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Abstract 

Background: Multiple Sclerosis (MS) is a chronic autoimmune disease that 

attacks the CNS. The immune attack on the CNS cause the damage of a 

substance, called myelin, which surrounds and protects the nerve fibres. 

MS is one of the most common causes of neurological disability in young 

adults. It is well established that axonal injury is a feature of multiple 

sclerosis (Charcot JM, 1880), that the extent of axonal injury is correlated 

with the degree of inflammation  (Trapp BD, 1998) at least in relapsing 

multiple sclerosis, and that a close association between inflammation and 

neurodegeneration might exist in all disease stages of multiple sclerosis 

(Kutzelnigg A, 2005;  Frischer J, 2009). However, the interdependence 

between focal inflammation, diffuse inflammation and 

neurodegeneration, and their relative contribution to clinical deficits 

remain ambiguous. Nevertheless, this point is central for understanding 

the mechanism of tissue injury in multiple sclerosis, which may have an 

effect on treatment. It has therefore been suggested that disability 

accrual at later MS stages is primarily driven by neurodegeneration and is 

largely independent of inflammation. These observations have led to a 

two-stage hypothesis, with the first stage representing a therapeutic 

window for modifying disease trajectory, which then becomes uniform in 

the second stage of disease (Leray E, 2010). This concept was also 

confirmed in others studies (Scalfari A, 2010; Stys PK, 2012). 
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Objective: to explore whether disability accrual in moderately and 

advanced MS is ascribable to the concept of multiple sclerosis as a two-

stage disease as proposed by Leray et al. (Leray E, 2010). 

Methods: The research was conducted using patients identified through 

the MS Centre of Montichiari (Brescia, Italy) which is a territory-based 

centre created in 1980 mainly for patients of Brescia and province.  

Patients were identified through the territory-based MS Centre of 

Montichiari (Brescia, Italy) which is a centre created The disability was 

graded using the Kurtzke Expanded Disability Status Scale (EDSS) and was 

evaluated through two different neurological disability epochs.  

In particular, a total of 227 (153 male and 74 female) out of 1442 MS 

relapsing-remitting patents diagnosed between 1980 and 2016 fulfilled 

the inclusion criteria for each epoch (pre- and post-EDSS 3). After defining 

disability milestone and selecting patients (see section 3.2), the EDSS 

disability trajectory slopes were studied. The outcome of interest were 

the disability EDSS trajectory slopes in the spam of time prior to and 

following the EDSS 3 status, that were calculated with a Mixed-Effect 

Model (MEM) over the pre- or the post- EDSS 3 scores (including the EDSS 

3 score in both). The disease progression slope and variability were 

respectively examined by the F Variance test through the individual EDSS 

slopes for the pre- and post-EDSS 3 periods. 

In order to investigate different longitudinal disability trajectories during 

pre- and post-EDSS 3 epoch, a Latent Class Mixed-effect Model (LCMM) 

was performed using the fitted EDSS values of the MEM as the dependent 

variable and the disease duration from MS diagnosis was entered as 
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covariate in the model. A linear disease duration term was used to specify 

for the random-effects in the latent process mixed model, i.e., the 

individual variation around the mean trajectory (of the individual's latent 

class). Models with one, two, three, etc., latent trajectory classes were fit 

and to select the best model in term of the number of classes detected, 

the parsimony seeks minimum values for information criteria (Akaike 

Information Criterion and, Bayesian Information Criterion) was adopted. 

Association among classification pre- and post-EDSS 3 epoch was 

performed using chi-square or Fisher's Exact Test. 

The disability trajectories over the disease course were studied, using 

again, the LCMM including disease duration as covariates with the EDSS 

disability score as the outcome measure. The linear disease duration were 

used to specify for the random-effects in the LCMM. After choosing the 

best model as describe above, univariate analysis was performed using 

logistic regression, to screen possible determinants of class membership 

among clinical and demographic characteristics, such as gender, 

familiarity, group of diagnosis, age at diagnosis, therapy delay, median 

among EDSS visits, age at on-set and EDSS at diagnosis. Those covariates 

with a p-value <0.05 were then selected for the multivariate analysis, 

where the logistic regression model was again used. Differences, with a 

p-value less than 0.05, were selected as significant. 

Results: To find a model that provides the best fit to the data for the pre- 

and post EDSS 3 epoch, five latent class models were performed 

increasing the number of classes from 1 until 5.  
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As regard the per-EDSS 3 epoch, the lowest Akaike Information Criterion 

(AIC) BIC and AIC were obtained for model with two latent trajectory 

classes (BIC= -23847.87; AIC= -23912.94). When patients were assigned 

to the two classes, based on maximum posterior probabilities, there were 

197 and 30 patients assigned to class 1 and 2, respectively. The mean of 

posterior probabilities in each class was 94% and 80%, for class 1 and 2, 

respectively. As regard distribution of the clinical and demographic 

characteristics in the two classes, similar gender, familiarity distribution, 

age at diagnosis and at onset means in two classes were observed, instead 

the EDSS at diagnosis mean in moderate disability class was greater than 

that in high disability class (1.83 versus 0.63).  

Considering post-EDSS 3 epoch, The lowest BIC and AIC were obtained for 

model with two latent trajectory classes (BIC= -32285.67; AIC= 32337.04). 

When patients were assigned to the two classes, based on maximum 

posterior probabilities, there were 159 and 68 patients assigned to class 

1 and 2 (mean of posterior probabilities in each class: 92% and 88%, 

respectively). As regard distribution of the clinical and demographic 

characteristics in the two classes, similar gender, familiarity distribution, 

EDSS at diagnosis mean, age at diagnosis and at onset means in two 

classes were observed. 

The disability trajectory slope mean was 0.08 (SD= 0.04) for pre-EDSS 3 

epoch while, a mean of 0.11 (SD=0.23) disability trajectory slope was 

estimated for the post-EDSS 3 epoch. The graphical evaluation showed 

that the disability trajectory slopes were differently and highly variable, as 
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significant evidenced by the F test to compare variances (F test for 

variance ratio=0.02; p-value<0.0001). 

The chi-square test, performed to assay whether observations on two 

variables were independent of each other, showed no significant 

association between the pre-EDSS 3 classes and the post-EDSS 3 classes 

(p-value = 0.6647). 

The disability trajectories over the disease course was studied on a total 

of 881 (602 female; 68.33%) disability EDSS score trajectories over the 

disease course of patents diagnosed between 1980 and 2016.  

Five Latent Class Mixed-effect Model (LCMM) increasing the number of 

classes from 1 until 5 were performed and the lowest Akaike Information 

Criterion (AIC) and, Bayesian Information Criterion (BIC) was obtained for 

model with three latent trajectory classes (AIC= 34984.11; BIC = 

35098.86). The gravical evaluation of the plot of the disability EDSS 

trajectory scores highlighted that two of 3 latent trajectory had very 

similar graphic trend, so it was decided to aggregate this two similar 

trajectory in one that it was defined as moderate disability trajectory.  

As regard distribution of the clinical and demographic characteristics in 

the two classes, the age at onset and at diagnosis means were greater in 

high disability class compared with those in moderate disability class, as 

significant evidenced by the univariate analysis (p-values: 0.0035 and 

0.0023, respectively). The multivariate analysis (Table 11) highlighted the 

significant effect of age at diagnosis on high disability class membership 

(p-values=0.0023). In particular, a one-unit increase in age at diagnosis 
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was associated with an increased chances 5% (OR=1.05) of having high 

disability class membership. 

Conclusion: The graphical and analytic evaluation among disability 

trajectory slopes in pre- and post-EDSS 3 epoch showed that they were 

differently and highly variable (see section 4.1). The Latent Class Growth 

Analysis identified two main disability trajectories in both pre- and post-

EDSS 3 epoch. No significant association, between the main disability 

trajectories, was observed using chi-square test (p-value = 0.6647). In 

contrast to the study of Leray et al. (Leray E, 2010), we have shown that 

disability trajectories in advanced MS are highly variable as recently 

showed by Lizak (Lizak N, 2017). Moreover, our results concur that the 

disability trajectories in advanced disease (post-EDSS 3) is independent of 

previous disability trajectories (pre-EDSS 3). 

Regarding disability trajectories over the disease course, the lowest BIC 

and AIC was obtained for model with three latent trajectory classes with 

a mean of posterior probabilities in each class of 55% 61% and 77%, 

respectively. Two trajectories out of 3 had very similar graphic trend, so it 

was decided to aggregate this two similar trajectory in one that it was 

defined as moderate disability trajectory. The next univariate and then 

multivariate analysis, performed to screen possible determinants of class 

membership among clinical and demographic characteristics, highlighted 

the significant effect of age at diagnosis on high disability class 

membership (p-values=0.0023). In particular, a one-unit increase in age 

at diagnosis was associated with an increased chances 5% (OR=1.05) of 

having high disability class membership.  
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1 Introduction 

Multiple sclerosis (MS) is a common, progressive neurodegenerative 

disease that typically strikes young adults in the prime of their life causing 

irreversible physical and mental disability. MS represents an immense 

long term burden for society. 

The disease devastates the lives of people with MS and their families, and 

places an immense long-term burden on society and healthcare system. 

The MS affects many young adults worldwide. Globally, the estimated 

number of people with MS has increased from 2.1 million in 2008 to 2.3 

million in 2016. The disease appears to be on the increase, but better 

reporting and diagnosis may have contributed to this change. 

The MS is found worldwide but becomes more common with increasing 

distance from the equator and is therefore most prevalent in North 

America, Europe, Australia and other high-income countries. Globally, the 

median estimated prevalence of MS is 30 people per 100000. Countries 

with the highest estimated prevalence included Hungary (176), Slovenia 

(150), Germany (149), USA (135), Canada (133), Czech Republic (130), 

Norway (125), Denmark (122), Poland (120) and Cyprus (110). 

The onset of MS typically occurs between the ages of 20 and 40 years, 

when individuals are most active and productive in many aspects of their 

lives and frequently leads to the loss of gainful employment and cognitive 

impairment is a large contributor to this high rate of unemployment. Since 

the MS strikes young adults with the potential for many decades of 

employment and family life, it is the leading cause of non-traumatic 
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disability among the young and middle-aged in many developed 

countries: across all age groups in the US, MS is the third most common 

cause of paralysis and of wheelchair use.  

Around two thirds of people with MS are women, a large number of 

whom are of childbearing age. 

Symptoms are distressing and exhausting. The most common types of 

initial clinical symptoms are sensory (40%), motor (39%), visual (30%) and 

fatigue related (30%). The range of symptoms experienced depends on 

the locations of the lesions in the central nervous system (CNS). 

The MS is progressive and irreversible. The damage occurs to myelin in 

the brain and spinal cord. In particular, the immune system mistakenly 

attacks myelin, disrupting the electrical signals that travel along nerves.  

In a healthy person, electrical signals controlling thought processes, 

movement and bodily functions travel efficiently along the nerve cells 

within the CNS, composed by brain, spinal cord and optic nerve. 

In MS, the body’s immune system wrongly attacks the insulating sheath 

(made of myelin) that surrounds nerve cells in CNS. The cause of this 

immune attack is unclear and seems to involve complex interactions 

between genetics and environmental risk factors. The myelin sheaths 

become inflamed in small patches (called lesions), which distort or 

interrupt the electrical signals that travel along nerve fibres. 

The immune system does its best to repair the myelin, but eventually the 

repair process is overwhelmed, the sheath is destroyed ad damage to 

nerve fibres occurs. 
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This cycle of immune attacks and repair can proceed undetected until a 

lesion occurs in an area of the brain responsible for complex functions, 

which manifests clinically as an attack of symptoms, or enough damage 

accumulates for clinical symptoms of progressive MS become apparent. 

1.1 Multiple sclerosis 

The MS is a chronic autoimmune disease that attacks the CNS. The 

immune attack on the CNS cause the damage of a substance, called 

myelin, that surrounds and protects the nerve fibres. In fact when any 

part of the myelin sheath or of nerve fibres is damaged or completely 

destroyed, nerve impulses traveling to and from the brain and the spinal 

cord are distorted or interrupted and a large variety of symptoms can 

occur. 

The process of damage of myelin, called demyelination, forms scar tissue 

(sclerosis), which give the disease its name. 

The demyelination cause a break-down of the blood-brain barrier (BBB) 

with consequent problems for brain cells and spinal cord to communicate 

with each other.  

Demyelination includes cortex and deep grey matter nuclei, as well as 

diffuse injury of normal-appearing white matter. The mechanisms 

responsible for the formation of focal lesions in different patients and in 

different stages of the disease as well as those involved in the induction 

of diffuse brain damage are complex and heterogeneous. 
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Damages all occur on a background of inflammatory reaction, composed 

of lymphocytes and activated macrophages or microglia, and show 

demyelination, in which axons are at least partly preserved. 

Inflammation is dominated by T cells and activated macrophages or 

microglia. In active lesions this inflammatory process is accompanied by a 

profound disturbance of the BBB, the local expression of pro 

inflammatory cytokines and chemokines as well as of their cognate 

receptors. In MS, however, the composition of inflammatory infiltrates in 

the lesions is different. In some cases of acute MS CD8+ T cells, which 

express grazyme B as a marker of cytotoxic activation, can be seen in close 

proximity or attachment to oligodendrocytes. Complete demyelination is 

accompanied by a variability degree of acute axonal injury and axonal loss 

which in part is counteracted by remyelination. When nerve fibres are 

damaged, the brain has some ability to re-route signals via undamaged 

fibres or compensate for the damage. This built-in ‘reserve’ can act as a 

buffer against cognitive decline at various stages of the disease, but the 

brain’s ability to ‘buffer’ against damage is finite. 

In general, the axons and cell bodies remain intact, despite the absence 

of myelin. Wallerian degeneration (i.e., axon destruction) may occur in 

MS, although typically it is described in chronic lesions. Consequently, the 

pathology in MS may not result in complete cessation of neural 

transmission, since axons and cell bodies are intact.  

Most studies on pathology and pathogenesis have so far concentrated on 

focal demyelinated lesions in the white matter mainly at the chronic 

disease stage. This plaque-centred view has recently been challenged by 
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magnetic resonance imaging (MRI) studies, which revealed a much more 

widespread and global damage of the brain and spinal cord, in particular 

in patients at late stages of the disease. Consequently, MS plaques do not 

localize to discrete systematized fibre tracts but they spread in a 

centrifugal manner. 

The most frequent symptoms are fatigue, numbness of face and body or 

extremities (arms and legs), vision problems, loss of balance and 

coordination with associated walking problems and others. Since these 

symptoms are very general and vary depending on where the cerebral 

damage has occurred, frequently it takes many years before MS is 

diagnosed and once it happens it is however very difficult to predict the 

progression of disease for each patient. 

The rarity of MS among Samis, Turkmen, Uzbeks, Kazakhs, Kyrgyzis, native 

Siberians, North and South Amerindians, Chinese, Japanese, African 

blacks and New Zealand Maoris, as well as the high risk among Sardinians, 

Parsis and Palestinians, clearly indicate that the different susceptibilities 

of distinct racial and ethnic groups are an important determinant of the 

uneven geographic distribution of the disease. 

Prevalence data imply that racial and ethnic differences are important in 

influencing the worldwide distribution of MS and that its geography must 

be interpreted in terms of the probable discontinuous distribution of 

genetic susceptibility alleles, which can however be modifies by 

environment. Because the environmental and genetic determinants of 

geographic gradients are by no means mutually exclusive, the race versus 

place controversy is, to some extent, a useless and sterile debate. 
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In Italy, during the last 30 years, the frequency of MS in the Italian 

peninsula and its two major islands, Sicily and Sardinia, has been studies 

in detail and by means of repeated assessments. The island of Sardinia 

represents a striking exception to the even distribution of MS in Italy. The 

most recent survey on large populations confirms the results of previous 

studies on small populations, indicating that this Italian island has the 

highest frequency of MS in Mediterranean Europe and one of the highest 

in the world. The prevalence of MS was 152 per 100 000 in the province 

of Nuoro in 1994 and 144 in the province of Sassari in 1997. Because of 

their peculiar genetic structure, Sardinians are probably more susceptible 

to the disease as compared to other Italians. The genetic distance of 

Sardinians from most present-day Europeans is second only to Samis and 

exceeds that of Basques; it is reflected by an unusually high frequency of 

some blood groups, HLA phenotypes and thalassemia variants that are 

rare elsewhere. These characteristics reflect several millennia of genetic 

drift in a small and isolated population.  

Environmental factors, anyway, are important. Among the considered 

environmental factors smoking was found as one of the important MS risk 

factors. Alcohol, coffee and smoking are connected with high EDSS score. 

Vitamin D insufficiency (linked with low UV exposition) activated the 

development of MS. Researchers provided a linear inverse relationship 

between the risk of MS and the level of education. They found increased 

risk of MS in women with migraine and probably in people using mobile 

phones at least for 13 years. 
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In Denmark besides genetic factors of MS manifestation, a few 

environmental contributions were investigated. The most important of 

these were the first infection with Epstein-Barr virus (threefold enhanced 

risk of MS) and the child’s lost (a 50% increased risk of developing MS in 

solitary parents). There were no associations between MS and childhood 

infections at specific ages, head injuries or exposure to organic solvents. 

It was possible to estimate the risk of cancer in MS patients. It was 

reduced by 16% in males and the same as in the background population 

in females (except breast cancer). The risk of developing MS was 

increased threefold in patients with diabetes mellitus type I. 

As currently only relapsing forms of MS are treatable. An increasing 

number of disease-modifying therapies (DMTs) that aim to alter the 

disease course have been approved for treating CIS and relapsing forms 

of MS. However none has been shown to be effective in treating PPMS or 

SPMS in its non-relapsing stage. 

It is important to diagnose as early as possible so that DMT can be initiated 

to prevent or delay the onset of further relapses or irreversible disability. 

Researchers suggest that neuropsychological tests could serve as early 

diagnostic tools to detect subtle disease progression that may require 

initiation of DMT. 

In recent years, an immunosuppressive regimen followed by the 

autologous hematopoietic stem cell transplantation (AHSCT) has been a 

new option for these patients and for other patients affected by several 

autoimmune disorders as well. It essentially consists in the replacement 

of defective bone marrow with a healthy and efficacious one. The target 
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of this treatment is the eradication of auto reactive cells, followed by the 

infusion of hematopoietic stem cells from previously stored bone marrow 

or blood cells from the patient (autologous), that either do not contain 

the autoimmune generating components or that have been purged of 

them. Stem cells (usually collected from the patient’s peripheral blood 

prior to conditioning) are reinfused after the conditioning regimen has 

been completed. 

Recently, on June 2016, despite the aggregation observed in some 

families, pathogenic mutations have remained elusive, Canadian 

scientists could describe the identification of NR1H3 p.Arg415Gln in seven 

progressive MS patients from two multi-incident families. The 

p.Arg415Gln position is highly conserved in orthologs and paralogs, and 

disrupts NR1H3 heterodimerization and transcriptional activation of 

target genes. Protein expression analysis revealed that mutant NR1H3 

(LXRA) alters gene expression profiles, suggesting a disruption in 

transcriptional regulation as one of the mechanisms underlying MS 

pathogenesis. The study indicates that pharmacological activation of LXRA 

or its targets may lead to effective treatments for the highly debilitating 

and currently untreatable progressive phase of MS. 

Even in the early stages of MS when physical disability is minimal, 

cognitive impairment can result in a lower health-related quality of life 

(e.g. greater fatigue, poorer physical well-being), a negative impact upon 

day-to-day activities and a reduced ability to work. 
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With the application of neuropsychological tests, evidence is 

accumulating that cognitive dysfunction is more prevalent and can occur 

in the course of the disease than had been estimated previously. 

The earlier MS can be diagnosed, the earlier treatment can be started - 

before further deterioration in brain health, relapses or irreversible 

disability occur. 

The total annual direct (medical and non-medical) and indirect costs of 

MS in Europe has been estimated at 15 euro billion; an average of 36000 

euro per person with MS. This is a greater annual cost per person than for 

other long-term conditions such as asthma, Alzheimer’s disease and 

diabetes. 

1.2 Different stages in multiple sclerosis 

Several clinical courses are usually distinguished in MS (Jekyll Island 

Meeting of MS Society 1995, reported in Lublin FD, 1996) in particular, a 

first neurological episode of clinical symptoms at the expense of CNS, 

lasting at least 24 hours, is known as a Clinically Isolated Syndrome (CIS). 

The CIS stage is caused by inflammation/demyelination in one (mono-

focal) or more (multi-focal) sites in the central nervous system and it could 

represent the first step for a subsequent confirmation of MS diagnosis. In 

fact not all patients who had a CIS not necessarily go on to develop the 

MS and this is depending on the similitude of lesions detected with those 

usually seen in the MS. Sometimes the myelin damage is spotted before 

any symptoms appear, via a brain scan conducted for another purpose 

(e.g. headaches). This is MS stage is called Radiologically Isolated 

Symptoms (RIS); people with RIS are at risk of developing CIS or MS. 
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To subsequently confirm diagnosis of the MS a series of criterion, defined 

as McDonald criteria, were developed in 2001 (McDonald WI, 2001) and 

lately updated in 2010 (Polman CH, 2011). They are based on number of 

lesions and attacks (relapses) observed in patients (Chapter 2.3).  

Once the MS is clinically confirmed the evolution of disease during time is 

highly variable from one patient to another one and basically it is possible 

to identify four different form of clinical course. 

Among all patients about 85% of them start with a Relapsing-Remitting 

(RRMS) form in which clearly defined periods, lasting from few days to 

weeks, of neurological symptoms, called relapse. 

Usually, a relapse develops over a few days, before the symptoms plateau 

and ease off (remit) over the next few weeks or months. Although 

patients can sometimes be complete recovery from a relapse (particularly 

early in the disease course), relapses are often associated with a 

measurable and sustained increase in disability. In the long term, 

incomplete recovery from relapses may contribute to the stepwise 

progression of disability. Early on in RRMS, nerve fibres are destroyed and 

the brain begins to atrophy. When this damage exceeds a certain 

threshold, the patient stage of progressive disability starts to be called 

Secondary Progressive MS (SPMS).  

In SPMS, disability gets continuously worse (with or without relapses) 

especially the ability to walk. It takes around 10-20 years for a person with 

RRMS to develop SPMS on average, and within 20-25 years up to 90% of 

them will have SPMS. Relapses lead to more pain, restricted mobility, an 
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increased risk of depressive symptoms, reduced functional ability and a 

lower health-related quality of life compared with a state of remission. 

Clinical and MRI data suggest that inflammation and the formation of new 

white matter lesions are the substrate for RRMS, while in the progressive 

phase new inflammatory demyelinating lesions are rare but diffuse 

atrophy of the grey and white matter and changes in the so-called normal-

appearing white matter become prominent. It has been suggested that in 

the early phase of the disease inflammation is the driving force, whereas 

the progressive phase may be underlined by a neurodegenerative 

process, which develops at least in part independent from inflammation. 

Around 10% of people with MS have a progressive disease course from 

the start, with no relapses and progressively worsening. This is known as 

Primary Progressive MS (PPMS) state. These patients are more likely to be 

older and male when compared with patients who have relapsing-

remitting disease. 

A small number of people are classified as having Benign MS (BMS), on 

the basis of their lack of or slow accumulation of clinically disability. 

However, this term can be misleading because it does not account for 

other aspects of the disease and a large proportion of people with MS 

classified as having BMS end-up becoming disabled. Patient with BMS 

have better physical disability outcome at 5 years compared to non-BMS 

cases. However, cognitive impairment frequency and decline over time 

appeared similar compared to other types of MS.  

Studies furthermore confirm that cognitive impairment was more 

accentuated in the BMS patients compared to the RRMS ones, assessed 
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with a response time test and a percentage of correct responses test. This 

suggest a silent deterioration of cognitive skills for the BMS that is not 

usually treated with pharmacological or neuropsychological therapy. 

Different stages of the disease suggests that the mechanisms of tissue 

injury are heterogeneous between patients and stage dependent within 

the same patient. 

The relapses and disease progression of the MS limit everyday activities, 

restrict participation in society and reduce health-related quality of life at 

all disease stages. 

Despite the devastating impact of the disease, people with the MS have 

their life expectancy reduced by only 5-10 years. This indicates that most 

of the MS people live with substantial disability for long time. 

1.3 Monitoring disease activity and progression in 

multiple sclerosis 

Currently, there are no symptoms, physical findings or laboratory 

assessments, which can help to identify the MS disease. No single test is 

proof-positive for diagnosing multiple sclerosis. Several strategies are 

used to determine if a person meets the long-established criteria for a MS 

diagnosis, and to rule out other possible causes. These strategies include 

a careful medical history, a neurologic exam and various tests including 

magnetic resonance imaging (MRI), evoked potentials (EP) and spinal fluid 

analysis. The EP test evaluates the electrical activity of the brain in 

response to a stimulation of a specific sensory nerve pathway. It is able to 

detect the slowing of the electrical conduction due to demyelination. 
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Spinal fluid test analyses a clear, colourless liquid that bathes the brain 

and spinal cord, cushioning the brain within the skull and serving as a 

shock absorber for the CNS. 

1.3.1 Relapses 

To monitor the clinical progression and the disease activity several 

measures of clinical evaluations are available for each MS stage. The 

clinical relapses represent the most reliable marker of disease activity. A 

relapse is defined as an episode of objective neurological dysfunction 

lasting a minimum of 24 hours and occurring more than 28 days from any 

previous neurological symptoms (Poser CM, 1983). 

Several drugs have been approved for the treatment of RR-MS on the 

basis of the reduction of the total number of relapses occurred over a 

fixed period of time  (Group, 1993; Johnson KP, 1995; Jacobs LD, 1996;  

PRISM, 1998; Polman CH O. P., 2006; Kappos L, 2010;). This quantity is 

known as relapse-rate and it is generally expressed as Annualized Relapse-

Rate (ARR). The ARR frequently represents the primary outcome in the 

phase III clinical trials, designed to assess the new drugs efficacy. 

Moreover recent works (Sormani MP, 2011; Wang YC, 2011) showed that 

the effects of the two most used drugs, Interferon (IFN) beta-1A and 

Natalizumab, on the progression of MS-related disability are largely 

mediated by the effects seen on relapses. 

In clinical trials involving CIS patients the standard primary endpoint is 

generally represented, instead, by the time at which the first relapse 

occur for each patients. This primary outcome can be expressed as Time 
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To First Relapse (TTFR) and will be investigated together with the ARR in 

this thesis. 

1.3.2 The Expanded Disability Status Scale (EDSS) 

Supervising the disability level of MS patients is frequently used as 

primary outcome in Phase III trials. Disability or disability changes during 

time are generally monitored using a standard tool represented by the 

Expanded Disability Status Scale (EDSS) (Kurtzke JF, 1983).  

The EDSS is a scale which ranges from 0 to 10 with increments of 0.5 with 

higher scores corresponding to a greater level of disability of the patient. 

Particularly EDSS steps 1.0 to 4.5 refer to people with MS who are fully 

ambulatory while steps 5.0 to 9.5 are defined by the impairment to 

ambulation. 

Administration time will vary depending upon the condition of the patient 

and the skill of the examiner. Although the EDSS themselves can be rated 

in a few minutes, the neurological examination that is needed to make 

the ratings can take anywhere from 15 minutes to a half-hour. The EDSS 

are administered in person by a trained examiner, most often a 

neurologist. However, nurse practitioners with the proper training can 

also complete the neurological examination and rate the EDSS.  

Even if the EDSS is largely used as outcome in clinical trials it has some 

limits. Firstly, is that it is heavily dependent on locomotors functions while 

appear to be less sensitive to neurological and cognitive dysfunction. 

Secondly, the EDSS Scores on the lower end of the scale are more 

dependent upon nuances in the neurological examination; those in the 
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middle range are more dependent upon gait, while those in the upper 

(more impaired) range are also dependent upon activities of daily living. 

Third, the EDSS is defined in a non-continuous scale but takes on ordinal 

values with steps of 0.5 and, as consequence, it has been observed that it 

is more susceptible to jumps along the scale rather than seeing a smooth 

decline or improvement. Moreover for its ordinal characteristic the 

difference between one step and the following has different meanings at 

different EDSS levels. 

Despite of same limits, the EDSS scale represents a familiar and widely 

used albeit imperfect standard, it will probably remain an important part 

of clinical assessment in the MS for the foreseeable future. 

1.4 Evidence for a two-stage disability progression in 

multiple sclerosis 

The MS is one of the most common causes of neurological disability in 

young adults. It is well established that axonal injury is a feature of 

multiple sclerosis (Charcot JM, 1880), that the extent of axonal injury is 

correlated with the degree of inflammation  (Trapp BD, 1998) at least in 

relapsing multiple sclerosis, and that a close association between 

inflammation and neurodegeneration might exist in all disease stages of 

multiple sclerosis (Kutzelnigg A, 2005;  Frischer J, 2009). However, the 

interdependence between focal inflammation, diffuse inflammation and 

neurodegeneration, and their relative contribution to clinical deficits 

remain ambiguous. Nevertheless, this point is central for understanding 

the mechanism of tissue injury in multiple sclerosis, which may have an 

effect on treatment.  
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Four large cohort studies have explored factors affecting the disability 

accrual at various stages of the MS and variables associated with early 

disease progression have been identified (Confavreux C, 2006).   

It has therefore been suggested that disability accrual at later MS stages 

is primarily driven by neurodegeneration and is largely independent of 

inflammation. These observations have led to a two-stage hypothesis, 

with the first stage representing a therapeutic window for modifying 

disease trajectory, which then becomes uniform in the second stage of 

disease (Leray E, 2010). This concept was also confirmed in others studies 

(Scalfari A, 2010; Stys PK, 2012). 

More recently, the variability and predictability of disability trajectories in 

the MS were evaluated in a large longitudinal data concluding that, the 

disability trajectories in moderately advanced MS are highly variable and 

the disability accumulation in moderately advanced and advanced MS 

remains substantially driven by inflammatory activity (Lizak N, 2017). 

1.5 Aim of the research 

In this context, the first aim of this research was to test the Leray 

hypothesis of MS as a two stage disease, by studying s disability 

trajectories over the disease course in MS patients using advanced 

statistical modelling approaches. 
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2 Materials and methods 

2.1 Patients and data collection 

Patients were identified through the MS Centre of Montichiari (Brescia, 

Italy) which is a territory-based centre created in 1980 mainly for patients 

of Brescia and province. All clinical evaluations of MS patients visited in 

the centre have been performed by four EDSS-certified neurologists 

(Capra R, 2017). All the MS outpatients included in the analysis were 

evaluated at our MS Centre between 1980 and 2016, diagnosed with MS 

according to the MS diagnostic criteria evolving over time (Inusah S, 2010; 

Kister I, 2012; Veugelers PJ, 2009) with a relapsing-remitting (RR) course 

at diagnosis and with age at diagnosis 18-60 years. The first symptom was 

considered MS onset if objectivized by a specialist and six different period 

of diagnosis were considered (1980-1990, 1991-1995, 1996-2000, 2001-

2005, 2006-2010, 2011+) as described in Capra et al. (Capra R, 2017). 

2.2 Disability milestone and inclusion criteria 

Disability was graded using the Kurtzke Expanded Disability Status Scale 

(EDSS) (Kurtzke JF, 1983). For the data analysis on disability accumulation, 

we took in to account two different neurological disability epochs. The 

first epoch, ranged between the first EDSS visit at diagnosis and EDSS 3 

(moderate disability but unrestricted ambulation), instead the second 

epoch come from EDSS 3 to the last EDSS visit (advanced disability). For 

each epoch (pre- and post-EDSS 3), the population of patients with 

clinically definite relapse-diagnosis MS were selected. Moreover, patients 

must have had an EDSS <3 at the first visit and they must have reached 
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the step of EDSS 3, confirmed over ≥6 months. Patients had ≥12 months 

of prospective follow-up prior to EDSS 3 and at least two visits post- EDSS 

3. A minimum required data set consisted of year of birth, gender, 

familiarity, date of the first clinical presentation and diagnosis of MS, 

disease course at diagnosis, age at on-set and EDSS at diagnosis. The post-

EDSS 3 epoch was selected to emulate the natural history studies 

(Confavreux C, 2006;  Lizak N, 2017).    

2.3 The Mixed-Effect Model 

2.3.1 Introduction 

The normal linear model (Fox, 2002), 

�� = ����� + ����� +⋯+ �
�
� + �� 

��~	����0, ��� 

has one random effect, the error term ��. The parameters of the model 

are the regression coefficients, �� + �� +⋯+ �
 and the error variance, 

��. Usually, ��� = 1, and so �� is a constant or intercept.  

For comparison with the linear mixed model of the next section, I rewrite 

the linear model in matrix form, 

� = �� + �� 
��~	����0, ��� 

where � = ���, ��, … , �
�′ is the response vector; � is the model matrix, 

with typical row  ��� = ���, ��, … , �
��; � = ��� + �� +⋯+ �
�′  is the 

vector of regression coefficients; � = ��� + �� +⋯+ ����	is the vector of 
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errors; ��	represents the n-variable multivariate-normal distribution; 0 is 

an � × 1 vector of zeroes; and �� is the order n identity matrix. 

So-called mixed-effect models (or just mixed models) include additional 

random-effect terms, and are often appropriate for representing 

clustered, and therefore dependent, data – arising, for example, when 

data are collected hierarchically, when observations are taken on related 

individuals (such as siblings), or when data are gathered over time on the 

same individuals. 

There are several facilities in R and S-PLUS for fitting mixed models to 

data, the most ambitious of which is the nlme library (an acronym for non-

linear mixed effects), described in detail by Pinheiro (Pinheiro, 2000). 

Despite its name, this library includes facilities for fitting linear mixed 

models (along with nonlinear mixed models), the subject of the present 

appendix. There are plans to incorporate generalized linear mixed models 

(for example, for logistic and Poisson regression) in the nlme library. In the 

interim, the reader may wish to consult the documentation for the 

glmmPQL function in Venables and Ripley’s (Venables, 1999) MASS 

library1. 

Mixed models are a large and complex subject, and I will only scrape the 

surface here. I recommend Raudenbush and Bryk (Raudenbush, 2002) as 

a general, relatively gentle, introduction to the subject for social 

scientists, and Pinheiro and Bates (Pinheiro, 2000), which I have already 

mentioned, as the definitive reference for the nlme library. 

                                                           
1 Version 6.3-2 of the MASS library (or, I assume, a newer version) is required. 
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2.3.2 The linear Mixed-Effect Model 

The linear mixed model (Laird N, 1982; Verbeke G, 2000; Hedeker D, 

2006; Fitzmaurice G, 2009) has become a standard statistical method to 

analyse change over time of a longitudinal Gaussian outcome and assess 

the effect of covariates on it. 

Linear mixed models may be expressed in different but equivalent forms. 

In the social and behavioural sciences, it is common to express such 

models in hierarchical form. The lme (linear mixed effects) function in the 

nlme library, however, employs the Laird-Ware form of the linear mixed 

model (after a seminal paper on the topic published by Laird N, 1982): 

�� = ����� + ����� +⋯+ �
�
� +	!��"�� +⋯+ !�#"#� + �� 

!�$~	��0, %$��, &'(�!$ , !$�� = )$$� 

�� ~	��0, ��*$��, &'(��� , �� �� = ��	*�  � 

Where 

• �� 	is the value of the response variable for the j-th of ��	 

observations in the ith of M groups or clusters. 

• ��, … , �
  are the fixed-effect coefficients, which are identical for all 

groups. 

• ��� , … , �
�  are the fixed-effect repressors for observation j in 

group i; the first regressor is usually for the constant,	��� = 1. 

• !��, … , !�# are the random-effect coefficients for group i, assumed 

to be multivariate normally distributed. The random effects, 

therefore, vary by group. The !�$	are thought of as random 
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variables, not as parameters, and are similar in this respect to the 

errors �� . 

• "�� , … , "#� 	are the random-effect regressors. 

• %$� are the variances and )$$�	the covariances among the random 

effects, assumed to be constant across groups. In some 

applications, the )’s are parametrized in terms of a relatively small 

number of fundamental parameters. 

• ��  is the error for observation j in group i. The errors for group i are 

assumed to be multivariately normally distributed. 

• ��	*�  � are the covariances between errors in group i. Generally, 

the *�  �	are parameterised in terms of a few basic parameters, and 

their specific form depends upon context. For example, when 

observations are sampled independently within groups and are 

assumed to have constant error variance, *�  = ��, *�  + =
0		�,'-	. ≠ .′�, and thus the only free parameter to estimate is the 

common error variance,	��. Similarly, if the observations in a 

“group” represent longitudinal data on a single individual, then the 

structure of the *’s may be specified to capture autocorrelation 

among the errors, as is common in observations collected over 

time. 

Alternatively but equivalently, in matrix form, 

�� = ��� + 0�!� + �� 
!�~	��0,Ψ� 
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��~	��2�0, ��Λ�� 

where: 

• ��	 is the �� × 1 response vector for observations in the i-th group. 

• �	 is the �� × 4 model matrix for the fixed effects for observations 

in group 5. 

• β	 is the 4 × 1 vector of fixed-effect coefficients. 

• 0�	 is the �� × 7 model matrix for the random effects for 

observations in group 5. 

• b�	 is the 4 × 1 vector of random-effect coefficients for group 5. 

• ��	 is the �� × 1 vector of errors for observations in group 5. 

• Ψ	 is the7 × 4 covariance matrix for the random effects. 

• ��Λ�	is the �� × �� covariance matrix for the errors in group 5. 
Another way to define linear mixed model was proposed by Proust-Lima 

(Proust-Lima C, 2015). For each subject 5	in a sample of N subjects, let 

consider a vector of �� repeated measures 9� = �9��, … , 9� , … 9��2�
:

 

where 9�   is the outcome value at occasion j that is measured at time ;� . 

We distinguish the time of measurement ;�  from the occasion .	because 

an asset of the linear mixed model is that the times and the number of 

measurements can vary from a subject to the other. This makes it possible 

for example to include subjects with intermittent missing data and/or 

dropout, or to consider the actual individual time of measurement rather 

than the planned visit, which in some application can greatly differ.  
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Following Laird and Ware (Laird N, 1982), we define the linear mixed 

model as follows: 

9� = �<��;� �:� + 0��;� �:=� +>��;� � + ��   (1) 

where �<�	�;� �and 0�	�;� � are two vectors of covariates at time ;�  of 

respective length 4	and 7. The vector �<�	�;� � is associated with the 

vector of fixed effects �	and 0�	�;� �, which includes typically functions of 

time	;� , is associated with the vector of random-effects =�. Shapes of 

trajectories considered in �<�	and 0�	 can be of any type (polynomial 

(Proust C, 2005), specifically designed to fit the trajectory (Proust-Lima C 

A. H.-G., 2013), or approximated using a basis of splines). 

The vector =�  of 7	random-effects has a zero-mean multivariate normal 

distribution with variance-covariance matrix B, where B is an unspecified 

matrix. The measurement errors ��	are independent Gaussian errors with 

variance �?�. Finally, the process >��;� �@∈ℝ is a zeromean Gaussian 

stochastic process (e.g., Brownian motion with covariance 

C'(	�>��;�, >��D�� = �E� min 	�;, D� or a stationary process with 

covariance C'(	�>��;�, >��D�� = �E� I�4�−4|; − D|�. 

The vector of parameters to estimate is ��: , (IC���: , �E , L, �?�: where 

(IC	���	 is the vector of parameters involved for modelling the symmetric 

positive definite matrix M. 
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2.4 The Latent class growth analysis 

2.4.1 Overview 

Researchers in the fields of medical, social and psychological sciences are 

often interested in modelling the longitudinal developmental trajectories 

of individuals, whether for the study of personality development or for 

better understanding how clinical characteristics unfold over time 

(whether it be days, months, or years). This usually requires an extensive 

dataset consisting of longitudinal, repeated measures of variables, 

sometimes including multiple cohorts, and analysing this data using 

various longitudinal latent variable modelling techniques such as latent 

growth curve models (MacCallum, 2000). The objective of these 

approaches is to capture information about inter-individual differences in 

intra-individual change over time (Nesselroade, 1991). 

However, conventional growth modelling approaches assume that 

individuals come from a single population and that a single growth 

trajectory can adequately approximate an entire population. Also, it is 

assumed that covariates that affect the growth factors influence each 

individual in the same way. Yet, theoretical frameworks and existing 

studies often categorize individuals into distinct subpopulations (e.g., 

socioeconomic classes, age groups, at-risk populations). For example, in 

the field of alcohol research, theoretical literature suggests different 

classes of alcohol use initiation patterns, e.g., ‘early’ versus ‘late’ onsetters 

(Hill, 2000). Using Growth Mixture Modelling (GMM) with five different 

indices of alcohol use (alcohol use disorder, alcohol dependence, alcohol 

consequences, past year alcohol quantity and frequency, and heavy 
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drinking), Jackson and Sher (Jackson, 2005) identified four distinct classes 

for each measure. The results of these studies confirm theoretical 

contentions that heterogeneity of growth trajectories exist within the 

larger population. In addition, these findings suggest that describing an 

entire population using a single growth trajectory estimate is 

oversimplifying the complex growth patterns that describe continuity and 

change among members of different groups. Instead, a latent class or 

growth mixture modelling approach seems to be the most appropriate 

method for fully capturing information about inter-individual differences 

in intra-individual change taking into account unobserved heterogeneity 

(different groups) within a larger population (Jung T, 2008). 

A useful framework for beginning to understand latent class analysis and 

growth mixture modelling is the distinction between person-centred and 

variable-centred approaches (Muthén, 2000). Variable-centred 

approaches such as regression, factor analysis, and structural equation 

modelling focus on describing the relationships among variables. The goal 

is to identify significant predictors of outcomes, and describe how 

dependent and independent variables are related. Person-centred 

approaches, on the other hand, include methods such as cluster analysis, 

latent class analysis, and finite mixture modelling. The focus is on the 

relationships among individuals, and the goal is to classify individuals into 

distinct groups or categories based on individual response patterns so 

that individuals within a group are more similar than individuals between 

groups. 
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2.4.2 The Latent Process Mixed Model 

The linear mixed model applies to longitudinal markers that are 

continuous, have Gaussian random deviations (random-effects, 

correlated errors and measurement errors) and it assumes that the 

covariate effects are constant (β) along the entire range of the marker 

values. In practice, these assumptions do not hold for many longitudinal 

outcomes, especially psychological scales. The generalized linear mixed 

model extends the theory to binary, ordinal or Poisson longitudinal 

outcomes (Hedeker D, Longitudinal data analysis., 2006); (Fitzmaurice G, 

Longitudinal data analysis, 2009). In order to study non Gaussian 

longitudinal markers, we chose another direction by defining a family of 

mixed models called the latent process mixed models (Proust C J.-G. H., 

2006); (Proust-Lima C A. H.-G., Analysis of multivariate mixed longitudinal 

data: A flexible latent process approach, 2013). Coming from the latent 

variable framework, this approach consists in separating the structural 

model that describes the quantity of interest (a latent process) according 

to time and covariates from the measurement model that links the 

quantity of interest to the observations. 

The latent process Λ��;� is defined in continuous time according to a 

standard linear mixed model without error of measurement: 

Λ��;� = �<��;�:� + 0��;�:=� + >��;�,				∀	; ∈ ℝ  (2) 

where �<��;�, 0��;� and 	>��;� are defined in section 3.3.2. 

In order to take into account different types of longitudinal markers, a 

flexible nonlinear measurement model is defined between the latent 
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process and		>��;� � and the observed value 9�  at the measurement time 

;� . 

9� = Q�9RST;V	� = Q�Λ��;� � + �� ; V�   (3) 

where ��  are independent Gaussian measurement errors with variance 

�W�, H is a parameterized link function and 9�  denotes the noisy latent 

process at time ;� . 

For a quantitative marker, QX� is a monotonic increasing continuous 

function. Are currently implemented: 

• the linear transformation that reduces to the Gaussian framework 

of the linear mixed model: 

QX��9� � = 9� − V�
V�  

• the rescaled cumulative distribution function (CDF) of a Beta 

distribution: QX��9� ; 	V� = YZ[2\∗ ;^_;	^`aX^b
^c   with ℎ�9� ∗ ; V�; 	V�� =

e fg_∗h_��Xf�g∗̀h_
i�^_∗ ,^∗̀� 	j�,[2\∗

k 	M�V�∗, V�∗� is the complete 

Beta function. For positiveness properties of canonical parameters 

V�∗ and V�∗  and computation reasons, the Beta distribution is 

parameterized as follows: V�∗ = lg_
lg`��Xlg_�  and  V�∗ = �

lg_��mlg`� . In 

addition, 9�  is rescaled in (0, 1) using 9� =	 [2\X	nop�[�	m	Wq	
nrs�[�Xnop�[�m�Wq with 

the constant t[ > 0	 and	min�9�	 and 	max	�9�	 the (theoretical or 

observed) minimum and maximum values of 9. 
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• a basis of quadratic I-splines with m knots: QX��9� ; 	V� = Vk +
	∑ Vx�Mxy�9� �zm�x{�  with Mxy, … , Mzm�y  the basis of I-splines (Ramsay, 

1988). 

For an ordinal or binary marker (with M levels), equation (3) reduces to a 

probit (cumulative) model with 9� = Q�Λ��;� � + t� ; 	V� = |k + } if 

Λ��;� � + t� ∈ 	 ~Vx∗, Vxm�∗ �	for } = 0, …	,| − 1,|k	the minimum value of 

the marker, Vk =	Vx∗ =	−∞, V� = V�∗ =	+∞  and   V�∗ =	V�, Vx∗ = V� +
	∑ V �x {� 	for	} < 1 to ensure increasing thresholds  Vk∗ < V�∗, …	 , V�X�∗ <
V�∗ 	 for the noisy latent process. 

Latent process mixed models need two constraints to be identified: one 

on the location of the latent process managed by the intercept effect 

�k = 0 and one for the scale of the latent process managed by �W� = 1. 

So the vector of parameters to estimate is ��:, (IC�M�: , �E, L, V:�: 

where	(IC�M� is defined in section 3.3.2. 

2.4.3 The Latent Class Linear Mixed Model 

The linear mixed model assumes that the population of N subjects is 

homogeneous and described at the population level by a unique profile 

�<��;�:�. In contrast, the latent class mixed model consists in assuming 

that the population is heterogeneous and constituted of G latent classes 

of subjects characterized by G mean profiles of trajectories. Each subject 

belongs to one and only one latent class so that the latent class 

membership is defined by a discrete random variable ci that equals � if 

subject 5 belongs to latent class g	�g	 = 	1, . . . , G�. The variable ci is latent; 



 

40 

its probability is described using a multinomial logistic model according to 

covariates ���: 

��� = ��C� = �|���� = l������2� �_�

∑ l������2� �_����_
  (6) 

where ��x is the intercept for class �	 and ��� is the q1-vector of class-

specific parameters associated with the q1-vector of time-independent 

covariates ���. For identifiability, the scalar ���  and the vector��� = 0. 

When no covariate predicts the latent class membership, this model 

reduces to a class-specific probability. 

The G mean profiles are defined according to time and covariates through 

latent class specific mixed models. The difference with a standard linear 

mixed model is that both fixed effects and the distribution of the random-

effects can be class-specific. For a Gaussian outcome, the linear mixed 

model defined in (1) becomes for class g: 

9� |�2{� = �<���;� �:� + �<���;� �:�� + 0��;� �:=�� +>��;� � + ��  

 (7) 

where �<��;� � previously defined is spitted in �<���;� � with common 

fixed effects β over classes and �<���;� � with class-specific fixed effects 

��. The vector 0��;� � is still associated with the individual random-effects 

=�|�2{� called =�� in equation (7) whose distributions is now class-specific. 

In class g, they have a zero-mean multivariate normal distribution with 

variance-covariance matrix >��M, where M is an unspecified variance 

covariance matrix and >�  is a proportional coefficient (>� = 1 for 

identifiability) allowing for a class-specific intensity of individual 



 

41 

variability. The auto-correlated process >��;� and the errors of 

measurement ��  are the same as in section 3.3.2. 

This extension of the linear mixed model also applies to the latent process 

mixed model described in sections 3.3.2 by replacing the structural model 

in (2) by:  

9� |�2{� = �<���;� �:� + �<���;� �:�� + 0��;�:=�� +>��;� � 

 (8) 

The location constraint for this model becomes �k� = 	0 that is the mean 

intercept in the last class is constrained to 0. The scale constraint remains 

unchanged. The measurement models remain the same by assuming the 

heterogeneity in the population only affects the underlying latent process 

of interest. The vector of parameters to estimate defined in sections 2.1, 

2.2 and 2.3 include now also Z����, ���: ��{�,�X�, 	��:�{�,�X�, �>���{�,�X�a 

2.4.4 Post-fit computations 

In the following, the symbol hat (ˆ) denotes the value of a 

parameter/vector/matrix/function computed at the maximum likelihood 

estimates ���. 

2.4.4.1 Maximum Likelihood Estimates 

This subsection applies to the four estimation functions. The table of the 

maximum likelihood estimates along with their estimated standard error 

are given in function summary. The vector is directly given by function 

estimates or in output value best. The estimated variance-covariance 

matrix of the maximum likelihood estimates is given in function VarCov 
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and in output value V. In the latter, the upper triangular matrix is given as 

a vector. 

The parameters of the variance-covariance matrix of the random-effects 

are not directly estimated although they are provided in the summaries. 

The Cholesky parameters used for the estimation are available in output 

vector cholesky or in function estimates. Estimated standard-errors of the 

parameters of the variance-covariance matrix are computed in function 

VarCovRE in the lccm package (Proust-Lima C, 2015). 

2.4.4.2 Posterior classification 

In models involving latent classes, a posterior classification of the subjects 

in each latent class can be done. It is based on the posterior calculation of 

the class-membership probabilities. It is used to characterize the 

classification of the subjects as well as to evaluate the goodness of fit of 

the model (Proust-Lima C, 2015). 

- Class-membership posterior probabilities and classification 

The posterior class-membership probabilities are computed using 

the Bayes theorem as the probability of belonging to a latent class 

given the information collected. In a longitudinal model, they are 

defined for subject 5 and latent class � as 

���
�[� = ��&� = �|�<�, ��� , ��� 	� = ��� ���9�|&� = �, ���

∑ ��x�x{�  �x�9�|&� = }, ��� 

In a joint latent class model, the complete information also includes 

the time-to-event so that for subject 5 and latent class �, the 
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posterior class-membership probability can also be defined for 

subject 5 and latent class � as 

���
�[,:� = ��&� = �|�<�, ��� , �¡�, 9� , ¢� , £� , ��� 	� = 

��� ���9�|&� = �, ���I∑ �:2|�2{�,¤¥��¦§�_ ∏ *��¢�|C� = �, �����©2�§ª
{�
∑ ��x�x{�  �x�9�|&� = }, ���I∑ «§�:2|�2{x,¤¥��¦§�_ ∏ *
�¢�|C� = }, �����©2�§ª
{�

 

A posterior classification can be obtained from these posterior 

probabilities by assigning for each subject the latent class in which 

he has the highest posterior class-membership probability �Ĉ� 	=
	-�®������

�[��	'-	Ĉ� 	= 	-�®������
�[,:��. 

 

- Posterior classification 

The posterior classification can be used to assess the goodness-of-

fit of the model (for the selection of the number of latent classes 

for instance) and the discrimination of the latent classes. Many 

indicators can be derived from it (Proust-Lima C, 2015). The package 

lcmm provides two indicators in the function postprob: 

o the proportion of subjects classified in each latent class with 

a posterior probability above 0.7, 0.8 and 0.9. This indicates 

the proportion of subjects not ambiguously classified in each 

latent class. 

o the posterior classification table as defined in table 2 which 

computes the mean of the posterior probabilities to belong 

to the latent class among the subjects classified a posteriori 
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in each latent class. A perfect classification would provide 

ones in the diagonal and zeros elsewhere. In practice, high 

diagonal terms indicate a good discrimination of the 

population. 

Table 1: Posterior classification table provided in function 

postprob 

Final 

class 

&̄� 

# 

Mean of the probability of belonging to each 

class 

1 … � … ° 

1 ��
1
��

± �²���.�
³_

�{�
 … 
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��

± �²���.�
³_

�{�
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 … 
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 … 
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1
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�{�
… 

1
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³�
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… 

1
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± �²���.�
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2.5  Statistical analysis 

Continuous variables are given as means and standard deviations (SD), 

whereas categorical variables as number and/or percentage of subjects. 

The outcome of interest were the disability EDSS trajectory slopes in the 

spam of time prior to and following the EDSS 3 status, that were 

calculated with a Mixed-Effect Model (MEM) over the pre- or the post- 
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EDSS 3 scores (including the EDSS 3 score in both). The disease 

progression slope and variability were respectively examined using t test 

and F Variance test through the individual EDSS slopes for the pre- and 

post-EDSS 3 periods.  

In order to investigate different longitudinal disability trajectories during 

pre- and post-EDSS 3 epoch, a Latent Class Mixed-effect Model (LCMM) 

was performed using the fitted EDSS values of the MEM as the dependent 

variable and the disease duration from MS diagnosis was entered as 

covariate in the model. A linear disease duration term was used to specify 

for the random-effects in the latent process mixed model, i.e., the 

individual variation around the mean trajectory (of the individual's latent 

class). Models with one, two, three, etc., latent trajectory classes were fit 

and to select the best model in term of the number of classes detected, 

the parsimony seeks minimum values for information criteria (Akaike 

Information Criterion and, Bayesian Information Criterion) was adopted. 

Correlation among classification pre- and post-EDSS 3 epoch was 

performed using chi-square or Fisher's Exact Test.  

The disability trajectories over the disease course were studied, using 

again, the LCMM including disease duration as covariates with the EDSS 

disability score as the outcome measure. The linear disease duration were 

used to specify for the random-effects in the LCMM. After choosing the 

best model as describe above, univariate analysis was performed using 

logistic regression, to screen possible determinants of class membership 

among clinical and demographic characteristics, such as gender, 

familiarity, group of diagnosis, age at diagnosis, therapy delay, median 
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among EDSS visits, age at on-set and EDSS at diagnosis. Those covariates 

with a p-value <0.05 were then selected for the multivariate analysis, 

where the logistic regression model was again used. Differences, with a 

p-value less than 0.05, were selected as significant and data were 

acquired and analysed in R v3.4.3 software environment (R, 2017). 
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3 Results 

A total of 227 (153 male and 74 female) out of 1442 MS relapsing-

remitting patents diagnosed between 1980 and 2016 fulfilled the 

inclusion criteria for each epoch (pre- and post-EDSS 3). As regard 

selection criteria, 1077 patients had an EDSS < 3 at the first visit, 329 

patients reached EDSS 3, a pre-EDSS 3 prospective follow-up ≥12 months 

was observed in 253 patients and 239 patients had at least two visits post-

EDSS 3. The excluded patients majority had not had reached the EDSS 3 

status yet (N=662) following by patients that had an EDSS great than 3 at 

the first visit (N=247). 

The demographic and clinical characteristics of the study participants are 

summarised in Table 1. Briefly for 621 patients that no reached EDSS 3, 

207 were male while 455 were female. The mean of EDSS at diagnosis was 

1.22 (SD=0.97) instead, the age at onset and diagnosis means were 30.95 

(SD=8.79) and 33.5 (SD=9.18) years, respectively. Seventy-four (32.6%) 

patients had a MS familiarity. As regard patients that reached EDSS 3, the 

mean age at diagnosis was 33.5 years (SD=9.18; range = 18.29 : 59.53 

years).  The means of age at onset was 31.43 (SD=9.59) and the mean of 

EDSS at diagnosis was 1.67 (SD=1.15). Twenty-five (11.01%) patients had 

a MS familiarity.  
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3.1 Classification of EDSS trajectory slopes versus 

disease duration 

To find a model that provides the best fit to the data for the pre- and post 

EDSS 3 epoch, five latent class models were performed increasing the 

number of classes from 1 until 5.  

As regard the per-EDSS 3 epoch, the Akaike Information Criterion (AIC) 

and, Bayesian Information Criterion (BIC) were reported in Figure 1 for 

different models taken into account. The lowest BIC and AIC was obtained 

for model with two latent trajectory classes (BIC= -23847.87; AIC= -

23912.94). When patients were assigned to the two classes, based on 

maximum posterior probabilities, there were 197 and 30 patients 

assigned to class 1 and 2 (Table 2; mean of posterior probabilities in each 

class: 94% and 80%, respectively). The plot of the disability EDSS 

trajectory slopes with two latent trajectory classes was reported in Figure 

2. In particular, moderate disability EDSS trajectory (magenta latent 

trajectory) and high disability EDSS trajectory (red latent trajectory) were 

identified. 

As regard distribution of the clinical and demographic characteristics in 

the two classes, similar gender, familiarity distribution, age at diagnosis 

and at onset means in two classes were observed (Table 3), instead the 

EDSS at diagnosis mean in moderate disability class was greater than that 

in high disability class (1.83 versus 0.63).  

Considering post-EDSS 3 epoch, the AIC and, BIC were reported in Figure 

3 for different models taken into account. The lowest BIC and AIC was 

obtained for model with two latent trajectory classes (AIC= 32337.04;  



 

49 

BIC= -32285.67). When patients were assigned to the two classes, based 

on maximum posterior probabilities, there were 159 and 68 patients 

assigned to class 1 and 2 (Table 4; mean of posterior probabilities in each 

class: 92% and 88%, respectively). The plot of the disability EDSS 

trajectory slopes with two latent trajectory classes was reported in Figure 

4. In particular, moderate disability EDSS trajectory (orange latent 

trajectory) and high disability EDSS trajectory (green latent trajectory) 

were identified. 

As regard distribution of the clinical and demographic characteristics in 

the two classes, similar gender, familiarity distribution, EDSS at diagnosis 

mean, age at diagnosis and at onset means in two classes were observed 

(Table 5). 

The plot of the disability EDSS trajectory slopes with the selected latent 

trajectory classes were reported in Figure 5 for pre- and post-EDSS 3 

epoch.  

The disability trajectory slope mean was 0.08 (SD= 0.04) for pre-EDSS 3 

epoch while, a mean of 0.11 (SD=0.23) disability trajectory slope was 

estimated for the post-EDSS 3 epoch (Table 6). The histogram of the 

disability trajectory slopes was reported in Figure 6, for the spam of time 

prior to (panel A) and following to (panel B) the EDSS 3 status. The 

graphical evaluation showed that the disability trajectory slopes were 

differently and highly variable, as significant evidenced by the F test to 

compare variances (variance ratio=0.02; p-value<0.0001). 
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The distribution among pre- and post- EDSS 3 latent trajectory classes  

was reported in table 7. The chi-square test, performed to assay whether 

observations on two variables were independent of each other, showed 

no significant association between the pre-EDSS 3 classes and the post-

EDSS 3 classes (p-value = 0.6647). 

3.2  Classification of EDSS score trajectories 

A total of 881 (602 female; 68.33%) disability EDSS score trajectories over 

the disease course of patents diagnosed between 1980 and 2016 were 

studied. The demographic and clinical characteristics of the study 

participants are summarised in Table 8. Briefly the mean of EDSS at 

diagnosis was 1.34 (SD=1.03) instead, the age at onset and diagnosis 

means were 31.08 (SD=9) and 33.71 (SD=9.21) years, respectively. 

Seventy-seven (32.6%) patients had a MS familiarity. The mean therapy 

delay was 38.31 months (SD=47.98).  

The disability trajectories over the disease course were studied by five 

Latent Class Mixed-effect Model (LCMM) increasing the number of classes 

from 1 until 5. The Akaike Information Criterion (AIC) and, Bayesian 

Information Criterion (BIC) were reported in Figure 7 for different models 

taken into account. The lowest BIC and AIC was obtained for model with 

three latent trajectory classes (AIC= 34984.11; BIC = 35098.86). When 

patients were assigned to the three classes, based on maximum posterior 

probabilities, there were 198, 633 and 50 patients assigned to class 1, 2 

and 3 (Table 9; mean of posterior probabilities in each class was 55% 61% 

and 77%, respectively). The plot of the disability EDSS trajectory scores 

with three latent trajectory classes was reported in Figure 8. In particular, 
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the trajectories of class 1 and 2 (magenta and blue dodger, respectively) 

had very similar graphic trend, so it was decided to aggregate this two 

similar trajectory in one that it was defined as moderate disability 

trajectory.  

The new two trajectory classes were reported in Figure 9 and moderate 

disability EDSS trajectory (blue latent trajectory) and high disability EDSS 

trajectory (forest green latent trajectory) were identified. 

As regard distribution of the clinical and demographic characteristics in 

the two classes, similar gender, familiarity distribution, period of 

diagnosis, median among EDSS visits, EDSS at diagnosis and therapy delay 

in two classes were observed (Table 10). Instead, the age at onset and at 

diagnosis means were greater in high disability class compared with those 

in moderate disability class, as significant evidenced by the univariate 

analysis (p-values: 0.0035 and 0.0023, respectively). The multivariate 

analysis (Table 11) highlighted the significant effect of age at diagnosis on 

high disability class membership (p-values=0.0023). In particular, a one-

unit increase in age at diagnosis was associated with a increased chances 

5% (OR=1.05) of having high disability class membership. 
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4 Conclusions 

The main aim of this research was to explore whether disability accrual in 

moderately and advanced MS is ascribable to the concept of multiple 

sclerosis as a two-stage disease as proposed by Leray at al. (Leray E, 2010). 

The second aim, but not less important, was to study disability trajectories 

over the disease course in MS patients. 

The research was conducted using patients identified through the MS 

Centre of Montichiari (Brescia, Italy) which is a territory-based centre 

created in 1980 mainly for patients of Brescia and province. After defining 

disability milestone and selecting patients (see section 3.2), the EDSS 

disability trajectory slopes were studied. The graphical and analytic 

evaluation among disability trajectory slopes in pre- and post-EDSS 3 

epoch showed that they were differently and highly variable (see section 

4.1). The Latent Class Growth Analysis identified two main disability 

trajectories in both pre- and post-EDSS 3 epoch. No significant 

association, between the main disability trajectories, was observed using 

chi-square test (p-value = 0.6647). In contrast to the study of Leray et al. 

(Leray E, 2010), we have shown that disability trajectories in advanced MS 

are highly variable as recently showed by Lizak (Lizak N, 2017). Moreover, 

our results concur that the disability trajectories in advanced disease 

(post-EDSS 3) is independent of previous disability trajectories (pre-EDSS 

3). 

Regarding disability trajectories over the disease course, the lowest BIC 

and AIC was obtained for model with three latent trajectory classes with 
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a mean of posterior probabilities in each class of 55% 61% and 77%, 

respectively. The first two probabilities evidence that the measured EDSS 

trajectories had poor membership in each latent class. the proportion of 

subjects could be ambiguously classified in this two latent class. Two 

trajectories out of 3 had very similar graphic trend, so it was decided to 

aggregate this two similar trajectory in one that it was defined as 

moderate disability trajectory. The next univariate and then multivariate 

analysis, performed to screen possible determinants of class membership 

among clinical and demographic characteristics, highlighted the 

significant effect of age at diagnosis on high disability class membership 

(p-values=0.0023). In particular, a one-unit increase in age at diagnosis 

was associated with an increased chances 5% (OR=1.05) of having high 

disability class membership. 
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5 Tables and Figures 

 

Table 1: The demographic and clinical characteristics of the study participants. 

The results are expressed as mean with standard deviation or as number of 

subjects with percentage 

Characteristic 

Patients 

No Reached 

EDSS 3 

(N=662) 

Patients 

reached 

EDSS 3 

(N=227) 

Gender   

Male 207 (31.27%) 153 (67.4%) 

Female 455 (68.73%) 74 (32.6%) 

Familiarity   

No 52 (7.85%) 202 (88.99%) 

Yes 610 (92.15%) 25 (11.01%) 

Diagnosis   

1980-1990 94 (14.2%) 27 (11.89%) 

1991-1995 28 (4.23%) 34 (14.98%) 

1996-2000 181 (27.34%) 58 (25.55%) 

2001-2005 17 (2.57%) 58 (25.55%) 

2006-2010 198 (29.91%) 44 (19.38%) 

2011+ 144 (21.75%) 6 (2.64%) 

Age at diagnosis 33.5 (9.18) 34.39 (9.5) 

Age at onset 30.95 (8.79) 31.43 (9.59) 

EDSS at diagnosis 1.22 (0.97) 1.67 (1.15) 
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Figure 1: Akaike Information Criterion (AIC) and, Bayesian Information 

Criterion (BIC) were reported for different models with different 

latent trajectory classes in the pre-EDSS 3 epoch. 

 

 

Table 2: Posterior classification table of the model with two different  

latent trajectory classes are reported for the pre-EDSS 3 epoch. 

 

Posterior classification:  

  class1 class2 

N 197.00  30.00 

%  86.78  13.22 

  

Posterior classification table:  

     --> mean of posterior probabilities in each 

class  

        prob1  prob2 

class1 0.9397 0.0603 

class2 0.1966 0.8034 
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Figure 2: Plot of the disability EDSS trajectory slopes with two latent 

trajectory classes are reported for the  pre-EDSS 3 epoch. 

 

Table 3: Contingency tables of the clinical and demographic  

distribution characteristics in the two latent classes 

Characteristic 

Classification of EDSS disability trajectories  

Pre-EDSS 3 

moderate  

(magenta) 

high  

(red) 

Gender   

Male 134 (87.58%) 19 (12.42%) 

Female 63 (85.14%) 11 (14.86%) 

Familiarity   

No 177 (87.62%) 25 (12.38%) 

Yes 20 (80%) 5 (20%) 

Diagnosis   

1980-1990 24 (88.89%) 3 (11.11%) 

1991-1995 30 (88.24%) 4 (11.76%) 

1996-2000 48 (82.76%) 10 (17.24%) 

2001-2005 50 (86.21%) 8 (13.79%) 

2006-2010 39 (88.64%) 5 (11.36%) 

2011+ 6 (100%) 0 (0%) 

Age at diagnosis 34.43 (9.6) 34.14 (9.02) 

Age at onset 31.28 (9.74) 32.42 (8.65) 

EDSS at diagnosis 1.83 (1.12) 0.63 (0.69) 
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Figure 3: Akaike Information Criterion (AIC) and, Bayesian Information 

Criterion (BIC) were reported for different models with different 

latent trajectory classes in the post-EDSS 3 epoch. 

 

 

Table 4: Posterior classification table of the model with two different  

latent trajectory classes are reported for the pre-EDSS 3 epoch. 

 

Posterior classification:  

  class1 class2 

N 159.00  68.00 

%  70.04  29.96 

  

Posterior classification table:  

     --> mean of posterior probabilities in each 

class  

        prob1  prob2 

class1 0.9183 0.0817 

class2 0.1246 0.8754 
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Figure 4: Plot of the disability EDSS trajectory slopes with two latent 

trajectory classes are reported for the post-EDSS 3 epoch. 

 

Table 5: Contingency tables of the clinical and demographic  

distribution characteristics in the two classes 

Characteristic 

Classification of EDSS disability trajectories  

Post-EDSS 3 

moderate   

(green) 

high  

(red) 

Gender   

Male 108 (70.59%) 45 (29.41%) 

Female 51 (68.92%) 23 (31.08%) 

Familiarity   

No 142 (70.3%) 60 (29.7%) 

Yes 17 (68%) 8 (32%) 

Diagnosis   

1980-1990 17 (62.96%) 10 (37.04%) 

1991-1995 26 (76.47%) 8 (23.53%) 

1996-2000 39 (67.24%) 19 (32.76%) 

2001-2005 36 (62.07%) 22 (37.93%) 

2006-2010 35 (79.55%) 9 (20.45%) 

2011+ 6 (100%) 0 (0%) 

Age at diagnosis 33.81 (9.27) 35.75 (9.97) 

Age at onset 31.06 (9.42) 32.3 (9.98) 

EDSS at diagnosis 1.7 (1.22) 1.62 (0.98) 
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Figure 5: The plot of the disability EDSS trajectory slopes with the selected 

latent trajectory classes in the pre- and post-EDSS 3 epoch. 

 

 

Table 6: Descriptive statistics of the disability trajectory slope 

Statistics Pre-EDSS 3 Post-EDSS 3 

Min. 0.00 -0.57 

1st quantile 0.04 -0.03 

Median 0.08 0.08 

Mean 0.08 0.11 

3rd quantile 0.10 0.25 

Max. 0.23 0.93 

Standard deviation 0.04 0.23 
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Figure 6: the disability EDSS trajectory slope histograms in the spam of time 

prior to (panel A) and following (panel B) the EDSS 3 status. 

 

 

Table 7: Contingency table among pre- and post-EDSS 3 latent trajectory 

classes. The Count, Column Percent and Total Percent are reported in each 

cell. 

  Pre-EDSS 3  
Row Total 

Pre-EDSS 3  Moderate High 

Moderate  

   139 

87.42% 

61.23% 

    58 

85.29% 

25.55% 

      197 

86.78% 

High  

    20 

12.58% 

8.81% 

     10 

14.71% 

 4.41% 

    30 

13.22% 

Column Total 159 68 227 

  

Pearson's Chi-squared test        p-value =0. 6647 
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Table 8: The demographic and clinical characteristics 

 of the study participants (N=881). 

The results are expressed as mean with standard deviation  

or as number of subjects with percentage 

Characteristic Overall 

Gender  

Male 279 (31.67%) 

Female 602 (68.33%) 

Diagnosis  

1980-1990 44 (4.99%) 

1991-1995 62 (7.04%) 

1996-2000 152 (17.25%) 

2001-2005 201 (22.81%) 

2006-2010 239 (27.13%) 

2011+ 183 (20.77%) 

Familiarity  

No 804 (91.26%) 

Yes 77 (8.74%) 

Age at diagnosis (years) 33.71 (9.21) 

Age at onset (years) 31.08 (9) 

EDSS at diagnosis 1.34 (1.03) 

Median among EDSS visits (days) 180.43 (133) 

Therapy delay (Months) 38.31 (47.98) 

 

Figure 7: Akaike Information Criterion (AIC) and, Bayesian Information 

Criterion (BIC) were reported for different models with different 

latent trajectory classes (N=881). 
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Table 9: Posterior classification table of the model with three 

different latent trajectory classes are reported for all EDSS scores 

(N=881). 

 

Posterior classification:  

  class1 class2 class3 

N 198.00 633.00  50.00 

%  22.47  71.85   5.68 

  

Posterior classification table:  

     --> mean of posterior probabilities in 

each class  

        prob1  prob2  prob3 

class1 0.5530 0.4432 0.0037 

class2 0.3689 0.6089 0.0222 

class3 0.0604 0.1659 0.7737 

  

 

 

Figure 8: the disability EDSS trajectory scores with the three different latent 

trajectory classes are reported (N=881). 
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Figure 9: the disability EDSS trajectory scores with the two different latent 

trajectory classes are reported (N=881). 
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Table 10: Descriptive statistics with univariate analysis. 

Characteristic: variable taken into account;  

OR (95% CI): Odd Ratios with 95% Confidence Interval; p-value: Likelihood Ratio p-

value. 

 *Variables entering the multivariate analysis (see the text for abbreviations and 

further details). 

 Descriptive statistics Univariate analysis 

Characteristic 
moderate  

(blue) 

high  

(dark-green) 
OR (95% CI) p-value 

Gender    0.1139 

Male 258 (92.47%) 21 (7.53%) 1  

Female 573 (95.18%) 29 (4.82%) 
0.62 (0.35 : 

1.12) 
 

Diagnosis     0.3010 

1980-1990 41 (93.18%) 3 (6.82%) 1  

1991-1995 59 (95.16%) 3 (4.84%) 
0.69 (0.12 : 

3.92) 
 

1996-2000 143 (94.08%) 9 (5.92%) 
0.86 (0.24 : 

4.01) 
 

2001-2005 182 (90.55%) 19 (9.45%) 
1.43 (0.46 : 

6.27) 
 

2006-2010 226 (94.56%) 13 (5.44%) 
0.79 (0.24 : 

3.54) 
 

2011+ 180 (98.36%) 3 (1.64%) 
0.23 (0.04 : 

1.27) 
 

Familiarity    0.7501 

No 759 (94.4%) 45 (5.6%) 1  

Yes 72 (93.51%) 5 (6.49%) 
1.17 (0.4 : 

2.79) 
 

Age at diagnosis  

(yeas) * 
33.47 (9.12) 37.66 (9.86) 

1.05 (1.02 : 

1.08) 
0.0023 

Age at onset  

(yeas) * 
30.85 (8.9) 34.8 (9.91) 

1.05 (1.02 : 

1.08) 
0.0035 

EDSS at diagnosis 1.34 (1.04) 1.32 (0.98) 
0.98 (0.74 : 

1.29) 
0.8974 

Median among  

EDSS visits (days) 
178.47 (95.42) 213.17 (402.84) 

1.00 (0.99 : 

1.01) 
0.1743 

Therapy delay 

 (months) 
37.51 (48.27) 48.92 (42.98) 

1.00 (0.99 : 

1.01) 
0.1389 
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Table 11: Multivariate analysis, the predictor effects on the high disability 

class. Results are expressed as odds ratio (OR) with 95% confidence interval 

(95%CI). 

Characteristic OR (95% CI) p-value 

(Intercept) 0 0.01 (0 - 0.04) <0.0001 

Age at diagnosis (years) 1.05 (1.02 - 1.08) 0.0023 
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