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Introduction 

X-Rays in the energy range of hundreds of eV can penetrate the interstellar gas 

over distances comparable to the size of our galaxy, without being completely 

absorbed, depending on the direction of the line of sight. At higher energies, 

however, they can penetrate the gas medium too, reaching distances comparable 

to the radius of the Universe. Also, they can be easily focused by special 

telescopes, distinguishing them from Gamma-Rays. 

They reveal the existence of astrophysical processes in which matter has been 

heated up to temperatures of millions of degrees, or in which particles have been 

accelerated to relativistic energies: that is, processes in which the total energy is 

extremely high, such in Supernova explosions, or Active Galactic Nuclei 

emissions, or events in which the energy acquired per nucleon or the temperature 

of the matter involved is extremely high, like infall onto collapsed objects, high-

temperature plasmas, interaction of relativistic electrons with magnetic or photon 

fields. 

For all these reasons, studying X-Rays of astronomical origin has been a key 

question since the discover of the first X-Ray source in the late 60s by Giacconi 

et al, Sco-X1 [1]. 

What it has been more and more clear since then, is that the Universe is 

dominated by high energy processes, and exploring it through the window of X-

Rays could allow us to uncover its secrets. 
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Figure I: Atmosphere opacity over a wide wavelength spectrum. 

 

As we can observe in Figure I, X-Rays would never be observable from ground-

based experiments, since our atmosphere is completely opaque at their 

wavelength. 

This is the reason why over the past years, rockets and satellites have been 

developed in order to study this branch of Astrophysics. 

First experiments were carried out by rockets with proportional counters: photons 

ionize a small volume of gas, producing a signal proportional to the number of 

events. This was the case of the mission AS&E, first, and UHURU, later, whose 

sensitivity was increased by a factor 104, using a larger detection area. Problems 

linked to this kind of the detectors were mainly due to the scalability: further 

improvements would require very large areas, impossible to carry onto a rocket. 

To overcome this problem, focussing mirrors for X-Rays were developed, 

allowing to manufacture smaller detectors, while increasing the angular 

resolution. Of course, the use of rockets was not possible anymore. Telescopes 

for X-Ray Astrophysics were born, with the first being the Einstein telescope [2]. 
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Technology did not stop: beside the development of focussing mirrors, also 

detectors changed their face. Solid State Detectors (SSDs) are more sensitive 

and can be assembled in very small arrays, so to reconstruct an accurate image 

of an X-Ray source. Chandra observatory, which is still flying and getting 

marvellous images of our X-Ray Universe, uses a 1024 x 1024 pixels array (ACIS 

[3]). 

Now, more powerful detectors and even more efficient mirrors are being 

developed, for the next generation of X-Ray telescopes. 

Figure II plots a graphic of the changes occurred in 40 years of X-Ray 

observations: it is astonishing to observe the huge leap in the sensitivity for even 

extremely low fluxes. 

 

 

Figure II: Sensitivity change from 1962 (SCO X-1) to 2000 (Chandra). [4] 

 

As we are developing more and more powerful technology to probe this field, 

more interesting phenomena and new physics, which we could not see before, is 
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found. Also, by discovering large-scale processes in our Universe, we have 

become aware that it is not just a quiet place dominated by the consumption of 

nuclear fuel, but a place where high energy, catastrophic phenomena and 

enormous explosions take place every second, shaping it and leading its 

evolution, from the initial explosion to the formation of galaxies and clusters, from 

the birth to the death of stars. 

Chandra and XMM Newton have been flown for more than a decade, and their 

technology has already been pushed to the limit. 

Meanwhile, new technologies have been developed, allowing to jump towards 

the next generation of X-Ray telescopes. 

In particular, starting from the new millennium, there have been efforts in 

developing detectors based on superconducting sensors. The technology 

required for such observatory proposed, namely Xeus, then IXO, was not yet 

mature. As this second decade is approaching, the research has finally reached 

a level of readiness suitable to put together every piece and create a satellite able 

to dig the deepest secrets of our Universe, and to outreach the previous capability 

on field. 

It has been a long way, and there’s still plenty of road ahead, but since 2015, the 

path has been tracked: ATHENA is going to be the observatory every Astronomer 

was waiting for. 

 

 



1. The ATHENA Mission 

The X-Ray observatory ATHENA (Advanced Telescope for High ENergy 

Astrophysics) has been selected for the science theme “The Hot and Energetic 

Universe” for the ESA Cosmic Vision 2015-2025. [5] 

Its purpose is to answer some important questions in Astrophysics in the X-Ray 

band (0.02 - 12 keV). Among all, two of the main themes are the following [6]: 

• How does ordinary matter stick together in the large–scale structure known 

as the Cosmic Web; 

• What’s the role of supermassive Black Holes in shaping the Universe, the 

so called Cosmic Feedback. 

These two themes need to be studied in different ways, but both are explored the 

best through the analysis of X-Ray emissions, since the first keeps tracks of the 

baryonic component of the Universe, bound together in a hot gas at the 

temperature of 106 K, while the latter needs to take into account extreme 

energetic processes occurring at the event horizon of Black Holes. 

There are many other topics which can be studied by ATHENA, due to its 

capabilities: understanding the structure and energetics of stellar winds and their 

interplay with planets’ atmospheres and magnetospheres; exploring the 

behaviour of matter under extreme conditions of density and magnetic fields in 

neutron stars; probe the elements and the physics of heating the Inter–Stellar 

Medium by supernova explosions. 

ATHENA is a leap forward in space based, High Energy Astrophysics 

experiments. To guarantee the science goal are fulfilled, the best technology is 

required. 
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1.1. The Cosmic Web: Missing Hot Baryons and WHIM 

 

Figure 1.1: Hydrodynamic simulation of the Cosmic Web on high scale. 

 

Figure 1.1 shows an interesting simulation concerning the so called Cosmic Web, 

on a cubic large portion of Universe, with an edge of roughly 40 Mpc (around 1018 

m). 

Our current Cosmological Model foresees a Baryonic abundance of about the 5% 

of the mass-energy budget of the Universe, while Dark Matter and Dark Energy 

complete the rest. Despite this low percentage, still a high amount of baryons are 

not detected (~30%). 

It is supposed that this missing amount can be found in a hot, rarefied state, 

connecting clusters in a web; a Cosmic Web, which is therefore called Warm Hot 

Intergalactic Medium (WHIM). Simulations like that shown in Figure 1.1 assess 

that baryons can be found into these long, low-density filaments of gas at 

temperature ~106 K. Due to the low-density characteristic and the gas 

temperature, its continuum emission is very faint and dominated by background. 

H and He are completely ionized, so the only way to characterize the WHIM is 

the direct observation of highly ionized metals (C, N, O, Ne, Fe) [7]. 
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This is why a high energy resolution and capability to perform spectroscopy of 

extended sources are needed. 

An example of ATHENA spectral capabilities is shown in Figure 1.2. 

 

 

Figure 1.2: Simulated ATHENA observations of the Perseus cluster, highlighting the advanced 
capabilities for revealing the intricacies of the physical mechanisms at play. The spectrum is a 
single 5” x 5” region of the cluster, with the existing Chandra ACIS spectrum for comparison. The 
inset shows the region around the Fe-L complex. Moreover, such measurements will allow us to 
pinpoint the locations of jet energy dissipation, determine the total energy stored in bulk motions 
and weak shocks, and test models of AGN fuelling so as to determine how feedback regulates 
hot gas cooling [8]. 

 

ATHENA will be able to reconstruct a 3D map through redshifts measurements 

of the same lines. 
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Si 
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1.2. Supermassive Black Holes and Cosmic Feedback 

Some galaxies have a compact nucleus that outshines the light of stars inside 

them: they can only be explained by stellar emission models with the 

implementation of accreting supermassive black holes (SMBH): we refer to them 

as Active Galactic Nuclei (AGN). The ubiquity of supermassive black holes 

(SMBH) in local galaxy spheroids has been established [9], and we suspect that 

a strong correlation between the presence of a SMBH inside a galaxy and its 

accretion exists [10]. 

What we do not know is the nature of this link, and we need further investigations. 

Matter falling into a black hole, due to the dynamical friction, causes the emission 

of a strong signal in the X-Ray band. For this reason, using X-Ray facilities is a 

well suitable instrument to probe for this physic. 

The best window to look for the interaction of SMBH and their hosting galaxies 

lies at z~1÷4, when most black holes and stars we see in the present-day 

Universe were put in place. Unfortunately, our efforts to probe this field could only 

be limited to the local Universe [11]. 

This limit is due to the large amount of gas and dust in these high z galaxies, 

which are still giving birth to new stars. AGN inside them are obscured since the 

gas/dust density is exceeding the Thomson scattering cross-section. These 

sources are called Compton thick AGN. As a consequence, these important 

sources are extremely faint and actual missions are not able to fully characterize 

them. 

To characterize a Compton thick AGN it is useful to highlight the presence of a 

strong Kα Iron emission line, and to fully analyse the X-Ray continuum as 

absorption spectrum. Figure 1.3 shows the performances expected for Athena, 

with respect to an actual observation of Chandra. 
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Figure 1.3: Heavily obscured AGN at z=2.579. Red points are simulated for Athena Wide Field 
Imager instrument for a 1 Ms survey, with the Kα line well visible. Green points refer to a 4 Ms 
Chandra Deep Field South real observation. 

 

 

1.3. The ATHENA Observatory 

The payload consists of an X-Ray telescope, with a Silicon Pore Optics focusing 

technology, and two focal plane instruments: The Wide Field Imager (WFI), a 

camera for high field of view, based on Depleted P Field–Effect Transistors 

(DePFET), and an X-Ray Integral Field Unit (X-IFU), a cryogenic spectrometer 

based on a large array (more than 3000) of Transition-Edge Sensor (TES) 

microcalorimeters, with a 5’ field of view, an angular resolution of 5”, and a very 

high energy resolution of 2.5 eV at 6 keV. 

This is the same technology flown on-board the Hitomi Astro-H satellite [12], who 

made use of a smaller TES array (6x6) and a lower observation orbit. Before the 

mission ended unexpectedly, it was able to provide very impressive results on 

the potential of TES technology applied to X-Ray Astrophysics [13] [14]. 
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Launch readiness is planned for 2028, by means of an Ariane V or VI rocket. 

Unlike Astro-H, ATHENA will operate at L2 (second Lagrangian point of the Sun-

Earth system), since it provides a very stable thermal environment and good 

observing performances. 

ATHENA will predominantly perform pointed observations, with durations ranging 

from 103 to 106 seconds. There will also be the possibility for opportunity targets 

observations, such for gamma ray burst or other transient-like events. 

 

 

1.3.1. Spacecraft and Optics 

Previous studies have addressed many characteristics and requirements needed 

for ATHENA. Major heritages also come from XMM-Newton. The spacecraft will 

be composed of three main parts: 

• The service module; 

• The mirror assembly module; 

• The focal plane module; 

The service module consists of a fixed metering structure between the mirror and 

the focal plane modules, which should give a focal length of 12 meters. It is 

optimized to have a low momentum of inertia for fast repointing purposes. It 

accommodates standard functions, including attitude and orbit control system, 

propulsion, thermal, telemetry and telecommanding, power and data handling 

subsystems. It will also mount the solar panels required to power the satellite. 

The mirror assembly module employs Silicon Pore Optics (SPO) to reflect X-Rays 

to the focal plane module. It is a highly modular concept, based on a set of 

compact individual mirror modules: an innovative technology that has been 

pioneering in Europe over the last decades. Together with the focal length 

provided by the service module, it helps reach an effective area of 2 m2 at 1 keV 

[15]. 
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The focal plane module hosts the two measuring instruments: the Wide Field 

Imager (WFI) and the X-Ray Integral Field Unit (X-IFU), inside a dedicated 

cryostat. 

Figure 1.4 shows a representation of the ATHENA spacecraft, where the three 

modules can be seen. Figure 1.5 shows the details concerning the mirror 

assembly module. 

 

 

Figure 1.4: (LEFT) Spacecraft configuration during launch from Thales-Alenia-Space (TAS, left) 
and Airbus Defence & Space (ADS, right). (RIGHT) MIP configurations from TAS (left) and ADS 
(right). 

 

  
 

Figure 1.5: (LEFT) a complete SPO module pack. (RIGHT) configuration of the mirror assembly 
module, with 972 SPO modules arranged in 6 sectors and 19 rings. 
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1.3.2. The Wide Field Imager (WFI) 

The Wide Field Imager (WFI) [16], is one of the two instruments composing the 

focal plane of ATHENA. It brings together a large field of view of 40’ x 40’, with 

an excellent count rate capability, higher than 1 Crab. 

It is made by silicon active pixel sensors of DEPFET (depleted p-channel field 

effect transistors), with a resolution FWHM less than 170 eV @ 7 keV, in the 

range 0.2 to 15 keV energy bandwidth. 

Two detectors are planned: a large 1024 x 1024 pixels array and a smaller, fast 

detector, optimized for high count-rate observations. 

WFI is also composed by many other parts: filter wheels with optical stray-light 

baffle, camera head comprising the detectors and their electronics, all mounted 

on a primary structure, accommodated on the focal plane module (FPM). The 

instrument control and power distribution units (ICPUs) are also found in the 

same module, together with the radiation panels. 

Figure 1.6 shows the block diagram for WFI, and Table 1.1 summarizes its main 

parameters and requirements. 
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Figure 1.6: Block diagram for the FWI, showing the components of the instrument. 

 

Parameter Value 

Energy range 0.2 – 15 keV 

Pixel Size 130 µm x 130 µm (2.2 arcsec x 2.2 arcsec) 

Operating Mode Rolling shutter (min. power consumption) 

full frame mode 

optional: window mode 

High-count rate detector 64 x 64 pixels, mounted defocussed 

split full frame readout time resolution: 80 µs 

1 Crab > 90% throughput and < 1% pile-up 

Large-area DEPFET 4 quadrants, each with 512 x 512 pixels (total 

FOV 40’ x 4o’) 

Time resolution: < 5 ms 

Quantum efficiency 

including external filters 

> 20% @ 277 eV 

> 80% @ 1 keV 

> 90% @ 10 keV 

Transmissivity for optical photons: 3 x 10-7 

Transmissivity for UV photons: < 10-9 

Energy resolution FWHM (7 keV) < 170 eV 

Non X-Ray background < 5 x 10-3 cts/cm2/s/keV 

Table 1.1: WFI main parameters. 
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1.3.3. The X-Ray Integral Field Unit (X-IFU) 

The high spectral resolution instrument on-board ATHENA will be represented by 

the X-Ray Integral Field Unit, or X-IFU [17], a spectrometer based on an array of 

about 3800 Transition-Edge Sensors microcalorimeters, working at a base 

temperature of 50 mK, a field of view of 5’ with an angular resolution of 5”, and 

an outstanding energy resolution of 2.5 eV at 6 keV. 

Its characteristics allow it to reach the goals of the Hot and Energetic Universe 

scientific theme, being able to spatially and energetically resolve the presence of 

baryons in hot gases. 

As for the WFI, X-IFU is composed by many other components: the 2 K stage 

focal plane assembly (FPA) hosts the 50 mK stage with the TES array as well as 

the cryogenic anticoincidence detector, the cold front-end electronics (CFEE) and 

the filter wheels (FW). Other stages host the warm front-end electronics (WFEE) 

with the digital readout electronics (DRE) and many more, as it can be seen in 

Figure 1.7. 

Table 1.2 reports X-IFU main requirements, based on the scientific themes to 

fulfil. 
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Figure 1.7: X-IFU block diagram. The main TES array together with the cryogenic anticoincidence 
CryoAC TES are the sensing parts of the instrument, which is composed of many other 
components. 

 

Parameter Value 

Energy range 0.2 – 12 keV 

Energy resolution < 7 keV 2.5 eV 

Energy resolution > 7 keV E/ΔE = 2800 

Field of View 5 arcmin 

Effective Area @ 0.3 keV > 1500 cm2 

Effective Area @ 1 keV > 15000 cm2 

Effective Area @ 7 keV > 1600 cm2 

Gain Calibration Error (RMS, 7 keV) 0.4 eV 

Count rate capability 1 mCrab (> 80% high 

resolution events) 

Count rate capability (brightest point sources) > 30% throughput 

Time resolution 10 us 

Non X-Ray background (2 – 10 keV) < 5 x 10-3 counts/cm2/s/keV 

(80% of the time) 

Table 1.2: X-IFU top requirements 
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The production and test of the cryogenic anticoincidence detector is in charge to 

a collaboration made by the University of Genova and the Institute of 

Astrophysics and Planetology (IAPS) in Rome. 

In particular, the Low Temperature Detector Group in Genova is responsible for 

the detector fabrication. 

In the next sections, we will discuss the technology behind one of the most 

sensitive and promising detectors, focussing on the specific case of the 

anticoincidence. We will answer the question “why is a cryogenic anticoincidence 

detector needed?”, and show some results from previous prototypes. At last, we 

will show the actual progress status, with a discussion about the future 

development of the model to be flown for the mission ATHENA. 

 

 

 



2. The Transition-Edge Sensor  

A Transition-Edge Sensor (from now on simply TES) is a superconducting thin 

film used as an extremely sensitive thermometer, when it is kept within the 

narrow, almost linear region between its normal and superconducting states. It is 

a thermal detector, since the absorbed energy causes a rise in temperature of 

the TES, which we observe as a change in its resistance. When a thermal 

detector is used to measure the energy of individual photons/particles, it acts as 

a calorimeter. If the incident flux is too large to separate individual 

photons/particles, the detector is used to measure changes in the flux itself and 

it acts as a bolometer. 

Calorimeters are able to link a temperature variation to an energy deposition. 

These devices are composed of two principal parts: the sensor (a TES, in our 

case), and an absorber, whose material depends on the event we want to 

measure (see Figure 2.1). 

 

 

Figure 2.1: Calorimeter scheme. 
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A typical TES calorimeter is made of superconducting film hundreds of µm2 in 

surface, with a metallic absorber grown onto it. 

Typical working temperatures are around 100 mK, with a total heat capacity 

dominated by the metallic absorber, on the order of pJ/K. In this condition, an 

event with an energy of thousands of eV (nuclear recoils, soft X-Rays) causes 

the device to increase its temperature of hundreds of µK. This small ΔT can be 

detected efficiently with a TES due to its characteristic R(T), where a very small 

increment in temperature gives rise to a strong variation in its resistance, as we 

can see in Figure 2.2. 

 

 

Figure 2.2: TES characteristic R(T). A TES is best operated in its linear region along the transition. 

 

Usually, these microcalorimeters are manufactured in a clean room environment 

with micromachining lithographic techniques. The element used as 

superconductor depends on its transition temperature. There are some tricks to 

control the material bulk transition temperature, such as a proximization effect 

with a normal metal [18]. The element and the thickness of the absorber depends 

on the kind of effect we want to study: for instance, in X-Ray astronomy, 5 µm 

thick Gold absorbers are able to gather the entire incoming radiation [19]. 
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First experiments using TESs were already conduced in the 1940’s [20] [21]. 

There were many technical difficulties in managing this technology, for instance 

how to stabilize the detector and read the signal properly. A leap forward was 

made when Superconducting Quantum Interference Device (SQuID) current 

amplifiers made their debut [22] [23], providing an extremely sensitive, low noise 

readout that was also suitable for multiplexing. Another important step was the 

introduction of a voltage biasing circuit [24] [25], leading to a stable, self-

regulating operation. 

Basic TES calorimeter theory is well established [26], and many information 

regarding features and equations can be found in the cited reference. Here we 

present the main equations without going deep into details, describing the general 

thermal model and a particular application, of interest for this work. 

 

 

2.1. General Thermal Model 

A simple calorimeter model is shown in Figure 2.3. A TES with heat capacity C is 

connected to the heat bath at temperature Ts through a weak thermal link with 

thermal conductance G. Joule heating power Pj dissipated by the bias current 

helps keeping the TES at a steady state temperature 𝑇0 > 𝑇𝑠. When an event (a 

photon or a particle hit) occurs in the absorber, with energy Eγ, the temperature 

of the TES rises by Eγ /C, and then relaxes to T0 in a time given by the time 

constant τ = C/G. 
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Figure 2.3: (A) Simple calorimeter model. (B) Temperature pulse caused by an event in the 
absorber 

 

In Figure 2.4 the typical voltage bias circuit is presented, with its Thevenin 

representation. The starting point to describe our TES model starts by coupling 

two equations: one referring to the thermal dissipation, and one describing the 

electrical circuit (ignoring noise terms): 

 
𝐶

𝑑𝑇

𝑐𝑡
= −𝑃𝑜𝑢𝑡 + 𝑃𝐽 + 𝑃𝑖𝑛 

2.1 

 
𝐿

𝑑𝐼

𝑑𝑡
= 𝑉𝑡ℎ − 𝐼𝑇𝐸𝑆𝑅𝐿 − 𝐼𝑇𝐸𝑆𝑅(𝑇, 𝐼) 

2.2 

Where Pout is the power flowing out of the TES, via the heat link to the thermal 

bath, and Pin is the signal power. A power-law dependence is assumed for Pout: 

 𝑃𝑜𝑢𝑡 = 𝐾(𝑇0
𝑛 − 𝑇𝑆

𝑛) 2.3 

And the thermal conductance is defined as: 

 
𝐺 ≡

𝑑𝑃𝑜𝑢𝑡

𝑑𝑇
= 𝑛𝐾𝑇𝑛−1 

2.4 
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Figure 2.4: (LEFT) circuit used to bias a TES. Rpar indicates any unwanted parasitic resistance in 
the circuit. Rs < RTES << Rbias. (RIGHT) Thevenin equivalent circuit. RL = RS + Rpar and Vth = 
VbiasRS/Rbias. 

 

Since the resistance of a TES is a function of both temperature and current, 

R(T,I), we define two dimensionless parameters that describe the steepness of 

the superconducting transition. 

 
𝛼 ≡

𝜕𝑙𝑜𝑔𝑅

𝜕𝑙𝑜𝑔𝑇
|

𝐼0

=
𝑇0𝜕𝑅

𝑅0𝜕𝑇
|

𝐼0

 
2.5 

 
𝛽 ≡

𝜕𝑙𝑜𝑔𝑅

𝜕𝑙𝑜𝑔𝐼
|

𝑇0

=
𝐼0𝜕𝑅

𝑅0𝜕𝐼
|

𝑇0

 
2.6 

We define α the temperature sensitivity and β the current sensitivity. 

However, we can only measure the I-V curve characteristic of our detector, 

finding the parameter 

 
𝛼𝑡𝑜𝑡 =

𝑇0𝜕𝑅

𝑅0𝜕𝑇
|

𝑇0

 
2.7 

Which includes both the effects of α and β. Special care should be made on the 

notation used for these parameters, since they vary from author to author. 

A constant current low-frequency loop gain is defined as 
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ℒ𝐼 ≡

𝑃𝐽𝛼

𝐺𝑇0
 

2.8 

Next, we look into the relationship between the three steepness parameters: αtot, 

α and β. We start by assuming that we are in a small signal regime, where the 

TES resistance can be expanded to the first order as: 

 
𝑅(𝑇, 𝐼) ≈ 𝑅0 +

𝜕𝑅

𝜕𝑇
𝛿𝑇 +

𝜕𝑅

𝜕𝐼
𝛿𝐼 

2.9 

Using Equations 2.5 and 2.6: 

 
𝑑𝑅 = 𝛼

𝑅0

𝑇0
𝑑𝑇 +

𝑅0

𝐼0
𝑑𝐼 

2.10 

Similarly, Joule power P = I02R0 can be expanded: 

 
𝑃(𝑅, 𝐼) ≈ 𝑃0 +

𝜕𝑃

𝜕𝑅
𝛿𝑅 +

𝜕𝑃

𝜕𝐼
𝛿𝐼 = 𝑃0 + 𝐼0

2𝛿𝑅 + 2𝐼0𝑅0𝛿𝐼 
2.11 

 
𝑑𝑃 = 𝐼0

2𝑑𝑅 + 2𝐼0𝑅0𝑑𝐼 = 𝛼
𝑃0

𝑇0
𝑑𝑇 + 𝐼0𝑅0(2 + 𝛽)𝑑𝐼 

2.12 

From which we solve for dI: 

 

𝑑𝐼 =
𝑑𝑃 − 𝛼

𝑃0

𝑇0
𝑑𝑇

𝐼0𝑅0(2 + 𝛽)
 

2.13 

If we now introduce the thermal conductances: 

 𝑔0 = 𝑛𝐾𝑇0
𝑛−1 2.14 
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 𝑔𝑆 = 𝑛𝐾𝑇𝑆
𝑛−1 2.15 

And we also write the steady state Joule power as: 

 
𝑃0 = 𝐾(𝑇0

𝑛 − 𝑇𝑆
𝑛) =

𝑔0𝑇0

𝑛
(1 −

𝑇𝑆
𝑛

𝑇0
𝑛) 

2.16 

Defining: 

 
𝜃 ≡ 1 −

𝑇𝑆
𝑛

𝑇0
𝑛 

2.17 

So that Equation 2.16 becomes: 

 𝑔0𝑇0

𝑃0
=

𝑛

𝜃
 

2.18 

Joule power can also be expanded as: 

 
𝑃(𝑅, 𝐼) = 𝑃0 +

𝜕𝑃𝐽

𝜕𝑇0
𝛿𝑇0 +

𝜕𝑃𝐽

𝜕𝑇𝑆
𝛿𝑇𝑆 

2.19 

 𝑑𝑃𝐽 = 𝑔0𝑑𝑇0 − 𝑔𝑆𝑑𝑇𝑆 2.20 

Combining Equations 2.13 and 2.20: 

 

𝑑𝐼 =
(𝑔0 − 𝛼

𝑃0

𝑇0
)𝑑𝑇0 − 𝑔𝑆𝑑𝑇𝑆

𝐼0𝑅0(2 + 𝛽)
 

2.21 

Inserting this into Equation 2.10 and requiring that the bath temperature Ts must 

be constant, we can write: 
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𝑑𝑅 = (2𝛼 + 𝛽

𝑔0𝑇0

𝑃0
)

𝑅0𝑑𝑇0

𝑇0(2 + 𝛽)
 

2.22 

Rearranging Equation 2.22 we find the connection between αtot, α and β: 

 

𝛼𝑡𝑜𝑡 =
𝑇0𝜕𝑅

𝑅0𝜕𝑇
=

2𝛼 +
𝑛
𝜃 𝛽

2 + 𝛽
 

2.23 

 

2.1.1. Negative Electrothermal Feedback 

The voltage bias setup has several advantages that are useful while operating 

TESs [27]. For example, it makes the detector bias point more stable and speeds 

up the recovery from pulses. To simply describe how the negative electrothermal 

feedback (ETF) works, consider a TES that is biased in the transition. The system 

has reached a steady state where the input power from Joule heating of the bias 

current equals the power flowing out through the thermal link. When an event 

occurs, the TES heats up and the resistance starts to increase. Because the TES 

is voltage biased, the increasing resistance means that the current has to 

decrease in order to keep a constant voltage. Thus, the Joule power Pj = I2R is 

decreased, which partly compensates for the temperature increase due to the 

event, speeding the recovery back to the steady state. The effective time constant 

due to ETF is given by: 

 𝜏𝑒𝑓𝑓 =
𝜏

1 + 𝛼 𝜃 𝑛⁄
 2.24 

Which shows that a TES will become faster as α becomes larger. 

 

2.1.2. Energy resolution 

For calorimeters, the most important figure of merit is the energy resolution. 

Assuming Gaussian noise sources, it is given by [28]: 
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∆EFWHM = 2√2ln2 (∫
4

SPtot
(f)

df

∞

0

)

−1 2⁄

 

2.25 

SPtot is the total power referred noise that includes all noise sources and is given 

by: 

 
SPtot

(ω) =
SItot

(ω)

|SI(ω)|2
 

2.26 

Where SItot(ω) is the total current noise. If the excess noise can be described with 

the M parameter, a useful approximation is given by [29]: 

 

∆𝐸𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2√
4𝑘𝐵𝑇0

2𝐶

𝛼
√

𝑛𝐹(𝑇0, 𝑇𝑏𝑎𝑡ℎ)(1 + 𝑀2)

1 − (𝑇𝑏𝑎𝑡ℎ 𝑇0⁄ )𝑛
 

2.27 

 

 

2.2. Silicon Absorber for Protons Detection 

What we have described in the previous section is a simplified model for a typical 

TES. Real models keep tracks of small physical aspects related to the low 

temperature environment. One of the most important things to take into account 

is the thermal decoupling between the electronic and the lattice contributions, 

which is due to the different thermal conductance. One more peculiar effect is the 

Andreev reflection [30], which doesn’t allow electrons to jump between normal – 

superconductor interfaces, and is useful to describe the thermal behaviour when 

dealing with normal absorbers in contact with a superconducting thermometer. 

Consider, for instance, an Iridium TES thermometer, in contact with a gold 

absorber, directly deposited onto a Silicon Nitride substrate, which is in good 

thermal contact to the bath. This is represented in Figure 2.5 (LEFT), and it is one 
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of the simplest sample of TES system. If we want to write down its model, 

considering different thermal conductance for the electron and lattice systems, 

taking into account other physical phenomena, we must use the scheme in Figure 

2.5 (RIGHT), where every term is decoupled and shown. 

 

 

 
 

Figure 2.5: (LEFT) typical TES configuration cross-section view. (RIGHT) related block scheme. 

 

In this scheme, one must consider the different coupling factors for every term: 

typically, there’s a strong e – e and ph – ph coupling (electronic and lattice 

respectively), while the cross term e – ph is proportional to Tβ, where β may vary 

between 4 and 5, depending on the purity and crystalline structure of the material 

[31], and also we have to consider the Kapitza resistance between absorber and 

TES, proportional to T3 [32]. 

One should take care in modelling its own system, since many other parameters 

may be added: proximizing a TES with a normal metal on it will add new terms 

for both electronic and lattice system and so on. 

We now want to focus on a particular TES system, which is of interest for our 

studies: The substrate is now crystalline Silicon, and TESs thermometers are 

deposited on it. While it holds the TES system, it also acts as absorber for incident 

radiation. A sketch and its block diagram are shown in Figure 2.6: 
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Figure 2.6: (LEFT) TES with Silicon absorber and (RIGHT) its block diagram. 

 

This is a particular calorimeter setup, which we use as the baseline configuration 

for our detector inside the ATHENA project. 

When an event occurs in the Silicon absorber, e.g. a high energetic protons hits, 

the crystal is excited by ionization. Lattice keeps electron back in place, so they 

start vibrating, propagating a lattice wave along the crystal, otherwise known as 

phonons. This is due to the bands inside Silicon (Figure 2.7). 

Phonons travel along the crystal in a time scale τ ~ L/c, where L is the dimension 

of the Silicon crystal, while c represents the wave speed inside the Silicon, being 

on the order of 8400 m/s: in a crystal 1 cm long, it all happens in about 1 µs. This 

is known as athermal phonon, and represent the first event happening inside the 

crystal. Athermal phonons decay anharmonically, giving rise to a thermalization 

of the lattice itselef, which heats up: thermal phonons. 

Since the absorber is a semiconductor, the thermal coupling between TES and 

absorber is given by: 

 
𝐺𝑇𝑎 = (

1

𝐺𝐾
+

1

𝐺𝑒𝑝
)

−1

 
2.28 

Where GK represents the Kapitza term at the absorber-TES interface proportional 

to T3, while Gep stands for electronic – phononic coupling, proportional to T5. 

The input power Pe(t) in Figure 2.6 is due to athermal phonons propagating inside 

the TES. These thermalize in the electronic system, and may “flow” through the 
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conductance Geb (contribution given by the readout wires, usually negligible) to 

the thermal bath. They won’t be transferred to the Silicon absorber due to the 

negligible coupling e – p. This effect causes a decrease in the population of 

thermal phonons in the absorber, coming from athermal phonons in the TES. For 

the same reason, athermal phonons in the crystal may thermalize on the absorber 

surface, giving a contribution Pa(t) to the thermal phonons population [32]. 

 

 

Figure 2.7: A photon absorbed in Silicon would produce a phonon due to the presence of a non-
direct gap 

 

 

2.2.1. Pulse Shape 

The lifetime of the thermal pulses τt,TES, is essentially given by the G value 

between the absorber and the TES. It corresponds to the thermal relaxation time 

in the absorber. To find the relaxation time of the athermal pulse, τnt,TES, we must 

consider two contributions: 
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𝜏𝑛𝑡,𝑇𝐸𝑆 = (

1

𝜏𝑓𝑖𝑙𝑚
+

1

𝜏𝑐𝑟𝑦𝑠𝑡𝑎𝑙
)

−1

 
2.29 

Reference [32] shows a simple model to find τfilm: 

 
𝜏𝑓𝑖𝑙𝑚 =

2𝑉𝑎

𝐴𝑇𝐸𝑆𝜂̅〈𝑣𝑔⊥𝛼〉
 

2.30 

Where Va is the absorber volume, ATES is the TES total area, η̅ is an absorption 

probability coefficient of athermal phonons inside the TES, while the term 〈vg⊥α〉 

is the product of the athermal phonons group speed normal to the separation 

surface between absorber and TES, times the transmission probability of 

athermal phonons, mediated over all the oscillating modes and wave vectors of 

the incoming phonons. 

In the same reference, there are some estimated values for these parameters, 

for Iridium TES on Silicon absorber. 

If the surface/volume ratio of the crystal is small, or the percentage of surface 

covered by TES is big enough, one can approximate Equation 2.31: 

 
𝜏𝑛𝑡,𝑇𝐸𝑆 ≃ 𝜏𝑓𝑖𝑙𝑚 =

2𝑉𝑎

𝐴𝑇𝐸𝑆𝜂̅〈𝑣𝑔⊥𝛼〉
 

2.31 

Energy deposition can be described in the following: 

Athermal phonons relaxate inside the TES, with the input power: 

 
𝑃𝑒(𝑡) = 𝛩(𝑡)𝜖 (

𝐸

𝜏𝑛𝑡,𝑇𝐸𝑆
) 𝑒

𝑡
𝜏𝑛𝑡,𝑇𝐸𝑆 

2.32 

Thermal phonons relaxates inside the absorber, with the input power: 
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𝑃𝑎(𝑡) = 𝛩(𝑡)(1 − 𝜖) (

𝐸

𝜏𝑛𝑡,𝑇𝐸𝑆
) 𝑒

𝑡
𝜏𝑛𝑡,𝑇𝐸𝑆 

2.33 

Where Θ(t) is the step function, while ε is the fraction of athermal phonons 

absorbed inside the TES. We assume that the energy exists at one instant in the 

form of athermal phonons in the absorber crystal. This assumption leads to a set 

of differential equations with solution ΔT(t): 

 
∆𝑇(𝑡) = Θ(𝑡) [𝐴𝑛𝑡 (𝑒

𝑡
𝜏𝑛𝑡,𝑇𝐸𝑆−𝑒

𝑡
𝜏𝑖𝑛,𝑇𝐸𝑆) + 𝐴𝑡 (𝑒

𝑡
𝜏𝑡,𝑇𝐸𝑆−𝑒

𝑡
𝜏𝑛𝑡,𝑇𝐸𝑆)] 

2.34 

Where the quantities before the brackets are the partial heights of the two 

contributions, athermal and thermal. The other terms represent, respectively: 

• Athermal phonons lifetime in the absorber, fast time constant: 

 
𝜏𝑛𝑡,𝑇𝐸𝑆 = (

2𝑉𝑎

𝐴𝑇𝐸𝑆𝜂̅〈𝑣𝑔⊥𝛼〉
)

−1

+ (𝜏𝑐𝑟𝑦𝑠𝑡𝑎𝑙)
−1 

2.35 

• Intrinsic time constant depending on the TES properties: 

 
𝜏𝑖𝑛,𝑇𝐸𝑆 =

𝐶

𝐺𝑇𝑎 + 𝐺𝑒𝑏
 

2.36 

• Lifetime of the thermal phonons inside the absorber, slow time constant: 

 
𝜏𝑡,𝑇𝐸𝑆 =

𝐶

𝐺𝑒𝑏𝐺𝑇𝑎

𝐺𝑒𝑏 + 𝐺𝑇𝑎
+ 𝐺𝑎𝑏

 
2.37 

 

 

Figure 2.8 shows the signal resulting from the combination of the two 

components. The athermal contribution is given by the rise time τ𝑖𝑛,TES, and the 
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decay time τnt,TES, while the thermal term is given by the rise time τn,TES and the 

decay time τt,TES. When in ETF regime, τ𝑖𝑛,TES ≪ τnt,TES and, hence, the pulse 

can be described by one rise time and two decay times. 

 

 

Figure 2.8: Signal pulse in a Silicon absorber TES (black), sum of two components: athermal (red) 
and thermal (blue). 

 

 

 



3. The Anticoincidence Detector 

The need of an anticoincidence detector arises since L2 background is full of high 

energetic particles [33]. From simple calculations, we can observe that GeV 

protons are MIP -in the minimum of ionization- for the metallic absorber of the 

main X-Ray array. That is: the energy deposited is of the same order of 

magnitude of the soft X-Rays we want to measure (Figure 3.1). 

 

 
 

 

Figure 3.1: (LEFT) L2 particle flux expected. (RIGHT) Bethe-Bloch function showing GeV protons 
behaviour as MIPs. 

 

What differentiate a true soft X-Ray from a MIP is the fact that the main array 

TESs are made to fully absorb 0.1 – 10 keV X-Rays, while any other source of 

energy will pass through, causing a double event (see Figure 3.2). 

Several Monte Carlo simulations have shown that this setup can widely improve 

the effectiveness of the X-Ray detection, enabling the mission goals of ATHENA 

[34]. 
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The same simulations provide us the main parameters for the anticoincidence 

manufacturing: first of all, the active volume must be placed 1 mm below the main 

array, and should have an accurate timing resolution to enable a correct trigger 

on the fake event. Moreover, its detection threshold must be above 10 keV and 

below the minimum energies deposited by background particles [35]. 

The total area should be very large though, and the edges of the detector should 

override those of the main array, to account for particles coming with some tilt 

angles. 

More specifications will be shown in Section 3.2. 

 

 

Figure 3.2: Working principle of our anticoincidence detector. X-Ray photons (red) are likely to be 
completely stopped at the main X-Ray array, while other background particles (hard X-Rays, 
protons, etc.) are too energetic to be absorbed. An anticoincidence detector helps discriminating 
these fake events (blue). 

 

 

3.1. The Background Question 

Compared to other energy bands, X-Ray wavelengths suffer from higher 

unwanted background, since they usually show low fluxes and, hence, need 

higher observation times. 

Signal to Noise Ratio (SNR) will always consider not just the source statistical 

fluctuations, but must take into account also background. 

The background adds poissonian fluctuations to the total counts, reducing the 

SNR [36]: 
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 𝑆𝑁𝑅 =
𝑠

√𝑁
=

𝑠

√𝑁𝑆 + 𝑁𝐵

 3.1 

Where NS and NB are source and background noises. 

In any X-Ray satellite we find two components in the background: and internal 

particles one and a diffuse X-Ray component. The first is generated by particles 

traveling through the hull, releasing energy inside the detector. This effect leads 

to the generation of secondary particles, mostly electrons and fluorescence 

photons. 

The second component is known as Soft X-Ray Background (SXRB), which 

consists of a diffuse, isotropic X-Ray emission in the 0.1 – 10 keV band, reaching 

the detector thanks to the optics focusing. 

We can write an expression to get the minimum detectable flux Fmin [36]: 

 

𝐹𝑚𝑖𝑛 =
𝑛𝜎

𝑄𝐴𝑒𝑓𝑓

√
𝐵𝑝𝐴𝑑 + 𝑄𝑗𝑑𝛺𝐴𝑒𝑓𝑓

𝑡∆𝐸
 

3.2 

Where t is the observation time, Q the detector quantum efficiency, ΔE the 

instrument energy bandwidth, Ω the angular size of the source, Aeff and Ad are 

the area of the instrument and the physical area of the detector, and Bp [cts cm-2 

s -1 keV-1] is the internal particle background, while jd [cts cm-2 s -1 keV-1 sr-1] is 

the diffuse X-Ray background. 

From Equation 3.2 it is clear how the background level degrades the detector 

capability. The diffuse X-Ray component is not easy to reduce, so the only way 

is to act directly on the particle background, in order to enhance the detectable 

flux. 

There is poor knowledge about the particle background in L2. ATHENA will be 

the first mission adopting microcalorimeters to operate at that orbit. 

We know there are two main contributions to the background: the first component 

is made of cosmic particles with galactic origin (GCR), mainly protons, α-particles 
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and electrons, whose energy is in the range 10 MeV – 100 GeV. At this level, 

they can penetrate the satellite hull and also generate swarms of secondaries. 

The second component comes from solar activities (solar protons), and strongly 

depends on the solar activity itself. 

Figure 3.3 shows the latest estimations about the background counts on the X-

IFU assembly. We expect a particle level of about 3.1 cts cm-2 s-1. Using an active 

anticoincidence detector, together with some software discrimination, and other 

precautions, its level is reduced by more than an order of magnitude, down to 0.2 

cts cm-2 s-1. 

 

 

Figure 3.3: Spectra of the background expected at the detector level, coming from Monte Carlo 
simulations. The black line is what we expect without any anticoincidence, while the blue line 
takes into account the presence of an active anticoincidence detector, with pattern recognition 
algorithms and the insertion of a kapton layer to reduce secondary emissions. 
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3.2. The Cryogenic Anticoincidence CryoAC 

To fulfil the request on the detection efficiency and, hence, on the background 

rejection, the anticoincidence detector must be very close to the main X-Ray 

array, 1 mm below. For this reason, adopting a cryogenic solution is an easy way. 

The problem arises when dealing with large areas, TES based detectors. We 

need to collect the signal over a wide surface, with a fast timing. 

Our baseline consists in a detector made of Silicon, divided in 4 pixels, each 

covered by tenths of TESs. Each Silicon pixel is the sensing area, which gather 

the signal to heat up the TESs. Despite the same technology, the advantage of 

using Silicon as a converter substrate is the chance to operate in an athermal, 

non-equilibrium, regime, providing a faster response with respect to traditional 

TESs, which operate at thermal equilibrium instead. 

Table 3.1 summarizes the main requirements needed for the CryoAC, as given 

by general requirements which can be found in [37]. 

 

Parameter Value 

Total effective rejection efficiency (primaries) 99.9% (TBC) 

Total effective rejection efficiency (secondaries) 99.9% (TBC) 

Low Energy Threshold 12 keV (TBC) 

Detector Dynamic Energy Range 2 keV – 600 keV (TBC) 

Data Acquisition Dyamic Range 0 keV – 1 MeV (TBC) 

Time tagging accuracy 10 µs (TBC) 

Time tagging resolution TBD 

Intrinsic deadtime 1% @ ≤9.15 cts/cm2/s (TBC) 

Induced deadtime towards TES array TBD 

Table 3.1: Anticoincidence requirements. 

 

Moreover, these specifications require the detector geometry to follow what is 

listed in Table 3.2: 
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Parameter Value 

Number of pixels 4 

Pixel size 1.15 cm2 

Absorber thickness (Silicon) 500 µm 

Distance from main array ≤ 1 mm 

Rise time ≤ 30 µs 

Effective fall time constant ≤ 250 µs (TBC) 

Thermal time constant ≤ 2.5 ms (TBC) 

TES material Ir/Au 

Absorber material Si 

Transition temperature 75 – 100 mK (TBC) 

Thermal bath temperature 50 – 55 mK 

TES normal resistance Rn 10 – 20 mΩ (TBC) 

TES working point resistance 0.1 – 0.2 Rn 

Slew rate ≤ 50 A/s (TBC) 

Table 3.2: CryoAC specifications. 

 

Linking together all these information, we arrived to the definition of what we call 

the Flight Model, that is, the design we will likely adopt for our cryogenic 

anticoincidence detector, whose structure (the Silicon support and pixels) is 

shown in Figure 3.4, for a thickness of 500 µm. 

Every pixel, sustained by bridges each, is 1.15 cm2 in area, for a total coverage 

of 4.6 cm2, higher than the X-Ray array (2.6 cm2). More information will be 

discussed in Section 4. 

Upon each pixel, a number of TESs will be deposited with microlithographic 

techniques, to manufacture the sensing part. They will be made of an Ir/Au 

bilayer. 

Four SQuIDs, one for each pixel, will read out the signal generated by the TES 

network due to an event occurring on one of the pixels. 
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Figure 3.4: CryoAC CAD model (Silicon absorber + support structure only). 

 

 

3.3. AC-S#: What Has Been Done 

Long before ATHENA could reach its actual status, several samples have been 

tested in the framework of an X-Ray satellite, whose first name was IXO 

(International X-Ray Observatory). 

Since then, we have been studying the behaviour of TES detectors grown over 

Silicon crystals, in order to find the best solution to gather as much signal as 

possible over wide areas. Figure 3.5 shows a short of the history of the sample 

produced in the laboratory facilities of Genova, called AC-S#, where the # stands 

for the sample number. 
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Figure 3.5: Samples studied since now. 

 

With AC-S1 we got a simple Iridium TES over a Silicon substrate. Its response 

was one of the fastest. It was somehow the forefather to our activity in studying 

phonon-mediated TESs [38] [39]. 

As we wanted to increase the detector area, also the need to increase the TES 

coverage came, so the next samples were born. They were the mix to gain more 

and more surface coverage, as a trade-off with keeping the Iridium heat 

capacitance negligible with respect to the Silicon crystal. 

Aluminium was also considered to improve the total area coverage: it is a 

superconducting material whose transition temperature is higher than that of the 

Iridium TESs, guaranteeing an even wider surface covering, with a total heat 

capacity still dropping faster. 

Diffusivity is defined as: 
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 𝐷 ≡ 𝑣𝐹𝑒𝑟𝑚𝑖 × 𝐿𝑓𝑟𝑒𝑒𝑝𝑎𝑡ℎ 3.3 

In Al its value is about 0.01m2/s [40], so quasi-particles should take few 

microseconds to cover 1mm of length. 

From all the TESs developed, we found two main aspects: 

• Need of high surface coverage 

• Low volume TESs 

• Possibility to use Aluminium to improve collecting area, keeping low heat 

capacitance 

The next two samples tried to put a milestone in the search for the perfect TES 

based, athermal gathering anticoincidence detector. 

 

 

3.4. AC-S7, AC-S8. A Milestone Deep Analysis 

Figure 3.6 shows the latest two detectors produced and long studied, AC-S7 and 

AC-S8. They are the natural evolution of the detectors developed since now, 

joining together a large detection volume, with TESs spread all over the surface, 

uniformly gathering the athermal signal developing inside the Silicon volume. 

Table 3.3 summarizes the main parameters of both detectors. 

They are made of a Silicon absorber, 1cm2 in surface, and 380 µm thick. 65 

Iridium TESs are uniformly grown over its surface, and are read-out in parallel 

configuration, by means of a Niobium wire. AC-S7 foresees the use of Aluminium 

finger-like structures, whose role is that of gather as much signal as possible, 

enhancing the total are coverage. Thermal conductance is controlled by 4 

connection towers, lithographically shaped and filled with an epoxy glue, whose 

thermal conductivity is known, ensuring a good control and reproducibility of this 

important parameter. 
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Figure 3.6: AC-S7 (RIGHT) and AC-S8 (LEFT), bonded and mounted on their copper holder. 

 

AC-S7 and AC-S8 characteristics 

Absorber material Silicon [100] 

Absorber area 10 x 10 mm2 

Absorber thickness 380 µm 

TES material Iridium 

TES number 65 

TES area 100 x 100 µm2 

TES thickness 200 nm 

Wire material Niobium 

Total collecting area (TES) 0.65 % 

Total collecting area (TES + fingers) ~50 % 

Epoxy towers (LxWxH) 500 x 500 x 50 µm3 

Table 3.3: AC-S7 and AC-S8 main parameters 

 

 

3.4.1. Fabrication Processes 

Both detectors share the same production process. 

It starts with the cut of a commercially available Silicon wafer (our sample was a 

[110] Silicon 1-20 Ωcm in resistivity) in small squares, 10 x 10 mm2. Every square 

is used as an active chip, and will sense the incoming radiation. 

10 mm 
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From every chip, three processes take place: at first, we deposit a thin layer of 

Iridium by pulsed LASER deposition technique, using our Nd:YAG LASER. The 

total thickness is about 200 nm, obtained from previous calibrations of the 

apparatus. To ensure a good uniformity, the sample holder is rotated in different 

positions. The thickness is measured and confirmed after finishing, using an 

optical profilometer. 

Second step, a positive lithography is made, patterning the Iridium surface with 

the 65 TESs, which we obtain after ion-milling the chip with Argon DC plasma 

sputter. 

This way we obtain 65 Iridium TESs uniformly covering the starting Silicon 

surface. 

A negative lithography shapes the readout wiring, connecting all the TESs. We 

then evaporate Niobium using a RF sputter. Later profilometer measures 

confirmed that every TES was contacted by the Niobium film. 

For AC-S8 only, one more step is required: a negative lithography to shape the 

Aluminium collectors, which are then evaporated using a thermal evaporation 

source. 

These steps complete the active chip with TESs thermometers and their readout. 

The next step is the preparation of 4 SU-8 permanent photoresist towers to 

manufacture the thermal conductance: they are rigid walls empty structures, with 

the inner part filled with EPO-TEK 301-2 epoxy glue, which has a well-known 

thermal conductivity [41]. They are prepared with the same lithographic 

techniques, onto a second Silicon chip, a buffer which will be used to contact the 

whole detector to the thermal bath. After the preparation, the first active chip is 

mounted over the 4 towers. The EPO-TEK 301-2, after 1 hour of bake over a hot 

plate, becomes solid, ensuring a stable structure. 

Figure 3.7 shows a sketch of the processes here described; Figure 3.8 shows a 

detail of both active pixels produced; Figure 3.9 shows a sketch cross view of the 

detector, and a detail of the conductance towers. Table 3.4 summarizes some 

parameters for the manufacturing. 
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Figure 3.7: Fabrication process: (a) iridium film deposition by pulsed laser deposition; (b) film 
patterning by positive photolithography and dry etching; (c) niobium wiring deposition and 
patterning by negative photolithography, RF-sputtering and lift-off process; (d) SU-8/epoxy tower 
building on buffer chip; (e) active and buffer chip coupling. 

 

  
 

Figure 3.8: 4x magnification detail of both detectors, AC-S7 on the LEFT, AC-S8 on the RIGHT. 
Three out of the 65 Ir TESs are visible, with their connecting Nb wirings (darker lines). On AC-S8 
the Al fingers structures are well visible, contacting every TES. 

 

 

(a) 
 

(b) 

Figure 3.9: (LEFT) sketch cross view of the complete detector. (RIGHT): SU-8 walls empty (a) 
and filled with EPO-TEK 301-2 (b) 

100 µm 

500 µm 
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AC-S7 and AC-S8 manufacturing 

PLD vacuum 10-9 mbar 

Ir thickness 200 nm 

Photoresist (positive) ma-P 1240 

DC sputtering vacuum 3 x 10-6 mbar 

DC argon equilibrium 2 x 10-2 mbar 

DC sputter power 30 W 

Photoresist (negative) ma-N 440 

RF sputter vacuum 2 x 10-8 mbar 

RF sputter argon equilibrium 5 x 10-2 mbar 

Nb thickness 870 nm 

Evap vacuum 2 x 10-6 mbar 

Al thickness 500 nm 

EPO-TEK total conductance (4 towers) 2 x 10-8 W/K 

Table 3.4: Some manufacturing parameters 

 

 

3.4.2. Detectors Characterization 

Several measurements were made on the two detectors. First of all, we 

characterized them to check for important parameters, such as the normal 

resistance at room temperature, the TESs circuit resistance after the transition of 

Niobium only, and finally the transition temperature curve of the thermometers 

themselves. Next, I-V characteristics have been profiled, and finally a spectral 

analysis to probe for the detection performances. 

AC-S7 has been extensively studied at our laboratories in Genova, and at our 

collaborators in Rome. Results showed a very good reproducibility of the main 

parameters, which is important too. 

Figure 3.10 shows the two setups, used in Genova, to measure the R(T), the I-V 

characteristic, and the response to incoming radiation. 

R(T) was obtained using a four wires setup, using a Model 5210 Lock-in amplifier 

by Princeton Applied Research, while for I-V curves and for radiation response, 

we used a setup with different SQuID sensors: a SUPRACON VCBlue model,with 
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an input coil inductance of 350 nH for the I-V curves, and a VTT SQuID with 2 nH 

input coil inductance to measure the detector spectra. 

 

Figure 3.10: (LEFT) R(T) measurement setup. (RIGHT) SQuID measurements setup 

 

All the measurements done in Genova were made in an Oxford Kelvinox 25 

dilution fridge. 

The transition temperature of AC-S7 is shown in Figure 3.11. It is about 124 mK, 

with a transition width of 2 mK. The sample normal resistance is about 1.4 mΩ, 

but we found some 30% discordance between the resistance measured this way 

and with a SQuID setup. 

For AC-S8, as measured in Rome, we found a slightly different value for both the 

transition temperature and the normal resistance, as can be seen in Figure 3.12. 

Since they have been measured in different periods, it may depend on some 

setup variations along the gap. Its normal resistance is approximately 2 mΩ, and 

its transition temperature is around 120 mK, with a transition width of 2 mK. 
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Figure 3.11: Comparison between R(T) characteristics for AC-S7, obtained by Genova (Blue) and 
Rome (Red) 

 

 

Figure 3.12: AC-S8 transition curve measured in Rome 

 

Concerning the more interesting SQuID measurements, we used at first a 

SUPRACON VCBlue model, which we had in our stocks, for the first analysis. 

We then moved to a VTT SQuID after checking for the normal resistance of the 

TES samples: VTT will provide the read-out SQuID for the project, so they made 

AC-S8 

AC-S7 
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a SQuID for our purpose, with a lower inductance input coil, in order to set the 

cut-off frequency a bit far away from our detector response, improving the overall 

characteristic of the resulting pulses: the cut-off frequency, in terms of time 

response, is defined as: 

 
𝜏 ≡

𝐿

𝑅
 

3.4 

Since R is on the order of 2 mΩ, we obtain more or less 175 µs with the 350 nH 

inductance of the SUPRACON SQuID, and 1 µs with the 2 nH VTT inductance. 

Figure 3.13 shows a simplified setup scheme, which represent the sketch of the 

partially-shown setup in Figure 3.10 Right. 

 

 

Figure 3.13: Setup scheme for AC-S7/8 SQuID read-out. 

 

The SQuID amplification converts the current variations in a voltage signal. All 

the connection between shunt resistor, device and inductance are fully 

superconductive and have been previously tested: 

• Nb/Ti wires have a superconducting transition at 9 K; 

• Pb60Sn40 used for soldering has a transition around 7 K; 

• Cu pads have a square resistance of about 10-6 Ωcm2. 

The overall parasitic resistance should be driven by Cu pads, but it is lower 

enough to allow for the measure, since the normal resistance of our detectors is 
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on the order of mΩ, the working point of the TESs should be 10% of the normal 

resistance, 100 µΩ. 

The Shunt resistor was hand-made by mean of constantan wires, soldered in a 

parallel configuration with Pb60Sn40, for a total measured resistance of (140±1) 

µΩ at liquid Helium. 

This is quite high, since is comparable to the working point resistance of our 

detector: the electrothermal feedback can suffer from unwanted variation in the 

circuit bias, and could explain the anomalies found in Figure 3.14, Blue line. 

Ibias is measured reading the voltage drop across a calibrated resistance 𝑅𝑙𝑜𝑎𝑑 =

(5.0018 ± 0.0005)𝑘Ω, with a differential measure acquired via National 

Instrument ADS. Vout is measured with the same ADC. Acquiring this value at 

different temperatures allows to know the TES resistance, according to the 

following equations: 

 
𝑉𝑇𝐸𝑆 = (𝑉𝑖𝑛 − 𝐼𝑇𝐸𝑆𝑅𝑙𝑜𝑎𝑑)

𝑅𝑠ℎ𝑢𝑛𝑡

𝑅𝑠ℎ𝑢𝑛𝑔 + 𝑅𝑙𝑜𝑎𝑑
 

3.5 

Where Vin is the voltage across the load resistance, and ITES is given by the 

following equation: 

 
𝐼𝑇𝐸𝑆 =

𝑉𝑜𝑢𝑡

𝐺𝑆𝑄𝑢𝐼𝐷
 

3.6 

Where GSQuID is the SQuID gain (250000 V/A measured for the VCBlue). 

Our dilution fridge has a thermal stability of 10 µK. At each temperature, a set of 

I-V curves are automatically acquired via a LabView routine. The 

superconducting circuit is biased with an AC voltage with 𝑓 = 0.01 𝐻𝑧, 𝑉𝑝𝑝 = 10 𝑉. 

In Figure 3.14 a subset of I-V characteristics is shown. From a linear fit of the 

slope at low bias, we evaluate the resistance in the limit of zero current and zero 

dissipated power, allowing to reconstruct the R(T) curve, as shown in Figure 3.15, 

together with the calculated α of our detector. In this case, as told before, the 
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normal resistance appears to be a 20% higher than that measured by 4-wires 

setup. 

 

 

Figure 3.14: A subset of load curves I-V obtained at different bath temperatures. 
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Figure 3.15: R(T) obtained by fitting I-V characteristics (coloured dots corresponds to each of the 
I-V curves of Figure 3.14), and α parameter calculated. 

 

3.4.3. Pulse Detection and Energy Resolution 

To test the energy resolution, simulating a particle event inside the absorber, an 

241Am was used. Americium has an α-decay, with a Q-value of 5697.81 keV, and 

t1/2 = 431 years: 

 𝐴𝑚241 → 𝑁𝑝237 + 𝛼 3.7 

The isotope emits a 60 keV γ-ray with a branching ratio of 36%. 

Our source has an activity A = 37 kBq. We placed the source about 7 cm far from 

the detector, outside the steel cap of the cryostat, which attenuates it by a factor 

30. This way, considering the solid angle, we expect a total activity on our 

detector of about 10 Hz per cm2 or less, which is a good test for our detector, 

since the real anticoincidence detector will experience the same event rate. 
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The TES was DC-biased, applying a constant voltage of 35 nV at a bath 

temperature of 121.5 mK. The power dissipated by Joule effect is around 1 pW. 

We are not able to discriminate where the pulse originates inside the Silicon 

absorber, but this is not strictly required for the mission purposes. 

We used a LabView routine to acquire thousand pulses, setting a trigger at 0.2 

V, a pre-trigger of 0.02 s and a total acquiring window of 0.08 s. Sample rate was 

10 kHz. 

A typical pulse is shown in Figure 3.16. The athermal behaviour was found only 

in about 6% of the total recorded pulses. This is in good agreement with the 

expected value for a Silicon absorber [42]. 

The athermal rise time component is 24 µs, the thermal one is 190 µs. The decay 

times are 340 µs and 12 ms respectively. As we can see, using the SUPRACON 

SQuID would have cut the rise time response, making our detector slower than it 

really is. 

 

 

Figure 3.16: Typical pulse detected. Blue rusted line is the raw data acquired, Red line 
corresponds to the fit of an athermal component, while the Green line fits for a thermal component. 
The sum of athermal + thermal is represented by the Black line, which follows very well the original 
data, showing that our pulses are a superposition of both behaviours. 
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Pulses collected this way have been analysed in two different ways: in Genova, 

we set up a C++ program to analyse every pulses with athermal + thermal fit 

function and set up an Optimal Filter (OF) technique [43] [44]. 

In Rome, we used a Principal Component Analysis (PCA) to find the measured 

spectra. While it is costly in terms of resources power, it has the advantage of 

being model independent [45]. 

However, results are quite similar, the only difference is the estimation of σ: 9 keV 

@ 60 keV for the OF technique, while 4.8 keV @ 60 keV for the PCA, as shown 

in Figure 3.17 and Figure 3.18. 

Moreover, with the PCA analysis it is possible to highlight another peak: this is 

most likely not to be a peak, but an edge instead, due to the high-energy portion 

of the Compton Edge resulting from Compton scattering in the sensor, a 

continuum from 0 keV to 11.4 keV, cut off at low energies. This is important to 

notice, since it means our detector has a low energy threshold around 10 keV, 

very close to that required for ATHENA, as already discussed in Table 3.1. 

 

Figure 3.17: Reconstructed spectra using Optimal Filtering analysis. Assuming a linear behaviour, 
we find that the peak, corresponding to the 60 keV line of Am, has a standard deviation of about 
9 keV. 
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Figure 3.18: Reconstructed spectra using Principal Component Analysis. The resulting standard 
deviation is lower, and it is possible to distinguish a secondary bump, probably due to Compton 
scattering in the sensor. 

 

The same analysis here reported has been conducted on AC-S8 as well, in 

Rome. 

Unfortunately, this time the setup showed a parasitic resistance on the 

superconducting circuit, with a value of 2.5 mΩ, too high to set a good working 

point for the detector. 

More analysis will be performed as soon as the setup will be fixed. 

 

 

 



4. The Demonstration Model 

The role of the previous models was to evaluate all the parameters we need for 

the final object flying on-board ATHENA. 

As the end of the phase A is approaching, that is, the end of the R&D on all the 

components of the observatory, also the design of the focal plane is reaching its 

final shape, and so, the Anticoincidence detector has to. 

The next phases will lead to what it will be called the Flight Model, with all the 

components integrated in the Focal Plane Array, as shown in Figure 4.1. 

Following the simulations on background already discussed in Section 3, the 

structure will host the Anticoincidence detector to have a short gap with respect 

to the main TES array. 

 

 

Figure 4.1: Focal Plane Array schematics. The Red hexagon represents the main TES array, 
while the Anticoincidence detector (Blue) is not visible since it will be placed underneath it, hidden 
by the overall structure. 

AntiCo underneath 

37.1 mm Ø 
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Coming back to the Anticoincidence detector, the prototypes studied before need 

to be integrated in the solution adopted for the Focal Plane Array, and so we had 

to make changes in our structure, while consolidate and improving other aspects. 

Having a bigger sample provides a higher thermal capacitance and so a higher 

energy limit. The use of many parallel-connected TESs allows to see more 

signals spread over a big volume, while keeping the thermometer heat capacity 

somewhat low. The use of glue is a risk in order to get a reproducible thermal 

conductance, which is essential for the microcalorimeter detection physics. 

Moreover, simulations show that a thickness of 500µm is a good trade-off for a 

good anticoincidence detector. 

All these aspects previously studied brought us to develop a step-over sample: 

we call it CryoAC DM, which stands for Demonstration Model, as it will be the first 

of our objects to be tested together with main X-Ray array to probe their 

functionality together. 

 

 

Figure 4.2: CAD rendering of the Demonstration Model. The gold-plated rim will be used to 
thermalize the entire structure. The leftmost bonding pads are the TESs signal reading, while the 
rightmost pads are the heaters power supply. 96 TESs, uniformly spread over the suspended 
active pixel, are read out in a parallel configuration. 
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Many features will be foreseen on the Demonstration Model and, hence, studied 

with the aim to find the best solutions for the Flight Model, which will be developed 

later. 

It is made of a single monolithic silicon crystal, all micromachined to obtain the 

final shape. The DM is a 16.6 x 16.6 mm2, 500µm thick, silicon piece, with a 10 x 

10 mm2 absorber suspended by mean of 4 bridges. The entire structure is 

obtained with a single Silicon etch process. 

The outer region, the rim, is mainly covered with gold, and hosts the bonding 

pads, which will be used to make every electrical connection to the pixel. From 

the gold area, wire bondings will run to the thermal bath, to set the detector 

temperature uniformly. The wires develop along two bridges: one line, made of 

superposed, back and forth niobium films, is used to measure the TESs signal. 

The second one, with the same geometry and materials, powers 4 small heaters, 

made of platinum, which are used to set a temperature offset over the active area, 

the 10 x 10 mm2 suspended pixel, which is the real sensing element, and 

represents roughly ¼ of the final planar dimension of CryoAC. 
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4.1. Design Motivations 

A total amount of 96 rectangular TESs, 500 x 50 µm2, 200 nm thick, are deposited 

over the surface of the active pixel. They are made of an iridium/gold bilayer, 

which is used to control the transition temperature of the superconducting iridium 

bulk (114 mK), and set it in a range between 75 mK and 100 mK, upon 

requirement. The normal resistance found for the previous samples, AC-S7 and 

AC-S8, with less TES connected, was very low (see Section 3.4.2). Due to the 

previous results, and since both gold and iridium have a very low resistivity, the 

normal resistance of the detector drops down to a very small value. Hence the 

use of rectangular-shaped thermometers. 

The resistivity of bulk iridium is ρ=4.7e-8 Ωm at room temperature, which means 

3.1e-8 Ωm at liquid helium, considering a RRR of 1.5 [46]. For one single TES, we 

have therefore R=1.55 Ω. The 96 parallel TESs are then about 16 mΩ in normal 

resistance. Assuming the total thickness of the TESs will be 2/3 Iridium and 1/3 

Gold, more or less we should still find the same value. 

The use of niobium as wire is mainly due to manufacturing issues: aluminium (a 

widely used material for wires) is susceptible to basic developers used for 

production processes. Besides that, niobium is also a strong, resistant and higher 

Tc material. Like aluminium it forms a few atoms oxide layer over its surface, and 

this make it a strong and durable material. Two layers are grown, one above the 

other, with a silicon dioxide layer is in between, in order to enhance electrical 

isolation along the z axis. The use of a microstripline method [47] is useful to 

avoid magnetic loops, which could harm the main X-Ray detector above. 

The small heaters, grown at the very edge of every of the 4 bridges, onto the 

suspended side, allow us to control the temperature of the pixel. Since the bath 

temperature will be of 50 mK, and our detector works better at higher 

temperatures, using only the bias current to dissipate more power (and heat the 

thermometers) could not be achievable for such a high gap. In addition, it could 

give us a less stable working point. 
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Figure 4.3: COMSOL simulation of a single pixel with a rim fixed temperature, and a constant 
power of nW applied on the four heaters (the four small pices at the end of each bridge, pixel 
side). We can see that the pixel area is well maintained at a higher temperature with respect to 
the rim, while the overall variation over the TESs, represented by small rectangular areas over 
the pixel, ranges from 44.41 mK to 44.65 mK. 

 

Simulations, as it can be seen in Figure 4.3, show that using four heaters in this 

configuration could lead to a temperature offset as high as 50 mK in respect to 

the thermal bath, with a surface variation over the suspended pixel of maximum 

240 µK. 

Heaters are made of a meander-like platinum structure, 20 µm wide, 200 nm thick 

and 4 mm long. With an expected resistivity of about 4e-9 Ωm, we find 4 Ω per 

heater. At first order, considering a bridge thermal conductance G of 5e-8 W/K 

(see later), to set a 50 mK temperature gap we have to dissipate: 

 𝑃 = 𝐺∆𝑇 = 2.5 𝑛𝑊 4.1 

The use of micromachined bridges is not straightforward: their main role is to act 

as thermal link, and so their shape must be compliant with the calorimetric needs 

TESs Pixel 

Heaters 



63 The Demonstration Model 

 

in order to return a proper signal. However, they are the only connection to the 

rim and, hence, to the fixed part of the focal plane assembly. For this reason, they 

must be mechanically robust, in order to bear the active area of the detector 

avoiding breakages, sustaining stresses which especially occur during the launch 

phases. 

 

 

Figure 4.4: a set of bridges used for various simulations at first (note the 300 µm thickness, which 
was foreseen during the early stages of the DM design process). On the right side, their thermal 
conductance is estimated for a silicon truss. 

 

For all these reasons, we run several simulations using COMSOL® Multiphysics 

and ANSYS® tools, in order to find the trade-off among all these parameters. The 

DM shape comes out from the first runs, while we kept simulating in order to 

improve every aspect. 

Since the value of our thermal capacitance is fixed by the active sensing area 

pixel, whose geometry is strictly given by Monte Carlo simulations, we find out 

that the only way to control our signal shape only comes from the tight control of 

the thermal conductance. 

As a general result, we found that the best trade-off solution foresees the use of 

four straight bridges, 1 mm long and 100 µm wide. 

From previous models, we saw that a value on the order of 2e-8 W/K was suitable 

as a starting point to model our detector. This arises since, considering the low 

normal resistance value of our TESs and being the typical inductance of 

commercially available SQuIDs on the order of tens to hundreds of nH, we can 
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see that the R/L cut-off frequency sets our time constant on the order of tens of 

microseconds. To avoid any signal suppression, we should be above that value, 

say milliseconds. Being τ equal to C/G, having higher relaxation times means 

having a lower G. 

From Figure 4.4 it is clear that we have two ways to reduce the thermal 

conductance: by either increasing the length of the bridges, or by reducing their 

section. Since the surface hosts the connection wires, we prefer to leave a width 

of 100 µm at least. As backup solution we foresee to use longer bridges, using a 

meander-like shape, in order to keep the same 2D dimensions of the final chip, 

with a conductance 4 times lower. 

In the following we will show the results obtained for the straight geometry only, 

keeping in mind that we can eventually turning on the backup solution, which is 

in our reach, as shown in Figure 4.5. 

 

  
 

Figure 4.5: (LEFT) Scanning Electron Microscope image of a straight bridge sample produced at 
the Italian Institute of Technology. (RIGHT) optical magnification of a meander bridge sample 
produced in our laboratory after the upgrade of our Reactive Ion Etching machinery. 
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4.1.1. Thermal Simulations 

The first parameter we took into account was the thermal conductance of our 

detector. 

The particle hitting our Silicon chip releases energy by ionizing it over its 

thickness. Then, vibrations caused by lattice rearrangement decay and cause a 

thermalization. Of course, we didn’t account for phonons propagation over the 

Silicon, since we wanted to check for thermal behaviours. We can assume the 

particle causes a heating of a very small volume, releasing a power of some tents 

of keV energy over less than 1 ps. So, our thermal simulation starts with a pulse-

shape power dissipated in a very small volume of our detector. 

Silicon thermal parameters were considered temperature dependant, in order to 

account for temperature variation during the pulse propagation. Thermal 

capacitance was evaluated using the Debye Law, using TDebye of 647.9K for 

Silicon, so a trend following (T/TDebye)3. For the thermal conductance, we 

extrapolated, down to 50 mK, data from a work of Sota et al. [48], for a same-

trend law. 

 

 

Figure 4.6: thermalization pulse, fitted with a typical decay exponential. 
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From Figure 4.6, we can see the resulting pulse obtained, fitted with a decay 

exponential law: 

 
𝑇(𝑡) = 𝑇0 + 𝐴𝑒−

𝑡
𝜏 

4.2 

Where T0 is the base temperature, A is the pulse amplitude, and τ the thermal 

constant C/G, which is just at the cut off of our L/R circuit. 
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4.1.2. Mechanical Simulations 

We run several mechanical simulations. At first, we focused on a simple square 

DM geometry, then, confident on the results, we moved to a shape more similar 

to that of the Flight Model, since the geometrical disposition of the bridges affects 

the mechanical behaviour of our detector more than the thermal response. 

In Figure 4.7 the history of simulated structures is shown. 

 

   
Figure 4.7: From Left to Right, single square pixel (DM-like); single trapezoidal pixel to fit a 
hexagonal detector; hexagonal detector made by 4 trapezoidal pixels. 

 

In the following, we will show results concerning the Flight Model, since of most 

interest. 

These are the simulations we took into account: 

• Body load bearing up to 2000 G acceleration; 

• Main eigenfrequencies; modal analysis to check for stresses; 

• Random vibration analysis. 

Three are the main constrains to consider our results satisfactory: 1) stresses 

inside our detector have to stay at least one order of magnitude below the known 

crystalline silicon yield strength breaking point [49]; 2) during acceleration forces 

or random vibrations, the maximum allowed displacement must be less than the 

gap from the main detector array (500µm); 3) eigenfrequencies should be far from 

resonances at which the focal plane will be stressed during launch phases. This 

last point is the most critical by now, since we only know that the launch vector 

will make use of a next generation Ariane rocket, which, at the moment, is nothing 

but a blueprint [50]. 
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For the moment, we used a random vibration spectrum provided by CNES 

(Centre National d'Études Spatiales). 

Our simulations are promising: below you can find the most interesting results, in 

which we can see some important aspects: first of all, the total displacement does 

not reach the total distance gap, even at very high accelerations (see Figure 4.8), 

and the total stresses on the four bridges for each pixel, is somewhat more than 

one order of magnitude below the breaking point of crystalline Silicon [49], as can 

be seen in Figure 4.9. 

Concerning the detector eigenfrequencies and their relation to the frequencies of 

the focal plane, we can see from Figure 4.10, that the first value comes around 

2.5 kHz, while the focal plane random spectra intensity falls down until 2 kHz. 

As last simulation, we conducted a Power Spectra Analysis (PSA), using ANSYS 

software, to find the response to the given spectra in Figure 4.10 right. 

The software highlights a maximum equivalent stress of 6 MPa, and a maximum 

displacement of 1.92 µm, as it can be seen in Figure 4.11 and Figure 4.12. 

More details can be found in [51]. 

 

 

Figure 4.8: total displacement of the central points of the Flight Model, up to 2000G acceleration. 
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Figure 4.9: stress along each bridge for one pixel. The most critical point are those connected 
either to the rim or the pixel. 

 

  
 

Figure 4.10: (LEFT) eigenfrequencies found for our detector. (RIGHT) reference spectra used for 
our random vibration analysis. 
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Figure 4.11: random vibration analysis: STRESS 

 

 

Figure 4.12: random vibration analysis: DISPLACEMENT 
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4.2. Test Structures 

In order to evaluate some of the most important parameters, prior to the DM 

fabrication, some test structures have been set up. These are used mainly to 

validate the simulations conduced. 

The most critical point is that regarding the thermal conductance of the silicon. 

Since we based our simulations and, thus, the detector design, upon a third-party 

reference, double-checking and understanding the real thermal conductance can 

help us to improve bridges shape to obtain the strongest structure by selecting 

the best Silicon provider. 

These test structures also were a chance to set the best recipe to cut the structure 

using our Deep Reactive Ion Etching (DRIE) machinery. 

The heat power flowing through a truss can be described by a generic function 

𝑊(𝑇1, 𝑇2): 

 𝑃 = 𝑊(𝑇1, 𝑇2) 4.3 

Our temperatures refer to the rim and the suspended pixel, since we want to 

measure the gradient over the bridge connecting them. We can rewrite our 

function using the average temperature 𝑇 = (𝑇1 + 𝑇2) 2⁄  and the temperature 

difference between the rim and the pixel: ∆𝑇 = 𝑇1 − 𝑇2. Hence 𝑃 = 𝑊(𝑇, ∆𝑇), so 

we can consider W at fixed T and expand around ∆T=0: 

 
𝑃 = 𝑊𝑇(∆𝑇) = 𝑊𝑇(0) +

𝑑𝑊𝑇(0)

𝑑∆𝑇
∆𝑇 

4.4 

WT(0)=0 for physical reasons, while the linear term represent the thermal 

conductance G of a specific object: 

 
𝐺(𝑇) =

𝑑𝑊𝑇(0)

𝑑∆𝑇
 

4.5 

We can then write: 
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 𝑃 = 𝐺(𝑇)∆𝑇 4.6 

For a solid beam, the expression G(T) can be easily written as: 

 𝐺(𝑇) = 𝑘(𝑇)
𝑠

𝑙
 4.7 

Where s and l represent respectively the cross section and the length of the 

beam, while k(T) is the material intrinsic thermal conductivity. Its value is 

dependent on two contributions: free charge by conduction electrons and lattice 

vibrations: 

 𝑘 = 𝑘𝑒 + 𝑘𝑝 4.8 

When dealing with low temperatures, we must consider that both contributions 

have the same behaviour of the specific heat [41]: the electronic component has 

a linear dependence on the temperature, while the lattice one follows a third-

power rule with the temperature, so that we can we can re-write the 

proportionality law for our conductance as follows: 

 𝐺(𝑇) = 𝐴𝑇 + 𝐵𝑇3 4.9 

Where A and B account for the thermal conductivity contributions by free 

electrons and lattice vibrations respectively, together with the geometrical factors 

of our beams. 

In our simulations, we assumed, based on references, that the lattice contribution 

is dominant, so the overall thermal conductance can be approximated by a T3 

expression. This is mostly true, especially at low temperatures. However, a linear 

T term (coming from electron coupling) may appear even at very low temperature, 

depending, for instance, on the doping concentration of the silicon bulk 
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Since our detector performances are strongly dependant from this parameter, we 

decided to make a selection of wafers to probe the effective contribution of 

thermal conductivity. 

We conduced some tests on different silicon samples, from commercially 

available doped (1-20 Ωcm) to low intrinsic (5 kΩcm) and higher grade of purity 

(>10 kΩcm). 

To test the effective thermal conductance, we used DM-like structures, so to have 

a benchmark of the effective conductance we have to expect on the final model. 

 

 

4.2.1. Setup and Results 

We set up a recipe to produce micromachined Silicon chips by digging 90 

degrees walls over 500 µm thick Silicon crystals. To do so, we upgraded our 

DRIE to be able to process a Bosch recipe [52] [53], useful to process Silicon 

microstructures, in which passivation phases with C4F8 alternate etching phases 

with SF6 gases. 

Results are very good, since we obtained well-shaped profiles: you can see an 

example in Figure 4.13, where we show a profile cross-section of a test wafer cut 

with our recipe, down to 50 µm, with the typical “scallops” structures well visible, 

due to the alternate etching/passivating phases, and a wall profile with a good cut 

angle very close to 90 degrees. In Figure 4.14 we show a meander-like structure 

cut over a 500 µm thick Silicon wafer. 
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Figure 4.13: 20x magnification cross-sectional view of a sample wafer cut down to 50 µm. 
Scallops structures are well visible, as well as a very good steep wall dig. 

 

  
 

Figure 4.14: (LEFT) sample used to test our DRIE capabilities. (RIGHT) detail of one bridge. 

 

100 µm 

scallops 
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Figure 4.15: (LEFT) actual setup used to measure the thermal conductance for a DM-like 
structure. (RIGHT) setup scheme, where the heater dissipates power over the suspended chip, 
the heat flows through the 4 bridges and we measure the temperature drop along one of them 
(T1 and T2 are the GE thermometers). 

 

Our samples were tested in our Kelvinox 25 dilution fridge. Figure 4.15 shows a 

picture of the sample mounted. We used a commercially available Pt meander 

structure grown over a small (4 mm2) silicon chip to act as a heater. It was glued 

with GE Vanish 7031 glue onto the suspended pixel. Its resistance was measured 

to be on the order of hundreds of kΩ. Two Germanium thermometers were glued 

as well onto the test structure, one on the suspended pixel and one on the rim, 

each at the end of the same bridge, in order to measure the temperature drop 

across it. They were glued with GE Vanish 7031 glue as well. The thermal 

conductance of this glue is some order of magnitudes lower compared to that 

expected for our bridges, so it was not considered in our calculations [41]. The 

electrical connections were hand-made with the use of Au/Be wire bondings, 12 

µm in diameter and 10 mm long, glued with EE149 EPO-TEK silver resin paste. 

These bondings can contribute to the thermal conductance, allowing a fraction of 

the power to dissipate through them, instead of flowing along the bridges. For this 

reason, we made an evaluation of the thermal conductivity of a wire of a known 

length from the same stock, measured the resistance in a four wire configuration 

at liquid helium temperature, and found the theoretical thermal conductance 

through the empirical Wiedemann-Franz Law [54], which links the thermal 

  
 

heater 

T1 T2 

heat flow 
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conductivity κ of a given metal to their resistivity (electrical conductance σ) with 

the following: 

 𝜅

𝜎
= 𝐿𝑇 4.10 

Where 𝐿 =
κ

σT
=

𝜋2

3
(

𝑘𝐵

𝑒
)2 = 2.44 × 10−8 𝑊Ω𝐾−2 is the Lorenz number [55]. 

The value found for our Au/Be wires was found to be negligible with respect to 

the bridges, due to their very small cross section. 

The setup scheme is shown in Figure 4.16. 

Thermometers are measured with a two wires setup, applying a common voltage 

of 0.5 mV and reading back both the voltage and their currents, through two 

Picoammeters Keithley 6485/6487. We use the cryostat temperature control to 

set the working point and the temperature feedback, and we recorded the two 

Germanium thermometers, at different T0, applying a power dissipation onto the 

suspended pixel. 

With a four wires setup we checked the heater’s current and voltage drop while 

injecting power, ranging from 0 to ~1µW. 

 

 

Figure 4.16: Setup scheme for the thermometers readout. 
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Thermometers calibration was obtained considering their resistance at 0 power 

applied, using the cryostat thermometer as reference. 

For each cryostat temperature T0, roughly from 450 mK down to 100 mK, we 

acquired the two R(P) curves related to the two Germanium thermometers. At 

every fixed T0, we extrapolated the value for 0 power dissipated R(P=0). These 

represent the R(T) calibration curves of both thermometers. Then we used the 

relation [56]: 

 
𝑅(𝑇) = 𝑅0𝑒

√𝑇0
𝑇⁄
 

4.11 

Where R0 and T0 are intrinsic parameters of each Germanium thermometer, 

summarized in Table 4.1 for the three samples we measured. 

 

Sample Germanium 𝑹𝟎 [𝜴] 𝑻𝟎 [𝑲] 

1 
GE1 (rim) 837.38 ± 2.02 20.89 ± 0.51 

GE2 (pixel) 538.39 ± 1.15 22.87 ± 0.53 

2 
GE1 (rim) 28.82 ± 0.67 6.94 ± 0.24 

GE2 (pixel) 9.08 ± 0.49 10.49 ± 0.35 

3 
GE1 (rim) 11.59 ± 0.56 8.24 ± 0.30 

GE2 (pixel) 8.34 ± 0.41 10.23 ± 0.33 

Table 4.1: Values for the intrinsic Germanium thermometers, obtained from the fit. 

 

Once the calibration has been done, we acquired via a LabView routine every 

parameter in order to make a plot of P(ΔT) and, hence, of G(T). 

Combining Equation 4.6 and Equation 4.7, and accounting for beams geometries 

and for the conductance measured for the Au/Be wires, we can find a plot for the 

thermal conductivity of our silicon samples. Using Equation 4.9 we find the 

thermal parameters of our silicon crystals, in order to evaluate the contribution of 

free electrons and lattice. Results are summarized in Table 4.2, where we 

obtained the two conductance parameters for our given geometries, and Table 

4.3, where we calculated the resulting thermal conductance, rearranged for the 
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correct geometrical factors, accounting for 4 bridges. Figure 4.17 shows the total 

conductivity evaluated for three different silicon samples. 

 

Sample Resistivity 𝑨 [× 𝟏𝟎−𝟑  
𝑾

𝑲𝟐 ∙ 𝒎
] 𝑩 [

𝑾

𝑲𝟒 ∙ 𝒎
] 𝒌@𝟓𝟎 𝒎𝑲 [

𝒎𝑾

𝑲 ∙ 𝒎
] 

1 1-20 Ωcm 391.5 ± 0.3 1.483 ± 0.003 19.76 ± 0.02 

2 5 kΩcm 52.3 ± 0.9 2.095 ± 0.015 2.88 ± 0.05 

3 >10 kΩcm 42.7 ± 0.4 0.829 ± 0.004 2.24 ± 0.02 

Table 4.2: Normalized fit parameters 

 

Sample Resistivity 𝑮@𝟓𝟎 𝒎𝑲 [
𝝁𝑾

𝑲
] 

1 1-20 Ωcm 3.953 ± 0.002 

2 5 kΩcm 0.576 ± 0.005 

3 >10 kΩcm 0.448 ± 0.003 

Table 4.3: DM thermal conductance extrapolated at 50 mK 

 

Sample Resistivity AT [%] BT3 [%] 

1 1-20 Ωcm 99.06 0.94 

2 5 kΩcm 90.90 9.10 

3 >10 kΩcm 95.37 4.63 

Table 4.4: Weight of the two terms in the total conductance @ 50 mK 

 

As it can be seen in Table 4.4, the free electrons term is unexpectedly leading 

the overall thermal conductance, even at high sample purity levels. 

Thus, that the overall thermal conductance of our detector will be slightly different 

from that expected. 

Moreover, if the free electrons contribution is strong, the heat capacitance is also 

affected. Since, in the end, we are interested in the C/G ratio, the two terms could 

somehow compensate, leading to a correct detector response. 
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Figure 4.17: total thermal conductivity measured for our three silicon samples. 

 

 

4.2.2. SIMS analysis 

A side activity related to the study of the test structures concerns the analysis of 

the Silicon wafers we used to produce them. 

High resistive Silicon does not mean high purity. 

When a wafer contains an equal amount of donors and acceptors, it is called 

“compensated”, since the presence of donors and acceptors in a semiconductor 

causes the electrons given off by the donor to fall into the acceptor state which 

ionizes the acceptor without yielding a free electron or hole. In this situation we 

may have a high resistive Silicon specimen, which is all but pure. 

While at room temperature this may not be a problem, when working at low 

temperature, the presence of both donors and acceptors plays a role. 

Having a high purity wafer is, of course, more expensive, since we have to pay 

very high attention to every ppm or ppb of dopants. 
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We opened a contract with the facility Fondazione Bruno Kessler (FBK) in Trento, 

to have a complete analysis of some of the specimens we used for our measures. 

They mainly carried a SIMS analysis. The SIMS analysis, whose acronym stands 

for Secondary-Ion Mass Spectrometry, is a technique used to analyse the 

composition of a solid surface or thin film by sputtering it with a focused ion beam 

of primary ions, usually noble gases ( 𝐴𝑟+40 ,  𝑋𝑒+), but also 𝑂−16 , 𝑂2
+16 , 𝑂2

−16 , and 

even 𝐶𝑠+133 . The sputtered product, which is formed by ejected secondary ions, 

is then analysed by a mass spectrometer. 

Although it is mostly a qualitative analysis, it is possible to calculate the quantity 

of a given ion, if some calibration specimens are available for reference. This 

way, the SIMS is the most sensitive surface analysis technique, able to detect 

impurities as ppm or ppb [57]. Figure 4.18 shows a sketch of its working principle. 

 

 

Figure 4.18: Working principle of a SIMS apparatus. 

 

In FBK they used a CAMECA SC-Ultra to perform the SIMS analysis, using Cs 

and O as primary ion source. They looked for the following specimen: 𝑁14 , 𝑆𝑖30 , 
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𝑃31 , 𝐿𝑖7 , 𝐵11 , 𝐴𝑙27 , 𝐶𝑎40 , 𝑍𝑛64 , in a reference matrix of 𝑆𝑖30 . The total area 

analysed was 50 ÷ 75 µm in diameter, for an overall 1 µm depth. Results are 

shown in Figure 4.19, Figure 4.20, and Figure 4.21. Table 4.5 visually 

summarizes the total amount of specimens found in each sample. Principal atoms 

used as dopants are highlighted in red. As we can see, for the first sample, the 

number of B atoms is very high, suggesting it is a P-type Silicon wafer, which is 

actually what it’s stated by the production company, and so it could be considered 

as a double-check on the reliability of the analysis. In the second sample, whose 

resistivity is declared to be 5 kΩcm, the total amount of B and P atoms is the 

same, suggesting it is a compensated Silicon wafer. The latest sample, which 

should be the purest one, shows a lower level of B atoms, but an excess of P, 

suggesting it is more likely to be an N-type Silicon wafer. 

The three specimens analysed have a high concentration of dopant, which could 

be the cause of the dominant free electrons contribution to the thermal 

conductance. 

 

 

Figure 4.19: Specimen 328 (our reference sample 1): 1-20 Ωcm. SIMS analysis. 
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Figure 4.20: Specimen 329 (our reference sample 2): 5 kΩcm. SIMS analysis. 

 

 

Figure 4.21: Specimen 330 (our reference sample 3): >10 kΩcm. SIMS analysis. 
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Sample (FBK) Sample (our ref.) Resistivity SIMS [atoms/cm3] 

328 1 1-20 Ωcm 

Li = 2 E12 
B = 2.3 E15 
N = 6.5 E16 
Al = 1.3 E14 
P = 1.4 E15 
Ca = 1.9E14 
Zn = 3.0E16 

329 2 5 kΩcm 

Li = 7 E11 
B = 7.0 E14 
N = 6.4 E16 
Al = 1.5 E14 
P = 7 E14 

Ca = 1.7E14 
Zn = 2.4E16 

330 3 >10 kΩcm 

Li = 9 E11 
B = 8.2 E14 
N = 6.4 E16 
Al = 1.3 E14 
P = 1.4 E15 
Ca = 2.0E14 
Zn = 2.6E16 

Table 4.5: Main dopant concentration found for the SIMS analysis of our Silicon samples. 

 

 

 



Conclusions 

The study for a cryogenic Anticoincidence detector begun more than 10 years 

ago, when the project foreseen to send a small detector in orbit to probe its skills 

to do some Astrophysics. As time passed by, more interest arose in making this 

mission even bigger and more technologically challenging, in order to obtain 

better results and do more Astrophysics. 

It has been exciting to see, in 2014/2015, that the mission was finally adopted 

and confirmed: from then on, the mere work on R&D would have been 

transformed in something much more result-oriented. We were a growing 

community, and we finally had a focus. 

Since then, the development of the best detector has been a very exciting 

challenge. The results we found on the many prototypes we manufactured, also 

made us confident that the right direction was taken. 

AC-S1 opened the way to this kind of research. We found a lot of information on 

phonon-mediated TESs. Further developments were necessary to reach a good 

trade-off to obtain large area detectors based on this technology. Every step we 

made helped us improving our knowledge and the efficiency of the detector. AC-

S5 was another leap forward, since we found more information related to the 

effectiveness of Iridium multi-TES detectors. AC-S7 and AC-S8 were AC-S5 

natural evolution, since we put even more Iridium TESs, a strategy which allowed 

use to scale for even bigger detectors. 

The understandings from AC-S1 to AC-S8 made us more confident on the 

behaviour of Iridium TESs grown over Silicon absorbers, a field where few others 

made researches. 
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With every detector we manufactured, we made a step forward, enhancing both 

our knowledge and our method on producing, analysing and improving our 

detectors chain production. 

The Demonstration Model will be the final step, the dividing line between what 

was pure R&D and what will be the first anticoincidence detector based on 

transition-edge sensor technology to be launched on a space mission. Although 

ASTRO-H has been the first mission adopting TES technology for X-Ray 

astrophysics, it did not make use of an active anticoincidence of this level (see 

[58] [59]). 

We payed special care on every aspect, but we have to improve even more: too 

many parameters need to be controlled.  We have seen that the wafer quality is 

not easily controllable. However, having a purity different from what we expected 

to work with, could be compensated giving way to the right performances we want 

to have. 

The fabrication of the Demonstration Model itself will be the test for those 

parameters we cannot control, and also for those we have theorized and 

simulated for long time. The results of its analysis will highlight what it will be 

necessary to implement on the Flight Model, taking a major advance in the final 

object. 

During my PhD I’ve been an active part of the CryoAC manufacturing process: 

from the analysis on previous samples, to the study, design and development of 

new prototypes. 

I brought the design and specifics of the detector to a more mature level, allowing 

the collaboration to reach an adequate level of readiness. 

As the end of the phase A will approach, our knowledge on the detector will be 

complete, and we will be ready to test the final detector together with the main X-

Ray array. This will be very important, since at that time most of the work will be 

done, and only an implementation on the final focal plane assembly will be 

necessary after. 
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The Demonstration Model represents the state-of-art of our knowledge regarding 

our application of TES technology. We are eager to test it to probe its capabilities. 

Yet, we are inspired by our goal, remembering that our object is going to fly for 

the first time ever on a space mission. 
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