B). Since this phenomenon was only seen in 

immunocompetent animals, we speculated that an immune response of the host occurred, 

selectively depleting the Gluc expressing population from the tumors. To test this hypothesis, 

we dissociated and cultured cells from tumor masses explanted from two animals displaying no 

detectable levels of Gluc in their blood and assayed their Gluc expression in vitro. Surprisingly, 

the supernatants from both cultures were found to contain an amount of Gluc not far from that 

of mHGGegfrvIII-7-Gluc population prior to the transplant, ranging from one half to one third of 

the original level. These results indicate that the fall of Gluc levels in those mice cannot be 

explained by a decrease of Gluc expressing cells. We therefore hypothesize that the decrease 

of [Gluc]T0 could be due to the rise of a neutralizing antibody against Gluc, as suggested by 

Tannous [131], but in contrast to what reported by other authors [142]. To test this possibility, 

we incubated a defined amount of Gluc with sera derived from mice having displayed low or 

irregular pattern of [Gluc]T0 over the time and found that 7 out of the 8 tested sera were able to 

dramatically inhibit Gluc activity (Figure 2.3B-C). On the contrary, sera derived either from non-

transplanted mice or from mice that did not develop gliomas following mHGGegfrvIII-7 transplant, 

were not able to significantly inhibit Gluc activity. Moreover, the further addition of 0.1M glycine 

in samples where Gluc was inhibited by serum restored the Gluc activity, as expected if the 

inhibition would depend on neutralizing antibodies (Figure 2.3B-C). The addition of 0.1M glycine 

was also able to unmask Gluc activity in sera of mice displaying barely detectable levels of Gluc 

but harbouring large tumor masses (Figure 2.3D). Taken together these results indicate that 

immunocompetent mice tends to develop neutralizing antibody that can perturb the Gluc 

activity. Accordingly with this view, [Gluc]T0 was not correlated to tumor size even in those 

animals displaying exponentially growing [Gluc]T0 levels, as shown by the Pearson correlation 
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coefficient lower than 0.5 (data not shown), suggesting the presence of Gluc antibodies even in 

these animals. The luciferase monitoring immunocompetent animals can be therefore used as 

qualitative method to determine whether tumor successfully grafted but cannot be used as a 

quantitative method to establish the tumor size. 

Conclusions 

Tumor growth is not easily monitored when the tumor mass is located in inaccessible locations 

as in the case of gliomas. A precise assessment of the tumor dynamic, however, would be 

important to evaluate the effects of experimental treatments and may guide the establishment 

of new treatments. An essential characteristic of a method designed to frequently monitor 

tumor growth should be a minimal invasiveness, and this criterion is not fulfilled by the currently 

used methods, which need anesthesia and long acquisition times. Gluc assay allows to monitor 

tumor growth in Nod/Scid mice at least twice a week, with a rapid and non-invasive procedure. 

By exploiting the initial burst of activity of Gluc, our method is highly sensitive allowing to detect 

the tumor at very early stages. Data collected here allowed for the first time a thorough analysis 

of the correlation between [Gluc]T0 and tumor burden, determined directly by weight and 

morphometric assay. The analysis showed this correlation is good and thus we deem that Gluc 

assay represents an excellent tool to monitor gliomas in vivo. The Gluc assay is, however, not 

suitable in immunocompetent animals, due to the onset of an immune response against the 

luciferase.  
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Figures 

Fig. 2.1 

 

Figure 2.1 (A) Kaplan-Meyer survival curves of Nod/Scid mice transplanted with L0306-Gluc (black) 

and BALB/c mice transplanted with mHGGegfrvIII-7 (red). (B) Gluc has a flashing kinetic and its activity 

dramatically decreases over the time when incubated with the substrate. The curves represent 

three examples of regression curves obtained from measured values of luminescence over the time 

(colored dot) to extrapolate the starting activity ([Gluc]T0), determining a value that is time-

independent. 
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Fig.2.2 
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Figure 2.2 (A) Increase of [Gluc]T0 over the time from tumor transplant. The plot shows the levels 

of [Gluc]T0 from blood samples collected starting from 2 days after transplant, up to the end of 

the experiment in five representative mice. In the inset, the same curves are shown in logarithmic 

scale. Colored areas represent the 90% confidence interval of each regression curve. (B) Correlation 

between [Gluc]T0 and glioma size. The plot represents the [Gluc]T0 from mouse blood samples 

versus the size (estimated as described in the text) of L0306-Gluc tumors harbored by the mice. 

Green area represents the 90% confidence interval of the regression line (in dark green). Examples 

of brains harboring tumors (in red) from three mice with low (a), medium (b) and high (c) [Gluc]T0 

are shown in inset pictures. 
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Fig. 2.3 

 

Figure 2.3 (A) Levels of [Gluc]T0 in blood samples over the time in a representative sample of BALB/c 

mice transplanted with mHGGegfrvIII-7-Gluc cells. (B) Effects on Gluc activity of sera derived from 

BALB/c mice displaying irregular patterns of Gluc levels over the time (Transpl Serum) following 

transplantation with mHGGegfrvIII-7-Gluc cells. Purified anti-Gluc antibody (GlucAB) and sera from 

non-transplanted BALB/c mice (Ctrl Serum) were included as positive and negative controls 

respectively. Glycine 0.1M was used, as control, to inhibit antibody binding. (C) The plot shows how 

the kinetic of Gluc reaction is modified by the incubation in the specified conditions. Ctrl serum and 

t2270 serum derived respectively from a non-transplanted mouse and a mouse transplanted with 

mHGGegfrvIII-7-Gluc 33 days before. (D) The plot shows the effects of 0.1M Glycine on the activity of 

Gluc in a transplanted mouse which displayed irregular pattern of Gluc activity over the time. 
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Fig. 2.4 

 

Figure 2.4 Example mHGGegfrvIII-7 tumors of similar size derived from two BALB/c mice displaying 

very different [Gluc]T0 levels. [Gluc]T0 never reached a detectable level in the blood of t2266, while 

it exponentially grew in t2265. 
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IL-12 armed retargeted herpes simplex virus as therapy for a high-

grade glioma preclinical model 

Herpes Simplex Virus 1 (HSV-1) is among the most studied oncolytic viruses for treating several 

types of cancers. HSV-1 has relevant characteristics as therapeutic agent: it has a large genome 

that can accommodate exogenous genes, it does not integrate into the host genome and is not 

oncogenic [88, 143, 144]. Moreover, anti-HSV-1 drugs are available to shut off virus replication in 

case of uncontrolled infection. Oncolytic HSVs (oHSVs) are emerging as one of the effective 

therapies to fight malignant neoplasms lacking effective therapeutic alternatives. Clinical trials 

are ongoing to test the safety and the efficacy of oHSVs against colorectal, breast and non-

resectable pancreatic cancers [145-147]. Recently, T-VEC, an oHSV with tumor-selective 

replication which expresses GM-CSF (granulocyte monocyte colony stimulating factor), has 

been approved as therapy for non-resectable metastatic melanoma [148, 149]. 

A noteworthy potential target for oHSVs therapy is glioblastoma [84], the most aggressive form 

of brain tumors, and one of the most lethal types of human cancer, classified by WHO as grade 

IV glioma [150]. The life expectancy of glioblastoma patients has not substantially changed in 

the past 50 years. When treated with the standard of care protocol, patients may survive for up 

to 15 months; only 10% of them survives for more than five years from diagnosis [51]. Challenging 

properties of glioblastoma are its tendency to infiltrate the healthy brain parenchyma and its 

high radio- and chemo-resistance. As a consequence, the incidence of recurrence after surgical 

resection is high. Oncolytic virotherapy may represent a breakthrough since viral spread could 

potentially hit disseminating cells. Oncolytic viruses have the advantage that they can spread 
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among cancer cells and kill them. In addition, they stimulate the immune system so as to break 

the tolerance against the tumor. 

Although for a long time the central nervous system (CNS) has been considered a privileged site 

of immunity, now this paradigm is disputed and there is growing evidence that activated T cells 

are able to recognize their targets even when they are located within the CNS parenchyma [151, 

152]. oHSVs offer the possibility to be armed with immunostimulatory molecules. In recent 

years, evidence has been provided that the expression of mIL-12 increases the effectiveness of 

oncolytic viruses by activating the immune response, thus potentiating the clearance of cancer 

cells through an immunotherapeutic effect. Preclinical trials were conducted on oHSVs armed 

with mIL-12 for ovarian cancer [153], breast cancer brain metastases [154] and also glioblastoma 

[155]. An HSV armed with IL-12 is currently under phase 1 clinical trial [156]. 

The above studies exploited HSV recombinants attenuated by genetic manipulation in order to 

achieve cancer-specific replication. As an alternative approach, we recently assayed the safety 

and the efficacy of a replication-competent retargeted oHSV, fully virulent in its target cells, 

named R-LM113. R-LM113 is retargeted to the human receptor tyrosine-protein kinase erbB-2 

(hHER2), a receptor expressed in a number of tumors, including a large fraction of human high-

grade gliomas (HGGs) [37-39]. In a murine model developed in our laboratory, R-LM113 

counteracted high-grade glioma [119, 120]. Of note, the retargeted oHSVs are intrinsically safer 

than the attenuated ones, replicate to higher yields, and can be readily engineered so as to 

target different cancer-specific receptors [157]. 

Here we report on the efficacy of a fully virulent, retargeted oHSV-1, armed with mIL-12, (R-115; 

L. Menotti, et al., unpublished manuscript) in counteracting glioma. The effects of treatment 
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were tested against established orthotopic HGGs in a syngeneic glioma model in BALB/c mouse 

strain. 

Materials and methods 

Animal procedures 

Mice were handled in agreement with the guidelines conforming to current Italian regulations 

for the protection of animals used for scientific purposes (D.lvo 27/01/1992, no. 116). Procedures 

were approved by the Ethical Committee for Animal Experimentation of the National Institute 

of Cancer Research and by the Italian Ministry of Health. The experiments were performed with 

the BALB/c mouse strain. 

Tumors were implanted by injecting a suspension of 2x104 cells in adult mouse brains using a 

Hamilton syringe (Bregma coordinates: anterior-posterior, 1.0 mm anterior; lateral, and 2.5 mm 

below the skull surface). 21 days after tumor implantation, 5µl oHSV preparation, containing 2 · 

106 PFU of either R-115 or R-LM113 or gamma irradiated R-LM113 were injected at the same 

stereotaxic coordinates. Animals were monitored daily and were killed at first signs of 

neurological symptoms or at the predetermined time point. Their brains were photographed by 

fluorescence stereomicroscope (Wetzlar, Germany). 

Survival curves were determined using Kaplan–Meier survival between groups and was 

compared by log-rank test. 

Up to 0.3 ml of blood was withdrawn 20 days after treatment with oHSV. In addition, we took 

blood from long surviving mice, 4 days after the transplantation of mHGGpdgf-hHER2 in the 

contralateral hemisphere. Heparinized capillaries were used for retro-orbital bleeding 
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procedure. Samples were incubated for 6h at 60°C with heparin. Cells were removed from serum 

by centrifugation (10 minutes at 2,000 g with refrigerated centrifuge). 

Cell cultures and infection 

Platelet-derived growth factor B (PDGF-B)-induced brain tumors expressing DsRed fluorescent 

reporter were obtained as previously described [120]. Cells derived from primary tumors were 

maintained onto plates coated with Matrigel matrix (1:200; BD Biosciences, Franklin Lakes, NJ) 

in DMEM-F12 added with B27 supplement, human bFGF and EGF (10 ng/ml). mHGGpdgf cells were 

transduced with RAVI-hHER2 retroviral vectors and sorted by FACS based on the expression of 

the receptor. 

The construction and production of the recombinant oHSVs R-LM113 and R-115, retargeted to 

hHER2, was described elsewhere [94, 158]. Cells were infected with R-115 or R-LM113, at the 

indicated multiplicity of infection estimated on the basis of titer determined in SK-OV-3 cells. The 

efficiency of infection was monitored under inverted microscope (EVOS FL Cell Imaging System, 

ThermoFisher Scientific, Waltham, MA, USA) by means of enhanced green fluorescent protein 

(EGFP) expression for both viruses. The percentage of infected cells was evaluated by loading 

them on a hemocytometer and acquiring pictures/imaging with a motorized epifluorescence 

microscope (Axio Imager.M2, Zeiss, Oberkochen, Germany). Images were automatically 

analyzed with an ImageJ plug-in (Rasband, W.S., ImageJ; US National Institutes of Health, 

Bethesda, MD, http://rsb.info.nih.gov/ij/, 1997–2007), which allows to measure and plot area and 

fluorescence intensity of each cell. 
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mIL-12 was quantified from the supernatants of mHGGpdgf-hHER2 cells infected at 0.1, 0.3 or 1 

PFU/cell with R-LM113 or R-115, using the Mouse IL-12 (p70) ELISA Plate kit (ThermoFisher 

Scientific, Waltham, MA, USA). 

Immunostaining and flow cytometry 

For flow cytometry and cell sorting, mHGGpdgf-hHER2 cells were stained in suspension with 

mouse monoclonal antibody against hHER2 (1µg/106 cells; Santa Cruz Biotechnology, Santa Cruz, 

CA, USA). Binding of primary antibody was revealed with secondary anti-mouse CyTM2-

conjugated, (1:50; Jackson Immunoresearch, Milano, Italy). 

To detect antibodies in murine plasma, tumor cells and NIH/3T3 cells (in ratio 1:1.5) were 

incubated for 1 hour at 4°C with plasma diluted in saline solution (1:5). After washing in PBS, cells 

were incubated for 30 min with a secondary anti-mouse IgG antibody (CyTM2 conjugated, 

Jackson Immunoresearch, Milano, Italy) and analyzed by flow cytometry (CyAn ADP, Beckman 

Coulter, Indianapolis, IN, USA). Positive control consisted of mouse monoclonal antibody 

against hHER2 and secondary anti-mouse CyTM2-conjugated. The proportion of DsRed-positive 

mHGGpdgf-hHER2 cell above a threshold on the FITC-fluorescence axis among the cells were 

normalized to the mean of the proportion of cells above the same threshold among the DsRed-

negative in all samples. 

For histological analysis, brains were fixed with 4% paraformaldehyde, cryoprotected in 20% 

sucrose and sectioned with a Leica CM3050 S cryostat. Immunostainings on brain sections or 

cultured cells were performed using mouse monoclonal antibody against CD4 (1:500, BD 

Pharmingen, San Diego, CA, USA) or CD8 (1:200, Novus Biological, Littleton, USA). Binding of 

primary antibody was revealed with secondary anti-rat Alexa 488-conjugated (1:500; Jackson 
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Immunoresearch, Milano, Italy). The shapes of the sections, of tumor masses and positions of 

CD4 and CD8 were acquired by epifluorescence microscope (Axio Imager.M2, Zeiss, 

Oberkochen, Germany) by using AxioVision Rel. 4.8 (Zeiss, Oberkochen, Germany) and Slide 

Explorer2 plug-in of Micromanager [159]. A set scripts for R 3.4.0 developed in house (available 

on request) were used to produce the overlay between pictures and acquired positions of 

lymphocytes and to calculate their distances from the tumor edges. 

RNA sequencing 

For whole-exome sequencing, at least 0.01 µg RNA derived from three ex-vivo primary tumor 

sample, sorted by FACS for DsRed reporter and harvested in Trizol, was send to BGI genomics 

(BGI, Shenzhen, China) and sequenced on BGISEQ-500 RS generating 50 base-pair single-end 

reads. The high-quality clean tags were mapped to reference genome (mm10) using STAR [116]. 

To quantify the gene expression level, RSEM analysis was carried out [117], acquiring read count 

of each gene of each sample, based on the mapping results. Normalization and data trimming 

were performed by edgeR [118]. Raw and processed data are available on GEO Dataset 

(Accession number GSE109614). 

 

Results 

Mouse PDGF-driven glioma cells show hallmarks of human glioblastoma and are 

poorly immunogenic 

To study the effects of the mIL-12-armed hHER2-retargeted oHSV (R-115) on HGGs, we took 

advantage of a model of HGG based on the transduction of Platelet Derived Growth Factor-B 
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(PDGF-B) in neural progenitor cells derived from BALB/c mice, a mouse strain sensitive to HSV 

infection. The HGG model was generated by transplanting in adult mouse brains murine neural 

progenitor cells explanted at embryonic day 14 (E14) and transduced with a PDGF-B 

overexpressing retroviral vector as described [119]. The generated HGGs, hereinafter referred 

to as mHGGpdgf, express markers typical of oligodendroglial progenitor cells (OPCs) and exhibit 

histological features typical of human HGGs, as previously described [120]. Here, mHGGpdgf were 

further characterized by RNA sequencing carried on three independent tumor specimens (raw 

data are available on GEO Dataset. Accession number GSE109614). The analysis showed that 

mHGGpdgf cells express OPC markers such as Olig2, PDGFR-alpha and NG2, and stem cell markers, 

including Sox2, Stat3 and Nestin (Figure 3.1A). mHGGpdgf cells showed very low levels of mRNAs 

for immune system co-stimulatory molecules CD40 and CD80, and IL-12 and IL15 cytokines. Low 

levels of expression were also observed for the co-stimulatory molecule CD86. On the contrary, 

the immunosuppressive gene CD73 [160] was highly expressed. This pattern is consistent with 

mHGGpdgf being poorly immunogenic, as typically seen in human glioblastomas. 

Primary mHGGpdgf were microdissected, cultured and engineered to express hHER2 receptor. 

hHER2-transduced cells (hereinafter referred to as mHGGpdgf-hHER2) maintained the 

tumorigenic potential exhibited by the parental mHGGpdgf cells, and were able to consistently 

generate tumor masses after intracranic transplantation of 2 · 104 cells in adult 

immunocompetent mice leading them invariably to death. 
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R-115 efficiently infects hHER2-positive murine glioma cells in vitro, and mediates mIL-

12 secretion 

To assess if mHGGpdgf-hHER2 are susceptible to R-115 infection in vitro and to compare R-115 with 

R-LM113, whose efficiency was reported earlier [120], we infected mHGGpdgf-hHER2 cells with R-

115 or R-LM113 at the multiplicity of infection (MOI) of 0.5 plaque-forming units (PFU) per cell, as 

titrated in SK-OV-3 cells. Viral infection was scored as expression of the EGFP reporter gene 

inserted in the virus genome. After 30 hours, we observed an equivalent percentage of infected 

cells in the R-115- and R-LM113-infected cultures (Figure 3.1 B and C). To ensure that R-115 

exhibited the specific hHER2 tropism typical of the parental R-LM113, the control hHER2-

negative mHGGpdgf monolayers were inoculated with R-115. No EGFP-positive infected cells were 

detected up to 96 hours after exposure to the virus (Figure 3.1D). mHGGpdgf-hHER2-expressing 

cells infected with R-115 and monitored for 72 h after infection produced and secreted mIL-12 in 

the medium, in a MOI-dependent fashion (Figure 3.1E). In addition, we monitored the time 

course of R-115 infection in mHGGpdgf-hHER2 cell monolayers, after infection at low MOI (0.01 

PFU/cell, as titrated in SK-OV-3 cells). The collected images showed that R-115 progeny was able 

to efficiently spread in culture (Figure 3.1F).  

Inhibition of tumor growth in vivo by R-115 in immunocompetent mice and induction 

of cancer-specific immune memory 

R-115 efficacy in counteracting gliomas was analyzed as ability to inhibit the progressive growth 

of established mHGGpdgf-hHER2 tumors in vivo. Mice bearing tumors induced by orthotopic 

transplantation of mHGGpdgf-hHER2 cells in the left cranial hemisphere were randomized and 

treated by intracranic injection of 2·106 PFU of R-115 (R-115 arm), or the same amount of R-LM113 
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(R-LM113 arm), 21 days after tumor implantation. The control group was injected with an 

equivalent volume of gamma-irradiated R-LM113 (control arm). The animals that did not survive 

intracranial injection procedure and died within 3 days from virus injection were excluded from 

the experiment (n=1). In total, we analyzed 14 surviving mice in the R-115 arm, 12 mice in the R-

LM113 arm and 6 mice in the control arm. 

The median survival time of animals in the control arm was 15 days from the treatment. Mice 

belonging to the R-LM113 and R-115 arms showed a median survival time of 35 and 33 days from 

the treatment, respectively. Both figures are significantly different from that in the control arm 

(Rank-test p<0.001 both for R-LM113 and R-115; Figure 3.2A). No difference in term of median 

survival time was detected between the two different oHSVs. However, a dramatic difference 

between the R-LM113 and R-115 arms was evident in terms of long survivors. While in the R-LM113 

arm all mice died within 48 days from treatment, in the R-115 arm 29% of mice (n=4) were still 

alive 100 days after the virus treatment. Two of them were sacrificed and resulted tumor-free 

(Figure 3.2B). The other two mice were implanted with additional 2 · 104 mHGGpdgf-hHER2 cells 

in the contralateral hemisphere relative to the first injection. In parallel, the same amount of 

cells was injected into the right hemisphere of three control mice. The animals belonging to the 

control set died within 26 days after transplantation. Conversely, the two mice that had 

undergone mIL-12 expressing oHSV administration were still alive 220 days after the transplant 

in the contralateral hemisphere (Figure 3.2C), demonstrating that they acquired resistance to 

the tumor, likely due to immune memory.  
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R-115 elicits production of antibodies and the infiltration of CD4 and CD8 positive cells 

in the tumor  

To provide direct evidence that R-115 elicits a tumor-specific response, we transplanted 14 

additional mice with mHGGpdgf-hHER2 cells. After 21 days, 6 mice were injected with R-115 and 5 

with R-LM113 (2·106 PFU/mouse). After further 20 days, we took the blood from the retro-orbital 

sinus to check whether the mice had developed antibodies targeting mHGGpdgf-hHER2 antigens. 

Blood was also drawn from the two long-surviving mice from the R-115 arm of the previous 

experiment, from two non-transplanted mice (naïve), from three mice transplanted with 

mHGGpdgf-hHER2 cells and not treated with virus. The plasma samples were assessed for the 

presence of antibodies against mHGGpdgf-hHER2 cells, by checking their reactivity with 

mHGGpdgf-hHER2 cells. The plasma samples were incubated with a cell mixture constituted by 

DsRed-labeled mHGGpdgf-hHER2 cells and unlabeled murine fibroblasts (NIH/3T3), as internal 

negative control. Following incubation with a FITC-conjugated anti-mouse IgG secondary 

antibody, the increase in FITC fluorescence of DsRed-labeled cells was measured (Figure 3.3A). 

This analysis showed that no antibodies were detectable in the plasma of naïve (non tumor-

transplanted) mice, nor in those of mice receiving tumor cells but no virus injection. In contrast, 

immunoreactivity was clearly detectable in the plasma of 2 out of 5 animals from the R-LM113 

group, and in 5 out of 6 animals from the R-115 group. Immunoreactivity was also detected in 

the plasma of both long surviving mice. To evaluate the specificity of immunoreactivity of 

plasma samples, we took advantage of the internal negative control, which allowed to 

discriminate between specific and unspecific FITC signal. To do so, we normalized the fraction 

of mHGGpdgf-hHER2 cells above a fixed FITC threshold to the fraction of NIH/3T3 cells above the 
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same FITC threshold (i.e. unspecific signal; Figure 3.3B, C). This analysis allowed to test by one 

way Anova followed by a TukeyHSD post-hoc test the levels of immunoreactivity in the three 

groups. The analysis confirmed that there was a significant difference (Anova p<0.05) and the 

difference was between R-115 and the control group.  

Next, we carried out the same assay with the parental hHER2-negative mHGGpdgf cells. The 

reactivity was much lower than that against mHGGpdgf-hHER2, suggesting that the immune 

response elicited by oHSV infection was mainly targeting the xenogeneic hHER2 receptor. 

However, three plasma samples exhibited a higher reactivity, those drown from the two long 

survivor mice from the R-115 arm of the first experiment, and one of the mice that had received 

R-115 (Figure 3.3D). 

Beside the humoral immune response, IL-12 is known to activate T-cell response [161]. An 

increase in the number of T-lymphocytes a few days after oHSVs armed with mIL-12 was 

reported [162]. We analyzed the brains of 11 mice treated with R-LM113 or R-115 at 22 days after 

virus administration. The brains were analyzed for the presence of CD4- and CD8-positive cells 

by immunostaining. While the overall number of CD4- and CD8-positive cells did not significantly 

differ between animals treated with R-LM113 or with R-115, we observed a striking difference in 

their intratumoral distribution, depending on the injected oHSV. Thus, CD4- and CD8-positive 

cells accumulated at the edge of the tumors treated with R-LM113, while they deeply infiltrated 

the tumor masses in the animals treated with the mIL-12 expressing R-115 (Figure 3.4A-D). A 

quantification of the distances of CD4- and CD8-positive cells inside the tumor masses from the 

nearest edge of the tumor was performed on 5 independent tumors for each treatment (Figure 

3.4E,F). T-test confirmed a significant difference between R-LM113 and R-115 groups for both 

CD4 and CD8 cells tumor localization (p<10-12), arguing that the mIL-12 armed oHSV strongly 
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promoted CD4- and CD8-positive infiltration of the tumors masses which, otherwise, tend to 

exclude lymphocytes. 

Discussion 

To our knowledge, this is the first study where a retargeted, fully virulent oHSV armed with mIL-

12 has been tested on orthotropic high-grade gliomas. The murine glioma employed here 

(mHGGpdgf) is highly invasive, shows 100% penetrance after intracranic transplantation in 

immunocompetent mice, and exhibits an immunosuppressive gene expression profile, similar 

to that of human glioblastomas. Like human glioblastomas, it is rather resistant to a number of 

treatments, including chemotherapy and experimental gene therapy [163], and it invariably 

leads to animal death. In our experience, all the different treatments tested (temozolomide 

administration, peptide immunotherapy, oHSVs) on mHGGpdgf harboring mice led, at best, to an 

improvement in the median survival time [119, 120, 163]. So far, one of the most effective 

treatments was that with the fully virulent retargeted oHSV (R-LM113) [119] of which R-115, 

employed in this work, represents an evolution, by the insertion of mIL-12 expression cassette 

(L. Menotti, et al., unpublished manuscript). In the present work, 2·106 PFU of R-115 was 

administered in a single injection session in animal harboring already established tumors. The 

timing for treatment was selected based on the survival curves previously determined for 

mHGGpdgf-hHER2 to be shortly before the first animals exhibited disease symptoms. Strikingly, 

about 30% of the R-115 treated animals underwent permanent and complete remission and 

resulted even resistant to a distant re-challenge with the same tumor cells. In our experience, 

this is the first time that a complete tumor eradication is achieved in this tumor model, as reliably 

established by the lack of any fluorescently (DsRed) labelled cells. 
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The overall median survival time of mice treated with R-115 was doubled in comparison to that 

of the mock treated animals, although it was not significantly different from that of the animals 

treated with the non-armed version of the oHSV (R-LM113). Current findings differ from the 

reported efficacy study on mIL-12-armed versus non-armed versions of attenuated oHSVs, based 

on the deletion of the γ134.5 virulence gene [155, 162]. The main difference between our results 

and the former lies in the higher efficacy of R-LM113 on the overall survival time: indeed, unlike 

attenuated oHSVs, fully virulent R-LM113 was, by itself, already capable to double the median 

survival time even when injected in large neoplastic masses.  

Noteworthy, the effect on overall survival and eradication was obtained with a single 

administration of low amount of R-115 on grown tumors, in close proximity to the time in which 

they would have exhibited neurological symptoms, as it can be deduced from the survival curves 

of the control arm mice. It is therefore conceivable that protocol employed in earlier studies, 

consisting of repeated sessions of injections or earlier treatments [155], would result in higher 

R-115 efficacy. Recently, higher percentages of experimental glioma eradication in 

immunocompetent mice have been obtained with mIL-12 expressing attenuated oHSV [164]. 

However, that result was obtained only when the IL-12-expressing oHSV was employed in 

combination with two immune checkpoint inhibitors (anti CTLA-4 and anti PD1 antibodies); this 

protocol cannot be readily translated to clinical practice due to toxicity of the antibodies in trials 

[165]. 

Our observations show that the mIL-12 expressing hHER2 retargeted R-115 enhanced the 

production of antibodies targeting the transplanted glioma cells. The immunoreactivity was 

mostly directed to the exogenous human receptor hHER2, expressed by mHGGpdgf-hHER2. 
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However, a subset of animals (about 1/3, among which the long survivors) showed 

immunoreactivity also against the parental mHGGpdgf cells, lacking hHER2.  

Beside an enhanced humoral response, it is well known that T-cell response is activated by mIL-

12 [161]. We investigated CD4 and CD8 positive population in brain sections. Our analysis did not 

highlight differences in terms of the total amount of CD4 and CD8 positive cells in the long term. 

However, a striking difference in the distribution of these cells was evident 20 days after virus 

injection. In mice treated with R-LM113, CD4 and CD8 positive cells appeared confined at the 

tumor edges, as observed in cold (i.e. excluded) tumors [166], while they were able to infiltrate 

deeply the entire tumor masses in mice treated with R-115, arguing that mIL-12 influenced the 

immune cell landscape within the immunosuppressive tumor microenvironment. 

This study provides a proof of concept of the benefits of a retargeted, fully virulent, oHSVs over 

attenuated oHSVs to counteract high-grade gliomas by overexpressing mIL-12, and suggests 

they are the fully eligible candidates for oHSV-based glioblastoma treatment.  
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Figures 

Fig. 3.1 

 

 

Figure 3.1 

(A) Expression levels of the whole transcriptome of mHGGpdgf cells as determined by RNA-seq 

analysis from three independent tumors. Genes of interest are highlighted and the level of their 

expression is represented as a bar summarizing the results from the 3 samples. Black dots represent 

the median. Dashed red line represents the overall median expression level across the whole 

transcriptome. The arrangement of the genes along the x axis is randomized. This analysis shows 

that mHGGpdgf cells express OPC markers Olig2, PDGFR-alpha and NG2 and stem cell markers Sox2, 

Stat3 and Nestin. mRNAs for CD40, CD80 and CD86, IL-12 and IL15 are expressed at low levels, while 
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CD73 gene is highly expressed. This pattern is consistent with mHGGpdgf poor immunogenicity, 

similar to that of human glioblastomas. (B-D) Infection of mHGGpdgf-hHER2 cells with 0.5 PFU/cell of 

R-LM113 (B) or R-115 (C), or of the parental mHGGpdgf cells with 0.5 PFU/cell of R-115 (D). Pictures were 

taken at 30 hours after infection. Histograms show the corresponding cytofluorimetric 

quantifications of the cells expressing the EGFP reporter expressed by the viral genome. The 

insertion of the mIL-12 expression cassette in R-LM113 genome, resulting in R-115 recombinant, did 

not impair the efficiency of infection and the specificity of retargeting. (E) ELISA quantification of 

mIL-12 concentration in supernatants of mHGGpdgf-hHER2 cells infected with R-LM113 (red bars) or 

R-115 (blue bars) at the indicated MOI and times after infection. Error bars indicate standard 

deviation. (F) Time course of R-115 infection in mHGGpdgf-hHER2 monolayers (input MOI 0.01 

PFU/cell). Scale bars 50µm. 

  



 

74 

Fig. 3.2 

 

Figure 3.2 

(A) Kaplan-Meyer survival curves of mice transplanted with mHGGpdgf-hHER2 and treated after 21 

days with R-LM113 (green line), R-115 (blue line) and gamma-irradiated R-LM113 (control; red line). 
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Rank-test p<0.001 both for R-LM113 arm and R-115 arm, compared to the control arm. About 30% 

of mice were still alive 100 days after treatment with R-115. (B) Representative dorsal and ventral 

images of brains from mice of the control arm (a), the R-115 arm (b) and a long surviving mouse 

from R-115 arm, found to be tumor free (c). In all micrographs the red channel shows the DsRed 

fluorescent reporter expressed by mHGGpdgf-hHER2 cells, the green channel shows the viral 

reporter EGFP. c': coronal section of the brain of panel in c at the level of injection site. (C) Kaplan-

Meyer curves of the long surviving mice from R-115 arm rechallenged by a second transplantation 

of mHGGpdgf-hHER2 in the contralateral hemisphere, 125 days after the first tumor transplantation 

(blue line), and control naïve mice transplanted with the same preparation of mHGGpdgf-hHER2 

cells (red line). Long surviving mice were still alive 220 days after rechallenged with mHGGpdgf-

hHER2 cells.  
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Fig. 3.3 

 

Figure 3.3 

(A) Development of antibodies against mHGGpdgf-hHER2 cells by mice treated with R-LM113 or R-115 

oHSV. Plasma samples drawn from mice treated with the indicated virus were evaluated for their 

ability to label mHGGpdgf-hHER2 cells. Green areas represent the events above the fluorescent 

intensity threshold determined from the negative control. (B) Evaluation of the specificity of the 

immunoreactivity of the plasma of two representative mice tested by evaluating the ability of 

plasma samples to specifically label mHGGpdgf-hHER2 cells in a mixture containing both mHGGpdgf-
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hHER2 (labelled with DsRed) and unlabeled NIH/3T3 as negative control. (C) Ratio between 

(specifically) labelled mHGGpdgf-hHER2 cells and the (unspecifically) labelled NIH/3T3, each 

normalized to the size of the respective population, calculated for all the plasma samples from 

control-, R-LM113- and R-115-arm, graphed as boxplot. Plasma samples from mice of R-115 arm 

appeared more immunoreactive than those from mice of control arm (Anova p<0.05). (D) The 

same assay was repeated using the parental mHGGpdgf cells instead mHGGpdgf-hHER2. The diagram 

shows that the plasma of three mice from R-115 arm (two of which are long survivors) displays 

immunoreactivity against the parental population. 
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Fig. 3.4 

 

Figure 3.4 

Brain sections of mice transplanted with mHGGpdgf-hHER2 cells and treated with R-LM113 (A-B) or 

with R-115 (C-D) were immunostained for CD4 (A,C) or CD8 (B,D). Positive cells (green) were 

encircled in white as shown in the inserts. Both CD4 and CD8 lymphocytes were found at the edges 

of tumors in the animals treated with R-LM113 (A,B) while they strongly infiltrated the tumor 

masses in the animals treated with R-115 (C,D). Tumors are represented as pink areas. (E,F) The 
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distance from the nearest edge of the tumor mass of each CD4-positive cell (E) or CD8-positive cell 

(F) inside the tumor was measured in sections of 10 independent animals treated with R-LM113 or 

R-115. The results are depicted as bee swarm plots and cumulative box plots. The data confirm the 

difference of the distribution of both CD4 and CD8 lymphocytes between the treatment with the 

two different oHSVs (t-test p<10-12).  
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Efficacy of EGFR-vIII retargeted herpes simplex virus treatment in 

a preclinical model of human glioblastoma 

The epidermal growth factor receptor (EGFR) induces proliferation and/or has a trophic effect 

on multiple cell types [167]. The EGFR is expressed at high levels in various types of cancer, 

suggesting a role in the pathogenesis of multiple cancer types [168]. In particular, EGFR gene 

amplification and overexpression are a striking feature of glioblastoma. 

The most common EGFR mutant is its constitutively active form EGFRvIII, generated from a 

deletion of exons 2 to 7 of the gene, which results in an in-frame deletion of 267 amino acids 

from the extracellular domain of the receptor. Though low-level in nature, constitutive signaling 

downstream of EGFRvIII leads to increased glioblastoma cell survival in vivo through selective 

augmentation of various mitogenic factors, namely Akt and repression of apoptosis via 

enhanced Bcl2 family member expression [20]. 

The exclusive expression of EGFRvIII on tumor cells makes it an ideal target for patients with 

GBM. Among the promising approach that have been developed to specifically hit glioma cells, 

the employment of oncolytic viruses is extensively studied. We obtained a proof of concept of 

the feasibility and efficacy of an oncolytic therapy for a murine model of high grade glioma with 

a herpes virus retargeted to HER2 [119, 120], and a striking improvement by using a version of 

the same virus armed with interleukin-12 (see chapter 3). 

Here, we tested a novel oncolytic virus, retargeted to the human receptor EGFRvIII on a 

xenotransplanted human glioblastoma model, by evaluating its efficacy in human tumor 

initiating cells derived from patients and endogenously expressing EGFRvIII. 
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Materials and methods 

Animal procedures 

Mice were handled in agreement with guidelines conforming to current Italian regulations for 

the protection of animals used for scientific purposes (D.lvo 27/01/1992, no. 116). Procedures 

were approved by the Ethical Committee for Animal Experimentation of the IRCCS San Martino-

IST and by the Italian Ministry of Health. The experiments were performed on the Nod/Scid 

mouse strains. Anesthetized animals were injected by way of a stereotaxic apparatus. Up to 5 

µl of suspension, containing from 105 cells preparations, were injected using a Hamilton syringe 

(Bregma coordinates: anterio-posterior, 1.0 mm; lateral, 1.5 mm left and 2.5 mm below the skull 

surface). Resorbable suture was used before awakening the animals. Animals were then 

monitored daily and killed at first sign of neurological symptoms Their brains were then 

explanted and photographed under a Leica fluorescence stereomicroscope (Wetzlar, 

Germany). 

Gluc assays were carried on twice a week, by collecting about 5 µl of blood from the tail tip of 

mice in tube containing 0.5M EDTA. 

Survival curves were determined using Kaplan–Meier analysis and survival between groups was 

assayed by log-rank test. 

Cell cultures, transduction procedures and infection 

Human glioma initiating cells (hGIC), included L0306, kindly provided by Dr. R. Galli [140], 

engineered with oCAG:mGFP-Gluc, were maintained as spheres in Neurocult Medium 

supplemented with NeuroCult NS-A (StemCell Technologies, Vancouver, British Columbia, CA), 
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human recombinant fibroblast growth factor 2 (10 ng/ml; PeproTech, Rocky Hill, USA), 

epidermal growth factor (20 ng/ml; PeproTech, Rocky Hill, USA) and Heparin (2µg/ml, Sigma-

Aldrich, Milano, Italy). 

Cultures from tumors were established microdissecting DsRed-positive areas under a 

fluorescence microscope and trypsinizing them for 20 minutes. Cells were maintained in the 

medium described above. 

The construction and production of the recombinant oHSV R-LM613 was described elsewhere 

[158]. Cells were infected with R-LM613, at the indicated multiplicity of infection estimated on 

the basis of titer determined in SK-OV-3 cells. The efficiency of infection was monitored under 

inverted microscope (EVOS FL Cell Imaging System, ThermoFisher Scientific, Waltham, MA, 

USA) by means of enhanced green fluorescent protein (EGFP) expression for the virus. The 

percentage of infected cells was evaluated by loading them on a hemocytometer and acquiring 

pictures/imaging with a motorized epifluorescence microscope (Axio Imager.M2, Zeiss, 

Oberkochen, Germany). Images were automatically analyzed with an ImageJ plug-in (Rasband, 

W.S., ImageJ; US National Institutes of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/, 1997–

2007), which allows to measure and plot area and fluorescence intensity of each cell. 

Western blot analysis 

Protein extracts, separated by SDS-PAGE and transferred onto PVDF membranes, were probed 

with antibodies against EGFR (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) or actin 

(1:5000, Chemicon, Billerica, MA). Proteins of interest were detected with HRP-conjugated 

sheep anti-mouse IgG antibody (1:5000, GE Healthcare, Uppsala, Sweden) and visualized with 

the ECL (EuroClone S.p.A., Milano, Itlay). 
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Gaussia luciferase assay 

Gluc activity was evaluated in a reaction set up obtained by combining 5µl of blood sample with 

a buffer constituted by 17.5 µl of Stop & Glo® Buffer (Promega, Milano, IT) supplemented with 

coelentherazine , and 17.5 µl of a buffer containing HEPES 75mM; DTT 20 mM, EDTA 100 µM, pH 

8.0. The luminometer (Promega Glomax 20/20n) was set to acquire a series of 40 consecutive 

measures with an integration time of 1 second. Data analysis was performed in R environment 

3.4.2 [118] with software built in house. 

Results 

R-LM613 efficiently infects human glioma cells endogenously expressing EGFRvIII in 

vitro 

Infection efficiency and specificity of R-LM613 had been previously tested on human glioma 

initiating cells (hGIC) derived from different patients and maintained in a serum-free medium 

optimized to preserve their stem features. EGFRvIII positive hTIC primary lines have been 

evaluated in EGFRvIII expression by rtPCR (data not shown). EGFRvIII positive hTICs have been 

infected in vitro with R-LM613, at the multiplicity of infection (MOI) of 0.5 plaque-forming units 

(PFU) per cell, as titrated in SK-OV-3 cells. As negative control, human neural stem cells (hNSCs) 

or EGFRvIII negative cells have been infected with the same amount of the virus. R-LM613 was 

able to efficiently infect EGFRvIII positive hTICs, but did not infect NSCs (Fig. 4.1A) or EGFRvIII 

negative cells (data not shown). Viral infection was scored as expression of the EGFP reporter 

gene inserted in the virus genome 48 hours after infection (Fig 4.1B). 
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The different hTIC lines, once transplanted into immunodeficient mice, develop tumors that 

have different rates of growth. Between hTIC lines we tested, one of them, named L0306 and 

kindly provided by Dr. R. Galli [140], have proved to grow faster in vivo, permitting us to carry 

on experiments in reliable times. Thus, them have been assayed for EGFRvIII expression by 

Western Blot (Fig. 4.1C). L0306 expressed high levels of EGFRvIII and thus we employed this 

hTIC line to performed the followiong experiments. We monitored the time course of viral 

infection in L0306 cells in the 120 hours after infection at low MOI (0.1 pfu/cells) of R-Lm613. The 

collected images showed that R-LM613 progeny was able to efficiently spread in culture 

(Fig.4.1D). 

Oncolytic effect of R-LM613 on human gliomas endogenously expressing EGFRvIII in 

vivo 

L0306 were transduced with Ravi:DsRed-Gluc construct expressing the fluorescent reporter 

DsRed and the Gaussia luciferase (L0306-Gluc), in order to monitor the development of tumor 

in vivo with a non-invasive assay, as previously described above (chapter 2). To assess the 

efficacy of R-LM613 in counteracting in vivo the development of human gliomas endogenously 

expressing EGFRvIII, we used at first an experimental approach designed to mimic the earliest 

possible treatment of the neoplasia, already used in previous studies [119, 120].  A cohort of 45 

Nod/Scid mice, randomly allocated so that the possible confounding factors such as age, gender 

and weight, were intracranially transplanted in two independent sessions with human hTICs. A 

first group of animals (n=27, herein referred as to control arm) were injected with 1e5 of L0306-

Gluc cells. A second group of animals (n=18, R-LM613 arm) were transplanted with the same 

number of L0306-Gluc cells and, in addition, with 1e5 cells infected in vitro 24 hours before with 
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RLM613 at 1 MOI. EGFP reporter expression was quantified before transplantation. 30% of 

positive cells were observed in this additional population of cells, so we can inferred that, at the 

moment of injection, 15% of cells have been previously infected by R-LM613. 

Mice were monitored for more than 160 days. To dynamically estimate the tumor size during 

time, and to monitor the intracranial growth of gliomas, up to 10 µl of blood were withdrawn 

from the tip of the tail of the mice twice a week and Gaussia luciferase activity assay was 

performed [169]. In the control arm, we observed a volumetric increase of tumor masses from 

the first days after the transplant. On the contrary, in the mice belonging to the R-LM613 arm 

we observed a long period of latency before the onset of tumor growth (Fig. 4.2A) 

The median survival time of animals of the control arm was 82 days. Survival time of mice 

belonging to the R-LM613 arm appeared significantly increased, showing a median survival time 

of 114 days (Rank-test p<0.001, Figure 4.2B). All the mice of the control arm showed neurological 

symptoms within 112 days after transplant, due to the development of larges DsRed positive 

tumor masses. Only a mouse belonging to the R-LM613 arm showed symptoms of neurological 

distress 50 days after tumor cell transplantation. The analysis of explanted brain of this mouse 

showed a DsRed tumor mass extensive infected by R-LM613. No other mice of R-LM613 arm 

showed neurological symptoms before 106 days after transplant, and more than 60% of this 

animals did not show any sign of distress before the last mouse in the control arm was killed, 

after the onset of neurological symptoms. Five mice of R-LM613 arm were killed without the 

onset of neurological symptoms from 114 to 152 days after transplant. The analyses of explanted 

brains of these animals revealed DsRed positive tumor masses with EGFP positive areas, 

indicating ongoing infection more than 114 days after treatment with the virus (Fig. 4.3C). The 

last three animals of the R-LM613 arm were killed in absence of symptoms of neurological 
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distress 167 days after tumor cell transplantation. Brains of these mice contained only a few 

DsRed tumor cells. 

L0306 cells dissociated from tumor masses that had carried the animals to death despite 

treatment were tested for in vitro susceptibility to R-LM613. The virus is still able to infect them 

(Fig. 4.2D), showing that ability of the tumor cells to survive treatment is not due to the 

development of resistance to the virus and suggesting that a subsequent or longer treatment 

may further increase the survival of the animals. 

Conclusions 

Malignant brain tumors continue to be rapidly progressive and resistant to most treatments. A 

variety of antigens specifically enriched in brain tumors have been proposed to serve as targets 

for therapies. Among them, the constitutively active form of EGFR, EGFRvIII, which promotes 

ligand independent signaling, is expressed by 25% to 30% of high-grade gliomas, making it an 

interesting target for new therapies. 

The employment of fully virulent, retargeted oHSVs for treatment of high grade gliomas has 

been proved in preclinical murine models. Here, the efficacy of an oHSV fully retargeted to 

EGFRvIII (named R-LM613) was evaluated in human glioma xenotransplanted in 

immunodeficient mice. 

As first experiment on this model, we use an experimental scheme mimic the administration of 

the virus at the earliest possible (namely at the same time of glioma transplantation). The 

treatment with R-LM613 improved significantly the survival of mice, demonstrating the ability 

of the virus to inhibit the growth of glioma cells expressing endogenously the target molecule 

EGFRvIII. Importantly, the analysis of the brains revealed EGFP-expressing cells also in animals 



 

87 

dying very late. Thus, the ability of the tumor cells to survive to the treatment is not due to the 

development of resistance to the virus. This observation suggests the survival of the animals 

may increase more by using multiple or longer treatments. 

Human glioma initiating cells were transduced with the Gaussia luciferase before transplant in 

mouse brains, in order to monitor tumor growth during time in a non-invasive manner, as 

described in chapter 2. This assay was demonstrating a suitable tool to study the impact of 

treatment on tumor growth. Curves obtained showed that the early infection with HSV R-LM613 

causes a significant delay in the onset of the tumor mass inhibiting the tumor development for 

a long time. Data obtained, however, suggest that, when tumor find the way to escape from 

viral infection, growth rate is similar to that of untreated masse, leading to a rapid increase of 

the tumor mass. 

This study provides the evidence that retargeted HSVs can increase animal survival of mice 

transplanted with human gliomas that express EGFRvIII endogenously, and therefore 

represents a step forward towards the possibility to treat human high grade gliomas with 

retargeted oHSVs.   
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Figures 

Fig. 4.1 

 

Figure 4.1 

(A) Infection of EGFRvIII-positive human tumor initiating cells from several glioma patients or 

human normal neural stem cells with 0.5 PFU/cell of R-LM613. (B). Dot plots show the 

quantifications of the cells expressing the EGFP reporter expressed by the viral genome 48h after 

infection with R-LM613. The virus is specific for EGFRvIII positive cells. (E) Western blot analysis of 

protein extracts from L0306 or mHGGegfrvIII cells and detected with anti-EGFR antibody. L0306 cells 

express the constitutively active receptor EGFRvIII. β-actin was used by normalize whole protein 

amount. (D) Time course of R-LM613 infection in L0306 monolayers (input MOI 0.01 PFU/cell). Scale 

bars 50µm.  
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Fig. 4.2 

 

Figure 4.2 

(A) Gaussia luciferase measurements over time from mice transplanted with L0306 cells (orange 

lines) or mice transplanted with the same preparation together with a fraction of L0306 cells (15%) 

pre-infected in vitro with R-LM613 (blue lines). The virus is able to delay the onset of tumor masses. 

(B) Kaplan-Meyer survival curves of mice receiving the early treatment (blue line) and of mice from 

control arm (orange line). Rank-test p<0.001. Mice treated with the virus survive significantly 

longer than the control ones. (C) Representative dorsal image of brains from mice of the R-LM613 

arm, where the viral infection (green area) is clearly present more than 100 days after transplant. 

(D) Infection of cells explanted by a tumor from R-LM613 arm with the same R-LM613 virus. Tumor 

cells did not developed a resistance but are still susceptible to virus infection.  
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Abstract 

Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo 

orthotopic models could doubtless represent an appropriate tool to test novel treatment for 

gliomas. However, methods commonly used to monitor the growth of glioma inside the mouse 

brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure, 

based on a secreted luciferase (Gaussia luciferase), to frequently monitor the changes of glioma 

size. 

Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week, 

allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity 

and tumor size by analysing the tumor after brain dissection. We found that this method is reliable 

for monitoring human glioma transplanted in immunodeficient mice, but it has strong limitation in 

immunocompetent models, where an immune response against the luciferase is developed during 

the first weeks after transplant. 
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Abstract 

Background: Oncolytic herpes simplex virus (oHSVs) are proving effective in clinical trials and 

practice against a number of cancers. Our aim was to determine the efficacy of a retargeted oHSV, 

fully virulent in its target cells and armed with mIL-12 (R-115), in counteracting glioblastoma, one of 

the most lethal and less treatable human cancer.  

Methods: R-115 was designed to target cells expressing the human receptor tyrosine-protein kinase 

erbB-2 (hHER2), a receptor frequently expressed in glioblastomas, and carries no attenuation or 

deletion other than those required for retargeting. To evaluate R-115 efficacy in an 

immunocompetent environment, we expressed hHER2 in cells of a well-established glioma model, 

induced by overexpression of PDGF-B in murine neural progenitor cells. The model recapitulates the 

immunosuppressive features and lethality of human glioblastoma, invariably leading untreated 

animals to death. 

Results: A single administration of low amount of R-115 was able to eradicate the gliomas in about 

30% of treated animals and to increase significantly the overall survival time. R-115 strongly promoted 

the infiltration of tumor masses by lymphocytes. Long survivor mice developed resistance to the 

same neoplasia. 

Conclusions: Such a high degree of protection upon a single viral dose was unprecedented; it was 

not observed before with the commonly used attenuated oHSVs, including oHSVs deleted in the 

γ134.5 virulence gene. This study highlights the advantages of a fully virulent retargeted mIL-12-

expressing oHSV over attenuated oHSVs in counteracting high-grade gliomas, and suggests it is a 

candidate for oHSV-based glioblastoma treatment. 


