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Abstract

Modeling the flow over superhydrophobic and liquid-impregnated surfaces

by Edoardo ALINOVI

Superhydrophobic (SH) and liquid-impregnated surfaces (LIS) represent an interest-

ing technique for the possible reduction of drag in applications involving the flow

of liquids over solid surfaces, for a wide range of Reynolds number, from laminar

to turbulent conditions. Such coatings work by the interposition of a gas/oil layer

between the liquid and the solid wall, trapped by distributed microscopic roughness

elements present at the wall; over the gas layer the liquid can flow with negligible

friction. The present activity is focused on the numerical modeling of the slippage

over such coatings and on their drag reduction performance in the turbulent regime.

The problem is subdivided into two parts: a microscopic problem, accounting for

the flow in the proximity of the roughness elements and a macroscopic problem, ac-

counting for the turbulent flow over SHS/LIS, where the effect of the slippage at the

wall is modeled through a proper boundary condition. The near-wall, microscopic

problem, governed by the Stokes equation, is recast into an integral form and then

solved using a boundary element method. The aim of the microscopic calculations,

performed by varying the viscosity ratio between the fluids, is to obtain the values of

the slip lengths, used to quantify slippage. The slip length are then used in the defini-

tion of Navier boundary condition, applied at the walls of a turbulent channel flow at

moderate Reynolds number, solved by direct numerical simulations. The results are

in excellent agreement with a theoretical model available in the literature.
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1

Chapter 1

Introduction

Fluid flows over and around bodies are commonplace in Nature and in technical

applications. Probably, the most easy-to-understand phenomenon experienced by an

arbitrary object moving through a fluid is the generation of a force which plays against

its motion. The drag force is a mechanical force that usually is considered to carry

with it negative effects: it reduces the velocity of cars, airplanes, ships and increases

the fuel consumption together with the costs for the transportation of people and

goods. It is usual to decompose the drag force into two fundamental contributions,

at least in the incompressible limit: the pressure drag and the skin friction drag (see

figure 1.1).

Figure 1.1: Sketch of the two kinds of drag force.

The former is associated to the pressure difference which takes place between the

windward and the lee side of an object moving through a fluid. It is typical of bluff

bodies that create a large wake behind them. The latter is associate to the friction

between the fluid particles and the body in relative motion. It is always present, but

plays an important role in streamlined bodies, where the pressure drag is negligible.
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Even if the phenomenon of drag is intuitive, its physical formulation has been

provided only at the beginning of the 20th century. Until then, the potential theory

of the fluid motion, still in use today to estimate the lift forces, was unable to explain

the mechanism of drag generation, leading Jean-Baptiste D’Alembert to formulate his

famous paradox. The turning point towards the understanding of the drag force, was

the idea of boundary layer, shown in figure 1.2, suggested by Ludwig Prandtl in 1904.

He pointed out the existence of a very thin region near the body, where the velocity

varies quickly from the surface value to the free stream value. In the boundary layer,

the viscous forces are dominant and the friction exerted by the fluid in any point of

the body turns out be

τw = µ
∂u

∂n
, (1.1)

where µ is the dynamic viscosity of the fluid, u is flow velocity vector and n is the

normal defined over the surface of the object.

(a) (b)

Figure 1.2: Velocity boundary layer developing over a flat plate. (a) Schematic rep-
resentation identifying different regimes of motion in the boundary layer; (b) flow
visualization of a laminar flat plate boundary layer profile (Wortmann, F. X. 1977
AGARD Conf. Proc. no. 224, paper 12).

Despite the very small size of the boundary layer, the skin friction or viscous drag

is currently considered a major barrier to the further optimization of most aerody-

namic and hydrodynamic bodies. A large class of applications is substantially im-

pacted by pressure drag, but there is an equally large class of devices whose perfor-

mances are strongly affected by viscous drag. Among these, the sector of transport

offers the best examples. The development of a low friction surface technology is of

much interest for:

• high and low-speed aircraft (over 30% of skin-friction drag);

• tankers and other surface ships operating at low Froude number (50% skin-

friction drag);

• underwater bodies (70% or greater skin-friction drag);
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• pipelines for oil and gas transport (100% skin friction drag).

Looking beyond the pure aerodynamic/hydrodynamic performance, a viscous drag

reduction of 10% immediately translates into a lower fuel consumptions, which po-

tentially would produce savings for half a billion dollars per year to commercial trans-

port companies. A recent study by Buhaug et al. [2009] presents the possibility of

decreasing in a considerable manner the gas emissions generated by ships, if their

hulls were be coated with a low friction material.

1.1 Toward skin friction drag reduction

Many efforts have been devoted to the research and development of low friction

surfaces. The methods are basically subdivided into two families:

• active;

• passive.

The methods classified as active usually involves moving control surfaces, in

which the motion is feed-back controlled by sensors and actuators. For examples

electromagnetic tiles have been employed by Nosenchuck and Brown [1993] in or-

der to control the boundary layer of a turbulent flow. The working principle is based

on the effect exerted on a electrically conductive fluid by oscillating electric currents

and magnetic fields introduced through a mosaic of surface electrodes, which applies

spatially and temporally periodic body forces to the fluid reducing turbulence produc-

tion. This method is only applicable in fluids with much higher electrical conductiv-

ity than ordinary air. Another popular active method is the so called micro-blowing,

consisting in the upstream slot injection, or distributed injection through a porous

surface, of air bubbles. Even if this technique can effectively reduce skin friction, the

major drawback is the added complexity in the system design and the energy loss due

to the continuous air injection.

The passive techniques do not require any external action and for this reason they

are more attractive, since there is no need of a control loop, resulting in a simpler and

safer usage. A passive skin friction drag reduction approach requires either a modifi-

cation of the rheological properties of the fluid or a careful design of the surface. One

way to alter the rheological properties of a given fluid is to inject a secondary fluid

in the main stream, thus obtaining a mixture with exerts a lower friction. The drag-

reducing properties of certain surfactants are known since the work of Savins [1967].

Since then, a large number of studies, mostly experiments, have been conducted and

a review of the results obtained can be found in Shenoy [1976]. The surfactants

that reduce drag seem to be only those that form long chains of the relatively small

molecules called micelles. If a large shear is applied the chain breaks and the drag

reduction effect is lost. However, this polymer has the ability to recombine together

as soon as the shear stress decreases, thus restoring its properties. A drag reduction
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of up to 80% is found, but the working mechanism is not yet fully understood. Exper-

iments show profound changes in the turbulent eddies, both in the near wall region

and in the bulk flow, but clear indications on how to drive such changes, possibly by

other actuation means, are missing. The most evident drawback of this technique is

that it can be employed only with liquids in closed domains, such as pipelines; it is

not applicable in external flows common in aerodynamics and hydrodynamics.

Another popular passive method, which has received much attention in the last

decades, but with more modest achievements in term of drag reduction, is the tech-

nique of surface modification by riblets. The riblets are a pattern of small surface

protrusions aligned approximately in the flow direction, as shown in figure 1.3(a-d).

The study on riblets has begun in the early 70s at NASA Langley Research Center

[Walsh and Anders, 1989] and the first prototypes where produced by the 3M Com-

pany [Rawlings and Malone, 2014]. Their effective application outside the academic

world however had a mixed success. Szodruch [1991] reported a drag reduction up

to 2% for a complete Airbus 320 when the 70% of its surface was covered with riblets,

but the off design working condition in real applications together with the alteration

of the machined surface due to dust, ice and other external agents made difficult a

large scale employment of this technology. Conversely, riblets proved their drag re-

duction capabilities in sporting events, such as rowing or sailing competitions, where

the cost of maintenance is much less important than in commercial applications.

The physical mechanism behind the drag reduction induced by riblets is today

reasonably well understood and discussed in details in Walsh [1990] and in García-

Mayoral and Jiménez [2011]. In particular, the wall protrusions inhibits the lateral

turbulent motion, generated by the near-wall streamwise vortices and associated to

the velocity streaks in the viscous sublayer. The effectiveness of the riblets depends

on their dimension with respect to the viscous length scale; referring to figure 1.3(e),

the drag reduction, in terms of friction factor, presents an optimum minimum value

for the ridge-to-ridge spacing, b, in wall units usually around b+ ≈ 15, with a positive

effect surviving until b+ ≈ 25. If the spacing is larger than this threshold value,

riblets behave like surface roughness and the effect is lost, turning drag reduction

into a drag increase. The explanation of this fact was firstly given by Choi et al.

[1994] and schematically depicted in figure 1.4. If the streamwise vortices in the

near wall streaks are smaller than the riblets spacing, they are able to settle into the

grooves and to bring high velocity fluid close to the walls, thus increasing the friction.

Conversely, if the riblets are more closely spaced, the turbulent vortices are pushed

away from the wall and the high velocity fluid generated by the down-wash is forced

to cover a smaller area, thus diminishing the friction.
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Figure 1.3: (a)-(d) Different shapes of riblets; (e) typical drag reduction curve as
function of the ridge-to-ridge spacing in wall units for triangular riblets.

Figure 1.4: Schematic view of a wall vortex near riblets as reported by Choi et al.
[1994].
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1.2 Superhydrophobic and Liquid-impregnated coatings

A step forward in the design of low friction surfaces has been done by coupling

the roughness elements composing the surfaces with a gas, in order to create gaseous

pockets, over which a working liquid can flow with a sensible low friction. This is the

case of the superhydrophobic surfaces (SHS), which today are receiving a tremen-

dous attention. The research on SHS has been inspired by the remarkable slipping

properties of the lotus leaf [Barthlott and Neinhuis, 1997]. A surface is identified as

superhydrophobic on the basis of the contact angle α that a water droplet in station-

ary condition assumes with respect to the contact line, as shown in figure 1.5. In

particular, we have the following distinctions:

• hydrophilic: 0◦ < α < 90◦;

• hydrophobic: 90◦ < α < 150◦;

• superhydrophobic: α > 150◦.

The contact angle α depends uniquely on the physical characteristic of the three

materials involved: the gas, the liquid and the solid surfaces, which intersect at the

contact line. For our discussion, it is useful to introduce the interfacial energy, γAB,

representing the work per unit of area required to increase the surface area of sub-

stance A in contact with B. An high value of the surface energy at the interface

between a solid surface and a substance implies an affinity between the surface and

the other substance, with high chances to bond. The wettability of a solid by water

arises from a balance between adhesive (solid-water) and cohesive forces within the

liquid. For a perfectly smooth, planar and chemically homogeneous surfaces, Young

[1805] proposed a relation for the adhesion tension, At, which reads

At = γSG − γLS = γGL cosα, (1.2)

Figure 1.5: Static force balance at the triple point for a liquid (L) in contact with a
solid surface (S) and surrounded by a quiescent gas (G). The greek letter γ denotes
the inter-molecular forces between adjacent phases.
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where the subscripts G,L, S stand for the gas, the liquid and the solid, respectively.

Even if theoretically important, the expression (1.2) finds a difficult applicability since

the only quantity easy to know is γGL = γ (i.e. the surface tension).

Wenzel [1936] extended the work by Young with a comprehensive analysis of the

wetting properties of rough materials. Within his results, he demonstrated that a

rough surface increases the wetting angle, according to

cos(αw) = r cosα, (1.3)

where αw is the angle assumed on a rough surface and r is a parameter, determined

experimentally, which expresses the ratio of the actual surface of the interface to

its planar projection. Since r ≥ 1, it turns out that a rough surface increases the

hydrophobicity of a surface and this explains why most of the water repellent plants

present micro- or nano-structures on their leafs (see figure 1.6).

(a) (b)

Figure 1.6: A water droplet sitting on a lotus leaf (a) and the structures on the top of
the same leaf at the electron microscope (b).

If air is trapped within asperities, so that the solid-liquid contact area is decreased,

ultra- or super-hydrophobicity can be attained, with the drop partially sitting on an

air cushion. This state, also known as Cassie-Baxter state [Cassie and Baxter, 1944],

is at the basis of the functioning of SHS. In static conditions, this occurs above a

critical pressure difference between the liquid and the gas, function of the roughness

scale, of surface tension, and of the contact angle. Furthermore, even for a liquid

pressure below critical, the transition to the Wenzel state can still take place, over

longer time scales, because of the solubility of gases in water, chemical reactions or

Marangoni effects. To maintain the gas layer trapped within the asperities is however

difficult and the transition to the fully wetted, Wenzel state is the main problem

related to SHS. The study of the aquatic plants suggests that improved robustness of

the gas layer could be obtained by using a hierarchical structures of the asperities at

the wall, which render the Cassie-Baxter state more energetically stable [Su et al.,

2010], [Giacomello et al., 2012].
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Despite its promising performances, the drawback encountered in using this tech-

nology is that the gaseous pockets lack robustness and they can easily collapse under

working conditions, thus imposing a severe limitation in practical applications, espe-

cially when large scale problems and long operating times are concerned. One way

to overcome this issue, is to substitute the gas trapped within the wall texture with

oils, creating the so called liquid-impregnated-surfaces (LIS). The mechanism under-

lying the LIS technology is essentially the same identified in the SHS: the relative slip

between the two fluid triggers a skin friction drag reduction. The usage of oil, instead

of the gas, increases the stability of the fluid-fluid interface, and, at the same time,

exhibits interesting properties in terms of biofouling [Epstein et al., 2012] and ice-

phobicity [Ozbay et al., 2015]. However, the skin-friction drag reduction capabilities

of LIS deteriorate if the oil viscosity is large compared with the viscosity of the other

working fluid. This point will be stressed and supported by numerical simulations

later on in this work.

There are several ways to artificially produce a wall pattern suitable for SHS and

LIS, but all of them starts from two fundamentals features:

• a low surface energy material;

• a surface roughness with appropriate dimensions.

(a) (b)

Figure 1.7: Man-made superhydrophobic surfaces [Maynes et al., 2011]. (a) Longi-
tudinal ridges; (b) pillars.

The materials often used to produce superhydrophobic coatings are polymers be-

cause of the excellent surface properties and their easy production [Shirtcliffe et al.,

2004]. The drawbacks is related to their softness which renders them vulnerable

to damage under working conditions; however, a simple way to produce a more re-

sistant layer is to combine the polymer with inorganic fillers. SHS and LIS can be

realized using microfabrication processes developed for the electronic industry, lead-

ing to regular arrays of microposts or microridges, as shown in figure 1.7. The high

level of technology of the fabrication process and thus the relevant costs however are
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still considered a major problem in the realization of such coatings for large scale

applications, leaving for now their usage mainly in the context of laboratory experi-

ments [Lee and Kim, 2009, Park et al., 2014]. A cheaper alternative was introduced

by Hsu and Sigmund [2010] who use a 20µm thick polycarbonate membrane filter

as mold. In their techniques the polymer substrate is pressed against the mold, suc-

cessively peeled off, leaving a ready-to-use hydrophobic surface. Another alternative

is constituted by spray deposition, which allows to rapidly coat large areas on a vari-

ety of substrates while enhancing the stability of the Cassie-Baxter state [Srinivasan

et al., 2011]. The most promising technique in term of industrial application is how-

ever obtained with the direct abrasion of the surface as proposed by Nilsson et al.

[2010] who have used various grits of sandpaper to treat smooth surfaces made of

Teflon. The abrasion was performed along the flow direction, obtaining good results

in term of drag reduction.

1.3 Previous works

Many studies on SHS/LIS have been undertaken in the last decade because their

potentialities are of much interest in the field of modern micro-fluidics, towards the

development of lab-on-a-chip devices for biochemical and medical purposes [Stone

et al., 2004]. Also large scale engineering devices would take advantage of low fric-

tion surfaces, especially the maritime industry could enhance the efficiency and lower

the emissions by coating the ships’ hulls with this particular technology. In this section

a brief review on the principal works on the topic are reported. From the experimen-

tal side, Ou et al. [2004], Ou and Rothstein [2005] were the first to demonstrate the

drag reduction capabilities of SHS. They focused attention on microchannels with dif-

ferent heights, patterned by silicon micro-posts or micro-ridges at a wall, reporting a

drag reduction of up to 40% in laminar conditions. Similar drag reduction was found

by Choi and Kim [2006] using a nanograted texture. Appreciable drag reduction in

turbulent flows was observed by Ou and Rothstein [2009], who studied a rectangular

channel with the walls coated by PDMS micro-ridges of different span and spacing.

The experiment performed in the range 2000 < Re < 10000 highlighted a skin fric-

tion drag reduction up to 50% for a large value of the slip length of approximately

80µm.

The main works on LIS have been published in more recent years. As already

pointed out, on the one hand the lubricant layer is more stable but, on the other

hand the skin-friction drag reduction capabilities deteriorates if the oil viscosity is

large compared with the viscosity of the working fluid. This behaviour was recently

observed by Solomon et al. [2014], who conducted experiments with a cone and

plate rheometer. They achieved a drag reduction of 16% when the impregnating

fluid was two orders of magnitude less viscous than the working fluid, but little to

no drag reduction with more viscous oils (with oil/fluid viscosity ratio greater than

30) . Analogue conclusions and similar drag reductions, but for a turbulent flow in a
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Taylor-Couette configuration at 6000 < Re < 9000, have been drawn by Rosenberg

et al. [2016], who experimented a drag reduction of few percent for a viscosity ratio

of 30, with even a drag increase for Reynolds numbers grater that 6000.

Besides the experiments, theoretical works to model slip at the walls are available.

Philip [1972] was the first to study the flow past an idealized superhydrophobic flat

surface, composed by alternating stripes with no-slip/no-shear boundary conditions,

both aligned and perpendicular to the flow direction, by using conformal mapping.

More recently, Lauga and Stone [2003] solved analytically the Stokes flow through

circular channels with the same assumptions on the wall boundary conditions made

by Philip. The key parameter to quantify the slippage generated by SHS or LIS is

related the idea of protrusion height, or slip length, defined as the fictional distance

below the surface at which the velocity field would extrapolate to zero. Mathemati-

cally speaking, the slip length concept allows to model the slip at rigid wall with the

help of the Navier boundary condition [Navier, 1823]

u = h
Ä∂u
∂n

ä
, h = diag(h||, h⊥) (1.4)

where n is the wall-normal coordinate, u is the vector of velocity field components

in the in-plane directions and h is the slip tensor, which depends on the wall texture,

while the condition for the wall normal velocity is simply v = 0. The condition (1.4)

gives a relation between the slip velocity and the wall shear stress and is common

way to model the experimental evidence of slippage over SHS and LIS. Later on, the

effect of interface curvature on the slip length was studied for a flow aligned or per-

pendicular to periodic arrays of circular protrusions. The solution is analytic, given

in terms of power expansions of the protrusion angle which quantifies how much the

interface is depressing into or protruding out of the wall cavities, but only for small

extension of the slip region. In particular, Davis and Lauga [2009] demonstrated

that the perpendicular slip length presents a maximum for a slightly protruding bub-

ble. Despite the theoretical limit of dilute system, their result is in good agreement

with numerical simulations by Hyväluoma and Harting [2008] and Sbragaglia and

Prosperetti [2007]. The longitudinal flow problem was solved in a similar fashion

by Crowdy [2010], who found an increase of the slip length as the protrusion of the

interface out of the wall becomes larger. His results is however slightly more sensitive

to the span of the slip region, as shown by Teo and Khoo [2010], who analyzed the

same problem using the finite elements method. The main assumption common in

these works is that perfect slip is applied on the interface, which is a good approxi-

mation only in case the fluid trapped into the wall cavities is much less viscous than

the working fluid (e.g. air-water) and the cavities deeply cave in the wall. The first

attempt to remove this restriction, is due to Ng and Wang [2011], who derived a

semi-analytical model for the longitudinal and transverse flow over a periodic array

of circular and spherical protrusions, allowing only partial slip on the interface. The

partial slip condition is rendered by using the relation (1.4), introducing an intrinsic
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slip length related to the interface. The solution is given in term of a series, where

unknown coefficients have to be found in dependence on the slip allowed. Few years

ago, with the same assumption on interface boundary condition, Crowdy [2015] ex-

tended the work of Ng and Wang [2011] by finding an explicit approximation for

the longitudinal slip length using a method based on spectral functions. Schönecker

and Hardt [2013] and Schönecker et al. [2014], considering a flat interface, found

a closed-form analytical expressions for the flow field and effective slip length of the

primary fluid explicitly containing the influence of the viscosities of the two fluids.

The results were compared with numerical simulations on the same problem, giving

a very good agreement.

The computational works related to quantify the drag reduction induced by SHS

or LIS is mainly based on direct numerical simulations of a classical turbulent channel

with various approximation on the boundary conditions at walls. The first work

was conducted by Min and Kim [2004] who modeled the slip at the wall using the

Navier boundary conditions. Their work highlighted the effect of the streamwise

and spanwise slip, pointing out that a slip in the transverse direction enhances the

turbulence, contributing to a drag increase. However, the slip lengths were arbitrarily

fixed, even if to reasonable values. Taking advantage of these results, Fukagata and

Kasagi [2006] proposed a theoretical model of friction drag reduction for arbitrary

values of the slip lengths. Martell et al. [2009] performed numerical simulations of

a turbulent flow over SHS using a variety of shear-free surface patters (longitudinal

stripes or square posts) applied only at the bottom wall. The same authors extended

their previous work up to Reτ = 590 [Martell et al., 2010]. In these cases the slip

length was deduced as a results of the simulations and drag reduction was measured.

Busse and Sandham [2012] extended the work of Min and Kim [2004] performing

several numerical simulation of a turbulent channel flow exploring the influence of

an anisotropic slip-length boundary condition. They also improved the analytical

model proposed Fukagata and Kasagi [2006], obtaing an excellent agreement with

their numerical simulations. Turk et al. [2014] gave an extensive analysis of the

turbulent statistics and the secondary flows for a similar case, but with both the

channel walls coated with longitudinal ridges. Seo et al. [2015] performed several

DNS at Reτ ≈ 197 and Reτ ≈ 395 using again posts or ridges at the wall where

the no-shear condition was applied to mimic the superhydrophobic effect. However,

they accounted also for the deformation of the interface together with the turbulent

flow, by solving the Young-Laplace equation after the pressure distribution at the wall

had been determined. Later on, the same authors [Seo et al., 2018] extended their

work proposing a threshold criterion for the failure of superhydrophobic surfaces

and boundary maps that identify stable and unstable zones in a parameter space

consisting of working parameter and design parameters including texture size and

material contact angle. The numerical simulations by Luchini [2015] and, later on

by Seo and Mani [2016], demonstrated that the complete no-slip/no-shear boundary

conditions give equivalent results in term of drag reduction to the Navier boundary
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conditions, provided that extension of the shear free region does not exceed 20 wall

units. This is a favorable results that allows to employ a homogeneous treatment of

the wall (i.e the Navier boundary conditions) without affecting the accuracy of the

results.

1.4 Aim of the present work

The present activity is focused on the numerical modeling of the slippage over

SHS/LIS coatings and on their drag reduction performance in the turbulent regime.

The problem is subdivided into three fundamentals parts:

• stability analysis of the flow over SHS/LIS;

• study of the microscopic flow in the proximity of the wall cavities filled with a

lubricant fluid;

• Analysis of the drag reduction properties of the SHS/LIS through direct numer-

ical simulations of the macroscopic problem.

In the first part the modal and non-modal stability analysis of a channel coated

with superhydrophobic walls is performed. The superhydrophobicity is rendered

through the Navier boundary condition and the calculations take into account sev-

eral salient geometric and physical parameters influencing the flow stability and the

energy growth of the disturbances.

In the second part, the near-wall microscopic problem, accounting for the flow

in the proximity of the roughness elements is considered. The flow is governed by

the Stokes equation, which is recast into an integral form and then solved using

a boundary element method. The aim of the microscopic calculations, performed

by varying the viscosity ratio between the fluids, is to obtain the values of the slip

lengths, used to quantify slippage.

In the last part, the macroscopic problem, the slip lengths are used in the defini-

tion of Navier boundary conditions and applied at the walls of a turbulent channel

flow at moderate Reynolds number, solved by direct numerical simulations.
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Chapter 2

Stability of the flow in a plane
microchannel with SH walls

In this chapter the modal and non-modal linear stability of the flow in a mi-

crochannel coated with either one or two SH walls is considered. The topography of

the bounding walls has the shape of elongated ridges with arbitrary alignment with

respect to the direction of the mean pressure gradient which drives the flow inside

the microchannel. The SH walls are modeled using the Navier slip condition [Philip,

1972, Lauga and Stone, 2003] through a slip tensor, which allow us to tune the level

of slippage by increasing or decreasing the values of the slip lengths. The employment

of such boundary condition represents, in an homogenized sense, the alternation of

no-slip and no-shear elongated regions which are found when micro-ridges cover the

walls, under the assumption that the gas in the cavities exerts no shear stress on the

liquid above it. Since the boundary condition is based on a linearization in the pa-

rameters h|| and h⊥, the results obtained are considered to be valid for values of slip

lengths small enough. Luchini [2015] and Seo and Mani [2016] conducted direct

numerical simulations of turbulence in a channel with two superhydrophobic walls,

by comparing slip-length boundary condition cases with simulations carried out on

walls with alternating no-slip and no-shear conditions (with the shear-free interface

of the same length as the no-slip portion above the ribs). He found that the con-

cept of a slip length can be employed as long as the periodicity of the longitudinal

micro-ridges remains below about 20 wall units.

This same hydrodynamic stability problem has been performed by Min and Kim

[2005], considering isotropic, superhydrophobic channel walls (characterized, in an

averaged sense, by the same scalar slip length, h), and studied the case of both ex-

ponentially growing two-dimensional modes and three-dimensional pseudo-modes

excited algebraically over short time intervals. Whereas two dimensional Tollmien-

Schlichting (TS) waves were stabilized by the use of a non-zero slip length, the effect
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of slip on the transient amplification of streak-like perturbations was found to be mi-

nor; Min and Kim performed also a few direct numerical simulations of transition to

turbulence initiated by two-dimensional TS waves in different configurations (in the

presence of only streamwise slip, only spanwise slip, or slip along both horizontal

directions) finding that in some cases transition was advanced (with respect to the

no-slip situation) and in others it was retarded. From the results it appears that it

is the presence of spanwise slip (which is, in all practical cases, unavoidable when

superhydrophobic surfaces are used) to favour the early triggering of transition.

Also Lauga and Cossu [2005] considered isotropic, superhydrophobic surfaces us-

ing a scalar slip length to model the wall. Their modal stability results demonstrated a

strong stabilizing effect for two-dimensional TS waves (particularly when both chan-

nel walls display slip), whereas only a minor influence was found on the maximum

transient energy growth of streamwise streaks.

Recently, Yu et al. [2016] have re-considered the temporal, modal stability prob-

lem for the flow in a channel with longitudinal superhydrophobic grooves on one

or both walls, without employing the concept of a slip length. They resolved the

two-dimensional problem for the base flow in the plane orthogonal to the mean flow

direction, and the two-dimensional problem for the disturbance field, assuming the

interface flat and pinned at the corners of the ribs. When both the spanwise peri-

odicity of the grooves and the shear-free fraction are sufficiently small, compared to

the channel thickness, the results of Yu et al.’s analysis reproduce those obtained by

employing a slip length. As the periodicity and the shear-free fraction are increased,

a new wall mode is found, apparently related to the presence of inflection points in

the mean, streamwise velocity profile; it is such a new mode which can lead the flow

to an early instability.

The main motivation of this chapter is to understand under which conditions and

parameters the most stabilizing or destabilizing effects are obtained. The results ob-

tained give indications on transition delay or enhancement from laminar to turbulent

flow and consequently on the possibility of drag reduction.

2.1 Problem formulation

The effect of superhydrophobic (SH) surfaces on the instability onset, and conse-

quently the initial stages of laminar-turbulent transition, is addressed in the frame-

work of plane micro-channel where the Reynolds number is typically small. We as-

sume that the channel has thickness 2h? and use h? to normalize distances, and the

bulk speed Ū? is employed to scale the velocity. Superscript ? denotes dimensional

quantities.
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The SH riblet-like wall considered here forms an anisotropic texture (figure 2.1) for

which a slip tensor h in the plane of the walls (x, z) can be defined [Bazant and Vino-

gradova, 2008, Belyaev and Vinogradova, 2010, Asmolov and Vinogradova, 2012]

as

Λ = Q

[
h‖ 0

0 h⊥

]
QT , with Q =

[
cos θ − sin θ

sin θ cos θ

]
, (2.1)

b

Figure 2.1: Sketch of the wall pattern with definition of axes, angle θ and ridges
periodicity b. The gas-liquid interface is represented as a curved surface in light blue
color for illustrative purposes; the way in which the Navier slip lengths are modified
by the curvature of the interface has been addressed by Teo and Khoo [2010]

where h‖ and h⊥ are the eigenvalues of the slip tensor Λ for θ = 0◦ and 90◦, and

the transformation (2.1) represents a rotation of the tensor by an angle θ. For θ = 0◦

the ridges are aligned with x, and for θ = 90◦ they are aligned with z. In the special

case of isotropic SH it is h‖ = h⊥; for the case of microridges aligned along the mean

pressure gradient [Philip, 1972, Lauga and Stone, 2003, Asmolov and Vinogradova,

2012] we have h‖ = 2h⊥. This latter result will be used from now on, and the results

will be expressed as a function only of h‖.

By denoting with u, v and w the streamwise, wall-normal and spanwise velocity

components, respectively, the dimensionless boundary conditions for the horizontal

velocity components at the two walls in y = ±1 read[
u(x,−1, z)

w(x,−1, z)

]
= Λ

∂

∂y

[
u(x,−1, z)

w(x,−1, z)

]
, (2.2)

[
u(x, 1, z)

w(x, 1, z)

]
= −Λ

∂

∂y

[
u(x, 1, z)

w(x, 1, z)

]
, (2.3)
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in the case of both walls being textured, plus vanishing conditions for the vertical ve-

locity component v at the two walls. If one of the two walls is not superhydrophobic,

the condition there is simply u = 0.

2.1.1 Base flow and linear stability equations

The velocity and pressure are decomposed into a steady base flow and an un-

steady disturbance according to

u(x, y, z, t) = U(x, y, z) + εu′(x, y, z, t), (2.4)

p(x, y, z, t) = P (x, y, z) + εp′(x, y, z, t), (2.5)

with ε � 1. The governing equations for plane, incompressible and steady channel

flow read

dP

dx
=

1

Re

d2U

dy2
, (2.6)

where the Reynolds number is defined as Re = Ū? h?/ν?. When the boundary

conditions (2.2–2.3) are used, the analytical solution of the base flow, in the case of

two superhydrophobic walls, reads

U(y) = −3
y2 − 1− h‖(1 + cos2 θ)

2 + 3h‖(1 + cos2 θ)
, W (y) = 3

h‖ sin θ cos θ

2 + 3h‖(1 + cos2 θ)
. (2.7)

When θ differs from 0◦ and 90◦, a small component of the base flow orthogonal to

the mean pressure gradient is created in the channel [Stone et al., 2004]. In the case

in which only the bottom wall is superhydrophobic the basic flow is:

U(y) = −3

4

(y2 − 1)(8 + 6h‖ + h‖
2) + 2h‖(y − 1)(2 + 2 cos2 θ + h‖)

6h‖ + 3h‖ cos2 θ + 4 + 2h‖
2 , (2.8)

W (y) = −3h‖
sin θ cos θ(y − 1)(4− h‖ cos2 θ + 2h‖)

[4 + h‖(1 + sin2 θ)](6h‖ + 3h‖ cos2 θ + 4 + 2h‖
2)
, (2.9)

and this flow presents a streamwise component of the vorticity which is a maximized

by θ = ±45◦ when h‖ is smaller than about 0.1 (above this value of h‖ the absolute

value of the inclination angle of the grooves which displays the largest vorticity in-

creases mildly). Examples of the base flow for h‖ = 0.155, in the case of one and two

superhydrophobic walls, are displayed in figure 2.2 for two values of θ.
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Figure 2.2: Streamwise U and spanwise W velocity components of the base flow
when h‖ = 0.155 for the cases θ = 0◦ (dashed) and θ = 45◦ (solid). Left: one
superhydrophobic wall. Right: two superhydrophobic walls. The symbols show the
experimental micro-PIV data of Ou and Rothstein [2005] for the case θ = 0◦; the filled
circles show measurements above the ribs, whereas the empty symbols are taken
above the gas-water interface.

The linear stability equations are obtained by introducing (2.4) into the Navier-

Stokes equations and collecting terms of order ε. In primitive variable form they

read:
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.10)

∂u′

∂t
+ U

∂u′

∂x
+ v′

dU

dy
+W

∂u′

∂z
= −∂p

′

∂x
+

1

Re
∇2u′, (2.11)

∂v′

∂t
+ U

∂v′

∂x
+W

∂v′

∂z
= −∂p

′

∂y
+

1

Re
∇2v′, (2.12)

∂w′

∂t
+ U

∂w′

∂x
+ v′

dW

dy
+W

∂w′

∂z
= −∂p

′

∂z
+

1

Re
∇2w′, (2.13)

with ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. The disturbance field (denoted by primes) is expressed

in terms of Fourier modes along the wall-parallel directions, i.e.

q′(x, y, z, t) = q̃(y, t) exp[i(αx+ β z)] + c.c., (2.14)

for the generic variable q′, where α and β are the streamwise and spanwise wavenum-

bers, respectively, and c.c. denotes complex conjugate.

The theory developed is applicable as long as the disturbance wavelength 2π/k,

with k =
√
α2 + β2, is sufficiently longer than the spatial periodicity b of the micro-

ridges.
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2.2 Numerical method

Using relation (2.14), the linearized momentum and continuity equations read



iαũ+
∂v

∂y
+ iβw̃ = 0

∂ũ

∂t
+ iαũU + ṽ

∂U

∂y
+ iβũW + iαp̃ =

1

Re

ñ
∂2ũ

∂y2
− (α2 + β2)ũ

ô
∂ṽ

∂t
+ iαṽU + iβṽW +

∂p̃

∂y
=

1

Re

ñ
∂2ṽ

∂y2
− (α2 + β2)ṽ

ô
∂w̃

∂t
+ iαw̃U + ṽ

∂W

∂y
+ iβw̃W + iβp̃ =

1

Re

ñ
∂2w̃

∂y2
− (α2 + β2)w̃

ô
.

(2.15)

In compact form, introducing the vector q̃ = (ũ, ṽ, w̃, p̃)T , we can recast system (2.15)

as

C
∂q̂

∂t
= Dq̃, (2.16)

with C and D diagonal matrices of size 4 × 4. For the classical no-slip wall, the

boundary conditions simply read

ũ = ṽ = w̃ = 0, (2.17)

while considering for example the bottom wall as superhydrophobic, we have

ũ− λ

2
[(1 + cos2 θ)

∂ũ

∂y
+ sin θ cos θ

∂w̃

∂y
] = 0, (2.18)

w̃ − λ

2
[(1 + sin2 θ)

∂w̃

∂y
+ sin θ cos θ

∂ũ

∂y
] = 0. (2.19)

The modal analysis is performed by assuming a temporal behaviour of the form

q̃(y, t) = q̂(y) exp(−i ω t), (2.20)

where ω is the complex angular frequency and ωi > 0 denotes unstable solutions.

Substituting the asymptotic temporal behaviour (2.20) into the linearized equations

(2.15) yields a generalized eigenvalue problem. In discrete form the resulting system

of equations can be written as

iωBq̂ = Aq̂, (2.21)

where q̂ = (û, v̂, ŵ, p̂); A and B are complex-valued 4n × 4n matrices and n is the

number of discrete points taken in the y-direction. The equations are discretized

on a staggered grid and the spatial derivatives are treated with second order finite

differences; a uniform grid is adopted along the y-direction and 300 discrete points

are sufficient to obtain converged eigenvalues, with errors with respect to reference

solutions lower than 0.1%. The solution for q̂ and ω is found using the inverse-

iteration iterative algorithm [Golub and Van Loan, 1989].
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The non-modal behaviour is studied by computing the maximum finite-time am-

plification; the initial disturbance velocity field, ũ0, is optimal when the gain

G(Re, α, β, T, h‖, θ) =
e(T )

e(0)
, (2.22)

is maximized, where

e(t) =
1

2

∫ 1

−1
(ũũ∗ + ṽṽ∗ + w̃w̃∗)dy,

and T is the target time of the optimization. This is conducted by introducing La-

grange multipliers enforcing the constraints given by the governing linear equations

and the boundary conditions. The corresponding adjoint equations are derived using

a discrete approach [Luchini and Bottaro, 2014]. We further define

GM (Re, h‖, θ) = max
∀α,β,T

G,

when G is maximized with respect to the wavenumbers (α, β) and the final time T .

The final time and spanwise wavenumber corresponding to GM are denoted TM and

βM , respectively. The discrete counterpart of system (2.16) is advanced in time using

a second order accurate in time scheme reading

Lqn+1 = f ,L =
3

2

B

∆t
+A,f =

B

∆t

ñ
2qn − 1

2
qn−1

ô
. (2.23)

The code used to compute the non-modal growth has been tested on several cases

found in the literature (using no-slip boundary conditions); in particular, the value

of the optimal gain GM = 2 × 10−4Re2 and the corresponding time at which it

is achieved, TM = 0.076Re, with α = 0 and β = 2.04, are recovered within less

than 0.1% [Schmid and Henningson, 2001]. Results are obtained imposing that con-

vergence is reached when the relative difference in gain between two consecutive

iterations is below 10−8.

2.3 A digression on Squire’s theorem and Squire modes

In a channel with no-slip walls, Squire’s theorem states that the instability of the

coupled system stems from the amplification of a two-dimensional Orr-Sommerfeld

mode [Schmid and Henningson, 2001]. This is proven by applying Squire’s transfor-

mation (k u2D = αû + βŵ; k Re2D = αRe; p2D/k = p̂/α; v2D = v̂; ω2D/k = ω/α)

to the linearized system. The result is that, if a three-dimensional mode is unstable,

a two-dimensional mode will be unstable at a lower value of the Reynolds number,

Re2D = αRe/k ≤ Re. Furthermore, it can be shown, always in the no-slip case,

that Squire modes (eigensolutions of the unforced Squire’s equation for the vertical

vorticity component) are always damped. In the present wall-slip case, however, the

statements above do not necessarily apply.
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By decomposing the velocity vector û = (û, v̂, ŵ) into components parallel and

perpendicular to the wavenumber vector, i.e.

u‖ =
(αû+ βŵ)

k
, u⊥ =

(βû− αŵ)

k
,

the governing equations satisfied by (u‖, v2D, p2D) are independent of u⊥:

iku‖ +
dv2D

dy
= 0, (2.24)

− iω2Du‖ + ikUu‖ +
dU

dy
v2D = −ikp2D +

1

Re2D
(
d2

dy2
− k2)u‖, (2.25)

− iω2Dv2D + ikUv2D = −dp2D

dy
+

1

Re2D
(
d2

dy2
− k2)v2D. (2.26)

Whereas at first sight this appears to imply that Squire’s theorem is satisfied, it is not

the case, since (i) the base flow of this new two-dimensional problem is different from

U (it is U = U + β
αW ) and (ii) the boundary conditions for the parallel component of

the velocity do not decouple, i.e. at y = ±1 the boundary conditions are expressed in

terms of both u‖ and u⊥. The decoupling of the problem into two separate problems

(a homogeneous problem for (u‖, v2D, p2D) and a second problem for u⊥, forced by

v2D) is possible only in the case of isotropic SH walls (i.e. λ‖ = λ⊥ and W = 0), and

it is only in this case that Squire’s theorem holds.

Furthermore, the fact that Squire modes are not necessarily damped can be seen

by considering the equation for the velocity component perpendicular to the wavevec-

tor, i.e.ñ
−iω + iαU + iβW − 1

Re

Ç
d2

dy2
− k2

åô
u⊥ =

Å
β
dU

dy
− αdW

dy

ã
v2D

k
, (2.27)

known as Squire’s equation. By multiplying the unforced equation (2.27) by u∗⊥, with

the ∗ superscript denoting complex conjugate, and integrating in y across the fluid

domain, we find

ω

∫ 1

−1
u∗⊥u⊥ dy =

∫ 1

−1

ñ
(αU + βW )u∗⊥u⊥ +

i

Re
u∗⊥(

d2

dy2
− k2)u⊥

ô
dy. (2.28)

Integrating by parts once and taking the imaginary part (subscript i denotes imagi-

nary part, subscript r denotes real part) we are left with

ωi

∫ 1

−1
|u⊥|2 dy = − 1

Re

∫ 1

−1

Ç∣∣∣∣du⊥dy ∣∣∣∣2 + k2|u⊥|2
å

dy +
A

Re
, (2.29)
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where

A =
1

k2

ï
α2
Å
ŵr
dŵi
dy
− ŵi

dŵr
dy

ã
+ β2

Å
ûr
dûi
dy
− ûi

dûr
dy

ã
+

+ αβ

Å
ûi
dŵr
dy

+ ŵi
dûr
dy
− ûr

dŵi
dy
− ŵr

dûi
dy

ãò1
−1

. (2.30)

There is no evident reason why A, which contains boundary terms arising from in-

tegration by parts, should be negative (or positive and small, so as not to render

positive the right-hand-side of equation (2.29); thus, Squire modes (characterized by

v̂ ≡ 0 throughout y) can, in principle, be amplified (since ωi in equation (2.29) is not

necessarily negative).

In our experience, however, Squire modes remain damped (cf. Section III), both

those in the so-called A branch (also known as wall modes) and those in the P

branch (center modes). Conversely, recent results by Szumbarski [2007] and Moham-

madi et al. [2015] for the flow in channels with streamwise-invariant and spanwise-

periodic corrugations demonstrate that it is precisely the least stable Squire mode (in

the P branch) which can become unstable for a sufficiently large corrugation ampli-

tude. When the amplitude of the corrugation exceeds a value of O(10−2) an inviscid

mechanism – driven by the spanwise gradient of the main velocity component – forces

the destabilisation of the Squire center mode. These findings are related to those by

Yu et al. [2016], who focussed however on wall modes. We re-emphasize here that

the rough walls considered have spatial scales sufficiently small for an homogenisa-

tion procedure – leading to the Navier-slip concept – to be tenable.

2.4 Modal analysis

We initiate the discussion of the modal results by showing some representative

behaviors for the case of a single superhydrophobic wall. Figure 2.3 (top, left) il-

lustrates the variation of the growth rate ωi of the most unstable (or least stable)

Orr-Sommerfeld (OS) mode as a function of the slip length, for the parameters in-

dicated in the figure’s caption. The wave angle considered is Φ = tan−1β/α = 20◦;

this three-dimensional mode is initially damped at low h‖. However, past a threshold

value of the slip length, the mode becomes unstable with a maximum growth rate

which is achieved at h‖ = 0.25. The disturbance mode shapes in correspondence to

this point are plotted in the left frame, center row, of figure 2.3; they correspond to

classical OS eigenfunctions, asymmetric about y = 0 because of the slip condition

at y = −1. On the right side of figure 2.3 the behavior of a different mode is rep-

resented, at a much smaller value of the Reynolds number than the one considered

so far. This instability mode displays a comparable behavior of the growth rate as a

function of h‖ (an initial decrease of ωi, followed by an increase, with a maximum

amplification for h‖ = 0.15), but radically different eigenfunctions, displayed in the

center row, right frame.
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Figure 2.3: Growth rate ωi as a function of h‖ and absolute value of the distur-
bance velocity components and disturbance pressure, using one SH wall. (a)-(c)
Re = 10000, θ = 80◦, Φ = 20◦ and α = 0.65; (b)-(d) Re = 2000, θ = 45◦, Φ ≈ 90◦

and α ≈ 0. The values of h‖ in the middle row, where eigenfunctions are plotted, cor-
respond to the maximum growth rate for the respective case, i.e. 0.25 and 0.145. (e)
Contours, in the (y, z) plane, of the positive and negative streamwise disturbance ve-
locity component relative to the case in the right column over three spanwise periods
(β = 2.5). The vectors represent wall-normal and spanwise components.
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This mode, which is found to be dominating when the ridges are at an angle around

45o to the mean pressure gradient, takes the form of near-wall vortices, as exemplified

on the bottom frame of figure 2.3. Alternating high and low speed streaks, elongated

in the streamwise direction x (α = 10−3 in all the calculations for which we state

α ≈ 0, the case α exactly equal to zero being ill-posed numerically), are present

near the SH wall, with corresponding low amplitude secondary vortices. While it

is not a surprise that inclined ridges at the wall yield low frequency streamwise or

quasi-streamwise vortices, it is remarkable that this behavior is rendered so clearly by

the homogenized Navier-slip boundary condition. This new instability mode depends

crucially on the wall ridges’ amplitude (a threshold value h‖ = 0.038 is found with the

present settings) and orientation with respect to the mean pressure gradient (i.e. θ),

and displays a temporal amplification factor typically larger than the most unstable

three-dimensional OS wave (cf. the top two frames of the figure).

It is now instructive to examine the spectra, in terms of either the complex phase

speed c or the complex frequency ω, depending on the value of the streamwise

wavenumber, for the two cases discussed so far; such spectra are plotted in figure

2.4. The figure on the top is the classical spectrum which can be observed when α is

not close to zero, with the three branches, classically denoted as A, P and S branch;

this figure displays, in fact, all of the eigenvalues which exist when h‖ varies in the

range [0, 0.4]. It is interesting to observe that the degenerate Squire modes of branch

A (shown with red/grey bullets) split: such degenerate modes correspond, in the no-

slip case, to a symmetric/antisymmetric couple of û eigenfunctions. When slip occurs

on one wall, one of the two wall modes of the initially degenerate pair in branch A

moves rapidly away from the h‖ = 0 value, thus displaying a very strong sensitivity

(in fact, also OS wall modes are highly sensitive). Despite this, the Squire eigenval-

ues, both the wall modes and the center modes, never cross the real axis in all cases

considered here, and the mode which becomes unstable is the three-dimensional OS

mode with cr close to 0.2. The picture is radically different for the case of ridges at 45o

to the mean pressure gradient (bottom frame); as h‖ increases, the modes which are

initially degenerate, all damped and concentrated along a single vertical line with

ωr ≈ 0 (for h‖ = 0), separate and diverge from one another. The continuous line

in the bottom frame joins all the least stable modes found for h‖ < 0.038 and the

unstable modes which emerge when h‖ exceeds 0.038.

The results obtained so far indicate that a new wall-vortex mode, driven by the

presence of inclined wall ridges of sufficiently large amplitude, exists when Re is

rather small, to presumably dominate the early stages of the transition process.

A parametric study, with θ and h‖ varied systematically to infer trends is reported

in figures 2.5 and 2.6. The first of these figures show that the OS mode identifies

the critical conditions only when θ is close to 0o and 90o; for θ in a range around 45o

(range which is wider with the increase of h‖) the wall-vortex mode is the dominating

instability.
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Figure 2.4: (a) Spectra of the complex phase velocity c in the case of one SH wall
at Re = 10000, θ = 80◦, Φ = 20◦ and α = 0.65 and different values of h‖. The
filled circles correspond to h‖ = 0; in particular, the red/grey bullets show the Squire
modes on branch A. The open squares represent the spectrum for h‖ = 0.4 and the
dots show the trajectory of each eigenmode when h‖ varies from 0 to 0.4. (b) Spectra
of the complex frequency ω in the case of one SH wall when Re = 2000, θ = 45◦,
Φ ≈ 90◦ and α ≈ 0. The open squares, diamonds and filled circles show the spectra
for h‖ = 0, 0.1, 0.2, respectively. The continuous line traces the least stable mode for
h‖ varying in the range [0, 0.2].
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Figure 2.5: Critical Reynolds number Rec (left), the corresponding wave angle (mid-
dle) and streamwise wavenumber (right) as a function of θ for the case of h‖ = 0.07
(dashed line) and h‖ = 0.155 (solid line) for one SH wall.
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Figure 2.6: Critical Reynolds number Rec (left), the corresponding wave angle (mid-
dle) and corresponding streamwise wavenumber (right) as a function of h‖ for the
case of θ = 0◦ (solid line) and θ = 45◦ (dashed line) in the presence of one SH wall.
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The smallest critical Reynolds numbers, Rec, are found at 45o for both cases ex-

amined in figure 2.5 and are around a value of 1000, much smaller than the values

of the corresponding neutral OS modes. The critical wave angle is 90o in the range of

θ’s where this new instability dominates.

Figure 2.6 shows the behavior of the most unstable, two-dimensional OS mode

(solid lines) which leads the instability when θ = 0◦, and the switch between the

OS wave and the wall-vortex mode, when θ = 45◦, taking place at h‖ = 0.033. As

expected from previous studies, a stabilization effect (i.e. an increase of Rec) is found

for the OS mode as h‖ grows from zero (Rec = 3848 for h‖ = 0). However, when the

ridges are at an angle of 45o the OS mode is eventually overruled by the streamwise

wall-vortex mode, which becomes unstable at progressively smaller values of the

Reynolds number; for h‖ above around 0.15 an asymptotic value of the critical Re

close to 600 is reached for the onset of the wall-vortex mode.

The case of two superhydrophobic walls is considered next, focussing on lower

values of h‖ since it is known [Bottaro, 2014] that, when the walls are isotropic, a

comparable stabilizing effect is achieved in the case of two SH walls for a value of the

slip length ten times smaller than for a single SH wall. The results are summarized by

figures 2.7 and 2.8. The notable effect in this case is that the streamwise wall-vortex

mode does not emerge, with a competition which is now instaured between two-

dimensional and three-dimensional OS modes; figure 2.7 shows that the onset of an

exponential instability is delayed when h‖ is increased and that the two-dimensional

OS wave (with Φc = 0) dominates the transition process only for θ sufficiently large

(the switch-over value increasing with h‖). The stabilizing effect of h‖ is confirmed

by figure 2.8; for h‖ below 0.01 the stability characteristics are similar to those of

the no-slip case, and two-dimensional OS modes prevail (for any value of θ). In the

case of ridges inclined at an angle of 45o to the mean streamwise velocity component,

the mode which takes the lead past h‖ = 0.033 is quasi-streamwise (α is small and

decreasing).
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Figure 2.7: Critical Reynolds number Rec (left) and corresponding wave angle (mid-
dle) and streamwise wavenumber (right) as a function of θ for the case of h‖ = 0.02
(solid line) and h‖ = 0.05 (dashed line) in the presence of two SH walls.
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Figure 2.8: Critical Reynolds number Rec (left) and corresponding wave angle (mid-
dle) and streamwise wavenumber (right) as a function of h‖ for the case of θ = 0◦

(solid line) and θ = 45◦ (dashed line) in the presence of two SH walls.

The spectrum of eigenvalues for a representative case is presented in the left part

of figure 2.9 for h‖ = 0.05, θ = 45◦ and Re = 10000. The classical branches, A, P and

S, are present, with the unstable mode on the A branch. The shape of the unstable

mode is found in the right frame of figure 2.9, where the shape of a (distorted) three-

dimensional OS wave can be seen.
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Figure 2.9: Spectrum of temporal eigenvalues ω, with the unstable mode marked with
a red/grey bullet (left), and absolute value of the disturbance velocity components
(u, v, w) and disturbance pressure of the unstable mode (right), for Re = 10000,
h‖ = 0.05, θ = 45◦, α = 0.1, Φ = 86◦ (β = 1.4). Both walls are superhydrophobic.

2.5 Non-modal analysis

Figure 2.10 displays representative optimal perturbations (left column) for a given

target time, for both no-slip and SH cases, together with their output fields (right

column). The intermediate row (one slip wall at y = −1) is interesting since the

initial disturbance field is more intense near the bottom wall than near the top one,

and is oblique in the (y, z) plane.
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Figure 2.10: Vectors and contours, in the (y, z) plane, of the optimal disturbance
at t = 0 (left column) and the ensuing solution at the target time T = 105 (right
column), shown over two spanwise periods, for h‖ = 0 (top row), h‖ = 0.05 and
one SH wall (middle row), h‖ = 0.05 and two SH walls (bottom row). The shaded
contours represent the positive and negative streamwise disturbance velocity com-
ponent, whereas the vectors represent wall-normal and spanwise components. The
parameters are Re = 1333, β = 2, α ≈ 0, θ = 30◦.
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Figure 2.11: Gain GM (left), corresponding time TM (middle) and spanwise
wavenumber βM (right) as a function of h‖ in the case of θ = 0◦ (−), θ = 15◦

(∗), θ = 30◦ (−−), θ = 60◦ (◦), for Re = 1333 and two SH walls. In all cases the
corresponding optimal streamwise wavenumber is αM ≈ 0.
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Figure 2.12: Gain GM (left), corresponding time TM (middle) and spanwise
wavenumber βM (right) as a function of h‖ in the case of θ = 0◦ (−), θ = 15◦

(diamond), θ = 30◦ (∗), θ = 60◦ (delta). In all cases Re = 1333, αM ≈ 0 and only
one wall is superhydrophobic.
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Figure 2.13: Gain G (left) and corresponding optimal spanwise wavenumber β
(right) as a function of the final time T , for the case of h‖ = 0 (◦), h‖ = 0.03 (delta),
h‖ = 0.06 (diamond), θ = 30◦, α ≈ 0 and Re = 1333.

The maximum gain GM of a disturbance over a given time, maximized with re-

spect to the wavevector, depends parametrically on Re, h‖ and θ. The results shown

in figures 2.11 through 2.13 are computed for a fixed value of Re = 1333, which is

the same used by Min and Kim [2005] (they scaled Re with the centerline velocity

which is why they quote a value of 2000). This Reynolds number is subcritical from

a modal analysis point of view in the no-slip case.

In figure 2.11 GM is given as a function of h‖ for different values of θ, in the case

of two SH walls. For h‖ = 0 we recover the no-slip case and for h‖ > 0 there is a

monotonic decrease of the gain for all θ’s. In all cases the corresponding αM ≈ 0 and

the variation of both βM and TM with the slip length is weak. In the case of a single

SH wall the results show a different trend, as demonstrated in figure 2.12. Again,

the gain GM is presented as a function of h‖ for different values of θ. For values of

the ridge angle larger than zero the gain always increases as the Navier slip length is

increased. Moreover, for some values of the ridge angle θ, and above a threshold h‖,
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the flow becomes unstable from a modal point of view: in these cases no finite value

of TM is found, since the gain increases monotonically with the increase of the final

target time. An example is presented in figure 2.13 where the gain G is plotted as a

function of the final time T of the optimization and three different values of h‖ for the

case in which θ = 30◦. For h‖ = 0 and 0.03 the gain decreases for large enough values

of T ; conversely, when h‖ = 0.06 the gain increases, albeit slowly, with T , with the

spanwise wavenumber β reaching an asymptotic value equal to 1.78. The unbounded

increase of G with T is the indication of the occurrence of the streamwise wall-vortex

exponential instability.

2.6 Summarizing remarks

The modal behavior has yielded surprising results in two senses: on the one hand,

a new streamwise wall-vortex mode has been found in the case of a single SH wall,

driven by the wall boundary condition, and capable to reduce significantly the value

of the Reynolds number for the onset of the instability. This new mode is enhanced

by the increase of h‖ and is found to be most effective when the ridges are inclined by

an angle of about 45◦ to the mean pressure gradient. On the other hand, when two

walls are superhydrophobic, the instability is ruled by either a two-dimensional or a

three-dimensional Orr-Sommerfeld mode, as function of θ and h||, demonstrating a
posteriori the inapplicability of Squires theorem for this flow.

The non-modal analysis shows that while the presence of two SH walls yields a

slight reduction in energy growth over time, the case of only one SH wall produces

an increase of the disturbance kinetic energy for a large range of values of h|| when θ

is sufficiently greater than zero. It is further shown that, for a single SH wall, beyond

a threshold slip length, for values of the inclination angle of the micro-ridges around

45◦ the gain becomes unbounded with the final target time, a sign of the onset of the

wall-vortex instability.

2.6.1 When is the Navier slip condition applicable?

The boundary conditions (2.2) and (2.3) used throughout the present analysis

for both the base flow, and the perturbations are based on a linearization in the

parameters h|| and h⊥. Inevitably, when the values of h|| and h⊥ increase the excluded

higher order terms are no longer negligible. For applications of the presented method

it would be useful to have an estimate of the values of the slip lengths below which

we can have some confidence that the Navier slip condition applies.

The error committed by the imposed boundary condition can be evaluated in a

manner which has been suggested to us by Paolo Luchini: Let’s imagine that we

displace the lower wall a distance h in the vertical direction, from y = −1 to y =

−1 + h and thus to have slip at the position y = −1 + h. The linearized boundary



30 Chapter 2. Stability of the flow in a plane microchannel with SH walls
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Figure 2.14: (Left) Base flow when h = 0, 0.1, 0.2; the inset shows a close-up of the
lower boundary for three values of h||. (Right) Modulus of the difference between
the complex frequency ω, for different values of h||, and the value of ω when h|| = 0

. Here h|| = h⊥ (solid line), h|| = 2h⊥ (dashed line), Re = 10000 and α = β = 1√
2
. A

linear (blue) and a quadratic (red) functions have been superposed to the results of
the two cases to emphasize the behaviors when h|| is small (thin lines in the inset).

condition (here for the mean flow, but later in the same form also for the perturbation

velocity components) at order one is

U(−1 + h) = h
dU

dy
(−1 + h), (2.31)

found by assuming no-slip at y = −1. The analytical solution of the base flow is

simply

U(y) =
6

4− 3h2

ñ
1− y2 − 1

2
h2(1− y)

ô
(2.32)

where we have set θ = 0, for simplicity, which means that W = 0. The lin-

earization yields a small nonzero velocity at the lower boundary, U(−1) = −6h2

(4−3h2)
,

indicating that the error committed on the mean flow by using equation 2.31 is of

order h2. Examples of the base flow profiles are plotted in figure 2.14 (left frame) for

three values of h, demonstrating that small differences appear and increase with the

slip length.

The errors in the stability analysis can be evaluated by comparing the complex

eigenvalue ω evaluated for different slip lengths against the case for which h|| =

h⊥ = 0; a measure of such errors is
ω(h)− ω(h = 0)|

|ω0|
|, with ω0 the complex angular

frequency in equation 2.31 computed for h = 0.

Two cases are considered next: one is the case of isotropic roughness, i.e., h|| =

h⊥ = h, and the second is the case of longitudinal ridges, for which h|| = 2h⊥ =

h. These two cases are expected to yield different behaviors, particularly at low h,

in view of the fact that the only relevant protrusion length scale is the difference

between h|| and h⊥. This occurs, as explained by Luchini et al. [1991], since any

physically significant parameter must be independent of the choice of the origin of

the wall (which we might for convenience place at the tip of the roughness elements).
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Thus, it is deltah = h|| − h⊥ which provides a quantitative measure of the effect of

roughness on the boundary layer stability behavior; in the case of isotropic roughness

deltah = 0, and the effect must thus be of second order in h, i.e., the curve of the

error must be initially parabolic. Conversely, for longitudinal ridges it is deltah =
h||
2

,

and the error in the eigenvalue should scale linearly with h. This is confirmed by

our stability calculations (figure 2.14, right frame), carried out at Re = 10000 for a

disturbance of wavenumber k = 1 inclined by 45◦ to the x axis, for values of h up to

0.2. Other inclinations of the perturbation wave yield similar results, confirming the

conclusions: in the case of ridges, the linear deviations from the exact solution can be

expected to hold until h ≈ 0.05, whereas the error remains approximately quadratic

with h in the case of cylindrical, regularly spaced posts, only until h ≈ 0.02. The

percentage error in ω remains below 10% for h up to about 0.1; such a value of the

protrusion height could thus be taken as an upper bound, beyond which the Navier

slip condition becomes untenable. Some results in the paper obtained for values of h

larger than the threshold above should be considered only as illustrative.

A final note concerns the boundary condition for the normal-to-the wall velocity.

Because of continuity, the homogenized boundary condition for v̂ is simply v̂ = 0.

However, for superhydrophobic walls, with an underformable gas plastron which

completely fills the microcavities, it is clearly correct to impose no penetration of the

fluid at the tip of the roughness elements, a question might remain when the wetted

state is reached: should a protrusion height be defined also for the vertical velocity

component? The answer in the case of microridges is no [Luchini, 2013], since the

solution of the near-wall Stokes problem has only two degrees of freedom, i.e., only

two protrusion heights can be defined. Thus, the vanishing of the normal velocity

at a given y position rather than another one has only a second order effect on the

result, comparable to the error which is made anyway.
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Chapter 3

The microscopic problem

3.1 Problem formulation

The velocity profile in the boundary layer generated by a turbulent flow along a

locally plane surface has been extensively studied from both numerical and exper-

imental point of view, leading to an in-depth knowledge of the phenomena taking

place in this thin, but important region. It is common practice to subdivide the turbu-

lent boundary layer into different zones, depending on the value of the wall normal

coordinate in wall units:

• viscous sublayer: very thin region extending until y+ ≈ 5, where the viscous

forces are dominant with respect to the inertial ones. If y is the wall normal

coordinate, y+ =
uτy

ν
, with uτ =

…τw
ρ

the friction velocity, and τw the wall

shear stress. Here the conversion of convected momentum into viscous stress is

negligible, thus the flow is governed mainly by the balance of viscous stresses.

The velocity profile is linear with respect to the wall normal coordinate y+;

• buffer layer: it is found between the viscous sublayer and the log-law region

and no analytical laws are defined there. The viscous and inertial forces are

of the same order and, in the middle of this region, the peak production and

dissipation of the turbulent energy is know to occur.

• log-law region: it is located far from the wall (y+ > 30), where the velocity

profile exhibits a logarithmic behaviour of the type

u+ =
1

k
log(y+) +A, (3.1)

where k ≈ 0.4 is the Von Karman’s constant, considered universal (at least for

moderate to high Reynolds number flows) and A ≈ 5 for the classical case of

flat plate boundary layer with zero pressure gradient.
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Our aim is to understand how a micro-corrugated wall, with gas/oil cavities

within, affects the viscous sublayer, in both the directions parallel and normal to the

corrugations. Since in this region the convective terms are negligible, the momentum

equation reduces to the Stokes form

∇p = µ∇2u, ∇ · u = 0. (3.2)

The starting point consists in recognizing that two problems exist, an inner prob-

lem ruled by microscopic variables and an outer, macroscopic problem for which the

bounding surface is smooth (and can be taken to coincide with the tips of the ribleted

surface). The boundary behaviour of the outer solution requires there to be a wall slip

velocity, Us, and a wall shear rate, κw = ∂U
∂y |y=0. In dimensionless terms, an outer

wall-normal variable, Y , can be defined, related to the corresponding inner variable

ỹ by

Y = εỹ;

ε = b/L is a small parameter (with b the microscopic length scale and L the macroscale

characterizing outer flow phenomena). The inner scales used to normalize the dimen-

sional Stokes equations and the boundary conditions are b as length scale (see figure

3.1), b κw as velocity scale and µκw as pressure scale. The shear rate is imposed by

the outer solution onto the inner one so that, when the outer variable Y → 0, the

dimensional streamwise component of the velocity tends to Us + κwLY (the span-

wise component also behaves linearly in Y , by an analogous reasoning). Observe

that when Y → 0 we have ỹ → ∞ and, in inner variables scalings, the streamwise

velocity component ũ, in dimensionless form, tends to Us
b κw

+ ỹ, i.e.

∂ũ

∂ỹ
|y→∞ → 1.

Adopting the above normalization, the governing equations (Stokes plus continuity)

read:

∇p = ∇2u, ∇ · u = 0, (3.3)

note that there should be no ambiguity on the fact that, from now on, everything is

non-dimensional, although tildes have been removed from the variables’ names.

In principle, the above is a three-dimensional system; however, it might be decou-

pled into two separate two-dimensional problems when corrugations homogeneous

along the streamwise directions are considered. In order to apply this geometric con-

straint, we have to assume that the interface between the two fluids is allowed to

deform only under the effect of the transverse flow, remaining homogeneous along

the longitudinal direction. If this hypothesis is satisfied, the initial Stokes problem is

split into two different parts, known as transverse and longitudinal problems, whose

governing equations together with the appropriate boundary conditions are reported

in figure 3.1. In particular, the Laplace equation is found to govern the longitudinal
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flow, while the two dimensional Stokes equation holds for the transverse and wall

normal components of the velocity.

z, w(x,y)

y, v(x,y)

x, u(x,y)
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Figure 3.1: Geometry, governing equations and boundary conditions for the trans-
verse (bottom left) and the longitudinal (bottom right) problems.

3.1.1 The definition of protrusion heights

The linearity of the Laplace and the Stokes equations allows to perform some im-

portant analytical considerations on the behaviour of the longitudinal and transverse

velocity components. The problem of the longitudinal flow over a grooved surface

has been studied by Bechert and Bartenwerfer [1989] who found a solution in terms

of Fourier series of the form:
u =

∑+∞
n=−∞ ũne

inz,

ũ0 = a0 + b0y,

ũn = ane
−|n|y + bne

|n|y, n 6= 0.

(3.4)
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Applying the condition
∂u

∂y
→ 1, it is easy to show that b0 = 1, bn = 0, and the

unknown coefficients an are determined from the condition at the wall surface. If

the wall surface is smooth and with a standard no-slip condition, the longitudinal

velocity profile is readily calculated as

u(y) =

Ç
∂u

∂y

å
y, (3.5)

which is a simple linear profile. If the surface has a general shape, the expression of

the coefficients an cannot be expressed explicitly and have to be calculated case by

case. However, it can be noted that, since all the coefficients ũn vanishes as soon as

y → +∞, the asymptotic behaviour of the longitudinal velocity component takes the

simple form

u = y + a0, (3.6)

which represents a linear profile shifted in the wall normal direction by the quantity

a0. Usually, a0 depends on the shape of the wall and it is called parallel protrusion

height or Navier slip length and indicated with h||.

A similar discussion can be conducted for the transverse flow [Luchini et al.,

1991]. In order to obtain a more suitable form, we introduce the stream function

ψ and recast the Stokes equation as

∇4ψ = 0. (3.7)

The solution of the biharmonic equation satisfying periodic boundary condition along

the spanwise direction reads
ψ =

∑+∞
n=−∞ ψ̃ne

inz,

ψ̃0 = a0 + b0y + c0y
2 + d0y

3,

ψ̃n = (an + bn)e−|n|y + (cn + dn)e|n|y, n 6= 0,

(3.8)

which assumes a form quite similar to equation (3.4). Due to the fixed gradient of

the spanwise velocity far from the protrusion (i.e ∂2ψ
∂y2

= 1), we obtain that c0 = 1
2

and d0 = cn = dn = 0, while the remaining coefficient are again to be determined

by applying the prescribed boundary condition at the wall. Proceeding in a similar

way to the longitudinal problem, we consider the asymptotic behavior of the solution,

obtaining

ψ = a0 + b0y +
1

2
y2, (3.9)

thus

w = y + b0. (3.10)

In this case the constant b0 is called transverse protrusion height (here it is h⊥),

since it is related to the transverse problem. As sketched in figure 3.2, the protru-

sion heights represent the two virtual distances below a reference surface at which
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the velocity profiles would extrapolate to zero. We may remark, however, that any

origin of the y-axis can be set to measure these quantities. It is evident that any phys-

ically significant parameter must be independent of the choice of the origin: the only

combination of the two protrusion heights that has this property is their difference

∆h = h||−h⊥. The concept of protrusion height becomes relevant in order to quanti-

tatively measure the effect of a particular wall on the viscous sublayer and the value

of ∆h expresses how much the actual wall pattern impedes the cross-flow more than

it does the longitudinal flow [Luchini et al., 1991].

Reference plane

h

h||

Figure 3.2: Definition of the protrusion heights with respect to a reference plane.

3.2 The boundary integral method

The boundary integral method (BIM) is a powerful mathematical technique that

allows to recast an original differential problem into an integral one. In theory, there

are no restrictions on the type of the differential problem suitable for this transforma-

tion; however, the BIM is mostly applied to linear, elliptic, and homogeneous partial

differential equations governing boundary-value problems in the absence of a homo-

geneous source. The method covers a wide range of applications, spanning from

solid mechanics to electrostatics and from noise propagation to fluid mechanics. The

key idea of this method is to express the solution in terms of boundary distributions

of fundamental solutions of the differential equation considered. The fundamental

solutions are Green’s functions expressing the field due to a localized source and

the densities of the distributions are then computed to satisfy the specified boundary

conditions. Since in the present dissertation, the equations involved are the Laplace

equation, governing the longitudinal problem, and the Stokes equation, governing

the transverse problem, the BIM finds an effective applicability.

In the following the basic derivation of the boundary integral equations (BIE) for

both the Laplace and Stokes equation for a single phase flow is offered. The result is of

fundamental importance since highlights the main procedure to recast a differential

problem into an integral form. Moreover, the single phase BIE will be used as starting

point to extended the theory to the case of two phase flows.
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Figure 3.3: Sketch of the domain used for the derivation of the boundary integral
equations.

3.2.1 BIM for the Laplace equation in two dimensions

Let us consider a closed domain D, with contour C and normal n, as sketched in

figure 3.3. The Laplace equation holds in D for an unknown scalar function u and

reads

∇2u = 0. (3.11)

In order to transform the Laplace equation into an integral form, we exploit

Green’s second identity

G∇2u− u∇2G = ∇ · (G∇u− u∇G), (3.12)

where G is known as Green’s function, satisfying by definition the singularity forced

Laplace equation

∇2G(x,x0) + δ(x− x0) = 0, (3.13)

with x0 a specific point into the domain, called field point. The simplest choice for G

is the free space Green’s function, corresponding to the solution of equation (3.13) in

unbounded space:

G =
1

2π
log(r), r =

»
(x− x0)2 + (y − y0)2 (3.14)

The Green’s function usually presents a singularity at x = x0, thus it is convenient to

integrate the Green’s second identity (3.12) over the reduced domain D′ = D − Dε

(see figure 3.3), obtaining:∫∫
D′

(G∇2u− u∇2G)dS =

∫∫
D′
∇ · (G∇u− u∇G)dS, (3.15)
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where the left-hand side of equation (3.15) is equal to zero, since ∇2u = 0 and

∇2G = 0, when x 6= x0. Next, applying the divergence theorem to the left-hand side

of equation (3.15) we obtain∫
C+Cε

(G∇u− u∇G) · n dl = 0, (3.16)

where C is the boundary of D,Cε is the boundary of Dε, and l measures arc length

along either C or Cε.

We now consider the limit for ε→ 0 of the integral around Cε and we recall that,

since Cε is a circumference, r can be substituted with ε. Since ε→ 0 the small surface

portion Dε → 0 and thus u(x)→ u(x0) leading to

lim
ε→0

Iε = lim
ε→0

ñ
1

2π
log(ε)

∂u(x0)

∂r

∫
Cε

dl − u(x0)

2πε

∫
Cε

dl

ô
=

1

2π
log(ε)

∂u(x0)

∂r
2πε− u(x0)

1

2πε
2πε = −u(x0). (3.17)

Substituting back the result of the limit (3.17) into the relation (3.16), we obtain

the following important identity

u(x0) =

∫
C
u(x)n · ∇G(x,x0) dl −

∫
C
G(x,x0)n · ∇u(x) dl. (3.18)

Equation (3.18) establishes a relationship between the unknown function u in

an arbitrary point within the domain D and two integral operators involving the

boundary values of u or ∇u. The first integral on the right-hand side is called double-

layer potential (DLP), while the second one is called single-layer potential (SLP).

These operators represent a continuous distribution of sources or dipoles along the

domain’s boundary and they are the building blocks of the boundary integral method.

To complete the derivation of the boundary integral equation, we let the point x0

lay on the domain’s contour C such that all the quantities in equation (3.18) involve

the unknown function or its gradient only at the boundary. In proceeding with this

operation, some care is needed when the limit for x0 → C is considered. It can be

demonstrated [Pozrikidis, 1992] that the single-layer potential is continuous through

the boundary C, while the double-layer potential undergoes a jump discontinuity of

the type:

lim
x0→C

∫
C
u(x)n · ∇G(x,x0) dl =

∫ PV

C
u(x)n · ∇G(x,x0) dl ± 1

2
, (3.19)

where the plus sign is to taken when the limit is done starting from a point within

the domain D, whereas the minus sign holds if the limit is done from a point defined

in the exterior of the domain. The upper-script PV denotes that the integral is to be

intended in the sense of its principal value. Keeping this in mind and performing the
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limit of equation (3.15) for a point x0 defined either inside or outside D (in this case

the velocity u(x0) = 0 in equation 3.18), the following result is obtained

1

2
u(x0) =

∫ PV

C
u(x)n · ∇G(x,x0) dl −

∫
C
G(x,x0)n · ∇u(x) dl (3.20)

Equation (3.20) is known as the boundary integral equation for the Laplace equa-

tion and allows to solve for the unknown function u or ∇u at the boundary, as func-

tion of the boundary conditions. Once the boundary quantities are know, the field

inside D can be reconstructed using the relation (3.18).

3.2.2 BIM for the Stokes equation in two dimensions

Just like the Laplace equation, the Stokes equation can be recast into integral

form. The starting point is the Lorenz reciprocal identity [Pozrikidis, 1992], which

relate two arbitrary flows u and u
′
together with their associated stress tensors σ and

σ
′

as

∂

∂xj

Ä
u′iσij − uiσ′ij

ä
= 0. (3.21)

Identifying u
′
with the flow generated by a point source of constant and arbitrary

strength b, located in x0 (see again figure 3.3), we obtain

u′i(x) =
1

4πµ
Gij(x,x0)bj , (3.22)

σ′ij(x) =
1

4πµ
Tijk(x,x0)bj , (3.23)

where, similarly to the Laplace equation, Gij is the Green’s function and Tijk is its

associated stress tensor. The Green’s function is a tensor of rank 2, since the Stokes

equation has two components. Similarly to the previous case, the simplest choice for

Gij is to select the solution of the singularly forced Stokes equation in the free space,

which is also known with the name of Stokeslet:

Gij = δij logr +
x̂ix̂j
r2

(3.24)

Tijk = −4
x̂ix̂j x̂k
r4

, (3.25)

with r the euclidean distance in the Cartesian plane and x̂ = x − x0. In order to

obtain an integral representation of Stokes equation, we first substitute the relations

(3.22) for u
′
and σ

′
into the Lorenz identity (3.21), then we integrate over the result
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over the reducted domain D −Dε and apply Green’s divergence theorem, obtaining∫∫
C+Cε

Gijσik − µuiTijknkdl = 0 (3.26)

Again, since the Stokeslet is singular at x = x0, the strategy consists in removing

the singularity from D and adding it back later through a limit operation on Dε.

After the above manipulations, the right hand side of expression (3.26) is split into

two contributions involving the line integral along the external domain’s contour and

the line integral along the contour of a small circular region Dε of radius ε, defined

around x0. The results of this manipulations leads to

∫∫
C
Gijσiknk − µuiTijknk dl = −

∫∫
Cε

Gijσiknk − µuiTijknk dl. (3.27)

Letting ε → 0, we find that over Cε, to leading order in ε, the tensors G and T

on the right hand side reduce to the Stokeslet and it associated stress tensor (3.24) .

Substituting their expressions in the integral relation (3.27) and noting that along Cε
the euclidean distance r is equal to the circle’s radius ε, we have

lim
ε→0

ñ ∫
Cε

Å
δijεlogε+

x̂ix̂j
ε

ã
σiknk dθ +

∫
Cε

4µui
x̂ix̂j
ε3

x̂knk dθ

ô
, (3.28)

where the differential dl has been conveniently expressed in polar coordinates as

dl = rdθ = εdθ and the normal n = x̂
ε .

Consider now the first term of the limit (3.28)

∫
Cε

Å
δijεlogε+

x̂ix̂j
ε

ã
σiknk dθ, (3.29)

as ε→ 0, x→ x0 and σik(x)→ σik(x0). Also
x̂ix̂j
ε
∼ ε→ 0, so the whole of the first

term vanishes in the limit of ε→ 0.

For the second term, since x̂knk =
|x|2

ε
= ε and lim

ε→0
ui(x) = ui(x0) , we have

4µui(x0)

∫
Cε

x̂ix̂j
ε2

dθ = 4πµuj(x0), with
∫ 2π

0

x̂ix̂j
ε2

dθ = πδij (3.30)

Finally, substituting the result (3.30) into equation (3.27), we obtain the desired

boundary integral equation of the Stokes flow

4πµuj(x0) = µ

∫
C
ui(x)Tijk(x,x0)nkdl −

∫
C
Gij(x,x0)σik(x)nkdl. (3.31)
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3.3 Boundary integral method for two phase flows

The boundary integral method is often used to describe physical problems in mul-

tiple domains, connected to each other. This is the case of multiphase flows, where

immiscible fluids with different physical properties are in contact and separated by

a deformable interface. The strategy to derive the BIE for this kind of problems is

to write down the integral representation for the unknowns involved in each domain

and then couple them together using proper boundary conditions at the interface.

Our problem is a typical situation where the BIM finds an efficient application. We

refer to figure 3.4, which represents the simplest type of SHS/LIS consisting of rect-

angular grooves elongated along the streamwise direction and regularly spaced along

the spanwise direction. The exactly same procedure applies to different wall pattern,

provided that the fundamentals hypothesis guaranteeing the decoupling of the prob-

lem are respected. We will consider the flow in a two-dimensional domain filled with

two viscous fluids of viscosity ratio λ =
µ1

µ2
; fluid 1 is found in domain Ω1, while fluid

2 is contained within Ω2. The two domains are separated by the interface, I, of unit

normal n when seen from Ω1.

y

x

2

1

h

ks

s

I

T

L R

W2W1

W3

n

y

x

Ω2

Ω1

c
b

δ

Figure 3.4: Sketch of two different fluid domains separated by the interface I. The let-
ters T, L, R, I and W denote, respectively, the top, left, right boundaries, the interface
and the wall. In the figure, W comprises all the walls of the cavity

The boundary conditions to be applied on each patch are described in figure 3.1

for both the transverse and the longitudinal problems. The standard no-slip condi-

tions is applied at the walls composing the indentation, while patches L and R are

periodic. They are explicitly reported in figure 3.4, since they have been taken into

account while deriving the boundary integral equations. One of the interesting fea-

tures of the BIM is that the integrals over the domain’s boundaries can sometimes be

eliminated, if a tailored Green’s function is used during the derivation. In this case,
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the usage of a Greens’ function satisfying the periodicity of the flow leads to a consis-

tent simplification of the final mathematical formulation of the problem, avoiding the

inclusion of the periodic boundaries. With the same reasoning, also the patch T can

be eliminated, when using a Green’s function which takes into account the asymptotic

linear behavior of the velocity profile. However, in our formulation we maintain T

in order to have a precise location to directly measure the velocity far from the wall

and, thus, having immediate access to the value of the protrusion heights.

The main objective is to derive two boundary integral formulations for the lon-

gitudinal and the transverse flow. From their solution the values of the protrusions

heights are calculated by varying the main physical and geometric parameters in-

volved in the problems.

3.4 The microscopic longitudinal problem

We consider first the longitudinal flow over a periodic array of grooves aligned

with the main flow direction. The Laplace equation holds in both the domains Ω1

and Ω2 and reads ∇2u = 0. Considering a simple shear flow over such a surface, far

from the wall the velocity profile is known to be [Crowdy, 2010]:

u = (y + h||)x̂, (3.32)

where x̂ is the flow direction and the constant h|| is the already introduced longi-

tudinal protrusion height. We transform the differential problem into an integral

problem involving only quantities at the boundary of the domain, taking advantage

of the boundary integral method.

Let us reintroduce the single-layer and the double-layer potentials for the Laplace

equation, defined for a closed, two-dimensional, contours C as

FSLP (x0,∇u · n; C) =

∫
C
G(x,x0)[∇u(x) · n] dl(x), (3.33)

FDLP (x0, u; C) =

∫
C
u(x)[∇G(x,x0) · n] dl(x), (3.34)

where x0 is the generic field point, n is the normal vector to the contour C, point-

ing inward the domain, and G(x,x0) is the Green function for the two-dimensional

Laplace equation. The basic idea is to derive one boundary integral equation, linking

the fluid quantities at the boundary of the domain using the operators (3.33)-(3.34),

for each patch composing the geometry under investigation. Maintaining the usual

convention of the boundary integral method, all the normal vectors n defined over

the patches point inward the respective domain; since the interface is shared between

both the domains, we choose its normal pointing inward the domain Ω1 (see figure

3.4) and, thus, the relation n(2) = −n(1) holds on I.



44 Chapter 3. The microscopic problem

The starting point to derive the longitudinal flow integral representation is to

apply the boundary integral formulation [Pozrikidis, 2002] in the lower fluid (super-

script (1)) for a point x0 located at the interface I, which reads

u(1)

2
= −FSLP (x0,∇u(1) · n;W3) − FSLP (x0,∇u(1) · n(1); I) + F̂DLP (x0, u

(1); I),

(3.35)

where F̂DLP denotes the principal value of the double layer potential and the super-

script is retained only in the normal vector defined over the interface to recall that in

this case they are of opposite sign, while for the other cases it is implicitly assumed

that the normal vector follows the convection described above. Repeating the deriva-

tion in the upper fluid (superscript (2)) for a point x0 located at the interface, we

obtain

u(2)

2
= −FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u

(2);T)

−FSLP (x0,∇u(2) · n(2); I) + F̂DLP (x0, u
(2); I). (3.36)

It is worth noting that the contributions of the periodic boundaries L and R cancel

out from the integral equations if a suitable Green’s function for the Laplace equation

[Pozrikidis, 2002] is employed during the derivations. Since the velocity is assumed

continuous across the interface, we add equation (3.35), multiplied by the viscosity

ratio λ =
µ(1)

µ(2)
, to equation (3.36) and we collect the terms involving the velocity at

the interface. The multiplication by λ is necessary to introduce in the final boundary

integral equation the dependence from this parameter. Proceeding as illustrated, the

first boundary integral equation reads

1 + λ

2
u(x0) = FDLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T )

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I) + (λ− 1)F̂DLP (x0, u; I), (3.37)

with the interface unit normal vector n taken to coincide with n(1).

Next, we consider the equation for the velocity in the lower fluid for a point x0 at

the lower wall, multiplied by λ, together with the reciprocal relation for the Laplace

equation [Pozrikidis, 2002]:

λ

2
u(1) = −λFSLP (x0,∇u(1) · n;W3)

− λFSLP (x0,∇u(1) · n(1); I) + λFDLP (x0, u
(1); I), (3.38)
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−FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u
(2);T)

−FSLP (x0,∇u(2) · n(2); I) + FDLP (x0, u
(2); I) = 0. (3.39)

We move the term composing equation (3.39) from the left hand side to the right

hand side and then we change its sign; adding the result of this manipulation to

equation (3.38), we end up with

0 = FDLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T) + (λ− 1)FDLP (x0, u; I)

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I), (3.40)

where the zero on the left hand side is due to the fact that the no-slip boundary

condition is applied at the solid walls. The same equation can be derived for a point

x0 belonging to the walls W1 and W2 by writing the equation for the upper fluid

and the reciprocal relation, using as integration path the lower fluid domain, again

multiplied by λ.

Finally, we apply the boundary integral formulation for a point x0 on the upper

wall, and the reciprocal relation, multiplied by λ, obtaining:

u(2)

2
= −FSLP (x0,∇u(2) · n;W1 + W2 + T) + FDLP (x0, u

(2);T)+

−FSLP (x0,∇u(2) · n(2); I) + FDLP (x0, u
(2); I), (3.41)

− λFSLP (x0,∇u(1) · n;W3) − λFSLP (x0,∇u(1) · n; I) + λFDLP (x0, u
(1); I) = 0.

(3.42)

Summing the above equations (3.41) and (3.42) and performing similar manipula-

tions as in equation (3.39), we obtain the last boundary integral equation

1

2
u(x0) = F̂DLP (x0, u;T)− λFSLP (x0,∇u · n;W3)

−FSLP (x0,∇u · n;W1 + W2 + T) + (λ− 1)FDLP (x0, u; I),

+ FSLP (x0, [∇u(2) − λ∇u(1)] · n; I), (3.43)

which forms, together with (3.37) and (3.40), a system of integral equations for the

unknown velocity or stress distribution along the domain’s boundaries. The formula-

tion undergoes a further simplification if the jump in shear stress across the interface,

[∇u(2) − λ∇u(1)] · n, along the longitudinal direction is specified. In this particular

problem we require ∇u(2) · n = λ∇u(1) · n, i.e. we assume the shear stress to be

continuous across the interface.
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Once the velocity and its gradient are know at the boundaries, the internal field

can be readily reconstructed by using the following integral relation:

αu(x0) = −λFSLP (x0,∇u · n;W3)−FSLP (x0,∇u · n;W1 + W2 + T)

+ FDLP (x0, u;T) + (λ− 1)FDLP (x0, u; I), (3.44)

withα = λ, if x0 ∈ Ω1,

α = 1, if x0 ∈ Ω2.

3.5 The microscopic transverse problem

Following a similar procedure to that described in the previous section, we derive

the governing integral equations for the transverse problem, involving the wall nor-

mal and the spanwise components of the velocity vector, denoted by v = (w, v). We

firstly introduce the single-layer and the double-layer potential for the Stokes flow,

which read

FSLPj (x0,f ; C) =
1

4πµ

∫
C
fi(x)Gij(x,x0) dl(x), (3.45)

FDLPj (x0,v; C) =
1

4π

∫
C
vi(x)Tijk(x,x0)nk(x) dl(x), (3.46)

We start with the boundary integral representation for the velocity u(1)
j (x0) in the

lower fluid, in the generic point x0 ∈ I [Pozrikidis, 1992]

1

2
v

(1)
j (x0) = − 1

λ
FSLPj (x0,f

(1);W3 + I) + FDLPj (x0,v
(1);W3) + F̂DLPj (x0,v

(1); I),

(3.47)

where F̂DLP denotes the principal value of the double layer potential.

Repeating the same derivation for the velocity v
(2)
j (x0) in the upper fluid, we

obtain an analogous representation

1

2
v

(2)
j (x0) = −FSLPj (x0,f

(2);T + W1 + W2 + I + L + R) +

FDLPj (x0,v
(2);T + L + R) + F̂DLPj (x0,v

(2); I). (3.48)

We assume no-slip along W1,W2 and W3, while the left and right boundaries, L and

R, are considered periodic. With these choices, equation (3.47) and (3.48) simplify
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in

1

2
λv

(1)
j (x0) = −FSLPj (x0,f

(1);W3 + I) + λF̂DLPj (x0,v
(1); I), (3.49)

1

2
v

(2)
j (x0) = −FSLPj (x0,f

(2);W1 + W2 + I + T) + (3.50)

FDLPj (x0,v
(2);T) + F̂DLPj (x0,v

(2); I).

It is worth noting that the contribution of the periodic boundaries cancels out from

equation (3.48) only if the Green’s function is chosen to be periodic. Next, we add

equations (3.49) and (3.50) and, recalling that the velocity is continuous across the

interface, we achieve the following final form:

1 + λ

2
vj(x0) = −FSLPj (x0,f ;W + T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)F̂DLPj (x0,v; I), (3.51)

with W = W1 +W2 +W3. The non-dimensional jump in traction through the interface

is ∆f = f (1)−f (2) =
Kn

Ca
, with Ca the capillary number, Ca =

µ2uref
σs

; σs is the sur-

face tension present at the interface between fluids 1 and 2, uref is the characteristic

velocity of the problem and K is the local curvature of the interface. In the following,

Ca will be understood to be a control parameter which tunes the rigidity of the fluid

interface.

Proceeding further, we reconsider an arbitrary point x0 ∈ W3 but, this time, we

derive an alternative integral relation for the velocity v(1)
j (x0) integrating over the

contour of domain Ω2 and taking advantage of the reciprocal theorem for Stokes

flow, leading to:

−FSLPj (x0,f
(1);T + W1 + W2 + I) + FDLPj (x0,v;T + I) = 0. (3.52)

Recalling the orientation of the normal vector and the continuity of the velocity on

the interface, summing with equation (3.49) we obtain:

1

2
λvj(x0) = −FSLPj (x0,f ;T + W) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v
(1); I) = 0. (3.53)

A third integral equation can be obtained proceeding in the same way as before: we

take an arbitrary point x0 ∈ W1,2, we integrate along the contour of domain Ω1 and

we apply the reciprocal theorem, i.e

−FSLPj (x0,f
(2);W3 + I) + λFDLPj (x0,v

(2); I) = 0. (3.54)
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Again, we add equation (3.54) to equation (3.50) and end up with:

vj(x0)

2
= −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I) = 0. (3.55)

If x0 ∈ T we obtain an equation formally similar to (3.55)

vj(x0)

2
= −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + F̂DLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I). (3.56)

Equations (3.51), (3.53), (3.55) and (3.56) are a system of integral equations for the

unknown stresses along the solid walls, the interface velocity and the velocity or the

stress on the top wall T, as function of the applied boundary conditions. The internal

velocity field can be reconstructed using the following relation

αvj(x0) = −FSLPj (x0,f ;W + T)−FSLPj (x0,f ;T) + FDLPj (x0,v;T)

−FSLPj (x0,∆f ; I) + (λ− 1)FDLPj (x0,v; I) (3.57)

withα = λ, if x0 ∈ Ω1,

α = 1, if x0 ∈ Ω2.

3.6 Flow over riblets of arbitrary shape

It is worth to note that the general integral representations can be conveniently

simplified if the single phase flow over ribleted surfaces is under consideration. In

this case there are no interfaces and the fluid properties are the same in the whole

domain. The integral representations can be thus easily derived setting λ = 1 and

deleting from the equations derived in section 3.4 and section 3.5 every integral

involving the interface I. The integral representation for the longitudinal and the

transverse flow reduce to

αu(x0) = −FSLP (x0,∇u · n;W + T) + FDLP (x0, u;T), (3.58)

αvj(x0) = −FSLPj (x0,f ;W + T) + F̂DLPj (x0,v;T), (3.59)

withα =
1

2
, if x0 ∈W, T,

α = 1, if x0 ∈ Ω,
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for the longitudinal and transverse problem respectively. The integral representation

(3.58) and (3.59) are equivalent to those given by Luchini et al. [1991], but expressed

here in terms of primary variables and not in terms of stream function and vorticity.

3.7 Numerical Method

The integral equations described in the previous sections hardly present an ana-

lytical solution due to the complexity of the integral operators. The common practice

to obtain a solution is to employ the boundary element method (BEM). The BEM is

the numerical counterpart of BIM and consists in subdividing the boundary of the

domain into a collection of discrete elements. The shape of the element is important

in order to obtain an accurate representation of the boundary with a low number of

element and minimize the computational efforts. The simplest option is to approx-

imate the boundary with a set of straight segments, while more involved solutions

require the usage of high order spline approximations. The elements’ shape is not the

only choice to be taken, since also the boundary quantities in the integral have to be

somehow estimated. The simplest option is to consider constant the integrand func-

tion over each element, but in this case a large number of elements is to be expected

if an accurate solution is needed. A higher order approximation based on polynomial

interpolants is often used to obtain a more accurate solution with a lower resolution.

One aspect that is always to keep in mind is that both the shape of the elements and

the order of the boundary quantity interpolants directly reflect on the complexity of

the method, leading to a higher efforts in assembling the numerical code. On the

basis of the choices taken for the shape of elements and the approximation of the

boundary quantities, different types of BEMs are defined [Katsikadelis, 2002]

• sub-parametric: the elements have a lower order with respect to the boundary

quantities;

• iso-parametric: the elements and the boundary quantities are of same order;

• super-parametric: the elements have an higher order with respect to the bound-

ary quantities.

Our choice is to use a super-parametric BEM, which has a good balance between

accuracy and difficulty of implementation. We employ a linear approximation for the

boundary quantities, while cubic splines for the elements in order to have a good

approximation of possibly non-straight boundaries. A detail description of the nu-

merical method is postponed to sections 3.7.1 and 3.7.2; here we proceed to the

discretization of the governing integral equation, without specifying any type of ap-

proximation for either the discrete elements or the boundary quantities, leading to

a general numerical discretization. Independently from the type of BEM, its main

advantage is that it is not necessary to compute the required functions throughout

the domain of solution. Once the unknown boundary distribution is available, the
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solution at any point may be produced by direct evaluation. Thus, the key of the

boundary-element method is the reduction of the dimension of the solution space

with respect to physical space by one unit.

Let us proceed to the discretization and thus define NT , NW = NW1 +NW2 +NW3

and NI as the number of the collocation points distributed along the top boundary,

the lower wall and the interface, respectively. The integral equations in their discrete

form for the longitudinal problem read



−DTT · uT +
1

2
uT + STW1,2 · uW1,2

n + λSTW3 · uW3
n − (λ− 1)DTI · uI =

−STT · uTn − STI ·∆uIn,

−DWT · uT − (λ− 1)DWI · uI + λSWW3 · uW3
n + SWW1,2 · uW1,2

n =

−SWT · uTn − SWI ·∆uIn,

−DIT · uT + λSIW3 · uW3
n + SIW1,2 · uW1,2

n − (λ− 1)DII · uI +
1 + λ

2
uI =

−SIT · uTn − SII ·∆uIn,
(3.60)

while for the transverse problem


−DTT · vT +

1

2
vT + STW · fW − (λ− 1)DTI · vI = −STT · fT − STI ·∆f I ,

−DWT · vT − (λ− 1)DWI · vI + SWW · fW = −SWT · fT − SWI ·∆f I ,

−DIT · vT + SIW · fW − (λ− 1)DII · vI +
1 + λ

2
vI = −SIT · fT − SII ·∆f I .

(3.61)

The quantity un is shorthand notation for scalar product ∇u · n, while ∆un =

[λ∇u(1) − ∇u(2)] · n is the jump in shear stress across the interface and along the

longitudinal direction; the matrices S andD are called influence matrices and are the

discretized counterpart of the single-layer and the double-layer potential operators

defined in (3.45) and (3.46). The first letter in the superscript denotes the position

of the collocation point, while the second letter identifies the piece of boundary over

which the integral operator is being evaluated. Since the matricesD∗∗ have the same

size of the corresponding matrices S∗∗, only the size of the matrices S∗∗ is reported

in table 3.1. Regarding the expression of the coefficients of S and D, they strictly

depends on the shape and the order of the interpolation of the boundary quantities

along the elements.
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STT 2NT × 2NT SWI 2NW × 2NI

SWT 2NW × 2NT SWW 2NW × 2NW

STW 2NT × 2NW SIT 2NI × 2NT

STI 2NT × 2NI SIW 2NI × 2NW

SWT 2NW × 2NT SII 2NI × 2NI

Table 3.1: Size of the discretized single-layer operator.

If the longitudinal problem is being considered, the size of the operators reported

in table 3.1 is to be divided by a factor 4, since the field has only one component.

3.7.1 Domain Discretization

Different types of elements can be employed in order to approximate the domain’s

boundary, however the most accurate results are given by elements defined by cubic

spline interpolation, which lead to a globally smooth representation. To implement

this discretization, let us describe the boundary with nc arbitrary spaced nodes and

define at the ith node the current length si of the polygonal line connecting sequential

nodes, measured from an arbitrary starting point.

The ith boundary element included between the i and i + 1 node is described in

parametric form by the cubic polynomials:

x(s) = B(s) = ai(s− si)3 + bi(s− si)2 + ci(s− si) + xGi , (3.62)

y(s) = B
′
(s) = âi(s− si)3 + b̂i(s− si)2 + ĉi(s− si) + yGi , (3.63)

with xGi = (xGi , y
G
i ) the Cartesian coordinates of the ith node. Three conditions for

each coordinate parametrization are needed to fix the coefficients in equations (3.62)

and (3.63). Keeping, for example, the x−coordinate and defining hi = s−si, we must

require:

1. the interpolation condition:

Pi(si + 1) = xGi+1 = xGi + axih
3
i + bih

2
i + cihi, i = 1, . . . , nc − 1 (3.64)

2. the slope continuity at the interior nodes, dPi(si+1)
ds = dPi+1(si+1)

ds :

3aih
2
i + 2bihi + ci = ci+1, i = 1, . . . , nc − 2 (3.65)

3. the continuity of curvature interior nodes, d
2Pi(si+1)
ds2

= d2Pi+1(si+1)
ds2

:

6aihi + 2bi = 2bi+1, i = 1, . . . , nc − 2. (3.66)
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Rearranging properly relations (3.64-3.66) we can find the following relations for the

unknown coefficients:

hi
3
bi+2 + 2

hi + hi+1

3
bi+1 +

hi+1

3
bi+2 =

xGi+2 − xGi+1

hi+1
−
xG − xGi+1 − xGi

hi
, (3.67)

ai =
bi+1 + bi

3hi
(3.68)

ci =
xG − xGi+1 − xGi

hi
+ hi

bi+1 + 2bi
3

, (3.69)

for i = 1, . . . , nc−2. Thus, relation (3.67), (3.68) and (3.69) lead to a linear system of

nc−2 equations in nc unknowns, which require two more equations to be solved. One

simple way to overcome this problem is to fix b1 = 0 and bnc = 0, which practically

means to impose a zero local curvature at starting and ending points of the discretized

contour. A more gentle way to treat the boundary conditions is to use the clamped

end spline, which fixes the slope at the boundary points with the same value of the

third order Lagrangian polynomial fitting the three nearest neighbouring points; the

latter is our favourite choice.

Finally, having obtain the spline coefficients for all the elements, the local curva-

ture along the discrete contour is:

K =
xsyss − ysxss
(xs2 + ys2)

3
2

, (3.70)

where the subscript s denotes the derivative with respect to the curvilinear abscissa.

3.7.2 Computation of the boundary integrals

In this section, we describe more extensively some numerical details. In partic-

ular, we consider the computation of the single-layer and the double-layer integral

operators, which are the entries of the matrices S∗∗ and D∗∗ composing the discrete

system of boundary integral equations.

Ek-1

Ek

Figure 3.5: Sketch of two adjacent elements approximated by cubic splines. The
symbol • represents the collocations points defined at the end of each element.

The starting point is to define the shape of the boundary element, which, in our

case, is a spline connecting two collocation points, as shown in figure 3.5. We define

a curvilinear abscissa, s, over the element Ek and we recast the operators (3.45) and

(3.46) as
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-1 1

Figure 3.6: Schematic view of an element parametrized using the local coordinates ζ:
the red cross marks the position of the collocation points, while the black dot marks
the starting and ending points of the element.

FSLPj (x0,u;Ek) =

∫ s2

s1
fki [x(s)]Gij [x(s),x0]hks(s) ds (3.71)

FDLPj (x0,u;Ek) =

∫ s2

s1

uki [x(s)]Tijl[x(s),x0]nl[x(s)]hks(s) ds, (3.72)

where hks(s) is the metric associated with the element:

hs(s) =

[Å
dx

ds

ã2

+

Å
dy

ds

ã2
] 1

2

. (3.73)

We apply another coordinate transformation which maps an element from the

global coordinate system based on the curvilinear abscissa to a local coordinate sys-

tem such that the kth element’s boundary points are mapped onto the interval [−1, 1].

This mapping will result useful for the numerical quadrature of boundary integrals

and can be simply carried out using the following relation:

s(ζ) =
(s1 + s2)

2
+

(s2 − s1)

2
ζ = sm + sdζ, (3.74)

from which we can easily define the associated metric hζ = sd. Introducing this new

parametrization into the integrals (3.71) and (3.72) we obtain:

FSLPj (x0,f ;Ek) = hkζ

∫ 1

−1
fki (x(s(ζ)))Gij(x(s(ζ)),x0)hks(s(ζ)) dζ, (3.75)

FDLPj (x0,u;Ek) = hkζ

∫ 1

−1
uki (x(s(ζ)))Tijk(x(s(ζ)),x0)nk(x(s(ζ)))hks(s(ζ)) dζ.

(3.76)

Until now, no assumption has been made on the interpolation method of the bound-

ary quantities over the element. We use a piecewise linear variation, which is a good

compromise between accuracy and programming difficulty; thus, let us consider an

element parametrised using the local coordinate ζ, as show in figure 3.6, and require

that:

u(ζ) = ψ1(ζ)u1 + ψ2(ζ)u2, (3.77)

f(ζ) = ψ1(ζ)f1 + ψ2(ζ)f2, (3.78)
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P2

P2

P1

Figure 3.7: Sketch of two boundary patches, with several collocation point defined
over them.

where ψ1 =
l2 − ζ
L

and ψ2 =
l1 + ζ

L
are shape functions. Introducing relations (3.77)

and (3.78) into the expression of the single- and double-layer integrals, we can recast

(3.75) and (3.76) as:

FSLPj (x0,f ;Ek) = fki A
1
ij + fk+1

i A2
ij , (3.79)

FDLPj (x0,u;Ek) = ukiB
1
ij + uk+1

i B2
ij , (3.80)

where Anij and Bn
ij are know tensors of the form:

Anij = hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ, (3.81)

Bn
ij = hkζ

∫ 1

−1
ψn(ζ)Tijl(ζ)nl(ζ)hs(ζ) dζ. (3.82)

The integrals (3.81) and (3.82) can be computed numerically by using the Guass-

Legendre quadrature rule, if the integrand is non-singular. The singular integral case

is more tricky and special techniques must be employed, as extensively illustrated

in the following section. We consider now two adjacent elements sharing the kth

collocation point, as shown in figure 3.5, and we write down the following quantities

SLlk = A2
ij |k−1
k +A1

ij |kk, (3.83)

DLlk = B2
ij |k−1
k +B1

ij |kk, (3.84)

where in the notation |∗∗ the superscript stands for the element over which the integral

is being evaluated, while the subscript represents the collocation point considered.

As an example, referring to figure 3.7, we consider the assembling of the influence

matrixDP1P2 relative to the double-layer potential operator for two arbitrary patches,

called P1 and P2, with NP1 and NP2 collocation points, respectively.

The discretized double-layer operator DP1P2 reads
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DP1P2 =


DL1

1 DL1
2 . . . DL

NP2
1

DL1
2 DL2

2 . . . DL
NP2
1

...
...

...
...

DL1
NP1

DL2
NP1

. . . DL
NP2
NP1

 ; (3.85)

here DLlk stands for the quantities (3.84) calculated at the kth point belonging to P2

considering the lth collocation point belonging to P1. Particular attention should be

paid when a collocation point is not shared by two adjacent segments. In this case

DLk turns out to be

DLlk = B1
ij |kk, (3.86)

if the collocation point is located on the left of the element, while

DLlk = B2
ij |kk, (3.87)

if the collocation point is located on the right of the element. The assembling method-

ology is the same for other cases, with no difference in the procedure if we consider

the single-layer potential.

3.7.3 Non-singular integrals

The integrals (3.81)-(3.82) are the building blocks for the numerical solution of

the boundary integral equations. Let us recall the periodic velocity Green’s function

and its associated stress tensor in order to highlight the problems that may arise in

their numerical evaluation. Starting from Gij:

A(x̂) =
1

2
log{2[cosh(ωŷ)− cos(ωx̂)]}, (3.88)

G11 = −A(x̂)− ŷ ∂A(x̂)

∂ŷ
+ 1, (3.89)

G12 = ŷ
∂A(x̂)

∂x̂
, (3.90)

G22 = A(x̂) + ŷ
∂A(x̂)

∂x̂
. (3.91)

where x̂ = x− x0 and ω = 2π
L , with L the period of the flow. The components of the

stress tensor Tijk are:

T111 = −4
∂A(x̂)

∂x̂
− 2ŷ

∂2A(x̂)

∂x̂∂ŷ
, T112 = −2

∂A(x̂)

∂ŷ
− 2ŷ

∂2A(x̂)

∂ŷ∂ŷ
, (3.92)

T212 = 2ŷ
∂2A(x̂)

∂x̂∂ŷ
, T222 = −2

∂A(x̂)

∂ŷ
+ 2ŷ

∂2A(x̂)

∂ŷ∂ŷ
. (3.93)

If the point x0 does not lay over the same element for which we are performing the
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integration, integrals (3.81) and (3.82) are not singular and can be approximated

using the Gauss-Legendre formula, using Nq quadrature points, as:

hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ = hkζ

Nq∑
q=1

ψn(ζq)Gij(ζq)hs(ζq)wq, (3.94)

hkζ

∫ 1

−1
ψn(ζ)Gij(ζ)hs(ζ) dζ = hkζ

Nq∑
q=1

ψn(ζq)Tijl(ζq)nl(ζ)hs(ζq), (3.95)

where ζq is the position of the qth quadrature point along the interval [−1, 1] and wq
is the associated weight.

3.7.4 Singular integrals

In the case of two-dimensional flows, as considered here, since the integrand of

the double-layer potential exhibits a discontinuity across the collocation point x0 spe-

cial accommodations are not necessary. In contrast, the single-layer potential exhibits

a logarithmic singularity for the diagonal component of G. The basic idea to solve

this problem is to subtract off the singularity. Thus, turning attention only to the term

which contains the logarithm we add and subtract hsψ(s) log(r), r = |x− x0|, to the

integrand in (3.71), obtaining:

− 1

2

∫ s2

s1

hs(s)ψn(s) log{2[cosh(ωx̂2)− cos(ωx̂1)]} ds =

− 1

2

ñ ∫ s2

s1

hs(s)ψn(s) log

®
2

r
[cosh(ωx̂2)− cos(ωx̂1)]

´
+

hsψn(s) log(r) ds

ô
. (3.96)

The first term of the integrand is non-singular and can be accurately computed by

Gauss-Legendre quadrature, but the second term involving log(r) is still singular and

further manipulations are necessary. Calling s0 the curvilinear abscissa of the singular

point, we add and subtract hs(s)ψn(s)log(|s− s0|) and recast the integral as:

∫ s2

s1

hsψn(s) log(r) ds =

∫ s2

s1

hs(s)ψn(s) log

Ç
r

|s− s0|

å
ds+∫ s2

s1

hsψn(s)log(|s− s0|) ds. (3.97)

Again, the first term in the integrand is non-singular, but we must proceed to de-

singularize the second term:

∫ s2

s1

hs(s)ψn(s)log(|s− s0|) ds =

∫ s2

s1

î
hsψn(s)− hs(s0)ψn(s0)

ó
log(|s− s0|) ds+∫ s2

s1

hs(s0)ψn(s0) log(|s− s0|) ds. (3.98)
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Finally we can conclude the de-singularization noting that hs(s0)ψn(s0) is constant

thus:

∫ s2

s1

hs(s0)ψn(s0) log(|s− s0|) ds = hs(s0)ψn(s0)
î
|s2 − s0|

Ä
log(|s2 − s0|)− 1

ä
+ |s1 − s0|

Ä
log(|s1 − s0|)− 1

äó
. (3.99)

Summing up, we can compute numerically the singular integral on the left-hand-side

of (3.96) as:

− 1

2

∫ s2

s1

hs(s)ψn(s) log{2[cosh(ωx̂2)− cos(ωx̂1)]} ds =

−
Nq∑
q=1

hζwq
2

[
hs(ζq)ψn(ζq) log

®
2

r
[cosh(ωx̂2(ζq))− cos(ωx̂1(ζq))]

´
+

hs(ζq)ψn(ζq) log

Ç
r

|s(ζq)− s0|

å
+
î
hs(ζq)ψn(ζq)− hs(s0)ψn(s0)

ó
log(|s(ζq)− s0|)

]
−

hs(s0)ψn(s0)

2

Ç
|s2 − s0|

Ä
log(|s2 − s0|)− 1

ä
+ |s1 − s0|

Ä
log(|s1 − s0|)− 1

äå
.

3.7.5 Time advancement of the interface

The problem to be solved holds under the quasi-steady approximation and thus

there is no explicit time dependency. However, because of the presence of surface ten-

sion, the interface has to be advanced through a series of intermediate states in order

to find its steady state position, prescribed by the physical parameters involved in the

simulation. Since we have assumed that there this no deformation along the longi-

tudinal direction, then the interfaces is to be updated in time only along transverse

direction. In doing so, the boundary element method presents notable advantages

with respect to other interface tracking techniques, since we can easily perform an

accurate Lagrangian tracking of the interface, using the collocation points employed

for the discretization. In our code they are advanced in time using the following rule

dx(i)

dt
= (ui · ni)ni, i = 1, . . . , NI , (3.100)

where x(i) are the ith collocation point and ni is the normal to the interface at

x(i). Using the normal velocity to advance the interface, instead of the velocity u, is

found to be very effective in limiting the spreading of the collocation points, with the

consequent advantage that the interface does not need to be frequently remeshed.

Equation (3.100) can be discretized with any explicit scheme for ordinary differ-

ential equations. We have implemented both the first order Euler and the second

order Runge-Kutta (RK2) integration, finding very few differences between the two

schemes. However, since the RK2 scheme requires the evaluation of the interfacial
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velocity at two different time steps, with the consequent solution of the boundary

element system, we prefer a simpler and faster one-step integration.

Once the interface reaches a steady state, its shape is used for the computation of

the longitudinal protrusion heights.

3.7.6 Enforcement of mass conservation

One hidden issue in solving flows in the presence of interfaces, is that a unique

solution of the integral equations cannot be found for arbitrary values of the viscosity

ratio λ. This was described in particular by Pozrikidis [1992, 2002] and the drawback

encountered in solving such equations is that a leak or an increase of the mass of fluid

inside a closed domain may occur in time; this phenomenon becomes more important

as the viscosity ratio λ decreases [Tanzosh et al., 1992]. One way to deal with this

problem and remove the non-uniqueness of the solution is proposed in Pozrikidis

[2001] and requires adding the following term

zj(x0)

∫
C
ui(x)ni(x)dl (3.101)

to the double-layer potential along the interface into the integral equations. Here

zj(x0) is an arbitrary function such that
∫
C
zini 6= 0, with nj the normal vector to the

interface. The simplest choice is zj = nj and, since this terms shift the eigenvalues of

the double-layer potential operator, the procedure is known as deflation.

An alternative method to ensure mass conservation is proposed here. We start by

noting that each boundary integral problem can be reduced to the solution of a linear

system of the type:

Ax = b, (3.102)

where A and b are the boundary element matrix and the right-hand-side, dependent

on the original boundary integral formulation of the problem, while x is the vector

containing the unknowns. For incompressible flows, the mass conservation inside a

domain Ωi can be readily written as

∇ · u = 0, (3.103)

with u the velocity vector inside the domain Ωi. Integrating (3.103) over the volume

Ωi and taking advantage of Green’s theorem we obtain∫
∂Ω
u · n dS = 0. (3.104)

The integral relation (3.104) can be discretized in the same fashion as the single-layer

and the double-layer potentials, leading to a simple linear equation of the form

c · u = 0, (3.105)
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where c is a vector containing the coefficients of the unknown velocity at the collo-

cation points. The form of the coefficient depends, again, on the type of collocation

method chosen to discretize the boundary integral equation. If we are in the presence

of multiple fluid volumes, we can easily extend expression (3.105) as

Cx = 0. (3.106)

The ith row of the matrix C contains the coefficients arising from the discretization

of equation (3.104) for the ith fluid domain. Clearly, the matrix C will present zero

entries for those unknowns which are not the interfacial velocities to be constrained.

We now wish to add the set of mass-conservation constraints to the boundary element

system (3.102); this is not an easy task since, usually, the system is already closed

and simply adding an additional constraint equation will lead to an over-determined

system. Discharging as many equations as the number of constraints would be an

available option, but it is not clear which equations are to be substituted and a loss of

accuracy might result. To solve this issue, the idea is to introduce in the system each

additional equation with associated an unknown Lagrange multiplier Λ, which will

render the boundary element system well balanced and force the solution to respect

mass conservation for any value of the viscosity ratio, λ. We consider the following

Lagrangian functional

L =
1

2
xTAx− xTb+ ΛT (Cx), (3.107)

where the first two terms in L function represent the potential energy of the uncon-

strained system, while the last term represents the energy needed to maintain the

constraints. Λ is a vector containing the Lagrange multipliers, one for each inter-

face within the domain Ω. Now, we proceed to minimize L, requiring that its total

variation, δL, is zero for every possible value of δx and δΛ, thus

δL =
∂L
∂x
· δx+

∂L
∂Λ
· δΛ = 0, (3.108)

which leads to the following conditions over the gradient of the Lagrangian func-

tional:

∂L
∂x

= 0,
∂L
∂Λ

= 0. (3.109)

By imposing the conditions above, we produce a new linear system, which incorpo-

rates the desired constraints: [
A CT

C 0

] [
x

Λ

]
=

[
b

0

]
. (3.110)
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This method is of easy implementation and, since usually the boundary element ma-

trix is dense, it does not destroy an eventually banded form of the final matrix. How-

ever, the size of the matrix increases and this can become undesirable when a large

number of interfaces is present.

3.7.7 Physical interpretation of the Lagrange multiplier

In order to describe the physical meaning of the Lagrange multiplier Λ, we recon-

sider a slightly modified, but more general, version of equation (3.104):

∫
∂Ω
u · n dS = q̇∗, (3.111)

which assigns a generic value to the flow rate across the target boundary. The relation

(3.111) can be readily discretized in

Cx = q, (3.112)

where the right hand side q takes into account possible flow of fluid through the

boundary ∂Ω.

The Lagrangian functional now takes the form:

L =
1

2
xTAx− xTb+ ΛT (Cx− q) = E(x, q) + ΛT (Cx− q), (3.113)

with E(x, q) the energy associated with the boundary element linear system. Deriving

the Lagrangian with respect to q we obtain:

∂L
∂q

=
∂E
∂q
−ΛT , (3.114)

and stationarity implies that
∂E
∂q

= ΛT , (3.115)

i.e. the Lagrange multiplier Λ represents the sensitivity of the energy E of the system

with respect to variations in the mass flow rate through the contour ∂Ω.
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3.8 Single phase flow validation

Since the boundary element computer code used in the present study has been

developed "ad hoc", an extensive validation campaign is mandatory in order to test

the predictive capabilities of the software. The single phase validation has an impor-

tant role since it is the first benchmark for the numerical integration of the discrete

single-layer and double-layer operators, which are to be used also in the two-phase

computations, and the linear system assembling.

We have selected to test the code with the pioneering work by Luchini et al.

[1991], who first computed the protrusion heights for a series of wall textures com-

posed by a periodic array of riblets of known shape. In this case, there is no gas filling

the cavities, so we can refer to these simulations as pertaining to a fully wetted, Wen-

zel state. In their work, Luchini and co-workers computed the values of the protrusion

heights employing a boundary element method, aimed to numerically solve a set of

Laplace equations, coming form the longitudinal and transverse problem, where the

latter were reformulated in term of vorticity and stream function.

The riblets shape considered is not particularly complicated and it is given in

terms of the following analitycal functions:

• co-sinusoidal profile, y(x) = 2s
π x

2 − 4sx,

• parabolic profile, y(x) = πs(cos(x)− 1),

where s is a parameter which tunes the depth of the protrusion, while the periodic-

ity b of the grooves has been taken equal to 2π. Since the periodicity is not unitary,

the results are presented in term of ratio between the value of the protrusion height.

The simulations’ strategy is based on the discretization of the boundary with an ad-

equately large number of spline elements and the calculation of the velocity at some

height y = H far enough from the wall boundary. In all of our simulations, H = 10b

is used if not stated otherwise, which permits to avoid any boundary effect on the ve-

locity distribution. There are no additional computational cost in defining the upper

boundary, where the velocity is measured, far from the riblet since the inside of the

domain is not meshed with the BEM. The results are reported together with the ref-

erence case in figure 3.8. We find excellent agreement between our simulations and

the results reported by the selected reference, with a percentage error always within

1%. The values of the protrusion heights are, as expected, dependent on the riblet’s

geometry and tend to an asymptotic value along with the wall penetration s → ∞.

This is a very important physical result, since the level of slippage generated at wall

has an upper bound that cannot be overcome, for any given geometry. It is worth to

note that, in theory, the best possible riblets’ configuration are a series of equispaced,

infinity deep grooves, known as blades. In this case, an analytical solution for the

protrusion heights (normalized with respect to the periodicity) can be found and it is

determined to be h|| = π−1 log 2, while h⊥ =
1

2π
log 2, which is exactly equal to

h||
2

[Luchini et al., 1991].
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Figure 3.8: Computed protrusion heights normalized by the riblet’s periodicity.

3.9 Fractal riblets

Whether one considers random roughness or regular nano-structuring of the sur-

face texture, it appears appropriate to start by examining the properties of fractal

surfaces. The application of fractals to characterize rough surfaces dates back to the

eighties Mandelbrot et al. [1984], Gagnepain and Roques-Carmes [1986], Frederick

[1987], upon the recognition that many rough surfaces demonstrate self-similar prop-

erties to some extent and over a certain range of scales. Today, etching techniques

(plasma, laser, electrochemical), litography (photo, X-ray, etc.), deposition and other

approaches are routinely used to micro- and nano-texture surfaces for applications

ranging from MEMS to magnetic storage devices.

In this section, we take advantage of the boundary element method to compute

the protrusion heights for Koch-like riblets which iteratively protrude either toward

the fluid region or cave in at the wall. The microscopic, near-wall configuration which

we have considered consists of regular triangular groove (see figure 3.9, left frames).

The sides of the triangle are taken of equal length and the angle at the base, α, is

taken equal to either 45o, 60o, 90o or 120o. The first fractal iteration, second column

in the figure, is achieved by dividing each side of the triangle into three segments

and inserting an isoscope triangle (of same vertex angle α) in place of the central

segment, so that each segment of the newly created fluid-solid has equal length. The

newly rough boundary created can either protrude towards the fluid (top row) or

contract at the wall (bottom row). Figure 3.9 shows the first three iterations of the

process, which yields what is known as the Koch curve for the case α = 60o. The angle

α defines also the fractal dimension of each curve, characterizing its magnification.
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Figure 3.9: Iterative process in the construction of fractal riblets, for both outward
(top row) and inward moving curves.

In fact, at each step of the iterative procedure, each line segment is replaced by N = 4

segments of equal length, with each self-similar copy
1

Sα
=

1

2
Ä
1 + sinα2

ä as log as the

original. The Housdorff dimension is Dα =
log(N)

log(Sα)
, irrespective of whether the wall

sticks further out in the course of the iterations or caves in. For the cases considered

here it is D45 = 1.3629, D60 = 1.2619, D90 = 1.1290, D120 = 1.0526 . The fractal

dimension Dα cannot, alone, characterize the surface completely; however, we will

see later that for inward moving surfaces (bottom row of figure 3.9) the amount of

drag reduction increases with Dα.

For each one of the wall textures shown in figure 3.9, the Stokes equation is solved

in the fluid region, up to some wall units above the surface, on account of the physics

of the near-wall turbulent problem which is dominated by viscous forces. The inner

problem decouples into two set of equations, one for the longitudinal flow and one

for the cross flow, as described by Luchini et al. [1991]. For the sake of brevity the

equations and the boundary conditions are not reported here; it suffices to say that

the results of the two decoupled problems yield h‖ and h⊥, given that, on a grooved

surface, the asymptotic behavior of the velocity vector far from the surface has the

form Crowdy [2010]:

(u, v, w) = (y + h‖, 0, y + h⊥), (3.116)

with u, v and w respectively the streamwise, wall-normal and spanwise velocity com-

ponents. The two protrusion heights are drawn (qualitatively) in the top left frame

of figure 3.9, and are measured with reference to the (arbitrary) origin of the y-axis.

The numerical solution of the microscopic equations is carried out in a domain

of spanwise dimension equal to one, and vertical dimension sufficiently large for

the asymptotic solution to be established (the upper boundary can safely be taken

at y = 4). It is accomplished by a boundary element method Alinovi and Bottaro

[2018], extensively validated against results in the literature.

The calculation of the slip lengths takes advantage of the asymptotic relations
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(3.116) for the velocity fields, which are directly measured by our numerical code on

a auxiliary patch located far enough from the riblet at some distance y = y∗. The

estimation of the protrusion heights is thus obtain simply by the formula h|| = u/y∗

and similarly for the transverse case.

Examples of numerical results are given in figure 3.10. The iso-colors in the

figure define the streamwise velocity (which arises from the solution of a Laplace

equation for u [Bechert and Bartenwerfer, 1989]), whereas the streamlines (with

arrows) represent the secondary velocity vector, (v, w), stemming from the solution

of a two-dimensional Stokes problem in the (y, z) plane [Luchini et al., 1991]. A

larger secondary vortex appears in the image in the right frame, a feature associated

to larger values of both protrusion heights.

Figure 3.10: Numerical solutions for the base configuration with α = 90o (left frame)
and for the third, inward moving iterate. The colors refers to the streamwise velocity
component, u, while the lines with arrows are streamlines of the secondary, (v, w),
flow.

The distances h‖ and h⊥ define virtual walls for, respectively, the longitudinal and

transverse velocity profiles. The significant length scale, independent of the choice of

the origin, is however ∆h, displayed in figure 3.11; the figure shows that ∆h increases

as the wall moves inwards (triangular symbols) for all α’s. By the third iteration the

results are essentially converged and further iterations on the fractal curve produce

negligible modifications of ∆h for both the "i" and the "o" cases. The variation in ∆h

between the initial configuration (it = 0) and the last iteration (it = 3) quantifies, for

each opening angle, α, the additional drag reduction which we might expect when

using fractal riblets (as by eq. (1)). Such a variation is equal to 4% when α = 45o,

7% when α = 60o, 17% when α = 90o, and to almost 31% when α = 120o. Thus,

the least efficient riblets (the triangular ones, with vertex angle α = 120o) are those

which have the most to gain by hierarchical micro- and nano-structuring. When α

is equal to 45o we have the best results among all cases considered, in terms of drag

reduction, but it is likely that even better results can be obtained by reducing α or

increasing Dα as figure 3.11(b) suggests. It is important to stress, however, that the
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best results found here are not the absolute best results which could be found; it

is possible, for example, that hierarchically nano-structured blade-riblets yield even

larger values of ∆h. The search for the optimal riblet shape is left for future work.
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Figure 3.11: Protrusion height difference for all the cases considered, as function of
the fractal iteration (a) and as function of the fractal dimension for it = 3 (b).

The results in terms of protrusion heights for both inward ("i") and outward ("o")

moving surfaces are reported in Table 1, for the base configuration (indicated by "it =

0") and up to the third iteration. The outward protruding results for the case α = 45o

and α = 60o are not present in the table (nor in the following figure 3.11(a)) because

the vertices of the triangles added in the first iteration touch one another, creating

two disconnected fluid regions.
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3.10 Two phase flow validation

The two phase flow validation has been conducted in a more intensive way. We

have selected a series of benchmark test cases taken from the literature, involving dif-

ferent types of problems. The test are aimed to validate the both Stokes and Laplace

solver, with a special attention to the problem of the mass conservation occurring in

a standard BEM, as discussed in [Alinovi and Bottaro, 2018].

3.10.1 Relaxation of a two dimensional droplet

We start by studying the relaxation of a two dimensional droplet from an ellipse

of given aspect ratio, as show in figure 3.12. We assume that the droplet, initially at

rest, lies in an infinite free space filled with a different fluid. The droplet will start to

contract, under the effect of surface tension, until a circular shape is reached. During

the droplet’s contraction, the evolution of the semi-major axis a is monitored, up to

the steady state.

b
a

t

t

Figure 3.12: An elliptic droplet deforming into a circle. The right figure shows the
evolution of the interface in time.

In order to perform this study we take advantage of the free space Green’s function

and its associated stress tensor, which read

Gij(x,x0) = −δijlog(r) +
x̂ix̂j
r2

, Tijk(x,x0) = −4
x̂ix̂j x̂k
r4

, (3.117)

where r is the distance between the points x and x0, while x̂i = xi − x0i .

Regarding the boundary integral formulation, we note that this case corresponds

to solving the system

[
(λ− 1)DII +

1 + λ

2
I
][
u
]

= −SII∆f I , (3.118)

for the interfacial velocity u, with the unit normal vector pointing outside of the

droplet. We can force the system to respect the mass conservation constraint follow-

ing the formulation in equation (3.110). Since in this case we have only one interface,

the matrixC degenerates to a single equation, and, in practice, only one line and one

column must be added to the original linear system.

For this problem we consider three different values of the viscosity ratio, λ =
1

10
,

1

20
,

1

100
, and three different values of the capillary number, Ca = 0.1, 1, 10, which
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tunes the rigidity of the interface and the velocity of the relaxation. Since the aspect

ratio of the ellipse is
a

b
= 2, we aspect that, after a transient, the fluid interface as-

sumes a circular shape with radius equal to
√

2 (provided b is initially set to one). For

this simulation we use 60 spline elements and employ a fixed time step ∆t = 0.01 for

the lower capillary number, while ∆t = 0.05 for the others. The number of elements

is selected in order to obtain a good matching with respect to the steady state radius

of the droplet (here we obtain a value close to the theoretical one, up to the fourth

decimal place). However, a lower number of elements would be equally satisfactory,

since the spline elements are very suitable to discretize curved boundaries. The time

step is selected in order to have a stable time evolution of the interface, which could

in principle suffer of numerical instability due to the explicit scheme used. Its influ-

ence on the simulations is negligible since the Stokes equation is being solved under

the quasi-steady approximation. We have validated our implementation (without the

Lagrange multiplier approach) against the code written by Pozrikidis and publicly

available with the library BEMLIB Pozrikidis, finding indistinguishable differences be-

tween the results of the two codes. In the following we will call this latter method

the standard approach, to distinguish it from techniques which enforce continuity

explicitly, including the original one developed in the course of this thesis work.

The results, reported in figure 3.13 and 3.14, compare the evolution of the semi-

major axis, a, in time for both the Lagrange multiplier approach and the standard

formulation. Even if the initial transient path is similar, we note (symbols) a continu-

ous decrease of the semi-axis a after the droplet has reached the circular shape. The

effect of this mass loss is enhanced as the viscosity ratio and the capillary number

become smaller. Imposing the constraint (3.104), the radius of the droplet remains

constant in time, when t is sufficiently large, and equal to
√

2 for all the values of λ

and Ca tested.

In section 3.7.6, we have mentioned the possibility to modify the expression of

the double-layer potential to satisfy mass conservation for all possible values of λ

[Pozrikidis, 2001]. We have thus performed again the simulations implementing in

our code the proposed deflation correction and have compared the results with the

Lagrange multiplier approach, obtaining a very good agreement between the two

methods, as shown in figure 3.15. This agreement corroborates the validity of our

approch. However, as will be shown in the next cases treated, we have found that

the method of Lagrange multipliers yields better performance in term of mass con-

servation. Focusing on the normal velocity along the interface, we take its maximum

absolute value as a convergence indicator. If the problem admits a steady state solu-

tion, the interface should assume a position such that the maximum normal velocity

vanishes. The comparison between the methods is shown in figure 3.16. We observe

that the maximum normal velocity decreases until reaching a plateau, whose value is

dependent on the number of element used to discretize the droplet and goes down

as the number of elements increases.
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Figure 3.13: Evolution of the major semi-axis of the droplet for different values of λ
and Ca = 0.1. The solid lines display results obtained with the Lagrange multiplier
approach, while the markers refer to the standard BEM formulation, i.e. without ex-
plicitly enforcing mass conservation. At steady state, the value of a =

√
2 is correctly

rendered by the Lagrange multiplier approach. The initial relaxation of the droplet is
independent of the viscosity ratio.
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Figure 3.14: Evolution of the major semi-axis of the droplet for λ = 0.01 at different
Ca. The circles denotes the variation of a with time, without using the Lagrange
multiplier approach. The initial relaxation of the droplet is slower the larger is Ca,
i.e for small surface tension the droplet reaches its final shape in a longer time.
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Figure 3.15: Comparison between Lagrange multiplier approach (solid line), defla-
tion approach (empty circles), and standard formulation (dashed line) at λ = 0.01
and Ca = 1
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Figure 3.16: Maximum normal velocity history. The dashed line corresponds to the
standard (unconstrained) implementation, the line with empty circles corresponds
to the deflation approach, while the solid line correspond to the Lagrange multiplier
approach.

The Lagrange multipliers approach offers a better performance in minimizing the

maximum normal velocity along the droplet’s interface at steady state, which is sev-

eral orders of magnitude lower with respect to the method proposed by Pozrikidis

[2001] at the same spatial resolution and time step. We have found out during the

simulations that mass leakage depends on the number of elements employed, de-

creasing with the increase of the resolution. It is worth observing that the problem of

mass conservation at low viscosity ratios is intrinsic to the boundary element method

and using a large number of elements does not solve the problem at the source. The
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method described here is more accurate (at any given resolution) and computation-

ally efficient.

3.10.2 Deformation of a droplet under a shear flow

We aim to reproduce the numerical results of a single droplet confined in a chan-

nel of height 2H and length L, as shown in figure 3.17. The shear flow is generated

by the two channel walls, moving at a given velocity U in opposite directions. The

reference numerical simulations has been performed by Sheth and Pozrikidis [1994],

who have employed for their computations a finite difference code with embedded

a volume of fluid method. They conducted a parametric study of the deformation of

the droplet by varying the viscosity ratio droplet/outer fluid and the Reynolds number

inside the channel. Since our formulation is valid only for the Stokes flows, we refer

to the simulation presented in the reference at Re = 1, which falls reasonably close

to our approximation. The droplet of viscosity µd is neutrally buoyant and placed in

the middle of a square channel of thickness 2H, filled with a fluid with viscosity µf .

The diameter of the droplet, D, is equal to half the channel height. The base flow,

u, generated by the applied boundary conditions can be easily calculated analytically

and reads

u(y) =
U

H
(y −H), (3.119)

where y is the wall-normal coordinate.

y

x

L

Figure 3.17: Sketch of the numerical experiment of a droplet in a shear flow.

The boundary integral equation is similar to the one employed in the previous

section, but this time two walls are in the domain of interest. The effect of the walls

can be taken into account by using different approaches. In both cases the Green’s

function can be selected in order to satisfy the periodicity of the flow, thus avoiding

the discretization of the inlet and outlet of the channel. The simplest choice for the

flow representation, is to derive the boundary integral equation for the disturbance
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velocity generated by the droplet immersed in the flow given by the relation (3.119):

this procedure has been adopted by Zhou and Pozrikidis [1993]. In our case, the

walls are explicitly taken into account by adding the related single-layer and double-

layer potentials. The two approaches are completely equivalent in term of results,

but the second approach give raise to similar integral relation with respect to the one

discussed in this thesis.

We have selected from the reference work two different cases, involving different

viscosity ratios, λ = µd
µf

and droplet’s surface tension σs(i.e. capillary numbers), as

reported in table 3.3.

Case λ Ca

1 1 0.2

2 10 0.4

Table 3.3: Non-dimensional parameters used in present numerical experiments.

Since the flow is steady and anti-symmetric with respect to the half-channel height,

the droplet is expected to deform under shear stresses acting on its surface and to

reach a well defined deformed configuration. Even in this case, the agreement with

the literature is very good, with the droplet fitting perfectly the shape found by Sheth

and Pozrikidis [1994].

(a) (b)

Figure 3.18: Deformation of a droplet in a shear flow. The solid lines are the com-
puted shapes for case 1 (a) and case 2 (b), while the colored dots are the shapes
computed by Sheth and Pozrikidis [1994].

3.10.3 Relaxation of a pinned interface

For this numerical example, we consider a simple cavity bounded by three walls

of length L and a fluid interface, pinned at the corners of the cavity, as sketched in
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figure 3.19. The initial shape of the interface is a cosine wave of equation y0(x) =

b cos(
2π

L
x)− b, where b is a constant. Similarly to the droplet’s case, the surface ten-

sion between the two fluids induces the motion of the interface, which experiments

a transition from the initial shape to a prescribed shape, analytically available un-

der the hypothesis of small amplitude deflection of the interface. The Young-Laplace

equation, expressed for convenience in non-dimensional form, is

d2y

dx2

[
1 +

(dy
dx

)2]− 3
2

= C1, (3.120)

with C1 = ∆P the non-dimensional pressure jump across the interface and y the ver-

tical displacement of the interface. If the curvature of the interface is small enough,

the term in brackets in equation (3.120) tends to one, leading to the following ap-

proximate solution

y(x) =
C1

2
x(x− L), (3.121)

after imposing the boundary conditions

y(0) = 0, y(L) = 0. (3.122)
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Figure 3.19: Sketch of the cavity with a wavy interface (left), and successive positions
assumed by the interface during its relaxation into a parabolic shape (right).

Particular attention should be payed to the constant C1: since the pressure differ-

ence across the interface is not known a priori, its value can be calculated imposing

the conservation of mass inside the cavity through the relation:

∫ L

0
y0dx =

∫ L

0
yfdx, (3.123)

which yields C1 =
12b

L2
. In order to obtain more precise results, equation (3.120) can

be solved without approximation using standard iterative techniques.

For this simulation, we have employed 60 elements to discretize each edge of the

cavity and the interface. We have set a constant time step ∆t = 10−3 for Ca = 0.1,
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while ∆t = 10−2 for the lower values of Ca. The fluid in both the domains is initially

at rest and the interface moves as an effect of the surface tension. Periodic boundary

condition are applied to left and right boundaries by using the following Green’s

function [Pozrikidis, 2002]:

A(x̂) =
1

2
log{2[cosh(ωx̂2)− cos(αx̂1)]}, (3.124)

G11 = −A(x̂)− ŷ ∂A(x̂)

∂ŷ
+ 1, (3.125)

G12 = ŷ
∂A(x̂)

∂x̂
, (3.126)

G22 = A(x̂) + ŷ
∂A(x̂)

∂x̂
, (3.127)

where x̂ = x− x0 and α = 2π
L . The components of the stress tensor Tijk are:

T111 = −4
∂A(x̂)

∂x̂
− 2x̂2

∂2A(x̂)

∂x̂∂ŷ
, T112 = −2

∂A(x̂)

∂ŷ
− 2x̂2

∂2A(x̂)

∂ŷ∂ŷ
, (3.128)

T212 = 2x̂2
∂2A(x̂)

∂x̂∂ŷ
, T222 = −2

∂A(x̂)

∂ŷ
+ 2x̂2

∂2A(x̂)

∂ŷ∂ŷ
, (3.129)

with no need to specify the missing components of Gij and Tijk since they are sym-

metric tensors.

In this case, we monitor the volume of the fluid trapped between the cavity walls

and the interface, given, at each time, by the following integral relation

V =

∫
Ω1

dS =
1

2

∫
Ω1

∇ · x dS =
1

2

∫
∂Ω1

x · n dl, (3.130)

which is integrated in the same fashion as other integral quantities. The results,

reported in figures 3.20 and 3.21, shown a similar behavior to that observed in the

droplet relaxation benchmark. The total mass inside the cavity is not conserved in

time and mass leakage becomes larger as the capillary number and the viscosity ratio

become smaller. The usage of the deflation approach (3.101) turns out to be not as

effective as in the previous case and the mass leakage (or creation) persists, even if

with a lower growth rate, as shown in figure 3.23. Instead, the Lagrange multiplier

approach leads to very satisfactory results, maintaining constant the mass inside the

pocket and fitting the theoretical steady-state position of the interface prescribed by

equation (3.120) for every test value of λ and Ca, as shown in figure 3.22 for a

representative case.

Additional features arise from the analysis of the maximum absolute value of

the normal velocity along the interface during the relaxation process, shown for a

representative set of parameters in figure 3.24. We note that the standard boundary

element formulation is unstable: the initial decrease in the maximum value of the
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normal velocity is followed by an increase. This phenomenon brings, sooner or later,

to the divergence of the simulation, with the interface breaking down anomalously.

The double-layer deflation seems to counteract this undesirable effect, but it presents

some difficulties in bringing down the maximum normal velocity below a reasonably

low value. Again, the Lagrange multiplier approach gives us the best result, yielding

a much better convergence with respect to the other methods tested.
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Figure 3.20: Time variation of the volume of fluid contained inside the cavity (V0

is the initial value) for different values of λ and Ca = 0.1. The loss of fluid within
the cavity is enhanced as the viscosity ratio λ decreases. The solid line represents
the mass variations in time for the same cases when using the Lagrange multiplier
approach.
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Figure 3.21: Time variation of the volume of fluid contained inside the cavity for
different values of Ca and λ = 0.01. The loss of fluid within the cavity is enhanced
by a decreasing value of Ca. The solid line represents the mass variations in time for
the same cases when using the Lagrange multiplier approach.
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Figure 3.22: Position assumed by the interface starting from a co-sinusoidal shape (.−
line) for λ = 0.05 and Ca = 0.1. The −N line represents the computed position for
the standard boundary element implementation at t = 10.5, while the solid squares
represent the final steady solution with the Lagrange multiplier correction which,
at the same instant of time, agrees with the theoretical solution given by equation
(3.121) (dashed line).
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Figure 3.23: Comparison between standard implementation (dashed line), double
layer deflation (empty circles) and Lagrange multiplier approach (solid line), for λ =
0.05 and Ca = 1.
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Figure 3.24: Maximum normal velocity along the interface for λ = 0.01 and Ca = 1
for the standard boundary element implementation (dashed line), double-layer de-
flation (empty circles) and Lagrange multiplier approach (solid line).



3.10. Two phase flow validation 77

It is also interesting to compare the results obtained using the boundary element

method with a standard Volume of Fluids method (VoF) implemented with the finite

volume framework provided by openFOAM [2015]. The VoF method was introduced

firstly by Hirt and Nichols [1981] and it is based on defining an indicator function,

called volume fraction, bounded between [0, 1]. The extremities of the interval are as-

sociated to the two fluids, while the interface is found in the cell with values between

0 and 1.

This approach is widely used to compute multiphase flows, but it is well know

to suffers of the undesired phenomenon known as parasitic currents [Harvie et al.,

2005]. This numerical issue consists in the generation of non-physical velocities near

the fluid interface and the phenomenon becomes very significant in the presence

of surface-tension-dominated flows. If the magnitude of these velocities is not very

large, the method is able to capture the interface with satisfactory accuracy, eventu-

ally generating small oscillations of the volume fraction, but the flow fields will result

unclean. To underline this fact, we can look at the velocity magnitude inside the fluid

domain at steady state, as shown in figure 3.25. For the finite volume computation,

we have used a fine Cartesian mesh, with a spacing between the grid points of
1

300
,

over which the Stokes equation are solved. The viscosity ratio is set to λ = 0.018

and the capillary number is Ca = 0.1, based on the velocity scale uref =
ν2

L
. We

can clearly see how the VoF produces significant velocities in the proximity of the

interface, which persist in time, while the boundary element method does not suffers

of this unwanted phenomenon.

Figure 3.25: Absolute velocity iso-surfaces in the proximity of the interface for the
problem sketched in figure 3.19 using BEM with Lagrange multiplier correction (left)
and VoF (right).

3.10.4 Flow over superhydrophobic surfaces: comparison with existing
results

The flow over superhydrophobic surfaces has been extensively studied from both

a theoretical and numerical point of view, assuming that on the interface a perfect

slip applies. This is a reasonable hypothesis only in the case of a very small vis-

cosity ratio between the working fluid and the lubricant fluid. The validations pass

through different works available in literature, involving both the longitudinal and

the transverse flows. The first important comparison to be done is with respect to the

analytical formula found by Philip [1972], who has given the exact value of the pro-

trusion heights for a wall composed by alternating stripes with slip/no-slip boundary
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condition, aligned and perpendicular to the flow direction, by using conformal map-

ping. This type of wall pattern mimics an idealized super-hydrophobic surface with

a flat and infinitely rigid interface. The analytical formula for the protrusion heights,

given in function of the solid fraction φs = 1− w

b
reads

h||
b

=
1

π
log(sec

îπ
2

(1− φs)
ó
), h⊥ =

h||
2
. (3.131)

We selected three different values of φs, equal to 0.25, 0.50, 0.75 respectively and the

results, shown in figure 3.26, are extremely close with respect the theoretical values.

h

h||

s

h

ϕs

Figure 3.26: Comparison between the protrusion heights calculated by Philip [1972],
in solid lines, and the present calculations shown with red symbols.

An extension to Philip’s works has been done recently by Crowdy [2010] and by

Davis and Lauga [2009], who found a semi-analytical formula for the longitudinal

and traverse protrusion heights respectively, including the effect of the curvature of

the interface. They considered a circular shape of the interface for both the protrud-

ing and the depressing interface case. This is a good approximation that turns out to

be exact only in the case of protruding interface in the presence of a sufficiently small

capillary number, that makes the interface rigid. In the case of a depressing bubble,

the circular shape is in principle not correct, even if the error is not large for small

curvatures. The correct interface position is to be sought from the solution of the

Young-Laplace equation (3.120), which suggests that a parabolic shape is the correct

one. The protrusion heights are given in both cases in terms of a power expansion

of the protrusion angle, defined as the angle that the tangent to the interface at the

pinning point forms with the horizontal. These formulas however are considered to

be valid under the hypothesis of small values of the interface span c. Both the models

for the transverse and the longitudinal protrusion height perform quite well for value

of c up to 0.5.

We start by considering the transverse problem, governed by the Stokes equation.

In this case we do not fix the interface, but we let the solution to reach the steady
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state by updating the interface position in time. The mass conservation is enforced

using the Lagrange multiplier approach, which is mandatory in order to obtain a

mass-satisfying solution. In our numerical simulations we employed the same set-up

shown in figure 3.4 and we computed the slip length by varying the viscosity ratio,

the capillary number, the length of the cavity c, and the volume ratio Φ defined as

the ratio of the volume of the gas to the volume of the cavity. We use Φ instead of the

protrusion angle since this quantity is independent form the shape of the interface,

while θ can be defined strictly for the circular shape interface, which is not the case

of the depressing bubble. We note moreover that, according to our definition, Φ > 1

means that the meniscus is protruding outside of the cavity. Davis and Lauga [2009]

derived an analytical formula for the tranverse protrusion height which, according to

our nomenclature, reads:

h⊥
b

=

Ç
c

b

å2 ∫ ∞
0

A(s) ds, (3.132)

where
c

b
is assumed to be small and the integrand function is

A(s) =
s

sinh 2s(π − θ) + s sin(2θ)

×
î

cos(2θ) +
s sin 2θ cosh sπ + sinh s(π − 2θ)

sinh sπ

ó
, (3.133)

where in our case, the angle θ is expressible in term of the volume fraction Φ with no

difficulties.

In figure 3.27 we propose a comparison between the analytical model and our

numerical simulations. The agreement is good, especially for the values of c = 0.30

and c = 0.50, but this is not surprising, since the analytical model is valid in the limit

of small values of c. If one compares the value of the slip length with c = 0.70 and

flat interface (Φ = 1), the model by Davis and Lauga [2009] yields
b

s
= 0.0963, while

both Philip’s and our calculations give
b

s
= 0.126. Increasing the viscosity ratio λ

has the effect of decreasing the slip length, since for small λ the approximation of

perfect slip along the interface is better. We will return to the effect of the viscosity

ratio in the next chapter, with a more extensive discussions. The present simulations

also confirm the existence of a critical value of Φ for which the slip length becomes

negative. This condition, already pointed out by Steinberger et al. [2007] and Sbra-

gaglia and Prosperetti [2007], occurs when the interface has an excessive protrusion

outside of the cavity. The largest value of the protrusion height is found, almost inde-

pendently of Ca and λ, when Φ is close to 1.05, i.e. when the interface is very mildly

protruding out of the cavity. The definite answer on the drag-reducing abilities of the

surface can however come only from the resolution of the companion problem for the

longitudinal protrusion height since, as shown by Luchini et al. [1991], shear stress

reduction at the wall depends to first order on the difference between longitudinal



80 Chapter 3. The microscopic problem

and transverse protrusion heights.

The interface deforms under the action of the shear flow, as shown in figure 3.28,

but for a sufficiently low capillary number, it presents a very small deviation from the

steady shape position that it would have in the absence of forcing flow. The flow field

generated inside the domain are reported in figure 3.29 for both Φ larger and smaller

than one.
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Figure 3.27: Comparison in transverse protrusion heights between the analytical
model by Davis and Lauga [2009] and the present numerical simulations. The solid
lines correspond to the analytical model by Davis & Lauga for c = 0.30 (lower line),
c = 0.50 (intermediate line), c = 0.70 (upper line). Symbols are the simulations, for
the same values of c, with λ = 0.018 (∆), λ = 0.05 (2), λ = 0.1 (◦). (a) Ca = 1; (b)
Ca = 0.1

Figure 3.28: Shape of the interface for Ca = 1 (left) and Ca = 0.1 (right) and
λ = 0.1. The values of Φ are 0.85, 0.90, 0.95, 1.10, 1.15, 1.25 and the flow is from left
to right.
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(a) (b)

(c) (d)

Figure 3.29: Iso-contours of the streamwise and wall normal velocity for λ = 0.1 and
Ca = 1. The value of the volume ratio is Φ = 0.85 (a)-(b) and Φ = 1.15 (c)-(d).

We move further to the validation of the longitudinal problem. In this case we

reproduce exactly the set-up found in literature, since here there is no time advancing

of the interface and any shape can be set. The analitycal formula by Crowdy [2010]

is available for the longitudinal flow and reads

h||
b

=
Äc
b

å2
π

24

î3π2 − 4πθ + 2θ2

(π − θ)2

ô
, (3.134)

where again the angle θ is expressed in term of Φ.

Figure 3.30 reports the comparisons between our numerical simulations, the ana-

lytical model and the finite element calculations by Teo and Khoo [2010]. We employ

λ = 0.018 (air-water), which is low enough to consider the perfect slip approxima-

tion used by the reference works as reasonably applicable. The results are in perfect

agreement with the reference data by Teo and Khoo [2010] and the curve at c = 0.75
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Figure 3.30: Comparison in longitudinal protrusion heights between the analytical
model by Crowdy [2010], the numerical results by Teo and Khoo [2010] (solid lines)
and the present numerical simulations for different values of c at λ = 0.018.

is slightly above the values calculated by our simulations, simply because the span

of the interface is large and the effect of the non-zero viscosity ratio is mildly felt.

The analytical approximation by Crowdy [2010] gives very good result for c < 0.50;

beyond this value of c the difference between the numerical and the analytical results

become large and the model is no more applicable.

3.10.5 Final remarks on validations

In this section, we have applied our boundary element code to different selected

test cases for both one-phase and two phase flows. For all the validations, the results

are very close to the references, thus we are confident on the predictive capabilities

of the code. During the validation campaign we have shown how a viscosity ratio

λ < 1 and the presence of a large interfacial tension cause issues in mass conserva-

tion, offering clear examples and a novel remedy. The method proposed is based on

an easy-to-implement modification of the linear system obtained by the discretization

of the governing boundary integral equation, which consists in adding one constraint

equations for the interfacial velocity for each interface inside the domain of interest,

by the use of Lagrange multipliers. The technique is very effective in limiting the mass

leakage/creation for all the benchmark problems considered. In comparison with the

deflation method, introduced by Pozrikidis [2001], it achieves a better convergence,

reducing the maximum absolute velocity normal to the interface by several orders

of magnitude and ensuring mass conservation even in cases where the double-layer

deflation approach fails. We have also taken advantage of the validation step to com-

pare the analytical results available in the literature and the numerical simulations.

This comparison highlights that the formulas derived by Davis and Lauga [2009] and
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Crowdy [2010] provide a very good estimate of the protrusion heights up to c ≈ 0.5,

which is a surprising large value, since they are both valid under the dilute limit

approximation (i.e. very small value of c).

3.11 Flow over superhydrophobic surfaces and LIS

In this section we compare the values of the slip lengths for both the longitudinal

and transverse problem, as function of salient geometrical and physical parameters.

For our simulation campaign, we set the thickness of the lubricant film δ = 0.5 and let

c assume three different values of increasing magnitude, respectively 0.30, 0.50, 0.70.

The interface is either depressing into or protruding out of the wall cavity in depen-

dence of the volume fraction Φ. The viscosity ratio λ between the lubricant and the

working fluid is varied from low to high values, keeping in mind that λ < 1 is com-

monly encountered in gas-water situations (e.g for air-water λ = 0.018), while λ > 1

belongs to oil lubricants. In particular it can be found that λ = 20÷ 100 is commonly

encountered for silicon oils [Than et al., 1988], while λ = 25÷ 50 is characteristic of

vaseline oils [Roelands, 1966], considering water as the working fluid. The capillary

number tunes the stiffness of the interface and, in practical applications, it is usually

low enough to guarantee an almost rigid interface, undeformed with respect to the

shape that would be assumed without flow forcing. In this situation, the interface is

described by a circular arch for the case of a protruding bubble [Davis and Lauga,

2009], while a parabolic shape occurs when the lubricant fluid is depressing into the

wall cavity. During our simulations, we have found out that a Ca > 0.25 is sufficiently

small to guarantee a substantially rigid interface, with very small deviation with re-

spect to the steady-state position. This is a favorable result that avoid employing very

small values of Ca, which may create an instability of the interface with the explicit

time advancing scheme used. Moreover, we found that the protrusion heights exhibit

a very low dependency from the capillary number, especially if it is set low enough

to guarantee a stiff interface. The reason behind this result is that the value of the

protrusion height is mainly influenced by the shape of the interface, which does not

vary significantly for Ca > 0.25. Due to these considerations, a value Ca = 0.1 is

employed in our calculations.

We start our analysis by comparing the computed longitudinal and transverse

protrusion heights for different viscosity ratios, starting from low to high values, and

for different interface spans, which are the most salient parameters involved in the

problem. In figure 3.31, the trend of the protrusion heights is shown against the vol-

ume fraction Φ. The perpendicular protrusion height h⊥, reported in the left column,

shows as expected a dependency on the viscosity ratio and we observe that its mag-

nitude increases as λ and c increase. The physical interpretation is straightforward:

on the one hand, the slippage over the lubricant film is promoted by a low value of

the viscosity ratio and, on the other, the working fluid encounters a lower resistance

as the portion of no slip wall is decreased. Moreover, we note that the reduction in
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Figure 3.31: Computed transverse (left column) and longitudinal protrusion heights
for increasing values of c and a wide range of λ at Ca = 0.1. The value of the interface
span c is increased from top to bottom namely c = 0.30 in the top row, c = 0.50 in the
middle row and c = 0.70 in the bottom row. The dashed lines report the values of the
protrusion heights when lambda→∞, i.e. when the interface is solid.
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Figure 3.32: Computed difference between transverse and longitudinal protrusion
heights for increasing values of c and a wide range of λ at Ca = 0.1. The value of the
interface span c is increased from top to bottom, from c = 0.30 to c = 0.70.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.33: Flow field developing into the computational domain for two represen-
tative cases with a depressing (left) and protruding (right) interface at λ = 20 and
Ca = 0.1. (a)-(b): longitudinal velocity component; (c)-(d) wall normal velocity
component; (d)-(e) transverse velocity component.
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magnitude, associated to the increase of the lubricant fluid viscosity, is not linear and,

for example, an increases of λ from 0.018 to 0.1 produces a small drop in the the pro-

trusion height, with the two curves that remain quite close, especially for the lower

value of c. Another information that can be inferred is that the viscosity ratio does

not only affect the magnitude of h⊥ but also its trend as function of Φ. In particular,

as soon as λ > 1, the protrusion height presents a maximum for a value of Φ slightly

larger than the unity. The maximum position is however not constant and moves

slightly leftward as λ increases. The slip length keeps reducing with the increase of

the viscosity ratio until λ = 1 is reached. A further increment of λ profoundly changes

the trend of the protrusion height, which, from this point on, will no longer present

a maximum. We can note that for values of λ approximately grater than 5, the curve

become very close to the dashed line reported in figure 3.31, which corresponds to

the slip length computed with the no-slip condition applied over the interface. This

result is consistent with the fact that a lubricant fluid with a large viscosity compared

to that of the working flow, in practice, behaves like a solid wall, minimizing the slip-

page and drastically reducing the drag reduction performance of the surface. Finally,

we note that the protrusion height shows an asymmetric behaviour with respect to

the unitary value of Φ (i.e. flat interface). For a given value of c, increasing the vol-

ume fraction after the optimal value, the slip length starts to monotonically decrease

following a quasi-linear variation, whose slope is almost independent from the vis-

cosity ratio. Reducing the volume fraction, we obtain that the value of the slip length

decreases again but never crosses the limit delineated by dashed line since, in the

limit of Φ → 0, the geometry behaves like riblets similar to those studied by Luchini

et al. [1991].

For the parallel protrusion heights h||, reported in the right column of figure 3.31,

we can extract similar features to those discussed for h⊥. Again there is a strong de-

pendence on the viscosity ratio, and the magnitude of the parallel protrusion height

increases as λ decreases. The decrement of the slip length associated with an in-

crease of the viscosity ratio is not linear. The fact that the reduction of the protrusion

height does not scale linearly with the reduction of the viscosity ratio is potentially a

favorable behaviour which hypothetically permits to use a couple of fluids forming a

more robust interface, while minimizing the penalty associated to the increase of the

viscosity ratio. The longitudinal slip lengths do not exhibit a maximum as function

of the volume fraction, but keep increasing along with Φ for λ < 1, while showing

an opposite and non-symmetric trend with respect to the value of the viscosity ra-

tio. This particular behaviour of the parallel slip length was also reported by Ng and

Wang [2011], who allowed a partial slip over the interface by means of the Navier

boundary condition with an intrinsic slip-length, which however did not have a clear

physical meaning. Also in this case, for a large value of λ the curves collapse on the

dashed line, representing the longitudinal protrusion height for the no-slip condition

applied on the interface. Thus, it is found again that a large viscosity of the lubricant

fluid leads the interface to behave similarly to a no-slip wall.
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It is now important to underline, that the standalone values of the protrusion

heights may have a small relevance when a turbulent flow over SHS/LIS is being

considered. As pointed out by Luchini [1996], the parameter that controls the drag

reduction is the difference between the slip lengths: the larger is this difference the

larger will be the drag reduction to be expected. This topic is being discussed in the

next section. Following this criterion, it is useful to look at this difference reported

in figure 3.32. The best drag reduction, at any given viscosity ratio, will be obtain

for the most protruding bubble, while the worst scenario coincide with the value of

Φ which maximize the transverse protrusion height, corresponding to an inflection

of the curves representing ∆h. These considerations are expected to be not valid if

the typical size of the bubble mattress becomes to large with respect to the size of

viscous sublayer. In this case, especially for the LIS cases involving a high viscosity

ratio, a surface roughness-behaviour is expected [Jiménez, 2004], turning the drag

reduction into a drag increase.

The flow field for both longitudinal and transverse flow can be reconstructed into

the domain and is shown in figure 3.33 for a representative case at λ = 20, c =

0.50, Ca = 0.10 and φ = 0.90 and Φ = 1.10. As expected, consists in a recirculation

zone taking place between the wall cavity and the interface for the transverse flow,

while a linear velocity profile is established for both u and w at a sufficient distance

above the interface.

3.12 Outlook and perspective

The flow over superhydrophobic and liquid-impregnated surfaces has been sim-

ulated taking advantage of the Stokes problem decoupling, which leads to the def-

inition of the longitudinal and the transverse problems. This procedure is possible

only taking into account a periodic wall texture along the streamwise direction and

this limitation does not allow to evaluate the flow past other important configura-

tions, such as pillars, which, conversely, require a fully three dimensional simulation.

The extension of the present work in 3D would surely possible but has some bottle-

necks outlined in this section. The boundary integral formulation is in principle not

difficult to extend in three dimensions, since the assembling procedure presented in

section 3.5 still applies and the final result will be formally very similar to equations

(3.57). Naturally, the single and double layer operators turn from line to surface

integrals extended over the patches composing the computational domain. The diffi-

culties are more related to the numerical solution of the boundary integral equation

then on their theoretical definition. From a practical point of view, the first issue

encountered is the discretization of surfaces in triangles or, for a better accuracy, in

6−nodes curved triangle with the associated difficulties related to the complication

of the quadrature formulas for the integral operators [Pozrikidis, 2002]. Moreover,

the doubly periodic Green’s function for the Stokes flow, which in two dimensions

has the closed form (3.88), in three dimensions loses this feature and it is to be found
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by Fourier series expansion or by Ewald summation method [Pozrikidis, 1996], thus

increasing in a consistent manner the difficulties of the calculations. The integral

operators present a non-regular behaviour when the field point lays on domain’s

boundary; the de-singularization of the integrals becomes very difficult and it usually

performed by the employing specific mathematical identities which, however, creates

some issue in a direct solution of the discrete boundary element system. The solu-

tion is usually found by iteration with a process, introduced by Pozrikidis [Pozrikidis,

2002], similar to the Gauss-Seidel method.

Considering all these technical issues, it is maybe a good idea concentrate the

efforts on the direct numerical simulations of the turbulent flow over SHS/LIS in

a similar fashion to the one employed for the surface roughness. This approach is

surely computational expensive but presents the advantages that the evaluation of

the drag reduction performance of the coating is not restricted to the validity limit of

the protrusion heights approach. The solution of the problem in this sense is however

far to be trivial and passes thorough the use of a proper level-set (LS) or volume of

fluid (VoF) approach [Hirt and Nichols, 1981]. Two main issues have been detected

with this approach during the development of the present work. The first is related

to the lack of a proper boundary condition, within the LS/VoF framework, able to

guarantee the anchoring of the interfaces at the pinning edges of the underlying wall

texture. This is due to the fact that the both LS and VoF solve an hyperbolic equation

for the transport of the indicator function and thus the boundary conditions that can

be specified are of Dirichlet or Neumann type. None of the two is able to fulfill the

proposed target, since the pinning is physically the result of the energy balance be-

tween the solid, the liquid and the gaseous phase which is not taken into account in

the model. A rough way to overcome this issue is to assign a discontinuous Dirich-

let boundary condition, prescribing a jump of the indicator function in the region

where the pinning is desired. Even if working, the stability of the calculation can

be significantly affected by this procedure. The second problem is addressed to the

creation of parasitic currents consisting in the generation of non-physical velocities

near the fluid interface and the phenomenon becomes very significant in the presence

of surface-tension-dominated flows. Very promising in the mitigation of this problem

seems to be the numerical method proposed by Raeini et al. [2012], even if it is not

of easy implementation, it may constitute a valid approach to the problem. Another

promising methodology has been very recently proposed by Xie and Xiao [2017] and

it presents an affordable programming difficulty.
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Chapter 4

The macroscopic problem

In this chapter, we discuss the results related to the macroscopic problem with a

focus on the estimation of a drag reduction induced by SHS/LIS coatings in a turbu-

lent flow in a channel. Since in this case the characteristic length scale might be very

different with respect to the microscopic flow near the wall protrusions, the key-idea

is to use the calculated values of the protrusion heights to model the slippage at each

wall by means of an equivalent boundary condition applied to a fictitious and smooth

surface. A suitable condition was introduced by Navier [1823] and reads

u = h

Ç
∂u

∂n

å
, h = diag(h||, h⊥) (4.1)

where u is understood as the velocity field components in the in-plane directions and

h is the slip tensor, which depends on the wall texture, while the condition for the

wall normal velocity is simply v = 0. Equation (4.1) gives a relation between the slip

velocity and the wall shear stress. Any orientation of the SHS/LIS with respect to the

flow direction can be obtained by a simple rotation of the slip tensor h, as already

shown in chapter 2.

In general, we consider a three-dimensional unsteady flow governed by the mo-

mentum and continuity equation for an incompressible, Newtonian fluids

∇ · u = 0, (4.2)

∂u

∂t
+ (u ·∇)u = −∇P +

1

Reb
∇2u+ f . (4.3)

The equations have been made non-dimensional by choosing a reference length

and velocity scales, U∗ and L∗, and introducing the corresponding Reynolds num-

ber Re =
U∗L∗

µ
, where ρ and µ are the density and dynamic viscosity of the fluid

considered.
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Figure 4.1: Computational domain with dimensions and boundary conditions. The
colors represent iso-surfaces of instantaneous streamwise velocity colored by the bot-
tom wall distance.

We consider for our calculations a classical turbulent channel flow studied so far

by Kim et al. [1987], shown in figure 4.1, together with the boundary conditions. We

perform our simulations at nominalReτ = 180, corresponding toReb =
UbH

ν
≈ 2800,

using the mean bulk velocity. Periodic boundary conditions are applied in both

streamwise and spanwise directions, while the upper and the lower wall are assumed

to be coated with a SHS/LIS, taken into account via the Navier boundary condition.

The values of the slip lengths are taken from microscopic calculations found in chap-

ter 3 and conveniently re-normalized using the half channel heightH. The flow inside

the channel is driven by a pressure gradient f that maintains a constant streamwise

flow rate in time.

4.1 Numerical method

The finite volume method is a numerical approach for solving compressible and

incompressible fluid flows in any number of space dimensions and it is the numerical

method employed in our macroscopic calculations. The starting point is the dis-

cretization of the conservation equations (4.2): the fluid domain is subdivided in a

finite number of small, non overlapping, control volumes by a grid which defines the

control volume boundaries. The computational nodes, where the unknown variables

(u, p) are to be computed, can be arranged mainly in two different ways:

• staggered;

• collocated.

The staggered arrangement, allocates the velocities at the control volume bound-

aries and the pressure in the cell center, while, in the collocated arrangement, all the
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unknowns are computed in the control volume center. Despite their simplicity, collo-

cated grids were out of favour for a long time in the past because of their aptitude

to create pressure oscillations in the flow field. However, after solutions of this prob-

lem have been proposed [Rhie and Chow, 1983], the collocated arrangement was

preferred thanks to its simplicity in non-Cartesian grid generation.

The basic idea of the finite volume method is to require the satisfaction of the

conservation equations at each control volume; thus, if the mass and momentum

balance are satisfied at each control volume (CV), they will be satisfied on the whole

domain. The Navier-Stokes equations and continuity equation are integrated over

each control volume assuming the following integral form:∫
Ω

∂ui
∂t

dΩ +

∫
Ω
ui
∂uj
∂xj

dΩ = −
∫

Ω

∂p

∂xj
dΩ +

∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ +

∫
Ω
fi dΩ, (4.4)

∫
Ω

∂ui
∂xi

dΩ = 0. (4.5)

In figure 4.2 a three-dimensional Cartesian control volume is presented together with

the notations used. The CV consist of six plane faces, denoted with lower case letters

(e, w, n, s, t, b), corresponding to their orientation with respect to the central node

(P ).

Figure 4.2: Control volume for a three dimensional Cartesian grid.

The volume integrals involving the convective and the diffusion terms can be

conveniently transformed into surface integrals over the CV boundaries using Gauss’

divergence theorem and the incompressibility condition:∫
Ω
ui
∂uj
∂xj

dΩ =

∫
S
uiu · n dS, (4.6)

and ∫
Ω

1

Re

∂

∂xj

∂ui
∂xj

dΩ =

∫
S

1

Re
∇ui · n dS. (4.7)
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An arbitrary flux φ through the CV boundaries can be calculated as the sum of all

fluxes through the surface composing the control volume as:

∫
S
φ dS =

N∑
k=1

∫
Sk

φ dS, (4.8)

where N is the number of control volume faces and φ can be either the convective or

the diffusive flux defined in equations (4.6)-(4.7).

In order to numerically solve the equations, an approximation for the surface

integrals must be made. The common practice consists in estimating the surface

fluxes, for an arbitrary face k, with the mid-point rule as:∫
Sk

φ dS ≈ φkSk. (4.9)

The integral is approximated by the value of φ at the surface center, times the area

of the surface at which the integral is calculated. It is possible to show that this

approximation is of second order accuracy. Usually, for collocated grids, the value of

φ at the face center is not known and an interpolation is needed in order to express

φk as a function of neighboring computational nodes. Referring to figure 4.2, the

value of φ at the CV face centers is obtained by linear interpolation between the two

nearest nodes, as follows (e.g. for the "e" face):

φe = λφP + (1− λ)φE , (4.10)

where λ is a weight defined as:

λ =
xe − xE
xE − xP

. (4.11)

This scheme is called central difference scheme and it is of second order accuracy.

For clarity, the discretization of the convective fluxes will be shown only for the e-face

of the cartesian CV shown in figure 4.2 and only for the velocity component u along

the x direction. The fluxes at the other surfaces can be treated in the same fashion

applying the appropriate subscripts permutation. Applying the above approximation,

the discrete convective and diffusive fluxes read

∫
Se

uiu · ne dSe ≈ meue = me[λuP + (1− λ)uE ], (4.12)

and ∫
Se

1

Re
∇ui · ne dSe ≈

Se
Re

uE − uP
xE − xP

; (4.13)

me = ueSe in (4.12) is the mass flow rate through the surface e.

The spatial discretization is completed by the approximation of the pressure gra-

dient and the body forces, also called source terms. For an arbitrary source term q
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the following approximation is applied:∫
ΩP

q dΩ ≈ qP∆ΩP . (4.14)

The integral is estimated by the product between the central value of q in the con-

trol volume center and the cell volume ∆Ω. Adopting this rule, the finite volume

approximation for the pressure term becomes (e.g along the x direction):∫
Ω

∂p

∂xj
dΩ ≈ (pe − pw)

∆xp
∆Ω; (4.15)

pe and pw are the interpolated values of p at the control volume faces e and w using

the already defined central difference scheme.

Analogously, the forcing term f is:∫
ΩP

f dΩ ≈ fP∆ΩP . (4.16)

It is worth to note that problems may appear using collocated grids and pressure

oscillation may appear in the flow field and lead to non-physical results. The problem

is resolved using a method, originally developed by Rhie and Chow [1983], which

consists in correcting the mass flow rate through a control volume surface by using

additional terms involving the pressure gradient at the target face.

4.1.1 Fractional Step Method

The lack of an explicit equation for the pressure complicates the numerical solu-

tion of the Navier-Stokes equation. The continuity equation in incompressible flows

can be consider more as a kinematic constraint for the velocity field, rather than a dy-

namic equation. One way to solve this problem relies on the fractional step method.

This technique is often used to advance in time the fluid flow governing equations and

was firstly developed by Chorin [1968] and then improved by other authors [Kim and

Moin, 1985, Perot, 1993]. The algorithm is based on Hodge’s decomposition of any

vector field into a solenoidal and an irrotational part and, typically, consists of two

stages:

• prediction;

• correction.

In the prediction step, the momentum equation is solved, but the resulting solution

does not satisfy the continuity equation. In the correction step the previous solution

is corrected and the velocity field is projected onto a divergence-free field.

Several numerical implementations are available in the literature; in the present

study we employ the fractional step method proposed by Kim and Moin [1985]. The

method is semi-implicit and not all the terms of the momentum equation are dis-

cretized in time in the same manner. In particular the second order Crank-Nicolson
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scheme is used for the wall-normal diffusive term and the second order Adams-

Bashforth scheme for all the other terms in the momentum equation.

The two-step time advancement scheme can be written as:

û− uni
∆t

= −Nl(un,un−1)− G(φn, φn−1) +
1

Re
L(ûi,u

n), (4.17)

un+1 − un

∆t
= −G(φn+1), (4.18)

together with the continuity condition:

D(un+1) = 0, (4.19)

where Nl and D are shorthand notations for the discrete non-linear and the diffusion

terms, while G and L stand for the discrete gradient and laplacian operators. The

scalar quantity φ, known as projection variable, is to be found by solving the following

Poisson problem (projection step), arising after the divergence operator is applied to

the equation (4.18):

Lφ =
1

∆t
Dû; (4.20)

equation (4.20) to be solved along with Neumann boundary conditions applied at the

solid walls [Kim and Moin, 1985].

In summary, the strategy to solve the Navier-Stokes equation with the fractional

step method consists in predicting the velocity field using equation (4.17), then find-

ing the projection variable from the equation (4.20) and finally correcting the velocity

field using the relation (4.18).

The numerical procedure described has been implemented in a well-established

curvilinear finite volume code [Omidyeganeh and Piomelli, 2013, Rosti et al., 2016,

Pinelli et al., 2017] written in Fortran 77 and parallelized with OpenMPI.

4.2 DNS results

Since the parameter space is quite large, we propose to perform the simulations

fixing the periodicity b of the SHS/LIS such that b+ =
buτ
ν
≈ 10 with small variations

due to the fact that the friction velocity slightly decreases along with the increase of

the slip at the walls. There are two reasons to maintain a small periodicity: from a

theoretical point of view, the protrusion height approach within the Navier boundary

condition is demonstrated to be valid for b+ < 20 [Luchini, 2015, Seo and Mani,

2016]. From a practical point of view, SHS/LIS are characterized by a small period-

icity, since large cavities suffer of lubricant layer depletion.

We are interested in determining the drag reduction, expressed in terms of the

friction coefficient Cf =
2τw
ρU2

b

, as function of the protrusion heights, calculated from
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Case h×103

|| h×103

⊥ ∆h×103 Cf

Cf0
error%

1 12.3 6.00 6.30 0.86 -

2 9.30 3.00 6.30 0.84 −2.3

3 6.30 0.0 6.30 0.88 +2.6

Table 4.1: Test cases for the protrusion heights offset.

the microscopic problem solved in the previous section. The reason behind the drag

reduction is to be found close to the wall and in the effect that a slip velocity has

on the near-wall turbulence. On the one hand, an increase of slip in the streamwise

direction (i.e. a large value of the slip length) tends to reduce the skin friction and to

attenuate the wall cycle. On the other hand, a spanwise slip has a much less trivial

effect. As shown by Choi et al. [1994] and Min and Kim [2004], the creation of

a slip velocity in the spanwise direction tends to increase the drag because of the

enhancement of the strength of the near-wall streamwise vortices. The skin friction

drag reduction for a combined longitudinal and transverse slip is a consequence of

the competition between these two mechanisms. Following the theory developed by

Luchini et al. [1991], the most important parameter governing the skin-friction drag

is the difference between the protrusion heights. Thus, before proceeding further,

it is important to test that considering the difference of the protrusion height as the

main parameter governing the drag reduction is a reasonable approximation, at least

for small values of the slip lengths and thus ∆h.

We start by testing the following cases, reported in table 4.1, which present the

same value of ∆h, but different h|| and h⊥. In particular, in cases 2 and 3, the values

of the protrusion heights have been modified by subtracting a constant offset, lead-

ing to a situation where only the longitudinal slip is allowed, and to a mixed case

where slip is allowed in both streamwise and spanwise directions. For each case,

we have calculated the friction coefficient, scaled with the reference Cf computed

for the standard no slip walls case (denoted as Cf0), together with the percentage

error, error =
Cf − Cfref
Cfref

× 100 , where the reference is case 1. What we can note

is that there is a small difference between the drag reduction computed in the three

cases. However, the percentage difference in the skin friction is much smaller (one

order of magnitude) with respect to the variation of the slip lengths. This difference

in friction coefficient suggests that the protrusion height h|| in the direction of the

flow has a slightly larger impact on the drag reduction. To shed more light on this

behaviour, we restrict ourselves to the case ∆h = 0, with h|| = h⊥, where a negligi-

ble drag reduction should be expected; however, this is not the case since some drag

reduction is indeed observed as demonstrated by Min and Kim [2004] and Luchini

[2015] and also by our simulations and this is consistent with the observation of drag

reduction for isotropic lattices (e.g. circular posts), where the slip lengths are equal.
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The error committed in considering the drag reduction dependent only on the differ-

ence between the protrusion heights increases with the increase of the value of the

longitudinal slip. This is suggested by Luchini [2015] who conducted a series of DNS

employing a fixed value of h|| = h⊥ and varied the slip at the walls for increasing

values of b+ (i.e. increasing h+
|| and h+

⊥). In his simulations he has shown that the

drag reduction presents a quadratic behaviour in b+ and for b+ ≈ 25 the resulting

drag reduction is about 10%. The fact that a linear relation between ∆h and the

amount of drag reduction cannot hold in the case of large values of the slip lengths

is also suggested by the Navier boundary condition itself: upon increasing h|| and

h⊥ the wall tends to be a no-shear region, thus yielding a drag reduction of 100%.

Further discussions and clarifications on the effect of the protrusion heights on the

skin friction drag reduction can be made on the basis of the results obtained by Busse

and Sandham [2012]. In their paper, the authors analyzed in detail the effect of the

protrusion heights on the percentage drag reduction for a turbulent channel flow.

They conducted a large number of direct numerical simulations both at Reτ = 180

and Reτ = 360 for several values of h+0
|| and h+0

⊥ within the range [0, 100] × [0, 100].

The super-script •0+ means that the protrusion heights are expressed in wall units

based on the nominal Reτ . Their results clearly show that the effect of the transverse

protrusion heights on the drag increase effect is non-linear and saturates at h+0
⊥ ≈ 4.

This justifies the fact that the skin friction drag is always observed to decrease for

h+0
|| > 3.5 and for any arbitrary large value of h0+

⊥ . In general, the combined effect

of the slip lengths on the drag reduction is shown in figure 4.3(a). The contour plot

highlights the zone of drag reduction and drag increase with respect to the reference

value for a standard channel at nominal Reτ = 180 and it is obtained by cubic in-

terpolation of their numerical results. The red dots represent our numerical results

which are in good agreement with the predictions by Busse and Sandham [2012]

and corroborate their calculations. The values of the slip lengths used in our DNS

are taken from the microscopic problems and are reported in table 4.2. Since for the

microscopic texture analyzed the parallel protrusion height is always bigger then the

transverse one, in our cases a drag reduction is always obtained.

Beyond the theoretical importance of the results reported in figure 4.3(a), it is

useful to stress the fact that not all the zones in this plot are of practical and physical

application, since the Navier boundary condition is demonstrated to be valid up to

a certain level of slip. To fix the idea, let us look in more detail to the simulations

conducted by Luchini [2015]. He considered the wall coated by longitudinal no-

shear stripes, mimicking a superhydrophobic surfaces with a flat interface between

the phases. The ratio between the interface span and the texture periodicity b was

fixed to 0.5 and a series of direct numerical simulation at Reτ ≈ 180 were conducted

for different values of b. He demonstrated that the protrusion heights yield very

similar results to those obtained by taking into account the real wall texture up to

b+ ≈ 20. The protrusion heights normalized by the periodicity for such walls are

easily calculated from Philip’s theory and are h|| = 0.11 and h⊥ = 0.055, respectively.
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Considering the upper bound of b+ = 20, it is easy to find that, in wall units, the slip

lengths are h+0
|| ≈ 2.5 and h+0

⊥ ≈ 1.2, which give a first idea of the region of validity

of the protrusion height approach.

In literature, there are several theoretical predictions that have been attempted

over the years which try to establish some relation between the drag reduction and

difference in the protrusion heights. Luchini [1992] and, later on, Bechert et al.

[1997] tried to link the difference in the protrusion heights following a similar rea-

soning, which has Prandtl’s universal formula as starting point:Ç
Cf
2

å− 1
2

= k−1 log

ÇÇ
Cf
2

å 1
2

Re

å
+B +A, (4.21)

where Re is the Reynolds number and B is a constant. Linearizing (4.21) for small

changes in Cf and A we obtain:

∆Cf
Cf0

= − ∆A

(2Cf0)−
1
2 + (2k)−1

, (4.22)

where Cf0 is the reference friction factor for the standard no-slip wall at the actual

Reτ and k is von Karman’s constant, which we can take equal to 0.41.

Thus, attention is turned on how the universal constant A changes when the

turbulent boundary layer is influenced by non-smooth wall textures (e.g. riblets, SHS,

LIS or roughness). For a smooth wall the velocity profile in the viscous sublayer takes

the form u+ = y+, while in the logarithmic region it becomes u+ = k−1 log(y+) + A.

The two laws meet at the point y+
0 , satisfying the following equation

y+
0 = k−1 log(y+

0 ) +A, (4.23)

yielding y+
0 = 10.8 for k = 0.41 and A = 5. Luchini [1992] suggested that the point

y+
0 should shift by the quantity ∆h+ in the presence of surface texture. Linearizing

equation (4.23) about the smooth wall value and letting y+
0 = 10.8 + ∆h+, it is

obtained:

∆A = 0.774∆h+. (4.24)

Following the same reasoning, but using a slightly different values for k and A,

Bechert et al. [1997] found a coefficient of 0.785, while Jiménez [1994] used a for-

mula similar to equation (4.24) on account of the linearity of the viscous regime,

recommending a coefficient of 0.66. Later on, Luchini [1996] reconsidered the for-

mula (4.24) imposing the coefficients in front of ∆h+ to be equal to one, since he

argued that it is not the point y+
0 which undergoes a translation, but the whole ve-

locity profile should be shifted by the quantity ∆h+. The final form of the correlation

for the friction factor reduction is thus given by

Cf
Cf0

= 1− ∆h+

(2Cf0)−
1
2 + (2k)−1

. (4.25)
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The effect of a given micro-ribbed surface (whether superhydrophobic, LIS or not)

is thus that of changing A and this becomes equivalent to the roughness function used

to characterize rough surfaces, at least in simple geometries [Jiménez, 2004].

Unfortunately, this simple and practical rule is not valid for all possible values

of h|| and h⊥ which have, as shown in figure 4.3, a non-trivial effect on the drag

reduction, especially when they assume a large value in magnitude. Gathering to-

gether the information on the drag reduction collected by our numerical simulations,

by Min and Kim [2004] and by Busse and Sandham [2012], it is however possible to

estimate a region of validity of the relation (4.25). The simulations taken as samples

are indicated in figure 4.3(b), by circles in different colors: the red dots represent our

numerical simulations, the green dots are results from Min and Kim [2004], while

magenta indicates the calculations by Busse and Sandham [2012]. We refer only to

the drag reducing region since, for the particular wall texture under investigation in

this work, h|| > h⊥ and the only possible effect is a drag reduction. Figure 4.4 shows

a comparison between the analytical formula 4.25 and the numerical simulations.

The values of ∆h are normalized using the actual friction velocity (uτ = uτ0

…
Cf
Cf0

)

as velocity scale, which is a more suitable choice with respect to uτ0 , since Reτ might

slightly change as function of the wall slippage. The correlation between the numer-

ical data and the linear relation 4.25 turns out to be satisfying in region bounded by

the dashed lines in figure 4.3(b), where the maximum value of the protrusion heights

is h+0
|| ≈ 3.2 and h+0

⊥ ≈ 1.5 or h+
|| ≈ 2.7 and h+

⊥ ≈ 1.3. In a more conservative way,

we can assume h+
|| ≈ 2.3 ( h+0

|| ≈ 2.6) and h+
⊥ ≈ 1.1 ( h+0

⊥ ≈ 1.2). These values are

very near to the ones estimated by Luchini’s simulations.

As a final note, we remark that relation (4.25) becomes invalid if the wall textures

becomes so large in characteristic size to interact non linearly with the near-wall

turbulent structures with the near-wall turbulent structures. It is also invalid if the

protrusion heights assume large values as detailed above. If a case of study falls

outside this limit, the simplified application of the Navier boundary condition is no

more applicable and calculations have to be performed by considering the real wall

morphology, together with the difficulties involved.

Unfortunately, the computational costs prohibit the usage of DNS at the Reynolds

numbers commonly encountered in engineering applications. For small values of ∆h,

the formula (4.25) turns out to be useful to make some predictions of drag reduction

at higher Reynolds numbers. If we consider a turbulent flow at Re = 2800 and one at

Re = 106, with the same ∆h+, we can obtain that

∆Cf |Re=106

∆Cf |Re=2800
=

(2Cf )−
1
2 |Re=106 + (2k)−1

(2Cf )−
1
2 |Re=2800 + (2k)−1

≈ 0.6. (4.26)

It can thus be argued that the drag reduction advantage decreases with the in-

crease of the Reynolds number. The interpretation embodied by the equation above

has been suggested to us by Paolo Luchini.
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(a)

(b)

Figure 4.3: Iso-contours of percentage drag reduction versus longitudinal and trans-
verse protrusion heights at Reτ = 180 (adapted from Busse and Sandham [2012]).
(a) Comparison of present DNS indicated by red dots together with the reference data
for drag reduction; (b) Estimated limits of validity of relation 4.25 (dashed lines) to-
gether with the present simulations (red circles), those by Min and Kim [2004] (green
squares) and those by Busse and Sandham [2012] (magenta triangles).
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Figure 4.4: Friction factors as function of the difference in protrusion heights in wall
units. The cases simulated are reported in table 4.2.

In figure 4.5(a), the mean velocity profiles for different values of ∆h+ are shown.

As expected, the profiles are shifted upward with an increasing magnitude with re-

spect to ∆h+, indicating that a drag reduction occurs. Analyzing the root mean

square of the components of the velocity fluctuations, presented in figure 4.5(b)-(d),

we can note a decrease of the magnitude of the fluctuations for all the velocity com-

ponents with respect the no-slip case, except in the near-wall region.

In figure 4.6(a)-(b), the contours of the instantaneous spanwise vorticity in a

y − z plane shows that the increase of ∆h+ causes a weakening of the vortex struc-

tures, due to increased wall slip in the longitudinal direction. This consideration is

supported by the visualization of the iso-surfaces of the Q-criterion (see figure 4.6(c)-

(d)), which is the second invariant of the velocity gradient tensor, highlighting the

turbulent structures attenuation with the increase of ∆h+.
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Figure 4.5: Turbulent statistics for different values of ∆h+. (a) Mean velocity profiles
normalized by the friction velocity uτ of each case; (b) root mean square of the
streamwise velocity component; (c) root mean square of the wall normal velocity
component; (d) root mean square of the spanwise velocity component. All the root
mean squares are normalized with the friction velocity uτ0 of the reference no-slip
case, in order to highlight their decrease in the buffer layer and log-law region.
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y
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(a) (b)

(c) (d)

Figure 4.6: Turbulent structures inside the channel. (a)-(b) Iso-contours of the in-
stantaneous spanwise vorticity component in the y − z plane at x = πH in the range
[−6, 6], plotted with an increment of 0.2, for ∆h+ = 0.016 (left) and ∆h+ = 1.566
(right); (c)-(d) instantaneous iso-surfaces of the Q-criterion (Q = 0.7) for the same
cases, colored by the streamwise velocity component.
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Table 4.2: Cases selected for direct numerical simulations.

Case h×103

|| h×103

⊥ ∆h×103 ∆h+

λ = 0.018, c = 0.50,Φ = 0.85 4.46 1.13 3.33 0.457

λ = 0.018, c = 0.50,Φ = 1.00 5.34 2.64 2.70 0.458

λ = 0.018, c = 0.50,Φ = 1.15 7.09 1.65 5.44 0.902

λ = 0.018, c = 0.70,Φ = 0.85 10.38 3.09 7.29 1.187

λ = 0.018, c = 0.70,Φ = 1.00 12.24 5.96 6.28 1.022

λ = 0.018, c = 0.70,Φ = 1.15 15.09 5.16 9.93 1.566

λ = 20, c = 0.50,Φ = 0.85 1.300 0.80 0.50 0.088

λ = 20, c = 0.50,Φ = 1.00 0.16 0.069 0.093 0.016

λ = 20, c = 0.70,Φ = 0.85 2.16 1.48 0.68 0.116

λ = 20, c = 0.70,Φ = 1.00 0.32 0.13 0.18 0.031
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Chapter 5

Conclusions and perspectives

The flow over superhydrophic and liquid-impregnated surfaces has been studied

from two points of view: the microscopic and the macroscopic one. The microscopic

problem has attempted to remove some approximations used in the previous models

simulating the flow in the proximity of the wall asperities filled with gas/oil, taking

into account different viscosity ratios between the working and the lubricant fluid

and the effect of surface tension. The main goal of this problem was the derivation

of the protrusion heights as function of the salient geometrical and physical param-

eters involved in the problem, since they are a direct measure of the drag reduction

properties of such coatings. The macroscopic problem has involved direct numerical

simulations of a turbulent flow in a plane channel at moderate Reynolds number;

the slippage at the walls has been modeled through the Navier boundary conditions,

which directly employ the values of the protrusion heights coming from the solution

of the microscopic problem. The results can be summarized in the following way:

• The modal analysis of the flow over SHS highlighted the presence of a new

streamwise wall-vortex mode in the case of a single SH wall, driven by the

wall boundary condition and capable to reduce significantly the value of the

Reynolds number for the onset of the instability. The non-modal analysis shows

that while the presence of two SH walls yields a slight reduction in energy

growth over time, the case of only one SH wall produces an increase of the

disturbance kinetic energy for a large range of values of h|| when θ is sufficiently

greater than zero. It is further shown that, for a single SH wall, beyond a

threshold slip length, for values of the inclination angle of the micro-ridges

around 45◦ the gain becomes unbounded with the final target time, a sign of

the onset of the wall-vortex modal instability.

• a boundary integral formulation for the longitudinal and the transverse flow

over SHS/LIS has been proposed and numerically solved using the boundary
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element method. The viscosity ratio λ between the working and the lubricant

fluid has shown the major non-trivial effect in the variation of both protrusion

heights, profoundly altering their behavior as function of the depression into or

protrusion out of the wall cavity assumed by the interface. Other interesting

features, such as the presence of a maximum value in the transverse slip length

for λ < 1 and its disappearance for λ > 1, have been well delineated by the

calculations.

• a new remedy accounting for mass conservation at low viscosity ratio has been

proposed and validated within a standard boundary element framework. The

method is easy-to-implement and has given better results with respect to known

methodologies [Pozrikidis, 2001];

• the direct numerical simulations have showed that slippage at the walls can be

conveniently modeled through the Navier boundary conditions, at least as long

as the periodicity of the wall texture is smaller than b+ ≈ 20. The most impor-

tant parameter impacting drag reduction has been found mainly in the quantity

∆h = h|| − h⊥ [Luchini et al., 1991], but some care is needed since the flow is

more influenced by the value of the longitudinal protrusion height h||, with this

effect growing with the slippage in the streamwise direction [Luchini, 2015].

However, up to the limit of applicability of the Navier boundary conditions, to

consider the drag reduction as function only of ∆h is a reasonable approxima-

tion. Moreover, the simulations have shown a very good agreement with the

analytical correlation proposed by Luchini [1996], which can be conveniently

used for a quick approximation of the drag reduction induced by SHS, LIS or,

in general, non-smooth walls.

Future developments

This work presents some natural extensions that could lead to a better under-

standing of the slippage and drag reduction phenomena induced by SHS/LIS coat-

ings:

• The study of flow over different wall coatings has been undertaken primarily

assuming the decoupling of the Stokes equation into two almost stand-alone

problems (i.e. the transverse and the longitudinal problem). This simplification

is not possible in the case of general three dimensional lattices, which have not

been studied yet with the same details as the two dimensional geometries;

• there are few numerical simulations or models analyzing the robustness of the

interface under working conditions. This is a very important point in practical

applications and a challenge from a numerical point of view. For LIS, which up

to today seem to be most promising in terms of large scale applications, it would

be interesting to study non-newtonian effects on the physics of the interface and

their consequences on the slippage properties of the surfaces;
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• there are several works studying the turbulent flow over SHS/LIS with various

degrees of approximation at the walls (Navier boundary conditions, striped no-

slip/no-shear surfaces with different textures etc.). The simulations are limited

to moderate Reynolds numbers and thus, could be interesting to study the effect

of slippage on turbulence at high Reynolds number, for example through large

eddy simulations;

• direct numerical simulations of turbulent flow over SHS/LIS, including gas/oil

cavities at the walls without taking advantage of any approximation, is a fasci-

nating topic even if computationally very expensive. A step in this direction has

been made recently by Seo et al. [2018], even if a full dynamic coupling of the

lubricant layer with the external fluid still needs to be dealt with.
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