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Abstract

This doctoral dissertation deals with the kinematics and singularity analyses of serial

and parallel manipulators with multiple working modes. The inverse kinematics of

6R architectures with non-spherical wrists were solved using simple geometric consid-

erations; the problem was reduced to the solution of a trigonometric equation in one

variable, the sixth joint angle. The direct kinematic analysis of the parallel manipula-

tor, namely the Exechon, was conducted; it involves using a standard numerical tool to

solve the system of equations in platform’s angle variables. Both kinematics analyses

took advantage of the standard numerical solver to obtain the solutions. The singu-

larities of the Exechon were studied with the geometrical interpretation. By using the

theory of reciprocal screws, the input-output velocity equations were introduced. This

led to the investigation of the Jacobian matrices, which is an essential part when work-

ing with any manipulator. A method for obtaining the singularity loci and the numerical

example was provided. The formulations presented in this dissertation are general and

effective enough to be applicable for many other similar architectures.
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Chapter 1

Introduction

1.1 Serial and parallel mechanisms

”Time is money”, the meaning of this proverb is clear, especially in the industry. The

faster a product is made, the more it can be produced and the cheaper the production

will be. Of course, the quality of the product must not be neglected.

According to this motto, productivity is one of the most important competitive factors

in the economy. At the same time, the flexibility of a production system should not be

the lost sight. This refers to the time needed to rebuild the production lines to a new

product. It must be minimized because the downtime is associated with additional costs

for a factory. For these reasons, manufacturing companies are looking for methods and

solutions to produce high-quality products quickly and inexpensively, reducing costs

and increasing profits. The automation of the production processes makes it possible to

meet these requirements.

One of the most important components of automation is the robot/manipulator. They

are used in a production line mainly in handling and assembly. Robots are generally

machines that can be characterized by universality, high speeds, and good accuracy.

The universality allows the machines to adapt quickly to new tasks, reducing the cost

of downtime in the factories. Thanks to the high achievable speeds, the work cycles are

shortened, which can increase the productivity of the entire system. However, the trade-

off between accuracy and speed is one of the biggest constraints for all manipulators.

This is especially visible with manipulators with a serial kinematic chain.

1



Introduction 2

Due to the serial chain, the elements of the serial robot must be made stiffer and there-

fore more massive, to prevent deformations of the robot structure and the loss of accu-

racy. As a result, the moving mass increases. The added power of the drives is spent

driving this extra mass. For this reason, the serial kinematics are quite limited in their

achievable speeds and accuracies.

The alternatives to the serial manipulators are the manipulators with parallel kinematic

chains, so-called parallel robots or parallel manipulators. They have closed kinematic

chains that connects the fixed base and the moving platform. The advantage of these

manipulators is that the drives can be mounted fixed to the frame or at least close to the

frame. This leads to a large reduction of the moving robot mass, since the arms and

joints, no longer have to be adapted to the weight of the heavy drives. The manipulator

can thus achieve higher accelerations and speeds with equally powerful drives. Because

the drives are no longer connected in series, their positioning errors no longer add up,

thus significantly increasing the accuracy. This type of manipulator is therefore par-

ticularly suitable for the electronics industry. This industry, which represents a major

market potential for robotics, places particularly high demands on the speed and accu-

racy of the machines used. The parallel robots can, for the above reasons, meet these

requirements more easily than the serial kinematics.

However, each type of manipulator has its own market. With all that said, studying all

related issues is the best way to understand pros and cons, and then come up with ap-

propriate solutions to meet the industry requirements and practical applications. Within

the scope of this thesis, we will present the emergent issues in the kinematics and the

singularity of the serial and parallel manipulators.

1.2 Objectives and contributions of the thesis

The main objective of this thesis is to show that the simple geometric approach to kine-

matics and singularity studies of the well-known mechanisms can also be very efficient

and intuitive. As we go from the classic kinematic problems of the serial and parallel

manipulators to the more recent concerns in singularities of those, we will show some

fascinating results in studying geometry in robotics.

While the revelations of our studies would not lead to the commercial implementation

at the moment, they will help better understand and explain the numerous unknown
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properties of those manipulators. Manufacturers can improve their control system to

adapt the small workspace and design a better mechanism with fewer singularities, or

possibly avoid it at all. Our last aim is to promote more thorough understanding and

give directions for future studies on singularities of the manipulators based on the theory

of screw system.

1.3 Overview of the results

Our work is presented in three main parts, Chapters 2, 3, 4. While the progress through

the chapters leads us to different mechanisms, the complexity does not necessarily fol-

low the same progression.

In Chapter 2, we analyze the inverse kinematics of two 6-R serial manipulators with

offset wrists. The univariate equations for different configurations are derived by us-

ing the conventional geometrical approach. Therefore, a substantial part of the chapter

is dedicated to the derivation of developing the equations base on the geometric con-

sideration. Once the last equations are set up, a numerical tool is used to solve, and

by back-substitution, the remaining angles of the manipulator are calculated. Different

configurations are also taken into account to provide the complete analysis. Chapter

2 ends with the discussion on the geometrical method and the simplicity of using this

method for practical applications. A numerical example is given to illustrate the results

of the method.

In Chapter 3, we leave the serial manipulators and start with a discussion on the kine-

matics of a parallel mechanism (PM), Exechon. We present the intermediate and boolean

variables to differentiate the configurations and working mode of the legs of the Exe-

chon manipulator. Then, using these variables, we analyze the direct kinematics of

the mechanism. A numerical example and fully working parametric Maple model are

provided. Thus the results are validated.

In Chapter 4, we extend the analysis to cover the singularities of the Exechon manipu-

lator. In the first part of the chapter, we analyze the singularity in some particular situ-

ations. Next, we use the theory of reciprocal screw to investigate the Jacobian matrices

of the manipulator, which also includes the input-output velocity equation. Finally, we

set up the geometric constraints of the manipulator and use the numerical method to

compute and illustrate the singularity loci and discuss some special configurations of
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the Exechon. The representation of the horizontal cross-sections of the singularity loci

is provided.

Final, we conclude the works and suggest some future research paths in Chapter 5.



Chapter 2

Inverse Kinematics of 6R Robots with
Offset Wrists

2.1 Chapter overview

In this chapter, we propose a method applicable to a number of 6R architectures with

a non-spherical wrist. First, using simple geometric considerations, the problem is re-

duced to the solution of a trigonometric equation in one variable, the sixth joint angle,

θ6. This equation is then solved numerically. Modern numerical tools allow the iso-

lation of all solutions for the joint variable. Back-substitution yields the remaining

joint angles. The main advantage of the proposed approach, developed from original

ideas in [1], is that it is very easy to implement for many of the commercial offset-

wrist manipulators. This is so because the geometrical analysis leading to the univariate

trigonometric equation is much simpler than the algebraic derivation of the 16th degree

polynomial. The method is illustrated on two example architectures, the Fanuc P-200E

and the Motoman MA1400. The results has been presented in [2].

2.2 Introduction

To solve efficiently the inverse kinematics of serial manipulators with six revolute joints

has been one of the most important and basic challenges in robotics. Practically, a

solution is a key requirement for the control and use of some of the robotic systems

5



Inverse Kinematics of 6R Robots with Offset Wrists 6

most common in industry. From a theoretical viewpoint, the problem has yielded some

of the fundamental results in computational kinematics.

The solution is relatively simple, and can be obtained in closed form, when three con-

secutive joint axes are concurrent or parallel [3]. Although some of the most common

manipulator architectures, those with a spherical wrist, satisfy these conditions, many

others do not. This chapter is concerned precisely with such robots lacking a wrist

center.

In the general case, Lee and Liang established that there are at most 16 solutions [4].

Raghavan and Roth [5] proposed a general method, developed and improved in sub-

sequent work [6], for the derivation of the 16th-degree univariate polynomial equa-

tion whose roots give those solutions. Alternative general methods have been proposed

[7, 8]. However all these approaches are often difficult to implement to specific manip-

ulator architectures because of the highly complex algebraic process of the derivation

of the polynomial equation. For this reason, less general, and possibly less efficient, but

simpler methods have been used for analyzing specific robots [9, 10].

The above methods use algebraic techniques to derive symbolically a polynomial equa-

tion, which is then solved numerically. An alternative approach is to use purely nu-

merical iterative methods [11, 12] or continuation techniques [13, 14]. However, these

algorithms do not obtain all solutions, and some may be sensitive to choices of initial

values.

2.3 6R robots with offset wrists

2.3.1 Wrist Types

The last three turning pairs of a 6R manipulator are usually referred to as its wrist. The

most common architecture type has a spherical wrist, i.e., one with the fourth, fifth,

and sixth revolute joint axes concurrent, Fig. 2.1(a-b). Such a manipulator is then in

effect partitioned in a regional positioning arm, comprising the first three joints, and an

orientational wrist. Given an end-effector pose, the regional and the wrist joint angles

can be determined independently (because the first three joint angles depend solely on

the position of the wrist center) and in closed form.
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(A) Orthogonal spherical wrist (B) Non-orthogonal spherical wrist

(C) RRR non-spherical wrist (D) Modified RRR non-spherical wrist

FIGURE 2.1: Spherical Wrists and Offset Wrists

In contrast, if there is no common point on any three adjacent axes, position and orien-

tation are coupled. Therefore, the inverse kinematics problem is much more difficult to

solve. Despite this complexity, such robots are commonly used. It turns out that an off-

set wrist provides better dexterity for a number of tasks, such as welding and painting.

Moreover, the singularity set is different, in particular wrist singularities are eliminated.

Furthermore, avoiding three concurrent axes makes it possible to have a “hollow wrist”

and hide all cables inside the robot arm.

Two common offset wrist types are illustrated in Fig. 2.1(c-d). It can be noted that

although there is no point of common concurrence, the three-axes arrangements are not

arbitrary. Pairs of axes intersect, and there are special points. As we shall see in the

following section, these play a role analogous to the wrist center in solving the inverse

kinematics. Simple geometric considerations can be used to express all angles in terms

of only one, and to derive a single equation (albeit a complex one) for this one variable.

The two illustrated offset wrist types are the ones used in the example architectures

solved in this chapter. These manipulators are described in the following two subsec-

tions.

2.3.2 The Fanuc P-200E architecture

The manipulator architecture, with a non-spherical, non-orthogonal wrist, is illustrated

by Figs. 2.2 and 2.3. The latter figure introduces the notations for key points and param-

eters referred to in the following section. The dashed lines represent the second solution
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i αi ai di θi
1 π

2
0 l1 θ1

2 0 l2 0 θ2
3 π

2
l4 l3

π
2
+θ3

4 -α 0 l5
π
2
+θ4

5 α 0 l6 θ5
6 0 0 l7 θ6

TABLE 2.1: D-H parameters for Fanuc P-200E

of point D as well as point C. We use Denavit-Hartenberg parameters [15] to describe

the geometry of the arm, Tab. 2.1.

FIGURE 2.2: The Fanuc P-200E painting robot

2.3.3 The Yaskawa Motoman MA1400 arm

The second considered manipulator is Yaskawa Motoman 1400 which has the geomet-

rical structure in Figs. 2.4 and 2.5. The D-H parameters are in Tab. 2.2.
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FIGURE 2.3: The Fanuc P-200E architecture

i αi ai di θi
1 π

2
l2 l1 θ1

2 0 l3 0 θ2
3 π

2
l4 0 θ3

4 -π
2

0 l5 θ4
5 -π

2
l6 0 θ5

6 0 0 l7 θ6

TABLE 2.2: D-H parameters for Motoman MA1400

Unlike the Fanuc P200E, this particular manipulator does not have an offset after the

third joint. Therefore, links 1, 2, 3 and 4 are located in the same plane. The first and the

second joint axes of the wrist intersect.

2.4 Inverse kinematics solution

A geometric approach is presented to reduce the inverse kinematics problem to a uni-

variate trigonometric equation. The methodology is easy to generalize to many common

offset-wrist architectures. In this section, we consider the inverse kinematics problem



Inverse Kinematics of 6R Robots with Offset Wrists 10

FIGURE 2.4: The Yaskawa Motoman MA1400 welding robot

FIGURE 2.5: The Motoman MA1400 architecture
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NOTATION EXPLANATION (postures)

ARM ARM =

{
1 on the RIGHT
−1 on the LEFT

SHD SHD =

{
1 shoulder UP
−1 shoulder DOWN

ELB ELB = 1 offset UP

TABLE 2.3: Binary parameters describing the inverse kinematics solutions of Fanuc
P-200E

FIGURE 2.6: Locus of point B for an end-effector pose of P-200E

of Fanuc P-200E, then we modify the solution to apply to Yaskawa Motoman MA1400.

The robots have different offset wrists.

2.4.1 The univariate equation for Fanuc P-200E

We consider the arm and wrist, with standard D-H frames, shown in Figs. 2.3 and

2.6. The unit vectors directed as the x, y, and z axes of link frame i are ~ii, ~ji, and
~ki respectively. (With ~ki along the preceding joint axis i and ~ii along the common

normal of axes i and i + 1.) The end-effector frame has origin P and coordinate-axis

directions ~n =~i6, ~s = ~j6, and ~a = ~k6.

We write ~k4 as a linear combination of ~n, ~s, and ~a. Since the angle between
−→
AP and

−→
BA is α, Tab. 2.1, while θ6 measures the rotation of plane BAP about ~a, we have
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~k4 = ~a cosα + ~s cos θ6 sinα + ~n sin θ6 sinα (2.1)

If the end-effector pose is known, point B can be obtained from the variable θ6. Substi-

tuting Eq. 2.1 in the expression for the radius vector of point B (see Fig. 2.6), yields:

−−→
OB =

−→
OP +

−→
PA+

−→
AB =

−→
OP + ~al7 − ~k4l6 (2.2)

Point G is determined by using the projection B′ of point B in the plane Oxy. From

Fig. 2.7, we have:

 xGxB′ + yGyB′ = 0

x2G + y2G = r20
(2.3)

where r0 = l3 establishing two solutions for point G, and two planes, Π1 and Π2,

which are distinguished by the parameter ARM . Notice that the plane Π1 in Fig. 2.3

contains points G, B′, J , B, D, and C. (Because SHD = ±1, there are two solutions

for each of points D and C, all in Π1.) The plane Π contains points O, B and B′.

Throughout the chapter, for any point, A, we denote by xA, yA, and zA its coordinates

in the relevant reference frame. The description of the possible configurations with

respect to the different combinations of values of ARM , SHD and ELB is shown in

Tab. 2.3.

We will use a transformation from the base frame to a frame centered at G1 (or G2).

The new frame has the same direction of the z axis, while the x axis is along GiB,

Fig. 2.7. Henceforth, all the points which are located in the plane Πi will be described

in Gixz coordinates, i = 1, 2. To simplify the notation, we will drop the index i. The

transformation matrix is:

MOG =



−yG√
(x2G+y2G)

−xG√
(x2G+y2G)

0 xG

xG√
(x2G+y2G)

−yG√
(x2G+y2G)

0 yG

0 0 1 0

0 0 0 1

 (2.4)

We have:
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FIGURE 2.7: Locations of G for ARM = ±1

FIGURE 2.8: Locations of D for SHD = ±1

−−→
GB = MOG

−−→
OB (2.5)

As can be seen in Fig. 2.8, point D can be obtained by , the intersection of two circles

in the plane Π (Π1 or Π2 depending on ARM ). So, in the frame at G,
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 (xD − xJ)2 + (zD − zJ)2 = r21

(xD − xB)2 + (zD − zB)2 = r22
(2.6)

where r21 = l21 and r22 = l24 + r25.

Similarly, for point C: (xC − xD)(xB − xC) + (zC − zD)(zB − zC) = 0

(xC − xD)2 + (zC − zD)2 = r23
(2.7)

where r3 = l4.

To express point C back in the base frame,

−→
OC = M−1OG

−→
GC (2.8)

Finally, given the angle α between
−−→
CB and

−→
BA, we have:

−−→
CB ·

−→
BA−

∣∣∣−−→CB∣∣∣ ∣∣∣−→BA∣∣∣ cosα = 0 (2.9)

After substituting the expression for point C, Eq. 2.9 has only one unknown, θ6. It is

the desired final equation which is used to get the solutions to the inverse kinematics.

2.4.2 Solving for the other joint angles

Using back-substitution, the remaining angle variables are found in succession:

θi = calc angle(~ii−1,~ii, ~ki−1) i = 1, 2, ..., 5 (2.10)

Function calc angle(), as shown in Algorithm 1, is based on the idea of choosing the

correctly directed angle between two given directions, which corresponds to a given

normal vector. This function provides a consistent definition of the angle (if the three

defining vectors are not coplanar). Note that the algorithm works despite inevitable

numerical errors due to finite precision, because exact orthogonality or parallelism is

not required.
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Algorithm 1 Calculate θ = calc angle(~a,~b, ~n)

Require: ~a 6= ~b 6= ~n 6= 0
Ensure: θ = calc angle(~a,~b, ~n)
−→nab ← ~a×~b
−→u ← ~nab × ~a
if ~a = ~b then
θ ← 0

else if −→a = −
−→
b then

θ ← π
else if (

∣∣−→nab +−→n
∣∣− ∣∣−→nab∣∣+

∣∣−→n ∣∣) > 0 then
θ ← atan2((−→u ·

−→
b ), (−→a ·

−→
b ))

else
θ ← −atan2((−→u ·

−→
b ), (−→a ·

−→
b ))

end if

The procedure is applied four times by following the steps from Eq. 2.1 to Eq. 2.10. In

order to find all possible solutions, we need to find all the roots of Eq. 2.9. Moreover,

a version of Eq. 2.9 is derived for each of the four cases given by ARM = ±1 and

SHD = ±1, namely {ARM = 1, SHD = 1, ELB = 1}, {ARM = −1, SHD =

1, ELB = 1}, {ARM = 1, SHD = −1, ELB = 1}, {ARM = −1, SHD =

−1, ELB = 1}. For the current architecture, ELB = 1 is constant. Therefore, four

trigonometric equations in the form of Eq. 2.9 are yielded. All the possible real roots

are found by the numerical solver as described later in this section.

2.4.3 Inverse kinematics of Yaskawa Motoman 1400

A similar algorithm can be applied to the robot with the architecture illustrated by

Figs. 2.4 and 2.5. In this case, the robot does not have an offset between the origin

and all the other links. There is a small offset between joint axes 4 and 5.

The method of the previous subsection can be applied with minor modifications to the

wrist of the MOTOMAN 1400.

From Fig. 2.5:

~i5 = ~n cos θ6 + ~s sin θ6 (2.11)

−−→
OB =

−→
OP +

−→
PA+

−→
AB =

−→
OP + ~al7 − ~i5l6 (2.12)
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FIGURE 2.9: Graphs for the 4 univariate equations

Point G is determined by projecting point B into plane Oxy, and then finding the two

intersections of the line OB′ with the circle with radius l2 centered at O:

−−→
OG1 =

−−→
OB′l2∣∣∣−−→OB′∣∣∣ (2.13)

−−→
OG2 = −

−−→
OG1 (2.14)

The next step is finding the position of points D and C following a similar procedure

as for the Fanuc P-200E by calculating Eqs. 2.6 to 2.8. Finally, the equation for θ6 is

obtained:

−−→
CB · ~k4 = 0 (2.15)

where ~k4 =
−→
AP ×

−→
AB.

The remaining angles are found in succession as in Eq. 2.10

2.4.4 Numerical solver

A mathematical model is created in Matlab. In order to solve the non-linear equation nu-

merically, we use a built-in function ”fsolve()” implementing a non-linear least-squares
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length value (mm) angle value (rad)
l1 1510 α π

3

l2 1400 θ1 1
l3 455 θ2 2
l4 150 θ3 -2.2
l5 1400 θ4 -1
l6 100 θ5 1
l7 82 θ6 0.5

TABLE 2.4: Dimensions of Fanuc P-200E

algorithm. In order to perform the calculation, the function needs some initial starting

guess, and it gives only one solution in an iterative cycle. Therefore, the starting guess

has to be increased by ∆θ6 which is small enough to get all the solutions. If necessary,

the starting guesses can be improved by considering plots of the trigonometric function,

Fig. 2.9.

2.5 Numerical examples

2.5.1 Fanuc P-200E

A numerical example is solved using the geometric analysis approach. The 6R manipu-

lator in Fig. 2.2 is chosen with dimensions as shown in Tab. 2.4 with the corresponding

kinematic D-H parameters illustrated in Tab. 2.1.

In order to evaluate the method, we first choose an example set of joint values, in this

case (θ1, θ2, θ3, θ4, θ5, θ6) = (1, 2,−2.2,−1, 1, 0.5). Then we compute the position and

orientation of the end-effector P:

P =


0.3762 0.3089 0.8735 979.9349

−0.9224 0.2139 0.3217 463.9845

−0.0874 −0.9267 0.3654 2626.1

0 0 0 1

 (2.16)

Now, the method described in Section 2.4 is applied to solve the inverse kinematics and

find all postures with this end-effector pose. A program is implemented in both C++

and Matlab on the platform of Intel I5-2.6 GHz, RAM 3 GB to obtain the set of 8 real
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Solution No. 1 2 3 4 5 6 7 8
θ1 3.0332 -3.0852 3.0239 -3.0959 0.8593 1.0000 0.8660 1.0154
θ2 1.1382 1.1929 -2.9446 -2.9270 1.9564 2.0000 -0.2127 -0.1986
θ3 2.2087 2.2346 -2.0367 -2.0336 -2.2505 -2.2000 2.0431 2.0255
θ4 1.1294 -2.2148 1.4804 -0.7552 -3.7976 -1.0000 0.5683 -1.6813
θ5 -0.8560 0.8392 1.7290 -1.7231 -0.9714 1.0000 1.7113 -1.6810
θ6 -0.5456 1.8839 -1.8850 2.2674 -1.8973 0.5000 -2.1268 2.0153

TABLE 2.5: 8 real solutions of Fanuc P-200E

FIGURE 2.10: 8 postures of fanuc P-200E

solutions which are listed in Table 2.5. In addition, a virtual model is implemented in

Matlab to illustrate the results as shown in Fig. 2.10. For better visualization, on this and

some other figures the wrist is enlarged by making parameter l6 larger than in reality.
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length value (mm) angle value (rad)
l1 450
l2 150 θ1 0.20
l3 614 θ2 1.78
l4 200 θ3 -0.20
l5 640 θ4 1.10
l6 30 θ5 3.20
l7 200 θ6 1.20

TABLE 2.6: Dimensions of Motoman MA1400

Solution No. 1 2 3 4 5 6 7 8
θ1 0.2000 0.2800 0.2394 0.2412 -2.9079 -2.8953 -2.9010 -2.9016
θ2 1.7800 1.7836 0.1616 0.2592 1.8439 1.8772 2.8224 2.9328
θ3 -0.2000 -0.2454 2.8147 2.7014 2.3062 2.1707 0.3649 0.2299
θ4 1.1000 -2.0472 3.0483 -0.0954 -0.1694 2.9754 3.0487 -0.0922
θ5 -3.0832 2.9929 -1.7711 1.7867 -2.6088 2.5063 1.6519 -1.6274
θ6 -1.2000 1.9350 -5.4581 -2.3183 -5.5859 -2.4318 -2.3054 0.8385

TABLE 2.7: 8 real solutions for Yaskawa Motoman MA1400

2.5.2 Yaskawa Motoman MA1400

Next, an example is computed for MA1400. The robot dimensions and a set of joint

variables are given in Tab. 2.6. These values generate the output pose via direct kine-

matics:

P =


−0.1333 0.072 0.9885 841.7

0.7333 −0.6638 0.1473 187.2

0.6667 0.7445 0.0357 1250.1

0 0 0 1

 (2.17)

For this pose, a set of 8 postures of the Motoman MA1400 is obtained. The joint values

are listed in Tab. 2.7 and illustrated in Fig. 2.11.

2.6 Conclusions

Thanks to the development of numerical computing, the inverse kinematics of certain

6R robots with non-spherical wrists can be easily solved. In this chapter, we propose
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FIGURE 2.11: 8 postures of Motoman MA1400

an efficient method based on geometric analysis combined with numerical computa-

tion. Relatively simple geometrical considerations lead to the derivation of a univariate

trigonometric equation for the sixth joint angle. All its roots can be efficiently com-

puted using existing standard numerical algorithms. Thus, for every given end-effector

pose, the method yields all real solutions for the joint variables of the Fanuc P-200E

manipulator as well as for the Motoman MA1400 arm. Numerical examples, where 8

real solutions are obtained are presented for both geometries. When compared to the

general algorithms that derive a univariate polynomial equation of a non-decoupled 6R

serial chain, the approach is very simple to implement on manipulators with similar

offset-wrist architectures.



Chapter 3

Direct Kinematic Analysis of The
Exechon Manipulator

3.1 Chapter overview

Parallel robots are, just like serial robots, programmable automation tools that can per-

form handling and assembly tasks. Due to the possibility of programming, they can

be used flexibly and adapted to different tasks. Serial robots, whose structural image

is shown in Fig. 3.1(A), consist of an open kinematic chain leading from the frame to

the end effector. The drives are located in the joints and are carried along. In contrast,

the drives of the parallel robot shown in Fig. 3.1(B) are fixed to the frame. Several

kinematic chains travel from the frame over passive joints parallel to the end effector.

(A) Serial manipulator (B) Parallel manipulator

FIGURE 3.1: Diagrams of two different type of robots/manipulators

21
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Since the load on the end effector is distributed over several conveyor chains and no

drives are carried along, it is possible to simplify the structure of parallel robots. This

results in a higher dynamic with the same stiffness of the structure. Parallel robots

can carry large loads despite their low weight. The achievable payload-to-deadweight

ratio may be greater than one in some cases. The parallel arrangement of the kinematic

chains increases the achievable accuracy of the end effector position. Measuring errors

and manufacturing tolerances do not add up over a chain, but can be compensated [16],

[17].

The advantages described above are counteracted by the following disadvantages: The

high number of guide chains leading from the frame to the end effector narrows the mo-

bility, in particular of the rotational degrees of freedom, since the risk of self-collision

increases. Singularities are also inside the workspace, whereas in the case of serial

structures they only occur at the edge. These characteristics must be taken into account

by means of special machine-related control functions for working space monitoring.

Parallel robots generally have an analytically solvable inverse kinematic problem. In

contrast, the solution of the direct kinematic problem is not unique and can only be

solved numerically iteratively for complex parallel structures.

In this chapter, we discuss a class of three degree-of-freedom manipulator, namely Ex-

echon. Section 3.3 describes the architecture and geometry of the PM. In section 3.4,

the equivalent mechanism as well as the motion pattern of the PM are also presented.

Then, in Section 3.5, we obtain a system of equations for the angles between the mo-

bile platform and the legs in order to solve the direct kinematics. This system is then

solved numerically. Numerical examples for both direct and inverse kinematics are im-

plemented in Section 3.6. Then we conclude the work in Section 3.7. The results have

been presented in [18].

3.2 Introduction

Parallel manipulators [16, 19–21] have been attracting growing interest by researchers

and engineers. This has increased the importance of methods for solving their kinemat-

ics.

Parallel Kinematic Machines in particular, are machine tools based on parallel mecha-

nisms. PMs are favored because they can provide superior stiffness due to the presence
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FIGURE 3.2: The Exechon X300 with a spherical wrist attached to the end-effector

of multiple legs (limbs). This advantage is best exemplified by hexapods such as the

Stewart-Gough platform, a popular choice for flight simulators and other applications

with requirements for high load-carrying capacity [16]. Unfortunately, a higher number

of legs implies a smaller workspace. To achieve a balance, three-legged architectures

have been a popular choice for PKM designs. See [22–25] . Although the five dof re-

quired in machining applications can be obtained by parallel architectures, [21], hybrid

designs with serial wrists are often preferred.

The Tricept developed by Neos Robotics AB, now produced by PKMtricept SL, is a

particularly successful example of a tripod for machining applications. A new design,

related to the Tricept, is the Exechon tripod, patented in 2006 by Karl-Erik Neumann

[26], who had also invented the Tricept in 1985 [27]. Unlike the Tricept, the Exechon

tripod has no central stabilizing tube (a passive central leg).

PKMs based on several Exechon designs are now produced in China, Taiwan, Korea,

and Spain. The Exechon 700 and 300, Fig. 3.2, are 5-axis machine tools, more pre-

cisely, 3-dof tripods equipped with a 2-dof spherical wrist. A new Exechon variant,

with smaller dimensions and a 3-dof spherical wrist Fig. 3.3, has been developed for

fixturing applications within an inter-European project, SwarmItFIX [28] . The project

is to create a self-reconfigurable intelligent fixturing system, primarily intended for the
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FIGURE 3.3: The Exechon X150 model

manufacturing of relatively large thin-sheet parts as in the aerospace industry. The en-

visioned solution uses mobile PMs as autonomous fixturing agents, which periodically

reposition to provide support for the machined thin-sheet workpiece in the vicinity of

the moving machine tool. The new Exechon X150 model is the centerpiece of the de-

sign of the mobile agent.

To this need, we focus on analyzing and implementing a clear and geometrically com-

prehensible method on solving the inverse and direct kinematics of the Exechon. As in

[29, 30], and unlike other studies, we consider a somewhat more general architecture

(than in the original Exechon PM) allowing certain non-zero offsets. The singularity

analysis of the tripod have been addressed in [30]. The kinematics and stiffness of the

PM are also discussed in [31–34].

3.3 Architecture and geometry of the kinematics model

The PKM we analyze in this chapter is shown in Fig. 3.4. The notation is summarized

in the Nomenclature. The PM has three legs, herein labeled A,B,C. Two of them, A
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and C, are identical 4-dof RRPR chains. The first joints of these two legs share the

same axis: `(ξA1 ) = `(ξC1 ). The remaining revolutes in both legs are all parallel and

perpendicular to the two prismatic joints and the first joint axis. The constraint between

joint axes is described in following diagram:

kL3 ⊥ kA4 ‖ kC4 ‖ kA2 ‖ kC2 ⊥ kA1

Ignoring actuation, each of the A or C legs, as well as the two legs combined, constrain

the end-effector of the PM as an RE chain, a revolute followed by a planar joint, with

the R axis perpendicular to the normal of the E joint.

For simplicity we will assume that kL3 is parallel to the plane of `(ξL2 ) and `(ξL4 ) (if

`(ξL2 ) 6= `(ξL4 )), L = A,C. This is the case in the existing Exechon designs, where the

first two revolutes in each of legs A and C are combined in a universal joint.

The remaining leg, labeledB, is a 5-dof SPR serial chain. Its last joint axis, the revolute

fixed in the platform is parallel to the planes of planar motion of legsA andC, kB5 ⊥ kA4 .

Furthermore, the direction of the prismatic joint is parallel to the normal from the center

of the spherical joint, PB
1 , to the revolute axis, `(ξB5 ). (In the practical Exechon designs,

the spherical joint has been sensibly replaced with three revolutes, a U-joint followed

by a rotation allowing the leg to twist. For simplicity, and with little loss of generality,

we will assume an SPR leg).

The geometry of a mechanism with the considered architecture is univocally identified

by the geometry parameters: dA, dB, dC describing the base of the mechanism; lA12, l
C
12

describing legs A and C; pA, pB, pC , hA, hC describing the end-effector. Note that the

three revolute joints axes fixed in the platform are parallel to a common plane but not

necessarily coplanar. The offsets that describe this platform geometry are hA and hC .

3.4 Motion pattern and equivalent mechanism

The end-effector has three degrees of freedom which means that its feasible poses form

a three-dimensional subspace of SE(3). (Such subspaces are referred to as motion pat-

terns [21] when the interest is in the geometry of the allowed end-effector motion, rather

than its limits, the usual subject of workspace analysis.) Indeed, legs A and C constrain

the platform to perform planar motion in a rotating plane, i.e. into a four-dimensional



Direct Kinematic Analysis of The Exechon Manipulator 26

FIGURE 3.4: Simplified structure of Exechon Tripod

submanifold of SE(3). The third leg is with 5 dof, therefore the platform must have

at least 3 dof. However, it is clear that not all of the four freedoms permitted by the

RE legs are possible, as the 5-dof leg allows translational motion only in directions

perpendicular to the platform revolute axis, `(ξB5 ). Thus, not all translations parallel to

the plane πα, allowed by the RE legs A and C, are allowed by leg B. Therefore, the

intersection of the motion patterns allowed by the legs is a three-dimensional space.

This means that locally the motion can be described by three parameters. In general,

this does not imply that there is a global choice of three parameters describing the pose

in a nonsingular manner. (For example, this is not the case for spherical motion; every

choice of Euler angles has a singularity.)

However, this is possible for this mechanism. A nonsingular representation is e =

(α, β, h). The angle α describes the rotation of πα, the rotating plane of planar motion

of legs A and C. The angle β is the planar orientation of the platform in πα. The

third parameter, h, measures how far the platform is translated from the projection of

the spherical joint, PC
1 , onto πα. The triple, e, describes the pose of the PM platform

univocally for any geometry and configuration.

In fact, a simple 3-dof quasi-serial chain proposed in this chapter can reproduce exactly

the full-cycle motion pattern of the PM, Figs. 3.5 and 3.6. It can be described as a serial

chain with three joints, with its first “joint” realized by a 1-dof 2-RP planar parallel
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FIGURE 3.5: The equivalent mechanism

mechanism while the second and third joints are a revolute and prismatic pair, respec-

tively. The first 1-dof coupling is between the base link and the “coupler” of a four-joint

single-loop planar mechanism, allowing only Cardanic motion (equivalent to the rolling

of two circular centrodes). The second revolute joint reproduces exactly the change of

the parameter β, and its axis is always along the perpendicular from PB
1 to πα, while

the third provides the translation measured by h (for fixed α and β). Although the con-

figuration of the first complex joint can be described by α, the motion of the “coupler”

is not simple rotation about `(ξA1 ). (Indeed, its instantaneous center of rotation in the

plane of Fig. 3.5 is obtained at the intersection of the perpendiculars to the translation

directions through the base hinges).

We see the equivalent linkage as a fourth leg of the PM, not affecting the mobility of the

platform. This chain is able to follow the platform everywhere, i.e., if it is added to the

architecture in Fig. 3.4 as an “additional leg” the motion capability of the mechanism

will be identical (ignoring link interference).

More details on the geometry of the Exechon and its equivalent linkage can be found in

[29, 30].

3.5 Direct kinematics of the exechon

Solving the direct kinematics means to find all the possible positions that correspond to

one particular set of input variables. Those positions are the solutions of a system of
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FIGURE 3.6: The equivalent mechanism as a fourth leg

constraint equations that represent all feasible poses of the Exechon, they also depend

on the assemblies of the legs, (δA,δC ,δB1 ,δB2 ).

In this section, the Exechon is a pure 3-dof parallel mechanism without the attached

wrist. One needs the complete poses of the 6-dof PKM could also use the DH parame-

ters to formulate the direct kinematics for the serial wrist afterwards.

3.5.1 Direct kinematics equations

Let us consider the geometry of the Exechon tripod in Figs. 3.4,3.7. In the frame at-

tached to the end-effector (P ijk), the points PA
1 , PB

1 and PC
1 are described as:

−−→
PPA

1 = (pA + qAc1 + δAlAc4)j + (−qAs1 − δAlAs4 + hA)k (3.1)
−−−→
PPB

1 = (pB + qBc3)i + (−qBs3)k (3.2)
−−−→
PPC

1 = (pC + qCc2 + δC lCc4)j + (−qCs2 − δC lCs4 + hC)k (3.3)

where ci and si represent cos θi and sin θi, i = 1, . . . , 4.
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FIGURE 3.7: Structure of Exechon considering the platform frame

There are offsets between `(ξL1 ) and `(ξL2 ), L = A,C, i.e., the links defined by the

PA
1 P

A
2 and PC

1 P
C
2 , respectively. The segments are parallel to each other and commonly

perpendicular to PA
1 P

C
1 . Therefore, the position of points PA

2 , PC
2 is given by:

−−→
PPA

2 = (pA + qAc1)j + (−qAs1 + hA)k (3.4)
−−−→
PPC

2 = (pC + qCc2)j + (−qCs2 + hC)k (3.5)

The distances between PA
1 , PC

1 and PB
1 are dAC , dAB, and dCB:
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dAC = |
−−−−→
PA
1 P

C
1 | = |dA|+ |dC | (3.6)

dAB = |
−−−−→
PA
1 P

B
1 | =

√
dA2 + dB2 (3.7)

dCB = |
−−−−→
PC
1 P

B
1 | =

√
dC2 + dB2 (3.8)

Another constraint comes from the perpendicularity between `(ξL1 ) and `(ξL2 ), L =

A,C, see Fig. 3.7.

It is convenient to express the constraint equations of the manipulator in terms of four

angles θi i = 1, . . . , 4, shown in Fig. 3.7. Let us denote by xL, yL and zL the coordinates

of point PL
1 , L = A,B,C, in the platform frame (P ijk) (i.e., the Pxyz components of

vector
−−→
PPL

1 , L = A,B,C). Then, the four constraints listed above give these equations:

(xA − xC)2 + (yA − yC)2 + (zA − zC)2 = d2AC

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 = d2AB

(xC − xB)2 + (yC − yB)2 + (zC − zB)2 = d2CB
−−−−→
PA
1 P

A
2 ·
−−−−→
PA
1 P

C
1 = 0

(3.9)

The system (3.9) is expanded and reformulated in terms of the sines and cosines of

the four unknown angles. Four trigonometric conditions are added and the following

system of eight quadratic equation for the eight unknowns, ci and si, i = 1, . . . , 4, is

obtained:



(LACc4 + LP )2 + (LACs4 + LH)2 = d2AC

LB
2 + LA1

2 + LA2
2 = d2AB

LB
2 + LC1

2 + LC2
2 = d2CB

LAC + LP c4 + LHs4 = 0

c1
2 + s1

2 = 1

c2
2 + s2

2 = 1

c3
2 + s3

2 = 1

c4
2 + s4

2 = 1

(3.10)

where
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LAC(δA, δC) = δAlA12 − δC lC12 (3.11)

LP (c1, c2) = qAc1 − qCc2 + pA − pC (3.12)

LH(s1, s2) = qAs1 − qCs2 − hA + hC (3.13)

LB(c3) = c3q
B + pB (3.14)

LA1(c1, c4, δ
A) = c4δ

AlA12 + c1q
A + pA (3.15)

LA2(s1, s3, s4, δ
A) = δAlA12s4 + qAs1 − qBs3 − hA (3.16)

LC1(c2, c4, δ
C) = c4δ

C lC12 + c2q
C + pC (3.17)

LC2(s2, s3, s4, δ
C) = δC lC12s4 − qBs3 + qCs2 − hC (3.18)

It can be noted that apart from the eight unknown sines and cosines two more quantities

appear in the equations, δA and δC , each of which can be either 1 or −1. In practice the

choice of one of these, say δA can be made arbitrarily: it simply by determining how

angle θ4 is measured. (For the opposite value of δA, the angle value will differ by π.)

Then, there are two cases for the sign of δC . If the signs are the same, the points PA
2 and

PC
2 are on the same side of PA

1 P
C
1 , and on opposite sides otherwise. Note that transition

between these two states is possible only with disassembly of the PM.

The system (3.10) is then solved numerically. This must be done twice, for δAδC = 1

and δAδC = −1.

After getting the system of equations in Eq. 3.10 in terms of the variables ci and si

(i = 1, 2, 3, 4), a standard numerical tool in Maple is used to get the solutions for the

direct kinematics.

A lot of advances have been made in the ability to solve numerically a non-linear system

of equations. An effective iterative approach is the Newton-Kantorovich (N-K) method.

In general, the method transforms non-linear order differential equations into linear

differential equations. This means that the governing system of non-linear equations has

to be linearized. The procedure is described in [35]. The N-K method is presented by

Kubicek and Hlavacek [36], who also propose two new ways to implement the method:

using Fréchet derivatives, or Taylor series expansion. In consequence, they obtain a

significant improvement in performance and shorter computation time. Another useful

method which uses differential equations is the one developed by Dragilev [37, 38].

Derivative-free numerical methods have also been proposed [39, 40].
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Some of these procedures are integrated in modern symbolic algebra systems. The

present work takes advantage of the pre-defined solver in Maple, “allvalues(solve(f ,x))”,

where f is the set of equations (3.10) and x is the set of the variables ci and si (i =

1, 2, 3, 4).

First of all, the system of equations is factorized and split into much smaller and sim-

pler systems by using the Groebner bases algorithms (developed by Buchberger [41]).

In particular, this approach generalized three familiar techniques: Gaussian elimina-

tion for solving linear system of equations, the Euclidean algorithm for computing the

greatest common divisor of two univariate polynomials, and the Simplex Algorithm for

Linear Programming [42, 43]. This algorithm is embedded into many standard solvers,

including in Maple. The evaluation of the roots is implemented neglecting the complex

roots. As a result, all possible solutions are found. This method is briefly described in

[44, 45].

3.5.2 Back-substitution and transformation matrix

The solutions for si and ci, i = 1, . . . , 4, obtained numerically as described in the

previous section, are back-substituted into Eqs. 3.2-3.8 in order to find the position of

the key points describing the configuration, including the coordinates of O in the frame

(P ijk):

−→
PO =

−−→
PPA

1 +
|dA|

|dA|+ |dC |
−−−−→
PA
1 P

C
1 (3.19)

The rotation matrix from (P ijk) to (Oibjbkb) isRO
P . The subscript P of the 3×3 matrices

in Eq. 3.20 indicates that the vectors are expressed in the reference frame (P ijk).

RP
O =

[
ib jb kb

]
P

(3.20)

where ib =
−−−→
OPB

1 /|
−−−→
OPB

1 |, jb =
−−−→
OPC

1 /|
−−−→
OPC

1 | and kb = ib × jb

The rotation matrix RO
P describes the orientation of the base frame (Oibjbkb) with re-

spect to the end-effector frame (P ijk). Then the matrix of the homogeneous transfor-

mations from (Oibjbkb) to (P ijk) and back is:
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MO
P =

RP
O
T −RP

O
T−→
PO

0 1

 (3.21)

With this, the pose of the platform which corresponds to each solution of the system

(10) is obtained.

However, to fully complete the direct kinematics problem, it is necessary to calculate all

possible configuration of the entire PM, including not only the platform pose but also

the leg postures, for a given set of inputs.

This amounts to the determination of the Boolean parameters δA, δC , δB1 , δB2 , determin-

ing the so-called working modes of the legs [29].

Once the platform pose, the angles θi, i = 1, . . . , 4, and the input values are all known,

the working-mode switches are given by the following expressions:

δLcal = sign

atan2

 −−−→
PL
1 P

L
2 ·
−−−−→
PA
1 P

C
1

i · (
−−−→
PL
1 P

L
2 ×
−−−−→
PA
1 P

C
1 )


 (3.22)

δB1 cal = sign

atan2

( −−→
PPO · kA2

jb · (
−−→
PPO × kA2 )

) (3.23)

δB2 cal = sign

atan2

(
kA2 · kB5

−−−→
OehP · (kA2 × kB5 )

) (3.24)

The so-calculated values (δAcal, δ
C
cal) may turn out to be the opposite of the assumed val-

ues (δA, δC). With the correct values of the Boolean parameters the exact configuration

of the entire mechanism can be reconstructed for each solution set of the system (3.10).

With this the direct kinematics of the Exechon manipulator is solved completely.

3.6 Numerical examples

In this section, we demonstrate a numerical example for the inverse and direct kinemat-

ics of the Exechon manipulator. The mathematical mockup of the mechanism is also
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implemented using Maple, which allows to generate exact three-dimensional graphical

representations of all configurations which are possible for any given set of inputs.

We assume the geometry in the Tab. 3.1.

dA −0.4434
dB 0.3455
dC 0.7798
lA12 0.1023
lC12 0.1523
hz -0.2000

pA −0.1523
pB 0.1324
pC 0.2523
hA 0.0400
hC 0.0230
hx 0.2828

TABLE 3.1: Numerical example geometry for direct kinematics analysis

Let the actuated prismatic joint parameters, i.e., the length of each leg are qL, L =

A,B,C. In order to evaluate the method, we first choose an example set of input joint

values q = (qA, qB, qC) = (0.7146, 0.5032, 0.8146). Then we apply the procedure as

described above to compute the desired transformation matrix and leg postures.

In Tab. 3.2 and Figs. 3.8,3.9 , the obtained 32 solutions are listed. They are divided in

two groups: 16 are obtained when δAδC = 1 and the rest for δAδC = −1. This result

corresponds to an average computation time of about 2.952s on a 2.10 GHz PC. The

time needed for the 3D visualization of the mechanism is negligible.

Ignoring link interference, the postures of the PM in the same group can transit from one

to another without disassembly. However, the transitions between the groups cannot be

performed because of the planarity of PA
i and PC

i (i = 1, 2, 3, 4). (We have to break at

least one joint from the loop in order to change the direction of ξA2 or ξC2 ).

3.7 Conclusions

In this chapter, we propose an efficient approach to the kinematics of the Exechon tri-

pod. Thus, the analytical solutions of the inverse kinematics of the Exechon with the

spherical wrist are provided. The direct kinematics, for every given set of inputs, the

method yields all possible postures of the PM. A mathematical model with numeri-

cal examples is illustrated with 16 solutions for the inverse kinematics and a set of

32 solutions equally divided in to 2 distinct assembly states of the PKM for the direct

kinematics. The transition between 2 states (δAδC = 1 and δAδC = −1) requires the
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(A) Solution No.1 (B) Solution No.2 (C) Solution No.3 (D) Solution No.4

(E) Solution No.5 (F) Solution No.6 (G) Solution No.7 (H) Solution No.8

(I) Solution No.9 (J) Solution No.10 (K) Solution No.11 (L) Solution No.12

(M) Solution No.13 (N) Solution No.14 (O) Solution No.15 (P) Solution No.16

FIGURE 3.8: 16 solutions for direct kinematics of Exechon when δAδC = 1

disassembly of at least one UPR leg. The interpretation of these assembly modes was

provided. The motion pattern of the 3-dof tripod has been described via a simple 3-

dof quasi-serial chain. It turns out that the equivalent mechanism could be used as a

additional fourth leg.

A fully parametric mathematical model of the Exechon has been developed in Maple

to verify the obtained solutions for the direct kinematics. All presented 3D figures

have been automatically generated by Maple using the exact given dimensions and joint

displacements.
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(A) Solution No.17 (B) Solution No.18 (C) Solution No.19 (D) Solution No.20

(E) Solution No.21 (F) Solution No.22 (G) Solution No.23 (H) Solution No.24

(I) Solution No.25 (J) Solution No.26 (K) Solution No.27 (L) Solution No.28

(M) Solution No.29 (N) Solution No.30 (O) Solution No.31 (P) Solution No.32

FIGURE 3.9: 16 solutions for direct kinematics of Exechon when δAδC = −1
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δAδC = 1
No. α(deg) β(deg) h xP yP zP
1 75.9598 -118.2861 0.1766 -0.0010 0.1638 0.0042
2 107.7676 -100.2730 0.2573 0.0431 0.1975 0.1345
3 133.6028 1.8588 0.7606 0.5015 -0.0159 0.5266
4 -154.2458 2.0375 0.7608 0.6551 -0.0148 -0.3160
5 74.3228 5.9605 -0.5208 0.1493 0.0479 -0.5320
6 -47.4675 7.3550 -0.5205 0.3735 0.0412 0.4072
7 112.8625 134.5673 -0.0998 -0.0088 0.1593 -0.0209
8 59.7400 124.7146 -0.3193 0.1624 0.2137 -0.2783
9 120.7557 128.3027 -0.1251 0.0071 0.2060 0.0120

10 54.8319 93.0389 -0.2532 0.1233 0.2844 -0.1750
11 31.5456 -0.0630 -0.7610 0.6778 -0.0006 -0.4161
12 -12.6422 -0.0667 -0.7610 0.7760 -0.0005 0.1741
13 94.9984 -3.6310 0.5196 0.0423 0.0289 0.4838
14 -125.4350 -4.6237 0.5183 0.2815 0.0231 -0.3956
15 80.0666 -132.7760 0.1636 -0.0099 0.1266 0.0567
16 103.8617 -128.3187 0.2727 0.0474 0.1454 0.1919

δAδC = −1
No. α(deg) β(deg) h xP yP zP
17 108.9054 117.8484 -0.1238 0.0051 0.1818 0.0150
18 51.0179 92.6418 -0.2711 0.1455 0.3037 -0.1798
19 57.9692 -11.4003 -0.6209 0.3451 -0.0943 -0.5517
20 -35.1008 -13.1215 -0.6174 0.5332 -0.0860 0.3748
21 114.4391 -15.0584 0.6386 0.2465 0.1219 0.5425
22 -139.1109 -17.7167 0.6316 0.4517 0.1074 -0.3911
23 75.8761 -134.8953 0.1577 -0.0115 0.1320 0.0457
24 96.8245 -128.3122 0.2250 0.0170 0.1293 0.1422
25 85.2451 -110.4300 0.1834 -0.0023 0.1510 0.0275
26 107.6206 -100.3052 0.2565 0.0425 0.1969 0.1338
27 111.3960 12.4128 0.6235 0.2121 -0.1002 0.5413
28 -136.9351 14.7075 0.6227 0.4267 -0.0870 -0.3988
29 54.2116 18.1358 -0.6415 0.3855 0.1497 -0.5347
30 -31.9362 20.6748 -0.6368 0.5603 0.1385 0.3492
31 125.0273 141.4714 -0.1005 -0.0137 0.1770 -0.0196
32 67.0102 124.2733 -0.2617 0.1020 0.1853 -0.2405

TABLE 3.2: 32 solutions for direct kinematics of the Exechon when δAδC = 1 and
δAδC = −1



Chapter 4

Singularity Analysis of the Exechon
Manipulator

4.1 Chapter overview

In mathematics, singularity describes the phenomenon that an object or algorithm loses

their validity in the domain of singularity. Singularity stands for the ”definition gap of a

function” or an ”indeterminate state” that can not be calculated. Relatively well known

in this matter is the ”Jump Discontinuity”.

Singularity in robotics is a curse and a blessing at the same time: Singularity occurs

when the total system loses one (or more) degrees of freedom or the movement of one

axis can be completely compensated by another.

The study of the singularity set is one of the most vital tasks in understanding the local

and global behaviors of a manipulator. A goal is to investigate certain configurations,

as described as singular or critical. Near these configurations, the robot can suffer

losses of dexterity or controllability, and may not be able to balance or regulate the

forces it exerts on the environment. A good trajectory planner must keep the robot

away from such configurations, avoiding especially those that compromise the integrity

of the mechanism itself. The ability to execute complex movements in a precise and

robust way is a crucial aspect of any manipulator, but the analysis and planning of such

movements is not a trivial process. Therefore, it requires a deep understanding of the

singular configurations, where the kinetostatic performance of the system is drastically

reduced.

38
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The following sections address the singularities of the Exechon manipulator. The con-

straint and instantaneous kinematics analysis of the mechanism are shown and dis-

cussed. The equations of the singular configurations are obtained under different leg

arrangements, and numerical examples are provided. The velocity kinematics and the

Jacobian matrices are formulated via a screw-system based method.

The singular configurations are classified and visualized in detail to provide a complete

insight into the problem. The work yields both the geometric interpretation of the sin-

gularities and their localization. Conditions for the singularities are fully investigated in

this chapter.

4.2 Introduction

The objective of this chapter is about the mobility and singularities of the Exechon three-

degree-of-freedom (dof) parallel mechanism (PM), a family of the parallel kinematic

machines (PKM). The constraint and singularity analyses are given based on the theory

of reciprocal screws. Singular configurations are classified in details with their geo-

metric interpretation. Redundant output singularities are investigated thoroughly due

to its important factor when design and study of the parallel mechanism. Input-output

velocity equation and Jacobian matrices are provided via screw-system approach. Fully

parameterized Maple mock-up model is developed to illustrate the specific configura-

tions. A numerical tool is used to calculate and describe the singularity loci in different

projections. Two are the main contributions of the current chapter.

4.3 Leg wrenches and output velocities

4.3.1 Expression of the leg wrenches

Considering the mechanism in Fig. 3.4, we can express the leg twists and wrenches ϕAa ,

ϕBa , ϕCa , ϕ0, ϕB0 , µ0, ξA3 , ξB4 , and ξC3 using the geometry parameters of the mechanism.

As ϕ0 we take a unit force in direction kA2 through the origin of the base frame Oibjbkb.

We have ϕ0 = (kA2 |0).
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With ϕB0 we denote the unit force in direction kB5 through the center PB
1 of the S joint,

ϕB0 = (kB5 |dBib × kB5 ).

As µ0 we use the unit moment in direction nA12 = kA2 × kA1 , µ0 = (0|nA12).

We have: ξA3 = (0|kA3 ) ξB4 = (0|kB4 ) ξC3 = (0|kC3 )

As ϕLa , L = A;C, we take the unit force ϕLa = (kL3 |lL3 kA2 ), with lL3 = dLkL3 · nA12 −
lL12k

L
3 · jb the distance of the line intersecting ξL1 , ξL2 , ξL3 from the origin O of the base

frame.

As ϕBa , we take the unit force ϕBa = (kB4 |dBib × kB4 ) through PB
1 with direction kB4 .

A detailed discussion of the position kinematics of the mechanism with expressions for

kA1 , kA2 , kA3 , kB4 , kB5 , kC3 in terms of the input or output coordinates can be found in [29]

4.3.2 Expression of the output velocities of the equivalent mecha-
nism

As mentioned in the previous chapter, there is a simple linkage that reproduces exactly

the motion pattern of the PM, Fig. 4.1, [29]. It can be described as a quasi-serial chain

with three joints, with its first “joint” realized by a 1-dof 2-RP planar parallel mecha-

nism, while the second and third joints are a revolute and prismatic pair, respectively.

FIGURE 4.1: The equivalent mechanism as a fourth leg
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The first 1-dof coupling is between the base link and the “coupler” of a four-joint single-

loop planar mechanism, Fig. 4.1. (In fact this is the inversion of the classic Cardanic

movement, where two points of a lamina are constrained to two perpendicular paths and

the fixed and moving centrodes are the so-called Cardan circles [46].)

The second revolute joint has an axis always along the perpendicular from PB
1 to πα,

while the third joint provides the translation along the platform-fixed z axis, the heave.

As in a serial chain, the possible end-effector twists are spanned by the joint screws. The

first “joint screw” is the instantaneous rotation, ρα, of the planar Cardanic motion. The

instantaneous center of rotation in the plane of Fig. 4.1 is obtained at the intersection of

the perpendiculars to the translation directions through the base hinges. Thus the joint

freedoms of the equivalent mechanism are ρα, ρβ , and τh, two perpendicular rotations

and a translation. Note that the three can never be linearly dependent, and so O =

Span (ρα,ρβ, τh) is always 3-dimensional. It is easy to verify that ρα, ρβ , and τh, are

always reciprocal toW

The parameters α, the orientation of πα, β, the platform orientation in πα, and h, the

heave, define the platform pose [29], and their derivatives are the amplitudes of the joint

twists of the quasi-serial mechanism and the output velocities of the PM.

The expressions for the three basis twists are

ρα = (jb | dBsαnA12)

ρβ = (kA2 | −dBcαjb) (4.1)

τh = (0 | eh)

4.4 Singularity conditions

When the FIKP or the IIKP of the manipulator becomes indeterminate, we have singu-

lar configurations. However, depending on the kinematic cause of the degeneracy, six

types of singularities are classified, as in [47]. These are redundant input (RI), redun-

dant output (RO), impossible input (II), impossible output (IO), increased instantaneous

mobility (IIM), and redundant passive motion (RPM) singularities.
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FIGURE 4.2: A configuration when leg B is singular, PB1 = PB5 ∈ π⊥α

4.4.1 IIM-type singularities

Configurations with increased instantaneous mobility are configuration space singu-

larities. In fact, the instantaneous mobility of these configurations is greater than the

number of degrees of freedom. Both the FIKP and IIKP become indeterminate for any

choice of output or actuation.

Indeed, if the legs are nonsingular clearly the platform and therefore the mechanism

have 3 dof (because if the platform is fixed a nonsingular leg cannot move either). The

mechanism dof is also three when a leg is singular and the platform has 2 dof. Only

when a leg is singular and dimW = 3 do we have an IIM-type singularity. This happens

only when PB
1 = PB

5 ∈ π⊥α and kA2 ⊥ kB4 , Fig. 4.2.

4.4.2 RPM-type singularities

In an RPM-type singularity the mechanism has a motion with the actuated joints locked

and the end-effector locked. This cannot happen if the legs are nonsingular and is always

the case when a leg is singular, Fig. 4.4.
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FIGURE 4.3: A configuration when both legs A and C singular, PA2 P
C
2 = PA4 P

A
4

4.4.3 RI-type singularities

In an RI-type singularity the actuated joints can move when the platform is fixed. This

cannot happen for the type of mechanism geometries discussed here. The reason is that

a leg singularity for this PM is always caused by a linear dependence of the passive joint

screws only. So if the platform is fixed the prismatic joints are locked too.

The key geometrical feature is the fact that points PA
2 = PA

4 (and similarly PB
1 and PB

5 )

can be made to coincide. If instead, an offset were present so that when the prismatic

joint moves point PA
4 stays on a line in πα away from PA

2 , the leg A singularity would

be when PA
2 P

A
4 becomes perpendicular to kA3 and joints 2, 3, and 4 become dependent.

Then, an RI- but no RPM-type configuration will be present.

4.4.4 IO-type singularities

The IO-type consists of configurations where the platform has reduced mobility. As

shown, these are all configurations with leg singularities except those where an IIM

condition, PB
1 = PB

5 ∈ π⊥α and kA2 ⊥ kB4 , is present, Fig. 4.2
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FIGURE 4.4: A configuration when leg A is singular, PA2 = PA4

4.4.5 RO-type singularities

RO-type singularities are typical for PMs. The platform can move when the actuators

are locked. This happens when there are fewer than six independent actuated con-

straints, dimV < 6. Away from leg singularities, the condition is the linear dependence

of {ϕ0,ϕ
B
0 ,µ0,ϕ

A
a ,ϕ

B
a ,ϕ

C
a }. These configurations are usually identified by analyzing

the Jacobian matrix, derived in the following section, by analytical or numerical meth-

ods. Various sufficient conditions are easy to formulate. (For example if the projection

of PB
1 in πα coincides with the intersection of `(ϕAa ) and `(ϕCa ), then ρβ cannot be

controlled). An example is Figs. 4.5a, 4.5b

Here we describe briefly the possibilities of an RO-type singularity when a leg is singu-

lar.

When legA is singular, in a manner similar to the IIM-type conditions, special geometry

is required for an RO to occur. Essentially, what is needed is for both legs A and C to

be singular simultaneously, i.e., PA
2 P

C
2 = PA

4 P
A
4 .

When leg B is singular, it is not difficult to see that there can be no RO when dimW =

4. However, when dimW = 3, and hence PB
1 = PB

5 ∈ π⊥α and kA2 ⊥ kB4 , an RO-type

is present if also `(ξB5 ) ⊂ π⊥α . For the latter to be possible the offset, lA12, between axes

`(ξA1 ) and `(ξA2 ) must be zero, Fig. 4.6.
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(A) A singular configuration, lL12 = 0, L =
A,C and `(ξB5 ) ⊂ π⊥α

(B) A singular configuration when the pro-
jection of PB1 in πα coincides with the in-

tersection of `(ϕAa ) and `(ϕCa )

FIGURE 4.5: Example of RO-type singular configurations

FIGURE 4.6: A singular configuration when PB1 = PB5 , lL12 = 0, L = A,C ,`(ξB5 ) ⊂
π⊥α , kA2 ⊥ kB4

4.4.6 II-type singularities

When the dimension of the possible input-velocity vectors is less than three, and there

are unfeasible triplets of actuator velocities, an II-type singularity is present. It is usually

difficult to directly derive conditions for this singularity type. However, often this is not

necessary as the presence or absence of this phenomenon can be deduced from the
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other singularity types to which a configuration belongs. This is the exact case with the

studied PM.

FIGURE 4.7: Singular configurations II-type

According to the rules establishing the interdependence of the six singularity types [47],

an RPM- but not IIM-type configuration is also an II-type singularity. So II occurs

whenever leg A or leg C is singular and when leg B is singular with dimW = 4.

In addition, all RO-type singularities with nonsingular legs are also II-type. Some sin-

gular configurations are illustrated in Fig. 4.7.

It remains to consider configurations with singular leg B and dimW = 3. According to

the interdependence rules an II-type implies that the configuration belongs also to either

the IO or RO types. Since dimW = 3 and there is no IO, II will coincide with RO.

Therefore, as noted in the previous subsection, we need PB
1 = PB

5 ∈ π⊥α and kA2 ⊥ kB4 ,

as well as `(ξB5 ) ⊂ π⊥α (assuming lA12 = 0, Fig. 4.6). This configuration belongs to

exactly these types: (IIM, RPM, RO, II).
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4.4.7 Singularities for a point velocity output

Another practically important choice of the output is the motion of an end-effector point,

which is the case when the PM is used as a positioning device. Although this part

analyzes the mechanism as a constrained parallel manipulator with output the motion

pattern of the platform, and the case of a point output requires separate analysis, a few

remarks are in order.

It is important to understand that the singularity set as a whole and its subdivision into

types and classes is affected by the choice of output.

Thus an RO-type singularity for point-velocity output will obviously be an RO-type

singularity for the twist output adopted here. However, the converse is not true. If the

only RO twist is a pure rotation, all points on the rotation axis will have zero velocity.

If the output point happens to be on this axis there will be no output motion for the

positioning device.

On the other hand, IO-type singularities of the point output are not necessarily configu-

rations with reduced platform mobility. Indeed, for any pose of the end-effector, there

are infinitely many points with reduced freedom. An easy to prove useful (but little

known) fact is that these are the points lying on the axes of the pure rotations of the

end-effector freedom system T . (A point lying on 1, 2, or 3 independent rotation axes

has the space of its possible velocities reduced by 1, 2 or 3.) For the studied mecha-

nisms, T always contains rotations in two (possibly coinciding) planes. If the output

point is on one of these planes at some configuration, we have an IO-type singularity of

the positioning device.

4.5 Formulating of Input and Output Singularities

To properly define manipulator singularity at both the infinitesimal and finite motion

levels, which is a phenomenon defined in term of the forward and inverse instantaneous

kinematic problems (FIKP and IIKP), one needs to define not only the input velocity

parameters but also the instantaneous output.
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4.5.1 Reciprocal screws for the Exechon

The screw ζ is chosen depending on the passive joint screws in the leg of the manipu-

lator. If the passive joints are revolute, the reciprocal screw is a zero-pitch screw (i.e. a

pure force) with an axis intersects the centres of all passive revolute joints in the chain.

In the worse case scenario, there can be the PMs with configurations where the recipro-

cal screws for a leg could form a 2-system or 3-system.

The R-joint screws in the Exechon can become linearly dependent only when the passive

joints are the extremal joints of the leg (i.e. some joints in the leg are active joints) or

the distal link parameters have some special values allowing two or more passive joint

centres to coincide.

4.5.2 Jacobian for the output twist

In this section, we write the system of the velocity equations of the mechanism and

obtain an expression for the Jacobian operator. We write the end-effector twist ξ, which

is the same computed along the three leg chains and obtain, for leg A and C using the

theory of reciprocal screw. This leads to the following four velocity equations

ξ = ωA1 ξ
A
1 + ωA2 ξ

A
2 + q̇A4 ξ

A
4 + ωA4 ξ

A
4 (4.2)

ξ = ωC1 ξ
C
1 + ωC2 ξ

C
2 + q̇C4 ξ

C
4 + ωC4 ξ

C
4 (4.3)

and, for leg B,

ξ = ωB1 ξ
B
1 + ωB2 ξ

B
2 + ωB3 ξ

B
3 + q̇B4 ξ

B
4 + ωB5 ξ

B
5 (4.4)

To eliminate the passive joint velocity from Eqs. 4.2-4.4, by mean of the reciprocal

screw product, each equation is multiplied with a screw ϕLa , which reciprocal to all

the passive joint twists in the leg L, L = A,B,C. As a result, we obtain three scalar

equations:
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ϕAa · ξ = q̇A3 ϕ
A
a · ξA3 (4.5)

ϕCa · ξ = q̇C3 ϕ
C
a · ξC3 (4.6)

ϕBa · ξ = q̇B4 ϕ
B
a · ξB4 (4.7)

Eqs. 4.5-4.7 can be obtained and considered as the equivalent equations to the Eqs. 4.2-

4.4. In this case because the reciprocal wrench ϕLa is uniquely defined and the passive

joint screws are linearly independent. Otherwise, two or more reciprocal wrenches

should be taken into consideration so satisfy the equivalency of the complete analytical

velocity equations and it’s compact form.

These equations can be arranged in the matrix form Zaξ = Λθ̇a where θ̇a = [q̇A3 , q̇
B
4 , q̇

C
3 ]T ,

are the actuation velocities and ωLi are the velocities of the passive joints.

Za is the Jacobian of actuation. It can be expressed using the geometry of the mecha-

nism:

Za =


ϕ̃Aa

ϕ̃Ba

ϕ̃Ca

 =


(
−−−→
OPA

2 × kA2 )T kA3
T

dB(ib× kB4 )T kB4
T

(
−−−→
OPC

2 × kA2 )T kC3
T

 (4.8)

where∼ on top of a wrench indicates that the force and moment components have been

switched, ϕ̃La = [m, f ]

We expect to derive the input-output velocity equation:


(
−−−→
OPA

2 × kA2 )T kA3
T

dB(ib× kB4 )T kB4
T

(
−−−→
OPC

2 × kA2 )T kC3
T


ω
v

 =


ϕAa · ξA3 0 0

0 ϕBa · ξB4 0

0 0 ϕCa · ξC3



q̇A3

q̇B4

q̇C3

 (4.9)

where ω and v are the rotational velocity and the translational velocity of the end-

effector twist ξ.

In a nonsingular configuration, i.e. Za is full rank, the geometric Jacobian is easily

obtained from Eq. 4.9:
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ξ = Jθ̇a = Z−1a Λθ̇a (4.10)

The configuration of the Exechon will be a direct actuation singularity if:

det(Za) = 0, (4.11)

or an inverse actuation singularity if:

det(Λ) = 0. (4.12)

However, in this case, the matrix Λ = diag(ϕAa · ξA3 ,ϕBa · ξB4 ,ϕCa · ξC3 ) is diagonal with

dimensionless entries (because the forces and translations are normalized) equal to 1,

i.e., Λ is the 3× 3 identity matrix.

Za and Λ are often referred to as Jacobian matrices, which comprehensively describes

the velocity kinematics of the mechanism.

Similarly, we calculate the reciprocal products of ϕ0, ϕB0 , µ0, with both sides of the

velocity equations. We obtain the three end-effector constraint equations: ϕ0 · ξ = 0,

ϕB0 · ξ = 0, µ0 · ξ = 0. We can rearrange them in the matrix form Zcξ = 0.

Zc is the so called Jacobian of constraints:

Zc =


ϕ̃0

ϕ̃B0

µ̃0

 =


0T kA2

T

dB(ib× kB5 )T kB5
T

nA12
T

0T

 (4.13)

The velocity equations with eliminated passive velocities can be expressed in this form

using a 6× 6 Jacobian:

 Za 0

0 Zc

 ξ =

 θ̇a

0

 (4.14)
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4.5.3 Jacobian for the output velocities

The platform twist, ξ, is always in Span (ρα,ρβ, τh), and

ξ = α̇ρα + β̇ρβ + ḣτh, (4.15)

or in vector form
ξ = Ξu. (4.16)

where Ξ has as columns ρα, ρβ , and τh, while u is [α̇, β̇, ḣ]T . We substitute Eq. 4.16

into Zaξ = θ̇a and obtain

ZaΞu = θ̇a. (4.17)

or 
ϕ̃Aa · ρα ϕ̃Aa · ρβ ϕ̃Aa · τh
ϕ̃Ba · ρα ϕ̃Ba · ρβ ϕ̃Ba · τh
ϕ̃Ca · ρα ϕ̃Ca · ρβ ϕ̃Ca · τh



α̇

β̇

ḣ

 =


q̇A3

q̇B4

q̇C3

 . (4.18)

where ρβ , and τh, are given in Eqs. 4.2 and ϕ0, µ0, and ϕB0 are expressed in Subsec-

tion 4.3.1.

As such, the singularity analysis of the Exechon has been fully resolved. In the next sec-

tions, we will present the method to obtain the singularity loci and a numerical example

with discussed along with specific configurations.

4.6 Obtaining the singularity loci

4.6.1 Assembly constraints of the manipulator

Although there are other options, the assembly constraints of the parallel mechanism are

usually represented in two ways: either by forcing the connection of each articulation

individually, or imposing the closure of each kinematic loop. In this chapter, we will

adopt the second option since it is the one that generates, typically, a smaller number of

equations and variables.
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FIGURE 4.8: The constraint loops of the Exechon manipulator. Points PL1 , L =
A,B,C are fixed to the ground. The end-effector is given by PL1 , L = A,C and

PB5

A parallel mechanism can have a large number of kinematic loops. However, it is suf-

ficient to impose the closure constraints relative to a maximal set of independent chain,

because the restrictions of other chains can always be expressed as a linear combination

of these.

Following this approach, the closure of a kinematic loop is imposed by establishing that

the sum of the vectors that go from each articulation to the next is zero. In particular, the

kinematic loops of the Exechon are described in Fig. 4.8. Mathematically, the condition

can be expressed in this form:

−−−−→
PA
1 P

A
2 +
−−−−→
PA
2 P

A
4 +
−−−−→
PA
4 P

B
5 +
−−−−→
PB
5 P

B
1 +
−−−−→
PB
1 P

A
1 = 0 (4.19)

−−−→
OPB

1 +
−−−−→
PB
1 P

B
5 +
−−−→
PB
5 P +

−→
PO = 0 (4.20)

−−−−→
PA
1 P

A
2 +
−−−−→
PA
2 P

A
4 +
−−−−→
PA
4 P

C
4 +
−−−−→
PC
4 P

C
2 +
−−−−→
PC
2 P

C
1 +
−−−−→
PC
1 P

A
1 = 0 (4.21)

Substitute the geometric variables of the Exechon into Eqs. 4.19-4.21, we have:
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eAx − eBx − lA12uz − pAvx + pBux − dB = 0 (4.22)

eAy − eBy − pAvy + pBuy + dA = 0 (4.23)

eAz − eBz + lA12ux − pAvz + pBuz = 0 (4.24)

eAx − x− lA12uz − pAvx = 0 (4.25)

eAy − y − pAvy + dA = 0 (4.26)

eAz − z + lA12ux − pAvz = 0 (4.27)

eAx − eCx − lA12uz + lC12uz − pAvx + pCvx = 0 (4.28)

eAy − eCy − pAvy + pCvy + dA − dC = 0 (4.29)

eAz − eCz + lA12ux − lC12ux − pAvz + pCvz = 0 (4.30)

in which,
−−−→
PL
2 P

L
4 = [eLx , e

L
y , e

L
z ]T , L = A,C,

−−−−→
PB
1 P

B
5 = [eBx , e

B
y , e

B
z ]T , i= [ux, uy, uz]

T ,

j= [vx, vy, vz]
T , k= [wx, wy, wz]

T and P = [x, y, z]T .

The relationship between the end-effector’s pose and α, β, h is also a set of loops in the

system:

ux − sα = 0 (4.31)

uy = 0 (4.32)

uz − cα = 0 (4.33)

vx + sβcα = 0 (4.34)

vy − cβ = 0 (4.35)

vz − sβsα = 0 (4.36)

wx − uyvz + uzvy = 0 (4.37)

wy + uxvz − uzvx = 0 (4.38)

wz − uxvy + uyvx = 0 (4.39)

dBcαsβvx − hwx + x = 0 (4.40)

dBcαsβvy − hwy + y = 0 (4.41)

dBcαsβvz − hwz + z = 0 (4.42)
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Note that all of the equations in this section are formulated in a form that allows its con-

version into quadratic equations. In addition to the above, we add two circle equations

due to angle algebraization:

s2α + c2α − 1 = 0 (4.43)

s2β + c2β − 1 = 0 (4.44)

4.6.2 Nullspace of Jacobian matrix

In order to find the singular value of a matrix J, we investigate the kernel (also known

as a nullspace), which is the set of all values of v for which J(v) = 0, where 0 stands

for the zero vector.

N(J) = Null(J) = ker(J) = {ξ ∈ Kn|Jξ = 0} (4.45)

The dimension of the kernel of J is called the nullity of J. These quantities are related

by the rank–nullity theorem [48] rank(J) + nullity(J) = n, where n is the number

of columns of J . Using this definition, we are able to construct the rank deficiency

equation for the Jacobian matrix:

 Za 0

0 Zc

 ξ = 0 (4.46)

Note that J is rank deficient when nullspace of J, i.e. a set of non-zero vector ξ =

[ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
T , satisfies the equations Eq. 4.46.

ξ21 + ξ22 + ξ23 + ξ24 + ξ25 + ξ26 = 1 (4.47)

In fact, ||ξ||2 as pointed out in Eq. 4.47 can be any consistent norm, and it serves to

guarantee that ξ is not 0. Therefore, solutions for ξ can be at the form ξTDξ, whereD

is a diagonal matrix with the proper physical unit [49]. One more thing to keep in mind

that it appears to have at least two values of ξ for the same singularity point. To avoid
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the duplication of computing each point, we add an equation of the random half-plane

through the origin, thus will discard one of the points in the solution set.

0.2344ξ1 + 0.179ξ2 + 0.513ξ3 + 0.290ξ4 + 0.895ξ5 + 0.261ξ6 ≥ 0 (4.48)

4.7 Numerical example

To illustrate the method mentioned above, we next use a numerical tool to compute

the singularities loci of the Exechon with the geometry presented in Table 4.1. The

offsets hA and hC on the platform R-joints are assumed to have zero values without

loss of generality since the moving platform is a rigid body. Those offsets are just the

convention of the reference frame.

dA −0.4434
dB 0.3455
dC 0.7798
lA12 0.1023
lC12 0.1523

pA −0.1523
pB 0.1324
pC 0.2523
hA 0
hC 0

TABLE 4.1: Numerical example geometry for singularity analysis

Using CUIKSUITE, developed by “Institut de Robòtica i Informàtica Industrial” [50],

we are able to generate the complete singularity loci of the Exechon with the formula-

tions derived in the previous sections.

Figs. 4.9(A), 4.11(A) describe the projection in {x,y,z} three-dimensional space, Fig. 4.11(B)

describes the same loci but with the projection over {α, β, h} three-dimensional space.

As we can see from Fig. 4.9, different slices of the projection in {x,y,z} three-dimensional

space are presented. Within each slice, we can clearly observe the intersections be-

tween the curves. The connecting curves represent the same singularity condition. At

the intersection, the configurations may shift but not necessarily cause the change of

singularity’s type. This explains the variations of the singular configurations described

in Section 4.4.

In Fig. 4.12, a numerical example with 16 singular configurations is shown along with

the kernel of J for each configuration in Tab. 4.2. We can observe that configuration

No. 1 and No. 16 indicate ξ is a zero-pitch screw, which means ξ is a pure force applied

to the system cause the infinitesimal rotation.
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(A) Projection of singularity loci in x, y, z (B) z = 0mm

(C) z = 50mm (D) z = −50mm

(E) z = 100mm (F) z = −100mm

FIGURE 4.9: Top-view of the singularity loci of the Exechon with different ”slices” in
x, y, z space
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(A) z = 150mm (B) z = −150mm

(C) z = 200mm (D) z = −200mm

(E) z = 250mm (F) z = −250mm

FIGURE 4.10: Top-view of the singularity loci of the Exechon with different ”slices”
in x, y, z space

In a clear manner, we have:

ω = [ξ1, ξ2, ξ3]
T and v = [ξ4, ξ5, ξ6]

T

Using axis coordinates, we can describe the twist motion in the form:

V =

v
ω

 (4.49)
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(A) Projection of singularity loci in {x, y, z}

(B) Projection of singularity loci in {h, α, β}

FIGURE 4.11: Singularity loci of the Exechon in different projections

in which, the screw V has the magnitude of ‖ω‖, in the direction of ω/‖ω‖ and the pitch

equals to (ωv)/‖ω‖2. The point closest to the Origin is (ω×v)/‖ω‖2.

After gathering all the information of the screw ξ, we are be able to explain the infinites-

imal motion of the manipulator at the singular configurations.

4.8 Conclusions

This chapter discusses the singularities of the Exechon tripod. The constraint and singu-

larity analysis of the mechanism is performed. The singular configurations are classified

in details with numerous examples. The velocity kinematics and Jacobian operator are
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(A) Conf. No.1 (B) Conf. No.2 (C) Conf. No.3 (D) Conf. No.4

(E) Conf. No.5 (F) Conf. No.6 (G) Conf. No.7 (H) Conf. No.8

(I) Conf. No.9 (J) Conf. No.10 (K) Conf. No.11 (L) Conf. No.12

(M) Configuration
No.13 (N) Conf. No.14 (O) Conf. No.15 (P) Conf. No.16

FIGURE 4.12: Example of 16 singular configurations

No. ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
1 0.4391619102 -0.0122320944 0.8981460436 0 0 0
2 -0.1116797845 -0.2028017803 0.1863287258 0.8107184422 0.1344334254 0.4858903864
3 -1.685689677e-07 0.02846190254 0.2724001716 -0.7887965172 0.5499893022 -1.502929833e-07
4 -0.0423667046 -0.2876315143 -0.004231531345 -0.06084306716 0.7352217168 0.6091859454
5 0.08285556318 0.009979262492 0.02338015162 0.0454227399 0.9820748826 -0.1610697978
6 -0.1333481746 -0.0317763669 0.06961911157 0.03807499861 0.9846788517 0.07298722741
7 0.06405061847 -0.2660128732 0.03849786629 -0.4938832004 0.06800095032 0.8216496012
8 -0.1348650132 -0.0554011245 0.2064225255 0.11665162 0.9574510008 0.0762029588
9 0.07948482376 0.1056396149 0.2569161395 0.6941063556 0.6231609822 -0.2148762268

10 -0.04946812596 0.0007994091824 -0.01882013154 -0.01899088076 0.9971581723 0.05005802486
11 -0.00523993825 -0.006480940734 0.2561530968 -0.6734444641 0.6932471334 -0.01377234413
12 -0.0368079585 -0.09424985211 0.1177519705 0.9429733463 0.005603167457 0.2931352091
13 0.09338457743 0.07772819898 0.2156544947 0.03244917138 0.9681992661 -0.0139763308
14 -0.06198722954 -0.09981029802 0.2828443966 0.7301341433 0.5891713547 0.1601594308
15 0.1203712528 0.06928996328 0.1202614205 -0.0176026677 0.9826581204 0.01762786176
16 -0.480347863 -0.1224601026 0.8683858087 0 0 0

TABLE 4.2: Kernels of J, ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6]
T
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formulated based on screw-system approach. The implementation to visualize the sin-

gularity loci is conducted with different projections in three-dimensional space. Some

singular configurations are chosen to validate the method.



Chapter 5

Conclusions

5.1 Summary and contributions of the thesis

In this doctoral dissertation, the kinematics analysis the serial and a parallel manipula-

tors were addressed. The analysis was accomplished according to the classical geometry

method which eventually can be easily solved by using a standard numerical tool.

Firstly, the kinematic equation were formulated as a function of the sixth joint’s angle

of the serial manipulator. This has the advantage that the method leads to the deriva-

tion of an univariate equation. In total, we have got four different univariate equations

corresponding to four working modes of the manipulator.

Secondly, the similar approach was used to solve the direct kinematics of a three degree-

of-freedom parallel manipulator, namely the Exechon. Mathematical mock-up and fully

parameterize Maple model was implemented and used to illustrated various configura-

tions in this dissertation.

Subsequently, the singularities of the Exechon were studied with the geometrical inter-

pretation. By using the theory of reciprocal screws, the input-output velocity equations

were introduced. This led to the investigation of the Jacobian matrices, which is an es-

sential part when working with any manipulator. A method for obtaining the singularity

loci and the numerical example were provided.

The methods presented in this dissertation worked correctly, fulfilling the functions for

which the manipulators have been designed for.

61
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5.2 Directions for future work

During the time working with various projects, possible improvements and research

paths have been considered and could be carried out in future extensions of this work.

The following open problems can be formulated:

1. A complete analysis of the singularity surfaces in various projections, whether

the surface has different sheets or self-intersections, it would be fascinating to see

the behaviors of the mechanism in those configurations.

2. One increasingly popular method is using the algebraic geometry to find the sin-

gularity surfaces in the abstract space, which may reveal some impressive results.

3. Future path of solving the kinematics problems is applying Study’s kinematic

mapping. This method will also carry out the study of operation modes, in which

purely mathematical expressions will be investigated.

4. Extend the kinematics analysis to the general class of 4-DOF mechanism. Due to

the high number of passive joints, the Study’s kinematic mapping can be used to

simplify the system of equations.



Appendix A

MATLAB code for inverse kinematics
analysis of 6R robot with offset wrists

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

main.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n main ( ) %#codegen

syms l 1 l 2 l 3 l 4 d1 d2 d3 a l p h a x b e t a s t

syms ARM ELBOW rdLINK

t =0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% I n i t i a l Se tup

[ l1 , l2 , l3 , l4 , d1 , d2 , d3 , a lphax , b e t a ] = p a r a m e t e r ( ) ;

i = [ 1 ; 0 ; 0 ] ;

j = [ 0 ; 1 ; 0 ] ;

k = [ 0 ; 0 ; 1 ] ;

syms t 6

%t 6 = 0 ;

rO = d1 ; % r a d i u s t o f i n d p o i n t G

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Get DH matrix from Forward Kinema t i c

[ P , vN , vS , vA ] = get DH ( ) ;

P = double ( P ) ; % For s i m p l e comput ing

vN = double ( vN ) ;

vA = double ( vA ) ;

vS = double ( vS ) ;

%{
syms Px Py Pz Nx Ny Nz Sx Sy Sz Ax Ay Az

P = [ Px ; Py ; Pz ] ;

vN = [ Nx ; Ny ; Nz ] ;

vS = [ Sx ; Sy ; Sz ] ;

vA = [ Ax ; Ay ; Az ] ;

%}
O = [ 0 ; 0 ; 0 ] ;

[ Px , Py , Pz ] = d e a l ( P ( 1 , 1 ) , P ( 2 , 1 ) , P ( 3 , 1 ) ) ;

[ Nx , Ny , Nz ] = d e a l ( vN ( 1 , 1 ) , vN ( 2 , 1 ) , vN ( 3 , 1 ) ) ;

[ Sx , Sy , Sz ] = d e a l ( vS ( 1 , 1 ) , vS ( 2 , 1 ) , vS ( 3 , 1 ) ) ;

[ Ax , Ay , Az ] = d e a l ( vA ( 1 , 1 ) , vA ( 2 , 1 ) , vA ( 3 , 1 ) ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% C o n f i g u r a t i o n o f 3 f i r s t l i n k

ARM = 1 ; % 1 : RIGHT / −1: LEFT

ELBOW = 1 ; % 1 : ABOVE / −1: BELOW

rdLINK = 1 ; % ALWAYS UP

63
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%%%%%%%%%%%%%% LET ’S START %%%%%%%%%%%%%%%%%%%%%%%

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 1 : Get p o s i t i o n o f p o i n t s A, B

% k4 i s t h e v e c t o r a l o n g z4

k4 = cos ( a l p h a x )∗vA + cos ( t 6 ) ∗( norm vec ( s i n ( a l p h a x )∗vA ) )∗vS + s i n ( t 6 ) ∗( norm vec ( s i n ( a l p h a x )∗vA ) )∗vN ;

%k4 = ( cos ( a l p h a x )∗vA + cos ( t 6 )∗ s i n ( a l p h a x )∗vS + s i n ( t 6 )∗ s i n ( a l p h a x )∗vN ) / norm vec ( cos ( a l p h a x )∗vA + cos ( t 6 )∗ s i n (

a l p h a x )∗vS + s i n ( t 6 )∗ s i n ( a l p h a x )∗vN ) ;

A = [ Px−l 4∗Ax ; Py−l 4∗Ay ; Pz−l 4∗Az ] ;

%syms xA yA zA

%A = [ xA ; yA ; zA ] ;

B = A − k4 ∗ d3 ;

[ xA yA zA ] = vec comp (A) ; % Get component o f p o i n t

[ xB yB zB ] = vec comp (B) ;

%{
i f ( xB ˆ2 + yB ˆ 2 ) < d1 ˆ2

d i s p l a y ( ’No S o l u t i o n ’ ) ; % Because no c o n f i g u r a t i o n can r e a c h p o i n t B

end

%}

%syms xA yA zA

A = [ xA ; yA ; zA ] ;

%syms xB yB zB

B = [ xB ; yB ; zB ] ;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 2 : Find p o i n t G

% vec (OG) must be p e r p e n d i c u l a r w i th vec (GB)

% EX: [ xS yS zS ] = p o i n t p e r p (A, B , rA , 3 ) ;

% A : f i r s t p o i n t

% B : second p o i n t

% rA : r a d i u s o f c i r c l e A

% 3 : means z = 0 ( b e c a u s e i n p l a n e XY)

% We g o t 2 p o i n t s s a t i s f y

[ xG yG zG ] = p o i n t p e r p (O, B , rO , 3 ) ;

G1 = [ xG ( 1 , 1 ) ; yG ( 1 , 1 ) ; 0 ] ;

G2 = [ xG ( 2 , 1 ) ; yG ( 2 , 1 ) ; 0 ] ;

%%%%%%%%%%%%%%%%%%%%%%%

% Check i f S1 and S2 i n t h e LEFT or RIGHT p o s i t i o n

%ARM c = c h e c k s i d e (O, B , G1 , k , 3 ) ; %check i f S1 i n p o s i t i v e = 1

ARM c = 1 ;

i f ARM == − ARM c

G = G1 ; % ARM i n t h e r i g h t p o s i t i o n

e l s e

G = G2 ; % ARM i n t h e l e f t p o s i t i o n

end

[ xG , yG , zG ] = vec comp (G) ;

OG = v e c t o r (O,G) ;

%syms xG yG zG

G = [ xG ; yG ; zG ] ;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 3 : Find t h e T r a n f o r m a t i o n Ma t r i x f o r P l a n e Pi2

% RO: T r a n s f o r m a t i o n Ma t r i x from a p o i n t i n RFF t o ORIGIN

% Ex : G = RO∗Gr t o f i n d G i n Or ig in , we do t h i s f o r m u l a r

% In c o n t r a s t , Gr = OR∗G

[RO OR] = t r a n s m a t r i x ( xG , yG ) ;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 4 : Find P o i n t D i n P l a n e Pi2

B( 4 , 1 ) = 1 ;

Br = OR∗B ; % p o i n t B i n RFF Pi2

J r = [ 0 ; 0 ; l 1 ] ;

[ xBr , yBr , zBr ] = vec comp ( Br ) ;

[ xJ r , yJ r , z J r ] = vec comp ( J r ) ;



MATLAB code for inverse kinematics analysis of 6R robot with offset wrists 65

r J = l 2 ;

rB = s q r t ( d2 ˆ2+ l 3 ˆ 2 ) ;

[ xDr yDr zDr ] = i n t e r s c i r c l e ( J r , Br , r J , rB ) ;

D1r = [ xDr ( 1 , 1 ) ; yDr ; zDr ( 1 , 1 ) ] ;

D2r = [ xDr ( 2 , 1 ) ; yDr ; zDr ( 2 , 1 ) ] ;

% Check t h e s i d e o f p o i n t D

%ELBOW c = c h e c k s i d e ( J r , Br , D1r , OS , 2 ) ;

ELBOW c = 1 ;

i f ELBOW == ELBOW c

Dr = D1r ; % ELBOW UP

e l s e

Dr = D2r ; % ELBOW DOWN

end

[ xDr , yDr , zDr ] = vec comp ( Dr ) ;

%syms xDr yDr zDr

Dr = [ xDr ; yDr ; zDr ] ;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 5 : Find p o i n t Cr

rD = d2 ;

[ xCr yCr zCr ] = p o i n t p e r p ( Dr , Br , rD , 2 ) ;

C1r = [ xCr ( 1 , 1 ) ; yCr ; zCr ( 1 , 1 ) ] ;

C2r = [ xCr ( 2 , 1 ) ; yCr ; zCr ( 2 , 1 ) ] ;

%rdLINK c = c h e c k s i d e ( Dr , Br , C1r , OS , 2 ) ;

rdLINK c = 1 ;

i f rdLINK == rdLINK c %rdLINK always up

Cr = C1r ;

e l s e

Cr = C2r ;

end

[ xCr , yCr , zCr ] = vec comp ( Cr ) ;

%syms xCr yCr zCr

Cr = [ xCr ; yCr ; zCr ] ;

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 6 : PUT ALL BACK TO ORIGIN

Cr ( 4 , 1 ) = 1 ; % must do t h i s t o m u l t i p l y wi th t r a n s f o r m m a t r i x

C = RO∗Cr ;

CB = v e c t o r (C , B) ; % f i r s t v e c t o r

[ xCB , yCB , zCB ] = vec comp (CB) ;

BA = v e c t o r (B ,A) ; % second v e c t o r

[xBA , yBA , zBA] = vec comp (BA) ;

e q a l p h a = xCB∗xBA + yCB∗yBA + zCB∗zBA − cos ( a l p h a x )∗norm vec (CB)∗norm vec (BA) ;

%e q a l p h a = subs ( e q a l p h a , { s i n ( t 6 ) , cos ( t 6 )} ,{ s , s q r t (1−s ˆ 2 ) }) ;

t 0 = m a t l a b F u n c t i o n ( e q a l p h a ) ;

f i d = fopen ( ’ eqMcodet . t x t ’ , ’ wt ’ ) ;

f p r i n t f ( f i d , ’%s ’ , c h a r ( t 0 ) ) ;

f c l o s e ( f i d ) ;

%e q a l p h a = m a t l a b F u n c t i o n ( e q a l p h a ) ;

%e q a l p h a = 2∗ s ˆ5 − 1

f i l e I D = fopen ( ’ exp . t x t ’ , ’w’ ) ;

f p r i n t f ( f i l e I D , ’ %s ’ , c h a r ( e q a l p h a ) ) ;

f c l o s e ( f i l e I D ) ;

t i c

e q a l p h a = m a t l a b F u n c t i o n ( e q a l p h a ) ;

t o c
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t i c

f = myfun ( e q a l p h a , t 6 ) ;

s0 = [0 p i ] ; % Make a s t a r t i n g g u e s s a t t h e s o l u t i o n

o p t i o n s = o p t i m s e t ( ’ D i s p l a y ’ , ’ i t e r ’ ) ; % Turn o f f d i s p l a y

[ s , Fval , e x i t f l a g ] = f s o l v e ( f , s0 , o p t i o n s )

t o c

%}

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

point perp.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ x , y , z ] = p o i n t p e r p (A, B , rA , z r )

%VECTOR COM Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

syms x y z

i f z r == 1

x = 0 ;

e l s e i f z r == 2

y = 0 ;

e l s e i f z r == 3

z = 0 ;

end

[ xA , yA , zA ] = d e a l (A( 1 , 1 ) , A( 2 , 1 ) , A( 3 , 1 ) ) ;

[ xB , yB , zB ] = d e a l (B( 1 , 1 ) , B( 2 , 1 ) , B( 3 , 1 ) ) ;

[ xvAB , yvAB , zvAB ] = d e a l ( xB−xA , yB−yA , zB−zA ) ;

v1 = [ ( x−xA ) ; ( y−yA ) ; ( z−zA ) ] ;

v2 = [ ( xB−x ) ; ( yB−y ) ; ( zB−z ) ] ;

[ xv1 , yv1 , zv1 ] = d e a l ( v1 ( 1 , 1 ) , v1 ( 2 , 1 ) , v1 ( 3 , 1 ) ) ;

[ xv2 , yv2 , zv2 ] = d e a l ( v2 ( 1 , 1 ) , v2 ( 2 , 1 ) , v2 ( 3 , 1 ) ) ;

eq1 = xv1∗xv2 + yv1∗yv2 + zv1∗zv2 ;

eq2 = xv1 ˆ2 + yv1 ˆ2 + zv1 ˆ2 − rA ˆ 2 ;

i f z r == 1

[ y , z ] = s o l v e ( eq1 , eq2 , y , z ) ;

e l s e i f z r == 2

% [ x , z ] = s o l v e ( eq1 , eq2 , x , z ) ;

x = [ xA − ( xA∗( rA ˆ2 − yAˆ2 + yB∗yA ) − rA ˆ2∗xB + xB∗yAˆ2 − zA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yAˆ2 − xBˆ2∗yAˆ2 −
yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) + zB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yA

ˆ2 − xBˆ2∗yAˆ2 − yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗yA∗yB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ;

xA − ( xA∗( rA ˆ2 − yAˆ2 + yB∗yA ) − rA ˆ2∗xB + xB∗yAˆ2 + zA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yAˆ2 − xBˆ2∗yAˆ2 −
yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − zB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yA

ˆ2 − xBˆ2∗yAˆ2 − yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗yA∗yB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ] ;

z = [ zA − ( zA∗( rA ˆ2 − yAˆ2 + yB∗yA ) − rA ˆ2∗zB + yAˆ2∗zB + xA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yAˆ2 − xBˆ2∗yAˆ2 −
yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yA

ˆ2 − xBˆ2∗yAˆ2 − yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − yA∗yB∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ;

zA − ( zA∗( rA ˆ2 − yAˆ2 + yB∗yA ) − rA ˆ2∗zB + yAˆ2∗zB − xA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yAˆ2 − xBˆ2∗yAˆ2 −
yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) + xB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + 2∗rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB + rA ˆ2∗zB ˆ2 − xAˆ2∗yAˆ2 + 2∗xA∗xB∗yA

ˆ2 − xBˆ2∗yAˆ2 − yAˆ4 + 2∗yAˆ3∗yB − yAˆ2∗yB ˆ2 − yAˆ2∗zA ˆ2 + 2∗yAˆ2∗zA∗zB − yAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − yA∗yB∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ] ;

e l s e i f z r == 3

% [ x , y ] = s o l v e ( eq1 , eq2 , x , y ) ;
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x = [ xA − ( xA∗( rA ˆ2 − zA ˆ2 + zB∗zA ) − rA ˆ2∗xB + xB∗zA ˆ2 − yA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA ˆ2 − xBˆ2∗zA ˆ2 −
yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) + yB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA

ˆ2 − xBˆ2∗zA ˆ2 − yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗zA∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + yAˆ2 − 2∗yA∗yB + yB ˆ 2 ) ;

xA − ( xA∗( rA ˆ2 − zA ˆ2 + zB∗zA ) − rA ˆ2∗xB + xB∗zA ˆ2 + yA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA ˆ2 − xBˆ2∗zA ˆ2 −
yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − yB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA

ˆ2 − xBˆ2∗zA ˆ2 − yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗zA∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + yAˆ2 − 2∗yA∗yB + yB ˆ 2 ) ] ;

y = [ yA − ( yA∗( rA ˆ2 − zA ˆ2 + zB∗zA ) − rA ˆ2∗yB + yB∗zA ˆ2 + xA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA ˆ2 − xBˆ2∗zA ˆ2 −
yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − xB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA

ˆ2 − xBˆ2∗zA ˆ2 − yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − yB∗zA∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + yAˆ2 − 2∗yA∗yB + yB ˆ 2 ) ;

yA − ( yA∗( rA ˆ2 − zA ˆ2 + zB∗zA ) − rA ˆ2∗yB + yB∗zA ˆ2 − xA∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗xA∗xB + rA ˆ2∗xB ˆ2

+ rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA ˆ2 − xBˆ2∗zA ˆ2 −
yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) + xB∗(− rA ˆ4 + rA ˆ2∗xAˆ2 − 2∗rA ˆ2∗
xA∗xB + rA ˆ2∗xB ˆ2 + rA ˆ2∗yAˆ2 − 2∗rA ˆ2∗yA∗yB + rA ˆ2∗yB ˆ2 + 2∗rA ˆ2∗zA ˆ2 − 2∗rA ˆ2∗zA∗zB − xAˆ2∗zA ˆ2 + 2∗xA∗xB∗zA

ˆ2 − xBˆ2∗zA ˆ2 − yAˆ2∗zA ˆ2 + 2∗yA∗yB∗zA ˆ2 − yBˆ2∗zA ˆ2 − zA ˆ4 + 2∗zAˆ3∗zB − zAˆ2∗zB ˆ 2 ) ˆ ( 1 / 2 ) − yB∗zA∗zB ) / ( xAˆ2

− 2∗xA∗xB + xB ˆ2 + yAˆ2 − 2∗yA∗yB + yB ˆ 2 ) ] ;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

trans matrix.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [TR , invTR ] = t r a n s m a t r i x ( xG , yG )

TR = [ −yG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) −xG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) 0 xG ;

xG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) −yG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) 0 yG ;

0 0 1 0 ;

0 0 0 1 ] ;

invTR = [ −yG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) xG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) 0 0 ;

−xG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) −yG / ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) 0 ( xGˆ2 + yG ˆ 2 ) ˆ ( 1 / 2 ) ;

0 0 1 0 ;

0 0 0 1 ] ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

vec comp.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ xA yA zA ] = vec comp (A)

%VEC COMP Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

[ xA , yA , zA]= d e a l (A( 1 , 1 ) ,A( 2 , 1 ) ,A( 3 , 1 ) ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

vector perp.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ x , y ] = v e c t o r p e r p (A, B , r1 )

%VECTOR COM Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

syms x y
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[ xA , yA ] = d e a l (A( 1 , 1 ) ,A( 2 , 1 ) ) ;

[ xB , yB ] = d e a l (B( 1 , 1 ) ,B( 2 , 1 ) ) ;

[ xvAB yvAB ] = d e a l ( xB−xA , yB−yA ) ;

v1 = [ ( x−xA ) ; ( y−yA ) ] ;

v2 = [ ( xB−x ) ; ( yB−y ) ] ;

[ xv1 , yv1 ] = d e a l ( v1 ( 1 , 1 ) , v1 ( 2 , 1 ) ) ;

[ xv2 , yv2 ] = d e a l ( v2 ( 1 , 1 ) , v2 ( 2 , 1 ) ) ;

eq1 = xv1∗xv2 + yv1∗yv2 ;

eq2 = xv1 ˆ2 + yv1 ˆ2 − r1 ˆ 2 ;

[ x , y ] = s o l v e ( eq1 , eq2 , x , y ) ;

%[v1x , v1y , v2x , v2y ] = d e a l ( s i m p l e ( v1x ) , s i m p l e ( v1y ) , s i m p l e ( v2x ) , s i m p l e ( v2y ) ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot equation.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ o u t p u t a r g s ] = p l o t e q u a t i o n ( )

%PLOT EQUATION Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

g l o b a l ARM ELBOW rdLINK

syms t

t =0 ;

Y = z e r o s ( 1 , 1 ) ;

ARM = −1;

ELBOW = 1 ;

rdLINK = 1 ;

f o r t 6 =0: p i / 3 0 : 2∗ p i

% f o r t 6 = 95∗ p i /180

[ xA , yA , zA , xB , yB , zB , xCr , yCr , zCr , xDr , yDr , zDr , Cr , Dr , xG , yG , zG , A, B , G, P , vN , vS , vA , OR,RO] = c a l c a l l ( t 6 ) ;

Cr= [ xCr ; yCr ; zCr ] ;

Dr= [ xDr ; yDr ; zDr ] ;

A;

B ;

G;

Cr ( 4 , 1 ) =1 ;

Dr ( 4 , 1 ) =1;

C = RO∗Cr ;

D = RO∗Dr ;

e q a l p h a = ( xA−xB ) .∗ ( xB−xG+xCr .∗yG . ∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) +xG.∗ yCr .∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) ) +(yA−yB ) .∗ ( yB−yG−xCr .∗xG

.∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) +yCr .∗yG . ∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) )−s q r t ( ( xA−xB ) . ˆ 2 + ( yA−yB ) . ˆ 2 + ( zA−zB ) . ˆ 2 ) .∗ s q r t ( ( zB−zCr

) . ˆ 2 + ( xB−xG+xCr .∗yG . ∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) +xG.∗ yCr .∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) ) . ˆ 2 + ( yB−yG−xCr .∗xG .∗ 1 . 0 . / s q r t ( xG

. ˆ 2 + yG . ˆ 2 ) +yCr .∗yG .∗ 1 . 0 . / s q r t ( xG . ˆ 2 + yG . ˆ 2 ) ) . ˆ 2 ) . ∗ ( 1 . 0 . / 2 . 0 ) +(zA−zB ) .∗ ( zB−zCr ) ;

e q a l p h a = subs ( e q a l p h a ,{ ’xA ’ , ’yA ’ , ’zA ’ , ’xB ’ , ’yB ’ , ’ zB ’ , ’ xCr ’ , ’ yCr ’ , ’ zCr ’ , ’ xDr ’ , ’ yDr ’ , ’ zDr ’ , ’xG ’ , ’yG ’ , ’zG ’} ,{xA , yA ,

zA , xB , yB , zB , xCr , yCr , zCr , xDr , yDr , zDr , xG , yG , zG}) ;

F = e q a l p h a ;

t = t +1 ;

Y( t ) = F ;

end

t = l i n s p a c e (0 ,4∗ pi , t ) ;

g r i d on

p l o t ( t ,Y) ;

ho ld on

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check side.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ s i d e ] = c h e c k s i d e (A, B , C , N, z r )

%CHECK SIDE Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

% A, B i s 2 c e n t e r o f 2 c i r c l e s

% C i s t h e p o i n t which we want t o check
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% N i s t h e v e c t o r which i s normal t o p l a n e o f A, B , C ( and we ’ l l l o o k i n g

% from t h i s v e c t o r t o d e t e r m i n e t h e p o i n t C i s i n t h e p o s i t i v e a n g l e wi th

% t h i s o r n e g a t i v e , t h e n we can choose t h e r i g h t one .

% z r i s f o r i n d i c a t e what p l a n e we a r e do ing

AB = v e c t o r (A, B) ;

AC = v e c t o r (A, C) ;

n1 = AB/ norm vec (AB) ;

n2 = AC/ norm vec (AC) ;

n12 = c r o s s ( n1 , n2 ) / norm vec ( c r o s s ( n1 , n2 ) ) ;

n = N/ norm vec (N) ;

u = c r o s s ( n12 , n1 ) ;

i f double ( n1 ) == double ( n2 )

s i d e = 0 ;

e l s e i f ( norm ( n12+n )−(norm ( n12 ) +norm ( n ) ) ) >= −0.01

s i d e = 1 ;

e l s e i f ( norm ( n12+n )−(norm ( n12 ) +norm ( n ) ) ) < −0.01

s i d e = −1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

parameter.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ l1 , l2 , l3 , l4 , d1 , d2 , d3 , a lphax , b e t a ] = p a r a m e t e r ( i n p u t a r g s )

l 1 = 1510 ; % Link 1

l 2 = 1400 ; % Link 2

l 3 = 1400 ; % Link 3

l 4 = 8 2 ; % Link 4 de : 82

d1 = 455 ; % O f f s e t 1

d2 = 150 ; % O f f s e t 2

d3 = 100 ; % O f f s e t 3 d e f a u l t 100

a l p h a x = p i / 3 ; % Angle o f W r i s t

b e t a = a t a n ( d2 / l 3 ) ; % Angle o f T r i a n g l e Link 3

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

norm vec.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ nv ] = norm vec (A)

%NORM Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

nv = s q r t (A( 1 , 1 ) ˆ2 + A( 2 , 1 ) ˆ2 + A( 3 , 1 ) ˆ 2 ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

inters circle.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ x , y , z ] = i n t e r s c i r c l e (A, B , r1 , r2 )

%VECTOR COM Summary of t h i s f u n c t i o n goes h e r e

% D e t a i l e d e x p l a n a t i o n goes h e r e

%syms x y z

y = 0 ; % i n p l a n e XZ

[ xA , yA , zA ] = d e a l (A( 1 , 1 ) , A( 2 , 1 ) ,A( 3 , 1 ) ) ;

[ xB , yB , zB ] = d e a l (B( 1 , 1 ) ,B( 2 , 1 ) ,B( 3 , 1 ) ) ;

%[x , z ] = s o l v e ( eq1 , eq2 , x , z )
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x = [ ( zA∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1 ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2

− 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 +

2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB − 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xA

ˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yAˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB

+ 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗
yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yBˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗
zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − zB∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1

ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2 − 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗
xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 + 2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB

− 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xAˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yA

ˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB + 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA

ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yB

ˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) + r1 ˆ2∗xB − r2

ˆ2∗xB − xAˆ2∗xB − xB∗yAˆ2 + xB∗yB ˆ2 + xB∗zA ˆ2 + xB∗zB ˆ2 + xAˆ3 + xB ˆ3 − xA∗( r1 ˆ2 − r2 ˆ2 + xB ˆ2 − yAˆ2 + yB ˆ2 −
zA ˆ2 + 2∗zA∗zB − zB ˆ 2 ) − 2∗xB∗zA∗zB ) / ( 2∗xAˆ2 − 4∗xA∗xB + 2∗xB ˆ2 + 2∗zA ˆ2 − 4∗zA∗zB + 2∗zB ˆ 2 ) ;

( zB∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1 ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2

− 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 +

2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB − 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xA

ˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yAˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB

+ 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗
yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yBˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗
zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − zA∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1

ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2 − 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗
xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 + 2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB

− 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xAˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yA

ˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB + 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA

ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yB

ˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) + r1 ˆ2∗xB − r2

ˆ2∗xB − xAˆ2∗xB − xB∗yAˆ2 + xB∗yB ˆ2 + xB∗zA ˆ2 + xB∗zB ˆ2 + xAˆ3 + xB ˆ3 − xA∗( r1 ˆ2 − r2 ˆ2 + xB ˆ2 − yAˆ2 + yB ˆ2 −
zA ˆ2 + 2∗zA∗zB − zB ˆ 2 ) − 2∗xB∗zA∗zB ) / ( 2∗xAˆ2 − 4∗xA∗xB + 2∗xB ˆ2 + 2∗zA ˆ2 − 4∗zA∗zB + 2∗zB ˆ 2 ) ] ;

z = [ ( xB∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1 ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2

− 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 +

2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB − 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xA

ˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yAˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB

+ 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗
yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yBˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗
zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − xA∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1

ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2 − 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗
xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 + 2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB

− 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xAˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yA

ˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB + 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA

ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yB

ˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − r1 ˆ2∗zA + r2

ˆ2∗zA + r1 ˆ2∗zB − r2 ˆ2∗zB + xAˆ2∗zA + xAˆ2∗zB + xBˆ2∗zA + xBˆ2∗zB + yAˆ2∗zA − yAˆ2∗zB − yBˆ2∗zA + yBˆ2∗zB − zA

∗zB ˆ2 − zAˆ2∗zB + zA ˆ3 + zB ˆ3 − 2∗xA∗xB∗zA − 2∗xA∗xB∗zB ) / ( 2∗ ( xAˆ2 − 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ) ;

( xA∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1 ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2

− 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 +

2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB − 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xA

ˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yAˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB

+ 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗
yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yBˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗
zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − xB∗(− r1 ˆ4 + 2∗ r1 ˆ2∗ r2 ˆ2 + 2∗ r1 ˆ2∗xAˆ2 − 4∗ r1 ˆ2∗xA∗xB + 2∗ r1

ˆ2∗xB ˆ2 + 2∗ r1 ˆ2∗yAˆ2 − 2∗ r1 ˆ2∗yB ˆ2 + 2∗ r1 ˆ2∗zA ˆ2 − 4∗ r1 ˆ2∗zA∗zB + 2∗ r1 ˆ2∗zB ˆ2 − r2 ˆ4 + 2∗ r2 ˆ2∗xAˆ2 − 4∗ r2 ˆ2∗
xA∗xB + 2∗ r2 ˆ2∗xB ˆ2 − 2∗ r2 ˆ2∗yAˆ2 + 2∗ r2 ˆ2∗yB ˆ2 + 2∗ r2 ˆ2∗zA ˆ2 − 4∗ r2 ˆ2∗zA∗zB + 2∗ r2 ˆ2∗zB ˆ2 − xAˆ4 + 4∗xAˆ3∗xB

− 6∗xAˆ2∗xB ˆ2 − 2∗xAˆ2∗yAˆ2 − 2∗xAˆ2∗yB ˆ2 − 2∗xAˆ2∗zA ˆ2 + 4∗xAˆ2∗zA∗zB − 2∗xAˆ2∗zB ˆ2 + 4∗xA∗xB ˆ3 + 4∗xA∗xB∗yA

ˆ2 + 4∗xA∗xB∗yB ˆ2 + 4∗xA∗xB∗zA ˆ2 − 8∗xA∗xB∗zA∗zB + 4∗xA∗xB∗zB ˆ2 − xB ˆ4 − 2∗xBˆ2∗yAˆ2 − 2∗xBˆ2∗yB ˆ2 − 2∗xBˆ2∗zA

ˆ2 + 4∗xBˆ2∗zA∗zB − 2∗xBˆ2∗zB ˆ2 − yAˆ4 + 2∗yAˆ2∗yB ˆ2 − 2∗yAˆ2∗zA ˆ2 + 4∗yAˆ2∗zA∗zB − 2∗yAˆ2∗zB ˆ2 − yB ˆ4 − 2∗yB

ˆ2∗zA ˆ2 + 4∗yBˆ2∗zA∗zB − 2∗yBˆ2∗zB ˆ2 − zA ˆ4 + 4∗zAˆ3∗zB − 6∗zAˆ2∗zB ˆ2 + 4∗zA∗zB ˆ3 − zB ˆ 4 ) ˆ ( 1 / 2 ) − r1 ˆ2∗zA + r2

ˆ2∗zA + r1 ˆ2∗zB − r2 ˆ2∗zB + xAˆ2∗zA + xAˆ2∗zB + xBˆ2∗zA + xBˆ2∗zB + yAˆ2∗zA − yAˆ2∗zB − yBˆ2∗zA + yBˆ2∗zB − zA

∗zB ˆ2 − zAˆ2∗zB + zA ˆ3 + zB ˆ3 − 2∗xA∗xB∗zA − 2∗xA∗xB∗zB ) / ( 2∗ ( xAˆ2 − 2∗xA∗xB + xB ˆ2 + zA ˆ2 − 2∗zA∗zB + zB ˆ 2 ) ) ] ;

end



Appendix B

MAPLE code for computing the direct
kinematics of the Exechon

# ################################################################################################

# ########### MAIN FILE IS USED TO COMPUTE AND ILLUSTRATE THE SOLUTIONS

# ################################################################################################

r e s t a r t ;

w i th ( p l o t s ) : w i th ( p l o t t o o l s ) : w i th ( L i n e a r A l g e b r a ) :

r e a d ” g e n l i b .m” ;

r e a d ” e x e c h o n c a l .m” ;

r e a d ” e x e c h o n p l o t .m” ;

wi th ( g e n l i b ) ;

DISPDATA : = 0 ;

qA : = 0 . 7 1 4 6 ; qB : = . 5 0 3 2 ; qC : = . 8 1 4 6 ; da :=−1: d1b : = 1 : d2b : = 1 : dc :=−1: #16 s o l s

#qA : = 0 . 4 9 6 7 ; qB : = 1 . 0 3 2 ; qC : = 1 . 3 2 1 ; da : = 1 : d1b : = 1 : d2b : = 1 : dc : = 1 :

#qA : = 0 . 1 2 ; qB : = . 3 9 3 2 ; qC : = 0 . 7 8 ; da : = 1 : d1b : = 1 : d2b : = 1 : dc : = 1 :

#qA : = 0 . 1 1 4 4 ; qB : = . 5 0 1 6 ; qC : = . 9 8 5 1 ; da : = 1 : d1b : = 1 : d2b : = 1 : dc : = 1 : # i l l u s t r a t i o n

S := e x e c h o n c a l ( qA , qB , qC , da , d1b , d2b , dc ) :

r e a d ” e x e c h o n p l o t .m” ;

e x e c h o n p l o t ( qA , qB , qC , 1 0 , 1 , S , da , d1b , d2b , dc , 1 , 1 , DISPDATA) ;

k : = 1 ;

f o r i from 1 t o nops ( S ) do
f r | | k := e x e c h o n p l o t ( qA , qB , qC , i , j , S , da , d1b , d2b , dc , 0 , 0 , DISPDATA) :

k := k +1;

od :

# d i s p l a y ( seq ( f r | | k , k = 1 . . nops ( S ) ) , s c a l i n g = c o n s t r a i n e d , i n s e q u e n c e = t r u e ) ;

r e a d ” e x e c h o n p l o t .m” ;

k : = 1 ;

f o r i from 1 t o nops ( S ) do
k ;

p l o t s e t u p ( png , p l o t o u t p u t =” d : / p i c s / s s o l ” | | i | | ” . png ” , p l o t o p t i o n s = ‘ q u a l i t y =100 , c o l o r , p o r t r a i t , noborde r , s i z e

= [ 8 0 0 0 , 8 0 0 0 ] ‘ ) ;

e x e c h o n p l o t ( qA , qB , qC , i , j , S , da , d1b , d2b , dc , 1 , 0 , DISPDATA) ;

p l o t s e t u p ( i n l i n e ) ;

k := k +1:

od ;

d i s p l a y ( seq ( f r | | k , k = 1 . . nops ( S ) ) , s c a l i n g = c o n s t r a i n e d , i n s e q u e n c e = t r u e ) ;

r e a d ” e x e c h o n p l o t .m” ;

k : = 1 ;

f o r i from 1 t o nops ( S ) do
A:= e x e c h o n p l o t ( qA , qB , qC , i , j , S , da , d1b , d2b , dc , 0 , 0 , 1 ) :

M[ k , 1 ] : =A [ 1 ] ;

M[ k , 2 ] : =A [ 2 ] ;

M[ k , 3 ] : =A [ 3 ] ;

M[ k , 4 ] : =A [ 4 ] ;

M[ k , 5 ] : =A [ 5 ] ;

M[ k , 6 ] : =A [ 6 ] ;
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M[ k , 7 ] : =A [ 7 ] ;

#M[ k , 8 ] : =A [ 8 ] ;

#M[ k , 9 ] : =A [ 9 ] ;

#M[ k , 1 0 ] : =A[ 1 0 ] ;

k := k +1;

od :

Ma:= c o n v e r t (M, a r r a y ) :

fop := fopen ( ”D : / OneDrive / ms . t x t ” ,WRITE , TEXT) ;

w r i t e d a t a ( fop , Ma) ;

f c l o s e ( fop ) ;

t y p e (Ma, Array ) ;

# ################################################################################################

# ################ EXECHON PLOT .MW : IS USED FOR CREATING THE GEOMETRICAL MODEL

# ################################################################################################

r e s t a r t : w i th ( p l o t s ) : w i th ( p l o t t o o l s ) : w i th ( L i n e a r A l g e b r a ) : w i th ( A r r a y T o o l s ) :

r e a d ” g e n l i b .m” :

wi th ( g e n l i b ) :

i n t e r f a c e ( w a r n l e v e l =0) :

e x e c h o n p l o t := p roc ( qA , qB , qC , branch , e l e , S , d e l t a A , d e l t a 1 B , d e l t a 2 B , d e l t a C , DISPPLANES , DISPEQUIMECH , DISPDATA)

# de1 := 2 0 ; de2 := 1 0 ; db1 := 9 0 ; db2 := 6 0 ; s s : = 1 0 :

# p r i n t ( b r an ch ) ;

i f nops ( S ) =1 t h e n

c1 := r h s ( S [ 1 ] ) ;

c2 := r h s ( S [ 2 ] ) ;

c3 := r h s ( S [ 3 ] ) ;

c4 := r h s ( S [ 4 ] ) ;

s1 := r h s ( S [ 5 ] ) ;

s2 := r h s ( S [ 6 ] ) ;

s3 := r h s ( S [ 7 ] ) ;

s4 := r h s ( S [ 8 ] ) ;

e l s e
c1 := r h s ( S [ branch , 1 ] ) :

c2 := r h s ( S [ branch , 2 ] ) :

c3 := r h s ( S [ branch , 3 ] ) :

c4 := r h s ( S [ branch , 4 ] ) :

s1 := r h s ( S [ branch , 5 ] ) :

s2 := r h s ( S [ branch , 6 ] ) :

s3 := r h s ( S [ branch , 7 ] ) :

s4 := r h s ( S [ branch , 8 ] ) :

f i ;

g1 := a r c t a n ( s1 , c1 ) ∗180/ e v a l f ( P i ) ;

g2 := a r c t a n ( s2 , c2 ) ∗180/ e v a l f ( P i ) ;

g3 := a r c t a n ( s3 , c3 ) ∗180/ e v a l f ( P i ) ;

g4 := a r c t a n ( s4 , c4 ) ∗180/ e v a l f ( P i ) ;

# p r i n t ( s4 ) ;

pA:=−0.1523; pB : = 0 . 1 3 2 4 ; pC : = 0 . 2 5 2 3 ;

dA:=−0.4434; dB : = 0 . 3 4 5 5 ; dC : = 0 . 7 7 9 8 ;

lA : = 0 . 1 0 2 3 ; lC : = 0 . 1 5 2 3 ;

hA : = 0 . 0 4 ; hC : = 0 . 0 2 3 ;

db1 := abs ( dA ) + abs ( dC ) ;

A1 := [ 0 , dA , 0 ] :

C1 := [ 0 , dC , 0 ] :

B1 := [ dB , 0 , 0 ] : Or i := [ 0 , 0 , 0 ] :

A4 := [ 0 , pA , hA ] :

C4 := [ 0 , pC , hC ] :

B5 := [ pB , 0 , 0 ] :

A1e := [ 0 , pA+qA∗c1+ d e l t a A∗lA∗c4 , −qA∗s1−d e l t a A∗lA∗s4+hA ] :

A2e := [ 0 , pA+qA∗c1 , −qA∗s1+hA ] :

C1e := [ 0 , pC+qC∗c2+ d e l t a C∗lC∗c4 , −qC∗s2−d e l t a C∗lC∗s4+hC ] :

B1e := [ pB+qB∗c3 , 0 , −qB∗s3 ] :

AC := C1e − A1e ;

AA := A2e − A1e :
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Oe := e v a l f ( V ec t o r ( A1e +˜ abs ( dA / db1 ) ∗˜AC) ) ;

iB := Normal i ze ( B1e−˜ c o n v e r t ( Oe , l i s t ) , E u c l i d e a n ) ;

jB := Normal i ze ( C1e−˜ c o n v e r t ( Oe , l i s t ) , E u c l i d e a n ) ;

kB := Normal i ze ( C r o s s P r o d u c t ( iB , jB ) , E u c l i d e a n ) ;

b1 := ar row ( Oe , iB , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = r e d ) ;

b2 := ar row ( Oe , jB , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = g r e e n ) ;

b3 := ar row ( Oe , kB , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = b l u e ) ;

e1 := ar row ( [ 0 , 0 , 0 ] , [ 1 , 0 , 0 ] , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = r e d ) ;

e2 := ar row ( [ 0 , 0 , 0 ] , [ 0 , 1 , 0 ] , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = g r e e n ) ;

e3 := ar row ( [ 0 , 0 , 0 ] , [ 0 , 0 , 1 ] , . 2 , . 4 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = b l u e ) ;

R := Ma t r i x ( 3 , T r a n s p o s e (‘< ,> ‘( iB , jB , kB ) ) ) ;

Rt := T r a n s p o s e (R) ;

Rtp := M a t r i x M a t r i x M u l t i p l y ( Rt , Oe ) ;

M := Ma t r i x ( 4 , ‘<|>‘(Rt , −Rtp ) ) :

# p r i n t ( e v a l f [ 4 ] (M) ) :

P := c o n v e r t (−Rtp , l i s t ) ;

A4op := c o n v e r t ( ‘ ˜ ‘ [ ‘− ‘ ] ( P , −pA∗Rt (1 . . 3 , 2 ) ) , l i s t ) ;

C4op := c o n v e r t ( ‘ ˜ ‘ [ ‘ + ‘ ] ( P , pC∗Rt (1 . . 3 , 2 ) ) , l i s t ) ;

B5op := c o n v e r t ( ‘ ˜ ‘ [ ‘ + ‘ ] ( P , pB∗Rt (1 . . 3 , 1 ) ) , l i s t ) ;

B5o := c o n v e r t ( ‘ ˜ ‘ [ ‘ + ‘ ] ( P , pB∗Rt (1 . . 3 , 1 ) ) , l i s t ) ;

i := c o n v e r t (M(1 . . 3 , 1 ) , l i s t ) ;

j := c o n v e r t (M(1 . . 3 , 2 ) , l i s t ) ;

k := c o n v e r t (M(1 . . 3 , 3 ) , l i s t ) ;

A4o := A4op +˜ k∗˜hA ;

C4o := C4op +˜ k∗˜hC ;

ang := a n g l e v (AC,AA, i ) ;

# p r i n t ( ang ) ;

# ###########################################################################################################

Oh:=<0,0,0> + v e c p e r p (<0,0,0> , ‘< ,> ‘(A4o [ 1 ] , A4o [ 2 ] , A4o [ 3 ] ) , ‘< ,> ‘(C4o [ 1 ] , C4o [ 2 ] , C4o [ 3 ] ) ) ;

h := d i s t (<0,0,0> , ‘< ,> ‘(A4o [ 1 ] , A4o [ 2 ] , A4o [ 3 ] ) , ‘< ,> ‘(C4o [ 1 ] , C4o [ 2 ] , C4o [ 3 ] ) ) ;

hb := s i g n ( D o t P r o d u c t ( k , Oh ) / ( modu ( Oh )∗modu ( k ) ) )∗h ;

# p r i n t ( b e t a =angleB , a l p h a =angleA , Hb=hb ) ;

# p r i n t ( hb ) ;

l i n h := l i n e ( Ori , c o n v e r t ( Oh , l i s t ) , c o l o r = r e d ) ;

armag := 0 . 1 ;

ob1 := ar row ( Ori , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , [ 1 , 0 , 0 ] ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = red , f r i n g e = b l a c k ) ;

ob2 := ar row ( Ori , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , [ 0 , 1 , 0 ] ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = green , f r i n g e = b l a c k ) ;

ob3 := ar row ( Ori , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , [ 0 , 0 , 1 ] ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = blue , f r i n g e = b l a c k ) ;

oe1 := ar row ( P , ‘ ˜ ‘ [ ‘ + ‘ ] ( P , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , i ) ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = red , f r i n g e = b l a c k ) ;

oe2 := ar row ( P , ‘ ˜ ‘ [ ‘ + ‘ ] ( P , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , j ) ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = green , f r i n g e = b l a c k ) ;

oe3 := ar row ( P , ‘ ˜ ‘ [ ‘ + ‘ ] ( P , ‘ ˜ ‘ [ ‘∗ ‘ ] ( armag , k ) ) , . 0 1 5 , . 0 3 , . 1 , c y l i n d r i c a l a r r o w , c o l o r = blue , f r i n g e = b l a c k ) ;

a r r ow s : = ( ob1 , ob2 , ob3 , oe1 , oe2 , oe3 ) :

i f s4<0 t h e n

A2 := povec ( [ 0 , 0 , 0 ] , −d e l t a A ∗ ˜ [ k [ 1 ] , 0 , k [ 3 ] ] , A1 , lA , 0 ) ;

C2 := povec ( [ 0 , 0 , 0 ] , −d e l t a C ∗ ˜ [ k [ 1 ] , 0 , k [ 3 ] ] , C1 , lC , 0 ) ;

e l s e
# p r i n t ( ” changed ” ) ;

A2 := povec ( [ 0 , 0 , 0 ] , d e l t a A ∗ ˜ [ k [ 1 ] , 0 , k [ 3 ] ] , A1 , lA , 0 ) ;

C2 := povec ( [ 0 , 0 , 0 ] , d e l t a C ∗ ˜ [ k [ 1 ] , 0 , k [ 3 ] ] , C1 , lC , 0 ) ;

f i ;

Ap := povec ( A2 , A4o , A2 , e v a l f ( ( 1 / 2 )∗ l e n g ( A2 , A4o ) ) , 0 ) ;

Cp := povec ( C2 , C4o , C2 , ( 1 / 2 )∗ l e n g ( C2 , C4o ) , 0 ) ;

Bp := povec ( B1 , B5o , B1 , ( 1 / 2 )∗ l e n g ( B1 , B5o ) , 0 ) ;

i := M(1 . . 3 , 1 ) ;

j := M(1 . . 3 , 2 ) ;

k := M(1 . . 3 , 3 ) ;

angleB := e v a l f ( a n g l e v (<0 ,1 ,0> , j , i ) ∗180/ P i ) ;

angleA := e v a l f ( a n g l e v (<−1,0,0>,<k [ 1 ] , 0 , k[3]> ,<0 ,1 ,0>)∗180/ P i ) ;
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sp1 := s p h e r e ( B1 , 0 . 0 3 , g r i d = [ 8 , 8 ] , c o l o r = whi te , t r a n s p a r e n c y =0) ;

cy1 := rep CYLINDER ( i , A4o , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , cyan ) ;

cy2 := rep CYLINDER ( i , C4o , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , cyan ) ;

cy3 := rep CYLINDER ( j , B5o , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , w h i t e ) ;

cya2 := rep CYLINDER ( i , A2 , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , w h i t e ) ;

cya1 := rep CYLINDER( ‘< ,> ‘(0 , 1 , 0 ) , A1 , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , w h i t e ) ;

cyc2 := rep CYLINDER ( i , C2 , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , w h i t e ) ;

cyc1 := rep CYLINDER( ‘< ,> ‘(0 , 1 , 0 ) , C1 , 0 , . 0 1 , . 0 2 , [ 3 , 8 ] , w h i t e ) ;

p o l y a := rep TETRA ( A1, ‘< ,> ‘(0 , 1 , 0 ) , A2 , i , . 0 1 5 ) ;

p o l y c := rep TETRA ( C1, ‘< ,> ‘(0 , −1, 0 ) , C2 , i , . 0 1 5 ) ;

# ####################################################

i f DISPPLANES = 1 t h e n

p l a n e 1 := rep PLANE ( V ec to r ( i ) , V ec to r ( P ) , p ink , [−60 ,60] , [−60 ,60] , [−60 ,60] ,0 .8 ) ;

p l a n e 2 := rep PLANE(<0 ,0 ,1> , <0,0,0> , b lue , [−60 ,90] , [−60 ,60] , [−60 ,60] ,0 .8 ) ;

p l a n e s :={ p lane1 , p l a n e 2 } ;

f i :

# ####################################################

i f DISPEQUIMECH = 1 t h e n

PrB1 := c o n v e r t ( v e c p r o j ( V ec to r ( B1−P ) , Ve c t o r(−k ) ) + Ve c t o r ( P ) , l i s t ) ;

l i n b j 1 := l i n e ( P , PrB1 , c o l o r = b l a c k ) ;

l i n b j 2 := l i n e ( B1 , PrB1 , c o l o r = b l a c k ) ;

l i n e P r : = ( l i n b j 1 , l i n b j 2 ) :

cyO := rep CYLINDER( ‘< ,> ‘(0 , 1 , 0 ) , <0,0,0> , 0 , . 0 1 5 , 0 . 0 4 , [ 3 , 8 ] , g r e e n ) :

cyPr := rep CYLINDER ( V ec t o r ( i ) , PrB1 +˜ i ∗0 .02 , 0 , . 0 1 5 , 0 . 0 4 , [ 3 , 8 ] , g r e e n ) :

cyB1 := rep CYLINDER( ‘< ,> ‘(0 , 1 , 0 ) , B1 , 0 , . 0 1 5 , 0 . 0 4 , [ 3 , 8 ] , g r e e n ) :

boxBr := rep RECTBOX ( B1 , PrB1 , <0,1,0> , . 0 0 3 , 0 . 0 1 ) ;

boxBr2 := rep RECTBOX ( B1 , B1−(B1−PrB1 ) / 2 , <0,1,0> , . 0 0 5 , . 0 1 5 ) ;

boxPr := rep RECTBOX ( P , PrB1 , V ec t o r ( j ) , . 0 0 3 , . 0 1 ) ;

boxPr2 := rep RECTBOX ( P−(P−PrB1 ) / 2 , PrB1 , Ve c to r ( j ) , . 0 0 5 , . 0 1 5 ) ;

OPj := PrB1+ c o n v e r t ( norma ( Ori−PrB1 ) ∗ ˜ 0 . 0 7 , l i s t ) ;

# p r i n t ( norma ( Ori−PrB1 ) ) ;

boxO := rep RECTBOX ( Ori−(Ori−OPj ) / 2 , Ori , <0,1,0> , . 0 0 5 , . 0 1 5 ) ;

boxO2 := rep RECTBOX ( OPj , Ori , <0,1,0> , . 0 0 3 , . 0 1 ) ;

boxSLO := rep RECTBOX ( PrB1+ c o n v e r t ( i ∗ ˜ 0 . 0 8 , l i s t ) + c o n v e r t ( norma ( Ori−PrB1 ) ∗ ˜ 0 . 0 4 , l i s t ) , OPj , <0,1,0> , . 0 0 3 , . 0 1 ) ;

boxSB := rep RECTBOX ( PrB1+ c o n v e r t ( i ∗ ˜ 0 . 0 8 , l i s t ) , PrB1+ c o n v e r t ( i ∗ ˜ 0 . 0 8 , l i s t ) + c o n v e r t ( norma ( Ori−PrB1 ) ∗ ˜ 0 . 0 4 , l i s t ) ,

<0,1,0> , . 0 0 3 , . 0 1 ) ;

r e p s : = ( cyO , cyPr , cyB1 , boxBr , boxPr , boxBr2 , boxPr2 , boxO , boxO2 , boxSLO , boxSB ) :

p lo tmech : = ( l i n e P r , r e p s ) :

f i :

# ###################################################

box1 := rep RECTBOX ( A2 , Ap , V e c t o r ( i ) , . 0 0 5 , . 0 1 5 ) ;

box11 := rep RECTBOX ( Ap , A4o , V ec t o r ( i ) , . 0 0 3 , . 0 1 ) ;

box2 := rep RECTBOX ( C2 , Cp , V e c t o r(− i ) , . 0 0 5 , . 0 1 5 ) ;

box22 := rep RECTBOX ( Cp , C4o , V ec t o r(− i ) , . 0 0 3 , . 0 1 ) ;

box3 := rep RECTBOX ( B1 , Bp , V e c t o r ( j ) , . 0 0 5 , . 0 1 5 ) ;

box33 := rep RECTBOX ( Bp , B5o , V ec t o r ( j ) , . 0 0 3 , . 0 1 ) ;

ee := rep EXTRUDE ( [ A4o , C4o , B5o ] , −k , . 0 1 ) ;

l i n 1 := l i n e ( A1 , A2 ) ;

l i n 2 := l i n e ( C1 , C2 ) ;

r e a l m e c h : = ( (∗ l i n 1 , l i n 2 ,∗ ) sp1 , cy1 , cy2 , cy3 , cya1 , cya2 , cyc1 , cyc2 , box1 , box11 , box2 , box22 , box3 , box33 , polya ,

p o l y c ) ; # , l i n h ) ;

(∗
p r i n t ( e v a l f ( l e n g ( A2 , A4o ) ) ) ;

p r i n t ( e v a l f ( l e n g ( C2 , C4o ) ) ) ;

p r i n t ( e v a l f ( l e n g ( B1 , B5o ) ) ) ;

i f abs ( l e n g ( A2 , A4o )−qA ) <0.05 and abs ( l e n g ( C2 , C4o )−qC ) <0.05 and abs ( l e n g ( B1 , B5o )−qB ) <0.05 t h e n

p r i n t ( ” C o r r e c t l e n g t h s ” ) ;

e l s e
p r i n t ( ” F a i l l l l l l l l l l l l ” ) ;

# p r i n t ( s4 , c4 , angleA , angleB , hb ) ;

f i ;

∗)
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# t e x 1 := t e x t p l o t 3 d ([−10 ,−60 ,20 , e v a l f [ 3 ] ( Ve c t o r ( P ) ) ] , ’ a l i g n ’= ’ r i g h t ’ ) ;

d i s p 1 := d i s p l a y ( ‘ i f ‘ ( DISPPLANES=1 , p l a n e s , NULL) , ‘ i f ‘ ( DISPEQUIMECH=1 , plo tmech , NULL) , ar rows , p o l y g o n p l o t 3 d ( [ A1 , C1 ,

B1 ] , t r a n s p a r e n c y = 0 . 3 , c o l o r = w h i t e ) , p o l y g o n p l o t 3 d ( [ A4op , C4op , B5op ] , t r a n s p a r e n c y =0 , c o l o r = w h i t e ) , d i s p l a y ( ee ,

t r a n s p a r e n c y =0) (∗ , t e x 1 ∗) , s c a l i n g = c o n s t r a i n e d , o r i e n t a t i o n = [−45 , 75 , 0 ] , view = [−.4 . . . 8 , −.5 . . . 8 5 ,

−.7 . . . 7 ] , l i g h t m o d e l =none ) ;

d i s p 2 := d i s p l a y ( rea lmech , ‘ i f ‘ ( DISPEQUIMECH=1 , ’ s t y l e = l i n e , t r a n s p a r e n c y =0 .3 ’ ,NULL) ) ;

i f DISPDATA=1 t h e n

#X: = [ ang , angleA , angleB , hb , c o n v e r t ( i , l i s t ) , c o n v e r t ( j , l i s t ) , c o n v e r t ( k , l i s t ) , P [ 1 ] , P [ 2 ] , P [ 3 ] ] ;

X: = [ ang , angleA , angleB , hb , P [ 1 ] , P [ 2 ] , P [ 3 ] ] ;

e l s e
d i s p s := d i s p l a y ( d i sp1 , d i s p 2 ) ;

f i ;

end :

s ave e x e c h o n p l o t , ” e x e c h o n p l o t .m” :

# ################################################################################################

# ################# GENLIB .MPL: IS USED FOR CREATING BASIC FUNCTION TO BE USED AFTER

# ################################################################################################

R e s t a r t :

w i th ( p l o t s ) : w i th ( p l o t t o o l s ) : w i th ( L i n e a r A l g e b r a ) :

g e n l i b := module ( )

e x p o r t accu racy , Rx , Ry , Rz , Rr , modu , norma , normaS , ang lev , c o s v e c s , s i n v e c s , skew , ang led , m a t r i x f i l t e r , r e c i p p r o d ,

f i l l c i r , cy l p2p , c y l p , rep RECTBOX , rep CYLINDER , c o o r d s v e c s , povec , leng , rep EXTRUDE , rep TETRA , rep PLANE , i n t e r s ,

v e c p r o j , d i s t , v e c p e r p ;

o p t i o n package ;

a c c u r a c y :=1 e−6;

# L i n e a r Algeb ra

# M at r ix

# R o t a t i o n m a t r i x

#Rx r o t a t i o n m a t r i x

Rx := p roc ( ang )

Ma t r i x ( [ [ 1 , 0 , 0 ] ,

[ 0 , cos ( ang ) , −s i n ( ang ) ] ,

[ 0 , s i n ( ang ) , cos ( ang ) ] ] ) :

end :

#Ry r o t a t i o n m a t r i x

Ry := p roc ( ang )

Ma t r i x ( [ [ cos ( ang ) , 0 , s i n ( ang ) ] ,

[ 0 , 1 , 0 ] ,

[ − s i n ( ang ) , 0 , cos ( ang ) ] ] ) :

end :

#Rz r o t a t i o n m a t r i x

Rz := p roc ( ang )

Ma t r i x ( [ [ cos ( ang ) , −s i n ( ang ) , 0 ] ,

[ s i n ( ang ) , cos ( ang ) , 0 ] ,

[ 0 , 0 , 1 ] ] ) :

end :

#R g e n e r a l r o t a t i o n m a t r i x

Rr := p roc ( angx , angy , angz )

evalm ( Rx ( angx )&∗Ry ( angy )&∗Rz ( angz ) ) :

end :

# ######################################################################

# G e n e r a l u s e f u l f u n c t i o n s

#Module o f a v e c t o r

modu := p roc ( vec )

# s q r t ( D o t P r o d u c t ( vec , vec ) ) ;

s q r t ( vec [ 1 ] ˆ 2 + vec [ 2 ] ˆ 2 + vec [ 3 ] ˆ 2 ) ;

end :

#Norm of a v e c t o r

norma := p roc ( vec )

i f ( vec[1]<>0 or vec[2]<>0 or vec [3]<>0) t h e n

evalm ( vec / ˜ ( modu ( vec ) ) ) ;

e l s e vec ;

f i :

end :

normaS := p roc ( S )

i f ( S[1]<>0 or S[2]<>0 or S[3]<>0) t h e n
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evalm ( S / s q r t ( S [ 1 ] ˆ 2 + S [ 2 ] ˆ 2 + S [ 3 ] ˆ 2 ) ) :

e l s e
evalm ( S / s q r t ( S [ 4 ] ˆ 2 + S [ 5 ] ˆ 2 + S [ 6 ] ˆ 2 ) ) :

f i :

end :

# Angle o f 2 v e c t o r s wi th n normal

a n g l e v := p roc ( v1 , v2 , vn )

l o c a l x1 , y1 , z1 , x2 , y2 , z2 , xn , yn , zn , ang , dot , d e t ;

x1 := v1 [ 1 ] ; y1 := v1 [ 2 ] ; z1 := v1 [ 3 ] ;

x2 := v2 [ 1 ] ; y2 := v2 [ 2 ] ; z2 := v2 [ 3 ] ;

xn := vn [ 1 ] ; yn := vn [ 2 ] ; zn := vn [ 3 ] ;

d o t := x1∗x2 + y1∗y2 + z1∗z2 ;

d e t := x1∗y2∗zn + x2∗yn∗z1 + xn∗y1∗z2 − z1∗y2∗xn − z2∗yn∗x1 − zn∗y1∗x2 ;

a r c t a n ( de t , d o t ) ;

end :

s i n v e c s := p roc ( v1 , v2 , vn )

l o c a l x1 , y1 , z1 , x2 , y2 , z2 , xn , yn , zn , ang , dot , d e t ;

x1 := v1 [ 1 ] ; y1 := v1 [ 2 ] ; z1 := v1 [ 3 ] ;

x2 := v2 [ 1 ] ; y2 := v2 [ 2 ] ; z2 := v2 [ 3 ] ;

xn := vn [ 1 ] ; yn := vn [ 2 ] ; zn := vn [ 3 ] ;

d e t := x1∗y2∗zn + x2∗yn∗z1 + xn∗y1∗z2 − z1∗y2∗xn − z2∗yn∗x1 − zn∗y1∗x2 ;

end :

c o s v e c s := p roc ( v1 , v2 )

l o c a l x1 , y1 , z1 , x2 , y2 , z2 , d o t ;

x1 := v1 [ 1 ] ; y1 := v1 [ 2 ] ; z1 := v1 [ 3 ] ;

x2 := v2 [ 1 ] ; y2 := v2 [ 2 ] ; z2 := v2 [ 3 ] ;

d o t := x1∗x2 + y1∗y2 + z1∗z2 ;

end :

# M a t r i c e skew of a v e c t o r

skew := proc ( a )

evalm(−m a t r i x ( 3 , 3 , [ [ 0 , a [3] ,− a [2] ] , [− a [ 3 ] , 0 , a [ 1 ] ] , [ a [2] ,− a [ 1 ] , 0 ] ] ) ) ;

end :

# Angle o f 2 v e c t o r wi th d i r e c t i o n

a n g l e d := p roc ( v1 , v2 , d i r )

l o c a l vv1 , vv2 , inn , c r ;

vv1 := evalm ( v1 / norm ( v1 , 2 ) ) :

vv2 := evalm ( v2 / norm ( v2 , 2 ) ) :

i n n := D o t P r o d u c t ( vv1 , vv2 ) :

c r := C r o s s P r o d u c t ( vv1 , vv2 ) :

i f ( e v a l f ( D o t P r o d u c t ( d i r , c r ) )<0) t h e n c r :=− c r : f i :

s i g n ( c r )∗a r c c o s ( i n n ) ;

end :

#Round any m a t r i x wi th g i v e n ” a c c u r a c y ” f o r example 0 .0000001 = 0

m a t r i x f i l t e r := p roc (M)

l o c a l i , j , M , r , c :

r := RowDimension (M) :

c := ColumnDimension (M) :

M := m a t r i x ( r , c ) :

f o r i from 1 t o r do
f o r j from 1 t o c do

i f ( abs (M[ i , j ] )<a c c u r a c y ) t h e n M [ i , j ] : = 0 e l s e M [ i , j ] : =M[ i , j ] : f i :

od :

od :

op (M ) ;

end :

# ##########################################################################################################

# Screws

# R e c i p r o c a l P r o d u c t

r e c i p p r o d := p roc ( sc1 , sc2 )

e v a l f ( D o t P r o d u c t ( [ sc1 [ 1 ] , sc1 [ 2 ] , sc1 [ 3 ] ] , [ sc2 [ 4 ] , sc2 [ 5 ] , sc2 [ 6 ] ] ) + D o t P r o d u c t ( [ sc1 [ 4 ] , sc1 [ 5 ] , sc1 [ 6 ] ] , [ sc2 [ 1 ] , sc2 [ 2 ] ,

sc2 [ 3 ] ] ) ) ;

end :

# ##########################################################################################################

# V i s u a l i z a t i o n

# J o i n t s
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# V i s u a l i z e t h e d i s k wi th p : c e n t e r p o i n t , ve : v e c t o r normal t o p l a n e a t p o i n t p , Ra : r a d i u s o f d i s k

f i l l c i r := p roc ( p , ve , Ra )

l o c a l vec , v p , v p p , x , y , z , x0 , y0 , z0 , i , j , k , a , b , cy , t e t a , dsk , p l o ;

vec := Normal i ze ( Ve c t o r [ column ] ( ve ) , E u c l i d e a n ) ;

v p := Normal i ze ( C r o s s P r o d u c t ( vec ,<323 ,3214 ,4>) , E u c l i d e a n ) ;

v p p := C r o s s P r o d u c t ( vec , v p ) ;

f o r i from 1 t o 3 do
u | | i := v p [ i ] ;

v | | i := v p p [ i ] ;

od :

x0 := p [ 1 ] ;

y0 := p [ 2 ] ;

z0 := p [ 3 ] ;

a := M at r i x ( [ [ x0 , u1 , v1 ] ,

[ y0 , u2 , v2 ] ,

[ z0 , u3 , v3 ] ] ) ;

b := Ve c t o r [ column ] ( [ 1 , R∗cos ( t e t a ) , R∗ s i n ( t e t a ) ] ) ;

dsk := evalm ( a&∗b ) :

p l o t 3 d ( dsk , t e t a = 0 . . 2∗ Pi , R = 0 . . Ra ) :

end :

# ######################################################################

# R e v o l u t e j o i n t s from pon t p1 t o p o i n t p2 wi th r a d i u s R

c y l p 2 p := p roc ( p1 , p2 , R)

l o c a l vec , v p , v p p , x , y , z , x0 , y0 , z0 , i , j , k , a , b , cy , c y l i , t e t a , c1 , c2 ;

vec := Normal i ze ( Ve c t o r [ column ] ( p2−p1 ) , E u c l i d e a n ) ;

v p := Normal i ze ( C r o s s P r o d u c t ( vec ,<323 ,3214 ,4>) , E u c l i d e a n ) ;

v p p := C r o s s P r o d u c t ( vec , v p ) ;

f o r i from 1 t o 3 do
w| | i := vec [ i ] ;

u | | i := v p [ i ] ;

v | | i := v p p [ i ] ;

od :

x0 := p1 [ 1 ] ;

y0 := p1 [ 2 ] ;

z0 := p1 [ 3 ] ;

a := M at r i x ( [ [ x0 , u1 , v1 , w1 ] ,

[ y0 , u2 , v2 , w2 ] ,

[ z0 , u3 , v3 , w3 ] ] ) ;

b := Ve c t o r [ column ] ( [ 1 , R∗cos ( t e t a ) , R∗ s i n ( t e t a ) , t ] ) ;

cy := evalm ( a&∗b ) :

c y l i := p l o t 3 d ( cy , t e t a = 0 . . 2∗ Pi , t = 0 . . modu ( p2−p1 ) ) :

c1 := f i l l c i r ( p1 , vec , R) ;

c2 := f i l l c i r ( p2 , vec , R) ;

d i s p l a y ({ c y l i , c1 , c2} , s c a l i n g = c o n s t r a i n e d ) ;

end :

# ##########################################################################

# R e v o l u t e j o i n t a t c e r t a i n p o i n t p wi th h e i g h t h v e c t o r n r a d i u s R

c y l p := p roc ( p , n , h , R)

l o c a l p1 , p2 , n n o r ;

n n o r := Normal i ze ( n , E u c l i d e a n , c o n j u g a t e = f a l s e ) ;

p1 := p +˜ ( h / 2 )∗n n o r ;

p2 := p −˜ ( h / 2 )∗n n o r ;

c y l p 2 p ( p1 , p2 , R) ;

# n n o r ;

#modu ( p2−p1 ) ;

end :

# ######################################################################3

rep CYLINDER := proc (AXS, POI , OFFS , RADI , EXTRU, GRID ,COLO)

l o c a l c y l i n d e r , f ace1 , f a c e 2 ;

c y l i n d e r := t u b e p l o t ( [ POI [ 1 ] +AXS[1]∗ t , POI [ 2 ] +AXS[2]∗ t , POI [ 3 ] +AXS[3]∗ t ] , t =OFFS−EXTRU . . OFFS+EXTRU, r a d i u s =RADI , c o l o r =

COLO, s t y l e =PATCH, g r i d =GRID , t h i c k n e s s =1) ;

f a c e 1 := p o l y g o n p l o t 3 d ( op ( op ( c y l i n d e r ) [ 1 ] ) [ 1 ] [ 1 ] , c o l o r =COLO, g r i d = [ 3 , 3 ] ) ;

f a c e 2 := p o l y g o n p l o t 3 d ( op ( op ( c y l i n d e r ) [ 1 ] ) [ 1 ] [ GRID [ 1 ] ] , c o l o r =COLO, g r i d = [ 3 , 3 ] ) ;

d i s p l a y ( c y l i n d e r , f ace1 , f a c e 2 ) ;

end :

# ##############################################################################

# c r e a t e a box ( p r i s m a t i c j o i n t ) from p o i n t a t o p o i n t b wi th t h e long edge have v e c t o r v l ( remember t h e d i r e c t i o n

b e c a u s e i t a f f e c t t o bot tom f a c e ) and e q u a l t o 2∗magl , t h e same f o r s h o r t edge of r e c t a n g l e

rep RECTBOX := proc ( a , b , v l , mags , magl )

l o c a l v12 , nl , ns , i , p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 , f r o n t , back , l e f t , r i g h t , bottom , top , boxx , b1 , b2 ;
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v12 := Normal i ze ( Ve c t o r [ column ] ( b−a ) , E u c l i d e a n ) ;

n l := Normal i ze ( v l , E u c l i d e a n ) ;

ns := C r o s s P r o d u c t ( v12 , n l ) ;

p1 := a +˜ magl∗nl−mags∗ns ;

p2 := a +˜ magl∗n l +mags∗ns ;

p3 := a−˜magl∗n l +mags∗ns ;

p4 := a−˜magl∗nl−mags∗ns ;

p5 := b +˜ magl∗nl−mags∗ns ;

p6 := b +˜ magl∗n l +mags∗ns ;

p7 := b−˜magl∗n l +mags∗ns ;

p8 := b−˜magl∗nl−mags∗ns ;

p1 := c o n v e r t ( p1 , l i s t ) ;

p2 := c o n v e r t ( p2 , l i s t ) ;

p3 := c o n v e r t ( p3 , l i s t ) ;

p4 := c o n v e r t ( p4 , l i s t ) ;

p5 := c o n v e r t ( p5 , l i s t ) ;

p6 := c o n v e r t ( p6 , l i s t ) ;

p7 := c o n v e r t ( p7 , l i s t ) ;

p8 := c o n v e r t ( p8 , l i s t ) ;

f r o n t := [ p1 , p2 , p3 , p4 ] ;

back := [ p5 , p6 , p7 , p8 ] ;

t o p := [ p4 , p8 , p5 , p1 ] ;

bot tom := [ p3 , p2 , p6 , p7 ] ;

l e f t := [ p3 , p4 , p8 , p7 ] ;

r i g h t := [ p1 , p2 , p6 , p5 ] ;

boxx := [ f r o n t , back , l e f t , r i g h t , bo t tom ] ;

b1 := p l o t s [ p o l y g o n p l o t 3 d ] ( top , c o l o r = r e d ) ;

b2 := p l o t s [ p o l y g o n p l o t 3 d ] ( boxx , c o l o r = w h i t e ) ;

d i s p l a y ({b1 , b2}) ;

end :

# ###############################################################

# Put t h e coo r t r i a d s on t h e c e r t a i n p o i n t p wi th t h e f i r s t v e c t o r v1 , second v2 , t h i r d i s t h e c r o s s prod o f t h o s e

c o o r d s v e c s := p roc ( p , v1 , v2 )

l o c a l a , b , c , vv1 , vv2 , vv3 ;

vv1 := Normal i ze ( v1 , E u c l i d e a n ) ;

vv2 := Normal i ze ( v2 , E u c l i d e a n ) ;

vv3 := C r o s s P r o d u c t ( v1 , v2 ) ;

a := ar row ( p , vv1 , . 2 0 , . 4 0 , . 1 0 , c y l i n d r i c a l a r r o w , c o l o r = r e d ) ;

b := ar row ( p , vv2 , . 2 0 , . 4 0 , . 1 0 , c y l i n d r i c a l a r r o w , c o l o r = b l u e ) ;

c := ar row ( p , vv3 , . 2 0 , . 4 0 , . 1 0 , c y l i n d r i c a l a r r o w , c o l o r = g r e e n ) ;

d i s p l a y ({a , b , c} , s c a l i n g = c o n s t r a i n e d , axes =frame , l i g h t m o d e l = l i g h t 3 ) ;

end :

povec := p roc ( a , b , s t a r t , l , angz )

l o c a l p ;

p := e v a l f ( s t a r t + c o n v e r t ( Normal i ze ( evalm ( c o n v e r t ( b−a , v e c t o r )&∗ Rz ( angz ) ) , E u c l i d e a n )∗ l , l i s t ) ) ;

end :

# ########################################################

l e n g := p roc ( a , b )

l o c a l l ;

l := s q r t ( ( b[1]−a [ 1 ] ) ˆ 2 + ( b[2]−a [ 2 ] ) ˆ 2 + ( b[3]−a [ 3 ] ) ˆ 2 ) ;

end :

# #########################################################

rep EXTRUDE := proc ( ob j s , vec , mag )

l o c a l i , o tk , o tk s , p1 , p2 , p3 , p11 , p22 , p33 , b1 , b2 , b3 , f a c e s , top , bottom , f1 , f2 , f3 , vec s ;

vec s := e v a l f ( Normal i ze ( vec , E u c l i d e a n ) ∗˜mag ) ;

o t k s : = [ ] ;

f o r i from 1 t o nops ( o b j s ) do
o t k := o b j s [ i ] +˜ c o n v e r t ( vecs , l i s t ) ;

o t k s : = [ op ( o t k s ) , o t k ] ;

od :

p1 := o b j s [ 1 ] ;

p2 := o b j s [ 2 ] ;

p3 := o b j s [ 3 ] ;

p11 := o t k s [ 1 ] ;

p22 := o t k s [ 2 ] ;

p33 := o t k s [ 3 ] ;

t o p : = [ p1 , p2 , p3 ] ;

f1 : = [ p1 , p11 , p22 , p2 ] ;

f2 : = [ p2 , p22 , p33 , p3 ] ;

f3 : = [ p3 , p33 , p11 , p1 ] ;
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bot tom : = [ p11 , p22 , p33 ] ;

f a c e s : = [ f1 , f2 , f3 ] ;

b1 := p l o t s [ p o l y g o n p l o t 3 d ] ( top , c o l o r = r e d ) ;

b2 := p l o t s [ p o l y g o n p l o t 3 d ] ( f a c e s , c o l o r = w h i t e ) ;

b3 := p l o t s [ p o l y g o n p l o t 3 d ] ( top , c o l o r = w h i t e ) ;

d i s p l a y ({b1 , b2 , b3}) ;

end ;

# ###########################################################

rep TETRA := proc ( pp1 , vec1 , pp2 , vec2 , OFFS )

l o c a l p11 , p12 , p21 , p22 , v1 , v2 , top , bottom , l e f t , r i g h t , b1 , b2 , f a c e s ;

v1 := c o n v e r t ( Normal i ze ( vec1 , E u c l i d e a n ) , l i s t ) :

v2 := c o n v e r t ( Normal i ze ( vec2 , E u c l i d e a n ) , l i s t ) :

p11 := pp1−˜v1∗OFFS :

p12 := pp1 +˜ v1∗OFFS :

p21 := pp2−˜v2∗OFFS :

p22 := pp2 +˜ v2∗OFFS :

t o p : = [ p11 , p21 , p22 ] :

l e f t : = [ p11 , p21 , p12 ] :

r i g h t : = [ p11 , p12 , p22 ] :

bot tom : = [ p12 , p21 , p22 ] :

f a c e s : = [ l e f t , r i g h t , bo t tom ] :

b1 := p l o t s [ p o l y g o n p l o t 3 d ] ( top , c o l o r = r e d ) :

b2 := p l o t s [ p o l y g o n p l o t 3 d ] ( f a c e s , c o l o r = w h i t e ) :

d i s p l a y ({b1 , b2}) ;

end ;

# ##############################################################

rep PLANE := proc (VEC, POI , COL , xRange , yRange , zRange , TRANS)

l o c a l f ;

f :=VEC[1]∗ x+VEC[2]∗ y+VEC[3]∗ z−VEC[1]∗POI[1]−VEC[2]∗POI[2]−VEC[3]∗POI [ 3 ] :

d i s p l a y ( i m p l i c i t p l o t 3 d ( f = 0 , x = xRange [ 1 ] . . xRange [ 2 ] , y = yRange [ 1 ] . . yRange [ 2 ] , z = zRange [ 1 ] . . zRange [ 2 ] , c o l o r =

COL , s t y l e = s u r f a c e , t r a n s p a r e n c y =TRANS) ) ;

end ;

# ##############################################################

i n t e r s := p roc ( o1 , o2 , o3 , o4 )

l o c a l den , num x , num y ;

den := ( o1[1]−o2 [ 1 ] ) ∗( o3[2]−o4 [ 2 ] )−(o1[2]−o2 [ 2 ] ) ∗( o3[1]−o4 [ 1 ] ) ;

num x := ( o1 [1 ]∗ o2[2]−o1 [2 ]∗ o2 [ 1 ] ) ∗( o3[1]−o4 [ 1 ] )−(o1[1]−o2 [ 1 ] ) ∗( o3 [1 ]∗ o4[2]−o3 [2 ]∗ o4 [ 1 ] ) ;

num y := ( o1 [1 ]∗ o2[2]−o1 [2 ]∗ o2 [ 1 ] ) ∗( o3[2]−o4 [ 2 ] )−(o1[2]−o2 [ 2 ] ) ∗( o3 [1 ]∗ o4[2]−o3 [2 ]∗ o4 [ 1 ] ) ;

re turn [ num x / den , num y / den ] end p roc ;

# ##############################################################

v e c p r o j := p roc ( vu , vv )

l o c a l p r o j u ;

p r o j u := e v a l f ( D o t P r o d u c t ( vu , vv ) )∗vv / e v a l f ( vv [ 1 ] ˆ 2 + vv [ 2 ] ˆ 2 + vv [ 3 ] ˆ 2 ) ;

end p roc ;

d i s t := p roc (M, Ms , Me)

l o c a l d ;

d := e v a l f ( modu ( C r o s s P r o d u c t ( ( Ms−M) , (Me−Ms) ) ) / modu (Me−Ms) ) ;

end ;

v e c p e r p := p roc (M, Ms , Me)

l o c a l Mn, Mp, Mt ;

i f modu (M, Ms)> modu (M, Me) t h e n

Mt := Ms :

Ms:= Me:

Me:= Mt ;

f i ;

Mn:= C r o s s P r o d u c t (Ms−M, Me−Ms) ;

Mp:=−C r o s s P r o d u c t (Mn, Me−Ms) / ˜ ( ( modu (Me−Ms) ) ˆ 2 ) ;

end ;

end module :

s ave g e n l i b , ” g e n l i b .m” ;

# ################################################################################################

# ################### EXECHON CAL .MW: IS USED FOR SOLVING THE SYSTEM OF EQUATIONS

# ################################################################################################
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r e s t a r t : w i th ( p l o t s ) : w i th ( p l o t t o o l s ) : w i th ( L i n e a r A l g e b r a ) : w i th ( A r r a y T o o l s ) :

r e a d ” g e n l i b .m” :

wi th ( g e n l i b ) :

i n t e r f a c e ( w a r n l e v e l =0) :

e x e c h o n c a l := p roc ( qA , qB , qC , d e l t a A , d e l t a 1 B , d e l t a 2 B , d e l t a C )

# de1 := 2 0 : de2 := 1 0 : db1 := 9 0 : db2 := 6 0 : s s : = 1 0 :

pA:=−0.1523; pB : = 0 . 1 3 2 4 ; pC : = 0 . 2 5 2 3 ;

dA:=−0.4434; dB : = 0 . 3 4 5 5 ; dC : = 0 . 7 7 9 8 ;

lA : = 0 . 1 0 2 3 ; lC : = 0 . 1 5 2 3 ;

hA : = 0 . 0 4 ; hC : = 0 . 0 2 3 ;

A1 := [ 0 , dA , 0 ] :

C1 := [ 0 , dC , 0 ] :

B1 := [ dB , 0 , 0 ] : Or i := [ 0 , 0 , 0 ] :

A4 := [ 0 , pA , hA ] :

C4 := [ 0 , pC , hC ] :

B5 := [ pB , 0 , 0 ] :

A1e := [ 0 , pA+qA∗c1+ d e l t a A∗lA∗c4 , −qA∗s1−d e l t a A∗lA∗s4+hA ] :

A2e := [ 0 , pA+qA∗c1 , −qA∗s1+hA ] :

C1e := [ 0 , pC+qC∗c2+ d e l t a C∗lC∗c4 , −qC∗s2−d e l t a C∗lC∗s4+hC ] :

C2e := [ 0 , pC+qC∗c2 , −qC∗s2+hC ] :

B1e := [ pB+qB∗c3 , 0 , −qB∗s3 ] :

A1es := A1e :

C1es := C1e :

B1es := B1e :

A2es := A2e :

C2es := C2e :

AC := C1es − A1es :

AA := A2es − A1es :

CC := C2es − C1es :

f1 := ( A1es[1]−C1es [ 1 ] ) ˆ 2 + ( A1es[2]−C1es [ 2 ] ) ˆ 2 + ( A1es[3]−C1es [ 3 ] ) ˆ2−( abs ( dA ) + abs ( dC ) ) ˆ 2 ;

f2 := ( A1es[1]−B1es [ 1 ] ) ˆ 2 + ( A1es[2]−B1es [ 2 ] ) ˆ 2 + ( A1es[3]−B1es [ 3 ] ) ˆ2−( abs ( dA ) ˆ2+ abs ( dB ) ˆ 2 ) ;

f3 := ( C1es [1]−B1es [ 1 ] ) ˆ 2 + ( C1es [2]−B1es [ 2 ] ) ˆ 2 + ( C1es [3]−B1es [ 3 ] ) ˆ2−( abs ( dC ) ˆ2+ abs ( dB ) ˆ 2 ) ;

f4 := c o s v e c s (AC, CC) ;

# f5 := s i n v e c (AC,AA)

# f5 := c4 ;

# f5 := ( abs ( modu ( C r o s s P r o d u c t (AC,AA) ) ) / ( abs ( modu (AC) )∗abs ( modu (AA) ) ) )−1;

eqs :={ f1 , f2 , f3 , f4 } ;

# p r i n t ( s i m p l i f y ( f1 ) ) ;

# p r i n t ( s i m p l i f y ( f2 ) ) ;

# p r i n t ( s i m p l i f y ( f3 ) ) ;

# f4 := c o l l e c t ( f4 ,{ c4 ˆ 2 , s4 ˆ2} ) ;

# p r i n t ( f4 ) ;

eqs2 :={ seq ( c a t ( s , k ) ˆ2+ c a t ( c , k ) ˆ2=1 , k = 1 . . 4 ) } ;

p r i n t ( eqs2 [ 1 ] ) ;

p r i n t ( eqs2 [ 2 ] ) ;

p r i n t ( eqs2 [ 3 ] ) ;

p r i n t ( eqs2 [ 4 ] ) ;

a l l s := a l l v a l u e s ( [ s o l v e ( eqs union eqs2 ) ] ) :

r e s := e v a l f ( a l l s ) :

resR := remove ( has , r e s , I ) :

p r i n t ( nops ( resR ) ) ; s o l s := resR :

end p roc :

s ave e x e c h o n c a l , ” e x e c h o n c a l .m” ;

# #######################################################################
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CUIKSUITE code for computing
singularity loci of the Exechon

% Cuik f i l e t o compute :

%

% S i n g u l a r i t i e s o f t h e Exechon t r i p o d

% ADD G e o m e t r i c a l Dimension and t h e boundary o f t h e r o b o t HERE

%%%%%%

[CONSTANTS]

db := 0 .3455

l 1 := 0 .1023

l 2 := 0

l 3 := 0 .1523

% c o o r d i n a t e s o f t h e j o i n t s on t h e base e x p r e s s e d

% i n t h e a b s o l u t e f rame

a1x := 0

a1y := −0.4434

a1z := 0

a2x := 0 .3455

a2y := 0

a2z := 0

a3x := 0

a3y := 0 .7798

a3z := 0

% c o o r d i n a t e s o f t h e j o i n t s on t h e p l a t f o r m e x p r e s s e d

% i n t h e moving f rame a t t a c h e d t o t h e p l a t f o r m

b1x := 0

b1y := −0.1523

b1z := 0

b2x := 0 .1324

b2y := 0

b2z := 0

b3x := 0

b3y := 0 .2523

b3z := 0

% p a r a m e t e r used t o s c a l e t h e r a n g e of some v a r i a b l e s

k := 1

[SYSTEM VARS]

% c o o r d i n a t e s ( e x p r e s s e d i n t h e a b s o l u t e f rame ) o f

% a p o i n t o f t h e p l a t f o r m ( h e r e we chose t h e o r i g i n o f t h e moving f rame )

81
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% These v a r i a b l e s a r e a c t u a l l y c o n s t r a i n e d t o t a k e

% v a l u e s i n t h e r a n g e [−100 ,100] b e c a u s e t h e y a p p e a r

% m u l t i p l i e d by p a r a m e t e r k i n t h e e q u a t i o n s

x :[−1 ,1]

y : [−1 ,1]

z : [−1 ,1]

q1 : [ 0 , 1 . 7 ]

q2 : [ 0 , 1 . 7 ]

q3 : [ 0 , 1 . 7 ]

% i n p u t o f e q u i v a l e n t mechanism

h : [ 0 , 1 . 5 ]

ca : [−1 ,1]

sa : [−1 ,1]

sb :[−1 ,1]

cb :[−1 ,1]

% v e c t o r s a l o n g each l e g ( v e c t o r o f l e g 1 : [ e1x , e1y , e1z ] )

% These v e c t o r s a r e a c t u a l l y c o n s t r a i n e d t o t a k e v a l u e s

% i n t h e r a n g e [−100 ,100] b e c a u s e t h e y a p p e a r

% m u l t i p l i e d by p a r a m e t e r k i n t h e e q u a t i o n s

e1x :[−1 ,1]

e1y :[−1 ,1]

e1z : [−1 ,1]

e2x :[−1 ,1]

e2y :[−1 ,1]

e2z : [−1 ,1]

e3x :[−1 ,1]

e3y :[−1 ,1]

e3z : [−1 ,1]

% k e r n e l o f Xi

x i 1 : [−1 ,1]

x i 2 : [−1 ,1]

x i 3 : [−1 ,1]

x i 4 : [−1 ,1]

x i 5 : [−1 ,1]

x i 6 : [−1 ,1]

%%%%%%%%%%%%

ux :[−1 ,1]

uy :[−1 ,1]

uz :[−1 ,1]

vx :[−1 ,1]

vy :[−1 ,1]

vz :[−1 ,1]

wx:[−1 ,1]

wy:[−1 ,1]

wz:[−1 ,1]

%%%%%%

% SYSTEM OF EQS FOR THE SINGULARITY

[SYSTEM EQS]

% P e r p e n d i c u l a r v e c t o r s from t h e o r i e n t a t i o n

ux−sa =0;

uy =0;

uz−ca =0;

vx+sb∗ca =0;

vy−cb =0;

vz−sb∗sa =0;

wx−uy∗vz+uz∗vy =0;

wy+ux∗vz−uz∗vx =0;

wz−ux∗vy+uy∗vx =0;

sa ˆ2+ ca ˆ2−1=0;

sb ˆ2+ cb ˆ2−1=0;
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% v e c t o r from O r i g i n t o End E f f e c t o r

ca∗db∗sb∗vx−h∗k∗wx+k∗x = 0 ;

ca∗db∗sb∗vy−h∗k∗wy+k∗y = 0 ;

ca∗db∗sb∗vz−h∗k∗wz+k∗z = 0 ;

% 3 k i n e m a t i c s loop c l o s u r e e q u a t i o n s

−b1x∗ux−b1y∗vx−b1z∗wx+b3x∗ux+b3y∗vx+b3z∗wx+e1x∗k−e3x∗k−l 1∗uz+ l 3∗uz+a1x−a3x = 0 ;

−b1x∗uy−b1y∗vy−b1z∗wy+b3x∗uy+b3y∗vy+b3z∗wy+e1y∗k−e3y∗k+a1y−a3y = 0 ;

−b1x∗uz−b1y∗vz−b1z∗wz+b3x∗uz+b3y∗vz+b3z∗wz+e1z∗k−e3z∗k+ l 1∗ux−l 3∗ux+a1z−a3z = 0 ;

−b1x∗ux−b1y∗vx−b1z∗wx+b2x∗ux+b2y∗vx+b2z∗wx+e1x∗k−e2x∗k−l 1∗uz+a1x−a2x = 0 ;

−b1x∗uy−b1y∗vy−b1z∗wy+b2x∗uy+b2y∗vy+b2z∗wy+e1y∗k−e2y∗k+a1y−a2y = 0 ;

−b1x∗uz−b1y∗vz−b1z∗wz+b2x∗uz+b2y∗vz+b2z∗wz+e1z∗k−e2z∗k+ l 1∗ux+a1z−a2z = 0 ;

−b1x∗ux−b1y∗vx−b1z∗wx+e1x∗k−k∗x−l 1∗uz+a1x = 0 ;

−b1x∗uy−b1y∗vy−b1z∗wy+e1y∗k−k∗y+a1y = 0 ;

−b1x∗uz−b1y∗vz−b1z∗wz+e1z∗k−k∗z+ l 1∗ux+a1z = 0 ;

% impose t h e r ank d e f i c i e n c y of J a c o b i a n m a t r i x

e1x∗k∗ l 1∗ux∗xi5−e1y∗k∗ l 1∗ux∗xi4−e1y∗k∗ l 1∗uz∗x i 6 +e1z∗k∗ l 1∗uz∗x i 5 +a1x∗e1y∗k∗xi6−a1x∗e1z∗k∗xi5−a1y∗e1x∗k∗x i 6

+a1y∗e1z∗k∗x i 4 +a1z∗e1x∗k∗xi5−a1z∗e1y∗k∗x i 4 +e1x∗k∗x i 1 +e1y∗k∗x i 2 +e1z∗k∗x i 3 = 0 ;

e2x∗k∗ l 2∗ux∗xi5−e2y∗k∗ l 2∗ux∗xi4−e2y∗k∗ l 2∗uz∗x i 6 +e2z∗k∗ l 2∗uz∗x i 5 +a2x∗e2y∗k∗xi6−a2x∗e2z∗k∗xi5−a2y∗e2x∗k∗x i 6

+a2y∗e2z∗k∗x i 4 +a2z∗e2x∗k∗xi5−a2z∗e2y∗k∗x i 4 +e2x∗k∗x i 1 +e2y∗k∗x i 2 +e2z∗k∗x i 3 = 0 ;

e3x∗k∗ l 3∗ux∗xi5−e3y∗k∗ l 3∗ux∗xi4−e3y∗k∗ l 3∗uz∗x i 6 +e3z∗k∗ l 3∗uz∗x i 5 +a3x∗e3y∗k∗xi6−a3x∗e3z∗k∗xi5−a3y∗e3x∗k∗x i 6

+a3y∗e3z∗k∗x i 4 +a3z∗e3x∗k∗xi5−a3z∗e3y∗k∗x i 4 +e3x∗k∗x i 1 +e3y∗k∗x i 2 +e3z∗k∗x i 3 = 0 ;

ux∗x i 1 +uy∗x i 2 +uz∗x i 3 = 0 ;

a2x∗vy∗xi6−a2x∗vz∗xi5−a2y∗vx∗x i 6 +a2y∗vz∗x i 4 +a2z∗vx∗xi5−a2z∗vy∗x i 4 +vx∗x i 1 +vy∗x i 2 +vz∗x i 3 = 0 ;

−ux∗x i 6 +uz∗x i 4 = 0 ;

% E q u a t i o n t o f o r c e a t w i s t v e c t o r Tw of u n i t norm

x i 1 ˆ2+ x i 2 ˆ2+ x i 3 ˆ2+ x i 4 ˆ2+ x i 5 ˆ2+ x i 6 ˆ2 = 1 ;

% I n e q u a l i t y t o s e l e c t on ly one s o l u t i o n o f t h e Tw v e c t o r

.2342493224∗ x i 1 +.1799302829∗ x i 2 +.5137385362∗ x i 3 +.2907448089∗ x i 4 +.8953600369∗ x i 5 +.2617341097∗ x i 6 >= 0 ;

% For v i s u a l i z a t i o n p u r p o s e

e1x ˆ2+ e1y ˆ2+ e1zˆ2−q1 ˆ2 = 0 ;

e2x ˆ2+ e2y ˆ2+ e2zˆ2−q2 ˆ2 = 0 ;

e3x ˆ2+ e3y ˆ2+ e3zˆ2−q3 ˆ2 = 0 ;
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