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Introduction 
 

 

Since the early stages of scientific research the investigation of how light and matter interact has been 

both an intrinsic and a non-trivial issue. Across the years, scientists have succeeded in the explanation 

of many fundamental phenomena and new discoveries have raised a plethora of questions, most of 

which still remain unanswered. Nowadays, the study of the basic mechanisms of light-matter 

interaction is an interdisciplinary topic addressed in the fields of optical and atomic physics, condensed 

matter physics, optoelectronics, communication, molecular biology and medicine. Interaction occurs 

across a frequency range that spans many orders of magnitude, from the few tens of Hz of deep earth 

and sea communications to the hundreds of petaHz of X-ray imaging, and over length scales that 

ranges from thousands of meters to few hundreds picometers. 

In this vast framework, the present study focuses with particular attention on the investigation of light-

matter interactions at the micro- and nanoscale level, a topic of rapidly increasing scientific interest and 

technological relevance, with great impact in light harvesting applications, cancer therapy, water 

splitting and single molecule detection, just to mention a few. Within this context, plasmonics offers a 

viable route for the manipulation of the electromagnetic field through the resonant interaction between 

metallic nanostructures and incident radiation. In fact, coupling of light with the free-electron motion 

leads to enhanced optical near fields, confined in subwavelength regions and localized in close 

proximity of the nanoparticles (localized surface plasmon resonances – LSPRs) or propagating along 

patterned metal/dielectric interfaces (surface plasmon polaritons – SPPs). The near-field characteristics 

of plasmon based devices and the straightforward tunability of their plasmonic properties across a wide 

spectral range make them particularly suitable for the investigation of light-matter interactions at the 

nanoscale level. Recent advances in nanofabrication have paved the way towards the realization of 

designs that boost light-matter interactions with the creation of new hybrid systems, enabling strong 

coupling phenomena to be established. This regime has been the subject of extensive research in the 

last decades and has led to fundamental discoveries, such as threshold-less nano-lasers, single-photon 

optical transistors and modification of the electronic properties of nanomaterials. Through the 

formation of hybrid states, light-matter strong coupling offers challenging perspectives by inducing 

significant modifications in the intrinsic properties of each constituent. Very recently, this concept has 

been extended from the visible spectral range, where emitting materials operate, to the infrared and 
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terahertz spectral range, where most of the vibrational and dissipative properties lie, offering the 

possibility to engineer the nanoscale phononic characteristics of hybrid materials and enhance the 

performance of solid-state devices.   

In this work we address this issue and we exploit vibrational strong coupling to modify the phononic 

properties of materials, showing that the dipole-active phonon resonance of semiconducting 

nanocrystals can be drastically reshaped. This is achieved by exploiting the phonon strong coupling 

with the vacuum electromagnetic field confined and enhanced in terahertz plasmonic nanocavities. A 

Raman characterization of the vibrational properties of the employed nanocrystals unveils the quantum 

nature of the investigated phenomena, demonstrating that strong hybridization occurs even in dark 

conditions, i.e. no terahertz photons pumped into the system. 

Chapter 1 reports a brief overview light-matter interaction regimes, i.e. from the weak to the strong 

coupling, addressing this topic from a theoretical point of view. Basic concepts of cavity-quantum 

electrodynamics (QED) are developed considering the general case of a two-level atom in an external 

electromagnetic field. A classical description is firstly employed and the fundamental conditions for the 

establishment of strong coupling are analytically derived. In the second part of the chapter, we abandon 

the classical view and introduce quantistic terms, therefore highlighting the quantum nature of the 

studied system. 

Chapter 2 deals with strong coupling between plasmon modes and molecular excitonic transitions. In 

the first part of the chapter, fundamentals of surface plasmon polariton resonances are given, together 

with a brief explanation of crystal excitons. In the second part, the plasmon-exciton interaction is 

reviewed from a classical perspective and the state-of-the-art in the field, together with some 

applications, is discussed. 

In chapter 3 we adapt the concepts described in chapter 2 to the terahertz spectral range, in order to 

achieve vibrational strong coupling between nanocavity plasmonic modes and the optical phonon 

resonance of semiconductor nanocrystals. Fabrication of the plasmonic elements and the numerical 

characterization of both their far-field and near-field properties are described in details, together with 

the numerical calculation of the mode volume and the expected vacuum electric field in the nanocavity 

regions. In the second half, we describe the nanocrystal synthesis and the realization of the overall 

coupled system, overviewing similar applications of the same design. 

Chapter 4 presents the results demonstrating plasmon-phonon hybridization in the terahertz range. To 

do this, we firstly report the THz characterization of the fabricated sample that was carried out in the 

synchrotron facility at ELETTRA, Trieste on the SISSI beamline dedicated to material science. 
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Transmission measurements features the typical anti-crossing behaviour of strongly coupled oscillators 

and evidence the measured Rabi splitting dependence of the concentration of hybridized nano-objects. 

In the second part, the key principle of the present work is extensively explained. In fact, a Raman 

characterization shows how hybridization occurs only in the nanocavity regions even in dark 

conditions, without the need for terahertz excitation to be employed. These results further corroborate 

the nanoscale behaviour of the phonon resonance reshaping. 

Chapter 5 reports preliminary results obtained with a different geometry, where the nanoantennas are 

replaced with plasmonic nanoslits. The new hybrid system, despite the lower field enhancement of the 

plasmonic elements, is endowed with higher Rabi splittings and the induced perturbations are a 

significant fraction of the unperturbed transition energies, hinting for the establishment of an ultra-

strong coupling regime. A terahertz characterization confirms the expected results and future Raman 

characterization of the vibrational properties of the hybridized nanocrystals will help validating these 

findings. 

Finally, a brief conclusion of the overall work is given with few perspectives for future developments. 
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Chapter 1 

Light-matter interactions: a theoretical overview 
 

1.1 Weak coupling regime 
 
Light-matter interaction is one of the fundamental processes occurring in nature. The typical situation 

involves the interaction between a photon emitter (dye molecules, quantum dots, organic or inorganic 

semiconductors, etc.) with an external electromagnetic (EM) field. Usually, the interaction between the 

emitter and its local optical environment is rather weak and such that only the spontaneous emission 

rate is modified (the emission frequency remaining unaltered), like in the case of spontaneous emission 

of molecules in an optical cavity
1
. In such a situation (see Figure 1.1), we are in the so-called “weak 

coupling” regime and the wave functions of the emitter and the light field can be treated as 

unperturbed. 

 

Let us consider the general case of a two-level atom with transition frequency ω0 interacting with the 

electromagnetic vacuum field. At time 𝑡 = 0, the atom is prepared in its excited state, denoted in 

Dirac’s notation as |1⟩, and the field is in a vacuum state |{0}⟩. In this notation, the initial overall state 

is then 

 

 |𝜓(0)⟩ = |1, {0}⟩ (1) 

 

Since the atom is not in a stable configuration, it will spontaneously decay to its ground level |0⟩ by 

means of an electric dipole transition μ and emit a photon in mode (k,s). The state of the system after 

the decay will become |0, 1𝒌𝑠⟩, which form a complete set for expanding the time-dependent 

wavefunction
2
: 

 

 |𝜓(𝑡)⟩ = 𝑎(𝑡)𝑒−𝑖𝜔0𝑡|1, {0}⟩ + ∑𝑏𝒌𝑠(𝑡)𝑒
−𝑖𝜔𝑘𝑡

𝒌,𝑠

|0, 1𝒌𝑠⟩ (2) 
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where 𝜔𝑘 = 𝑐𝑘 is the frequency of the photon. The total Hamiltonian can be expressed as the sum of 

three terms, 𝐻 = 𝐻𝑎𝑡𝑜𝑚 + 𝐻𝑣𝑎𝑐 + 𝐻𝑖𝑛𝑡, and expanded as 

 

 
𝐻 =

1

2
ћ𝜔0𝜎̂𝑧 + ∑ћ𝜔𝑘𝑎̂𝒌𝑠

† 𝑎̂𝒌𝑠

𝒌,𝑠

− ∑ћ𝑔𝒌𝑠(𝜎̂+𝑎̂𝒌𝑠 + 𝜎̂−𝑎̂𝒌𝑠
† )

𝒌,𝑠

 (3) 

 

where 𝑔𝒌𝑠 is the atom-field coupling coefficient and 𝜎̂𝑧, 𝜎̂±, 𝑎̂𝒌𝑠 are linear operators acting on the states 

of the system. Solving the time-dependent Schrӧdinger equation 𝐻|𝜓(𝑡)⟩ for the excited state 

amplitude 𝑎(𝑡), we can compute the atom transition rate to the ground state using Fermi’s golden rule
3
: 

 

 𝑑𝑃1(𝑡)

𝑑𝑡
=  (

2𝜋

ћ
) |〈1|𝐻𝑖𝑛𝑡|0〉|

2𝐷𝑓𝑟𝑒𝑒(𝜔) (4) 

  

where 𝐷𝑓𝑟𝑒𝑒(𝜔) =
𝜔2𝑉

𝜋2𝑐3 is the free-space density of states in the mode volume V occupied by the atom 

and 𝑃1 is the probability of the atom to be in the excited state. Calculation of the interaction terms
4
 

finally yields the spontaneous emission in free space: 

 

 
𝛤𝑓𝑟𝑒𝑒 = 

𝜔0
3𝜇10

2

3𝜋𝜀0ћ𝑐3
 (5) 

 

where 𝜇10 is the atomic transition dipole moment. If the atom is placed inside a cavity supporting a 

normal mode oscillating at a frequency 𝜔𝑐𝑎𝑣, the system Hamiltonian in Eq. (3) will change by 

substituting the vacuum field with the quantized field of the cavity. Concurrently, the density states for 

free space 𝐷𝑓𝑟𝑒𝑒(𝜔) has to be replaced with a cavity modified density of states 𝐷𝑐𝑎𝑣(𝜔):  

 

 
𝐷𝑐𝑎𝑣(𝜔) =  

𝜅

2𝜋𝑉

1

(𝜅 2⁄ )2 + (𝜔𝑐𝑎𝑣 − 𝜔)2
 

 

(6) 

where V is the cavity mode volume and κ is the cavity dissipation rate, which takes into account the 

cavity losses per optical cycle.  
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Figure 1.1: Schematic of a two-level atom in a cavity, whose stored energy is lost at a rate κ due to imperfectly reflective 

mirrors or absorption in the material. Coherent exchange of excitation between the atom and the cavity field depends on the 

coupling strength g, as indicated by the dashed arrow for the atom and the green arrows for the cavity field
5
. 

 

Depending on the detuning of the atom transition frequency 𝜔0 from the cavity normal mode 

frequency, two opposite situations arise. In resonance conditions, i.e. in the case of 𝜔 =  𝜔0 = 𝜔𝑐𝑎𝑣, 

and perfect matching of dipole orientation, there is enhancement of the atom spontaneous emission 

rate, as represented in the following equation: 

 

 
𝛤𝑐𝑎𝑣 = 

3

4𝜋2
(
𝜆0
3

𝑉
)𝑄𝛤𝑓𝑟𝑒𝑒 

 

(7) 

where 𝑄 = 𝜔𝑐𝑎𝑣 𝜅⁄  denotes the cavity quality factor. In off-resonance conditions (i.e. 𝜔0 ≠ 𝜔𝑐𝑎𝑣), 

instead, there is inhibition of spontaneous emission, as given by: 

 

 
𝛤𝑐𝑎𝑣 = 

3

16𝜋2
(
𝜆0
3

𝑉
)𝑄−1𝛤𝑓𝑟𝑒𝑒 

 

(8) 

This results suggests how in the weak-coupling regime the spontaneous emission, and therefore the 

natural lifetime of the excited emitter, can be modified leaving the energy spectrum of the total system 

unchanged. When the cavity photon and the atom transition energies are degenerate, the atomic decay 

rate can be increased considerably as quantified by the so-called Purcell-factor
6
: 
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 𝛤𝑐𝑎𝑣

𝛤𝑓𝑟𝑒𝑒
= 

3𝑄𝜆3

4𝜋2𝑉
 

 

(9) 

In a simplified interpretation, the cavity can be thought as a spectrally narrow reservoir of states with a 

large density around the cavity mode frequency. The number of final states in which the excited atom 

can decay is therefore increased and the effect is amplified with high Q cavities and small mode 

volumes V.  

 

Another interesting example of weak coupling is Fӧrster resonance energy transfer (FRET)
7
 from an 

excited “donor” to an “acceptor” molecule thorough resonant dipole-dipole interaction. In the classical 

description of this phenomenon, the two interacting molecules can be viewed as oscillating dipoles, 

with the donor dipole initially in oscillation and the acceptor one at rest. Owing to a resonance 

condition, which can be established provided that the emission spectrum of the donor partially overlaps 

with the absorption spectrum of the acceptor (see Figure 1.2a-b), the excitation energy is partially 

transferred from the first dipole to the second one. Interaction between the dipoles is non-radiative, but 

it is mediated electromagnetically by a virtual photon which is emitted and immediately absorbed. 

 

 

Figure 1.2: a) Absorption and emission spectrum for a donor and an acceptor molecule; the shaded area represents their 

spectral overlap. b) Jablonski diagram of FRET and typical timescales of each transition. 

 

In addition to the spectral overlap and the relative orientation of the donor emission and acceptor 

absorption dipole moments, the FRET efficiency also depends on the relative distance between the 

interacting molecules. By calculating the power emitted by the donor dipole and the power absorbed by 
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the acceptor dipole, it is possible to obtain the transfer rate constant as a function of molecule 

separation
8
: 

 
𝑘𝑇 = 𝑘𝐷 [

𝑅0

𝑟
]
6

= 
1

𝜏𝐷
0 [

𝑅0

𝑟
]
6

 

 

(10) 

where 𝑘𝐷 is the emission rate constant of the donor and 𝜏𝐷
0  its lifetime in the absence of transfer, r is the 

intermolecular distance and 𝑅0 is the critical distance or Fӧrster radius. When the molecule separation 

is identical to the Fӧrster radius, resonant energy transfer to the acceptor and spontaneous decay of the 

excited donor to its ground state are equally probable (𝑘𝑇 = 𝑘𝐷). As it can be noted from the relation 

above, the transfer rate goes with the inverse of the sixth power of molecule separation and the critical 

distance represents a threshold between radiative and non-radiative energy transfer (usually occurring 

for r < 10 nm).  

Even in the case of FRET, a modification of the local optical environment can be used to control and 

enhance the energy transfer rate
9
, similarly to the case of an atom-cavity system previously described, 

and leaving the energy spectrum of the system unaltered. In this regime, the transfer rate is smaller than 

the relaxation rate of the uncoupled molecules, meaning that once the energy is transferred from the 

donor to the acceptor, there is very little chance of an energy back transfer. This process can be 

reversed and completely modified by further increasing the molecules coupling strength towards the 

“strong coupling” regime, as it will be discussed in the next section. 

 

 

1.2 Strong coupling regime 
 

In order to continue along the leitmotiv of the previous section, let us consider again the case of a two-

level atom in an electromagnetic field. Upon excitation in the weak coupling regime, the energy levels 

of the atom remain essentially unchanged. If the interaction energy with the external field becomes 

sufficiently large, energy is exchanged at a rate faster than any relaxation rate and the overall system 

enters the so-called strong coupling regime. In this limit, it is no longer possible to distinguish between 

the emitting atom and the exciting field, but they must be thought as a single system where the atomic 

states are inextricably linked with the modes of the local optical environment. The energy spectrum of 

the coupled pair is profoundly modified and new hybrid light-matter states are formed by very rapid 

photon exchange. These energy states are usually denoted as upper (P+) and lower (P-) polariton bands 
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and are separated by a characteristic energy splitting, also called Rabi splitting, whose magnitude 

depends on the interaction strength. The origin and interpretation of the new hybrid system can be 

understood both in a classical and quantum picture, as briefly highlighted below. 

 

 

1.3 Strong coupling: classical description 
 

In the following, we will describe a two-coupled oscillator model and derive classically the conditions 

for strong coupling. The interacting systems (A and B) are represented as two harmonic oscillators, 

respectively of masses mA and mB and spring constants kA and kB (see Figure 1.3). This ideal situation 

corresponds to the case of two coupled pendula (oscillating at small frequencies), an optical field 

coupled to a dipolar two-level transition of an atom/molecule or to a microwave field coupled to a 

resonating circuit. 

 

 

Figure 1.3: Coupled system illustrated by mechanical harmonic oscillators. The coupling g of the two oscillators leads to a 

shift of the eigenfrequencies and a characteristic frequency splitting
10

. 

 

In the absence of coupling (g = 0) and solving the equation of simple harmonic motion for each 

isolated oscillator, the eigenfrequencies of the systems are the standard 𝜔𝐴
0 = √

𝑘𝐴

𝑚𝐴
 and 𝜔𝐵

0 = √
𝑘𝐵

𝑚𝐵
 

respectively. If we now introduce coupling (g ≠ 0), the equations of motion of the total system become: 

 

 𝑚𝐴𝑥̈𝐴 + 𝑘𝐴𝑥𝐴  + g(𝑥𝐴 − 𝑥𝐵) = 0 (11) 

  

𝑚𝐵𝑥̈𝐵 + 𝑘𝐵𝑥𝐵 − g(𝑥𝐴 − 𝑥𝐵) = 0 
(12) 
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Since in the strong coupling regime we expect to observe the arising of two hybrid energy levels, we 

seek solutions of the form 𝑥𝑖(𝑡) = 𝑥𝑖
0𝑒𝑥𝑝[−𝑖𝜔±𝑡] , where 𝜔± are the new eigenfrequencies of the 

coupled system. By inserting this ansatz in the homogeneous system of equations above and solving for 

the new eigenfrequencies, we obtain: 

 

 
𝜔±

2 =
1

2
[𝜔𝐴

2+𝜔𝐵
2 ± √(𝜔𝐴

2 − 𝜔𝐵
2)2 + 4𝛤2𝜔𝐴𝜔𝐵]  (13) 

 

where 𝜔𝐴 = √
𝑘𝐴+g

𝑚𝐴
 , 𝜔𝐵 = √

𝑘𝐵+g

𝑚𝐵
 and 𝛤 =

√g
𝑚𝐴

⁄ √g
𝑚𝐵

⁄

√𝜔𝐴𝜔𝐵
. The new frequencies 𝜔± represent the normal 

modes of the coupled oscillator system and are different from those of the original oscillator modes.  

In order to illustrate the solutions of Eq. (13), we set 𝑘𝐴 = 𝑘0, 𝑘𝐵 = 𝑘0 + 𝛥𝑘 and 𝑚𝐴 = 𝑚𝐵 = 𝑚0, 

which results in a frequency detuning between the two oscillators. In this simplified picture, one of the 

oscillator frequency can vary while the other one is not tunable: this resembles the case of an atom 

interacting with an electromagnetic field, where the energy of the electronic transition is fixed (system 

A) while the irradiation frequency can be changed (system B).  

In the absence of coupling (g = 0) the two oscillators system behaves as depicted in Figure 1.4a. As Δk 

is increased from −𝑘0 to 𝑘0, the frequency of system B increases from zero to the maximum value of 

√2𝜔0, while the frequency of oscillator A stays constant. The two frequency curves intersect at 

𝛥𝑘 = 0. Once we introduce coupling (g ≠ 0), the two curves no longer intersect at the resonance 

condition, i.e. when the frequency of the two oscillators coincide (see Figure 1.4b).  
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Figure 1.4: a) Eigenfrequencies of the uncoupled oscillators (g = 0). b) Frequency anticrossing as a result of coupling (g ≠ 

0). The frequency splitting (𝜔+ − 𝜔−) scales linearly with the coupling strength g
10

. 

 

Far away from resonance the coupled oscillators behave as the original ones and their frequencies are 

practically unaltered from the uncoupled case. Near the crossing point of the uncoupled case, two new 

normal modes appear and a characteristic anticrossing behaviour is observed. The energy separation 

between the new eigenfrequencies at the resonance spectral position is called normal mode or 

equivalently, Rabi splitting, and it is given simply by 

 

 𝛤 = ћ(𝜔+ − 𝜔−) 

 
(14) 

Since 𝛤 ∝ g, as obtained from the equations above, the energy splitting increases with increasing 

coupling strength and together with the energy exchange rate between the new normal modes, the so-

called Rabi frequency, 𝛺 = (𝜔+ − 𝜔−). This situation corresponds to an ideal case where we have 

ignored any damping in the oscillations from external forces. Damping can be introduced in the 

equations of motion (11-12) in the form of frictional terms 𝛾𝐴𝑥̇𝐴 and 𝛾𝐵𝑥̇𝐵 and this gives rise to 

complex frequency eigenvalues, whose imaginary part represents the linewidths. In the frequency vs. 

wavenumber plot this effect appears as a smearing of the frequency curves, as it is pictorially 

represented in Figure 1.5.  
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Figure 1.5: a) Schematic view of the weak coupling regime: the splitting is hidden under the linewidths. b) Schematic view 

of the  strong coupling regime: the energy splitting between the hybrid modes is large enough compared to the linewidth 

and it is experimentally visible. 

 

Here, the continuous lines depict the undamped oscillators frequencies, while the surrounding shade 

schematically represents the linewidth. Although the hybrid modes always appear in the coupled 

system, whether they are experimentally visible or not depends on the coupling strength. For 

mechanical oscillators, the system is said to be in the strong coupling regime when the relation g > ω is 

satisfied: this means that the coupling modifies the oscillation frequency considerably when it is of the 

order of the frequency itself. However, this relation does not hold anymore in other contexts, like in the 

case of light fields (10
15

 Hz or more). A much more useful and extensive comparison can be made by 

taking into consideration the transitions linewidths, and this concept is well exemplified in the two 

cases of Figure 1.5. For very strong damping it is no more possible to distinguish the hybrid modes and 

their frequency splitting (see Figure 1.5a): we are in the weak coupling regime. The Rabi splitting 

becomes significant only when the coupling is large compared to the linewidths, which means that the 

dissipation in each original system is smaller than the coupling strength (see figure 1.5b). In other 

words, to observe strong coupling the frequency splitting has to be larger than the sum of the 

linewidths
10

: 

 

 𝛤
𝛾𝐴

𝑚𝐴
⁄ +

𝛾𝐵
𝑚𝐵

⁄
> 1 

 

(15) 

This condition is clearly observable in the schematic representation of Figure 1.5b. 
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1.4 Strong coupling: semi-classical description 
 

Following the works of Grynberg
11

 and Tӧrmӓ
12

, we report here the strong-coupling derivation in the 

semi-classical limit, where the interacting field is a classical electromagnetic wave and the emitter (an 

atom/molecule/quantum dot) has a quantum nature, which means that it is described as a two-level 

system governed by the Schrӧdinger equation. 

Within this representation, we can neglect the magnetic term of the field and express the exciting light 

in the form of a time-varying plane wave 𝑬cos(𝜔𝑡) 𝑒𝑖𝒌 · 𝒓, where ω and k are the frequency and the 

wavevector and E contains the field amplitude and the polarization vector of the field. In order to 

simplify the electromagnetic part we apply the standard dipole approximation
11

, which allows us to get 

rid of the space dependence of the field. This approximation assumes that the displacements of the 

emitter electrons due to the field are small compared to the inverse of the wavevector.  

The two-level emitter interacting with the light field has an excited |𝑒⟩ and a ground |𝑔⟩ state with 

energies 𝐸𝑒 and 𝐸𝑔 respectively. In a vectorial basis the two energy levels can be written in the form 

|𝑔⟩ = (
0
1
) and |𝑒⟩ = (

1
0
) . Transition from the ground to the excited state and viceversa are provided 

by the operators 

 𝜎+ = (
0 1
0 0

) ,   𝜎− = (
0 0
1 0

), 

 

(16) 

meaning that 𝜎+|𝑔⟩ = |𝑒⟩ and 𝜎−|𝑒⟩ = |𝑔⟩.  In this two-dimensional space four independent linear 

operators form a complete base. Therefore, we can add 

 

 𝜎𝑧 = (
1 0
0 −1

)  ,   𝐼 = (
1 0
0 1

), 

 

(17) 

in order to fulfill this requirement. The overall Hamiltonian can be written in the form
11

 

 

 
𝐻 =

1

2
𝐸𝑒(𝐼 + 𝜎𝑧) +

1

2
𝐸𝑔(𝐼 − 𝜎𝑧) + ћ𝛺0(𝜎+ + 𝜎−) cos(𝜔𝑡) 

 

(18) 

where 𝛺0 is the semi-classical Rabi frequency, which is proportional to the emitter dipole moment μ 

and the field amplitude E, 𝛺0 = −
𝝁·𝑬

ћ
. Performing a change of basis in the so-called rotating wave 

approximation (RWA) (for details see the work of Tӧrmӓ et al.
12

), that is reliable if we are quite close 
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to resonance 𝜔~𝜔0 and the Rabi frequency is not in the order of the field frequency, we obtain a more 

convenient form of the system Hamiltonian 

 

 
𝐻 = −

ћ𝛿

2
𝜎𝑧 +

ћ𝛺0

2
(𝜎+ + 𝜎−) 

 

(19) 

where 𝛿 = 𝜔 −
(𝐸𝑒−𝐸𝑔)

ћ
= 𝜔 − 𝜔0 is the detuning of the EM field from the emitter transition. 

Diagonalization of this Hamiltonian yields the eigenvalues of the coupled system, 

 

 
𝐸1 = −

1

2
ћ√𝛿2 + 𝛺0

2  ,   𝐸2 =
1

2
ћ√𝛿2 + 𝛺0

2 

 

(20) 

where appears the so-called generalized Rabi frequency 𝛺 = √𝛿2 + 𝛺0
2. The corresponding eigenstates 

can then be written in the form 

 |1⟩ = −sin 𝜃 |𝑒⟩ + cos 𝜃 |𝑔⟩ 

 
(21) 

 |2⟩ = cos 𝜃|𝑒⟩ + sin 𝜃 |𝑔⟩ 

 
(22) 

where  

 
cos 𝜃 =

𝛺 − 𝛿

√(𝛺 − 𝛿)2 + 𝛺0
2
  ,   sin 𝜃 =

𝛺0

√(𝛺 − 𝛿)2 + 𝛺0
2
 

 

(23) 

In order to interpret these results, it is interesting to consider the system in a resonance situation, that is 

when the field and the emitter transition have the same energy, 𝛿 = 0. We can then rewrite the 

eigenstates and the eigenenergies for this specific case finding 

 

 
|1⟩ =

1

√2
(|𝑔⟩ − |𝑒⟩)  ,   |2⟩ =

1

√2
(|𝑔⟩ + |𝑒⟩) 

 

(24) 

 
𝐸1 = −

ћ𝛺0

2
   ,   𝐸2 =

ћ𝛺0

2
 

 

(25) 
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This is an important result, meaning that the eigenstates of the system are an equal superposition of the 

ground and the excited states. Moreover, the time-evolution of the system initially in the ground state 

can be written as
12

  

 |𝛹(𝑡)⟩ = cos(𝛺0𝑡 2⁄ ) |𝑔⟩ − 𝑖 sin(𝛺0𝑡 2⁄ ) |𝑒⟩ 

 
(26) 

that is, the system performs Rabi oscillations between the ground and the excited states. At resonance 

the frequency of these oscillations corresponds to the Rabi frequency 𝛺0, while away from it, Rabi 

oscillations take place at the generalized Rabi frequency 𝛺 and are smaller in amplitude. 

 

So far, we have considered the case of a single two-level quantum emitter interacting with an EM field.  

If we now extend the semi-classical model to the case of many emitters in a cavity, with their transition 

energy tuned with the energy of the cavity normal mode, the dynamics of the coupled system is quite 

different (for details see the work of Zhu et al.
13

). As it was theoretically predicted and also found 

experimentally, the Rabi splitting for N oscillators in a modal volume V is proportional to the transition 

dipole moment (as in the N = 1 emitter case) and also to the concentration of the emitters in the cavity: 

 

 

𝛤 ∝ 𝜇√
𝑁

𝑉
 

 

(27) 

This does not mean that the strongly coupled emitters perform Rabi oscillations with a frequency 

proportional to the concentration, which is valid for the special case N = 1. However, the overall 

system can be thought as a collection of emitters individually performing Rabi oscillations with 

frequency 𝛺0 = −𝜇
 𝐸0

ћ
  and driven by a coherent field, i.e. all emitters that start their oscillation 

simultaneously keep oscillating in phase. If N emitters perform such oscillations in phase, the 

contribution of each oscillator sums up and the linear absorption shows a splitting proportional to the 

square root of their concentration and dipole moment, as expressed in the relation above. 
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1.5 Strong coupling: fully quantum description 
 

In the fully quantum description both the two-level emitter and the interacting EM field are quantized. 

In this picture, the system is described by the so-called Jaynes-Cummings Hamiltonian
14

 

 

 
𝐻 =

1

2
ћ𝜔0𝜎𝑧 + ћ𝜔â†â + ћg(𝜎+â + 𝜎−â†) 

 

(28) 

where g is the coupling constant,  â is the annihilation operator which corresponds to the destruction of 

a photon and â† is the creation operator that corresponds to the creation of a photon. This Hamiltonian 

only couples the states |𝑒⟩|𝑛⟩ and |𝑔⟩|𝑛 + 1⟩ where n refers to the photon number (one photon is 

emitted/absorbed after a transition between the ground and the excited state. The Hamiltonian can then 

be expressed in terms of the photon number 

 𝐻 = ∑𝐻𝑛

𝑛

 

 

(29) 

and in the basis (
1
0
) = |𝑒⟩|𝑛⟩, (

0
1
) = |𝑔⟩|𝑛 + 1⟩ the summation element 𝐻𝑛 can be rewritten as  

 

 
𝐻𝑛 = ћ(𝑛 +

1

2
)𝜔 (

1 0
0 1

) +
ћ

2
(

−𝛿 2g√𝑛 + 1

2g√𝑛 + 1 𝛿
) 

 

(30) 

with  𝛿 being the detuning defined in the previous sections. Diagonalization of this Hamiltonian yields 

the eigenvalues: 

 
𝐸1𝑛 = ћ(𝑛 +

1

2
)𝜔 −

1

2
ћ√𝛿2 + 4g2(𝑛 + 1) 

 

 

 
𝐸2𝑛 = ћ(𝑛 +

1

2
)𝜔 +

1

2
ћ√𝛿2 + 4g2(𝑛 + 1) 

 

(31) 

where the generalized Rabi frequency appears 𝛺𝑛 = √𝛿2 + 4g2(𝑛 + 1). As in the semi-classical case, 

the eigenstates can be written in terms of sine and cosine functions (for details see the work of Tӧrmӓ 

et al.
12

) and become 

 |1𝑛⟩ = − sin 𝜃𝑛 |𝑒⟩|𝑛⟩ + cos 𝜃𝑛|𝑔⟩|𝑛 + 1⟩ 
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 |2𝑛⟩ = cos 𝜃𝑛 |𝑒⟩|𝑛⟩ + sin 𝜃𝑛 |𝑔⟩|𝑛 + 1⟩ 

 
(32) 

When the detuning vanishes and we are in a resonance condition, the eigenstates for the system with n 

photons take the form: 

|1𝑛⟩ =
1

√2
(−|𝑒⟩|𝑛⟩ + |𝑔⟩|𝑛 + 1⟩) 

 
|2𝑛⟩ =

1

√2
(|𝑒⟩|𝑛⟩ + |𝑔⟩|𝑛 + 1⟩) 

 

(33) 

This means that the eigenstates of the coupled system are an equal superposition of the excited state 

with no extra photons and the ground state with an additional extra photon. Surprisingly, the quantum 

description gives a results which is in the contrast with the classical and semi-classical description: the 

energy splitting takes discrete values depending on the photon number n and does not vanish even in 

the case of 𝑛 = 0, i.e. zero photons when the emitter is the excited state and one photon when it is in 

the ground state. The energy splitting in this special case is called vacuum Rabi splitting
15

 and its 

existence is attributed to quantum vacuum fluctuations. The system now performs Rabi oscillations as 

in the semi-classical two-level emitter, but with a non-vanishing frequency also with zero photon 

number. In the specific case of an atom-cavity system, under zero photon conditions, the atom-field 

coupling strength g is given by 

 

 
g = −𝜇

𝐸𝑣𝑎𝑐

ћ
 

 

(34) 

where μ is the atom dipole moment and the vacuum electromagnetic field amplitude is 𝐸𝑣𝑎𝑐 =

√ћ𝜔 2𝜀𝑟𝜀0𝑉⁄ . The field amplitude depends on the photon energy ћ𝜔, at which resonance occurs, and 

the cavity-mode volume V. As 𝐸𝑣𝑎𝑐  scales with 1 √𝑉⁄ , careful engineering of cavity systems is thus 

needed in order to achieve the strong coupling regime even under no illumination condition (this issue 

will be developed in chapter 3). 

 

Generalization to the many emitter case gives similar results to the semi-classical description in terms 

of expected Rabi splitting (for details see the work of Agranovich et al.
16

). The overall system can now 

be viewed as a collection of two-level oscillators acting as a giant quantum oscillator
12

  with a large 
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dipole moment. In this picture, we can assume that the photon field and the giant oscillator composed 

of N emitters interact with a coupling strength proportional to 𝜇√𝑁 𝑉⁄  and perform Rabi oscillations 

between the normal modes at this frequency.  
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Chapter 2 

Plasmon-excitons strong coupling 
 

2.1 Surface plasmon polaritons: a brief overview 

 

Plasmonics is an emerging area of research in the field of nanophotonics, which has found many 

applications in spectroscopy
1–3

, metamaterials engineering
4–6

, biosensing
7,8

, lasing
9,10

, non-linear
11,12

 

and quantum optics
13,14

. It is based on interaction processes between electromagnetic radiation and 

conduction electrons at metallic interfaces leading to enhanced optical near-fields confined in 

subwavelength dimensions. Under appropriate conditions, collective oscillations of the electron plasma 

can be resonantly excited in close proximity of metallic nanoparticles (localized surface plasmon 

resonances – LSPRs) or propagating along metal/dielectric interfaces (surface plasmon polaritons – 

SPPs). Owing to their bound nature, surface plasmons are endowed with interesting attributes that 

make them suitable for light-matter interactions in the strong coupling regime: optical field 

confinement, optical field enhancement and near-field character.  

 

 

Figure 2.1: Schematic of the electric field and charge distribution associated with the surface plasmon polariton mode on a 

planar surface, at the interface between a metal and a dielectric medium. In the out-of-plane direction (x direction in the 

sketch) the strength of the field associated with the SPP mode decays exponentially with distance from the metallic surface.  

 

The strength of the electric field associated with the bound SPP mode decays exponentially with 

distance away from the metal surface (the spatial distribution of the electric field is shown in Figure 

2.1). In the dielectric medium the decay length is approximately 𝜆 2𝑛𝑟⁄ , where 𝑛𝑟 is the refractive 
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index of the dielectric, while inside the metal corresponds to the skin depth (typically ~ 20nm for noble 

metals in the visible spectrum).  

The considerations taken above can be explained by solving Maxwell equations under appropriate 

boundary conditions and looking for a solution in the form of a surface wave. The dispersion relation of 

SPPs propagating at the metal-dielectric interface is then found to be
15

: 

 

 

𝑘𝑆𝑃𝑃 =
𝜔

𝑐
√

𝜀1𝜀2

𝜀1 + 𝜀2
 (35) 

 

where 𝜀1 and 𝜀2 are the frequency dependent relative permittivities of the two media. For conductors 

described by Drude dispersion law, i.e. 𝜀𝑚(𝜔) = 1 − 𝜔𝑝
2 𝜔2⁄  (𝜔𝑝 is the plasma frequency of the 

metal), equation (35) takes the form depicted in Figure 2.2. 

 

 

Figure 2.2: Dispersion law of plasmon oscillations in a metal-dielectric system, equation (35), in the case of Drude 

dispersion. The lower branch corresponds to bound surface plasmons, while the upper curve corresponds to bulk plasmons; 

the dashed line is the light line and corresponds to dispersion of photons in free space
16

. 

 

The branch related to frequencies 𝜔 > 𝜔𝑝𝑙 corresponds to bulk plasmons, while the lower energy 

branch with 𝜔 < 𝜔𝑝𝑙 corresponds to surface plasmons. Regarding the latter, for a given frequency the 

in-plane wavevector (and hence the momentum) of the SPP mode is always greater than that of light 

propagating in the same plane. As a consequence, freely propagating light in the dielectric medium 
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cannot couple to SPPs, but other momentum-matching schemes are required, e.g. prism or grating 

coupling, near-field or non-linear coupling
17–20

.  

The situation is different in the case of subwavelength metallic nanostructures, since incident light can 

promote collective oscillations of the conduction electrons with no momentum mismatch to overcome. 

When electrons are displaced relative to the opposite charge distribution of the static cores, a net 

amount of opposite charges will build up at opposite sides of the nanostructure (see Figure 2.3). 

Coulomb interaction between the charges will provide a restoring force, leading to a natural frequency 

of oscillation. If the incident light is of the same frequency, energy can be coupled into a localized 

surface plasmon mode (LSPR), the frequency of which can be tuned by modification of the 

nanostructure shape and composition. As with the planar surface, the fields associated with the plasmon 

mode are confined to the vicinity of the nanostructure, typically on a length scale comparable to its 

radius of curvature. 

 

 

Figure 2.3: Illustration of the excitation of localized surface plasmon resonance around a metal nanoparticle. 

 

The response of a spheroidal object of subwavelength dimension to plane-wave illumination, giving 

rise to a LSPR mode around the nanoparticle, is well described in the framework of the quasistatic 

approximation of Mie theory
21

. In the case of elongated particles, as our nanoantenna design (see 

chapter 3), a better physical insight is provided by a simple mass-and-spring model
22

. In this picture, 

the plasmon resonance frequency of the nanoparticle is given by 𝜔𝑟𝑒𝑠 = √𝐷 𝑚⁄ , where D and m are the 

elastic constant of the restoring force and the total effective mass of the electron system, respectively. 

To estimate the resonance frequency, we assume a particle of cylindrical shape as depicted in Figure 

2.4a. When the electron cloud in the particle is displaced by ∆𝑥, opposite point charges ±𝑞 build up at 
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both ends and their magnitude depends on the charge carrier density ρ and the cross-sectional area A of 

the cylinder as 𝑞 = 𝜌𝑒𝐴∆𝑥, where e is the elementary charge. The Coulomb potential energy of the two 

charges is then 

 
𝑊(∆𝑥) =

1

4𝜋𝜀0

𝑞2

𝑑
=

1

4𝜋𝜀0

(𝜌𝑒𝐴)2

𝑑
∆𝑥2 (36) 

 

The restoring force acting on the opposite charges can now be determined as  

 

 
𝐹(∆𝑥) = −

𝜕𝑊(∆𝑥)

𝜕∆𝑥
= −

1

2𝜋𝜀0

(𝜌𝑒)2
𝐴2

𝑑
∆𝑥 = −𝐷∆𝑥 (37) 

  

from which the spring constant D is obtained. The linear relationship between displacement and 

restoring force leads to harmonic oscillations of the system. The mass of the whole electron cloud 

involved in the motion is given by 𝑚 = 𝜌𝑚𝑒𝐴𝑑, where 𝑚𝑒 is the effective electron mass. We therefore 

obtain a relation of the plasmon resonance frequency as a function of the aspect ratio R of the elongated 

particle: 

 
𝜔𝑟𝑒𝑠 =

𝜔𝑝

2√2

1

𝑅
 (38) 

 

where we have substituted the plasma frequency 𝜔𝑝
2 = 𝜌𝑒2 (𝜀0𝑚𝑒)⁄  as well as 𝐴 = 𝜋𝑟2. Even if 

approximate, Eq. (38) provides a good estimate of 𝜔𝑟𝑒𝑠 and highlights its proportionality relationship 

with 1 𝑅⁄ . 

 

 

Figure 2.4: a) Sketch of a plasmonic particle whose electron cloud has been displaced by ∆𝑥. The resulting positive and 

negative charge distributions at both ends are treated as point-like charges. b) The resulting oscillation can be modeled by 
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an effective spring constant D and the effective mass m of the moving electron cloud. 

 

Recent advances in nanofabrication techniques have allowed nanoscale engineering of the optical 

properties of metallic nanostructures from the UV to the far-infrared, enabling a huge variety of 

applications in many interdisciplinary fields
23–25

. Through the exploitation of both top-down
26,27

 (ion 

beam milling, electron beam lithography, etc.) and bottom-up
28,29

 approaches (chemical synthesis, 

electroplating, etc.) many different nanostructure design have been realized with different shape, 

material composition and extremely well-controlled size. 

 

 

Figure 2.5: a) SEM tilted view of nanostars on silicon pillars with sub-10 nm inter particle separation and 150 nm pillar 

height realized through Electron Beam Lithography (EBL) plus Reactive-Ion Etching (RIE)
30

. b) Hollow nanoantenna array 

with 1.5 μm in height and 300 nm separation realized by means of Focused Ion Beam (FIB) technique
26

. c) 3D nanoantenna 

with electroplated gold on top realized with FIB plus an electroplating technique
28

. d) Au nanorods with controlled 

morphology chemically synthesized from aqueous-based solutions
29

. 

 

In Figure 2.5 various examples of recently published plasmonic architectures are reported; the first one 

(a) shows three-dimensional nanostars on silicon pillars fabricated with the combination of Electron 

Beam Lithography (EBL) and Reactive-Ion Etching (RIE) techniques, resulting in small inter-particle 
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separation (IPS), well-controlled shape and dimension and sharp edges. Figure 2.5b instead, shows 

three-dimensional nanoantennas for IR applications realized through Focused Ion Beam (FIB), while 

Figure 2.5c represents a nanoantenna with a bulky gold-palladium head for hydrogen detection realized 

with the combination of FIB and a galvanic electroplating technique. On the contrary, Figure 2.5d 

shows gold nanorods for SERS applications, which are chemically synthesized from aqueous solutions. 

 

By changing size and shape
31

 of the plasmonic nanoparticles and their IPS
32

, the LSPR spectral 

position can be finely tuned/manipulated across a wide spectral range, as it is shown in Figure 2.6. 

Here, by varying the height of vertical hollow nanotubes and the inter-antenna distance the far-field 

response of plasmonic arrays can be varied across the near-infrared (NIR) to match the desired spectral 

requirements. 

 

 

Figure 2.6: a) – d) FTIR spectroscopy characterization of ordered arrays of vertical hollow nanotubes, for different heights 

(h = 1.2 – 3.4 – 5.0 – 7.5 μm) and different inter-antenna distances p. Among the most evident traits of 3D arrays of 

nanoantennas is the extraordinarily high number of resonance modes. 

 

Associated to the LSPR, there is a resonant enhancement of both the polarizability and the near-field 

intensity in the vicinity of the nanoparticle
21

. Nanostructures endowed with sharp tip/edges and very 
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narrow IPS are ideal candidates for nanoscale manipulation of optical energy, promoting nanofocusing 

and enhancement of electromagnetic radiation in subwavelength regions, the so-called “hot-spots”. In 

this respect, ultra-high resolution fabrication methods as EBL have enabled the realization of planar 

architectures characterized by local enhancement factors, i.e. defined as the ratio between the near-field 

intensity and the incident field 𝐸 𝐸𝑖𝑛𝑐⁄ , of many orders of magnitude. This capability is an essential 

requirement for the realization of ultrasensitive devices
33,34

, where high hot-spot densities can promote 

the identification of probe molecules with high contrast and spatial resolution. The hot-spot concept is 

well exemplified in Figure 2.7, where the case of a planar nanoantenna dimer is shown. 

 

 

Figure 2.7: SEM image and near-field characteristics of a nanoantenna dimer (left). Detail of the nanogap region (right).  

 

As it can be observed stronger electromagnetic enhancement and squeezing is expected in the nanogap 

region with respect to the dimer edges, thanks to induced in-phase dipole moments that guarantee very 

good coupling between the neighbouring nanoantennas. This result is further confirmed by the electric 

field enhancement distribution in the gap area, which shows of the EM field is squeezed in a nanoscale 

volume much smaller than 𝜆3. Thanks to this promising characteristics, the nanogap region can be 

exploited as a nanocavity region, where light-matter interactions can be strongly boosted, as it is shown 

in the following chapters. 

 

All the interesting properties presented so far can be employed to enhance strong coupling phenomena 

at the nanoscale. As it was evidenced in Chapter 1, the strength of the coupling in light-matter 

interactions can be increased in two ways: by enhancing the dipole moment of the matter part, or by 

confining light into smaller volumes. Therefore, either very high finesse cavities are required, with 

non-trivial fabrication issues to overcome, or samples need to be cooled down at cryogenic 

temperatures and ultrahigh vacuum, in order to decrease the linewidth of the emitters. In the case of 

surface plasmons, instead, the mode volumes are extremely small since light is intrinsically confined at 

the nanoscale and the field intensity is enhanced due to the resonant character of SPP excitation. 

Another important characteristic is that the SPP-emitter  conjugated system allows to probe strong 
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coupling at the nanoscale, in the sense that both the light and matter of the strongly coupled hybrid 

states can be confined to the nano-level. Thanks to these advantages, it is possible to observe large Rabi 

splittings in the case of SPP-emitters coupling at ambient conditions (room temperature and 

atmospheric pressure) and without the need for a closed cavity, thus bypassing the technical limitations 

of other approaches. 

 

2.2 Excitons 

 

Research on semiconductor quantum electrodynamics (QED) can be traced back to 1946, thanks to the 

pioneering work of E. M. Purcell
35

. The study of atom-vacuum field interactions in cavities and of 

modified spontaneous emission of molecules have produced numerous interesting results in 

fundamental science from Bose-Einstein condensates of polaritons
36

, to single-photon switches
37

 and 

lasing phenomena
38

. Research in these directions was encouraged  by the discoveries made a few years 

earlier by Frenkel, Peiers and Wannier
39–41

 on electronic excitations in crystals, which are still a “hot” 

topic in today’s science. Frenkel and Peiers introduced the concept of exciton, a quantum of electronic 

excitation energy travelling in the periodic structure of a crystal. The exciton can be regarded as a 

bound state of an electron and an electron hole, attracted to each other by the electrostatic Coulomb 

force, forming an electrically neutral quasi particle and hence its movement through the crystal gives 

rise to the transportation of energy without charge. An exciton can form when a quantum of light is 

absorbed in a semiconductor (solid or molecule): the transferred energy promotes an electron from its 

closed shell in the valence band to an excited state, leaving behind a vacancy, or in other words a 

positively charged electron hole. The coupled system can be viewed as an hydrogen atom and the 

excited electron moves in space influenced by the positive charge field created by its own absence (see 

Figure 2.8a). Quantum theory predicts that there is not just one but a series of bound stationary states 

(see Figure 2.8b) and the upper limit of the series is endowed with an energy equivalent to that required 

to produce a free electron and a hole in the solid.  
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Figure 2.8: a) Electron-hole bound state forming in a crystal after absorption of an incident photon of energy ℎ𝜈. b) Energy 

level scheme of the excitonic bound stationary states. 

 

The corresponding energies are not bound to any particular ion in the lattice, but they are able of 

passing from one atom to the neighbor and so on through the crystal, constituting what Frenkel called 

“excitation waves” or excitons.  

The Coulombic interaction energy between the electron and the hole is simply given by 

 

 
𝑈 = −

𝑒2

𝜀𝑟
 (39) 

 

where r is their relative distance and ε is the dielectric constant of the surrounding medium, which 

determines the screening effect on the potential energy of the background atoms and free electrons. For 

an hydrogen atom in free space ε corresponds to unity, but in solids it can be quite large (of the order of 

10 for semiconductors).  

Depending on the strength of the Coulomb interaction, we can distinguish between two different kinds 

of excitons: Frenkel and Mott-Wannier, which differ physically in their “radii”, i.e. in the degree of 

separation of the electron and hole
42

. 
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Figure 2.9: a) Frenkel exciton highly localized on a crystal lattice site; in this situation the electron feels both the hole and 

the surrounding lattice potential. b) Mott-Wannier exciton with radius extended over few lattice sites; in this situation the 

electron feels only the hole and an average lattice potential. 

 

In materials with a small dielectric constant, the Coulomb interaction (given by equation 39) between 

an electron and its corresponding hole can be very strong and the radius of the lowest energy exciton is 

often comparable or less than the inter-atomic distance (see Figure 2.9a). Consequently, we have a very 

large potential and a somewhat localized excitation. Being the pair tightly bound, a large amount of 

energy will be needed to ionize the exciton to produce a free electron and hole. The Frenkel exciton has 

a typical binding energy of the order of 0.1 to 1 eV and are characteristic of alkali halide crystals and 

organic molecular crystals, where the constituting molecules are not densely packed.  

When the exciton radius is larger than the lattice spacing we are in the Mott-Wannier case (see Figure 

2.9b). In this situation the interaction between neighboring atoms is significantly increased and the 

valence electrons are no longer identifiable with any atom but are usually shared by more than one 

atom to form bonds. Therefore, the electrons have an increased spatial volume in which they can move, 

although without being free to contribute to an electric current when the solid is subject to an external 

electric field. Due to the increased electric field screening, the Coulomb potential energy which binds 

the electron and hole together is much weaker than the Frenkel exciton case, with binding energies 

typically of the order of 0.01 eV. Recalling Bohr’s quantum theory, we can derive a formula for the 

energy 𝐸𝑛 of the exciton series: 

 

 
𝐸𝑛 = 𝐸∞ −

𝑅

𝑛2
 (40) 
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where 𝐸∞ is the series limit, 𝑛 = 1,2… is a quantum number and R is the binding energy (also known 

as Rydberg constant). R represents the energy required to ionize an exciton in its lowest energy state, 

that is the energy separation between the lowest bound state (𝑛 = 1) and the series limit. 

Experimentally, these exciton states can be seen as a series of absorption lines, leading up to a 

continuum in many substances (see Figure 2.10), and constitute one of the main mechanisms for light 

emission. Mott-Wannier excitons are typical of materials with a relatively large ε, as in the case of 

many semiconductor crystals, particularly the so-called covalent solids such as germanium, silicon and 

gallium arsenide. 

 

 
 

Figure 2.10: Absorbance spectra of CdS quantum dots as a function of their diameter. The peaks in the measured curves 

correspond to different exciton states
43

. 

 

There is indeed a third type of exciton known as the Davydov exciton
44

. It is found in organic 

compounds composed of aromatic molecules, such as benzene or anthracene. The aromatic rings can be 

excited by the absorption of light and the excitation energy can be transferred from one ring to another. 

Since the interaction between them is small compared to the inter-atomic forces within the ring itself, 

Davydov excitons are localized and resemble the Frenkel ones. 

A particular kind of exciton is found in molecules and is known as molecular exciton
45

. When the 

absorbed energy corresponds to a transition from one molecular orbital to another one, the resulting 

electronic excited state can be described as an exciton. Molecular excitons have characteristic lifetimes 

of nanoseconds, after which the ground electronic state is restored with subsequent photon or phonon 

emission. FRET between a donor and acceptor molecule (already described in details in chapter 1) 
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constitutes a special case, in which an exciton may be transferred from one molecule to another.  

 

2.3 Plasmon-exciton strong coupling: a classical description 

 

The interaction between surface plasmons and excitons is very similar to the interaction between a 

cavity resonance and a quantum system (as it was studied in chapter 1), with the cavity mode being 

replaced by the plasmonic one. When excited quantum emitters are placed in close proximity to a 

plasmonic element (metallic surface or nanostructure) they can decay towards the ground state 

following three different channels: energy dissipation through Ohmic losses in the metal (due to roto-

vibrational and phononic effects), spontaneous emission of photons into the far-field or energy transfer 

into radiative and non-radiative surface plasmon polariton modes of the metal. In the latter case, as in 

the atom-cavity picture, a change in the radiative decay rate of the emitter is observed, if the two 

systems are only weakly coupled. If, instead, the energy exchange rate in the “plasmonic channel” 

exceeds the dissipation rates of the other mechanisms, then mixed hybrid states are formed bearing 

significantly different optical properties from the initial constituents. 

In the following, we will employ a classical approach to theoretically illustrate strong coupling between 

SPPs and emitters
46

 and we will assume that the dielectric environment in the vicinity of the plasmonic 

structure contains emitters with a well-defined absorption/emission spectrum. Whenever the frequency 

of the SPP overlaps with a transition frequency (𝜔0) of the emitters, their absorption will hinder the 

propagation of the plasmon mode. The emitters in the medium will be considered as classical 

Lorentzian oscillators, which well suits the case of molecules, atoms or quantum dots located near the 

metal surface, so that they can be described by the dynamics of an electron of charge e and mass m. 

The electron of the molecule/emitter can be thought as an harmonically bound, damped oscillator 

driven by the field 𝐸(𝑟, 𝑡). The equation of motion of such a system (1D for simplicity) is: 

 

 𝑚(𝑟̈ + 𝛾𝑟̇ + 𝜔0
2𝑟) = −𝑒𝐸(𝑟, 𝑡) (41) 

 

where 𝜔0 is the frequency of the harmonic oscillator and γ describes the damping. Within the dipole 

approximation, the field can be assumed to be constant in the r coordinate, since the electron movement 

is much smaller than the wavelength of the radiation.  
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Assuming a harmonic EM field, i.e. 𝐸(𝑟, 𝑡) = 𝐸0𝑒
𝑖𝜔𝑡, the steady-state solution of equation (41) 

becomes 

 

 
𝑟 = −

𝑒

𝑚

1

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸0𝑒
𝑖𝜔𝑡 

 

(42) 

Being the dipole moment of the electron simply 𝑝 = −𝑒𝑟, in the case of N emitters (and corresponding 

dipole moments) the macroscopic polarization density P is defined as the average dipole moment per 

unit volume (V), and it can be written as 

 

 
𝑃 =

𝑁𝑒2

𝑉𝑚

1

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸0𝑒
𝑖𝜔𝑡 (43) 

 

where 𝑁 𝑉⁄  is the number density of dipole moments. The macroscopic polarization is also defined in 

terms of the electric susceptibility χ as 𝑃 = 𝜀0𝜒𝐸; by inserting this equation into (43) we can find a 

formula for the macroscopic electric susceptibility as a function of the radiation wavelength 

 

 
𝜒(𝜔) =

𝑁𝑒2

𝑉𝜀0𝑚

1

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

 (44) 

 

The imaginary part of the susceptibility describes dissipation and gives the absorption coefficient of the 

material. The permittivity of the material is related to the susceptibility through 𝜀(𝜔) = 1 + 𝜒(𝜔) and 

will therefore have real and imaginary parts 𝜀′ and 𝜀′′ respectively 

 

 𝜀′ = 𝑛2 − 𝜅2,     𝜀′′ = 2𝑛𝜅 (45) 

 

where n and κ are the refractive index real and imaginary parts. Up to now, we have considered only 

the molecular part of our system and we therefore need to introduce the plasmonic element (in the 

following, the permittivities of the metal and the dielectric/emitters will be referred as 𝜀1 and 𝜀2, 

respectively). In order to do so, we recall back the SPP dispersion relation (35) given in section 2.1 and 

assume that we are far away from the plasma frequency of the metal. In this limit, the permittivity of 

the metal (𝜀1) can be considered to be constant. Moreover, we assume 𝜀1 to be negative and relatively 
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large in absolute value (which typically suits well for metals) so that the term 𝜀1 + 𝜀2 in the dispersion 

always stays negative, even when the permittivity 𝜀2 of the emitters is large and positive. Based on 

these considerations, the dispersion can be written as
46

 

 

 
𝑘𝑆𝑃𝑃

2 =
𝜔2

𝑐2

|𝜀1|

|𝜀1 + 𝜀2|
(1 + 𝜒(𝜔) ) (46) 

 

By rescaling the momentum to 𝜅2 = 𝑘𝑆𝑃𝑃
2 |𝜀1+𝜀2|𝑐

2

|𝜀1|
 , we obtain 

 

 
𝜅2 = 𝜔2(1 + 𝜒(𝜔) ) = 𝜔2 (1 +

g2

𝜔0
2 − 𝜔2 − 𝑖𝛾𝜔

) (47) 

 

where g is the system coupling strength defined as g2 =
𝑁𝑒2

𝑉𝜀0𝑚
. In the case of 𝜅~𝜔0 and 𝛾 = 0 (i.e. 

close to resonance and no damping) the above equation becomes 

 

 
(𝜅 − 𝜔)(𝜔0 − 𝜔) =

g2

4
 (48) 

 

The solutions for this equations are the two hybrid normal modes of the coupled system (see Figure 

2.11 for the level scheme), and if we substitute κ with the metal plasmon resonance 𝜔𝑝𝑙 and insert the 

detuning 𝛿 = 𝜔𝑝𝑙 − 𝜔0, we obtain the plasmon-excitons branches usually found in literature
47,48

 

 

 
𝜔± =

𝜔𝑝𝑙

2
+

𝜔0

2
±

1

2
√4g2 + 𝛿2 (49) 

 

and shown in Figure 2.12.  
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Figure 2.11: Simplified energy landscape showing the interaction between a molecular transition and a plasmonic cavity 

mode. When energy exchange is rapid compared to energy loss, strong coupling leads to the formation of two hybrid light-

matter (polaritonic) states, separated by the Rabi splitting energy ћ𝛺𝑅. Moreover, the absolute energy of the ground level of 

the coupled system |0⟩ may also be modified by strong coupling. 

 

At resonance, when the plasmon mode exactly matches the absorption transition of the emitters 

(𝜔𝑝𝑙 = 𝜔0) the normal mode splitting is given by 

 

𝛺𝑅 = 2g = √
𝑁

𝑉

𝑒

√𝜀0𝑚
 (50) 

 

which retrieves the emitter concentration dependence found in the semi-classical and quantum 

descriptions for the general case of an atom-cavity system (see chapter 1). 
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Figure 2.12: The dispersion of an SPP-emitter system given by equation (47). The black curves are the polariton branches, 

while the red dotted lines are the emitter transition frequency (horizontal line) and the SPP dispersion (diagonal line) for 

g = 0, i.e. no coupling
46

. 

 

The only difference here with respect to the quantum case is the missing dependence on the cavity 

(plasmon) field energy ћ𝜔 and the emitters dipole moment, which are derived from a quantum 

mechanical description of a two-level system. In the quantum case in fact, the vacuum Rabi splitting in 

zero-photon conditions becomes 

 

ћ𝛺𝑅 = 2𝜇√
ћ𝜔

2𝜀0𝑉
  (51) 

  

 

2.4 Plasmon-exciton strong coupling: state-of-the-art 

 

Owing to the nanoscale characteristics of surface plasmons and the easy tunability of their plasmonic 

resonance, strong coupling between SPPs and excitons has recently become an active topic of research. 

Many different excitonic systems have been addressed so far and strong coupling has been attained 

with J-aggregates
49,50

, dye molecules
51,52

, and quantum dots
53,54

, to cite just a few. 

As already anticipated in section 2.1 of this chapter and evidenced by equation (51), the strength of the 

coupling between matter (excitonic system) and light (SPP mode) can be increased in two ways: by 

increasing the dipole moment μ of the emitter, or by decreasing the modal volume V. SPPs mode 

volumes are extremely small, if compared to semiconductor microcavities, due to their intrinsic 

nanoscale confinement properties. Moreover, relatively large dipole moments can be achieved by using 

high concentrations of optically active material, as it is the case of cyanine-based J-aggregates. These 

aggregates are self-organized molecular crystals and have partially delocalized excitons with relatively 

narrow absorption bands (with an associated strong dipole moment) compared to that of the 

corresponding dye monomer (see Figure 2.13a). The high oscillator strength of J-aggregates results 

from coherent interaction between the dipole moments associated with many molecular units, 

providing an effective “super moment”
46

.  

These advantages have been exploited by Bellessa et al.
50

 to investigate strong coupling between the SP 

mode of a planar silver film and the exciton of TDBC J-aggregated molecules spin-coated on top of the 

metal layer, finding very large Rabi splittings (180 meV, about 8% of the hybridized transition 
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frequency) at room temperature. Reflectometry spectra, performed in Kretschmann geometry as a 

function of the incident light angle (see Figure 2.13c), showed the arising of two hybrid energy bands 

at the sides of the uncoupled absorption line, a clear signature of strongly coupled systems. These 

findings were furtherly corroborated by the characteristic anticrossing behavior of the polariton 

energies dispersion, as it can be observed in Figure 2.13b. Far from the resonance condition, the 

reflectometry dip position is close to the uncoupled plasmon energy, thus highlighting a totally 

unmixed plasmonic nature. At resonance instead, i.e. when the uncoupled SP mode has the same 

energy of the exciton, the plasmon and the exciton contributions cannot be separated anymore and the 

two dips correspond to the plasmon-exciton mixed states. In addition to this, the authors demonstrated 

the modification of the J-aggregate luminescence upon realization of strong coupling (see Figure 

2.13d). Luminescence spectra acquired for different detection angles feature two emission maxima: the 

high energy peak (close to the exciting laser line) is due to luminescence of the J-aggregates into 

radiative modes, while the luminescence peak with lower energy can be ascribed to the emission of the 

low energy exciton-plasmon polariton. The high energy polariton state is not present in the 

luminescence spectra as a result of relaxation towards uncoupled excitonic states. 

 

 

Figure 2.13: a) Luminescence spectrum (continuous line) and absorption (dashed line) of TDBC J-aggregates inserted in a 

PVA matrix. The inset shows the chemical formula of TDBC. b) Measured reflectometry dips energy (black dots) as a 

function of the incident wavevector. The dashed horizontal line is the TDBC exciton energy, while the diagonal one is the 
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dispersion relation of an uncoupled SP. c) Reflectometry spectra for different angles as a function of the incident light 

energy. d) Luminescence spectra recorded for different detection angles. 

 

Later works directed their attention from the spectral response of plasmonic-emitter systems to the 

investigation of the dynamical behavior. The primary method of probing the dynamics of many photo-

physical systems relies on transient absorption spectroscopy, as demonstrated by Vasa et al.
55

 on J-

aggregate layers deposited onto gold gratings. In this work, they observed temporal oscillations in their 

measured differential reflectivity (∆𝑅 𝑅⁄ ) spectra (see Figure 2.14), which can be directly attributed to 

Rabi oscillations of the hybrid system, as a result of the periodic emission and reabsorption of photons 

between the upper and lower polariton states. Because of the large value of the normal mode splitting 

observed (~ 200 meV), the energy exchange occurs with a Rabi period of 𝑇𝑅 ≈ 2𝜋 𝛺𝑅⁄  which, in the 

present case, corresponds to a short timescale of ~ 30 fs. The major challenge in observing these 

oscillations is due to the short decay times of plasmon modes (~ 100 fs) and Rabi oscillations times 

thus have to be even shorter if they are to be observed. Thanks to the high oscillator strength of J-

aggregates, large splittings can be achieved in such systems allowing temporal resolution of the Rabi 

oscillations against the plasmon decay. 

 

 

Figure 2.14: Time evolution of ∆𝑅 𝑅⁄  at the lower polariton LP resonance at 1.76 eV (blue line) and near the overlapping 

upper polariton UP and bare J-aggregates resonances at 1.81 eV (red line) showing Rabi oscillation with a 𝑇𝑅  ~ 45 fs. 
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In recent years, there has been a great deal of effort towards understanding the dynamics of strongly 

coupled systems by transient spectroscopy measurements. It has been demonstrated that the lifetime of 

lower and the upper hybrid bands in exciton-SPP systems can be much longer than the life of bare 

excited molecules. In the latter case, it was suggested that this result can be caused by the existence of a 

trap state
56

  or by the blockage of the vibrational relaxation modes due to the large Rabi splitting in 

such systems
57

.  

Employing a hybrid structure of gold nanoholes arrays covered with J-aggregate molecules in a PVA 

matrix, Dintinger
58

 and Wang
49,59

 in a similar work, verified the √𝑁 𝑉⁄  dependence of the Rabi 

splitting and demonstrated a reduced lifetime of the upper hybrid band upon increasing of the coupling 

strength. Periodic metallic hole arrays have the capability to convert incident radiation into SPPs 

modes, which are characterized by a remarkable field confinement at the metallic surface. The desired 

SPP mode can be chosen by accurately tuning the nanoholes period thus to overlap the absorbance peak 

of the J-aggregates and maximize the coupling strength. By increasing the thickness of the J-aggregate 

layer, they were able to experimentally measure a Rabi splitting of 245 meV at the resonance period of 

310 nm. In Figure 2.15a, is highlighted the behavior of the hybrid polariton energy separation 

displaying a linear dependence on the square root of the J-aggregates absorbance which, in turn, 

depends on molecule concentration. Thus, the Rabi splitting observed in the transmission spectra 

follows a √𝑁 𝑉⁄  dependence, in accordance with previous experimental results and the 

theoretical/numerical descriptions of strong coupling (see chapter 1). 
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Figure 2.15: a) Experimental transmission spectra of gold hole arrays (period = 310 nm) upon increasing of J-aggregate 

concentration (absorbance from 0.14 to 1.40 measured at 623 nm). b) Transient absorption spectra of PVA/J-aggregates, 

corresponding to absorbance of 1.10 and deposited on a gold holes array under 560 nm excitation, recorded at different 

times. c) Lower and d) upper hybrid bands normalized bleaching dynamics of different J-aggregates concentrations in 

comparison with reference samples.  

 

Femtosecond transient absorption (TA) spectroscopy was carried out to investigate the dynamics of the 

hybrid bands. In TA experiments, Wang et al. measured the variation of the optical density ∆𝑂𝐷, 

defined as − log(𝐼(𝜆)𝑝𝑢𝑚𝑝𝑒𝑑 𝐼(𝜆)𝑢𝑛𝑝𝑢𝑚𝑝𝑒𝑑⁄ ), that is the logarithm of the ratio between the intensity of 

the probe beam of a “pumped” (i.e. after the excitation beam has hit the sample) and “unpumped” (i.e. 

no excitation employed) sample measured by the detector. In Figure 2.15b, transient spectra for the J-

aggregate concentration corresponding to an absorbance of 1.10 are shown. In the measured spectra 

acquired for laser excitation at 560nm (corresponding to the upper band spectral position) two 

bleaching signals arise, with the upper band strongly blue-shifted and almost out of the detection 

window as a result of the large Rabi splitting. Between the two bleaching minima a positive excited 

state absorption signal, associated to thermal effects
60

, is observed. Indeed, in the present configuration 
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the resonant pump laser brings the system to an excited configuration where the energy is shared and 

oscillates between the hybrid modes associated with the gold nanoholes and the J-aggregates.  

The kinetics of the lower (Figure 2.15c) and upper (Figure 2.15d) hybrid bands with different coupling 

strengths (i.e. J-aggregate concentration) were compared with the kinetics of J-aggregates on a flat 

glass substrate and a flat gold film. The reported results show that the hybrid bands have longer 

lifetimes than the bleaching recovery of J-aggregates on bare substrates and the kinetics of the exciton-

SPP state is significantly affected by the molecule concentration. The longer lifetime with respect to the 

uncoupled case can be explained in terms of a bottleneck relaxation mechanism
61

. Moreover, the 

lifetime of both hybrid bands is reduced by increasing the coupling strength differently from the 

behavior of J-aggregates on a flat gold film, where no dependence on the concentration was detected.  

 

If we now go back at section 2.3 and look at equation (50) we can obtain a condition to clearly observe 

strong coupling 

 𝑁𝑒2

𝑉𝜀0𝑚
>

𝛾2

2
+

𝛾𝑆𝑃𝑃
2

2
 

 

(52) 

which states that the linewidths of the absorption/emission resonance and the optical/plasmonic mode 

should be smaller than the coupling strength. One would thus anticipate that strong coupling is possible 

only for molecules with a narrow absorption spectrum, such as J-aggregates. However, strong coupling 

was also observed between SPPs and molecules with a broader absorption spectrum, as it is the case of 

Rhodamine 6G
51

 or methylene-blue dyes
62

.  

In the latter case, Chikkaraddy et al.
62

 achieved few to single-molecule strong coupling at room 

temperature by designing plasmonic nanocavities with extremely low modal volumes (down to some 

tens of cubic nanometers), paving the way for the realization of quantum information systems and 

ultralow-power switches and lasers. In order to obtain such results they employed the nanoparticle-on-

mirror (NPoM) geometry, placing the emitters in the gap region between nanoparticles and an 

underlying flat metallic film (see Figure 2.16a) and accurately controlling the nanogap size to a sub-

nanometer scale using molecular spacers. To avoid random aggregation of dye molecules in the gaps, 

they exploited the host-guest chemistry of macrocyclic cucurbit[n]uril molecules, which are 

characterized by varying hollow internal volumes (depending by the number n of units in their ring) in 

which methylene-blue guest molecules can sit
63

. In this respect, they employed cucurbit[7]uril, which 

can host only one guest molecule. When gold nanoparticles bind on top of a cucurbit[n]uril monolayer 
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filled with methylene-blue molecules as in Figure 2.16a, two scattering peaks at either side of the 

absorption (𝜔0) of uncoupled methylene appear in the dark-field spectra (see Figure 2.16b). These new 

features in the measured spectra correspond to the formation of hybrid plasmon-exciton branches 

𝜔± = 𝜔0 ± g 2⁄ , yielding in this specific case a maximum Rabi frequency of g = 300 meV. By 

changing the ratio of methylene-blue to cucurbit[7]uril they were able to systematically tune the 

number of molecules in the nanogap region, down to the single-molecule level, and measure the 

corresponding Rabi splitting in each specific case, verifying the 𝑁 𝑉⁄  law (see Figure 2.16c). 

 

 

Figure 2.16: a) Illustration of a methylene-blue molecule in cucurbit[n]uril, in the nanoparticle-on-mirror geometry. b) 

Scattering spectrum resulting from isolated NPoMs; strong coupling between the emitter and the plasmon gives rise to 

hybrid peaks at either side of the methylene blue absorption frequency. c) Energy of Rabi oscillations (g) versus mean 

number of dye molecules (𝑛̅). Experimental points and error bars are shown and follow the theoretical curve (dashed line). 

The colors represent the Poisson probability distribution of 𝑛̅.   

 

The advantages of plasmon based devices were also exploited by Gómez et al.
53

 to realize strong 

coupling between SPs propagating on a planar silver thin film and the lowest excited state of CdSe 

semiconductor nanocrystals deposited on top of it. Due to the quantum size effect, the optical 

properties of these nanocrystals (also called quantum dots, QDs) are different from those of their bulk 

counterparts, leading to interesting phenomena such as size-dependent photoluminescence. In QDs, 

photoluminescence comes from radiative exciton annihilation (electron-hole recombination), an 

irreversible process which competes with non-radiative decay channels that deteriorate the performance 

of the nanocrystals. One approach to overcome these drawbacks consists of coupling the QDs to 

electromagnetic radiation (through a cavity or a plasmon mode), thus modifying the energy spectrum of 

the QDs and leading to enhancement or suppression of radiative decay pathways.  

In the present case
53

, coupling of excitons in the QDs with the SPs of the silver film is mediated via a 

dipole interaction, which arises between the electric field produced in the CdSe by the SP and the 
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electric dipole moment of the exciton transition. Attenuated total reflection measurements in the 

Kretschmann-Raether configuration show the appearance of two reflectivity minima in the spectra, as a 

result of a reversible energy exchange between the SP mode at the Ag/CdSe interface and the exciton 

transition in the CdSe QDs (see Figure 2.17a). A further evidence of the strong interaction was given in 

the reconstruction of the dispersion curves for the hybrid bands, which shows the characteristic 

anticrossing behavior of strongly coupled systems (see Figure 2.17b). 

 

 

Figure 2.17: a) Experimental reflectivity curves of p-polarized white light measured at different incident angles. b) 

Experimental dispersion curve. The points originate from the minima in the reflectivity measurements and are plotted 

against the external angle of incidence. The horizontal red line is the energy of the uncoupled exciton, while the green line 

is the energy of the uncoupled SP. The inset is a plot of the upper-lower polariton branch splitting vs the square root of the 

absorbance of the exciton. 

 

All the interesting features of plasmon-exciton hybrid systems presented so far, have been extensively 

exploited for a variety of applications. The strong modification of the energy levels has been used to 

modify chemical reaction rates
64

 and the work function, the energy necessary to remove an electron 

from the Fermi level into vacuum, of organic materials
65

. In the former, Hutchison et al.
64

 were able to 

influence a chemical reaction by strongly coupling the energy landscape governing the reaction 

pathway to electromagnetic vacuum fields. In this respect, they employed spiropyran photochromic 

molecules, which undergo photoisomerization to merocyanine upon UV irradiation, in a plasmonic 

cavity composed of two opposite Ag metal films and resonant with the molecular transition 

investigated. Interestingly, during UV exposure, they observed a slower photoisomerization rate for the 
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molecules embedded in the cavity structure, with respect to uncoupled molecules. This retardation 

corresponds to the onset of strong coupling conditions and the formation of hybrid light-matter states 

which influence the reaction pathways. In a following work, Hutchison et al.
65

 demonstrated 

modification of the work-function of photochromes, which affects the performance of electronic 

devices, such as organic transistors and solar cells. As in the previous work spiropyran was employed 

as photochromic molecule, while the plasmonic structure was represented by a hole-array resonant with 

the molecular transition. By means of Kelvin Probe Method (KPM) technique, which is routinely used 

to measure surface potential differences ∆𝑆𝑃 (directly related to changes in the work-function), they 

obtained very big shifts in ∆𝑆𝑃 reaching a maximum when the hole-array surface plasmon mode was 

matching the investigated transition, i.e. when the system was most strongly coupled with the 

electromagnetic vacuum field.  

Exploiting a similar design (hexagonal hole arrays milled in Ag or Al metal film), Orgiu et al.
66

 

investigated the effect of strong coupling on the conductivity of organic semiconductors, which have 

generated considerable interest in their potential application for large scale and flexible devices
67,68

. In 

their work hybridization is achieved between the molecular transition of aromatic diimide molecules 

and the plasmonic modes supported by the subwavelength hole-arrays (see Figure 2.18a). These 

organic compounds exhibit strong absorption bands that can be efficiently coupled to surface plasmon 

resonances. Current-voltage (I-V) curves were measured for thin semiconductor films between 

patterned electrodes and were compared to the response of molecules on planar electrodes. As shown in 

Figure 2.18b, at the intersection of the molecular absorption and the plasmon modes of the hole-array, 

i.e. where strong coupling occurs, a resonance in the measured currents is clearly visible, reaching 

values one order of magnitude greater than in the reference or uncoupled case. This behaviour 

corresponds to carrier injection from the metal electrodes to the hybridized coherent states of the 

molecules (~105 oscillators involved), resulting in enhanced conductivity of the material. 
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Figure 2.18: a) SEM image of an hexagonal array of holes milled in a Al metal film providing the plasmon resonance that 

is strongly coupled to the molecule. b) I-V curves as a function of the hexagonal array at selected periods. 

 

Moreover, due to the bosonic characters of the polariton states, non-equilibrium Bose-Einstein 

condensation has been observed at room temperature
36

 paving the way towards the realization of 

groundbreaking nano-plasmonic devices, such as all-optical switches
37

, low threshold nano-lasers
69

 and 

single-photon optical transistors
70

. SPP-excitons strong coupling was also employed to increase the 

Raman signal of organic dyes
71

, to modify the luminescence spectrum of J-aggregates
50

 (presented in 

detail above) and to enhance the excitation rate and the fluorescence intensity of semiconductor QDs, 

thus offering the possibility to boost the performance of organic LEDs
72

. Despite the great amount of 

applications, research in this field is still at an embryonic stage. Further advances in nanofabrication 

techniques could unveil the quantum origin of strong coupling in plasmonics and improve our 

understanding of this phenomenon, thus indicating future directions and challenges. 
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Chapter 3 

Strong coupling at THz frequencies: building up the 

system 
 

Strong light-matter coupling has been the subject of extensive research in the last decades and has led 

to fundamental discoveries, some of which were described in the previous chapter. Through the 

formation of hybrid states, light-matter strong interaction offers exciting new perspectives for 

molecular and material sciences by inducing significant changes in the properties of the each 

constituent. So far, these concepts have been mainly investigated by linking electronic transitions (in 

the form of excitons) to the confined electromagnetic field of a cavity, a photonic crystal or a 

plasmonic resonator.  

This phenomenon, however, is not limited to electronic transitions. Very recently, it has been shown 

that also vibrational modes can be coupled to electromagnetic radiation to achieve the strong coupling 

regime in the infrared (IR) and terahertz (THz) spectral range, where phonon resonances lie
1–4

. 

Phonons, namely quanta of collective vibrations, are central to the emerging technology termed 

“phononics”, which focuses on understanding and controlling the phononic properties of materials with 

particular attention on applications such as phononic crystals
5
, acoustic and thermal cloaking

6,7
, thermal 

diodes
8
 and thermoelectrics

9
. Before the advent of this young field, phonons were mainly associated 

with heat, lost energy and noise and regarded as a major source of energy dissipation in solid-state 

systems, thus affecting some of the most relevant properties (electronic, thermal, optical) of materials. 

Of particular significance for nanotechnology, phonons severely affect light emission in luminescent 

nanomaterials and charge transport in nanoelectronic devices. Electron-phonon interactions and the 

predominantly dissipative nature of phonons are also responsible for decoherence of the atom-like 

quantum states hosted by low-dimensional solid-state structures, such as quantum dots
10

.  

 

3.1 Vibrational strong coupling: state of the art 

 

Vibrational strong coupling (VSC) offers the possibility to take advantage of the phonon characteristics 

to modify the intrinsic properties of materials. The vibro-polariton states obtained under VSC are 
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formed by superposition of a cavity photon (or plasmon mode) and excited molecular vibrations that 

are collectively distributed over a large number of molecules (see Figure 3.1). The modification of 

bond strengths and molecular vibration frequencies associated with this phenomenon plays a crucial 

role in chemistry, since it could open many possibilities in chemical reactivity, catalysis and site-

selective reactions. So far, hybridization has been obtained by filling Fabry-Pérot microcavities 

featuring sharp infrared resonances with either solid layers
11

 or liquids
12

 containing the targeted 

molecules. This approach is potentially a simple way to modify a given chemical bond, generating two 

new vibrational modes (vibrational polaritonic states) and modifying the associated chemistry and 

chemical properties
13

 of the molecule.  

 

 

Figure 3.1: Schematic illustration of the light matter coupling between one vibrational transition and a cavity mode 

resulting in the Rabi splitting ћ𝛺𝑉𝑅. 

 

The first demonstration of VSC was given by Shalabney et al.
11

, who obtained coherent strong 

interactions between molecular vibrational transitions of a large number of oscillators and an optical 

mode of a surrounding Fabry-Pérot microcavity. Even if the Rabi splitting obtained for a single 

molecular transition is well below the mechanical damping rate, strong interaction can be achieved in 

this system by coupling several resonators with the same cavity mode, as in the present case. In this 

picture, the spatially coherent single-mode cavity field drives all the coupled resonators in phase with 

each other. This induces coherence among the resonators within the whole mode volume and leads to 

the definition of a macroscopic collective dipole. In order to achieve VSC, they choose polyvinyl 

acetate, which is characterized by a vibration band (symmetric stretching of C = O bond) well isolated 

from other modes, hybridized with the first mode of a specifically designed cavity. By acquiring the 
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transmission spectra of the coupled system with a Fourier transform interferometer (see Figure 3.2a), 

they were able to measure a vacuum Rabi splitting at room temperature of about 20 meV, well 

exceeding the decoherence rates of the constituents. As a result, the formation of two new opto-

vibrational modes were observed (the upper and lower polaritonic states) corresponding to molecular 

vibrations dressed by the cavity vacuum field. The hybrid peaks position as a function of incidence 

angle shows an anti-crossing behaviour (Figure 3.2b), which is the unambiguous signature of the strong 

coupling regime, opening up the possibility to modify chemical reactions by engineering the energy 

landscape of the system. 

 

 

Figure 3.2: a) Measured transmission spectra of the cavity-molecules system as a function of the IR-beam incidence angle. 

At normal incidence (𝜃 = 0°), the avoided crossing is clearly revealed as the signature of the strong coupling regime 

between the cavity mode and the (C = O) stretching mode, whose position in the uncoupled situation in indicated by a 

vertical line. b) Colour plot of the polariton dispersion. Cavity diamonds and purple circles correspond, respectively, to the 

measured positions of the upper and lower polaritons. The dashed curve and dashed horizontal line show, respectively, the 

dispersion of the empty cavity and vibrational uncoupled mode. 

 

Exploiting a similar design, VSC was achieved in a liquid environment by Vergauwe
14

 in the case of 

protein vibrational modes and by George
12

 and Thomas
13

 for different organic molecules. 

 

In a later work, Shalabney at al.
15

 investigated the Raman scattering of hybridized light-matter states. 

They demonstrated that the coherent nature of the vibro-polariton states can boost the Raman scattering 

cross-section by two to three orders of magnitude, revealing a new enhancement mechanism as a result 

of vibrational strong coupling. Also in this case, VSC was achieved by matching the mode of a Fabry-
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Pérot cavity with a vibrational transition of polyvinyl acetate molecules, which are active in both IR 

and Raman spectroscopy (see Figure 3.3a for the energy level scheme). When the cavity thickness was 

tuned to couple to the vibrational frequencies of the molecule, a clear splitting in the transmission 

spectrum of the cavity-molecule system was visible with the appearance of two hybrid states (see 

Figure 3.3b).  

 

 

Figure 3.3: a) Energy-level diagram under vibrational strong coupling showing the scheme for the Raman scattering from 

the new vibro-polariton states. b) Cavity transmission without (dashed green) and with coupled resonators (solid blue line) 

showing the formation of the hybrid bands, also shown by the dispersion (inset). c) Raman scattering from the cavity given 

in (c) showing in the inset the new density of states. 

 

In the on-resonance situation, these new features were also visible in the Raman signal coming from 

the hybridized molecules (see Figure 3.3c). These peaks were not present in the Raman scattering of 

the reference (uncoupled molecules) and could only originate from the formation of upper/lower vibro-

polaritons (VP±) in the coupled system. Contemporarily with this effect, they observed a 10
2
/10

3
 

enhancement in the scattering cross-section for the coupled molecules relative to the reference sample. 

They claimed that, being the coupled resonators in phase with each other in the strong coupling regime, 

the Raman signal could be boosted either by constructive interference or by enhanced polarizability of 

the single molecules. This aspect was theoretically investigated by del Pino et al.
16,17

 who focused on 

the collective nature of the vibro-polariton states. In their model, the dynamics of an ensemble of 

organic molecules in the strong coupling regime can be described through a single collective oscillator 

coupled to a photonic mode of the cavity, but no collective enhancement of the Raman signal is 

predicted, thus being in contrast with the experimental findings of Shalabney et al.
15

. They 

demonstrated that the main effect of VSC is a redistribution of the total Raman cross section, which is 
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therefore approximately conserved, as long as the ultra-strong coupling regime is not reached. In order 

to explain the enhanced Raman signal, they considered two possible scenarios: either the VSC process 

induces a modification of the bare molecule transition strengths or the Raman cross section is increased 

by non-linear effects that were not taken into consideration. However, they were not able to find a 

univocal explanation, thus highlighting the necessity for further theoretical and experimental studies of 

the process. 

 

In a recent work of Kerfoot et al.
18

, phonon-induced transparency in a pair of QDs is achieved via the 

formation of a molecular polaron
19

, a mechanism by which the interacting phonon is made non-

dissipative and coherent, thereby enhancing coherent interaction between the two dots. They 

demonstrated the transparency, as a result of a Fano-type quantum interference mechanism, to be 

widely tunable both optically and electrically, thus providing a tool to increase the performance of 

optoelectronic and quantum devices. 

 

In the last few years, hybridization of phonon resonances with an electromagnetic field has been also 

explored in the case of plasmonic elements providing the light constituent of the coupled system. In 

this context, induced transparency was observed by Huck et al.
20

 in the case of metal antenna plasmons 

coupled to the surface phonons in a SiO2 layer in the IR spectral range. 
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Figure 3.4: a) Extinction spectra of nanoantennas with different length l on top of a 8 nm thick SiO2 layer with a Si wafer 

beneath. b) Extinction spectra of antennas on SiO2 with increasing thickness t. The antenna lengths are resonantly matched 

to the TO and LO frequencies. 

 

In far-field extinction spectra, acquired with an IR light source coupled to a IR microscope and 

spectrometer, a transparency window opens close to the LO mode of the SiO2 layer underneath the 

metal nanoantennas. Representative spectra of different antenna lengths on top of a 8 nm thick layer are 

shown in Figure 3.4a. For detuned antennas (𝑙 = 0.9 μm) the plasmon resonance is located in the mid 

IR and two distinct peaks appear in the spectrum, but both excitations are already hybridized even 

though the resonances are not matched. For longer antennas the resonance shifts towards the SiO2 

vibration and both excitations hybridize strongly. As a consequence a transparency window between 

the LO and surface phonon polariton (SPhP) frequencies opens, which is strongest for resonantly tuned 

antennas. In Figure 3.4b, the evolution of this window with SiO2 layer thickness t is shown. Since the 

resonance frequency strongly depends on the layer thickness, tunable transparency windows can be 

created. For oxide layer thickness larger than 30 nm, a full transparency window is formed in the 

plasmonic extinction. The observation of this strong coupling effect means that the antenna on the SiO2 

layer becomes invisible as a result of coupling to the layer beneath, which without antenna has a 

forbidden excitation exactly at the plasmonic resonance. In a similar work, Shelton et al.
1
 obtained 

hybridization of the surface phonon of a thin SiO2 layer with the plasmon mode of metallic split-ring 

resonators (SRRs). In particular, they investigated the dependence of the coupling strength on the 

metamaterial design, the dielectric layer thickness and its proximity to the resonators, and the amount 

of field overlap between the system constituents, thus unveiling the near-field character of the strong 

coupling phenomenon. 

 

With the spreading of graphene potentialities, people have started to exploit these relatively “young” 

material also in view of light-matter strong coupling. In a pioneering work of Luxmoore et al.
3
, they 

investigated the transmission characteristics of electrically contacted nanoribbon arrays on a 300 nm 

thick SiO2 layer. They demonstrated strong coupling of the graphene plasmon to three distinct surface 

optical (SO) phonon modes of the underlying dielectric, including a resonance at about 30 μm, 

therefore extending graphene plasmonics into the far-infrared range. Using a FTIR spectrometer, they 

measured the transmission of patterned arrays of nanoribbons for a given gate voltage applied. As it is 

shown in Figure 3.5a, when the incident light is polarized parallel to the nanoribbons long-axis no 
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spectral feature is present in the transmission spectrum, while for perpendicular polarization four sharp 

absorption resonances appear. These resonances can be attributed to the coupling of graphene plasmons 

with SO phonons of the SiO2 via the long-range Frӧhlich interaction, resulting in the excitation of 

surface plasmon-phonon-polariton modes. The positions of the hybrid resonances are shown in Figure 

3.5b as a function of the uncoupled plasmon wavevector q and display the characteristic anti-crossing 

behaviour of strongly coupled systems. 

 

 

Figure 3.5: a) Extinction spectra of a 180 nm wide graphene nanoribbon array on SiO2 for incident light polarized parallel 

and perpendicular to the ribbons. When the light is polarized perpendicular to the nanoribbon, four peaks, labeled P1 – P4, 

are clearly identified. b) Calculated loss plot with extracted peak frequencies overlaid. The red dashed line shows the 

calculated dispersion of the uncoupled graphene plasmon. The white, light grey and grey dashed lines show the calculated 

frequency of the three surface optical phonons. The grey symbols are peak positions extracted from microribbon arrays. 

 

In this context, our work concentrates on the realization of plasmon-phonon hybridization in a 

nanoscale system strongly coupled with the THz vacuum electric field. This is achieved by combining 

the extreme radiation confinement properties oh THz plasmonic nanocavities
21

 with the marked dipole-

active phonon resonance of polar semiconductor cadmium sulfide (CdS) nanocrystals (NCs)
10

 located 

at around 8 THz. In such plasmonic nanocavities, the THz vacuum field (i.e. the field associated with 

the quantum zero-point energy of the cavity resonance mode) can reach extraordinary high values and 

can be effectively coupled with the phonon resonance of the nanocrystals. Hybridization in this 

nanoscale system leads to a dramatic change of the NCs phonon spectrum and to characteristics that no 

longer belong to the original nanomaterial. Our findings open exciting perspectives for engineering the 
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optical phonon response of functional materials and for the realization of a novel platform for 

nanoscale quantum optomechanics. 

In the following sections, the constituents of the coupled system will be characterized in detail both 

theoretically and experimentally and their utilization in previous works will be described.   

 

3.2 THz plasmonic nanoantennas 

 

In order to investigate plasmon-phonon strong coupling in the THz regime, we fabricated arrays of gold 

plasmonic nanoantennas (covering an area of 200 x 200 μm
2
) separated by narrow gaps, which 

represent the plasmonic nanocavities where hybridization occurs, by means of electron beam 

lithography (EBL) technique. EBL is a powerful method for creating nanostructures that are too small 

to fabricate with conventional photolithography. State of the art EBL systems can achieve resolution 

down to sub-10 nm using an accelerated beam of electrons to pattern features on samples that have 

been coated with an electron sensitive resist. The electron beam induces a change in the molecular 

structure and solubility of the resist film. Following electron exposure, the resist is developed in a 

suitable solvent to selectively dissolve either the exposed or unexposed areas of the resist. After this 

steps, the resist layer remaining can be used as an etch mask or template for either transferring the 

pattern into the underlying substrate or depositing metallic films.  

 

Figure 3.6: a) - e) Fabrication steps of the THz nanoantenna arrays. 
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The fabrication procedure was carried out in a Cleanroom environment (ISO6, or equivalently 

class1000) to prevent sample contamination from environmental pollutants. A schematic representation 

of the various fabrication steps is provided in Figure 3.6. After cleaning in an ultrasonic bath of acetone 

and isopropyl alcohol, a 160-nm thick poly(methyl methacrylate) (PMMA) layer was spin-coated at 

1800 rpm on a 500- μm thick, high resistivity (> 10 kΩcm) (100)-oriented silicon chip. Subsequently, 

annealing was performed at 180 °C for 7 minutes. In order to prevent charging effects during the 

electron beam exposure, a 10-nm thick Al layer was thermally evaporated on the PMMA surface 

(Figure 3.6a). Electron beam direct-writing of the nanoantenna arrays was carried out using an ultra-

high resolution Raith 150-Two e-beam lithography and imaging system, which enables nanostructures 

fabrication with a resolution down to few nanometers (Figure 3.6b). During exposure of the 

nanoantennas, a beam energy of 20 keV was employed, setting the exposure dose to 550 µC/cm
2
. After 

the Al conductive layer removal in a 1 M KOH solution, the exposed resist was developed in a solution 

of methyl isobutyl ketone (MIBK)/isopropanol (IPA) (1:3) for 30 s (Figure 3.6c). Electron beam 

evaporation in a high vacuum chamber (base pressure 10
-7

 mbar) was exploited to produce a 5-nm 

adhesion layer of titanium and a 50-nm Au film, with a 0.3 Å/s deposition rate (Figure 3.6d). Finally, 

the unexposed resist was removed through a conventional lift-off process in hot acetone (Figure 3.6e). 

To improve the lift-off efficiency, sonication for 2 minutes at 40 kHz frequency was employed. The 

substrate was then rinsed out in IPA for 30 s and dried in nitrogen. O2 plasma ashing at 150 W for 10 

minutes was used to remove residual PMMA resist and other organic residues.  

The fabricated two-dimensional arrays cover an area of 200 × 200 µm
2
 and are composed of chains of 

h = 55-nm high and w = 200-nm wide dipole antennas coupled end-to-end through a fixed gap Gx = 30 

nm (about 750 nanogaps for each array) along their long-axis direction and featuring a spacing Gy = 8.5 

µm along their short-axis direction. A schematic view of a THz nanoantenna array and a single-

nanocavity region is presented in Figure 3.7. Arrays with different nanoantenna length L, ranging from 

4 to 7 µm, were fabricated on the same silicon substrate in order to tune their plasmonic resonance in 

the THz frequency band around the optical phonon mode of the nanocrystals. A Helios NanoLab 600i 

scanning electron microscope (SEM) has been used to acquire the images reported in Figure 3.7 of a 

nanoantenna coupled with its neighbour antennas and the detail of the nanocavity region. Through 

direct visual inspection with the SEM system, we have collected high-resolution SEM images of few 

tens of nanogaps and we have therefore extracted an average gap size of 𝐺𝑥,0 = 32.2 ± 3.7 nm, 

finding good correspondence with the expected value. 
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Figure 3.7: a) Schematic view of THz antennas on the Si substrate. b) SEM image in false colors of a THz nanoantenna 

coupled to its neighbour antennas. c) Sketch showing the details of the cavity gap between two antennas (upper panel) and 

corresponding SEM picture in false colors (lower panel). 

 

In order to estimate the best nanoantenna configuration that matches the phonon resonance of the NCs, 

we have performed electromagnetic simulations using a commercial Finite Element Method-based 

software: COMSOL Multiphysics, Optics Module. For the silicon substrate we assumed a constant 

refractive index of nsub = 3.42, while the complex permittivity of gold was taken from literature
22

. We 

considered nanoantenna with geometrical parameters corresponding to the fabricated values (see 

above) and the nanoantenna length was varied in the same range (4-7 µm) to tune the array resonance 

peak position. All the nanoantenna sharp edges were rounded with a radius of curvature of 20 nm, 

except the ones perpendicular to the substrate in correspondence of the nanocavities, where a curvature 

of 40 nm was introduced to better resemble the fabricated structures. The response of an infinite 

nanoantenna array was obtained by imposing appropriate periodic boundary conditions in the plane of 

the array. Two perfectly matched layers (PMLs) were instead set as boundary conditions at the top (air) 

and bottom (silicon substrate) of the calculation domain, to avoid spurious reflections.  

For the input illumination conditions, we employed a linearly polarized plane wave. The plane of 

incidence was tilted by an angle φ = 45° with respect to the nanoantenna long axis, while the angle of 
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incidence in this plane was set to θ = 18° (in accordance with the mean incidence angle of the 

Cassegrain objective used in THz measurements, see Chapter 4). The polarization state of the wave 

was then set taking into account the input polarization (parallel to the nanoantenna long axis) 

impinging on the Cassegrain objective. We found that this type of illumination well reproduces the 

transmission response of the arrays. Finally, the results of the simulations were normalized to the area 

of the illuminating THz spot in the experimental measurements (diameter D ≈ 260 μm), which is bigger 

of the array dimensions (200 x 200 μm
2
). 

 

Figure 3.8: a) Extinction efficiency for six different nanoantenna lengths. b) Corresponding field enhancement values, 

estimated in the center of the nanocavity. 

 

Figure 3.8a shows the nanoantenna extinction efficiency (the ratio of the extinction cross section to the 

nanoantenna geometrical area) for arrays with different nanoantenna lengths as function of frequency, 

and shows how the array resonance can be easily tuned across a wide frequency range. Here the array 

response of  L = 5.5-6 μm nanoantennas best overlaps the NCs phonon resonance located close to 8 

THz (see next section).  Figure 3.8b shows instead the dispersion of the near field enhancement value 

(the ratio of the local electric field to the background field) in the center of the nanocavities 

demonstrating the high field-enhancement and strong localization into subwavelength nanoscale 

volumes, making this design particularly suitable for applications in THz spectroscopy.  

 

In both figures above, the presence of an array lattice mode at around 9.8 THz is clearly visible as a 

kink in the simulated spectra. The lattice modes of a plasmonic array
23

 arise from the mutual 

electromagnetic coupling of the individual plasmonic scatterers, associated with a grazing (diffracted) 

wave in the plane of the array. When a lattice mode is spectrally close to a plasmonic resonance of the 
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array elements, the energy transfer between these two excitations can reshape the overall spectral 

response, also leading to an increase of the array resonance quality factor
24

. Lattice resonances are 

known to be in correspondence of the so-called Wood-Rayleigh anomalies
23

 and for our specific 

configuration, the lowest energy anomaly appears at the frequency that satisfies the following equation: 

 

 𝑘𝑠𝑢𝑏 = |𝒌𝑥 + 𝒌𝑦 − 𝑨𝑦| (53) 

 

where 𝑘𝑠𝑢𝑏 = 𝑘0𝑛𝑠𝑢𝑏 =
2𝜋𝜈𝑛𝑠𝑢𝑏

𝑐
 is the absolute value of the wave vector in the array substrate, 𝒌𝑥 =

ê𝑥𝑘0 sin 𝜃 cos𝜑 and 𝒌𝑦 = ê𝑦𝑘0 sin 𝜃 sin𝜑 are the x and y in-plane components of the incident light 

wave vector (with φ being the angle formed by the plane of incidence with the long axis of the 

nanoantennas and θ the angle of incidence within this plane), while 𝑨𝑦 = ê𝑦
2𝜋

𝐺𝑦
 is the reciprocal lattice 

vector in the y direction. Figure 3.9 shows how the lattice mode can be straightforwardly tuned by 

changing the spacing Gy of the array, and also evidences the good agreement between the lattice 

resonance positions that can be estimated using Eq. (53) (vertical lines) and the ones visible in the 

electromagnetic simulations (colored curves). 

 

 

Figure 3.9: Lattice mode dependence on the antenna periodicity, estimated for a fixed antenna length L = 5.75 μm. The 

colored curves are the simulated transmission spectra, while the corresponding vertical lines indicate the lattice resonance 

positions calculated using Eq. (53) with the parameters of our investigation (nsub = 3.42, θ = 18°, φ = 45°). 
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So far we have considered the effect of small variations in the y spacing between the nanoantenna 

chains, but also deviations from the fixed value of the nanoantenna gaps (𝐺𝑥 = 30 nm) might affect the 

overall array response. In order to evaluate the dependence of the antenna resonance on small gap-size 

variations, we have performed numerical simulations to evaluate the antenna resonance considering a 

fixed nanoantenna length L0 = 5.75 μm and evaluating the effect of a gap size change of ±𝜎 obtained 

from the experimental evaluation (see Gx,0 estimation above). In the following, we have assumed that 

the quantity 𝐿 + 𝐺𝑥 remains constant, so that a smaller/larger gap 𝐺𝑥 = 𝐺𝑥,0 ± 𝜎 results in 

longer/shorter antenna length 𝐿 = 𝐿0 ∓ 𝜎, as should be the case considering the e-beam lithographic 

process we employed. The results of these simulations are presented in Figure 3.10, which shows on 

the left side the array transmission as a function of frequency and on the right side a table summarizing 

the key parameters, including the array resonance position and the relative shift. 

 

 

Figure 3.10: Effects of nanogap size changes on the array resonance for antenna length corresponding to L = 5.75 μm. 

 

As can be seen both in the transmission spectra and the table, the array resonance position and its 

bandwidth are only slightly modified by nanogap size distribution. 

 

Having established the geometrical parameters and enhancement properties of our nanocavities, we 

now want to give an estimate of their mode volume and the THz vacuum electric field that they can 

support. Knowing these characteristics is of paramount importance to design a system which can be 

strongly coupled to the nanomaterial resonators, especially in the spectral regime where we operate. 

Indeed, the vacuum field scales with the square root of the photon energy (extremely low at infrared 
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and terahertz frequencies)  and of the inverse of the effective cavity volume, which in turn is 

proportional to the cube of the radiation wavelength in traditional cavities and thus becomes 

particularly large in these spectral regions. These concepts are well exemplified by the following 

equation for the Rabi splitting observed in systems coupled by means of the vacuum electric field
25

, 

 

 

ћ𝛺𝑅 = 2 𝐸⃗ 𝑣𝑎𝑐 ∙ 𝜇 = 2𝜇√
ћ𝜔

2𝜀0𝑉
 (54) 

 

We therefore performed numerical calculation to determine the electric field distribution in the 

nanocavity area at resonance on the planes perpendicular to the main simulation axes (see Figure 3.11). 

 

 

 

Figure 3.11: The local electric field distribution in the area of a nanocavity (all the 2D projections are taken on a plane 

passing through the nanocavity geometrical center) at the resonance position of 8 THz and for 5.75 μm antennas. 

 

Starting from the distribution of the local electric field in 3D space, the mode volume of the plasmonic 

nanocavity can be estimated by
26

: 
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𝑉𝑚𝑜𝑑 =

∫𝜀(𝒓)|𝐸(𝒓)|2𝑑𝒓

𝑚𝑎𝑥(𝜀(𝒓)|𝐸(𝒓)|2)
 (55) 

 

where the numerator can be read as the full domain integral of the energy density, and the denominator 

as the maximum value of the energy density extracted in the same domain. Considering the case of the 

array with nanoantenna length L = 5.75 μm (corresponding to a resonance peak at around 8 THz, well 

aligned to the NC phonon resonance) we obtain a mode volume at resonance as small as 𝑉𝑚𝑜𝑑 =

1.43 × 106 nm
3
, which is much smaller than the volume of an analogous Fabry-Pérot cavity 

(𝑉𝐹𝑎𝑏𝑟𝑦−𝑃é𝑟𝑜𝑡 ≈ 8 × 1012 nm
3) supporting a resonant mode at the same frequency. Compared to the 

geometrical volume of the nanocavity (𝑉𝑔𝑒𝑜 ≈ 200 × 30 × 55 nm3 = 0.33 × 106 nm3), the mode 

volume is about 4.3 times larger. A graphical comparison of these two quantities is given in Figure 

3.12, in which the effective squeezing of the radiation in the nanocavity region becomes evident. 

 

 

Figure 3.12: Size comparison between the geometrical nanocavity volume and the mode volume. 

 

Having an estimate of the mode volume, we can also evaluate the THz vacuum electric field (in air) 

within the cavity: 

 

|𝐸𝑣𝑎𝑐| = √
ћ𝜔𝑟𝑒𝑠

2𝜀𝜀0𝑉𝑚𝑜𝑑
= 4.6 × 105 𝑉/𝑚 (56) 

 

where  𝜔𝑟𝑒𝑠 is the resonance frequency, ћ is the reduced Planck constant, ε and ε0 are the relative and 

vacuum permittivities, respectively. The calculated vacuum field thus reaches an extraordinary high 

value over a nanoscale volume, thus demonstrating the extreme confinement properties of our THz 

plasmonic nanocavities.  
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3.3 CdS semiconductor nanocrystals 

 

In order to achieve plasmon-phonon strong coupling, we combine the high field enhancement and 

small mode volumes of our plasmonic nanocavities with the marked dipole-active phonon resonance of 

cadmium sulfide (CdS) polar NCs. 

 

The NCs were synthesized in the Nanochemistry Department of the Italian Institute of Technology 

(IIT) using a two-steps protocol, in which a CdS shell of desired thickness was grown on pre-

synthesized CdS cores, following the procedure reported in Ref.
27

 for CdSe/CdS giant-shell NCs. CdS 

cores were obtained by mixing 3 g of trioctylphosphine oxide (TOPO), 0.280 g of 

Octadecylphosphonic acid (ODPA) and 0.060 g of CdO in a 25 mL tri-neck flask. The mixture was 

heated at 120°C under vacuum for 1 hour. Then, under nitrogen athmosphere, the temperature was 

increased to 380°C to completely dissolve the CdO. When the CdO was dissolved and the solution 

became colorless, 1.5 mL of trioctylphosphine (TOP) was injected into the system and the temperature 

was allowed to recover to 380°C before the injection of TOP:S solution (0.020 g S+ 0.500 g TOP). The 

time of growth was set to 10 minutes to get cores of 6 nm in diameter. After the synthesis, the NCs 

were washed by precipitation and re-dissolution (3 times) in toluene and methanol. The final sample 

was dispersed in 3 mL of toluene. 

For the synthesis of core-shell CdS@CdS NCs, cadmium and sulfur precursors were prepared by 

respectively dissolving 0.640 g of CdO in 5 mL of oleic acid (OA) and 0.160 g S powder in 5 mL of 

TOP. Both precursors were then diluted with octadecene (ODE) to get a 0.5 M Cd oleate solution in 

ODE (solution 1) and a 0.5 M TOP:S solution in ODE (solution 2). In a 25 mL tri-neck flask a mixture 

of 3 mL of ODE and 1 mL of CdS cores solution was first degassed at 80°C under vacuum to remove 

water. Then, under nitrogen, the solution was heated to 300°C and a mixture of solution 1 and solution 

2 (0.65 mL each) was injected into the system drop by drop in 1 hour, targeting a shell thickness of 

2.35 nm, corresponding to the growth of 7 CdS monolayers (each layer having a thickness of 0.3358 

nm, which is equivalent to half the lattice parameter along the crystallographic c axis). The final sample 

was washed by centrifugation and re-dissolution with toluene and 2-propanol (3 times) and finally 

suspended in 3 mL of toluene. 

The synthesized CdS cores and final CdS@CdS NCs were characterized by means of Transmission 

Electron Microscopy (TEM) and images were acquired on a JEOL JEM-1011 microscope equipped 

with a thermionic gun at 100 kV accelerating voltage (see Figure 3.13a and c, respectively). 
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Figure 3.13: a) TEM images and b) XRD patterns of CdS cores. c) TEM images and d) XRD patterns of CdS@CdS Giant 

Shell NCs. 

 

As evident from TEM characterizations, the two samples are quite monodisperse, with an average size 

of (5.6 ± 0.4) nm and (10.2 ± 0.6) nm for the CdS cores and the CdS@CdS Giant Shell NCs, 

respectively. 

In order to obtain a composition analysis of the synthesized NCs powder X-Ray Diffraction (XRD) 

patterns were acquired using a PANalytical Empyrean X-ray diffractometer equipped with a 1.8 kW Cu 

Kα ceramic X-ray tube, PIXcel3D 2×2 area detector and operating at 45 kV and 40 mA. The diffraction 

patterns were collected in air at room temperature using a Parallel-Beam (PB) geometry and symmetric 

reflection mode. All XRD samples were prepared by drop casting a concentrated solution on a zero 

diffraction silicon wafer. XRD patterns confirm the crystallinity of both samples (Figure 3.13b for 

cores and 3.8d for core-shell NCs), showing an excellent match with reference card ICSD 98-015-

4186, corresponding to the hexagonal wurtzite structure with a = b = 4.1365 Å and c = 6.7160 Å lattice 

parameters. Moreover, the absence of other peaks related to different phases and to precursors residues 

certifies the high purity of the used samples. 

The concentration of the NCs solutions obtained following the previously described protocols was 

retrieved via Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). ICP-OES 



71 
 

analysis performed on an iCAP 6000 spectrometer (ThermoScientific) was used to estimate the 

concentrations of CdS cores and CdS@CdS Giant Shell NCs solutions. Prior to measurements, the 

samples were decomposed in aqua regia (HCl/HNO3 = 3/1 (v/v)) overnight. The measured CdS core 

concentration was 34.24 μM, while the concentration of CdS@CdS Giant Shell NCs in the final sample 

solution was 10.95 μM. 

 

The NCs we synthesized are endowed with 3 main phonon lines: the transverse optical (TO) and 

longitudinal optical (LO) phonon modes (𝜈𝑇𝑂 ≈ 6.9 THz, 𝜈𝐿𝑂 ≈ 9.1 THz), which are also 

characteristic of bulk crystalline CdS, as well as a Frӧhlich (FR) optical phonon resonance (𝜈𝐹𝑅 ≈ 7.85  

THz), typical of nanoparticles
28

, which lies between the TO and LO lines. The FR mode of the NCs is 

associated with a dipolar charge distribution on the surface of the nanoparticle and thus, being dipole-

active, can be effectively coupled to electromagnetic radiation. This kind of resonance can be 

stimulated in polar dielectric crystals between the TO and LO phonon frequencies, in the spectral range 

denoted as “Reststrahlen” band
28

. Similarly to metals for frequencies lower than the plasma frequency, 

polar dielectric crystal exhibit high reflectivity and negative real part of the permittivity in the 

Reststrahlen band, as a result of coherent oscillations of the vibrating bound charges on the atomic 

lattice (optic phonons). Even for polar nanocrystals as CdS, the dispersion relation can be approximated 

as a Lorentz oscillator: 

 
𝜀(𝜔) = 𝜀∞ (1 +

𝜔𝐿𝑂
2 − 𝜔𝑇𝑂

2

𝜔𝑇𝑂
2 − 𝜔2 − 𝑖𝜔𝛾

) (57) 

 

where γ is a damping constant, 𝜀∞ is the high-frequency dielectric permittivity and ωLO, ωTO the LO 

and TO phonon frequencies, respectively. Between these two frequencies the permittivity is negative 

and both localized and propagating surface phonon polariton modes can be supported on the surface of 

the NCs as it happened for LSPs and SPPs in metals.  

In order to describe the NCs response at THz frequencies, we considered an effective permittivity 𝜀𝑒𝑓𝑓 

derived from the Maxwell-Garnett approximation for a dielectric mixture: 

 

 𝜀𝑒𝑓𝑓 − 𝜀𝑏

𝜀𝑒𝑓𝑓 + 2𝜀𝑏
= 𝑓

𝜀𝐶𝑑𝑆 − 𝜀𝑏

𝜀𝐶𝑑𝑆 + 2𝜀𝑏
 (58) 
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where 𝜀𝑏 and 𝜀𝐶𝑑𝑆 are the permittivities of the background (air in our case, 𝜀𝑏 = 1) and filling (CdS 

NCs) materials, while 𝑓 is a dimensionless quantity representing the filling ratio of the mixture, which 

was found to well reproduce the experimental data for a value around 0.75. Using literature values
29

 for 

bulk crystalline CdS and the dispersion equation (57), we were able to simulate the transmittance and 

the absorption of our NCs (Figure 3.14a-b), finding very good agreement with the experimental 

measurements (see next chapter). 

 

 

Figure 3.14: a) Relative transmittance spectra (blue circles: experimental measurement, red line: fit using Eq. (57)) of a 2.5 

μm thick CdS NC layer. The relative transmittance is obtained normalizing the sample transmission with the one of a bare 

silicon substrate. b) Absorption spectrum of a monolayer of CdS NCs, as obtained using Eq. (57) and the parameters 

extracted from the fit in a). 

 

The Fröhlich resonance position is independent on structural deviations of the NCs from the original 

shape, as well as on different arrangements or densities. In order to demonstrate this, we have 

performed a series of numerical simulations and retrieved the Fröhlich resonance peak of ensembles of 

nanocrystals in various conditions. The results of this investigation are summarized in the following 

figures. Changes in the shape of individual nanocrystals, as well as in the 2D lattice arrangement, have 

basically no effect on the resonance position (Figure 3.15a-d). Also large changes in the size of NCs do 

not shift or perturb the Fröhlich resonance (Figure 3.15e), which is just affected only by changes in the 

filling factor f (Figure 3.15f), whose value however was both experimentally and numerically verified 

to be close to 0.75. 
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Figure 3.15: a-d) Frӧhlich resonance peak retrieved by means of numerical simulations for different nanocrystal shapes and 

lattice arrangements (filling factor f = 0.75). e) Frӧhlich resonance for different nanocrystal size and f) different filling 

factors. 
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3.4 Coupled system 

 

The deposition of the CdS nanocrystals on the fabricated nanoantenna array was carried out via spin-

coating under ambient conditions and at room temperature. Specifically, the 10.95 μM solution 

obtained after the synthesis, was diluted to a final NCs concentration of 1 μM. Then, 20 μL of the 

diluted solution were spin cast onto the patterned substrate at 2000 rpm for 60 s (acceleration of 1000 

rpm/s).  

 

 

Figure 3.16: a) Graphical representation and b) SEM image (in false colours) of a nanocavity region covered with a 

monolayer of NCs; scale bar 100 nm. 

 

The procedure resulted in the deposition of a uniform monolayer of CdS@CdS Giant Shell NCs that 

well covers the sample surface, even within the antenna nanocavities, as shown in Figure 3.16a-b.  

In order to explore how the plasmon-phonon strong coupling is affected by the number of NCs 

interacting with the plasmonic nanostructures, we followed a specific protocol to add additional NCs. 

Thicker layers were obtained through multi-step layer-by-layer spin coating deposition; to avoid 

complete re-dissolution of the already deposited NCs, spin coating steps were interspersed with 

exposure of the sample to 20 μL of TBAI solution in methanol (10 mg/mL) for 30 s, followed by three 

rinse-spin steps with methanol, as described in Ref.
30

. The results of this deposition protocol for 

different NC numbers are summarized in Figure 3.17, where representative SEM images are shown. 

 



75 
 

 
 

Figure 3.17: a) - d) Increasing number of CdS NCs deposited on the pre-existent layers; scale bar 100 nm. 

 

The spectral response of each measured nanogap was expressed in terms of the average number of NC 

layers. For each nanocavity, several SEM images taken with different tilt angles were considered, in 

order to evaluate their stacking in the case of multiple layers.  From the average number of NCs 

obtained for the reference case of the monolayer 𝑛𝑎𝑣𝑔
1  (calculated over 20-30 nanogaps), we then 

estimated the number of layers 𝑁𝐸𝑆𝑇 using the following formula 

 𝑁𝐸𝑆𝑇 =
𝑛𝑎𝑣𝑔

𝑛𝑎𝑣𝑔
1

 (59) 

 

where 𝑛𝑎𝑣𝑔 is the average number of NCs extracted for the different sample coverage conditions 

investigated in our work. This estimation protocol, however, is intrinsically operator dependent. We 



76 
 

therefore employed an alternative and more objective procedure by means of Electron Dispersive X-

Ray (EDX) measurements. For this purpose, we used a FEI Helios NanoLab 650 microscope working 

at an accelerating voltage V = 5 kV, current I = 0.4 nA and acquisition time 120s. SEM images of the 

nanogaps were collected with 250’000x magnification, in order to include the CdS NCs as well as the 

gold edges of the nanocavities. A typical spectrum obtained by EDX investigation and the results of the 

analysis carried out on three different nanogaps with similar NC coverage are reported in Figure 3.18.  

 

 

Figure 3.18: Typical EDX spectrum obtained over a nanocavity and featuring peaks in correspondence of each element 

characteristic X-ray energy. The inset summarizes the results in relative atomic fraction obtained over three nanocavities 

with similar NC coverage. 

 

The relative atomic fractions of Cd and Au extracted from the EDX measurements taken in such 

configuration were then used to estimate the equivalent number of NC layers, by fixing as a reference 

(𝑁𝐸𝐷𝑋 = 1) the case of a monolayer. 
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3.5 Other applications of the same design 

 

The nanoantenna-semiconductor NCs design, that we have used in the present study, was already 

exploited in previous works
21,31

 for sensing applications in the IR and THz spectral range. Usually, the 

large wavelength associated with THz radiation (300 μm at 1 THz) severely hinders its interaction with 

nano-objects (i.e nanoparticles, nanorods and large molecules), thus limiting investigations to 

macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or 

highly concentrated solutions. However, the high field enhancement and localization in plasmonic 

“hot-spots” associated to resonant nanoantennas allow detection of small amounts of molecules and 

characterization of their optical response even in this frequency range. Localized surface plasmon 

resonances of metallic nanoclusters have proven to be capable of effectively enhancing the optical 

response of NCs thin films, showing a clear potential for enhanced spectroscopy in the IR range.  

Thanks to these properties, Toma et al.
21

 exploited nano-engineered dipole nanoantennas coupled end-

to-end (see Figure 3.19a-b) to retrieve the spectroscopic response of a monolayer of cadmium selenide 

(CdSe) nanocrystals, which are endowed with a phonon resonance in the THz spectral range (at 5.65 

THz). In this study, the THz response of the coupled system was characterized by means of Fourier 

transform spectroscopy in transmission configuration and the plasmonic nanoantennas were carefully 

engineered to support a resonant mode located in proximity of the CdSe phonon resonance position 

(see Figure 3.19c, green curve and dotted line). When the polarization of THz light was set 

perpendicular to the long axis of the nanoantennas (non-resonant illumination) the overall transmission 

was found to be the same of a bare silicon substrate, and the presence of the QDs could not be detected 

(see black curve in Figure 3.19c). When instead the sample was resonantly illuminated (in order to 

excite the dipole mode of the antennas), a modified array response was observed (see Figure 3.19c, red 

curve), highlighting a particular spectral feature superimposed on the array resonance. The appearance 

of this peculiar feature as an extra transmission peak in the measured spectra can be ascribed to the 

Fano interference between the broad nanoantenna resonance and the sharp QD phonon resonance. The 

sensing of a monolayer of QDs, through the formation of a Fano-like resonance, is made possible by 

significant absorption enhancement (with a factor as high as 10
6
 in the present case) induced by the 

nanoantennas. In fact, in the close proximity of the gap, the usually small effective absorption cross-

section of a nano-object at THz frequencies can be greatly amplified, making this design suitable for 

successful applications in enhanced THz spectroscopy of nanomaterials.  
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Figure 3.19: a) Sketch of the THz nanoantenna array. b) SEM image of a CdSe monolayer uniformly deposited in the 

nanogap region. c) Transmittance of the array with nanoantenna length L = 8 μm and periodicity Gy = 14 μm for THz 

polarization set along the nanoantenna long axis and without QDs over the surface (green curve); transmittance of the same 

array covered with a QD monolayer, for THz polarization set along the nanoantenna short axis (black curve) and long axis 

(red curve). The vertical dotted line denotes the unperturbed CdSe phonon resonance. 

 

In a recent work, Milekhin et al.
31

 exploited the same design to further maximize the NC response in 

Surface Enhanced Infrared Absorption (SEIRA) measurements by superimposing plasmonic and 

diffraction resonances in the periodic nanoantenna structures. In particular, they studied the dependence 

of the measured signal on the periodicity of the fabricated structures, while keeping fixed the antenna 

dipolar LSPR (set by their length). By doing this, they were therefore able to determine an optimal 

configuration associated with maximal enhancement of both the electromagnetic near field and IR 

absorption (see Figure 3.20a-b). 
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Figure 3.20: a)  IR transmission spectra of an optimized Au nanoantenna array (curve 1) and of arrays with the transverse 

periodicity Gy reduced by 20% (curve 2) and increased by 20% (curve 3) and 50% (curve 4) relative to the optimal value 

before depositing NCs (solid lines with circles) and after covering with 1ML of CdSe NCs (solid lines). b) The same spectra 

after normalization. 

 

In the two examples presented above, a modification in the optical properties of the coupled system 

was observed, resulting in a resonance shift and the appearance of a spectral feature attaining to the 

NCs. In both situations however, the interaction strength is not big enough to overcome the relaxation 

rates of both the plasmonic elements and the semiconductor quantum dots. 

In this context, our aim is to properly engineer a system supporting strong light-matter interactions, 

enabling the intrinsic properties of few tens of NCs to be drastically modified through the formation of 

hybrid plasmon-phonon polariton states. 
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Chapter 4 

Plasmon-phonon strong coupling via plasmonic 

nanoantennas 
 

4.1 THz characterization 

 

Far from the resonance matching conditions, i.e. for nanoantenna resonances strongly detuned from the 

phonon resonance of the NCs, the spectral response of the overall system resembles that of two 

uncoupled oscillators with their energy levels unperturbed. As the plasmon resonance approaches the 

QD Frӧhlich mode, the interaction strength between the two constituents increases and hybridization 

starts to occur. At the overlap of the investigated resonances energy is exchanged at a rate faster than 

any relaxation rate and the system enters the strong coupling regime. The energy spectrum of the 

coupled pair is profoundly modified (see energy hybridization scheme in Figure 4.1a) and new hybrid 

light-matter states are formed, identified as two polariton modes 𝜈− and 𝜈+, as evidenced in the THz 

extinction spectra of the nanoantennas (see red curve in Figure 4.1b). 

 

 

Figure 4.1: a) Energy diagram exemplifying the plasmon-phonon resonance hybridization. b) Experimental THz extinction 

spectra of the array featuring nanoantennas of length L = 5.75 μm with (solid red line) and without (green dashed line) a NC 

monolayer over its surface; blue dashed line: absorption spectrum of a single layer of NCs. 
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THz transmission measurements of the overall system spectral response were performed using a 

Fourier-transform THz microscope coupled to synchrotron light (ELETTRA Trieste, SISSI beamline)
1
. 

The radiation is collected from the synchrotron storage ring (see Figure 4.2a) in correspondence of a 

bending magnet and is directed into a first ultra-high vacuum (UHV) chamber. Here a plane extraction 

mirror selects only the IR component of the synchrotron light, discarding the more energetic part. With 

the aid of an ellipsoid mirror the radiation is focused beyond the shielding wall of the synchrotron hall 

and enters a second UHV chamber. This optical design allows the aberrations by the transfer optics due 

to the wide emission angle to be minimized (for more details see Ref.
2,3

).  

 

 

Figure 4.2: a) Illustration of the synchrotron scheme. At the center are the linear accelerator (Linac) and the circular 

accelerator (Booster), surrounded by the outer storage ring. b) Schematic view of the THz setup on the SISSI beamline. 

 

The radiation is then propagated to the SISSI laboratory, where it enters a Bruker 70v FTIR 

spectrometer equipped with a Si beam splitter (see Figure 4.2b). Before going into the Hyperion 

infrared microscope, the light is passed through a grating polyethylene polarizer (denoted as Pol in 

Figure 4.2b) oriented along the main linear polarization axis of the synchrotron beam, corresponding to 

the electrons orbit plane.  

Polarized transmittance measurements were performed by orienting the sample mounted on a 

goniometer, in such a way that the long axis of the nanoantennas was set parallel to the main 

polarization axis of the incident radiation. A Cassegrain objective (15X, mean incidence angle: 18°) 

was used to focus THz light onto the sample, while an aperture was employed to limit the focal spot 

size to a diameter of approximately 260 μm. The light transmitted from the sample was then directed 

towards a He-cooled Si bolometer, which is very sensitive in the investigated spectral range. Data were 

acquired by co-adding 512 scans with a spectral resolution of 4 cm
-1

 (spectral point spacing of 2 cm
-1

). 
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The acquired spectra were normalized to the transmission of the bare silicon substrate measured in 

correspondence of  the un-patterned area of the samples. 

 

In order to characterize the optical properties of the synthesized CdS NCs, preliminary THz 

transmission measurements were performed on a CdS thin film. Firstly, the transmission of a bare Si 

substrate was acquired as a reference spectrum and after that, a 2.5 μm thick NC film was drop-casted 

from a 10 μM solution. The optical response of the NC was normalized to the reference spectrum, so 

that to obtain their relative transmittance as shown in Figure 4.3. As it can be noticed, the synthesized 

NCs feature a strong dipole-active Frӧhlich resonance located at 7.85 THz (gray dashed line), in good 

agreement with the numerical results reported in Chapter 3. The noise fluctuations visible at small 

frequencies are a results of lower detector sensitivity in this spectral range. 

 

 

Figure 4.3: THz transmittance of CdS NCs deposited on a Si substrate. The NC response is normalized with respect to the 

transmission of a bare Si substrate. The vertical dashed line marks the position of the NC Frӧhlich resonance. 

 

In order to investigate the anti-crossing behaviour of the coupled system, we firstly measured the 

spectral response of the plasmonic arrays featuring different nanoantenna lengths L (see Figure 4.4a). 
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The measured resonances, appearing as a broad dip in the transmittance spectra, span a wide THz 

frequency band (from about 7 to 9 THz) comprising the Frӧhlich phonon line. The kink visible at about 

9.8 THz accounts for the presence of the arrays lattice mode and is indicated as a vertical dashed line. 

We then covered the fabricated arrays with a monolayer of CdS NCs (following the procedure 

described in Chapter 3) and we observed the arising of two hybrid dips at each side of the unperturbed 

phonon resonance (see Figure 4.4b).  

 

 

Figure 4.4: a)  Transmission response of bare arrays featuring different nanoantenna lengths. The vertical dashed line 

(labeled “lat”) marks the position of the lattice mode at around 9.8 THz. b) Same as in (a) when the arrays are covered with 

a single layer of NCs (dashed line: Frӧhlich phonon resonance). c) - d) Experimental (c) and numerical (d) 2D maps of the 

polariton branches dispersion. The color bar corresponds to the values of the extinction E, extracted from the transmission T 

as E = 1 – T. The blue (red) solid lines are the trends of the high-energy (low-energy) polariton branch, as estimated by a 

three coupled oscillator model (see Appendix A), while the purple dashed line marks the lattice mode position.  

 

The spectral position of these new features allowed us to reconstruct the dispersion of the hybrid 

polariton bands (see Figure 4.4c), which shows the characteristic anti-crossing behaviour of strongly 
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coupled systems. In fact, far from the phonon resonance of the NCs the two systems behave as 

uncoupled oscillators, following the spectral response of either the bare antennas (diagonal dashed line) 

or the unperturbed Frӧhlich mode of the NCs (horizontal dashed line at 7.85 THz). As we approach the 

resonance matching conditions, the two dispersion curves do not intersect and anti-crossing is 

observed. For a CdS monolayer, the observed Rabi splitting 𝛺𝑅 of the hybridized resonances, i.e. the 

separation of the two polariton branches when the uncoupled plasmon resonance is aligned to the 

uncoupled optical phonon mode, was estimated to be 0.8 THz. This value corresponds to about 10% of 

the unperturbed resonance and far exceeds the relaxation rates of the two systems, thus hinting for the 

establishment of a strong coupling regime. The same behaviour was also well reproduced by the results 

of the numerical simulations, as it is shown in Figure 4.4d. Finally, the horizontal dashed line located at 

9.8 THz in the 2D dispersion maps represents the lattice mode of the nanoantenna arrays and does not 

affect the system behaviour, being far detuned from the Frӧhlich mode. 

 

In order to investigate how the plasmon-phonon strong coupling is affected by the number of NCs 

interacting with the plasmonic nanostructures, we followed a specific protocol (see Chapter 3) to add 

additional nanocrystals on top of the previously deposited monolayer. By direct visual inspection of 

several nanocavities and EDX analysis (described in Chapter 3), we were able to estimate an average 

number of layers 𝑁𝐸𝑆𝑇 = 1.5 deposited after the first overlayer deposition. A subsequent deposition 

step, instead, lead to an average value of 𝑁𝐸𝑆𝑇 = 2.4 over the sample surface. The results of the 

transmission measurements acquired after every NC deposition protocol are summarized in Figure 

4.5a-b, which reports the 2D reconstruction of the polariton dispersion branches. The 2D maps show 

that the increase in the NC number results in a further splitting of the branches, as indeed expected for 

strongly coupled systems
4
, reaching almost 15% of the uncoupled phonon resonance. The observed 

Rabi splitting for the two cases are reported in the 2D maps, together with the estimated average NC 

layers and the fitted values extracted from the numerical model.  

Interestingly, the high-energy polariton branch in our measurements showed a peculiar dispersion at 

high frequencies and tends to intersect the uncoupled plasmon resonance line above 9 THz. We found 

that this is due to the presence in our system of a third characteristic resonance already introduced, the 

lattice mode of the arrays. Our overall system is thus better described by a three-oscillator model
5
, i.e. 

involving plasmon, phonon and lattice resonances (see Appendix A), which well reproduces the 

observed pinning of the high-energy polariton branch. This behaviour is also confirmed by numerical 

simulations, as shown in Figure 4.5c-f for the case of N = 1.5, 2, 2.5 and 3 NC layers, respectively. 
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Figure 4.5 a) - f) Experimental (a,b) and numerical (c-f) 2D maps of the polariton branches dispersion for different values 

of  NC layer number N. As a reference for the experimental data, NEST = 1 corresponds to an average number of NCs inside 

a nanocavity of around 86 (see below). The red (low-energy polariton) and blue (high-energy polariton) lines are the best fit 

with the three-coupled-oscillator (3CO) model, while the purple dashed line marks the lattice resonance position at 9.8 THz. 

 

Even in the presence of the lattice resonance, the Rabi splitting 𝛺𝑅 in our system is found to increase as 

√𝑁, which is the typical trend of two strongly coupled oscillators
4
 (as shown in Figure 4.6a). By 

exploiting this dependence in the fitting model, we extracted an estimate of the average increase of the 

number of NCs over the array surface (expressed as a fractional increase of the number of layers, see 

Chapter 3). We thus obtained the values corresponding to NFIT (and their associated Rabi splitting) 

reported in the table of Figure 4.6b. The different layers measured in the THz transmission experiments 

(see Figure 4.4c and 4.5a-b) were also characterized by direct SEM visual inspection and EDX 

analysis, in order to correlate the observed Rabi splitting to a corresponding average NC coverage N. In 

this respect, following the estimation procedure reported in Chapter 3, we were able to calculate three 

different average number of layers 𝑁𝐸𝑆𝑇 (reported in Figure 4.6b) respectively. Indeed, EDX analysis 

performed on the same samples confirmed both the fitted and estimated values, following with 
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remarkable consistency the theoretically predicted power-law dependence. The average number of NC 

layers obtained via EDX analysis is reported in the table below as 𝑁𝐸𝐷𝑋. 

 

Figure 4.6: a) Rabi splitting as a function of √𝑁, extracted from: the three-coupled-oscillator model (black line), fitted 

model (red bordered squares), SEM visualization (green crosses) and EDX analysis (blue triangles). b) Values obtained 

from: the fitted model 𝑁𝐹𝐼𝑇 and their corresponding Rabi splitting 𝛺𝑅,𝐹𝐼𝑇; direct counting of the average NC number 𝑛𝑎𝑣𝑔 

and the extracted average NC layer number 𝑁𝐸𝑆𝑇; EDX analysis 𝑁𝐸𝐷𝑋 with corresponding experimental Rabi splitting 

𝛺𝑅,𝐸𝑋𝑃 obtained in the THz transmission measurements.  

 

4.2 Raman characterization 

 

In true strong coupling conditions, one expects the hybridization to occur also without the need of any 

THz illumination, thus in a so-called “dark” condition. In fact, the two involved oscillators should be 

coupled strongly just by means of the vacuum electromagnetic field, as the quantum description of the 

phenomenon predicts (see Chapter 1). While this quantum zero-point field is typically low in ordinary 

Fabry-Pérot THz nanocavity, as a consequence of the low radiation energy and big mode volumes, it 

can reach extreme values in our plasmonic nanocavities, which overcome diffraction limitations and 

feature a mode volume well below 𝜆3 107⁄  (see Chapter 3 for exact calculation). To confirm this, we 

performed a micro-Raman characterization of the NCs located in the plasmonic nanocavity regions. 

Raman spectroscopy, by simply monitoring the frequency of visible light (632.8 nm laser excitation) 

inelastically scattered by the investigated system, can retrieve the phonon response without recurring to 

a direct THz illumination, i.e. no THz photons are injected in the nanocavities. Moreover, this 

technique allowed us to confirm the nanoscale nature of the phonon resonance reshaping, 

demonstrating that hybridization occurs only in the nanocavities, where the vacuum field is strongly 



91 
 

concentrated by the plasmonic nanoantennas. In fact, the Raman measurements performed differs from 

the THz characterization also for the size of the investigated region. While in the former we probed the 

phonon response over an area of about 1.4 μm
2 

(dimension of the illuminated spot), therefore 

illuminating only one nanogap at a time, in THz extinction experiments we illuminated an area of about 

200 x 200 μm
2
 (corresponding to the nanoantenna arrays dimension), thus retrieving an averaged 

response of several hundred nanogaps (about 750 nanogap for the array with L = 5.75 μm).  

Raman investigation was performed in a backscattering configuration using a micro-spectrometer 

system (Renishaw inVia) equipped with a 150× LEICA PL APO objective (numerical aperture NA = 

0.95) and a thermo-electrically cooled CCD as detector (working temperature -60 °C). Spectra were 

collected exciting the system at λ = 632.8 nm with a He:Ne laser; the excitation laser was chosen after 

optimization of the experimental conditions in terms of scattering efficiency, suppression of 

fluorescence emission from the CdS NCs (bandgap ~ 2.4 eV), and beam size at the diffraction limit. 

The laser power was fixed at 1.7 mW with an integration time of 10 seconds. The scan along the 

nanoantennas was performed using an XYZ motorized stage with a nominal 0.01 μm step. The 

polarization of the laser source was set by means of a half-waveplate (see Figure 4.7 illustrating the 

experimental setup), which allows to select a polarization either parallel or orthogonal to the 

nanoantenna long axis without moving the sample. 

 

 

Figure 4.7: Schematic description of the Raman setup. 
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An example of Raman measurements obtained with a CdS monolayer is shown in Figure 4.8b, which 

emphasizes the difference between the spectrum collected in a nanocavity region (red continuous 

curve) and the spectrum obtained just outside the nanocavity on the Si substrate (green dashed curve). 

As can be seen, in the former two new peaks arise in the Raman spectrum at the two sides of the 

Frӧhlich resonance and between the TO and LO modes of the nanocrystals, providing clear evidence of 

the creation of a new hybrid nanosystem with phonon properties that no longer belong to the original 

nanomaterial. Such modification of the Raman response is indeed remarkable, especially considering 

the fact that the focal spot of the micro-Raman system we employed (beam area: ~1.39 μm
2
) is more 

than 200 times larger than the area covered by one nanocavity and thus illuminates not only the NCs 

within the nanocavity (about 90 per cavity), but also a large number of NCs that do not contribute to 

the hybridization (see pictorial representation in Figure 4.8a).  

 

 

Figure 4.8: a) SEM image of the nanocavity region corresponding to the Raman signal in (b). The red bordered rectangle 

marks the nanogap region contributing to the hybridized signal, while the blue bordered circular area represents the focal 

spot; scale bar 200 nm. b) Raman spectra collected in the nanocavity region of (a) (solid red line) and just outside the 

nanocavity on the silicon substrate (green dashed line). 

 

The comparison between the two curves in Figure 4.8b suggests that the Raman signature of the 

hybridized phonon resonance within the cavity is enhanced by about 2 orders of magnitude, which is 

consistent with what recently observed in the case of molecular bonds under strong vibrational 

coupling conditions
6–8

. In this respect, we considered the measured Raman signal 𝑅𝑀𝐸𝐴𝑆(𝜈) in a 
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nanocavity region as the weighted average of the Raman response inside the nanocavity 𝑅𝐼𝑁(𝜈) and the 

one outside the nanocavity 𝑅𝑂𝑈𝑇(𝜈), according to the following equation: 

 
𝑅𝑀𝐸𝐴𝑆(𝜈) =

𝐵 − 𝐴

𝐵
𝑅𝑂𝑈𝑇(𝜈) +

𝐴

𝐵
𝑅𝐼𝑁(𝜈) (60) 

 

where 𝐴 = 0.006 μm
2
 is the area of a nanocavity and 𝐵 = 1.39 μm

2
 is the spot size of the Raman 

excitation laser on the sample. Using Eq. (60), we could then estimate the Raman signal enhancement 

of the hybridized Raman peaks 𝐾𝜈±
 as:  

 
𝐾𝜈±

=
𝑅𝐼𝑁(𝜈±)

𝑅𝑂𝑈𝑇(𝜈𝐹𝑅)
 (61) 

 

Calculations performed on the spectra in Figure 4.8b yield a signal enhancement in the range 100-180 

for both the hybridized peaks, confirming our expectations.  

 

Figure 4.9a shows some examples of measurements taken in different positions over the sample surface 

and provides further information regarding the nanoscale response of the investigated plasmon-phonon 

strong coupling (in the case of a NC monolayer on L = 5.75 μm antennas), confirming that the 

hybridization phenomenon only occurs within the nanocavity regions (red curve). As a matter of fact, 

for acquisitions far from the nanocavities, either along the nanoantennas (black curves), at the 

extremity of a nanoantenna chain (green curve) or away from the metal over the silicon substrate (blue 

curve), the Raman spectrum of the NCs results not to be affected by the plasmonic structures. The same 

behaviour is also well reproduced for nanoantennas with varying length and subsequent degree of 

coupling, in analogy with what was done for the THz transmission measurements. As it can be seen in 

Figure 4.9b, the Raman spectrum acquired in the nanocavity region is modified only when L is tuned to 

approximately match the plasmon resonance of the nanoantennas to the Frӧhlich phonon mode. 

Hybridization is mostly evident for L = 5.75 μm nanoantennas (red curve), whose plasmon resonance 

perfectly matches the phonon mode, while the polariton peaks gradually disappear as we move far 

away from the resonance matching conditions with the remaining part of the Raman spectrum being 

unchanged. 
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Figure 4.9: a) Raman spectra of the NCs taken: in different positions along the nanoantennas composing a nanocavity 

(black lines), at the end of a nanoantenna chain (green line), in the nanocavity region (red line), and just outside the cavity 

on the silicon substrate (blue line). The spectra have been vertically shifted for clarity. b) Raman spectra of the NCs taken in 

a nanocavity region for different values of L. 

 

Similarly to THz measurements, Raman characterization of increased number of layers confirmed the 

theoretically predicted power-law dependence on √𝑁. Examples of Raman spectra for three values of N 

are given in Figure 4.10a, which furthermore highlights the significant modification of the Raman 

response induced by additional NCs, followed by an increase in the measured Rabi splitting.  

In order to precisely evaluate the Rabi splitting from the Raman spectra we employed the following 

procedure. A spectrum of interest (collected in a nanocavity region) was first corrected through linear 

baseline removal, and then by the subtraction of a reference spectrum (acquired on a spot just outside 

the cavity region). In this way, the contributions deriving from the transverse optical (TO), longitudinal 

optical (LO) and uncoupled FR phonon modes, as well as from the gold antenna luminescence 

background, were removed from the spectral data. On the resulting signals (Figure 4.10b), a 

deconvolution in the region 200-300 cm
-1

 was operated, by fitting the peaks with two Lorentzian 
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curves, thus extracting the hybridized resonance positions. For every Raman signal of interest, we then 

measured the equivalent NC layers N (obtained by direct counting with SEM the NCs in each specific 

nanocavity) and we were therefore able to associate the observed Rabi splittings with their 

corresponding N values. The results of these operations are summarized in Figure 4.10c, featuring the 

dependence of the Rabi splitting on √𝑁. Here, the theoretical predictions, i.e. the three-coupled 

oscillators model and the numerical simulations extracted from the fitted model (2D maps in Figure 4.4 

and 4.5), are in very good agreement with both the THz extinction measurements and the Raman 

points, obtained with the procedure described above. By doing so, we verified the power-law 

dependence already demonstrated in previous works
9,10

, thus providing further evidence of the strong 

coupling nature of our system. 

 

 

 

Figure 4.10: a) Raman spectra for L = 5.75 μm antennas and three different values of N. Solid lines: spectra taken in a 

nanocavity region; dashed lines: spectra taken just outside the respective cavity (using the same experimental parameters) 

on the silicon substrate. b) Examples of the fitting procedure described above for the Raman spectra reported in (a). c) Rabi 

splitting as a function of √𝑁, extracted from: the three-coupled-oscillator model (black line), numerical simulations (red 

bordered squares), THz extinction (green crosses) and Raman measurements (purple circles). For each THz extinction data 

point, N is evaluated averaging the NC number for several tens of nanocavities. For each Raman data point, instead, N is 

evaluated considering the number of NCs contained inside the specific nanocavity under measurement. 

 

One limitation of the Raman measurements shown here is represented by the low signal-to-noise ratio. 

This issue is, however, unavoidable due to both physical and geometrical constraints that are intrinsic 

properties of the Raman signal. Indeed, the Raman spectral signature of the hybridized Frӧhlich 
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resonance has its origin in an extremely low number of nanocrystals contributing to the hybridization, 

since the area covered by one nanocavity is 200 time smaller than the focal spot of the exciting laser. 

Although the noise level is sometimes high, especially in the case of the NC monolayer, the results 

obtained are remarkable. We have to bear in mind that the Rabi splitting measured in Raman 

experiments has its origin in the strong coupling of few tens of NCs with the THz vacuum field alone, 

i.e. no THz photons are injected into the system. Both the NCs and the nanoantennas are non-

resonantly coupled to the 633 nm laser employed, so we do not expect any effect like Rabi splitting 

variations (for changing excitation parameters) or plasmonic enhancement of the signal, differently 

from conventional Surface Enhanced Raman Scattering experiments
11

. 

 

 

Figure 4.11: Raman spectra acquired at different laser power levels on a single nanocavity featuring a number of NC layers 

N ~ 1.5. 

 

In order to corroborate our expectations, we performed additional Raman measurements featuring 

different laser illumination power on a hybridized plasmonic nanocavity (see Figure 4.11). The 

maximum laser power was fixed at 1.7 mW (corresponding to 100%) on the sample surface to avoid 

possible damage to the nanocrystals. Apart from differences in the noise level, the spectral position of 
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the two hybridized peaks (indicated by vertical dashed lines) did not show any power dependence, and 

for power levels below 85% they could not be distinguished anymore in the Raman spectra. 

Finally, we investigated whether the Raman signal is governed by the scattering of polarized modes of 

either the plasmonic nanoantennas or the CdS nanocrystals. To this purpose, Raman measurements 

were acquired to compare spectra where the polarization of the exciting visible laser was set either 

parallel (red curve in Figure 4.12a) or perpendicular (blue curve in Figure 4.12a) to the long axis of the 

antennas. In both cases no sign of SERS enhancement, that could be ascribed to particular resonances 

of the system, was retrieved. Furthermore, no significant differences in the hybridized peak positions 

and amplitudes were found, confirming that the phonon hybridization observed in Raman 

measurements does not depend on the polarization properties of the exciting visible laser. 

 

 

Figure 4.12: a) Raman spectra collected in the same nanocavity (covered by a CdS monolayer) with the polarization of the 

exciting laser source set parallel (red line) and perpendicular (blue line) to the long axis of the antennas. A spectrum 

collected just outside the gap region (black line) is also shown as reference. b) - c) 

 

In addition to these measurements, we also studied the polarization properties of the scattered signal. In 

order to do this, we positioned an output polarizer (analyzer) in the path of the scattered light collected 

from the sample, just after the Rayleigh filter (see Figure 4.7 for the setup). We then acquired Raman 
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spectra of a single hybridized nanocavity keeping fixed the input light polarization (parallel or 

perpendicular to the long axis of the antennas) and rotating the analyzer in the output path. As can be 

seen in Figure 4.12b-c, by increasing the angle formed by the main axis of the output analyzer relative 

to the one of the input polarizer (for the two cases) a progressive reduction of the Raman intensity was 

observed for both the main LO peak and the hybridized FR peaks, but no variations in peak position 

and relative amplitudes were noticed. All these peaks eventually disappeared when the main axis of the 

output analyzer was set perpendicular to the input polarization state. These results thus seem to 

evidence, at least within our experimental configuration, a similar phonon symmetry between the 

hybridized Frӧhlich response and the LO mode of the NCs, both for the input and the output light 

polarization. 
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Chapter 5 

THz nanoslits: towards the ultra-strong coupling regime 
 

When the coupling strength of the interaction becomes comparable to the frequency of the involved 

oscillators, the system enters a new quantum electrodynamics regime, the so-called ultra-strong 

coupling regime. The perturbation of the coupled system is so strong that even the energies of the other 

states of the system are considerably modified. This is the case of the ground state energy of the 

system, which has been predicted to shift
1,2

 and has also been observed experimentally
3,4

. Moreover, 

the system is no longer in the Markovian regime since ћ𝛺𝑉𝑅 ≫ 𝑘𝐵𝑇 and, as a consequence, the 

lifetimes of the hybrid polaritonic states cannot be predicted from the lifetimes of the uncoupled 

constituents, i.e. in our specific case the lifetime of the plasmon and the excited state of the CdS 

nanocrystals. 

From a theoretical point of view, in this regime the rotating wave approximation, that we have 

exploited in Chapter 1 to retrieve the eigenenergies and eigenstates of the coupled system, is not valid 

anymore and one should consider additional terms in the overall Hamiltonian. Baumann et al.
5
 

employed a Dicke Hamiltonian to describe the quantum phase transition in a system formed by a Bose-

Einstein condensate ultra-strongly coupled to an optical cavity mode. However, many aspects of the 

physics behind still remain unexplored and further studies are needed to unveil the quantum nature of 

these phenomena.  

In parallel, several experimental studies have observed Rabi splittings reaching a significant fraction of 

the involved transition energies in the case of molecules coupled to a cavity light field
6,7

, measuring 

coupling strength corresponding to 73% of the matter excitation energy, the highest ever reported for a 

light-matter coupled system at room temperature. A recent work
8
, involving the coupling of SPPs and 

molecular excitons, observed normal mode splittings approaching the magnitude of the field frequency; 

similar results were obtained in the THz spectral range by Todorov et al.
9
 using electromagnetic 

resonators coupled to an electronic transition of a semiconductor quantum well. 

The high Rabi splitting values obtained in these works were achieved following two different routes: 

either using a molecular transition with high absorption cross-section or transition dipole moment (μ), 

which efficiently couples to the electromagnetic field, or by employing cavities with very small mode 

volumes (V), which feature high electromagnetic field enhancement and squeezing. As a matter of fact, 
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in the absence of dissipation, the Rabi splitting energy between the two new hybrid light-matter states 

is given by: 

 

ћ𝛺𝑅 = 2𝐸𝑣𝑎𝑐  𝜇√𝑛𝑝ℎ + 1 = 2𝜇√
ћ𝜔

2𝜀0𝑉
√𝑛𝑝ℎ + 1 (62) 

 

As already anticipated in Chapter 1, even in the absence of photons, there remains a finite value for the 

Rabi splitting, i.e. the vacuum Rabi splitting ћ𝛺𝑉𝑅, due to interaction with the vacuum field. This 

energy splitting is indeed proportional to the square root of the molecular concentration in the cavity.  

 

In further developments of the work presented in Chapter 4, we exploited all these advantages to obtain 

Rabi splitting energies exceeding 24% of the investigated matter resonance. Vibrational ultra-strong 

coupling was achieved between the plasmon mode of THz plasmonic nanoslits and the Frӧhlich 

phonon mode of the synthesized nanocrystals. The THz characterization of the coupled system optical 

response confirmed our expectations and future Raman measurements will provide a clearer picture of 

the quantum nature of such hybrid nanosystems. 

 

 

5.1 THz plasmonic nanoslits – NCs system 

 

In order to investigate plasmon-phonon ultra-strong coupling in the THz regime, we fabricated arrays 

of isolated plasmonic nanoslits (covering an area of 200 x 200 μm
2
), which differently from their 

antenna counterpart are not coupled via narrow gaps to their neighbours. A similar design was recently 

employed by Keller et al.
10

 to obtain ultra-strong coupling between hybrid dipole antenna split-ring 

resonator cavities and less than 100 electrons of a 2D gas. 

As for the nanoantennas, the fabrication procedure was carried out in a Cleanroom environment. A 500 

μm thick, high resistivity (> 10 kΩcm) (100)-oriented silicon chip was employed as sample substrate. 

After cleaning in an ultrasonic bath of acetone and isopropyl alcohol, electron beam evaporation in a 

high vacuum chamber (base pressure 10
-7

 mbar) was exploited to produce a 5-nm adhesion layer of 

chromium and a 55-nm Au film, with a 0.3 Å/s deposition rate. A 160-nm thick poly(methyl 

methacrylate) (PMMA) layer was spin-coated at 1800 rpm on top of the metal layer, followed by a 7 

minutes annealing at 180 °C. Electrical contact between the sample holder and the sample top surface 
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is provided in this case by the Au metal film, so there is no need to evaporate a conductive layer on top 

of the PMMA. Electron beam direct-writing of the nanoantenna arrays was carried out using an ultra-

high resolution Raith 150-Two e-beam lithography and imaging system, setting the beam energy to 20 

keV and the exposure dose to 500 µC/cm
2
. After e-beam lithography, the exposed resist was developed 

in a solution of methyl isobutyl ketone (MIBK)/isopropanol (IPA) (1:3) for 30 s at 4 °C, followed by 

Au and Cr wet etch for 5 and 10 seconds respectively. This fabrication step allows to transfer the 

lithographic pattern into the underlying metal layer (see Figure 5.1). Drop casting of 20 μL solution (at 

10 μM concentration) on the fabricated nanoslits was used to deposit our NCs (either CdS or lead 

sulfide (PbS) for this design) in the patterned areas. Finally, the unexposed resist and NCs deposited 

over the PMMA surface were removed through a conventional lift-off process in hot acetone. The final 

result of this fabrication procedure is schematically depicted in Figure 5.1, showing a single nanoslit 

completely filled with NCs. 

 

 

Figure 5.1: Schematic of the nanoslit + NCs fabrication protocol. 

 

The fabricated two-dimensional arrays cover an area of 200 x 200 μm
2
 and are composed of isolated 

nanoslits (about 700 elements) with 5 μm separation in both their long and short axis directions, 

𝐺𝑥 = 𝐺𝑦 = 5 μm. The nanoslits are h = 55-nm deep, i.e. overall thickness of Cr and Au metal layers, 

and w = 250-nm wide. In the case of CdS NCs, array with different nanoslit length L, ranging from 5.5 

to 9.5 μm, were fabricated on the same silicon substrate in order to tune their plasmonic resonance in 

the THz frequency band around the Frӧhlich phonon mode of the nanocrystals (7.85 THz). In the case 
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of PbS NCs instead, nanoslits with length L in the range 9 to 12 μm were fabricated, tuning their 

resonance around the optical phonon frequency of the PbS nanocrystals located at about 6 THz.  

A Helios NanoLab 600i scanning electron microscope (SEM) has been used to acquire in tilted view 

the images reported in Figure 5.2 of L = 8μm nanoslits filled with CdS NCs (Figure 5.2a) and the detail 

of a single nanoslit (Figure 5.2b). Similar results were obtained with PbS nanocrystals. As it can be 

seen in the SEM images, the external profile of the nanoslit is irregular along the nanoslit surface. This 

is an issue of the fabrication protocol, which employs two wet etching steps (Au and Cr etch) that are 

intrinsically endowed with poor control over etching rate and uniformity over the sample surface. 

Alternative, but not straightforward, fabrication methods could be therefore applied in future 

developments of the present work. 

 

 
 

Figure 5.2: a) SEM tilted view of L = 8 μm nanoslits filled with CdS NCs; scale bar 2 μm. b) Detail of a nanoslit + CdS 

system; scale bar 250 nm. 

 

In order to estimate the best nanoslit configuration that matches the phonon resonance of the NCs, we 

have performed electromagnetic simulations using a commercial Finite Element Method-based 

software: COMSOL Multiphysics, Optics Module, which was also used for the THz nanoantennas. We 

considered nanoantenna with geometrical parameters corresponding to the fabricated values (see 

above) and the nanoantenna length was varied in the same range to tune the array resonance peak 

position. The structure parameters and illumination geometry was kept identical to the one used in 

Chapter 3, which well reproduces the transmission response of the experimentally measured arrays. 

Also in this case, the results of the simulations were normalized to the area of the illuminating THz 
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spot in the experimental measurements (diameter D ≈ 260 μm), which is bigger than the array 

dimensions (200 x 200 μm
2
). Figure 5.3 shows the relative transmittance of the nanoslit arrays with 

different slit length as a function of frequency. The array response calculated here demonstrate how the 

array resonance can be easily tuned across a wide frequency range around the CdS phonon resonance at 

7.85 THz (Figure 5.3a) and the PbS phonon resonance at about 6 THz (Figure 5.3b). The best tuned 

geometries are L = 7.5 μm and L = 9.5 μm nanoslits in the case of CdS and PbS, respectively. The 

calculated transmittance spectra are normalized to the transmission of a bare Si substrate. 

 

Figure 5.3: a) - b) Relative transmittance of nanoslit arrays with varying length L optimized to match the optical phonon 

resonance of CdS (a) and PbS (b) nanocrystals. 

 

5.2 THz characterization 

 

THz transmission measurements were performed on both kinds of nanoslit + NCs systems orienting the 

samples in such a way that the long axis of the slits was set parallel to the main polarization axis. 

Preliminary measurements were done on a PbS film (20 μL drop-casted on a bare silicon substrate) in 

order to characterize its spectral response. The optical Frӧhlich resonance of the PbS NCs was located 

at 5.8 THz (see Figure 5.4a), thus lying in the spectral range spanned by the plasmon resonance of the 

fabricated arrays. The transmission of the PbS film was then normalized to a reference spectrum 

acquired on a bare Si substrate. Comparison with the optical response of CdS NCs (Figure 4.3, Chapter 

4), highlights how the PbS NCs feature both a lower absorbance and a higher linewidth than their CdS 

counterpart, making these NCs not as a good candidate for strong hybridization with the 

electromagnetic vacuum field in the nanocavities. This is better exemplified by the coupled system 
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transmittance (see Figure 5.4b), normalized to the one of a bare Si substrate. No clear signature of the 

appearance of two hybrid polariton bands is in fact clearly visible, differently from the nanoantenna 

geometry, apart from a small kink in the spectra at about 6.1 THz. This would suggest that the spectral 

response of the NCs is only slightly perturbed by the presence of the plasmonic nanoslits, therefore 

hinting for the establishment of a weak coupling regime between the light part and the matter 

constituents.  

 

 

 

Figure 5.4: a) THz transmittance of PbS NCs deposited on a Si substrate. The NC optical response is normalized with 

respect to the transmission of a bare Si substrate. The vertical dashed line marks the position of the NC Frӧhlich resonance. 

b) Transmission response of nanoslit arrays filled with PbS NCs for different slit length L. The vertical dashed line marks 

the position of the NCs phonon. 

 

A different behaviour, instead, was observed with nanoslits filled with CdS NCs. The transmittance of 

the coupled system depicts two distinct polariton bands at each side of the unperturbed phonon 

resonance of the CdS NCs (see Figure 5.5a).  
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Figure 5.5: a) Transmission response of nanoslit arrays filled with PbS NCs for different slit length L. The vertical dashed 

line marks the position of the NCs phonon. b) Experimental 2D map of the polariton branches dispersion. The color bar 

corresponds to the extinction of the arrays. The blue (red) solid lines are the fitted trends of the high-energy (low-energy) 

polariton branch, while the corresponding open circles represent the measured values.  

 

The spectral position of the hybrid peaks in the transmission spectra allowed us to reconstruct the 

dispersion of the polariton bands (see Figure 5.5b), which shows the characteristic anti-crossing 

behaviour of strongly coupled oscillators, with the anti-crossing region located around the optical 

phonon resonance. As for the nanoantenna case, far from the Frӧhlich resonance the two systems 

behave as uncoupled oscillators, following the spectral response of either the bare antennas (pink 

diagonal dashed line) or the unperturbed Frӧhlich mode of the NCs (purple horizontal dashed line at 

7.85 THz). As we approach the resonance matching conditions, the two curves split giving rise to two 

separated hybrid bands. The Rabi splitting 𝛺𝑅, evaluated at the crossing point between the uncoupled 

plasmon resonance and the phonon mode of the NCs, reached a value of 1.86 THz, which corresponds 

to 24% of the matter resonance. The perturbation introduced in the coupled system thus represents a 

significant amount of the constituent transition energies, hinting for the establishment of an ultra-strong 

coupling regime.  

Even though the nanoslit geometry is endowed with a lower field enhancement and bigger mode 

volumes than its nanoantenna counterpart, we achieved higher Rabi splittings by increasing the 

concentration of hybridized nano-objects in our plasmonic nanocavities. In future developments, 

optimization of the plasmonic element is therefore highly demanded for the realization of nanoscale 

devices with engineered optical properties in the THz spectral range. 
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Research in the field of strong light-matter interactions is still at an embryonic stage, despite all the 

fascinating results obtained so far. The fundamental mechanisms are not completely understood and 

much more has to be done to clarify the basic principles and deepen our comprehension of the quantum 

nature of such phenomena. Within this context, we think that our contribution would be of primary 

importance, thanks to the collaboration with partners who are leading personalities in the burgeoning 

field of quantum optics (Prof. Luca Razzari and Prof. Roberto Morandotti at INRS-EMT, Canada). 

With our work, we propose an alternative approach to obtain ultra-strong coupling interactions by 

means of plasmonic nanocavities hybridized with a very small number of emitters. Results are 

encouraging and we believe that represent a launch pad for the realization of ultralow-power emitting 

sources at THz frequencies. 
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Conclusion and outlook 
 

In conclusion, we have shown that the dipole-active phonon resonance of semiconductor polar NCs can 

be hybridized by the strongly concentrated and enhanced THz vacuum field of a plasmonic 

nanoantenna cavity, whose resonance can be easily tuned to match the Frӧhlich mode of the NCs. 

Evidence of strong plasmon-phonon coupling can be observed in the far field, by direct THz 

illumination of an extended array of nanoantennas covered with the NCs. Reconstruction of the hybrid 

polariton bands features the characteristic anti-crossing behaviour of strongly coupled systems, 

confirming the numerical simulations performed with a three-coupled oscillator model. Rabi splittings 

of almost 1 THz, evaluated at the spectral position where the uncoupled plasmon resonance is aligned 

to the uncoupled phonon mode, have been experimentally measured with only a NC monolayer (80-90 

nanocrystals per cavity) deposited on the nanoantennas. Moreover, the predicted power law 

dependence of the Rabi splitting energy on the square root of the NC concentration has been both 

numerically and experimentally demonstrated. 

A micro-Raman characterization of the surface in “dark” conditions (i.e. with no THz illumination) 

shows that the hybridization occurs just in the nanocavity regions, confirming the nanoscale nature of 

the phonon resonance reshaping. Vacuum Rabi splittings exceeding 15% of the uncoupled phonon 

resonance frequency are found in Raman spectra of cavities containing less than 3 NC layers (about 

200 emitters), and are accompanied by a Raman signal enhancement > 100, confirming previous 

studies.  

Further studies employing a nanoslit geometry as plasmonic element have evidenced how the plasmon-

phonon interaction can be pushed forward towards the ultra-strong coupling regime. Despite the lower 

field enhancement and squeezing, THz nanoslits provide a viable tool to greatly increase the 

concentration of hybridized nanocrystals. THz transmission measurements have shown clear 

hybridization of the system constituents, with Rabi splittings reaching a significant fraction (25%) of 

the uncoupled matter resonance. However, many aspects of the physics behind this coupling regime 

still remain unexplored, both theoretically and experimentally, and further investigation is needed to 

unveil the quantum nature of such systems. We believe that a comprehensive micro-Raman 

characterization of the nanoslit-NC design will help further corroborate our findings and pave the way 

towards future applications in optoelectronic devices. On the one hand, our findings open novel venues 

for engineering the optical phonon response of nanomaterials, which can have a significant impact for 
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example in their light-emitting properties or in their electronic transport characteristics, due to the 

crucial role played by electron-phonon interactions in such systems. On the other hand, nanoscale 

plasmon-phonon strong coupling can represent an innovative platform for THz science, for the 

exploration of enhanced and localized nonlinear phenomena as well as for the generation of coherent 

radiation in this still hardly accessible region of the electromagnetic spectrum. Within this context, the 

proposed architectures are currently investigated in collaboration with the ultra-fast photonics and THz 

spectroscopy group at INRS-EMT, Canada (Prof. Luca Razzari and Prof. Roberto Morandotti) and 

exploiting the amazing facility of ELETTRA, a center of excellence in the field of synchrotron science. 

Attractive perspectives are expected towards the practical implementation of innovative quantum 

information systems and/or ultralow-power emitting sources approaching the so-called “thresholdless 

regime”, paving the way for the realization of new generation THz sources.  
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Appendix A 

Three-coupled oscillator model  
 

As shown in Chapter 4, due to the presence of the lattice mode at around 9.8 THz, our overall system in 

THz transmission measurements is better described by a three-coupled oscillator model
1,2

. The 

following matrix equation can be used to retrieve the characteristic frequency dispersion of the 

investigated interaction: 

 

(

𝜈𝑝𝑙 − 𝜈 𝑉𝑝𝑙−𝑝ℎ 𝑉𝑝𝑙−𝑙𝑎𝑡

𝑉𝑝𝑙−𝑝ℎ 𝜈𝑝ℎ − 𝜈 0

𝑉𝑝𝑙−𝑙𝑎𝑡 0 𝜈𝑙𝑎𝑡 − 𝜈
)(

𝛼
𝛽
𝛾
) = 0 (63) 

 

where 𝜈𝑝𝑙, 𝜈𝑝ℎ and 𝜈𝑙𝑎𝑡 are the frequencies of the non-interacting plasmon, phonon and lattice modes, 

respectively, while ν are the eigenfrequencies of the coupled system. 𝑉𝑝𝑙−𝑝ℎ (𝑉𝑝𝑙−𝑙𝑎𝑡) is the coupling 

constant between the plasmon and the phonon (lattice) modes. Finally, α, β and γ represents the 

coefficients of the basis functions of the bare plasmon, phonon and lattice modes, respectively. 

Diagonalizing this matrix, the dispersion of the hybrid eigenfrequencies can be readily evaluated.  

In order to compare the above model to our numerical and experimental results, the uncoupled plasmon 

resonance frequency needs to be estimated. The resonance wavelength 𝜆𝑅𝑒𝑠 of nanorod-shaped 

plasmonic nanoantennas typically obeys the following equation
3,4

: 

 

 𝜆𝑅𝑒𝑠 ≈ 2𝑛𝑒𝑓𝑓𝐿 (64) 

 

where 𝑛𝑒𝑓𝑓 is the effective refractive index of the nanorod surface mode. While this equation well 

describes the behaviour of isolated nanoantennas in the THz spectral range, an additional parameter S 

has to be added in the case of an array of interacting antennas: 

 

 𝜆𝑅𝑒𝑠 = 2𝑛𝑒𝑓𝑓𝐿 + 𝑆 (65) 
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to also take into account the expected red-shift of the resonance induced by the near-field coupling 

between the nanostructures
5
. In particular, by fitting the resonance wavelength dependence on the 

nanoantenna length for the case of bare nanoantenna arrays with the above equation (65) (far from the 

lattice mode), we then obtain the values 𝑛𝑒𝑓𝑓
0 = 2.375 and 𝑆 = 10.2 μm (see red circles and related fit 

in Figure A.1). The uncoupled plasmon resonance frequency in our system can be thus written as: 

 

 𝜈𝑝𝑙 =
𝑐

2𝑛𝑒𝑓𝑓𝐿 + 𝑆
 (66) 

 

with c being the speed of light in vacuum.  

 

Figure A.1: Resonance wavelength as a function of the antenna length for bare arrays. 

 

The above relation (66) has been used to fit the numerical and experimental polariton dispersion curves 

with the model expressed in Eq. (63). Figure A.2 shows the results of this numerical procedure for the 

case of a NC monolayer on the nanoantenna arrays. 
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Figure A.2: Polariton dispersion fit of the simulation results for a NC monolayer. 

 

From these fits we can also extract the quantities |𝛼2|, |𝛽2| and |𝛾2|, which can be used to estimate the 

relative contribution of the plasmon, phonon and lattice modes to the overall hybridized state. As can 

be seen from Figure A.3 below, at the Frӧhlich resonance frequency an essentially complete 

hybridization of the plasmon-phonon modes occurs (|𝛼2|, |𝛽2| ≈ 0.5), while the contribution of the 

lattice mode is negligible. 

 

 
 

Figure A.3: a) Relative coefficients for the low-energy polariton branch, in the case of a NC monolayer. b) Same as in (a), 

for the high-energy polariton branch. 

 

Table 1 (simulations) and Table 2 (experiments) below summarize all the parameters used in the fitting 

procedure and also include the root-mean-square error (RMSE) analysis for the two polariton branches: 
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𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑦𝑗 − 𝑦̂𝑗)

𝑚
𝑗=1  where 𝑦𝑗 are the analytical model estimates for the polariton branch 

positions and 𝑦̂𝑗 the m experimental or simulation points. In both simulations and experiments, and for 

the different number of NC layers, the following parameters were kept constant in the fitting procedure: 

𝜈𝑝ℎ = 7.85 THz, 𝜈𝑙𝑎𝑡 = 9.78 THz, 𝑆 = 10.2 μm, 𝑉𝑝𝑙−𝑙𝑎𝑡 = 0.18 THz. The plasmon-phonon coupling 

constant was considered to obey the relation
6
:  

 

 𝑉𝑝𝑙−𝑝ℎ = 𝑉𝑝𝑙−𝑝ℎ
1 √𝑁 (67) 

 

where 𝑉𝑝𝑙−𝑝ℎ
1  is the value of this coupling parameter for a NC monolayer and N is the number of layers 

considered. Interestingly, we found that for the best fit of both the experimental and numerical data, the 

effective refractive index needs to be slightly incremented with increasing NC layers, according to the 

empirical rule: 𝑛𝑒𝑓𝑓 = 𝛾𝑒𝑓𝑓𝑁 + 𝑛𝑒𝑓𝑓
0 , with 𝛾𝑒𝑓𝑓 = 0.025. This behaviour is consistent with the 

increase in the average permittivity around the nanoantennas induced by the presence of the NC layers. 

For both the experimental and simulation polariton traces, the RMSE values associated with the fitting 

curves are of the order of some tens of GHz, well below the Rabi splitting values (≥ 800 GHz) 

extracted from our THz response data in the case of 1 NC layer. 

 

 1 layer 1.5 layers 2 layers 2.5 layers 3 layers Units 

Vpl-ph 0.40 0.49 0.57 0.63 0.69 THz 

Vpl-lat 0.18 0.18 0.18 0.18 0.18 THz 

νph 7.85 7.85 7.85 7.85 7.85 THz 

νlat 9.78 9.78 9.78 9.78 9.78 THz 

neff 2.400 2.413 2.425 2.438 2.450 / 

S 10.2 10.2 10.2 10.2 10.2 µm 

RMSE () 0.025 0.025 0.019 0.020 0.024 THz 

RMSE () 0.016 0.009 0.004 0.009 0.018 THz 

 

Table 1: Fitted coefficients for the simulated polariton traces. 

 

 1 layer ~1.5 layers ~2 layers Units 

Vpl-ph 0.40 0.49 0.57 THz 

Vpl-lat 0.18 0.18 0.18 THz 

νph 7.85 7.85 7.85 THz 

νlat 9.78 9.78 9.78 THz 

neff 2.400 2.413 2.425 / 
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S 10.2 10.2 10.2 µm 

RMSE () 0.085 0.035 0.053 THz 

RMSE () 0.065 0.049 0.069 THz 
 

Table 2: Fitted coefficients for the experimental polariton traces. 
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