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SUMMARY 
 
 
Intracranial pressure (ICP) is an important monitoring modality in the clinical management of 

several neurological diseases carrying the intrinsic risk of potentially lethal intracranial 

hypertension (ICH). Considering that the brain is in an enclosed compartment, ICH leads to 

brain hypoperfusion and eventually ischaemia followed by irreversible neuronal damage. 

Traumatic brain injury (TBI), for instance, is a condition in which ICH is strongly associated 

with unfavourable outcome and death. 

Although ICP can guide patient management in neurocritical care settings, this parameter is 

not commonly monitored in many clinical conditions outside this environment. The invasive 

character of the standard methods for ICP assessment and their associated risks to the patient 

(like infections, brain tissue lesions, haemorrhage) contribute to this scenario. Such risks have 

prevented ICP assessment in a broad range of diseases like in patients with risk of 

coagulopathy, as well as in other conditions in which invasive assessment is not considered or 

outweighed by the risks of the procedure. Provided that knowledge of ICP can be crucial for 

the successful management of patients in many sub-critical conditions, non-invasive 

estimation of ICP (nICP) may be helpful when indications for invasive ICP assessment are 

not met and when it is not immediately available or even contraindicated.  

Several methods for non-invasive assessment of ICP (nICP) have been described so far. 

Transcranial Doppler (TCD), for instance, is primarily a technique for diagnosing various 

intracranial vascular disorders such as emboli, stenosis, or vasospasm, but has been broadly 

utilised for non-invasive ICP monitoring due to its ability to detect changes in cerebral blood 

flow velocity derived from ICP variations. Moreover, TCD allows monitoring of these 

parameters as they may change in time.  

Optic nerve sheath diameter ultrasonography (ONSD) is another non-invasive tool which 

gained interest in the last years. The optic nerve sheath is in continuous with the subarachnoid 

space, and when ICP increased, the diameter of ONSD enlarges proportionally to ICP.  

The focus of this thesis is on the assessment, applications and development of ultrasound-

based for nICP assessment in different clinical conditions where this parameter is relevant but 

in many circumstances not considered, including TBI and other neurological diseases 
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associated with impairment of cerebral blood flow circulation. As main results, ONSD and 

TCD-based non-invasive methods could replicate changes in direct ICP across time 

confidently, and could provide reasonable accuracy in comparison to the standard invasive 

techniques. These findings support the use of ultrasound based non-invasive ICP methods in a 

variety of clinical conditions requiring management of intracranial pressure and brain 

perfusion. More importantly, the low costs associated with nICP methods, ultrasound 

machines are widely available medical devices, could contribute to its widespread use as a 

reliable alternative for ICP monitoring in everyday clinical practice. 
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INTRACRANIAL PRESSURE MONITORING 

The concept of intracranial pressure (ICP) was first described in 1783 by the Scottish 

anatomist Alexander Monro, who described the skull as a rigid structure containing 

incompressible brain and stated that a constant drainage of venous blood is required to allow 

continuous arterial supply (1,2). These assumptions were later confirmed in autopsy studies 

by George Kellie of Leith (3), whose findings were postulated as the Monro-Kellie doctrine. 

The doctrine was modified throughout the years with contributions of Vesalius (description of 

fluid-filled brain ventricles), François Magendie (establishment of the concept of 

cerebrospinal fluid – CSF (4)), George Burrows (reciprocal relationship between the volumes 

of CSF and blood (5)). However, it was Harvey Cushing in 1926 (6), who formulated the 

classic explanation of the doctrine: with an intact skull, the volume of the brain, blood, and 

CSF is constant; an increase in one component will cause a decrease in one or both of the 

other components. 

On the basis of the Monro-Kellie doctrine, intracranial pressure can be described as the 

summation of at least four components, driven by different physiological mechanisms (7). 

The first component is associated with arterial blood inflow and volume of arterial blood. 

Most common phenomenon associated with this component is plateau wave of ICP. Second 

component of ICP is associated with venous blood outflow. Obstructions to the outflow of 

blood leads to elevation of ICP (like venous compression due to wrong head position, but also 

venous thrombosis). Third component is related with cerebrospinal fluid (CSF) circulation 

derangements, as commonly seen in ‘acute hydrocephalus’ after traumatic brain injury (TBI) 

or subarachnoid haemorrhage (SAH). In neurocritical care, this component is commonly 

eradicated by extraventricular drainage. Finally, the fourth component is related to increase in 

brain volume (oedema) or volume of contusion (like haematoma). Osmotherapy or surgical 

decompression is commonly used to eradicate this component. In clinical practice, it is 

important not only to monitor absolute value of ICP, but also to recognize which component 

is responsible for observed intracranial hypertension, as clearly different measures are 

appropriate for controlling different components (8). 

ICP monitoring is one of the standard protocols that can guide patient management 

undergoing neurocritical care (9). In association with mean arterial blood pressure (ABP), 

ICP monitoring provides the knowledge of cerebral perfusion pressure (CPP = ABP - ICP), 
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interpreted as the main force maintaining cerebral blood flow (CBF). However, ICP/CPP are 

not commonly considered in many clinical conditions outside neurocritical care settings or in 

non-specialized centres. The invasiveness of the standard methods for ICP monitoring 

(epidural, subdural, intraparenchymal and intraventricular monitors) and their associated risks 

to the patient (infections, brain tissue lesions, haemorrhage) contribute to this scenario 

(Figure 1). They have prevented ICP monitoring in a broad range of diseases, like in patients 

with risk of coagulopathy, as well as in other conditions in which invasive monitoring is not 

considered or outweighed by the risks of the procedure. Another downside is related to costs 

and availability: invasive monitoring is an expensive technique, requires trained personnel 

and neurosurgical settings. Average cost of intraparenchymal microtransducer is US$ 600, 

additionally to US$ 6000-10000 for the display monitor (10), which makes it inaccessible in 

low to middle income regions. Provided that knowledge of ICP can be crucial for the 

successful management of patients in many sub-critical conditions, non-invasive estimation 

of ICP may be helpful when indications for invasive ICP monitoring are not met and when it 

is not immediately available or even contraindicated. 

Several methods for non-invasive assessment of ICP have been described so far: transcranial 

Doppler ultrasonography (TCD) to measure cerebral blood flow velocity indices (11); skull 

vibrations (12);  brain tissue resonance (13); transcranial time of flight (14); venous 

ophthalmodynamometry (15); optic nerve sheath diameter assessment (ONSD)  (16); 

tympanic membrane displacement (17,18); otoacoustic emissions (19);  magnetic  resonance 

imaging (MRI) to estimate intracranial compliance (20); ultrasound-guided eyeball 

compression (21), and recordings of visual evoked potentials (22).  

Most of these methods are better suited for one-point assessment of instant value of ICP 

rather than continuous monitoring. TCD, on the other hand, has been widely explored as a 

tool for non-invasive ICP monitoring (23–37) due to its ability to detect changes in CBF with 

ample time resolution 
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Figure 1.1. Example of extradural hemorrhage consequent to the insertion of invasive ICP 

 

Transcranial Doppler ultrasonography 
 

Transcranial Doppler ultrasonography (TCD) technique is based on the phenomenon called 

Doppler effect, observed by the physicist Christian Andreas Doppler in the 19th century. This 

principle applied to imaging blood vessels was popularised by Reid and Spencer in the 1970’s 

(38). The application of TCD in clinical practice was first described by Rune Aaslid and 

collaborators in 1982 (39) as a technique applying ultrasound probes for dynamic monitoring 

of CBF and vessel pulsatility in the basal cerebral arteries.  

The Doppler effect states that when a sound wave with a certain frequency strikes a moving 

object, the reflected wave undergoes a change in frequency (the Doppler shift, ) directly 

proportional to the velocity of the reflector. When translated to medical applications, this 

principle has been applied to monitor erythrocyte motion inside an insonated blood vessel by 

measuring the difference in ultrasound frequencies between emission and reception (39). The 

equation derived from this principle is the basis for calculating cerebral blood flow velocity 

(FV, in cm/s) with TCD: 

 

Equation 1.1 
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where  is the speed of the incident wave,  is the incident pulse frequency, and θ is the 

angle of the reflector relative to the ultrasound probe (40). 

TCD relies on pulsed wave Doppler to image vessels at various insonation depths. Received 

echoes generate an electrical impulse in the ultrasound probe and are processed to calculate 

 and , yielding a spectral waveform with peak systolic velocity (FVs) and end diastolic 

velocity (FVd) values (Figure 2). 

 

 

	
 

Figure 1.2. Representation of the systolic (FVs) and diastolic (FVd) components of the spectral cerebral blood 
flow (CBF) velocity (FV) waveform. 

 

The use of low frequency ultrasound probes (≤2 MHz) allows insonation of basal cerebral 

arteries through different acoustic windows in the skull. These are regions presenting thin 

bone layers, through which ultrasound waves can be transmitted. There are four acoustic 

windows: transtemporal, transforaminal, transorbital and submandibular (Figure 3). The 

transtemporal window is the most frequently used, anatomically located above the zygomatic 

edge between the lateral canthus of the eye and auricular pinna. It allows insonation of the 

circle of Willis, specifically middle (MCA), anterior (ACA), posterior cerebral arteries 

(PCA), and terminal internal carotid artery (ICA) (41). Artery insonation is subject to probe 

angle, depth and appropriate acoustic window. However, inadequate transtemporal windows 

have been reported in 10-20% of patients (42,43). This has been associated with patient age, 

female sex, and other factors affecting the bone thickness (44).  
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Figure 1.3. Schematic representation of the acoustic windows for transcranial Doppler ultrasonography. 

 

In clinical practice, the MCA is the most frequently assessed artery. It is responsible for the 

greatest blood inflow to the brain (80%) (45,46), thus MCA measurement may represent the 

global blood flow. CBF represents the blood supply to the brain in a given period of time, and 

global changes in this parameter can be monitored continuously and non-invasively using 

TCD-derived FV (47). However, FV is only proportional to CBF when vessel cross-sectional 

area and angle of insonation are constant. The velocity detected by the probe as a fraction of 

the real velocity depends on the cosine of the angle of insonation (Equation 1.1). 

Consequently, at 0 angle, erythrocytes velocities are equal (cosine of θ = 1), whereas at 90 

degrees, no detection of velocity is possible. Anatomically, MCA insonation at the 

transtemporal acoustic window only allows signal capture at narrow angles (<30 degrees), 

which approximates the detected velocity of the true velocity (87% to 100%) (48). 

 

Non-invasive estimation of ICP and CPP 

TCD waveform analysis has been investigated as a technique for non-invasive estimation of 

ICP (nICP) and CPP (nCPP). TCD-derived nICP/nCPP methods are based on the relationship 

between ICP/CPP and indices derived from cerebral blood flow velocity. 

Applications of TCD for nICP monitoring are conceivable if one considers the insonated 

compliant MCA as a biological pressure transducer, whose walls can be deflected by 
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transmural pressure (equivalent to CPP), modulating accordingly the FV pulsatile waveform 

(37).  

 

Optic Nerve Sheath Diameter (ONSD) Ultrasonography for assessment of ICP 

  

The optic nerve sheath is continuous with the meninges of the central nervous system and is 

encased with the subarachnoid membrane (Figure 3.4 and 3.5) (37,38). Cerebrospinal fluid 

(CSF), located in the subarachnoid space, accumulates in the optic nerve sheath thereby 

widening its diameter in the response to increased ICP and limited intracranial compliance.  

 

Figure 1.4. Schematic representation of cerebral spinal fluid circulation. 
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Figure 1.5. Magnetic Resonance imaging of the optic nerve and optic nerve sheath diameter. 

 

Ultrasonography of ONSD has been shown to correlate with increased ICP (Figure 3.6) (37-

40). Alternatively, ONSD measurements on MRI and CT are strongly correlated with 

increased ICP, but the relationship between optic nerve sheath diameter (ONSD) measured 

radiologically and simultaneously measured intracranial pressure (ICP) in patients with 

intracranial hypertension is not clear.  

In this project, the changes of ONSD during recorded wave of ICP in NCCU will be analysed 

with ICP transducer in-situ. We intend to evaluate what is dynamics of ONSD changes in 

comparison to direct ICP monitoring in patients with intracranial hypertension in different 

clinical pathologies (traumatic brain injury, stroke, subarachnoid haemorrage).  
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Figure 1.6. Measurement of ONSD with Ultrasound. 

 
 

AIMS: 

This project is organized into three general objectives: 

OBJECTIVE 1. Evaluation of TCD-based methods versus invasive ICP  

TCD-based, model-derived secondary indices offer readily available means for assessment 

and real-time monitoring of physiological and pathological processes, facilitating detection of 

onset of breakdown of homeostasis of cerebral and cerebrospinal circulation and estimation 

of ICP.  

OBJECTIVE 2. To evaluate the dynamics of ICP versus ONSD methods 

To determine the association between simultaneously obtained ONSD measured on CT, 

Ultrasound and ICP in patients with severe intracranial hypertension. In addition, to 

determine the ability of ONSD to discriminate between intracranial hypertension (ICP 

≥20mmHg vs. ICP <20mmHg).  

OBJECTIVE 3. To investigate the comparison and utilisation of both techniques 

 

The last part of my project was concentrated on the comparison between TCD-based methods 

and OSND methods and on the study of an innovative system of non-invasive ICP monitoring 
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using a combination of these techniques and verifying their accuracy and feasibility in 

patients with intracranial hypertension. 

 

OUTLINE OF THE THESIS 

These general aims have been translated in a series of experiments, retrospective analyses and 

background studies which are presented in the subsequent chapters of this thesis. 

 

Chapter 2 provides a further clinical background for the evaluation of non-invasive 

intracranial pressure in patients with traumatic brain injury, subarachnoidal haemorrage, and 

stroke. We describe the application of different techniques and methods to measure non-

invasive ICP, through an historical description of the current available methods used in the 

experimental and clinical practice. 

Chapter 3 describes in an experimental model of intracranial hypertension during infusion 

studies the accuracy of different non-invasive methods to assess ICP using TCD 

Ultrasonography. 

Chapter 4 provides the clinical background for the intraoperative use of TCD and ONSD 

during surgery involving pneumoperitoneum and Trendenburg position highlighting the 

potential use of these techniques in the assessment of ICP during surgical procedures. 

Chapter 5 introduces the use of Ultrasound based non-invasive ICP methods in the 

intraoperative settings and in particular the effects of prone position and of positive- end 

espiratory pressure on cerebral haemodynamics 

Chapter 6 continues research in the intraoperative settings and in particular in patients 

undergoing Trendelenburg position and pneumoperitoneum. In particular, we tested the 

ability of non-invasive methods to assess changes in ICP during these procedures. 

Chapter 7 describes in a multicenter pilot study, the application of non-invasive methods in 

brain injured patients and the ability of these methods to identify patients at risk of 

intracranial hypertension. 

Chapter 8 introduces the role of ONSD in the assessment of intracranial hypertension in 

patients with traumatic brain injury. 

Chapter 9 continues research into the role of ONSD and TCD in the estimation of ICP. In 

particular, we compared different Ultrasound based methods to assess the best estimator of 

ICP. 
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Chapter 10 describes the role of ONSD as predictor of increased intracranial pressure and 

impaired autoregualtion and the relationship between ONSD and mortality in TBI patients. 

Chapter 11 explores the application of Ultrasound based non-invasive ICP methods in the 

pediatric population.  

Chapter 12 provides a summary of our findings and the possible future applications of 

ultrasound based non-invasive ICP. 
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ABSTRACT 

 

Background: Monitoring of intracranial pressure (ICP) is invaluable in the management of 

neurosurgical and neurological critically ill patients. Invasive techniques (ventriculostomy 

and microtransducers) are considered the gold standard in terms of reliability in the 

measurement of ICP but are associated with certain risks. Thus, the availability of a valid 

method to noninvasively detect ICP increase is of great utility for managing these patients. 

This review provides a comparative description of the different methods for non-invasive ICP 

measurement.  

Brain imaging techniques, based on morphological changes associated with ICP increases: 

Magnetic Resonance, Computed Tomography, and optic nerve sheath diameter assessment; 

indirectly transmitted ICP caption: fundoscopy, timpanic membrane displacement; cerebral 

flow change detection: transcranial doppler, eyeball ophthalmic artery method; monitoring of 

metabolic alterations: Near Infrared Spectroscopy; neurophysiological registrations of 

functional activity: electroencephalography, visual Evoked Potentials, oto-acoustic emissions, 

time of flight method. 

At present, none of the noninvasive techniques available are suitable enough to be used alone 

as a substitute for invasive monitoring. However, following the present analysis and 

considerations upon each technique, we propose a possible flowchart based on the 

combination of non-invasive techniques including continuous TCD and repetitive US 

measurements of ONSD, which can offer either a support in identifying the necessity for an 

invasive monitoring or a quite useful tool for patients where invasive ICP is contraindicated 

at all or unavailable. 
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INTRODUCTION 

  

Intracranial hypertension (IH) is an important cause of secondary brain injury, and its 

association with poor outcome has been extensively demonstrated (1). Several conditions are 

associated with IH, which can be classified into extracranial (fever, increased abdominal 

pressure, increase of intra-thoracic pressure, venous obstruction, hypercarbia, hypoxia) and 

intracranial causes (hematoma, contusion, cerebrospinal fluid (CSF) alterations or edema) 

(revised in (2)). ICP monitoring is crucial in the management of neurocritical patients as 

clinical signs of IH are tardive and have a poor performance in predicting elevated ICP (3). 

According to ‘The Brain Trauma Foundation’ guidelines (4), invasive ICP monitoring is 

indicated in all severe TBI patients in the following conditions: either positive brain CT 

findings (hematomas, contusion, swelling, herniation, or compressed basal cisterns), or 

normal brain CT if the patient is older than 40 years, or in presence of systolic blood pressure 

below 90 mmHg or in case of abnormal flexion or extension in response to pain.  

The gold standard for ICP measurement is invasive monitoring through an intraventricular 

catheter; however, this technique is associated with certain risks (5). 

Non-invasive estimation of ICP may be helpful when indications for invasive ICP 

measurement are not met or when ICP monitoring is not immediately available or even 

contraindicated, as in case of coagulopathy. Pathologic IH is defined when ICP rises 

persistently above 20-25 mmHg. 

 The aim of this chapter is to review the current available modalities for non-invasive ICP 

measurement. We organized the various methods in categories, according to the physio-

pathological mechanism used to detect ICP increase. In particular, we divided them in: Brain 

imaging techniques, (Magnetic Resonance (MR), Computed Tomography (CT), and Optic 

Nerve Sheet Diameter (ONSD assessment));Indirectly transmitted ICP (fundoscopy, timpanic 

membrane displacement (TMD)); Cerebral Blood Flow change detection (transcranial 

doppler (TCD), eyeball ophthalmic artery method); Monitoring of metabolic alterations (Near 

Infrared Spectroscopy (NIRS)); Neurophysiological registrations of functional activity 

(electroencephalography, (EEG) including visual Evoked Potential (VEP), otoacoustic 

emissions, time of flight (TOF) method). 
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ICP ESTIMATION THROUGH IMAGING 

CT 

A variety of CT findings have been considered for predicting elevated ICP: the midline shift, 

the size of sulci, the morphology of cisterns (6), and ventricles (7), intracerebral hematoma 

size, the presence of contusions or of subarachnoidal blood. However, none of these findings 

have demonstrated to be sufficiently reliable in assessing increased ICP (reviewed by (8)). 

A normal brain CT at admission does neither exclude the risk of early ICH (9), nor the risk of 

following development of elevated ICP. Similar considerations were made regarding the 

predictive value of abnormal CT findings in the assessment of ICP (10).   Some authors (11) 

attempted to create a CT based prediction model including ventricular size, sulci size, degree 

of transfalcine herniation, and gray/white matter differentiation, and they demonstrated that 

initial brain CT findings showed a linear, but ultimately non-predictive relationship with 

baseline ICP. This finding was also confirmed in another study based on the Marshall Brain 

CT classification (12) and by several other authors (6, 13-18). 

In summary, brain CT is a valuable clinical tool for quickly diagnosing and managing patients 

presenting with clinical signs or symptoms of raised ICP. However, no Brain CT based 

criteria is sufficient, and this method has demonstrated high specificity but low sensitivity 

(11-14) with a high possibility of false-negatives (14, 16, 17). 

 

MRI cerebrospinal fluid, volume accounting 

The MRI based method to measure ICP takes advantage of the concept of intracranial 

elastance, derived from the exponential relationship between intracranial volume and pressure 

(19) (see figure 2.1).  
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Figure 2.1.  MRI method. A. A blood vessel MRI scout image showing the location of the axial plane for blood 
flow measurement (horizontal line). B. A Phase Contrast MRI image of blood flow through that location of 
carotid arteries, vertebral arteries and jugular veins. Black pixels indicate arterial inflow and white are venous 
outflow. C. Anatomical mid-sagittal T1 weighted MR image showing the location of the axial plane used for CSF 
flow measurement (horizontal line). D. MRI images of the region of interest for CSF flow: the spinal canal (light 
grey) and the spinal cord (dark grey). E-F. MRI-based measurements of arterial inflow, venous outflow (E), and 
cerebrospinal fluid flow (F) used for derivation of the MRICP with derived waveforms of the total arterial inflow 
and venous outflow (E) and CSF flow and arterial minus venous (F) during the cardiac cycle (with permission 
from Alperin et al.). 

 

The pulsatility of blood flow with each cardiac cycle causes small fluctuation in intracranial 

volume, and the intracranial elastance is derived from the variation of these changes during 

the cardiac cycle. Thus, ICP value can be derived from the known relationship between ICP 

and elastance (20). 

The accuracy of the MRI-based method was initially evaluated using a craniospinal flow-

volume model, where the volume changes (ΔICV) could be determined independently from 

the method (21). 

This technique offered high accuracy, reproducibility and good temporal response of non-

steady flow measurement with the cine phase contrast technique (average maximum ΔICV 

value measured by MRI which within 5% of the value independently measured). Early 

evaluation of absolute ICP values of measurement reproducibility in human subjects 



Chapter	2:	Non-invasive	assessment	of	intracranial	pressure	
	

37	
	

demonstrated a much larger measurement variability of 18% (22). 

The relationship between time varying change in pressure was studied experimentally in 

animal model by Alperin et al. (22). The authors found a linear relationship between the 

amplitudes of the CSF pressure gradient measured by MRI and the amplitude of the 

invasively measured pulse pressure at three different levels of ICP.  

Alperin et al. investigated the use of MR as a noninvasive method to assess intracranial 

elastance and pressure in patients with an invasive ICP measurement. From the ratio of 

pressure to volume change the elastance index was derived finding a very good correlation 

with invasive ICP  (r
2 

= 0, 965; p < 0.005) (22). Moreover, Muehlmann et al. (23) found a 

positive correlation (Spearman Q = 0.64, P = 0.01) between shunt valve opening pressure and 

MR-ICP in 15 shunt-treated hydrocephalus children without signs of shunt malfunction.  

This method has been successfully applied for ICP assessment in patients with cerebral 

arteriovenous malformations (with assessment of blood and CSF dynamics as well) (24) and 

as a prognostic tool in patients with symptomatic hydrocephalus (25). Moreover, MR derived 

ICP method was successfully applied to demonstrate that severity of headaches in acute 

mountain sickness is correlated with the change in ICP between normoxia and hypoxia (26). 

However, this method cannot be used for continuous monitoring or repeated assessment of 

ICP over time and it requires a careful selection of representative image slides and the choice 

of the representative blood vessels (27). 

 

OPTIC NERVE SHEATH DIAMETER 

Anatomy and physiology 

The sheath enveloping the optic nerve is in continuity with the dura mater of the brain and the 

subarchnoidal interspace filled with CSF, accounting for a direct connection between the two 

compartments (28). As the ONS is distensible, CSF pressure variations influence the volume 

of ONSD with fluctuations in the anterior, retro-bulbar compartment, about 3 mm behind the 
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globe (29). There is a linear relationship between peri-optic CSF pressure and ICP (6, 30), 

and ONSD changes almost directly with ICP (29, 31), as during osmotic therapy (32) or 

following CO2 variations (33). 

Thus, ONSD for ICP detection based either on CT, MR or ultrasound, has been studied by 

several authors (figure 2).  

	

Figure 2.2. Measurement of ONSD. A: Methodology to measure ONSD on Magnetic Resonance. The axial 
proton density/T2-weighted turbo spin- echo fat-suppressed sequence is used to measure ONSD and optic nerve 
diameter B: Ultrasonographic picture of the optic nerve system. Caliper identifies the site of ONSD 
measurement 3 mm behind the retina. C: Computed Tomography image of the optic nerve sheath. Using 
electronic calipers ONSD is measured 3 mm behind and in a perpendicular vector with reference to the orbit.  

 

 

ONSD and Ultrasound 

Ultrasonography is a simple bedside tool, widely used in emergency units (34). Compared 

with CT and MR, ultrasound has low cost, high availability, does not need long acquisition 

times, does not require harmful patient transport and seems to have a high reproducibility of 

measures (29, 35, 36,37,38). However, due to its operator-dependency it should be combined 

with other clinical signs (37).  

The cut-off value for normal ICP assessed with ONSD ranges from 4.8 to 6 mm. With 

exception of a study based on a very small sample size of TBI patients (38), all other studies 

found good correlation coefficents and good specificity and sensibility, demonstrating high 

accuracy for this method (as shown in table 2.1). 
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Ultrasound of the ONS has also been compared to findings of increased ICP on CT or MR, 

including the size of ventricle, basilar cistern, sulci, degree of transfalcine herniation, and 

gray/white matter differentiation (3, 39-41) and it appears much more reliable than these (42). 

ONSD ranges from 4.84 to 6.4 mm in adult patients with radiological findings suggesting 

increased ICP and from 3.49 to 4.94 mm in patients with no radiological alterations, proving 

good sensitivity and specificity (table 2.1).  

ONSD acquired with ultrasound has also been performed on children (29, 36): the upper limit 

of normality for children is considered 4.0 mm in infants aged less than 1 year, and 4.5 mm in 

elder children (36, 43, 44) with a rather good sensitivity (83%) despite a low and a specificity 

(38%) for predicting increased ICP . 

ONSD in children has been investigated in different clinical scenarios associated with 

intracranial hypertension, such as acute hydrocephalus (44), intracranial lesions  (39, 45) and 

liver failure (46); at present, there are no studies in the pediatric population which have 

compared ONSD values to direct ICP measurements. 

Although this technique does not seem to be accurate enough to be used as a replacement for 

invasive ICP measuring methods, it has a good accuracy in recognizing normal from 

increased ICP.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 


