
i 
 

       UNIVERSITY OF GENOA 

 

                    

 

PHD’S PROGRAM IN SCIENCE AND TECHNOLOGIES OF 

CHEMISTRY AND MATERIALS 

 

PRODUCTION OF GRAPHENE AND TWO 

DIMENSIONAL CRYSTALS BASED 

FUNCTIONAL ELECTRODE FOR LITHIUM 

ION BATTERIES  

 
Duc Anh Dinh 

 

 

 

Supervisor: 

 

Dr. Francesco Bonaccorso 

 

Co-supervisors: 

 

Dr. Vittorio Pellegrini  

Prof. Paolo Piccardo 

 

 

 



ii 
 

LIST OF PUBLICATIONS AND CONTRIBUTIONS 

Journal articles 

1. H. Sun, A. E. Del Rio Castillo, S. Monaco, A. Capasso, D. A. Dinh, A. Ansaldo, M. 

Prato, V. Pellegrini, B. Scrosati, L. Manna and F. Bonaccorso, Binder-free graphene-based 

anode for Li ion battery, Journal of Materials Chemistry A, 4, 6886-6895 (2016).   

2. H. Sun, A. Varzi, V. Pellegrini, D. A. Dinh, R. Raccichini, A. E. Del Rio-Castillo, M. 

Prato, M. Colombo, R. Cingolani, B. Scrosati, S. Passerini, and F. Bonaccorso, How much 

does size really matter? Exploring the limits of graphene as Li ion battery anode material, 

Solid State Communication, 251, 88-93 (2017). 

3. H. Sun, D. Hanlon, D. A. Dinh, J. B. Boland, A. E. Del Rio Castillo, C. D. Giovanni, A. 

Ansaldo, V. Pellegrini, J. N. Coleman and F. Bonaccorso, Carbon nanotubes-bridged 

molybdenum trioxide nanosheets as high performance anode for lithium ion batteries,  2D 

Materials, 5, 015024 (2018). 

4. A. E. Del Rio Castillo, V. Pellegrini, H. Sun, J. Buha, D. A. Dinh, E. Lago, A. Ansaldo 

A. Capasso, L. Manna, and F. Bonaccorso, Exfoliation of Few-Layer Black Phosphorus in 

Low Boiling Point Solvents and its Application in Li-ion Batteries, Chemistry of Materials, 

DOI: 10.1021/acs.chemmater.7b04628 (2017). 

5. D. A. Dinh, H. Sun, L. Najafi, A. E. Del Rio Castillo, A. Ansaldo, Z. Dang, C. D. 

Giovanni, V. Pellegrini, and F. Bonaccorso, Synthesis of MoS2-flakes/amorphous-carbon 

hybrid as anode for lithium-ion batteries, submitted. 

Conferences 

Invited talks 

 

1. H. Sun, A. E. Del Rio-Castillo, D. A. Dinh, V. Pellegrini, and F. Bonaccorso 

“Graphene and two-dimensional crystals based Li-ion batteries” Solid State Ionics 

2017, 18-23 June 2017 Padova, Italy. 

Oral presentations 

1. H. Sun, A. E. Del Rio Castillo, D. A. Dinh, V. Pellegrini, and F. Bonaccorso, Binder-

free graphene-based anode for Li ion battery, GrapChina, October 28-30, 2015, Qingdao, 

China. 

2. H. Sun, A. Varzi, V. Pellegrini, D. A. Dinh, R. Raccichini, A. E. Del Rio-Castillo, M. 

Prato, M. Colombo, R. Cingolani, B. Scrosati, S. Passerini, and F. Bonaccorso, How 

much does size really matter? Exploring the limits of graphene as Li ion battery anode 

material, EMRS Spring Meeting, May 22- 26, 2017, Strasbourg, France. 

3. D. A. Dinh, H. Sun, L. Najafi, C. Di Giovanni, A. Esau Del Rio Castillo, A. Ansaldo, 

Z. Dang, V. Pellegrini and F. Bonaccorso, Carbon coated MoS2 flakes as anode for 

lithium-ion batteries, International Nanotech & Nanoscience Conference, June 28-30, 

2017, Paris, France. 

 



iii 
 

 4. H. Sun, D. A. Dinh, A. E. Del Rio-Castillo, V. Pellegrini, and F. Bonaccorso,  

“Graphene and two-dimensional crystals based Li-ion batteries” GrapChina 2017, 24-26 

Sept. 2017, Nanjing, China. 

5. D. A. Dinh, H. Sun, L. Najafi, C. Di Giovanni, A. Esau Del Rio Castillo, A. Ansaldo, 

Z. Dang, V. Pellegrini and F. Bonaccorso, Facile synthesis of MoS2-flakes/amorphous-

carbon composite as anode for lithium-ion batteries, Applied Nanotechnology and 

Nanoscience International Conference 2017, October 18-20, 2017, Italy 

Posters 

1. D. A. Dinh, H. Sun, A. E. Del Rio-Castillo, S. Monaco,  A. Capasso,  A. Ansaldo,  M. 

Prato,  V. Pellegrini,  B. Scrosati,  L. Manna  and  F. Bonaccorso, Binder-free graphene 

film via solvent exchange process as anode in Li-ion battery, Graphene 2016, April 19-

22, 2016, Genova, Italy. 

2. H. Sun, A. Varzi, D. A. Dinh, R. Raccichini, A. E. Del Rio Castillo, R. Cingolani, V. 

Pellegrini, B. Scrosati, S. Passerini, and F. Bonaccorso, Influence of graphene flakes 

morphology on the lithium ion storage capability, Graphene 2016, April 19-22, 2016, 

Genova, Italy. 

3. D. A. Dinh, H. Sun, L. Najafi, C. Di Giovanni, A. Esau Del Rio Castillo, A. Ansaldo, 

V. Pellegrini and F. Bonaccorso, Binder-free anode based on carbon-coated MoS2, the 

Italian national conference on materials Science and Technology, December 12-16, 2016, 

Catania, Italy. 

4. H. Sun, A. Varzi, D. A. Dinh, R. Raccichini, A. E. Del Rio Castillo, R. Cingolani, V. 

Pellegrini, B. Scrosati, S. Passerini, and F. Bonaccorso, How much does size really 

matter? Exploring the limits of graphene as Li ion battery anode material, Graphene 

2017, March 28-31, 2017, Barcelona, Spain. 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGMENTS 

First of all, I would like to express my gratitude and respect to my thesis supervisor Dr. 

Francesco Bonaccorso for his inspiration and incredible passion to guide me during my PhD 

program. I would also like to thank my co-supervisor, Dr. Vittorio Pellegrini, Director of 

Graphene Labs, and Prof. Paolo Piccardo, University of Genoa, who gave me the opportunity 

to perform my research projects in Istituto Italiano di Tecnologia (IIT).   

Moreover, I sincerely thank Dr. Haiyan Sun for her valuable guidance and constant 

encouragement. Dr. Haiyan Sun devoted a lot of efforts in every stage of my research, from 

laboratory to paper work, during three years of my PhD program. The support of Dr. Haiyan 

Sun is a big part of my achievement, I really appreciate it. Besides, I would like to extend my 

great appreciation to Dr. Antonio Esaú Del Rio Castillo who was always willing to discuss 

with me and give me helpful suggestions in the field of material science. 

I  further  would  like  to  express  my  thanks  to  other  senior researcher and postdocs in 

Graphene Lab, Alberto Ansaldo, Sebastiano Bellani, Gianluca Longoni, Michele Serri, 

Reinier Oropesa, Sanjay Thorat, and Andrea Gamucci for  spending their time to discuss with 

me not only science but also life. Especially, I am thankful for Dr. Alberto Ansaldo for his 

support in lab work and scientific suggestions. 

I wish to thank other students in Graphene Lab, Leyla Najafi, Nikhil Santh, Emanuele Lago, 

Nicola Curreli, Silvia Gentiluomo, Elisa Petroni, and Valentino Romano for being a large 

source of encouragement, motivation in working and studying.  

I would like to acknowledge the great support from technician team of Graphene Lab, Elisa 

Mantero, Manuel Crugliano, Luca Gagliani and Luigi Marasco. My lab work would not be 

fluent without your help. 

An extra thanks to the formers of Graphene Lab, Filiberto Ricciardella, Davide Maria Di 

Paola, Carlo Di Giovanni and Eugenio Greco and Huy Nam Tran for their support in my work 

and my life. 

It is also my great pleasure to work with my friends in IIT, Andrea Castelli, Zhiya Dang, Lin 

Chen, Thanh Binh Mai, Thi Nga Tran, Umair Gulzar, Guilherme Almeida, Javad Shamsi and 

Anatolii Polovitsyn for their support and experience in research. A special thanks to Andrea 

Castelli (my flatmate) who always extended his time to help me to overcome any trouble in 

Italy life. Moreover, I appreciate the support of Dr. Zhiya Dang (bunny), who has always been 

with me and given me the academic and emotional support during my last year of PhD. 

Last but not least, I am extremely grateful to my parents and sister for their love, support and 

continuous encouragement throughout my study in Italy. 

 

 

 



v 
 

LIST OF ABBREVIATIONS 

0D zero dimensional  

1D one dimensional  

2D  two dimensional  

3D three dimensional  

γ 

AFM 

surface tension 

atomic force microscopy  

BET Brunauer – Emmett – Teller measurement 

BM 

b.p. 

CB 

ball-milling 

boiling point 

carbon black super-P  

CMGs chemically modified graphene  

CNTs carbon nanotubes  

CPE constant phase element  

CV cyclic voltammetry  

CVD chemical vapor deposition  

CHP 

DMC 

N-cyclohexyl-2-pyrrolidone  

dimethyl carbonate  

DMF dimethylformamide  

DOD depth of discharge  

EC ethylene carbonate  

EFTEM 

(HAADF)-STEM 

EDS 

energy filtered elemental mapping 

high angular annular dark field - scanning TEM 

energy dispersive X-ray spectroscopy  

EIS electrochemical impedance spectroscopy  

EELS 

ESSs 

electron energy loss spectroscopy  

energy storage systems  

EtOH ethanol  

EVs electric vehicles 

FCs fuel cells  

FL-BP 

FLG 

few-layer black phosphorous 

few layer graphene 

FWHM full width at half maximum  

GNPs graphene nanoplatelets  

GO graphene oxide  

HAADF-STEM high angular annular dark field-Scaning TEM  

HEVs hybrid electric vehicles  

HMWPs high molecular-weight polymers  

HRTEM high resolution-TEM  

IPA 2-propanol  

LCO LiCoO2  

LFP LiFePO4  

LIBs lithium ion batteries  

LNMO LiNi0.5Mn1.5O4  

LO longitudinal  

LPE liquid phase exfoliation  

MC micromechanical cleavage 



vi 
 

MLG multi-layer graphene 

MoO3/SWNTs hybrid structure of SWNT-bridged MoO3  

MoS2/C MoS2/amorphous carbon composites 

m-SWNTs metallic SWNTs  

OES 

OAS 

optical extinction spectroscopy  

optical absorption spectroscopy  

PAA poly(acrylic acid)  

PVdF polyvinylidene fluoride  

RBMs radial breathing modes  

RCT charge transfer resistance 

RE electrolyte resistance 

RGO reduced graphene oxide  

SA surface area  

SBS separation based sedimentation  

SCs supercapacitors  

SEI solid electrolyte interface  

SEM 

HRSEM 

scanning electron microscopy  

high resolution-SEM 

SLG single-layer graphene  

SOC state of charge  

s-SWNTs semiconducting SWNTs  

SWNTs single wall carbon nanotubes  

TEM transmission electron microscopy  

TGA thermogravimetric analysis  

TMOs transition metal oxides  

TMSs transition metal sulfides  

TO tangential  

XPS X-ray Photoelectron Spectroscopy  

XRD powder X-ray diffraction  

 

 

 

 

 

 

 

 

 



vii 
 

CONTENTS 

Abstract .......................................................................................................................................... 1 

Chapter 1: Introduction 

1.1. Global overview of lithium ion batteries .................................................................................... 5 

1.2. Fundamental of lithium ion batteries .......................................................................................... 6 

1.2.1. History of lithium ion batteries ........................................................................................ 6 

1.2.2. Working principles of lithium ions batteries .................................................................... 8 

1.2.3. Anode of lithium ion batteries .......................................................................................... 11 

1.2.4. Cathode of lithium ion batteries ....................................................................................... 15 

1.2.5. Electrolyte, separator and current collectors .................................................................... 16 

1.3. Current challenges and opportunities of anodes in lithium ion batteries ................................... 19 

1.4. Graphene and other 2 dimensional materials: the promising anode materials for lithium 

ion batteries ....................................................................................................................................... 22 

1.4.1. Graphene .......................................................................................................................... 24 

1.4.2. Molybdenum trioxide ....................................................................................................... 24 

1.4.3. Molybdenum disulfide ..................................................................................................... 25 

1.4.4. Black Phosphorus ............................................................................................................. 25  

Chapter 2: Experimental procedure 

2.1. Production and processing of graphene and other two dimensional materials .......................... 28   

2.1.1. Liquid phase exfoliation ................................................................................................... 28 

 2.1.2. Solvent exchange processes ............................................................................................. 30 

 2.1.3. Experimental .................................................................................................................... 30 

2.2. Preparation of single wall carbon nanotube-bridged molybdenum hybrid and 

molybdenum disulfide/amorphous carbon composite ....................................................................... 32 

2.2.1. Preparation of single wall carbon nanotubes-bridged molybdenum hybrid .................... 32 

2.2.2. Preparation of molybdenum disulfide/amorphous carbon hybrid .................................... 33 

2.3. Material characterization techniques .......................................................................................... 33 

2.3.1. Optical absorption spectroscopy  ..................................................................................... 33 



viii 
 

2.3.2. Thermogravimetric analysis ............................................................................................. 34 

2.3.3. Powder X-ray diffraction  ................................................................................................ 34 

2.3.4. Raman spectroscopy ......................................................................................................... 34 

2.3.5. Transmission electron microscopy  .................................................................................. 34 

2.3.6. Scanning electron microscopy ......................................................................................... 35 

2.3.7. Atomic Force Microscopy ................................................................................................ 35 

2.3.8. X-ray Photoelectron Spectroscopy ................................................................................... 35  

2.3.9. Specific surface-area measurements ................................................................................ 35 

2.3.10. Optical extinction spectroscopy ..................................................................................... 36 

2.4. Electrode fabrication and battery assembling ............................................................................ 36 

2.4.1. Electrode fabrication ........................................................................................................ 36 

2.4.2. Assembling of half- and full-cells ................................................................................... 37 

2.5. Electrochemical characterizations .............................................................................................. 38  

2.5.1. Cyclic voltammetry .......................................................................................................... 38 

2.5.2. Galvanostatic charge/discharge cycling measurement .................................................... 39 

2.5.3. Electrochemical impedance spectroscopy ....................................................................... 40 

Chapter 3:  Characterizations of graphene and other two dimensional 

materials 

3.1. Graphene flakes .......................................................................................................................... 43 

3.1.1. Characterizations of graphene flakes in N-Methyl-2-pyrrolidone and ethanol ................ 43 

3.1.2. Characterizations of graphene flakes having different lateral size and thickness ............ 48  

3.2. Single wall carbon nanotubes ..................................................................................................... 53  

3.3. Molybdenum trioxide nanosheets and single wall carbon nanotube-bridged molybdenum 

oxide hybrid ....................................................................................................................................... 55 

3.4. Molybdenum disulfide flakes and molybdenum disulfide/amorphous carbon hybrid ............... 57 

3.4.1. Molybdenum disulfide flakes .......................................................................................... 57 

3.4.2. Molybdenum disulfide/amorphous carbon hybrids ......................................................... 60 

3.5. Black phosphorus ....................................................................................................................... 63 

3.5.1. Solvent analysis ................................................................................................................ 63 



ix 
 

3.5.2. Morphological characterization of BP flakes in CHP and acetone .................................. 68 

Chapter 4: Application of graphene for lithium ion batteries 

4.1. Introduction ................................................................................................................................ 76 

4.2. Graphene based binder-free anode for lithium ion batteries ...................................................... 79 

4.3. The influence of graphene flake morphology on electrochemical properties of graphene 

based anode in lithium ion batteries .................................................................................................. 84 

4.4. Conclusion .................................................................................................................................. 91 

Chapter 5: Application of molybdenum trioxide and molybdenum disulfide 

for lithium ion batteries 

5.1. Introduction ................................................................................................................................ 93 

5.2. Carbon nanotubes-bridged MoO3 hybrid structure as high performance anode for lithium 

ion batteries ....................................................................................................................................... 95 

5.3. Molybdenum disulfide flakes/amorphous carbon hybrid as anode for lithium ion batteries ..... 104 

5.4. Conclusion .................................................................................................................................. 115 

Chapter 6: Application of black phosphorous for lithium ion batteries 

6.1. Introduction ................................................................................................................................ 117 

6.2. Few-layer black phosphorus as anode for lithium ion batteries ................................................. 118 

6.3. Conclusion .................................................................................................................................. 122 

Chapter 7: Conclusion and outlook 

7.1. Graphene-based anode for lithium ion batteries ......................................................................... 123 

7.2. Molybdenum oxide- and molybdenum trioxide-based anode for lithium ion batteries ............. 125 

7.3. Black phosphorous-based anode for lithium ion batteries ......................................................... 127 

7.4. Future development .................................................................................................................... 128 

References ..................................................................................................................................... 131



1 
 

Abstract  

The rapid development of electronic portable devices, electric cars, etc. has boosted the 

requirement of portable and efficient energy storage systems. In this context, lithium ion 

batteries (LIBs) technology has emerged as one of the most promising for the aforementioned 

applications. In the last years, strong efforts have focused on LIBs research and technology. 

As a result, substantial achievements in LIB technology have been harvested, such as the 

introduction of new electrode materials with high capacity, and the invention of new 

electrolytes with high electrochemical stability in different environmental conditions. 

Although the present LIBs exhibit more than twice the energy density with respect to the first 

commercial one introduce by Sony in 1991, several challenges still need to be solved in order 

to further apply LIBs for high energy and power applications, e.g., electrical vehicles. These 

challenges include safety, cost, improvement in life-time, and increase in energy and power 

densities of LIBs. It should be noted that most of these concerns are related to the use of 

electrode active materials; therefore, the development of high-performance anode and cathode 

is one of the critical requirements in current LIBs technology. The on-going research exhibits 

that the current cathode with particular specific capacity values leaves small room for further 

improvement in energy density, but the anode can be tuned to obtain higher specific capacity 

and energy efficiency, as well as longer cycle life. Thus, tremendous efforts have been 

devoted to the development of high-performance LIB anodes, which can provide high energy, 

power density for the LIBs and can adapt to the environmental constraints and ultimately suit 

the needs of industrial-scale production at low-cost. Up to date, conventional LIB anodes 

commonly use graphite as active material due to its high coulombic efficiency (~99%), low 

potential profile versus lithium (~ 0.2 V) and structural stability during charge/discharge 

cycling. However, the main limiting factor of graphite relies on its theoretical maximum 

specific capacity that is limited to 372 mA h g-1 since every six carbon atom can host only one 

Li+ determined by the LiC6 stoichiometry, which is not suitable for the development of high 

energy density LIBs. For this reason, there is a significant scientific interest in replacing 

graphite with higher specific capacity anode materials. For example, metal and metal oxides, 

such as Sn (933 mAh g-1), Si (3579 mAh g-1), Ge (1623 mAh g-1), SnO2 (782 mAh g-1), and 

Co3O4 (890 mAh g-1), have higher lithium storage capacities than graphite via the formation 

of alloys with lithium or through the reversible reactions with Li+. However, these electrodes 

are still facing with the severe issue associated with the large volume change during the 

charging/discharging cycles, resulting in the pulverization of the electrode, and consequently 

poor electrochemical reversibility. The exploitation of anode materials with long lasting life 

cycles and high specific capacity for LIBs is still a challenge for the scientific community. 
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Thus, seeking new anode materials for the next-generation of LIBs is a mandatory task for 

both academia and industry. The aim of my PhD work was to investigate nanomaterials, e.g., 

carbon nanotubes (CNTs), graphene and other two-dimensional (2D) crystals as potential 

materials for future LIB electrodes. In particular, I studied the electrochemical properties of 

four promising materials for LIB anodes, e.g., graphene, molybdenum trioxide (MoO3), 

molybdenum disulfide (MoS2) and black phosphorous (BP). For what concerns graphene, I 

focused on the production and processing to optimize the fabrication of binder-free graphene 

anode. Furthermore, I carried out the study of the effect of graphene flakes dimension (lateral 

size and thickness) on the Li+ storage capability. In particular, I sorted graphene flakes by 

layer numbers and lateral size, investigating the influence of the flakes morphology on the 

electrochemical performance upon lithiation/de-lithiation. This strategy provides useful 

guidelines for the practical exploitation of few- (FLG) and multi- (MLG) layer graphene as 

stand-alone anode materials in LIBs. To achieve this target, I have produced graphene flakes 

by liquid phase exfoliation (LPE) of graphite and then tuned the morphology of graphene 

flakes by means of sedimentation-based separation (SBS). 

After the study on graphene, I shifted my interest to other layered materials such as MoO3 and 

MoS2. Similar to the production of graphene, I started carrying out the production of few-

layer MoO3 and MoS2 flakes via LPE of their bulk counterparts, then studied the 

electrochemical behaviors of MoO3 and MoS2 flakes based anodes in order to find the 

strategies to improve Li+ storage ability of these anodes.  This approach utilizes the LPE to 

produce nano-sized flakes, which are able to resist the mechanical degradation caused by 

volume changes of these materials upon cycling of LIB. Although the nano-sized MoO3 and 

MoS2 flakes can exhibit the advantage in structural preservation of anodes, they are still 

facing with the issues of low intrinsic electrical conductivity which cause poor rate 

performance. Thus, it is necessary to integrate the high electrical conductive materials, e.g., 

carbon based materials, with MoO3 and MoS2 to improve their electrical conductivity when 

integrated in LIB anodes.  

To realize this strategy, I firstly synthesized the hybrid structure of single wall carbon 

nanotubes-bridged MoO3 (MoO3/SWNTs) via a low-cost, non-toxic and simple solution 

mixing method. Afterward, the binder-free MoO3/SWNT anodes were fabricated to study the 

effects of SWNTs content (wt%) on the electrochemical behaviors of MoO3. The SWNTs 

network in this electrode is demonstrated to play the role of conducting channels for 

electronic transport, and a buffered network for volume change of MoO3.  This study sets the 

basis for the exploitation of exfoliated MoO3 flakes as anode materials in high performance 
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LIB. Moreover, the binder-free MoO3/SWNTs hybrid anode prepared by the simple 

aforementioned method can boost the development of high performance anodes for LIBs. 

As for MoS2, I designed a fabrication method of MoS2 flakes/amorphous carbon hybrid 

(MoS2/C) anodes based on a thermal composition of a carbon source, e.g., poly(acrylic acid) 

(PAA) in the mixtures of MoS2/PAA. The MoS2/C based anodes are built to investigate the 

effects of different carbon contents on electrochemical performance of the hybrid and 

optimize the proper carbon content. This work clarified that a proper content of carbon not 

only improves the electrical conductivity of electrode by facilitating the electron transport, but 

also acting as a buffer layer for active materials to avoid its pulverization upon cycling. 

Hence, the study of MoS2/C electrodes gives the research community a protocol for large-

scale production of MoS2/carbon hybrid and also can be easily extended to the construction of 

other 2D nano-crystals, such as transition metal sulfide (TMSs), transition metal oxides 

(TMOs), dispersed in amorphous carbon networks for Li+ storage application. 

The last activity in this thesis focuses on the study of production and LIB application of few-

layer BP (FL-BP) flakes. Similar to the production of graphene, MoO3 and MoS2, LPE was 

used as strategic route for the large-scale production of FL-BP. The exploitation of FL-BP 

flakes in cutting-edge technologies, e.g, in flexible electronics and energy storage, is however 

limited by the fact that the LPE of BP is usually carried out at a high boiling point (b.p.) and 

in toxic solvents. In fact, the solvent residual is detrimental to device performance in real 

applications, thus complete solvent removal is critical. To overcome these issues, I carried out 

the LPE of BP in different low-b.p. solvents. Among these solvents, the LPE of BP in acetone 

exhibited a high concentration of FL-BP (FL-BPacetone) flakes. Taking the advantage of low-

b.p. solvent, e.g., acetone, I further fabricated the FL-BP based anode to study the 

electrochemical properties of this material for LIB anode. The electrochemical study of FL-

BPacetone-based anode indicates a promising design of fast charge/discharge devices. 

In summary, the Thesis is organized as follow. 

Chapter 1 shows the global view and the fundamental understanding of current LIB 

technology, a brief review of challenges and opportunities for future LIB, together with the 

introduction of several promising candidates for LIB anodes such as graphene and other 2D 

materials (MoO3, MoS2 and BP). 

Chapter 2 reviews LPE for layered materials. The production and processing of graphene, 

MoO3, MoS2 and BP by LPE as well as the synthesis of MoO3/SWNTs and MoS2/C hybrids 
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for LIB are reported. The electrode fabrication, cell-assembling are introduced, together with 

full material and electrochemical characterization techniques. 

Chapter 3 dedicates to the characterizations of each type of materials, e.g., graphene, MoO3, 

MoS2, MoO3/SWNTs, MoS2/C hybrids and BP. This chapter lays a solid foundation for the 

understanding of electrochemical performances of each material which will be discussed in 

Chapter 4, 5 and 6. 

Chapter 4 concerns the study of graphene for LIB application. The first part of this chapter 

focuses on the processing of LPE graphene via a solvent exchange process and 

electrochemical performance of binder-free graphene anode in both half-cell and full-cell 

configurations. The second part provides a fundamental understanding of the role of graphene 

flakes dimension (lateral size and thickness) on the Li+ storage ability of graphene anodes.  

Chapter 5 covers the activities of MoO3 and MoS2 based LIB anodes. The study on 

electrochemical properties of MoO3 and MoO3/SWNTs hybrid demonstrates the role of 

SWNTs in Li+ storage ability of MoO3. While the study on electrochemical properties of 

MoS2 and MoS2/C hybrid provides the understanding of the effects of carbon content on Li+ 

storage ability of MoS2 based anodes. 

Chapter 6 describes the study on electrochemical properties of FL-BP-based anodes for 

LIBs. The study on electrochemical properties of FL-BP exfoliated in acetone indicates that it 

is promising with regards to the fast charge/discharge LIBs. Overall, the presented process is 

a step towards the fabrication of phosphorene-based devices. 

Chapter 7 summarizes the most important insights achieved in the research topics of 

graphene, MoO3 and MoS2, from material to electrochemical characterizations. Moreover, the 

future plans for exploring these materials for LIBs are discussed. 
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Chapter 1:  

Introduction  

1.1. Global overview of lithium ion batteries 

The changing global landscape, such as industrial development and growing human 

population, has led to a range of problems, such as environmental pollution, fossil fuel 

exhaustion and climate change. In this context, energy has been recognized as a primary 

factor to resolve the aforementioned problems. [1] Therefore, the exploitation of various 

sustainable and renewable energy resources, such as solar and wind energy, have been 

continually progressed. [2] However, those energy resources are highly intermittent being 

dependent on time, climate, or region. Hence, there is urgent need for the development of 

efficient energy storage systems (ESSs) in order to make use of those energy resources 

globally and in full. Moreover, the extreme progress of portable electronic devices (cell 

phones, laptops, cameras, etc.) and electric- (EVs) or hybrid- electric vehicles (HEVs) have 

created an ever-increasing demand for ESSs. In this regard, one of the greatest challenges is to 

construct highly efficient, convenient, low-cost, and environmentally friendly ESS devices. 

Many effective and practical technologies for portable ESSs, such as rechargeable batteries, 

[3-5] fuel cells (FCs), [6-8] and supercapacitors (SCs), [9-11] have been developed in the past 

decade. The recent researches have shown that FCs and SCs can provide high energy density 

which can meet the requirement of EVs/HEVs. [12-14] However, on the one hand, the 

operation problems related to electro-catalysis in FCs and hydrogen storage will need more 

research & development effort. [14, 15] On the other hand, the absences of chemical reactions 

in SCs enable them to deliver energy quickly, with charging time in the order of minutes or 

even seconds. [16] Therefore, SCs are primarily used to provide peak power and store 

regenerative braking energy. [17, 18]  Owing to the issues of FCs and SCs, rechargeable 

batteries have been recognized to be the most practically viable power source for both 

portable electronic and EV/HEV applications for the near future. [2, 19] In particular, in order 

to meet the requirement of ever-growing portable electronic market, battery technology need 

to be improved in term of high power, large capacity and light weight. [20] For this reason, 

many investigations have been dedicated to different battery types such as lead-acid (Pb-acid) 

batteries, [21] Nickel-Cadmium (Ni-Cd) batteries, [22]  Nickel-metal-hydride batteries [23] 

and LIBs. [2] Among these, LIBs have been recognized as promising candidate for portable 

electronic and EV/ HEV applications because of its remarkable advantages: (i) the low 

reduction potential of Li (-3.04 V vs. standard hydrogen electrode) allows LIBs to have higher 



6 
 

working voltage than the Pb-acid, Ni-Cd, Ni-metal-hydride batteries; [24] (ii) the light weight 

of Li element (6.94 g mol-1) [2] allows LIBs to have high energy and power densities (Figure 

1.1a). [20, 25] As a result, LIBs became the most advanced mobile power sources [15] and 

currently dominates the market for portable electronic devices (Figure 1.1b). [25] However, 

despite LIBs are currently the first choice for portable energy storage, the improvement of 

their performances can greatly expand their applications and enable new technologies. [24] In 

this perspective, researchers worldwide continue to work on many different aspects of this 

technology such as enhancing the energy and power densities, improving the cycling life and 

stability, as well as reducing the cost. [26] For instance, the ever-growing markets of EVs and 

larger stationary storage systems require the significant improvement of current LIB 

technology, such as the increase in energy density, the reduction in cost and the enhancement 

of safety. [15, 24, 27] 

 

Figure 1.1. (a) Comparison of the different battery technologies in terms of volumetric and 

gravimetric energy density [2] and (b) Worldwide battery market. [28] 

1.2. Fundamental of lithium ion batteries 

1.2.1. History of lithium ion batteries 

The first rechargeable LIB with metallic Li based anode and TiS2 based cathode was proposed 

by Whittingham (Exxon Mobil Corporation) in 1976. [29] However, Exxon unsuccessfully 

commercialized these LIBs due to the problems of Li dendrite formation and short circuit 

upon extensive cycling and safety concern. [30] In 1981, Goodenough firstly proposed to use 

layered LiCoO2 (LCO) as high energy (1.11 kWh kg-1) and high voltage (~ 4.0 V vs. Li/Li+) 

cathode materials. [31] Nevertheless, the lack of safety in anode materials, e.g., Li metal, 

limited the application of layered LCO cathode in LIBs. In late 1970s and early 1980s, 

graphite, having a layered structure was recognized as a good candidate to reversibly store Li 
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by intercalation/de-intercalation by Besenhard, [32] Yazami, [33] and Basu. [34] In 1987, 

Yohsino et al. had filed a patent and built a prototype cell using carbonaceous anode and LCO 

as cathode. [35] The high stability of carbon and LCO in air is highly beneficial from the 

engineering and manufacturing point of view. In 1991, Sony Corporation successfully 

commercialized LIBs for the first time. Since then, LIBs have been attracting increasing 

attention and Japan became the leader of global LIB market with 57% market share in 2010. 

[24] The global production of LIBs continuously increases in the past two decades, especially 

with the growing popularity of portable electronics devices. Besides, to satisfy the ever-

increasing demand of energy market, the research activity in LIBs has also been progressively 

increased year after year. In fact, the number of scientific publications also keep increasing 

each year (see Figure 1.2), [36] achieving impressive progresses in term of electrode 

materials, safety and cell-design, etc. 

 

Figure 1.2. The increase in number of publications related to lithium ion batteries             

since 2000 to 2016. [37] 

To date, there are four well-known different types of LIB geometries according to the current 

manufacturing market, namely the prismatic, cylindrical, coin, and the pouch cell 

configurations (Figure 1.3a). [2] Both the cylindrical and prismatic cells are commonly made 

of “laser-welded” aluminum can with cylindrical or rectangular shape, which contains a jelly-

rolled cathode, anode and separator immersed in a liquid electrolyte. [38, 39] Typical 

applications for the cylindrical and prismatic cells are medium-scale electronic devices, such 

as power tools, laptops, electrical bikes, mobile phones, and tablets. [40] The pouch cell with 

aluminized plastic bag contains a flexible cathode, anode and polymer/gel electrolyte. The 
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pouch cell offers a flexible and light-weight solution to battery design with respect to 

cylindrical and prismatic cells, resulting in its wide range of applications in consumer, 

military, as well as automotive industries. [2] The coin cell exhibits a compact design, 

consisting of a round cathode, anode, separator, spacer and spring (O-ring) immersed in a 

liquid electrolyte (Figure 1.3b). [41] Thanks to the simplest design, coupling with the 

advantage of lightness and versatile assembling with respect to other LIB geometries, coin 

cells have been popularly used for small-scale electronic devices, e.g., watches, hearing aids, 

car keys and memory backup, [40] as well as research samples in laboratories. 

 

Figure 1.3. (a) Schematic drawing showing the shape and components of various Li-ion 

battery geometries, [2] and (b) Detailed configuration of coin cell. [41] 

1.2.2. Working principles of lithium ion batteries 

In general, LIB is a simple electrochemical system that is able to convert chemical energy into 

electrical energy during discharging process and then re-convert the electrical energy to 

chemical energy during charging process. [42] As shown in Figure 1.4, a conventional LIB 

consists of two major components: anode (negative electrode) and cathode (positive 

electrode), immersed in an electrolyte which acts as an environment for Li+ transfer between 

two electrodes. [25] The anode and cathode are separated by a porous permeable membrane, 

namely separator, which not only allows Li+ to pass through but also prevents a short circuit 

due to direct contact of electrodes. [36] Both anode and cathode are deposited onto copper 

(Cu) and aluminum (Al) current collectors, respectively which are connected by an external 

electrical circuit. The working mechanism of LIBs, taking LCO and graphite as typical 

cathode and anode materials, respectively, can be described as following. During charging 
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process, Li+ de-intercalates from cathode, travels through the electrolyte and intercalates to 

the anode. Meanwhile, the electrons travel through the external electrical circuit in order to 

couple with the intercalated Li+ in anode. The reverse mechanism occurs in the discharging 

process. The electrode reactions can be expressed by the following equations: [42] 

   Cathode: LiCoO2 ↔ Li1-xCoO2 + xLi+ + xe-        (1.1) 

   Anode: 6C + xLi+ + xe- ↔ LixC6         (1.2) 

   Total reaction: 6C + LiCoO2 ↔ LixC6 + Li1-xCoO2                  (1.3) 

 

Figure 1.4. Schematic illustration of the first lithium-ion battery                                                             

(LiCoO2 /Li+ electrolyte/graphite). [25] 

The performance of LIBs can be evaluated by several parameters, such as open circuit 

voltage, operating voltage, theoretical specific capacity, specific capacity, coulombic 

efficiency, energy density, power density, and the charge/discharge rate. [43]  

The open circuit voltage (Vocv) is the voltage between anode and cathode when there is no 

current load on the battery (equation 1.4). [43] The operating voltage (Vov) is determined by 

the potential difference between anode and cathode when there is a current load (equation 

1.5). [43] 

                                         Vocv = (μ
A
- μ

C
)                                                      (1.4) 

                                                            Vov =
1

nF(μ
A
- μ

C
)

                                                    (1.5)      
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in which 𝜇𝐴 and 𝜇𝐶 is the chemical potential of anode and cathode, respectively; n is the 

number of electrons involved in the chemical reaction of the cell and F is the Faraday 

constant (96485 C mol-1). 

The theoretical specific capacity (Qth) of active electrode material is the maximum charges 

that can be stored per unit mass of active electrode material. The value of Qth can be obtained 

by Faraday law, see equation 1.6. [43]  

Q
th

= 
nF

3.6 × Mw

 

in which n is the number of electrons involved in the chemical reactions of the electrode and 

Mw (g mol-1) is the molecular mass of the active electrode material.  

The specific capacity (Q) (mAh g-1) of active electrode material measures the amount of 

charge that can be reversibly stored per unit mass of active electrode material at a certain 

current load during the charging/discharging process, see equation 1.7 [41] 

                                                       Q= 
It

m
                                               (1.7) 

in which I (mA) is the current load during charging/discharging process, t (h) is the total 

charging/discharging time and m (g) is the weight of electrode active material. 

In case of the full-battery, e.g., graphite as anode and LCO as cathode, the specific capacity of 

the full battery (Qcell) is determined by both specific capacity of anode QA and cathode QC, see 

equation 1.8 [43] 

                                          Q
cell

= 
Q

A
×Q

C

Q
A
+ Q

C

                                            (1.8) 

The coulombic efficiency (CE), is the ratio between discharge specific capacity (Qdischarge) and 

the charge specific capacity (Qcharge) for each cycle: [36]     

                                                         CE= 
Q

discharge

Q
charge

×100%                                   (1.9) 

The energy density (E) (Wh g-1) [43] defines the amount of energy that can be stored and 

released per unit mass of the electrode. It can be obtained by multiplying the Q with Vov, see 

equation 1.10. The energy density is an important parameter for practical application as it 

determines the ultimate useful work from a battery. [24] 

                                                          E=Vov×Q                                            (1.10)    

(1.6) 
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The power density (P) (W g-1) is the output energy per unit mass of the electrode, see equation 

1.11. The P is a characteristic of the battery chemistry and packaging. It determines the 

battery size required to achieve a given performance target.  

                                                         P= 
I ×Vov 

m
                                          (1.11) 

The charge/discharge rate (C-rate) is the current (mA) used to charge/discharge the battery 

relative to its maximum capacity. A charge at xC rate means a full charge in a time of 1/x 

hours. For instance, a 2C rate means that the current will charge/discharge the entire battery in 

1/2 h. [43] 

1.2.3. Anodes of lithium ion batteries 

Various anode materials have been extensively investigated for the development of LIBs. 

Depending on their electrochemical reaction mechanisms, the anode materials are categorized 

into three groups: intercalation-, alloy- and conversion reaction-based anode materials. [44]  

1.2.3.1. Intercalation-based anode materials 

The electrochemical reaction occurring at this type of anode is based on the intercalation of 

Li+ into the structure of active materials, e.g., layered, cylindrical and spinel structures. [45-

47] These materials enable fast Li+ diffusion by providing the effective ionic transport 

channels during lithiation/de-lithiation, which are either one dimensional (1D) path or two 

dimensional (2D) planes. [36] However, they offer low specific capacities because the 

intercalation of Li+ is mostly limited by the intrinsic redox reactions of materials, e.g., number 

of exchanged electrons. [48, 49] Presently, graphite is the primary choice and has been 

commercialized as the most successful intercalation-based anode material. [2] Graphite has a 

layered structure of carbon hexagon network in an orderly arrangement, as shown in Figure 

1.5. In fact, when the layers are stacked, the different graphitic structures occur. The ABAB 

stacking results in the more common hexagonal graphite, whereas a stacking order of 

ABCABC gives the rhombohedral graphite. [50] The structure of graphite allows Li+ 

transport between its inter-spacing layers without the considerable volume change (the 

expansion and contraction in volume of material during lithiation which cause structural 

degradation), resulting in high coulombic efficiency, reaching 99.9 %. [51] Moreover, 

graphite has advantages of low-cost, high electrical conductivity (~ 3x105 S m-1), [52] high 

Li+ diffusivity (10-11 – 10-7 cm2 s-1), [20] compared  to other intercalation-based anode 

materials, e.g., TiO2, Li4Ti5O12 and Li1.03V0.97O2. [20, 53] However, the most Li-enriched 

intercalation of graphite has a stoichiometry of LiC6, meaning one Li+ per 6 carbon atoms, 
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resulting in a theoretical specific capacity of 372 mAh g-1 (see equation 1.2). [2] This is a 

major drawback associated with commercial graphite-based LIBs, especially for applications, 

such as EVs and HEVs, which require high energy and power density, see equation 1.10. 

Hence, the use of graphite as anode is still limited to low-power devices like smart watches, 

mobile phones and laptops. [20] 

 

Figure 1.5. The structure of a carbon layer, hexagonal and rhombohedral graphite. [50] 

1.2.3.2. Alloy-based anode materials 

This type of materials is associated with elements which are able to electrochemically alloy 

and form compound phases with lithium. [44] Alloy forming compounds have higher 

theoretical specific capacity compared to that of commercial graphite (372 mAh g−1), e.g., Si, 

Ge, Sn, etc. with capacity values of 4200, 1600, 999 mAh g−1, respectively through an 

alloying product of Li4.4N (N = Si, Ge and Sn). [54, 55] The role of N is to provide the matrix 

of the alloy electrode to support the strain generated during the lithiation and de-lithiation 

process, as well as to improve the electrical conductivity. [56] Beside their high theoretical 

specific capacities, the alloy-based materials gained tremendous attention thanks to their 

abundance and low-cost. [57] Thus, it is believed that these materials will result in high 

enhancement in the overall energy density of LIBs, making them eligible for EVs and HEVs. 

However, the alloy-based anode materials suffer from slow lithium reaction kinetics and poor 

intrinsic conductivities which cause low rate capability of the LIBs. [36] Moreover, the 

critical challenge of this kind of anode materials relies on their large volume changes due to 

the reaction with Li+. For example, the alloy of lithium with Si results in 440% increase in 

number of atoms in the alloyed Li-Si particle with respect to the initial Si particle, inducing a 

large volume change of ~ 300%, see Figure 1.6. [58] This dramatically introduces a 

mechanical stress in the material during cycling of LIBs, leading to the pulverization of the 

electrode. [59] Consequently, this cause the electrical contact loss between Si particles and the 

current collector, [20, 60] resulting in severe capacity fading of the electrodes. [59, 61] 

Various strategies, such as carbon coating on the surface active materials and the size 
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reduction of the active materials, have been adopted to alleviate volume change without 

significantly compromise the specific capacity. [62, 63] Very recently, Sn and Si have been 

allowed to be used as anode in commercial LIBs with improved capacity up to 30%, along 

with better rate performance, compared to that of traditional graphitic anode.  

 

Figure 1.6. The volume change of silicon during lithiation. [58] 

1.2.3.3. Conversion reaction-based anode materials 

This type of material is mainly transition metal compounds (MaXb, M = transition metal, X = 

O, S, F, P, N etc.), [64] which store the Li+ through a conversion reaction. In this reaction, Li+ 

reacts with metal ions to form LinX and reduces metal ions to their zero oxidation state, as 

shown in Figure 1.7. [65] During the conversion reaction, the structure and composition of 

electrode materials have completely changed. Therefore, an ideal conversion-based electrode 

material is expected to have the ability to regenerate their initial structure and composition 

during charging/discharging processes. [65] Anodes based on these compounds exhibit high 

reversible capacities (500 − 1000 mAh g-1) owing to the participation of a high number of 

electrons in the conversion reactions. [66] One of the most typical conversion-based anode 

materials is TMOs, e.g., CoO, FeO, NiO and Cu2O, which were firstly introduced in LIBs by 

Poizot et al. [67] and then intensively studied, thanks to their high specific capacities and 

capacity retentions.  

 

Figure 1.7. Conversion reaction-based anode material. [68] 
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During lithiation process, the TMOs react with Li+ and yield metal nanoparticles in the matrix 

of Li2O via a conversion reaction, as shown in equation 1.12. During de-lithiation process a 

reverse reaction occurs. [69] 

MxOy + 2yLi+ + 2ye- ↔ xM0 + yLi2O                            (1.12) 

in which M is Co, Ni, Fe, Cu, Mn, etc. 

However, there are also drawbacks that limited the application of such materials in LIBs. 

Firstly, the hysteresis in voltage (a difference between lithiation and de-lithiation voltage) 

increases with ongoing conversion reactions, leading to a decrease in operating voltage of 

LIBs and consequently to a poor energy efficiency. Secondly, the Li+ stored per formula unit 

of TMOs through a conversion reaction, causing a volume change of active materials. Most 

conversion-based TMOs have much higher theoretical capacities than graphite (372 mAh 

g−1), such as iron oxides (1007 mAh g-1), [64] manganese dioxide (1223 mAh g-1) [64] and 

cobalt oxide (890 mAh g-1). [64] Despite the high theoretical specific capacity, conversion 

reaction-based TMOs should be further optimized to overcome other unsatisfactory 

electrochemical properties including volume change and voltage hysteresis. [67, 70] 

TMSs, another important class of conversion reaction-based anode materials, follow similar 

mechanism for Li+ storage as that of TMOs. In general, the chemical reaction of metal 

sulfides with Li+ can be represented by equation 1.13. [71] 

Mn+S + ne- + nLi+ ↔ M0 + nLi2S                      (1.13) 

in which, M is Mo, W, Zr, V, Sn, Mn, etc. 

During lithiation process, TMSs react with Li+ and yield metal nanoparticles in the matrix of 

Li2S via a conversion reaction, whereas the reverse reaction occurs during de-lithiation 

process.  

TMSs are considered as promising candidate for anode of LIBs thanks to their good thermal 

stability and conductivity along with high theoretical specific capacities, e.g., MoS2 (670 mA 

h g-1). [72] However, capacity fading is one of the critical issues for TMSs and it arises from 

two reasons. One is related to the voltage hysteresis that causes poor energy efficiency of 

LIBs. [65] The other is related to the Li+ transport in electrolyte hindered by the polysulfide 

anions, e.g., Li2Sx (6 < x ≤ 8), which are produced from the conversion reaction (equation 

1.13). These polysulfide anions tend to breakdown to smaller Li2Sx (2 < x ≤ 6) with 

continuous charging/discharging processes, [65] and then develop a barrier for Li+ diffusion 

and charge transport by depositing an insulating sulfur layer on electrode surface. [73, 74] 
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The blockage of Li+ diffusion can not only causes capacity fading, but also creates an increase 

in the internal temperature of battery and results in the thermal explosion. [75] 

1.2.4. Cathodes of lithium ion batteries 

Plenty of promising materials have been explored as cathode materials for LIBs. The cathode 

materials can be categorized based on their operating voltage versus lithium (from 2.5 to 5V). 

Typically, 3-Volt cathode materials are MnO2 and V2O5; [24] 4-Volt cathode materials are 

LCO, LiNiO2 with layered structure, three dimensional (3D) spinel LiMn2O4, and olivine 

LiFePO4 (LFP), tavorite LiVPO4F; [24] 5-Volt cathode materials are olivine LiMnPO4, 

LiCoO4 and 3D spinel Li2FexMn4O8 structure. [24] Generally, high operating voltage cathode 

is desirable because the operating voltage of cathode is proportional to the cell operating 

voltage, which could help to increase the energy density.  

In order to optimize the performance of cathode, we also need to consider the structure of 

materials which is one the most important factors for the cyclability of the cathode. For 

examples, the 3D spinel structures exhibit high operating voltage (4-5 V), but they are still 

facing the issue of fast capacity fading due to the phase transition during cycling, which is 

related to mechanical stress in material.  [76-78] Currently, layered LCO and olivine LFP are 

most widely used in commercial LIBs because of their good cycle life (> 500 cycles). [24] 

 

Figure 1.8. Cyrstal structure of typical cathode materials: (a) layered LiCoO2, (b) olivine 

LiFePO4 . [20] 

LCO exhibits the layered structure with Co and Li located in octahedral sites, as shown in 

Figure 1.8a, occupying alternating layers and forming a hexagonal symmetry. LCO is 

attractive for industrial production because it has high theoretical specific capacity (274 mAh 

g-1) and can be easily manufactured in large scale, being also stable in air. [79] However, the 

major limitation of LCO relies on its high cost and toxicity of Co. Also, low thermal stability 
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is a major concern of this material. LCO typically experience thermal runaway past ~ 200°C 

due to an exothermic reaction between the released oxygen and organic materials in 

electrolyte. [24] Moreover, LCO can suffer from the lattice distortion from hexagonal to 

monoclinic symmetry at the de-lithiation voltage ~ 4.2V (approximately > 50% if Li+ extract 

from LCO lattice), inducing capacity fading. [80] For these reasons, various types of metals, 

e.g., Ni, Mn, Al, Fe and Cr, were studied with the aim to substitute Co. [81-83] Among the 

aforementioned materials, spinel LiNi0.5Mn1.5O4 (LNMO) was found to be attractive material 

because it can exhibit the similar electrochemical performance as LCO, while reducing cost 

and toxicity. Also, the presence of Ni allows higher de-lithiation capacity to be achieved with 

respect to original LCO due to the continuous reaction of Ni2+/3+/4+ with lithium, resulting in 

high operating voltage (4.6 to 4.8V vs. Li/Li+). This makes LNMO as a potential candidate of 

cathode for LIBs to power EVs and HEVs. Moreover, the presence of Mn3+ exhibit better rate 

performance in LNMO with respect to the Co3+ in LCO due to a higher electronic and ionic 

conductivity. However, Mn3+ is unstable and may be turned into: Mn2+ and Mn4+. The 

produced Mn2+ then dissolves into the electrolyte, leading to a capacity fading during 

charging/discharging process [84, 85]. In the LNMO products, LixNi1-xO usually appears as 

impurity phase, lowering the capacity and hindering Li+ transport in the material. Therefore, it 

is crucial to investigate the reaction mechanism of Mn3+ and control their content of impurity 

in the spinel product. [86, 87]  

Another type of commercial cathode, olivine structure LFP, is attracting much attention in the 

past decade due to its low-cost and low-toxicity. In LFP, Li and Fe atoms are located in 

octahedral sites, whereas P occupies tetrahedral sites in a hexagonal close-packed oxygen 

array, see Figure 1.8b. Compared to LCO, LFP also offers a number of advantages, such as 

stability, excellent cycle life, and temperature tolerance (−20 to 70°C). However, LPF has 

issues of poor electronic and ionic conductivity of 10−10 S cm-1 and 10−8 cm2 sec-1, 

respectively, as well as relatively low theoretical capacity (170 mAh g-1). [88] The other issue 

is that Li+ diffusion can easily be blocked by defects and impurities in the material. [89] In 

order to overcome this issue, synthesizing nano-sized LFP has been considered as a promising 

strategy by reducing Li+ diffusion paths during lithiation and de-lithiation in LIBs. [90] 

1.2.5. Electrolyte, separator and current collectors 

The electrolytes in LIBs act as an ionic media for Li+ transport back and forth between anode 

and cathode as the battery are charged and discharged. [42] Currently, the liquid electrolyte, 

solution containing lithium salts and organic solvents, is common used in commercial LIBs. 

[24]  These organic solvents in liquid electrolytes are required to have high ionic mobility in a 
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wide temperature range and good chemical/thermal stability. [91] In order to meet these 

requirements, the content of solvents are typically formulated and mixed to effectively 

dissolve the lithium salts selected for practical application in LIBs. Over the past two decades, 

alkyl carbonates have been found to be the most suitable solvents for LIBs, thanks to their 

electrochemical stability, non-toxicity and low-cost. [15] However, the electrolytes are not 

only determined by the solvents, but also highly dependent on the properties of lithium salts. 

[24] Therefore, various lithium salts have been explored, including lithium 

hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium 

hexafluoroarsenate(V) (LiAsF6) and lithium perchlorate (LiClO4). [24] Among these, LiPF6 is 

the most suitable lithium salt to make electrolyte (using alkyl carbonates as solvent), from the 

perspective of safety, high ionic conductivity and high solubility in organic solvents. [24] So 

far, the widely used commercial liquid electrolyte, as shown in Figure 1.9, is 1M LiPF6 in a 

50:50 w/w mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). [91, 92] The 

mixture of EC/DMC allows high solubility of LiPF6 to form an electrolyte with high ionic 

conductivity with respect to the electrolytes formed by other alkyl carbonates. [93] Besides 

the liquid electrolyte, other types of electrolytes have also been developed and proposed for 

LIBs, such as polymer, gel and ceramic electrolyte. [42] Polymer electrolyte is solvent-free 

because it is formed by the mixing of high molecular-weight polymers (HMWPs) with lithium 

salts. [94] The advantage of polymer electrolyte with respect to liquid electrolyte is the low 

volatility, flexible design thanks to the high flexibility of HMWPs. [95] Moreover, the 

polymer electrolyte can also function as a potential to eliminate separators in LIB 

configuration, due to high ion permeability and electrochemical inert of HMWPs. [96] Gel 

electrolyte is formed by absorbing a solution of lithium salt and polar solvents into a network 

of HMWP. [97] Because the solvent containing lithium salt is fully absorbed within the 

polymers, the solvent leakage issue, which happened in LIB using liquid electrolyte and 

causes safety problems, can be avoided. Ceramic electrolytes have long been explored for fuel 

cells, and recently attracting increasing interest for the application in LIBs. [98, 99] The most 

obvious property of ceramic electrolyte is the robust mechanical strength of ceramic materials 

which make them more suitable for rigid battery designs as in, for example, thin-film-based 

devices. [98] The ionic conduction in ceramic compounds occurs by movement of ionic point 

defects, which requires energy, so the conductivity of ceramic electrolyte increases with 

increasing temperature. Therefore, the batteries with ceramic electrolyte can find applications 

in high temperature environment, including handheld orthopedictools and powered medical 

devices  that need to be sterilized in autoclaves under high temperature conditions. 
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Figure 1.9. Chemical structures of common components in commercial electrolyte: lithium 

hexafluorophosphate as the lithium salt and the solvent composed of ethylene carbonate and 

dimethyl carbonate [24]  

The separator is a porous membrane placed between electrodes, which is permeable to ionic 

flow, but prevents electric contact between the two sides of electrodes. [100] The separator 

must be chemically and electrochemically stable towards the electrolyte and electrode 

materials. In term of structure, the separator should have sufficient porosity with pore size < 

1µm to absorb sufficient liquid electrolyte for the high ionic conductivity. [24] However, the 

presence of separator increases the electrical resistance and takes space inside the battery, 

negatively affecting the battery performance. [101] Up to date, battery separators can be 

categorized into three types: microporous polymer membranes, non-woven fabric mats and 

inorganic composite membranes. [102] Among them, the microporous polymer membranes 

have been most widely used in batteries with liquid electrolyte due to their low-cost, light 

weight and facile manufacturing. Nevertheless, the main issues of these separators are poor 

mechanical strength and low melting point (~100°C). [103, 104] Thus, for the development of 

future LIBs for high temperature applications inorganic composite membranes, e.g., Al2O3, as 

separators are highly attractive, thanks to their excellent thermal stability and mechanical 

property. [105] 

The current collector works as an electrical conductor between the electrode and external 

circuits and a support for the deposition of the electrode materials. [106] To completely form 

the electrode, the electrode materials are coated onto current collectors. The main 

requirements for current collector material are light weight, electrochemical stable at battery 

operation voltage and high electrical conductivity. For most commercial LIBs, Cu is the 

choice for anode because it is electrochemically stable in the range below 3 V vs. Li/Li+, 
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while aluminum is extensively used for cathode due to its electrochemical stability for higher 

voltages between 3-5 V vs. Li/Li+. [107] However, with extensive cycling, the adhesion of 

active materials to the current collector is reduced due to the structural degradation of active 

materials upon lithiation/de-lithiation. [108, 109] Especially for the alloying- and conversion- 

based anode materials, the contact between active material and current collector is easily lost 

upon cycling due to volume change. Recent research has focused on the use of a 3D micro-

porous current collector to improve the mechanical stability of the electrodes.[110] Such 

current collectors offer a high porosity, which can accommodate the volume change of the 

active materials. [111] 

1.3. Current challenges and opportunities of anodes in lithium ion batteries 

Although LIBs have been commercialized for about two decades and are dominating the 

portable electronic device market, the increasing demand for energy storage requires further 

improvements in the existing LIBs. Next generation LIBs with lower-cost, higher power and 

energy density is highly expected to power HEVs and EVs, without compromising vehicle 

performances, such as driving distances, speed, and safety. The main challenge of current 

LIBs is their low energy density which highly depends on specific capacity and operating 

voltage of electrode materials. Hence, the choice of electrode material is one of the crucial 

factors determining the performance of LIBs. Present commercial LIBs utilize graphite anode 

and LCO cathode, which only have power density of ~ 387 W kg−1 and energy densities of 

∼120−150 Wh kg-1 due to the following reasons: (i) the theoretical capacity of graphite anode 

(is low 372 mAh g-1), (ii) the practical capacity of LCO cathode (~140 mAh g-1) only reached 

50% of its theoretical value (274 mAh g-1) and (iii) the operating voltage of LCO is limited at 

4.2 V vs Li/Li+. [112, 113] In order to increase energy and power density of LIBs, it is 

desirable to find anodes with high specific capacities (Figure 1.10), e.g., TMOs (600-1200 

mAh g-1), TMSs (1000-1200 mAh g-1) [44] and cathodes with high operating voltage, e.g., 

LNMO, LiMnPO4 (> 4.5 V). [24] There are a large numbers of anode candidates that could 

increase the specific capacities with respect to graphite, as shown in Figure 1.10. It should be 

noticed that the groups of conversion materials and alloying materials are highly attractive 

due to their large specific capacities, see section 1.2.3.3. Although the alloying materials can 

provide extremely large capacities, e.g., Si (3579 mAh g-1), their alloying process involves 

large volume expansion which results in substantial capacity loss upon cycling. The 

conversion materials, such as TMOs, TMSs are still under development due to volume 

changes (~ 100%) and large voltage hysteresis, resulting in capacity fading and low energy 

density. Hence, tremendous efforts on the production and design of anode materials have been 

carried out to enable the application of anode materials. 
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Figure 1.10. Schematic illustration of active anode materials for the next generation of LIBs. 

Potential vs. Li/Li+ and the corresponding specific capacity are shown. [44] 

To date, there are two promising strategies for the development of anode materials: (i) 

nanostructured anode materials and (ii) composite anode materials. [44]  

On one hand, nanostructured anode material, respect to the bulk one, can dramatically reduce 

the length of the paths for Li+ and electron transport, mitigating the volume change during 

charging/discharging process. [114] The alloying anode materials, e.g., Sn, Si, and Ge, have 

shown evidence for the existence of a critical size below ~150 nm which the fracture of a 

particle may not occur. [115] Using nanomaterials for LIB electrode, it can decrease the Li+ 

diffusion length and the Li+ diffusion time constant (see equation 1.14), consequently 

resulting in the improvement of rate capability. [116, 117] Furthermore, small particle size 

allows efficient mixing of the active material with other components such as the conductive 

carbon additive. However, the high specific surface area of nanomaterials leads to a large 

irreversible capacity in the first cycle due to the formation of solid electrolyte interface (SEI), 

formed by the decomposition of the electrolyte. [24]  

                                                                    τ = 
L2

D
                                                    (1.14) 

in which τ the diffusion time constant, L is diffusion length and D is the diffusion coefficient. 

Additionally, the shape of the nanomaterials plays a very important role in the electron and 

ion transport within electrode. Therefore, recent developments in nanostructured anode 

materials for LIBs have been based on zero dimensional (0D) (nanoparticles), 1D (nanowires, 

nanotubes), 2D (nanosheets, nanoplates) materials, as well as 3D porous framework, see 
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Figure 1.11. [118] Although 0D nanoparticles, e.g., nanoparticles of Si and Sn, have been 

expected as the promising active materials in LIBs, their performances are limited by various 

factors. Firstly, 0D materials create the random pathways that can restrict the electron and Li+ 

transport. [36] Secondly, the grain boundaries and voids in between the nanoparticles hinder 

electron transport, limiting the LIB performance. [119, 120] Thirdly, the extremely high 

surface area of the 0D nanoparticles and access of the electrolytes trigger side reactions of 

electrolyte decomposition, forming SEI film. [120] The formation of SEI film consumes 

excessive charge supplied by the cathode, exhibiting low coulombic efficiency and capacity 

loss. [44, 119] In the case of 1D material, it is considered to be superior to 0D nanoparticles 

because its directional channels facilitate efficient electronic and ionic transport. [121] 

Moreover, 1D structure also provides mechanical stability during lithiation/de-lithiation. [61] 

For the 3D structured materials, e.g., 3D graphene aerogels with porous frameworks, it can 

provide excellent properties of large specific surface area, rapid Li+ diffusion, excellent 

mechanical strength as well as multidimensional continuous electron-transport. However, the 

complexity in designing such nano-architecture is still a challenge that requires great efforts to 

reach practical LIB anode applications. [122, 123] 

On the other hand, the synthesis of composite materials, combining active materials with 

inactive materials which can compensate for the limited properties of active material, e.g., 

buffering the volume change and enhancing the conductivity of electrode. For instance, the 

composite of alloying materials and carbon-based materials (CNTs, graphene, etc.) can 

increase the ionic and electronic transport of the electrode. [124] Furthermore, carbon can 

form network to buffer the volume change of active material during charging/discharging 

processes. [125-127] Besides, developing a layer of inactive materials between electrolyte and 

active materials can prevent the direct contact between electrolyte and active material, 

hindering the side reactions between electrolyte and active materials, and then limiting the 

irreversible capacity. [128, 129] However, thickness of the inactive layer highly influences the 

electrochemical performance. In fact, if this layer is too thin, it might be collapsed with 

volume changes and bring electrode surface in contact with electrolyte. In contrast, if the 

inactive layer is too thick, the diffusion of Li+ will be hindered, resulting in a low 

performance of composite with respect to that of pristine active material. Thus, the thickness 

of inactive materials in the composites should be properly controlled to provide the ultimate 

performance of anodes. [130]  

Furthermore, nanomaterials enable the facile synthesis of composite materials [131-133] 

Therefore, the nanostructured composite anode materials have been developed by the growth 

of various nanostructures of active materials along with inactive materials to build 
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hybrid/composite structures. This is a good strategy of exploiting the novel properties of 

inactive materials, e.g., high conductivity, robust mechanical strength to support the limited 

properties of active materials, e.g., low conductivity, volume change (see Figure 1.11). [134, 

135] For instance, multiple nanostructures, e.g., core-shell (SnO2/carbon) and hollow sphere 

(SnO2, Fe2O3) structures have been designed/produced with the aim to improve the 

conductivity, protect the surface and limit volume changes of active materials. [134] 

 

Figure 1.11. Schematic diagram of the recent anode materials for lithium ion batteries. [118] 

1.4. Graphene and other two dimensional materials: the promising anode materials for 

lithium ion batteries 

Since the success in the exfoliation of graphite in 2004, [136] new classes of 2D materials, 

such as TMOs, [137] TMSs, [138] transition metal carbides/nitrides (Mxenes) [139], BP and 

elemental analogues of graphene (silicene, phosphorene, and borophene), [140] (Figure 1.12), 

have been successfully exfoliated or synthesized for many applications. In recent years, 

significant advances have been made in 2D materials, having the potential to bring 

unprecedented functionality to next-generation LIBs. [141] In general, 2D materials are 

defined as the free-standing atomic crystals that are strictly 2D and can be viewed as 

individual atomic planes exfoliated from bulk layered crystals or as unrolled single-wall 

nanotubes. [142] This structure provides the efficient ion transport channels between the 

layers, facilitating the diffusion of Li+. Moreover, the large surface areas provide a large 

number of active site for Li+ storage.  [143-146] It has been clearly shown in section 1.3 (see 

Figure 1.10) that graphene, layered TMOs and TMSs are the most promising materials which 

can replace graphite to become the future anode materials for LIBs. Additionally, BP has 

recently stimulated research interests to develop the extremely high specific capacity anode 
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due to its high theoretical capacity of 2596 mAh g-1 [147-149] with respect to that of 

graphene, layered TMOs and TMSs.  

Up to date, there are plenty of production techniques, including bottom-up and top-down 

approaches, [150] to produce graphene, 2D TMOs, TMSs and BP for LIBs applications. [150] 

However, most of the productions methods are still facing with the issues of high-cost, [151, 

152] toxicity, [153, 154] time-consuming synthesis and low-yield of mass production [155, 

156] which are the current challenges towards practical industrial application. For example, 

the chemical vapor deposition (CVD) method can be used to grow graphene, [157] TMOs 

[151] and TMSs. [158] However, this method is still facing with the issue of high-cost and 

low-yield in term of mass production,  hindering the large-scale application for commercial 

LIBs. Hence, the low-cost processes via chemical solution methods have been proposed to 

overcome the issues of CVD. Large efforts have been devoted to the exploitation of 

chemically modified graphene (CMGs) such as graphene oxide (GO) and reduced GO (RGO). 

[159, 160] However, the chemical solution process is time-consuming and the CMGs suffer 

from limited conductivity and slow diffusion of Li+ due to the defects on the basal planes. [5, 

161] Concerning the growth of TMOs and TMSs, e.g., MoO3 and MoS2, the most frequently 

used approach for their producing is hydrothermal, [162, 163], solvothermal [164, 165] and 

template assisted techniques. [166, 167] However, these approaches involves toxic precursors, 

e.g., (NH4)2MoS4 or Na2MoO4, [168-171] and time-consuming synthesis, [172, 173] resulting 

in unresolved issues, e.g., safety and scalability. [174-176] Furthermore, the TMSs and TMOs 

produced by these methods usually have an amorphous structure and contains defects,[177] 

which requires annealing at high temperature (700-800°C) to obtain the layered structure of 

TMOs and TMSs, severely impacting on the production cost. [168, 178-182] Apart from the 

production of graphene, TMOs and TMSs, the production of 2D BP flakes can be performed 

using micromechanical cleavage (MC), [183, 184] which consists of consecutively peeling off 

crystal layers by using adhesive tape. [142] However, this technique is only suitable for 

research activities due to both the scalability limitation and morphological heterogeneity of 

the exfoliated flakes. [142] The other exfoliation technique, e.g., ball-milling (BM), [185, 

186] has been applied to synthesis BP flakes because it can meet the requirement of scalable 

production. However, ball milling usually introduces impurities in the obtained products. 

[145, 187] 

In this context, LPE has been recognized as a potential method to produce graphene, TMO 

and TMS flakes thanks to its low-cost, simplicity and scalability, which can reach the 

industrial-scale production. [188-190] Therefore, the scope of this thesis is to provide the 
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insight-into study on production of graphene, MoO3 and MoS2 via LPE, as the representatives 

for 2D carbon, TMO and TMS materials, respectively, for LIB anodes.  

1.4.1. Graphene 

Graphene, a defect-free carbon monolayer, is considered the mother material of a family of 

2D carbon forms. [191] The novel properties of graphene, such as large surface to mass ratio 

(2600 m2 g-1), [192] high electrical conductivity [193] and high mechanical strength [194], 

make it a promising material as electrodes in LIBs. Differently from graphite, in which Li+ are 

intercalated between the stacked layers, [195] single-layer graphene (SLG) can theoretically 

store Li+ on both surfaces, reaching the theoretical capacity of 744 mAh g-1. [196, 197] Also, 

the edges in graphene nanoflakes (< 100 nm) are able to offer the considered active sites for 

Li+ storage. [198] However, both theoretical and experimental studies have evidenced that Li+ 

storage is not thermodynamically favored in SLG, where only low Li+ occupancy levels can 

be achieved. [160, 199, 200] Meanwhile, graphene nanoplatelets (GNPs) have demonstrated 

some appealing features for niche applications, e.g., low temperature and high power), but no 

considerable gain in maximum specific capacity with respect to graphite. [201] This raises a 

natural question. What about what lies in between? Is there a critical flakes size where both 

beneficial properties of graphite, e.g., low operating voltage and graphene, e.g., high 

conductivity and short diffusion length, are found? Is few-layer graphene a good active 

material for next-generation LIBs? Despite the fact that it is well accepted that dimension 

(lateral size and thickness) of the flakes, [202] as well as their edges, [198] are expected to 

play key roles on the Li+ storage mechanisms, [198, 202] the link between these 

morphological properties, and electrochemical performances has not been established yet. The 

answer for these questions will be unveiled in chapter 4. 

1.4.2. Molybdenum trioxide 

MoO3, especially α-MoO3 with the stable orthorhombic phase, exhibits a very high theoretical 

capacity of 1117 mAh g−1 as LIB anodes. [203, 204] Additionally, the interlayer spacing as 

large as 0.69nm of α-MoO3 compared to 0.34 nm of graphite, guarantees its Li+ host 

capability. [205] Moreover, its higher intercalation voltages (1.5-2.3V Vs Li/Li+), with respect 

to that of graphite (< 0.4V Vs Li/Li+), could reduce the safety problems caused by the 

decomposition of electrolyte, especially for the utilization in HEVs. [64] However, the main 

drawbacks of bulk MoO3 for LIB application is its low ionic [206] and electrical conductivity 

(10-5 S m-1) [155] as well as volume change during charging/discharging processes. [64] In 

this regard, to enable MoO3 for LIB application, the nanostructured design and synthesizing 

composite, including nano-sized MoO3 and carbon-based materials, e.g., amorphous carbon 



25 
 

[207, 208], CNTs [209, 210] and graphene [211, 212] are the highly promising strategies to 

overcome the aforementioned drawbacks of MoO3. In this thesis, the MoO3 nanoflakes are 

firstly produced by LPE of bulk MoO3. A simple solution mixing process of SWNTs and 

MoO3 flakes allows forming a hybrid structure of MoO3/SWNTs for LIB anode. The nano-

sized MoO3 reduces the Li+ diffusion length, promoting fast Li+ transport, whereas the 

SWNTs play a role of conductive agent to improve the conductivity of electrode and a buffer 

layer to accommodate the volume change. The synthesis of MoO3/SWNTs hybrid and its 

electrochemical properties as anode material for LIBs will be reported in chapter 3 and 5. 

1.4.3. Molybdenum disulfide 

Molybdenum disulfide (MoS2) with the 2H phase possesses sandwich-like layered structure in 

which the S and Mo atoms are covalently bonded forming 2D layers, and the layers are held 

together through weak van der Waals interactions. [213] The inter-layer spacing of MoS2 

(0.62 nm) [72] is more favourable for Li+ intercalation [214, 215] with respect to that of 

graphite (0.34 nm). Notably, MoS2 is able to deliver the theoretical capacity of 670 mAh g-1. 

[72] Moreover, the high insertion voltage of MoS2 anode (~ 0.5-1.1 V vs. Li/Li+) can make 

itself as a safer anode than graphite (< 0.4 V vs. Li/Li+), because the Li dendrite formation, a 

layer progressively formed during the cycling process on the surface of electrode, is less 

likely to occur at higher insertion voltage. [216] Nevertheless, there are following issues that 

need to be solved: (i) the fast capacity fading of the bulk MoS2 because of the volume change 

during lithiation/de-lithiation; [72, 217, 218] (ii) the low rate performance due to the low 

electrical conductivity of 2H phase MoS2 (200 cm2 V−1 s−1). [214, 219-221] Therefore, many 

efforts have been devoted to develop nanostructure of MoS2, and to the synthesis of hybrid of 

MoS2 and carbon-based materials. In particular, the composites of MoS2/GO, [222] 

MoS2/rGO [223, 224] and MoS2/CNTs [225] have been synthesized and demonstrated the 

significant improvement in LIB performance with respect to the individual components.  

This thesis presents the hybrid structure of MoS2 flakes (produced via LPE of bulk MoS2) and 

amorphous carbon, prepared by a thermal decomposition of a carbon source, e.g., PAA. The 

presence of carbon network in the hybrid structure is expected as a conducting agent to 

improve the electrical conductivity of electrode and a buffer layer for active materials to 

hinder its pulverization during lithiation and de-lithiation. The synthesis of MoS2/C hybrid 

and its electrochemical properties for LIB anode will be introduce in chapter 3 and 5. 

1.4.4. Black phosphorous 
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Black phosphorus (BP), a layered crystal, having an orthorhombic phase, with puckered 

layers [186] held together by interlayer van der Waals interactions. [186] This structure 

allows BP to uptake three Li+ to reach a composition of Li3P, [149] leading to a very high 

theoretical specific capacity of 2596 mA h g− 1 [147-149]. Also, the puckered structure is able 

to promote fast Li+ diffusion (104 times faster than that in graphite), [226] resulting in its 

outstanding rate-capability. Moreover, when exfoliated into single layer (phosphorene) or FL-

BP flakes, the increased available surface area can further enhance the electrochemical 

activity, [186] which is beneficial for energy storage applications. [147, 202] Therefore, 

exfoliated BP is a promising candidate for the next generation of LIB anodes. The exfoliation 

of bulk BP into FL-BP flakes can be performance by many methods, e.g., MC, BM and LPE. 

[186] However, the MC has the issues of scalability limitation [142] and morphological 

heterogeneity of the BP flakes, [150] whereas the drawback of BM is the presence of 

impurities in the BP flakes. [145, 187] In this regard, LPE has been recognized as a strategic 

route for the large-scale production of less defective phosphorene and FL-BP flakes. [226] 

However, current approaches for the LPE of BP present several issues especially in aqueous 

environment, where the chemical integrity of the exfoliated flakes is compromised due to the 

oxidation promoted by the presence of O2/H2O. [227-229] The formation of phosphorus-oxide 

species, i.e. P2O5 and P2O4,
 [230] has been reported when the BP is exposed to air. These 

processes  accelerate the degradation of BP. [231] Performing the LPE in pure organic 

solvents can solve this issue, since the presence of water and O2 is avoided. The organic 

solvents that commonly used to exfoliate BP are generally toxic (Health code ≥ 2 NFPA704), 

[232] and have a b.p. usually above 100 °C, e.g. N-methyl-2-pyrrolidone (NMP, 

b.p. = 202°C), [233] N,N-dimethylformamide (DMF, b.p. = 153°C) [234] N-cyclohexyl-2-

pyrrolidone (CHP, b.p. = 284°C) [235] or formamide (b.p. 210 °C). [236] The solvent b.p. is 

critical for LIB technology because the solvent removal is of paramount importance for the 

realization of high performance electrodes of batteries.  

In this thesis, the bulk BP is exfoliated by LPE using 14 different solvents, which were 

selected after having considered the different values of surface tension (γ), b.p. and/or Hansen 

and Hildebrand solubility parameters of each solvent. A stability analysis of BP on the diverse 

solvents provides information about the solubility parameters of BP, e.g., γ, Hansen and 

Hildebrand solubility parameters. These BP solubility parameters give me a clue on the 

adequate solvent selected to exfoliate and/or store exfoliated BF flakes. Ideally, the solvent 

should have a low-b.p., which would allow a fast deposition, especially useful for the aim of 

designing LIB anodes. This thesis firstly presents the analysis of dispersability and stability of 

exfoliated BP flakes in various solvents to determine the ideal solvent, e.g., acetone, for the 
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LPE of BP. Then the feasibility and up-scalability of this approach is demonstrated by 

designing homogeneous films of FL-BP flakes exfoliated in acetone and used as anodes for 

LIBs. The details of solvent selection for LPE of BP and the study of electrochemical 

properties FL-BP based anode will be described in chapter 3 and 6. 

 

Figure 1.12. Top and side view of the atomic structure of 2D single layered: (a) graphene, (b) 

silicene, (c) phosphorene, (d) borophene, (e) TiO2, (f) MoS2, (1H) (g) Ti3C2 and (f) h-BN. 

[145] 
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Chapter 2:  

Experimental procedure 

2.1. Production and processing of graphene and other two dimensional materials  

In this thesis, LPE [237, 238] is exploited to produce graphene and other 2D materials, e.g., 

MoO3 and MoS2 owing to its low-cost, simplicity and high throughput, which can scalable at 

the industrial level. [188-190] In particular, the LPE graphene exhibits a low level of basal 

plane defects and high crystallinity, [188, 189, 202, 239] which is, an important feature for the 

electron transport within electrode in LIB application. [129]  

2.1.1. Liquid phase exfoliation of graphite and other layered materials 

The LPE (Figure 2.1) [240] process typically involves three steps: (1) dispersion of bulk 

materials in solvents, (2) exfoliation and (3) purification. [150]  

In the first step, bulk material is dispersed in a solvent. Then the exfoliation of bulk materials 

in the solvent is realized by ultra-sonication in the second step. During the ultra-sonication 

process, propagation of cavitons, [202] e.g., the growth and subsequent collapse of bubbles or 

voids in solvents due to pressure fluctuations, [150] creates hydrodynamic shear-force which 

acts on bulk materials, inducing exfoliation. [241] After exfoliation, the solvent–2D flakes 

interaction needs to balance the inter-sheet attractive forces. [150] Solvents ideal to stably 

disperse 2D flakes are those that minimize the interfacial tension between the liquid and 

graphene flakes, e.g., the force that minimizes the area of the surfaces in contact). [242] 

Therefore, the good dispersions of 2D flakes require the solvents having γ as close as the 

surface energy of 2D flakes. [243] For instance, NMP has a γ of 41.2 mN m-1 [244] close the 

value of surface energy of graphene (46.7 mN m-1). [241] Thus, NMP is the good solvent to 

disperse graphene. However, the exfoliation process produces a heterogeneous dispersion of 

thin/thick and small/large 2D flakes. Therefore, the purification step is necessary to separate 

exfoliated from un-exfoliated flakes, and is usually carried out via ultracentrifugation. [240] 

In this step, thick flakes can be removed by ultracentrifugation in a uniform medium, so called 

SBS. [245] The SBS is the most common separation strategy and, to date, flakes ranging from 

few nanometers to a few microns have been produced, with concentrations up to a few mg ml-

1. [246] 

The SBS is applied generally to particles (in this case flakes) dispersed in a medium (solvent) 

under a force field. [247] The forces acting on particles dispersed in a solvent during 
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centrifugation are (i) the centrifugal force Fc = mpω
2r, proportional to the mass of the particle 

itself (mp ), the distance from the rotational axes (r), and to the square of the angular velocity 

(ω); (ii) the buoyant force Fb = −msω
2r, e.g., the force deriving from the Archimedes’ 

principle that is proportional to the mass of the displaced solvent (ms) times the centrifugal 

acceleration; and (iii) the frictional force Ff = −fv, e.g., the force acting on the particles while 

moving with a sedimentation velocity (ν) in a fluid. This force is proportional to the friction 

coefficient (f) between the solvent and the particle itself. The sum of the forces acting on the 

dispersed flakes is represented as: [247] 

                                                             Fc - Fb - Ff = Ftot                                         (2.1) 

The ratio of sedimentation or sedimentation coefficient (S) can be defined as the ratio between 

the sedimentation velocity and the particle acceleration, e.g, the centrifugal acceleration (ω2r) 

in this case: 

                                                           S = 
v

ω2r
= 

mp - (1 - 
ρ

s

ρ
p

)

f
                                    (2.2) 

in which 𝜌𝑠  and 𝜌𝑝 are the density of the solvent and the particle, respectively. Following 

equation 2.2, the S increases according to the mass of the 2D flakes, while decreases with their 

physical dimensions (lateral size and thickness). The un-exfoliated bulk flakes, as well as 

large and thick ones, have a larger mass than the thin and small flakes, thus S of the un-

exfoliated flakes is higher than that of thin and small flakes. By tuning centrifugal force, it is 

possible to obtain dispersions with flakes of different lateral size and thickness. 

 

Figure 2.1. Liquid phase exfoliation of bulk layered materials [240] 



30 
 

2.1.2. Solvent exchange processes 

It has been reported that liquids with γ of ~ 40 mN m-1, such as NMP, DMF, benzyl benzoate, 

etc., are the proper solvents for the dispersion of graphene and other 2D flakes, e.g., MoS2, 

WS2. [150] Among these, NMP has been found to be one of the most effective solvents for 

the exfoliation of graphene and other 2D materials [150, 248]. However, NMP is not an 

environmentally friendly solvent, which is a considerable issue in development of 2D layered 

materials-based LIB technology. [3, 249, 250] Besides, due to the high b.p. (202o C), [3] the 

evaporation of NMP after electrode fabrication requires high temperature (> 150o C) [3, 249] 

and vacuum to avoid the oxidation of active materials. [251] To address these limitations, a 

solvent exchange process [252] is exploited to eliminated NMP. Moreover, the solvent 

exchange process allows recycling over 90% of NMP, decreasing production costs, waste 

disposal and pollution. Besides, the direct exfoliation of bulk 2D materials in an 

environmental friendly solvent is considered as a promising strategy to produce exfoliated 2D 

flakes. 

2.1.3. Experimental 

In this thesis, the LPE of graphite in NMP is exploited to firstly produce graphene. A solvent 

exchange process from NMP to a low b.p. and environmentally friendly solvent such as 

ethanol (EtOH), is deployed to obtain graphene flakes dispersion. Also, graphene flakes with 

different lateral size and thickness are sorted by means of SBS.  

Concerning MoO3 and MoS2, the exfoliation of bulk MoO3 and MoS2 is directly carried out in 

2-propanol (IPA) in order to avoid the use of NMP. Then the SBS process is carried out to 

eliminate the bulk counter parts from the exfoliated MoO3 and MoS2. More importantly, the 

LPE of BP is carried out in 14 different solvents in order to serve for the study on the effects 

of solvent properties on the exfoliation of BP. The productions of four materials are as 

following: 

2.1.3.1. Liquid phase exfoliation of graphite 

1 g of graphite flakes (Sigma-Aldrich) is dispersed in 100 mL of NMP (Sigma-Aldrich) and 

exfoliated by ultra-sonication in a sonic bath (Branson®5800) for 6 hours. The resulting 

dispersion is then ultra-centrifuged at 10000 rpm (17100 g) (in a Beckman Coulter Optima ™ 

XE-90 with a SW32Ti rotor) for 30 min at 15°C, to remove thick flakes and un-exfoliated 

graphite. After the ultracentrifugation process, 80% of the supernatant is collected by 

pipetting, thus delivering a graphene dispersion in NMP. This dispersion is filtered through a 

Millipore® filter with 0.2 mm pore size by vacuum filtration to obtain the graphitic flakes. 
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Meanwhile 1 L of EtOH (Sigma-Aldrich, $ 99.8%) is added in batches of 100 mL each to the 

filtration flask in order to remove the residual NMP in graphitic flakes. Finally, 5 mL of EtOH 

are used to recover the graphitic flakes from the filter and 10 mins of sonication is then 

applied to re-disperse the graphitic flakes in EtOH.  

2.1.3.2. The sorting of graphene flakes by size and thickness via sedimentation-based 

separation 

Four batches of 10 g of graphite flakes (Sigma Aldrich) are dispersed in 1 L of NMP (Sigma 

Aldrich, biotech grade) by ultra-sonication (USC-2600 THD, VWR®) for 6 hours at a 

frequency of 40 kHz and power of 300W (10 g of graphite are distributed in 20 vials with 0.5 

g graphite and 50 ml NMP in each vial). The obtained dispersions are settled for 12 hours, and 

then 80% of their supernatants are collected by pipetting, followed by an ultracentrifugation 

step at 2000 rpm (769 g) for 30 min using a Sigma 3-16P centrifuge with an 11180 rotor (S3-

16P). Afterwards, the precipitate is collected and named as Sample #1. The supernatant is 

then collected and used for a second round of centrifugation at 4000 rpm (3076 g) for 30 

mins; the precipitate is collected and named as Sample #2. Next, the supernatant is ultra-

centrifuged at 10000 rpm (17100 g) for 50 mins using a Beckman Coulter Optima™ XE-90 

ultracentrifuge with a SW32Ti rotor for the third round of ultracentrifugation to collect the 

precipitate and named as Sample #3. With the same rotor, a fourth round of 

ultracentrifugation is performed at 30000 rpm (153700 g), and the precipitated part is named 

Sample #4. To eliminate the presence of NMP in the 4 samples, we carried out the solvent 

exchange process, as outlined in the following procedure. Each sample in NMP is dispersed in 

100 ml of EtOH (99.8%, Sigma Aldrich), namely in an environmentally friendly solvent 

having a much lower b.p. than NMP (78 °C vs 204.3 °C), ultra-sonicated for 15 min, and then 

left to sediment for 72 h. Afterward, the sediments of 4 samples are collected (the supernatant 

discarded) and stored in EtOH. 

2.1.3.3. Liquid phase exfoliation of molybdenum trioxide  

MoO3 powder (240 mg) is added to IPA (80 mL) in a 100 mL open top, flat bottomed beaker. 

The dispersion is ultra-sonicated using a horn probe sonic tip (VibraCell CVX, 750W, 25% 

amplitude) for 5 h. The sonic tip is pulsed for 9 sec on and 2 sec off to avoid damage to the 

processor and reduce any solvent heating. To minimize heating effects, an external cooling 

system circulated cooled water at 5°C around the beaker during ultra-sonication. To remove 

any un-exfoliated material the ultra-sonicated dispersion is filled in glass vails (~30 ml) and 

centrifuged at 1000 rpm (~100 g) for 30 mins. The supernatant is decanted (~20 ml) and 
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further centrifuged at 1000 rpm for 105 mins to remove small flakes. The supernatant is 

decanted (containing small flakes) and discarded while the sediment is re-dispersed in IPA. 

2.1.3.4. Liquid phase exfoliation of molybdenum disulfide 

100 mg of MoS2 are dispersed in 10 mL of IPA and ultra-sonicated (USC-2600 THD, 

VWR®) for 6 h at a frequency of 40 kHz and power of 300W. The obtained dispersion is 

centrifuged at 4000 rpm (3076 g) for 30 mins using a Sigma 3-16P centrifuge with an 11180 

rotor (S3-16P), to remove thick and un-exfoliated MoS2 flakes. After the centrifugation 

process, the upper 80% of the supernatant is collected by pipetting. 

2.1.3.4. Liquid phase exfoliation of black phosphorous 

Black Phosphorus (500 mg, from Smart Elements) is pulverized with a mortar and pestle. The 

selected solvents (i.e. acetone, toluene, chloroform, IPA, trichloroethylene, methanol, 

ethylene glycol, acetonitrile, EtOH, n-hexane, NMP, CHP, DMF and diethyl carbonate) have 

different γ, b. p. and/or Hansen solubility parameters (see Table 3.3). All the solvents are of 

anhydrous grade and were purchased from Sigma Aldrich.  

For the analysis of the dispersability and stability of exfoliated BP, 20 mg of pulverised BP 

and 20 mL of solvents are mixed using a sonic bath (VWR®, USC2600THD) for 6 hours, 

followed by centrifugation at 900 g for 60 min in order to promote the precipitation of the 

thicker and un-exfoliated flakes. The precipitation of thick or un-exfoliated flakes promotes 

the enrichment of BP flakes in dispersion with a specific lateral size and thickness. The 

centrifugation is carried out in a Sigma 2-16K centrifuge (11170-bucket 2x13299 rotor). After 

the centrifugation, the supernatant is collected and subjected to another centrifugation run at 

900 g for 30 min to further purify the BP dispersions. The pulverization and weighting of the 

BP crystals and the balancing and sealing of the centrifuge tubes are carried out in a nitrogen-

filled glovebox. 

For the aging analysis, the samples are stored for three months at room temperature in a 

closed transparent glass vial. Note that after the LPE process, all the other experimental 

processes for the material production are conducted outside the glove box. 

2.2. Preparation of single wall carbon nanotube-bridged molybdenum trioxide and 

molybdenum disulfide/amorphous carbon hybrids 

2.2.1. Preparation of single wall carbon nanotube-bridged molybdenum trioxide hybrid 
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Single wall carbon nanotubes have displayed great potential as anode materials for lithium ion 

batteries due to their unique 1D structural, high electrical conductivity (106 S m−1). [167, 253] 

Thus, the combination of SWNTs into the hybrid structure with 2D materials, e.g., MoO3, can 

improve the electrochemical performance of electrodes. SWNTs play a role as (i) a 

conducting agent, promoting electronic charge transport, [254] (ii) an active anode material, 

offering extra capacity thanks to its Li+ storage capability by surface and/or inside individual 

nanotubes. [254]  

In this thesis, the P3 SWNTs (carbon solution) are dispersed in IPA at a concentration of 0.1 g 

L-1 and sonicated in both a horn sonic probe and a sonic bath to achieve a homogeneous 

dispersion. The procedure involves horn probe ultra-sonication (30 mins) followed by 1h in a 

sonic bath and an additional 30 min in the horn probe tip. After that, The as-produced MoO3 

(as reported in section 2.1.3.3), SWNTs and carbon black super-P (CB) dispersions are mixed, 

without centrifugation, to form hybrid structures of known wt% (MoO3 : SWNTs = 9:1, 8:2 

and 7:3, respectively). Accurate weighing of an alumina membrane (pore size 25nm) before 

and after filtration of MoO3 dispersion allowed determining the concentration. 

2.2.2. Preparation of molybdenum disulfide/amorphous carbon hybrid 

The aim of synthesizing MoS2/C hybrid is to overcome drawbacks of MoS2 for LIB anode, 

e.g., low conductivity and volume change. The carbon network is expected to improve the 

electrical conductivity of electrode [168, 169] and buffer the volume change of active 

materials upon cycling. [168, 169] 

In the present work, PAA is used as a carbon source to form carbon network. The exfoliated 

MoS2 flakes (as reported in section 2.1.3.4) are mixed with PAA in IPA with various weight 

ratios of MoS2 : PAA, e.g., 1:1, 1:2 and 1:4 wt%, followed by magnetic stirring for 60 min. 

Then the mixtures of MoS2 and PAA (MoS2/PAA) are dried at 40o C under vacuum overnight 

in order to remove the IPA, obtaining the MoS2/PAA powders. These powders are annealed at 

500° C for 30 minutes under argon atmosphere in order to carbonize the PAA. The pyrolysis 

forms a MoS2/C hybrid. The MoS2/C powders are named as MoS2/C-1, MoS2/C-2, and 

MoS2/C-3 corresponding to the different weight ratios of MoS2/PAA as 1:1, 1:2 and 1:4 wt%, 

respectively. These powders are used as active material in the LIB anodes. 

2.3. Material characterization techniques  

2.3.1. Optical absorption spectroscopy  
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The Optical absorption spectroscopy (OAS) is carried out in a Cary Varian 5000UV-vis 

spectrophotometer. For the OAS measurements, the graphene samples are diluted 1:10 (v/v) 

in NMP and the MoO3 and MoS2 samples are diluted 1:100 (v/v) in IPA and the SWNTs 

sample is diluted 1:10 in IPA. The absorption spectra are acquired using a 1 mL quartz glass 

cuvette. The absorption spectra of the solvents used are subtracted to each spectrum. 

2.3.2. Thermogravimetric analysis  

Thermogravimetric analysis (TGA) (TG-Q500) is carried out in air. The temperature ramp 

started from room temperature (RT) to 900oC at a heating rate of 10oC min-1. 5 mg of each 

MoS2 and MoS2/carbon composite samples are used for TGA. 

2.3.3. Powder X-ray diffraction  

Powder X-ray diffraction (XRD) measurement is performed on a PANalytical X-ray powder 

diffractometer with monochromatic CuKα radiation (λ = 1.5418 Å). The 2θ range used in the 

measurements is from 10° to 65°. Samples (MoS2 and MoS2/carbon MoS2/C hybrid powders) 

are prepared on quartz substrate. 

2.3.4. Raman spectroscopy 

Raman spectroscopy (Renishaw inVia confocal Raman microscope) is performed with laser 

excitation wavelength of 514.5, 532, 633 and 785 nm (incident power of ~1 mW on the 

samples) and a 100× objective. The graphene samples are dispersed in NMP and EtOH, 

whereas the SWNTs, MoO3 and MoS2 samples are dispersed IPA and the BP sample are 

dispersed in CHP and acetone by sonication. All samples are drop-casted on a Si/SiO2 (300 

nm SiO2) (Si-Mat Silicon Materials) substrate and dried under vacuum overnight. 

2.3.5. Transmission electron microscopy  

Transmission electron microscopy (TEM) images of samples are acquired with a JOEL JEM-

1011 microscope, operated at 100 kV. The high-resolution TEM (HRTEM) and high angular 

annular dark field - scanning TEM ((HAADF)-STEM)) images are obtained on a JEOL JEM-

2200FS microscope, operating at 200 kV, which is equipped with a CEOS objective corrector, 

and an in-column filter (Ω-type). The energy dispersive X-ray spectroscopy (EDS) and energy 

filtered (EFTEM) elemental mapping were acquired by a Bruker Quantax 400 system with a 

60 mm2 XFlash 6T silicon drift detector (SDD) on the same microscope.  The electron energy 

loss spectroscopy (EELS) data are collected in TEM mode using a FEI Tecnai F20 TEM 

operating at 200 kV and equipped with Gatan Enfinum SE spectrometer. The EEL spectra are 

acquired with a collection semi-angle of 100 mrad. The SWNTs, MoS2 and MoO3 samples are 
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dispersed in IPA, graphene samples are dispersed of NMP and EtOH and BP are dispersed of 

CHP and acetone by sonication. 100 µL of the resulting inks are drop-casted at RT onto 

carbon coated Cu TEM grids (300 mesh), and subsequently dried under vacuum overnight. 

2.3.6. Scanning electron microscopy 

Scanning electron microscopy (SEM) images of all electrodes are taken using a field-emission 

scanning electron microscope FE-SEM (Jeol JSM-7500 FA) at the operating voltage of 10 kV 

without any metal coating, for all samples. 

2.3.7. Atomic Force Microscopy  

Atomic Force Microscopy (AFM) images are acquired with Bruker Innova AFM in tapping 

mode using silicon probes (f = 300 kHz, k = 40 N/m). Intermittent contact mode AFM images 

of 5×5 μm2 were collected with 512 data points per line and the working set point was kept 

above 70% of free oscillation amplitude and measurements were taken at scan rate of 0.7 Hz. 

Thickness statistic is performed measuring ∼ 100 flakes from AFM images. Statistical 

analyses are fitted with log-normal distributions. The graphene, MoS2 and BP samples are 

diluted 1:100 (v/v) in EtOH. 100 μL of the dilutions are drop-cast onto Si/SiO2 wafers. 

2.3.8. X-ray Photoelectron Spectroscopy   

X-ray Photoelectron Spectroscopy (XPS) analysis is carried out for all samples, using a 

Kratos Axis Ultra spectrometer. The samples are drop-casted onto silicon (Si-Mat Silicon 

Materials) wafers. The XPS spectra are acquired using a monochromatic Al Kα source 

operated at 20 mA and 15 kV. The analyses are carried out on a 300 μm × 700 μm area. High-

resolution spectra are acquired at pass energy of 10 eV and energy step of 0.1 eV. The 

photoelectrons are detected at a take-off angle (i.e., the angle defined by the sample surface 

normal and the position of the detector) φ = 0 with respect to the surface normal. The pressure 

in the analysis chamber is maintained below 10-6 Pa for data acquisition. 

2.3.9. Specific surface-area measurements  

Specific surface-area measurements are carried out by nitrogen physisorption at 77 K in a 

Quantachrome equipment, model autosorb iQ. The graphene-based anodes deposited onto the 

Cu support substrates (~1.0 mg) are cut into pieces fitting into the BET (Brunauer – Emmett – 

Teller) measurement chamber. The specific surface area is calculated using the multi-point 

BET model, considering 11 equally spaced points in the P/P 0 range from 0.05 to 0.30. Prior 

to measurements, the sample is degassed for 2 hours at 200°C under vacuum to eliminate 

adsorbates. 
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2.3.10. Optical extinction spectroscopy 

The optical extinction spectroscopy (OES) is carried out by a Cary Varian 5000UV-Vis. In 

order to measure the extinction spectra, FL-BP dispersions in the different solvents are diluted 

1:25 with the respective pure solvents. The dispersions in acetone are diluted at different 

ratios in order to determine the extinction coefficient of FL-BP. The dilutions prepared are: 

1:1, 1:2, 1:5, 1:10; 1:20, 1:50 and 1:100. For each sample, the extinction spectra (absorbed 

plus scattered light) of their corresponding pure solvents are subtracted from the sample 

spectrum. After the extinction measurement, the samples that are dispersed in acetone are 

dried and the residue powder is weighted. The initial volume of the solvent and the mass of 

the dried powder gave the exact concentration for each dilution. The optical extinction 

coefficient is determined by using the Beer-Lambert law (𝐸 = 𝛼𝐶𝑃ℎ𝑙, in which E is the 

optical extinction at 600 nm, α is the extinction coefficient, CPh is the concentration of the 

exfoliated BP and l is the path length, 0.01 m). 

2.4. Electrode fabrication and battery assembling  

2.4.1. Electrode fabrication 

2.4.1.1. Graphene electrodes  

The Cu foil with (Sigma-Aldrich) is cut into round shaped disks with a diameter of 1.5 cm 

and cleaned with acetone (Sigma-Aldrich) in an ultrasonic bath for 10 minutes. Then, the Cu 

foils are dried at 80°C and 10-3 bar for 2 hours in a glass oven (BÜCHI, B-585) and weighted 

(Mettler Toledo XSE104); the preparation of Cu foils is applied for all electrodes in this 

thesis. Subsequently, 250 mL of graphene ink in EtOH is drop-cast on Cu foil under air 

atmosphere at RT and then dried at 120°C and 10-3 bar for 30 min in an oven (BUCHI, B-

585). The graphene mass loading (1 mg) for each anode is calculated by subtracting the 

weight of bare Cu foil from the total weight of the electrodes. 

2.4.1.2. MoO3 and MoO3/SWNTs hybrid electrodes 

50 mg of MoO3 flakes (section 2.1.3.3) and MoO3/SWNTs hybrid (section 2.2.1) samples are 

dried and re-dispersed in 5ml EtOH via ultra-sonication for 15 min. Subsequently, the 

aforementioned samples are drop-cast on the Cu foils as supporting substrates in a circular 

shape with a diameter of 1.5 cm at 40˚C in air. Then, the as deposited films are dried at 120˚C 

and 10-3 bar pressure for 12 hours in oven (BÜCHI, B-585). The mass loading of the active 

materials are calculated by subtracting the average weight (obtained with balance of Mettler 

Toledo XSE104) of bare Cu foil with the same area, from the total weight of the electrodes. 
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2.4.1.3. MoS2 and MoS2/amorphous carbon hybrid electrodes 

The MoS2 flakes (see section 2.1.3.4) or MoS2/C powders (see section 2.2.2) are mixed with 

CB and PAA with a weight ratio of 8:1:1 in IPA to form the slurries. The slurries are pasted 

onto Cu disks with diameter of 1.5 cm. The disks are then dried in an oven (BÜCHI, B-585) 

at 60° C and 10-3 bar pressure for 12 hours. The mass loading of active materials (~1.0 mg) 

for each anode is calculated by subtracting the weight of bare Cu disks (using an analytical 

balance of Mettler Toledo XSE104) from the total weight of the electrode. The mass loading 

of the active materials are calculated by subtracting the average weight (obtained with balance 

of Mettler Toledo XSE104) of bare Cu foil with the same area, from the total weight of the 

electrodes. 

2.4.1.4. Few-layer black phosphorous electrodes 

The round copper disks (99.98% trace metals basis, Sigma-Aldrich) with a diameter of 1.5 cm 

cleaned with acetone  and then dried for 2 hours in a glass vacuum oven (BÜCHI, B-585) at 

80˚ C with a 10-3 bar pressure. The FL-BP dispersions in CHP and acetone are mixed with 

carbon black (CB, super-P) and Polyvinylidene fluoride (PVdF, Sigma-Aldrich), with a mass 

ratio of 3:1:1, then drop-cast onto the cleaned copper substrates inside the glove box at room 

temperature. The resulting FL-BP coated electrodes are subsequently dried in a vacuum oven 

at 120 ˚C for acetone, and to 180 ˚C for CHP dispersed sample, at a 10-3 bar pressure for 30 

mins. The average mass loading of FL-BP (not including CB or PVdF) that is obtained from 

both the CHP and acetone dispersions is 0.6 mg cm-2 for both samples. 

2.4.2. Assembling of half- and full-cells 

All electrodes are assembled in half-cell configuration to characterize the electrochemical 

properties of each material. Half-cells are assembled in coin cells (2032, MTI) in an argon 

filled glove box (O2 and H2O < 0.1 ppm) at 25° C, using 1M LiPF6 in a mixed solvent of 

ethylene carbonate/dimethylcarbonate (EC/DMC, 1:1 volume ratio) (Sigma Aldrich, CAS 

21324-40-3) as electrolyte (LP30, BASF), and a glass-fibre as separator (Whatman GF/D). 

For the half-cell con figuration, the anodes are tested against Li foil) as the counter and 

reference electrodes (two electrodes system). 

In case of binder-free graphene electrode, the full-cell configurations are assembled with the 

commercial LNMO powder as active material for cathode (NEI Corporation). The cathode 

composition is 80 wt% of LNMO, 15 wt% of CB (TIMCAL) and 5 wt% Polyvinylidene 

fluoride (PVdF) (Sigma-Aldrich). The three components, in the form of powders, are mixed 

with NMP using a ball mill at 250 rpm for 2 hours. To promote a better adhesion between the 
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cathode slurry and the current collector, the roughness of Al foils is increased by an etching 

procedure in KOH. For this propose, the Al foils are immersed for 1 min in 5 wt% KOH 

aqueous solution, and afterward washed with distilled water and dried at 60°C for 4 hours. 

The PVdF/LNMO/CB slurry is deposited, by using a doctor-blade, on KOH-etched Al foils. 

After the drying process, the electrodes are shaped in a circular form by a cutting procedure 

followed by a pressing process at ~ 2 MPa for 1 min. Before full-cell assembling, the anode is 

pre-lithiated by placing the graphitic film in direct contact with a Li foil wet by using the 

electrolyte solution (LP30) for 30 minutes. 

2.5. Electrochemical characterizations 

2.5.1. Cyclic Voltammetry 

Cyclic voltammetry (CV) is a useful technique for acquiring qualitative information about 

electrochemical process occurring within electrode. A typical electrode reaction involves the 

transfer of charge between an electrode and a species in solution. [255] The CV technique can 

detect the charge transfer process of electrode reaction through recording the current response 

in a certain potential range when the fixed voltage scan rate is applied. In CV measurements 

the current response is plotted as a function of voltage.  

The electrochemical reaction of electrode in the case of LIB can be described by CV, as 

shown in Figure. 2.2. As the voltage is initially swept from V1, the equilibrium at the electrode 

surface begins to alter and the current begins to flow. The current rises as the voltage is swept 

further toward to V2 from its initial value equilibrium position (V1) due to the continuous 

reduction of Li+ in to Li, see equation 1.2, on the electrode surface (lithiation process). [256] 

Thus more active material is lithiated by the reduction of Li+, resulting in the increase in the 

flux of Li+ to electrode surface. [255] This leads to the increase in Li concentration at 

electrode surface. The peak (ic) occurs once the concentration of Li is sufficient on the 

electrode surface. At this moment the flux of Li+ reduces, reaching the subsequent depletion 

of Li+ on electrode surface, therefore, the current begins to drop. When the scan is reversed, 

voltage is swept back from V2 to V1, the reversible electrochemical reactions, e.g., the 

oxidation of Li into Li+ (de-lithiation), is observed which is evidenced by the peak ia.  
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Figure 2.2.  Schematic of cyclic voltammetry of lithium ion battery electrode [257] 

In this thesis, the CV measurement is performed at a scan rate of 50 µVs-1 between 3 V and 

5 mV vs Li/Li+ with a Biologic MPG2 potentiostat/galvanostat for all electrodes in half-cell 

configurations against Li foils (Sigma-Aldrich) as the counter and reference electrodes (two 

electrodes system). All electrochemical measurements are performed at room temperature. 

2.5.2. Galvanostatic charge/discharge cycling measurement 

Galvanostatic charge/discharge cycling measurement, so called the constant current method, 

is considered to be a very useful method to characterize the electrochemical performance of 

an electrode. It measures the amount of charge stored within an electrode (capacity) under a 

constant current load over increasing cycle numbers. In order to characterize an electrode of 

LIB, a current pulse is applied to the electrode and its resulting potential is measured against a 

reference electrode (Li foil) as a function of time, see Figure 2.3a. In order to calculate the 

capacity, the duration of a single charge or discharge step has been multiplied by the current 

applied during that step, see Figure 2.3b. The plot of potential vs. capacity is called voltage 

profile. 

In the galvanostatic charge/discharge cycling measurement, the constant current applied to the 

electrode causes the active materials, e.g., graphite, to be oxidized/ reduced at a constant rate. 

[255] The electrode potential accordingly varies with time as the concentration ratio of active 

material, to lithiated-active material, e.g., ratio of C/LiC6) changes at the electrode surface. 

After the concentration of active material drops to zero at the electrode surface (fully 

charged), the active material might be insufficiently supplied to the surface to accept all of the 

electrons being forced by the application of a constant current. The electrode potential will 

then sharply change to more negative/positive values. The fixed potential range with the cut-
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off potentials, e.g., E1 and E2, is always set according to the working voltage of electrode to 

avoid side reactions, see Figure 2.3. When the voltage reaches the E2, the electrode process, 

e.g., charging/discharging, will stops. Then the new electrode process will start and the 

voltage will change back to the E1.  

 

Figure 2.3.  Schematics of galvanostatic charge/discharge curves of lithium ion battery 

electrode: (a) potential versus time and (b) potential versus capacity plots. 

In this thesis, the galvanostatic charge/discharge cycling tests of all electrodes are performed 

at a constant current density, using a battery analyser BCS-805 (BioLogic). The 

charge/discharge cycling tests are performed at different rates (C-rate) by battery analyser 

BCS-805 (BioLogic). All electrochemical measurements are performed at room temperature. 

2.5.3. Electrochemical impedance spectroscopy  

In electrochemical impedance spectroscopy (EIS), the system under investigation is excited 

by a small amplitude AC sinusoidal signal of potential or current in a wide range of 

frequencies and the response of the current or voltage is measured. Since the amplitude of the 

excitation signal is small enough for the system to be in the (quasi-) equilibrium state, the EIS 

measurements can be used to effectively evaluate the system properties without significantly 

disturbing them. Frequency sweeping in a wide range from high-to low-frequency enables the 

reaction steps with different rate constants, such as mass transport, charge transfer, and 

chemical reaction, to be separated.  

In the EIS measurement, a sinusoidal potential applied to the system leads to a sinusoidal 

current output at the same frequency which cause the exponential increase in output current 

with the applied potential. [255] In case an excitation signal with large amplitude is applied, 

the system is deviated from linearity; the current output to the sinusoidal potential input 
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contains the harmonics of the input frequency. Because the system excitation caused by the 

time-dependent, the impedance is expressed as [255]                                

                                    Z(t)=
E(t)

I(t)
=

Z0cos (ωt )

cos (ωt-∅)
                                    (2.3) 

 in which Z(t) is the impedance of the system, E(t) is the applied potential at time t, Z0 is the 

impedance amplitude, and ω is the angular frequency that is defined as the number of 

vibrations per unit time (frequency, Hz) multiplied by 2π. The output current signals I(t) has 

is shifted in phase by ∅. By using Euler’s relationship, [255]  the system impedance is 

expressed as a complex function of  

                          Z(ω) = Z0cos∅ + Z0jsin∅ = Z
Re

+jZim                          (2.4) 

When the real part of the impedance (ZRe) is plotted on the axis of the abscissa and the 

imaginary (Zim) part is plotted on the axis of the ordinate, a “Nyquist plot” is obtained, [258] 

see Figure 2.4.  

 

Figure 2.4. Nyquist plot, representing phase angle (∅), and angular frequency (ω) 

dependence of the impedance. [258] 

In the case of LIBs, it can  be  seen  that  the  electrode  composition  changes  during  

lithiation/de-lithiation processes due to electrode reactions which is related to Li+ transport 

process, the electron transport process, and the charge transfer process. [259] Because  the 

time  constants of each process are different, the EIS is a suitable  technique  to  investigate  

these  reactions  and  can  allow  us  to  separate  most  of  these processes. Therefore, using 

EIS to analyze the kinetic parameters related to lithiation/de-lithiation materials such as the 

SEI film resistance, charge transfer resistance (RCT), is essential to understand the reaction 

mechanism of Li+ with active material, to study degradation effects, to facilitate further 

electrode optimization, and to improve the charge/discharge cycle performance of LIBs. At 

present, the common electrode processes, especially for intercalation electrode, in LIBs are 
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represented by several steps, [258] as shown in Figure 2.5: (i) Li+ transport in an electrolyte; 

(ii) Li+ migration through the SEI film; (iii) electrochemical reaction on the interface of active 

material particles including electron transfer; (iv) Li+ diffusion in the solid phase and (v) 

phase-transfer in  cases where several phases are presented in active material and a capacitive 

behavior that is related to the occupation of Li+, which give a semicircle and straight line 

perpendicular to ZRe axis in the Nyquist plot (commonly below 10-2  Hz), respectively.  

 

Figure 2.5. Typical electrochemical impedance spectra of intercalation electrode. [258] 

In this thesis, the EIS of the half-cells (two electrode system) is performed at a bias voltage of 

5 mV at room temperature with a VMP3 (BioLogic) in the frequency range of 10 kHz-

10 mHz. Galvanostatic charge/discharge cycling tests are performed at a constant current 

density, using a battery analyser BCS-805 (BioLogic). The charge/discharge cycling tests are 

performed at different rates (C-rate) by battery analyser BCS-805 (BioLogic). All 

electrochemical measurements are performed at room temperature. 
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Chapter 3: 

Characterizations of graphene and other two-

dimensional materials 

This chapter provides the detailed characterization of graphene, MoO3, MoS2 flakes, SWNTs, 

MoO3/SWNTs, MoS2/C hybrids and BP. Different techniques are used in order to probe the 

physical and chemical properties of the samples. Optical absorption spectroscopy and OES is 

applied to estimate the concentration of graphene flakes in NMP and concentrations of BP in 

different solvents, respectively. The morphologies of the samples are characterized by using 

TEM (flake size), and AFM (thickness of flakes). The structural properties of all samples are 

revealed by Raman spectroscopy (diameter of SWNTs, thickness of flakes), high resolution-

TEM (HRTEM) (inter-spacing of layers), and XRD (phase, orientation and thickness of 

flakes). In addition, XPS is carried out to assess the surface chemical composition of graphene 

after the solvent exchange process as well as to determine the oxidation stage of elements (Mo 

and S) in MoS2 flakes after LPE process. TGA is performed to quantify the content of carbon 

on the MoS2/C hybrid. To measure the specific surface area of graphene flakes, I exploited 

BET. The energy dispersive X-ray spectroscopy is carried out to analyse the composition of 

BP flakes, whereas the EFTEM and EELS is exploited to evaluate the aging of BP flakes after 

exfoliation. The information obtained from the characterization techniques listed above 

enables a comprehensive evaluation of the material properties, which provide an insightful 

understanding of their electrochemical properties for applications in LIBs.  

3.1. Graphene flakes 

3.1.1. Characterizations of graphene flakes in N-Methyl-2-pyrrolidone and ethanol 

As mentioned in chapter 2, the graphene flakes are produced by LPE of graphite in NMP, 

followed by the exchange of graphene flakes from NMP to EtOH (section 2.1.3.1). The 

graphene flakes in NMP and EtOH are characterized by means of OAS, TEM, Raman 

spectroscopy and XPS. Figure 3.1 plots the OAS of the graphene-based NMP ink. The 

absorption peak located at ~275 nm is attributed to inter-band electronic transitions from the 

unoccupied π* states at the M point of the Brillouin zone. [260, 261] The concentration of the 

dispersions is determined according to the Beer Lambert law, as shown in equation 3.1: [241, 

262]  

                                                      A = αcl                                            (3.1) 
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in which 𝐴 is the absorbance; 𝛼 is the optical absorption coefficient (L g−1m−1); c is the 

concentration of the dispersed flakes; 𝑙 is the path length of the cuvette in which the sample is 

contained.  

Using the experimentally derived absorption coefficient of 1390 L g -1 m-1 at 660 nm, [202, 

241] a concentration of graphitic flakes is estimated to be ~ 0.18 g L-1. Besides, the exchange 

of graphene flakes from NMP into EtOH [263] promotes the precipitation of the graphene 

flakes due to its low γ (22 mN m-1) [241] with respect to the surface energy of graphene, [241] 

resulting in a metastable ink in EtOH. For the estimation of the concentration of the graphitic 

flakes in the EtOH-based ink, the average mass loading of the graphitic film (1 mg), after 

solvent evaporation at room temperature, is divided by a known volume (250 µL) of the drop-

cast EtOH-based ink onto the Cu foil. Following this procedure, a concentration of graphitic 

flakes is calculated to be ~ 5.6 g L-1 in the EtOH-based ink. The low γ of EtOH (22 mN m -1) 

[241] with respect to the surface energy of graphene (46.7 mN m-1), [241] promotes the 

precipitation of the graphene flakes, resulting in a metastable ink in EtOH. The high 

concentration of the graphitic flakes in the EtOH-based ink enables the fabrication of anodes 

using a simple one-step process for LIB anode fabrication by directly drop-casting the as-

obtained graphitic flakes onto a Cu foil followed by drying at room temperature.  

 

Figure 3.1. Optical absorption spectra of the graphene ink in NMP. 

The morphological properties of the graphitic flakes dispersed in the NMP-based ink and in 

the EtOH-based ink are characterized by means of TEM and Raman spectroscopy. 

Transmission electron microscopy bright field images of the graphitic flakes before (NMP) 

and after the solvent exchange (EtOH) process are reported in Figure 3.2a and b, respectively. 

Both samples are formed by graphitic flakes with a lateral size ranging from 100 to 600 nm 

(see Figure 3.2c and d for statistical analysis). The statistical analysis demonstrates that the 
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solvent exchange process does not induce modification in the lateral size of the graphitic 

flakes. Electron diffraction patterns, shown in the insets of Figure 3.2a and b, collected on 

aggregated flakes indicate that the flakes are crystalline in both samples. All the rings are 

indexed as h, k, -h -k, and 0 reflections of a hexagonal lattice with a = 0.244(1) nm, in 

agreement with the graphite structure. [261] 

 

Figure 3.2. Bright- field TEM image of graphene flakes dispersed from the (a) NMP ink and 

(b) EtOH ink; the insets show the electron diffraction patterns collected on an area of 2 mm 

in diameter with the peaks labelled by Miller – Bravais indices. (c) and (d) are lateral size 

distribution, extracted by statistical analysis on TEM images, of graphitic flakes dispersed in 

NMP (blue) and after solvent exchange in EtOH (red). 

Raman analysis is carried out in order to gain insight into the number of layers in the flakes 

and presence of defects. [264, 265] Figure 3.3a plots the typical Raman spectra of the 

graphite/graphene flakes deposited on Si/SiO2 for both the NMP-based and the EtOH-based 

inks. In a typical Raman spectrum of graphene, the G peak corresponds to the E2g phonon at 

the Brillouin zone center; [265] the D peak is due to the breathing modes of the sp2 rings and 

requires a defect for its activation by double resonance; [266-269] the 2D peak is the second 

order of the D peak. [266] For pristine graphene, the 2D peak has a single Lorentzian 

component, whereas it splits (upshifting also in position) for multi-layer graphene (MLG), 

reflecting the evolution of the band structure. [266, 270, 271] An estimation of the number of 

layers of the flakes can be derived from a statistical Raman analysis (based on 20 

measurements for both NMP- and EtOH-based inks) of the full width at half maximum of the 

2D peak (FWHM(2D)), see Figure 3.3b, the average position of the 2D peak (Pos(2D)) 
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(Figure 3.3c) and the I(2D)/I(G) ratio (Figure 3.3d). For more details, the Raman spectra of 

both NMP and EtOH based-inks show that an average value of FWHM(2D) lower than 70 

cm-1, Pos(2D) around 2700 cm-1 and the I(2D)/I(G) ratio higher than 0.5 (the value for 

graphite), [266] indicate that both samples are composed of a combination of SLG and FLG 

flakes. [202, 241, 262, 272] Additionally, the high I(D)/I(G) ratio (Figure 3.3e) is attributed to 

the edges of sub-micrometer flakes, [267] (see Figure 3.2) rather than to the presence of a 

large amount of structural defects within the flakes, otherwise the D peak would be much 

broader, and G and D’ would merge in a single band. [265] Indeed, FWHM(G) always 

increases with defects. [265] As detailed in ref. [119, 273, 274] the lack of a clear correlation 

between I(D)/I(G) and FWHM(G) in both samples (Figure 3.3e) further supports the absence 

of structural defects also after the solvent exchange process. 

 

Figure 3.3. (a) Raman spectra at a 532 nm excitation wavelength for representative flakes in 

the NMP ink (blue curve) and EtOH ink (red curve). Distribution of (b) FWHM(2D), (c) 

Pos(2D), (d) I(2D)/ I (G), and (e) I(D)/I(G), and (f) distribution of I(D)/I(G) as a function of 

FWHM(G), for the NMP ink (blue dashed histograms and dots) and EtOH ink (red dashed 

histograms and triangles), respectively. 



47 
 

In order to obtain information about the surface chemistry of the SLG/FLG-based films 

deposited before and after the solvent exchange process, the NMP and EtOH-based inks are 

investigated by XPS. The signal of C 1s and N 1s core-levels are focused to obtain 

information on the chemical state and the atomic bonding of the two elements (Figure 3.4). 

 

Figure 3.4. XPS data of the (a) C 1s and (b) N 1s core-levels acquired on graphene films 

obtained from NMP (blue curve) and EtOH (red curve) inks. 

Indeed, the shape and position of the C 1s peak can provide information on the local 

environment and oxidation states of graphene, since binding energies are sensitive to the 

chemical environment. [3] The C 1s profiles collected on the two samples are reported in 

Figure 3.4a; in both cases, C 1s has an asymmetric shape with the C – C component centred at 

~284.3 eV, as typically reported for pristine graphene and graphite flakes. [275] The peak 

shape and the absence of a C – O component, usually centred at ~286.2 eV, prove that the 

SLG and FLG flakes have not undergone oxidation during neither the exfoliation nor the 

solvent exchange process. [241, 276] As shown in Figure 3.4b, the N : C atomic ratio is 0.8 : 

100 for the NMP ink, while it decreases to 0.4 : 100 after the solvent exchange process. For 

both NMP- and EtOH-based inks, the N 1s signal can be fitted with two components (Figure 

3.4b). The main component (dotted profiles) is centred at 400.3 ± 0.3 eV for both samples and 

can be assigned to pyrrolic N (i.e., N coordinated as in the pyrrole molecule), [268] consistent 

with the presence of NMP molecules, [270, 277] likely trapped between the SLG and FLG 

flakes. [241] The pyrrolic N component accounts for ~ 90% and ~ 80% of the total N content 

of the SLG and FLG flakes in the NMP-based ink and in the EtOH-based ink, respectively. 

The second, minor component (dashed profiles) is centred at 402.2 ± 0.3 eV, close to the 

position of the N peak observed in the related system of trimethylamine when adsorbed onto 

an electron acceptor substrate. [278] Therefore, this component is assigned to the N of the 
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NMP molecules adsorbed onto the SLG and FLG flakes. [279] In summary, the XPS analysis 

indicates that from one hand the solvent exchange process does not induce oxidation of the 

SLG and FLG flakes and from the other hand, it allows the removal of 50% of the NMP 

molecules adsorbed onto the SLG and FLG flakes, see Figure 3.4b. Such a small amount of 

residual NMP (less than 3.2 wt%, calculated from the N : C atomic ratio) demonstrates the 

feasibility of the proposed solvent exchange process for the NMP removal.  

Briefly, the characterizations of graphene flakes in NMP and EtOH confirms that the solvent 

exchange process does not affect to the physical and chemical properties of the exfoliated 

flakes. Importantly, the Raman results indicate that both samples are composed of SLG and 

FLG flakes without defects on the basal planes. The high crystallinity of LPE graphene flakes 

is the key feature for assuring fast electron transport within LIB electrode. 

3.1.2. Characterizations of graphene flakes having different lateral size and thickness  

The graphene flakes dispersion is firstly prepared via LPE of graphite in NMP, which 

contains a heterogeneous distribution of thin/thick and small/large lateral size graphitic flakes. 

[159, 280] A set of FLG and MLG flakes is obtained by means of SBS in centrifugal field, 

which are then used to prepare binder-free anodes. As reported in section 2.1.3.2, the obtained 

graphene flakes dispersions in NMP are ultra-centrifuged with different centrifugal speed, 

e.g., 2000 rpm (769 g), 4000 rpm (3076 g), 10000 rpm (17100 g) and 30000 rpm (153700 g) 

corresponding Sample #1, #2, #3, and #4, respectively. Taking the advantage of the solvent 

exchange process, the NMP solvent in the four samples are exchanged by EtOH resulting in 

the four EtOH-based dispersions. The four NMP-based dispersions are firstly characterized by 

OAS to estimate the concentrations of the four samples before the exchange solvent process. 

As mentioned in section 3.1.1, the solvent exchange process does not affect to the physical 

and chemical properties of graphene flakes, so the four EtOH-based dispersions are 

characterized by TEM, AFM, XPS and Raman spectroscopy to observe the change in 

dimension of the graphene flakes according to the different centrifugal speeds. Figure 3.5 

plots the OAS of the four NMP-based dispersions. The UV absorption peak located at ~268 

nm is attributed to inter-band electronic transitions from the unoccupied π* states at the M 

point of the Brillouin zone. [262] The concentration of the four dispersions in NMP are 

determined by OAS, using the experimentally derived absorption coefficient of 1390 L g−1m−1 

at 660 nm (considering that the scattering is negligible). [202, 241, 262] From Figure 3.5, the 

concentrations of the dispersions in Sample #1, #2, #3 and #4 in NMP are calculated to be 4.0, 

2.4, 1.1 and 0.1 g L-1, respectively. [241] The concentrations of the four dispersions decrease 

with the increase in centrifugal speed used for the preparation of the four samples. 
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Figure 3.5. Room temperature optical absorption spectra of the FLG and MLG graphene 

dispersions. For the measurements the samples are diluted 1:100 with NMP.  

The morphology of the samples is characterized by TEM and AFM analyses. The TEM 

images in Figure 3.6a and b show that the lateral size mode of the graphitic flakes decreases 

with the increase of the centrifugal force, passing from 380 nm to 75 nm, see Table 3.1. The 

XPS data of O 1s peaks and C 1s peaks is shown in Figure 3.7, giving surface chemical 

information for the FLG and MLG samples. As the flakes get smaller and thinner from  

Table 3.1. Analysis of the four samples prepared at different ultracentrifugation speeds 

 

 

Centrifuge 

speed 

(rpm) 

Average 

lateral size 

(nm) 

Average 

thickness 

(nm) 

Surface 

area 

(m2 g-1) 

O/C ratio 

Sample#1 2000 380 20 114 ± 11 0.045 

Sample#2 4000 180 10 236 ± 24 0.059 

Sample#3 10000 120 5 317 ± 32 0.085 

Sample#4 30000 75 2 414 ± 41 0.110 

 

The AFM results shown in Figure 3.6c and d, demonstrate that both Sample#3 and #4 have 

narrower thickness distributions with respect to sample#1 and #2, e.g., centered at 5 nm and 2 

nm, respectively, (see Table 3.1). Accordingly, Sample#1 and #2 are mostly constituted by 

thick (20–50 layers) MLG flakes, while Sample#3 is composed of thinner MLG (10–15 

layers) and Sample#4 comprised of FLG flakes. As also presented in Table 3.1, the surface 

area (SA) data obtained from BET measurement clearly demonstrate an increment of their 
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values (SA from 114 ± 11 to 414 ± 41 m2 g−1) passing from Sample#1 to Sample#4, 

respectively.  

 

Figure 3.6. Morphological analysis of the four samples, (a) Representative TEM images and 

(b) lateral size distribution of graphene flakes (black, Sample #1), (red, Sample #2), (blue, 

Sample #3), (green, Sample #4) showing a decreasing average distribution with maxima at 

380 nm, 180 nm, 120 nm and 75 nm, respectively. The TEM scale bars are 100 nm. (c) 

Representative AFM images and (d) thickness distribution of the four as-produced samples. 

 

Sample #1 to Sample #4, the intensity of the oxygen peak on the O 1s region is increasing. 

The increase of oxygen presence in the smaller/thinner samples (Sample #3 and Sample #4), 

with respect to the larger/thicker ones (Sample #1 and Sample #2) is linked with the 

morphology of the flakes: Sample #3 and Sample #4 having more edges than Sample #1 and 

Sample #2 have consequently more active sites for the O attachment. The position of the XPS 

O 1s peak is at 532.1±0.2 eV, assigned to C-O moieties, in agreement with data reported in 

NIST XPS database (version 4.1). [281] Concerning the C 1s region, the four samples show 

similar C profile, characterized by an intense asymmetric peak centered at 284.5±0.2 eV. [3] 

It is worth to notice that C 1s profiles of the four samples differ in the 285~287 eV region, see 

inset in Figure 3.7b. In this region, the contribution of C-O moieties is expected (usually 

reported at 286.2 ± 0.2 eV). [282] In agreement with the O 1s results, the C signal in this 
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region is increasing from Sample #1 to Sample #4. The O/C ratio is calculated from XPS 

analysis, demonstrating that the increase in dimension of graphene flakes results in the 

increase in O/C ratio, see Table 3.1. 

 

Figure 3.7. XPS spectra of the four samples deposited onto a Cu substrate after normalization 

of the carbon signal. (a) O 1s peaks and (b) C 1s peaks. Inset: close up of the 285-287 eV 

range. 

The comparison of the Raman spectra of the as-prepared samples with that of graphite (Figure 

3.8a) illustrates the evolution of the G, D and 2D peaks. There is an increase of both D and D’ 

peaks intensity when passing from Sample #1 to Sample #4, which could be explained 

assuming an increase of defects, coupled with the reduction of FWHM(2D). The reduction of 

FWHM(2D) in turn indicates a decrease in the thickness of the flakes, [283] namely in the 

reduction of the number of layers of the initial graphite flakes. To corroborate these data, a 

statistical analysis is carried out. Figure 3.8b shows that the FWHM(2D) varies from 71 to 89 

cm-1 (Sample #1), 65 to 80 cm-1 (Sample #2), 65 to 78 cm-1 (Sample #3) and 65 to 75 cm-1 

(Sample #4), demonstrating the thickness reduction with the increase in centrifugal force.  

The distribution between the I(2D)/I(G) is reported in Figure 3.8c, with integral intensity 

ratios, which range from 0.53-0.59 for Sample #1, 0.55-0.62 for Sample #2, 0.59-0.65 for 

Sample #3 and 0.63-0.77 for Sample #4. The progressive increase of the ratios, combined 

with the narrowing of FWHM(2D), suggests that the thickness of the flakes effectively 

decreases with the increase of the centrifugal force. The statistical analysis shows that 

Samples #1, #2 and #3 are composed by MLG, while Sample #4 mostly contains FLG flakes, 

in agreement with AFM data reported in Figure 3.5c-d. Besides, the analysis of I(D)/I(G) as a 

function of FWHM(G), and Disp(G), shown in Figure 3.8d and Figure 3.9, respectively, 

allows to discriminate between disorder localized at the edges and disorder in the bulk. [265]  
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Figure 3.8. Representative Raman spectra excited at 532 nm excitation wavelength for (a) the 

four graphene-based samples. Statistical distribution of (b) FWHM(2D), (c) I(2D)/I(G) and 

(d) I(D)/I(G) vs. FWHM(G) are also shown. 

In the latter case, a higher I(D)/I(G) would correspond to higher FWHM(G) and dispersion of 

the G peak (Disp(G)). Figure 3.8d and Figure 3.9 show that I(D)/I(G) is not correlated with 

both FWHM(G) and Disp(G). Moreover, the Disp(G) values (Figure 3.9) for all the samples 

are lower than 0.1 cm-1 nm-1, e.g., the value expected for disordered carbons. [265] This is a 

proof that there is no in-plane defect caused during the exfoliation treatment, and the major 

contribution to the D peak comes from the sample edges, confirming that the LPE procedure 

does not introduce defects on the basal plane of the flakes. 
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Figure 3.9. I(D)/I(G) as a function of Disp(G). (a) Sample #1, (b) Sample #2, (c) Sample #3 

and (d) Sample #4. 

In summary, the characterizations of the four samples confirm the efficient SBS process to 

sort defect-free graphene flakes by lateral size (from 380 to 75 nm) and thickness (from MLG 

to 2 nm FLG). The obtained results are essential for the further explanations of the 

electrochemical behaviors of graphene anodes based on FLG and MLG flakes, which will be 

reported in chapter 4. 

3.2. Single wall carbon nanotubes 

The dispersion of SWNTs in IPA is firstly characterize by optical absorption spectroscopy to 

point out various properties of SWNTs dispersions such as transition energies, [284, 285] 

bundling, [286] and concentration. [287] The OAS measurements of SWNT samples are 

carried out in the 400-1300 nm range. This range is sufficient to cover the second and third 

excitonic transitions of semiconducting SWNTs (s-SWNTs), i.e., eh22 and eh33, respectively, 

and the first of the metallic SWNTs (m-SWNTs), i.e., M11. [288, 289] The assignment of the 

optical transitions is based on the empirical Kataura plot. [290] This gives values of optical 

transition frequencies versus chirality for SWNTs in IPA dispersions, and is more appropriate 

than Kataura plots theoretically derived from tight binding and other models. [291] The OAS 

of SWNTs (Figure 3.10a) shows the M11, the eh22 and eh33 regions. 

Raman spectroscopy can be used to probe SWNTs structure within dispersions, see Figure 

3.10b. In the low frequency region, the Radial Breathing Modes (RBMs) are observed. [292] 
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Their position, Pos(RBM), is inversely related to the SWNTs diameter, d, [293-295] as given 

by Equation 3.2: 

                                                            Pos(RBM)=
C1

d
+C2                                   (3.2) 

Combining Pos(RBM), with excitation wavelength and the Kataura plot, [288] it is, in 

principle, possible to derive the SWNTs chirality. [296, 297] 

Matching the diameter with excitation wavelength in the Kataura plot also gives information 

on the semiconducting or metallic character. A variety of C1 and C2 have been proposed for 

this relation. [285, 286, 288, 297] Here, we use the C1=214.4 cm-1 nm and C2=18.7 cm-1, from 

Ref. [298]. These were derived by plotting the resonance energy as a function of inverse RBM 

frequency without additional assumptions. The results are validated by using the parameters 

proposed in Refs. [284, 287, 299] 

Raman spectroscopy also probes possible damage via the D peak. [283] The latter is due to 

the breathing modes of sp2 rings and requires a defect for its activation by double resonance. 

[266, 300] The typical Raman spectrum of SWNTs in the 1500-1600 cm-1 region consists of 

the G+ and G- bands. In s-SWNTs, they originate from the longitudinal (LO) and tangential 

(TO) modes, respectively, derived from the splitting of the E2g phonon of graphene at the 

Brillouin zone centre. [265, 301] The positions of the G+ and G- peaks, Pos(G+), Pos(G-), are 

diameter dependent and their separation increases with decreasing diameter. [302, 303] In m-

SWNTs, the assignment of the G+ and G- bands is the opposite, and the FWHM of the G- 

peak, FWHM(G-), is larger and Pos(G-) down-shifted with respect to the semiconducting 

counterpart. [292, 304] Thus, a wide, low frequency G- is a fingerprint of m-SWNTs. The 

absence of such a feature does not necessarily imply that only s-SWNTs are present, but could 

signify that m-SWNTs are off-resonance.  

Doping could also modify positions and FWHMs. [305, 306] In m-SWNTs, a Pos(G-) blue-

shift, accompanied by a FWHM(G-) decrease is observed with electron or hole doping. [271, 

307] In s-SWNTs, doping upshifts Pos(G+), but does not affect FWHM(G+). [290, 295] Thus, 

a large number of excitation wavelengths are necessary for a complete characterization of 

SWNTs. [262, 305] Nevertheless; useful information can be derived even with few excitation 

wavelengths. 
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Figure 3.10. (a) Absorption spectrum of SWNTs. The labels eh22, eh33 and M11 refer to the 

second and third semiconducting and the first metallic excitonic transition. The spectra are 

normalized for a clear visualization. (b) Raman spectrum of pristine SWNTs. (c) Bright-field 

TEM images of pristine SWNTs. 

The Raman spectra of the SWNTs in the RBM region reported in Figure 3.10b show a 

distribution in the 100–200 cm−1 range. This RBM range corresponds to SWNTs with ~1.37–

1.45nm diameter. The Raman spectra in the D and G region of SWNTs, show a weak D band 

(i.e., I(D)/I(G)~ 0.05), indicating a low number of defects, which could be linked with 

residual amorphous carbon from the synthesis process. [289, 291, 308] 

The morphology of SWNTs is analysed by TEM. As shown in Figure 3.10c, from the TEM 

image of pristine SWNTs sample, it is possible to see the SWNTs aggregated in bundles, 

having a length exceeding the micrometre. 

The characterizations of SWNTs provide the fundamental understanding about their physical 

properties, e.g., diameters, defects and types of SWNTs (metallic or semiconducting) so that 

we can apply SWNTs for the proper applications. In this thesis, the SWNTs are used not only 

to improve the electrical conductivity of MoO3/SWNTs electrode but also to buffer the 

volume change of MoO3 flakes during lithiation and de-lithiation. The detail information of 

MoO3/SWNTs electrodes will be provided in section 3.3. 

3.3. Molybdenum trioxide nanosheets and single wall carbon nanotube-bridged 

molybdenum oxide hybrid 

The synthesis of the MoO3/SWNTs hybrids for LIB anode starts with the solution processing 

of the two materials. The MoO3 flakes obtained by LPE of bulk MoO3, see section 2.1.3.3, are 

characterized by TEM and Raman spectroscopy. The as-produced MoO3 and SWNTs 

dispersions are then mixed to form hybrid structures of known weight percentage. The 

morphology of as-prepared MoO3/SWNTs hybrid is characterized by TEM. 
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The structural properties of MoO3 flakes are further carried out by Raman spectroscopy. As 

shown in Figure 3.11a, the Raman spectrum shows all typical peaks of MoO3 in the 100-1200 

cm-1 range. The peak at 995 cm-1 is attributed to terminal oxygen stretching mode (Mo=O) 

which results from unshared oxygen, [309] whereas the peak at 818 cm-1 is assigned to the 

intermediate bridging O–Mo–O bonds, [310] which results from corner-shared oxygens in 

common to two MoO6 octahedral. This peak shows a shift of 7 cm-1 with respect to other 

MoO3 reports. [311, 312] This shift is attributed to the coordination of oxygen atoms with 

other atoms e.g., hydrogen. [210, 310]  

 

Figure 3.11. (a) Raman spectrum of MoO3, (b) Bright-field TEM image of MoO3 flakes 

dispersed in IPA, (c) Raman spectrum of SWNTs, MoO3 flakes and MoO3/SWNTs hybrid and 

(d) Bright-field TEM image of MoO3/SWNTs hybrid dispersed in IPA. 

The peak at 666 cm-1 is assigned to Mo3–O stretching mode caused by edge-shared oxygen 

atoms. [310, 313] The peaks located in the 200 - 400 cm-1
 range are attributed to the bending 

modes of MoO3. [4] In particular, the peaks at 375 and 365 cm-1 are scissor modes of O–Mo–

O, the peak at 335 cm-1 is a bending mode of O–Mo–O, and the 283 cm-1 and 244 cm-1 peaks 

are due to the wagging and twisting modes of O=Mo=O, respectively. [310-313] Finally, the 

peak at 156 cm-1 is due to the translation of the ridged chains along the z axis. [314] The 

morphology of the as-produced MoO3 are analyzed by TEM. Figure 3.11b shows MoO3 

flakes with lateral sizes ranging from 50 to 300 nm. The Raman spectra of MoO3, SWNTs 

and MoO3/SWNTs samples are shown in Figure 3.11c. The spectra are normalized to the 

signal of G+ peak of the SWNTs. The spectrum of MoO3/SWNTs sample shows the 
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intensities of Raman peaks of MoO3 in the region of 200-1000 cm-1 decrease with respect to 

the G+ peak of the SWNTs due to their high Raman cross section. [315-317] The TEM image 

of hybrid MoO3/SWNTs sample (see Figure 3.11d), clearly shows the bundles of SWNTs 

acting as bridges to connect isolated MoO3 flakes, forming an interconnected network in the 

mixture material of MoO3/SWNTs. This structure is expected to bring the benefits of SWNTs 

to improve the electrical conductivity of electrode and prevent the volume change of MoO3. 

In short, the brief characterizations of morphology properties of MoO3 flakes and 

MoO3/SWNTs hybrid have shown the promising role of SWNTs in the hybrid structure. The 

network formed by SWNTs is expected to improve the electrical conductivity of electrode as 

well as to prevent the volume change of MoO3 flakes. Also, the LPE of bulk MoO3 is able to 

produce the MoO3 flakes with lateral size ranging from 50-300 nm, bringing the benefit of 

nanostructure for LIB anode (as mentioned in section 1.3). 

3.4. Molybdenum disulfide flakes and molybdenum disulfide/amorphous carbon hybrids 

3.4.1. Molybdenum disulfide flakes  

Similar to LPE graphene, NMP is found to be one of the most effective solvents for LPE of 

MoS2, [150, 248]. However, as mentioned in section 2.1.2, NMP shows issues related to 

environment and electrode fabrication, which can limit the development of LIB technology. 

In the case of MoS2, the exfoliation of bulk MoS2 in NMP results in the presence of 

superficial oxidized Mo species because the self-oxidation of NMP creates the formation of 

hydro peroxides, which oxidize MoS2. [239] These oxidized Mo species can change the 

composition of electrode materials, leading to side electrochemical reactions during the 

cycling of battery. To address these limitations and implement MoS2 flakes in the fabrication 

of LIB anode, the LPE of bulk MoS2 is carried out in an environmentally friendly and low-

b.p. solvent, e.g., IPA, see section 2.1.3.4.  

The TEM images (Figure 3.12a) and the statistical analysis of the size distribution (the inset 

in Figure 3.12a) indicate that the exfoliated MoS2 has lateral size mode of ~ 90 nm. The HR-

TEM (Figure 3.12b) reveals the presence of few-layer MoS2 flakes. The thickness of 

exfoliated MoS2 flakes is characterized by AFM, see Figure 3.12b and c. The thickness 

distribution of MoS2 flakes exfoliated in IPA peak at 3 nm, corresponding to ~ 4 stacked 

MoS2 layers, see Figure 3.12c. To probe the structural property of exfoliated MoS2, Raman 

spectroscopy is carried out on bulk and exfoliated MoS2. Figure 3.12e shows the Raman 

spectra of bulk MoS2, the two dominant peaks centered at ~ 379 cm-1 and 405 cm-1, 

corresponding to the E1
2g (in-plane vibration of Mo-S bonds) and A1g (out-plane vibration of 
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Mo-S bonds) modes, respectively. [318, 319] For the exfoliated MoS2, the E1
2g and A1g modes 

appear at ~ 382 cm−1 and 407 cm−1, respectively. The Raman shift differences between these 

two peaks are 26 and 25 cm-1 for bulk MoS2 and exfoliated samples, respectively. [319-321] 

The decrease in MoS2 layers is associated to the red-shift of the A1g peaks because the van der 

Waals force between two MoS2 layers facilitate the atom vibration. The E1
2g peak exhibits 

blue-shift due to the long-range coulombic interlayer interactions. Therefore, Raman shift 

difference between E1
2g and A1g peaks in the case of MoS2 (25 cm-1) is lower than that of bulk 

MoS2, suggesting the decrease in number of MoS2 layers. [318, 319] Interestingly, the E1
2g 

and A1g peaks blue-shifts with respect to the bulk MoS2. This observation is similar to the 

cases of chemical-assisted exfoliation of MoS2, which is attributed to the adsorption of 

surfactants, intercalation agents or solvent molecules on the surface of MoS2 flakes. [322-324] 

The crystalline structures of bulk MoS2 and the exfoliated MoS2 are also studied by XRD 

analysis (Figure 3.12f). The diffraction patterns of the bulk MoS2 and exfoliated MoS2 show 

strong, sharp peaks at 2θ = 14.4o, 32.7o, 39.6o, 44.2o, 49.8o, 58.4o, 60.4o, which correspond to 

the (002), (100), (103), (006), (105), (110) and (008) planes of the hexagonal MoS2 phase, 

respectively (JCPDS 37–1492). [163, 325] In particular, the distinct diffraction peak (002) at 

2θ = 14.4o is characteristic of the ordered stacking of S-Mo-S layers, so the change in 

intensity of this peak can be associated with the thickness of MoS2. [218, 326] However, the 

exfoliation of bulk MoS2 does not affect the intensity of various peaks of MoS2 flakes, e.g, 

(100), (103), (105), (110) planes, which are not orientated along the c-axis. Thus, the change 

in intensity of (002) can be evaluated by calculating the intensity ratio of (002) and (100) 

diffraction peaks (I(002)/I(100)). [218, 327] The XRD patterns of both materials are normalized 

according to the (002) diffraction peak for the realization of the change in intensity of (002) 

diffraction peak of exfoliated MoS2 flakes with respect to bulk MoS2. The I(002)/I(100) ratios are 

calculated to be 4.94 and 2.08 for bulk MoS2 and exfoliated MoS2, respectively. It confirms 

the decrease in the crystallite size in the z direction (thickness). [172, 328, 329] Moreover, the 

size of crystallites is inversely proportional to the FWHM of the diffraction peaks according 

to Scherrer equation, see equation 3.3. [215, 221] The FWHM of (002) diffraction peak of 

exfoliated MoS2 (0.44o) is wider than that of bulk MoS2 (0.30o), suggesting that thickness of 

MoS2 flakes are decreased after the LPE process. [218, 221, 329] These indications from 

XRD patterns are in agreement with the TEM, HR-TEM, AFM and Raman analysis (Figure 

3.12a, b, c and d), confirming the LPE process provides smaller and thinner MoS2 flakes with 

respect to its bulk counterpart. 

                                                                τ= 
K λ

β cosθ
                                                 (3.3) 



59 
 

where τ is the mean size of the crystallites, K is the dimensionless shape factor (0.9), λ is the 

X-ray wavelength; β is the line broadening at FWHM and θ is the Bragg angle (in degrees). 
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Figure 3.12. (a) Transmission electron microscopy image of exfoliated MoS2; the inset shows 

lateral size distribution, (b) High resolution-TEM image of exfoliated MoS2, (c) Atomic force 

microscopy images of exfoliated MoS2 and (d) its corresponding thickness distribution, (e) 

Raman spectra of bulk and exfoliated MoS2, (f) X-ray diffraction patterns of bulk and 

exfoliated MoS2, high resolution-XPS spectra for (g) Mo 3d and (h) S 2p of bulk and 

exfoliated MoS2. 

The chemical content in MoS2 before and after LPE process is analyzed by the XPS. In the 

XPS spectra of Mo 3d in bulk and exfoliated MoS2 samples (Figure 3.12g), two peaks at 

229.5 and 232.7 eV, are assigned to 3d5/2 and Mo 3d3/2 binding energies of Mo4+, respectively, 

confirming the composition of MoS2. [215, 330] The peak at 227.2 eV is ascribed to the 2s 

binding energies of S atoms in the MoS2. [330, 331] The peak of Mo6+ is observed in both 

XPS spectra of bulk and exfoliated MoS2, the presence of which in case of bulk MoS2 can be 

caused by partial surface oxidation of bulk MoS2 by oxygen/water in air. Additionally, there 

is no change in intensity of the Mo6+ peaks in both XPS spectra of bulk and exfoliated MoS2, 

suggesting that the chemical structure of MoS2 is not affected by the LPE process. [239] 

Figure 3.12h shows the XPS spectra of S 2p bulk and exfoliated MoS2 samples, in which two 

peaks located at 162.5 and 163.7 eV correspond to 2p3/2 and 2p1/2 binding energies of S2- in 

MoS2, respectively.[215, 332] By quantitative analysis of the XPS data over binding energy 

regions of Mo 3d and S 2p in both bulk and exfoliated MoS2 samples, the Mo:S ratios in the 

two samples are estimated to be 1:1.9. This result indicates that the influence of the 

exfoliation process on the stoichiometry MoS2 is negligible.  

3.4.2. Molybdenum disulfide/amorphous carbon hybrids 

As reported in section 2.2.2, the MoS2/PAA mixtures are formed by solution mixing of the 

exfoliated MoS2 flakes and PAA in IPA. The MoS2/C samples are formed by a thermal 

decomposition process of PAA. The MoS2/C powders named as MoS2/C-1, MoS2/C-2, and 

MoS2/C-3 corresponding to the different weight ratios of MoS2/PAA as 1:1, 1:2 and 1:4, 

respectively. 

The electrical conductivity and thickness of the carbon network are adjusted by either tuning 

the carbon source content, or the annealing temperature and time. [333] The amount of carbon 

in MoS2/C samples is quantified by TGA in air. As shown in Figure 3.13a, the derivative 

weight curve of MoS2 sample (red dash-curve) shows the first weight loss mainly occurring 

from ~ 350oC to 470oC, which is attributed to oxidation of MoS2 to MoO3. [334] Thus, the 

weight loss of MoS2 is calculated ~ 11.2 wt%. The second weight loss at ~ 760 °C is 

attributed to the sublimation of MoO3. [335]  For the MoS2/C samples, the derivative curves 
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show a peak at ~ 360°C corresponding to the first weight loss that is caused by the oxidation 

of MoS2 to MoO3. [335, 336] The second peak at ~ 420 °C is attributed to the combustion of 

carbon to form CO2. [327, 337] The weight loss of these two processes is calculated 

approximately ~ 21.3, 27.3 and 41.1 wt% for the MoS2/C-1, MoS2/C-2, MoS2/C-3 sample, 

respectively. Therefore, the carbon contents in MoS2/C-1, MoS2/C-2, and MoS2/C-3 samples 

are estimated to be ~ 10.1, 16.1 and 29.9 wt% by subtracting the first weight loss of MoS2 

from the total weight loss of MoS2 sample, see Table 3.2 for details. The weight loss of 

MoS2/C samples at ~ 730°C is attributed to the sublimation of MoO3. 

The structure of the MoS2/C samples is further investigated by XRD and Raman 

measurements. Figure 3.13b shows the XRD patterns of the exfoliated MoS2 and MoS2/C 

samples, all the diffraction peaks are normalized according to (002) peak. The typical 

diffraction peaks of hexagonal MoS2 phase are detected in the XRD patterns of MoS2/C 

samples, suggesting the preservation of MoS2 phase after the annealing process. The (002) 

diffraction peak is representative for the preferential orientation of MoS2 layers along the z 

axis. The intensities of the (100), (103), (105) and (110) diffraction peaks significantly 

increase with the rise of carbon content. This indicates that the incorporation of amorphous 

carbon creates more disordered orientations of MoS2 flakes, as reported in literatures. [163, 

334, 337] In addition, there is no diffraction peak related to graphitic carbon, demonstrating 

that the carbon has amorphous nature. [163, 327] As shown in the Raman spectra of the MoS2 

and MoS2/C samples (Figure 3.13c), the characteristic peaks of MoS2 (E1
2g and A1g) are 

observed in all samples and there are no shifts of these peaks in MoS2/C with respect to the 

starting MoS2 sample. These results suggest that the presence of carbon neither affect the 

crystalline structure of MoS2, nor induces defects in the flakes. [163, 337] Compared to MoS2 

sample, the Raman spectra of MoS2/C samples show two additional peaks at ~1360 and 

~1599 cm-1 corresponding to the D band and G band of carbon materials, respectively. The D 

band is attributed to A1g breathing mode of sp3-hybridized disordered carbon or defective 

graphitic carbon, whereas the G band is associated with E2g stretching mode of the sp2-

hybridized graphitic carbon. [338] The presence of D and G band features the formation of 

amorphous carbon in MoS2/C samples. [168, 169] To provide further insight into the 

morphology and structure of the amorphous carbon and MoS2 flakes, HR-TEM measurement 

is performed. From HR-TEM images (Figure 3.13d, e and f), the interlayer distance of MoS2 

layers in MoS2/C samples is ~ 0.64 nm, having similar value to the one of the exfoliated MoS2 

sample (Figure 3.12b). Also, the amorphous phase of carbon is observed in HR-TEM images 

of MoS2/C samples. The HR-TEM images show that the thickness of carbon layer of MoS2/C-

1 (~ 0.8 nm) is smaller than that on MoS2/C-2 (~ 2.4 nm) and MoS2/C-3 (~ 13.8 nm). 
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Moreover, the carbon layer in MoS2/C-1 sample does not cover completely the MoS2 flakes 

due to the insufficient amount of initial PAA.  

 

Figure 3.13. (a) TGA and Derivative Weight curves, (b) X-ray diffraction patterns, (c) Raman 

spectra at 514.5 nm excitation wavelength exfoliated MoS2, MoS2/C-1, MoS2/C-2 and 

MoS2/C-3 samples. High resolution-TEM images of (d) MoS2/C-1, (e) MoS2/C-2 and (f) 

MoS2/C-3 samples. 

Table 3.2. Calculation of wt% of carbon based on TGA measurement 

Samples 
Wt% of 

MoS
2
 : PAA 

Mass loss of Sulfur 

and Carbon (%) 

Mass of 

carbon (%) 

MoS
2
/C-1 1 : 1 21.22 10.00 

MoS
2
/C-2 1 : 2 27.33 16.11 
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MoS
2
/C-3 1 : 4 41.08 29.86 

In conclusion, the characterization of exfoliated MoS2 flakes confirm that the LPE process is 

able to produce the nano-sized MoS2 flakes (lateral size mode of ~ 90 nm) without any 

change in the structural phase and chemical composition. Moreover, the characterizations of 

MoS2/C hybrids reveal the important information about the correlation between carbon 

content and the thickness of carbon layer in the MoS2/C hybrid. The obtained results 

contribute to the further understanding of the electrochemical properties of MoS2 and MoS2/C 

electrodes in chapter 5. 

3.5. Few-layer black phosphorous flakes  

3.5.1. Solvent analysis 

In order to exfoliate and stabilize BP in a solvent, the Gibbs free energy of the mixture 

solvent/layered material must be minimized. [188, 241] This condition can be endorsed if the 

γ of the solvent is equivalent to the surface free energy of the material: [241]  

                                                                  γ=ESurface
Solvent -TSSurface     

Solvent
                                     (3.4)       

in which E is the solvent surface energy, T is the absolute temperature and S is the solvent 

surface entropy (which generally takes a value of 10-3 J m-2 K-1 [241, 339, 340]). Moreover, 

the matching of the Hansen or Hildebrand parameters of the solvent with the ones of the 

layered material facilitates the exfoliation process. [341-343] The Hildebrand parameter (𝛿𝑇) 

is widely used in polymer science, and is defined as the square root of the cohesive energy 

density: [344, 345] 

                                                                           δT=√
∆Hv-RT

Vm

                                                 (3.5) 

in which ∆𝐻𝑣 is the enthalpy of vaporization, R is the ideal gas constant, and 𝑉𝑚 the molar 

volume. The Hildebrand parameter is used to evaluate the solubility or “dispersibility” of a 

material in a known solvent. [346, 347] However, in some specific cases, the Hildebrand 

parameter is not sufficient to describe and evaluate the dispersability of a material in a 

solvent. For example, the Hildebrand parameter of graphene is ̴ 23 MPa1/2, [348] according to 

the solubility theory. A solvent with this 𝛿𝑇 value, e.g. IPA with 𝛿𝑇 ≈ 23.8, [341] should form 

a stable dispersion of graphene which, however, has not been experimentally demonstrated. 

The reason lies in the fact that the Hildebrand parameter does not consider the hydrogen 

bonding and polar interactions. [341] In contrast, the Hansen solubility parameter splits the 
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cohesive energy (𝛿𝑇
2) into three components: the polar contribution (𝛿𝑝), the dispersive 

component (𝛿𝑑) and the hydrogen-bonding (𝛿ℎ) [341] 

                                                                        δT
2  = δd

2
+δp

2
+δh

2
                                                     (3.6) 

The γ, Hildebrand and Hansen parameters of the majority of solvents are reported in 

literature.  [341] In contrast, the surface energy and the Hildebrand and Hansen parameters of 

the materials that are under consideration need an experimental estimation. A common way to 

obtain these data is to disperse the material in different solvents with a known γ, Hildebrand 

and Hansen parameters. The dispersed material is quantified either directly by evaporating the 

solvent and weighting the solid fraction, or indirectly by measuring the optical extinction of 

the material dispersed in the supernatant. Finally, when the solvent parameter value, e.g. the 

Hildebrand parameter, is plotted against the optical extinction, the maximum of the data 

distribution indicates the Hildebrand parameter of the dispersed material. The same analysis 

can be performed to estimate the Hansen parameters or to obtain the surface energy (see 

Equation 3.4).  

Following this approach, the exfoliation of BP in different solvents (see section 2.1.3.4) is 

tested, most of which had been previously used for the LPE of other layered crystals. [188, 

241] Subsequently, the known values of γ and the Hansen and Hildebrand solubility 

parameters of the solvents (see Table 3.3) as well as the optical extinction of BP dispersed on 

each solvent allow estimating the surface energy, and the Hansen and Hildebrand parameters 

of the exfoliated BP flakes. 

Table 3.3. List of solvents with their corresponding surface tension, Hildebrand and Hansen 

parameters, and boiling points 

Solvent 

Surface 

Tension 

(mNm-1) 

Hildebrand 

parameter 

(MPa1/2) 

Hansen 

parameter. 

Dispersive 

force 

(MPa1/2) 

Hansen 

parameter. 

Polar force 

(MPa1/2) 

Hansen 

parameter. 

Hydrogen 

bonding 

force 

(MPa1/2) 

Boiling 

point 

(°C) 

Acetone 22.2 19.9 15.5 10.4 7.0 56.0 

Toluene 28.4 18.2 18.0 1.4 2.0 110.6 

Chloroform 25.8 18.9 17.8 3.1 5.7 61.2 

2-Propanol 20.6 23.6 15.8 6.1 16.4 82.6 

Trichloroethylene 28.7 19.0 18.0 3.1 5.3 87.2 
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Methanol 21.8 29.8 15.1 12.3 22.5 64.7 

Ethylene glycol 47.0 33.0 17.0 11.0 26.0 197.3 

Acetonitrile 27.7 24.4 15.3 18.0 6.1 82.0 

Ethanol 21.1 26.5 15.8 8.8 19.4 78.4 

n-Hexane 18.7 14.9 14.9 0.0 0.0 68.0 

N-Methyl-2-

pyrrolidone 
40.1 23.0 18.0 12.3 7.2 202.0 

Dimethylfor-

mamide 
37.1 24.9 17.4 13.7 11.3 153.0 

Diethyl carbonate 28.1 18.7 15.5 3.9 9.7 144.7 

N-Cyclohexyl-2-

pyrrolidone 
43.2 20.5 18.2 6.8 6.5 284.0 

Figure 3.14 shows the OES of BP flakes in 14 different solvents. By taking the value of the 

extinction at 680 nm of the dispersion in different solvents, and plotting them against the 

Hildebrand parameters and γ of each solvent, it is possible to estimate the Hildebrand 

parameter and γ of the dispersed material, respectively.  

 

Figure 3.14. Optical extinction spectra of BP after LPE in different solvents. 

Figure 3.15a and b show the solvent/BP dispersability analysis in terms of the Hildebrand 

parameter and γ, respectively. The dot distribution in Figure 3.15a fits a curve that peaks at a 

value close to 21 MPa1/2. This value indicates the Hildebrand parameter of the BP, [343-345] 

which is in agreement with the previously report. [349] The data distribution in Figure 3.15b 

shows that the solvents that are able to exfoliate bulk BP have a γ in the range of 25-40 mNm-

1. By applying equation 3.4, these values give a BP surface energy in the range of 50-65 mJ m-
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2. The Hansen parameters of BP, shown in Figure 3.15c, d and e, provide 𝛿𝑝, 𝛿ℎ and 𝛿𝑑 values 

in the range of 5-12 MPa1/2, 5-10 MPa1/2 and 15-18 MPa1/2, respectively. This means that a 

solvent with these Hansen parameters should be able to exfoliate and suspend the FL-BP. In 

summary, the solvent analysis (Figure 3.14 and 3.15) demonstrates that from the selected 

solvent, seven solvents are able to exfoliate/disperse BP: CHP, NMP, DMF, diethyl-carbonate, 

acetonitrile, trichloroethylene and acetone. In particular, three of these solvents have a low-

b.p. (< 100 °C), i.e. trichloroethylene, acetonitrile and acetone, from which acetone the only 

non-toxic solvent is (Health code ≤ 1 NFPA704). [231] Thus, in the following part of this 

section, the exfoliated flakes in acetone and in CHP are fully characterized, the latter being 

used as a reference solvent. 

 

Figure 3.15. The extinction coefficient of BP dispersed in different solvents after the LPE 

process, plotted as a function of (a) Hildebrand parameter, and (b) surface tension (lower 

axis) and surface energy (upper axis). Dots represent the low/non-toxic solvents (Health code 

≤ 1 NFPA704), crosses denote the highly toxic solvents ((Health code ≥ 2 NFPA704). Dots 

and crosses with colours from blue to light-green represent the solvents with b.p. < 100° C, 

while the ones from turquoise to orange represents solvents with b.p. > 100° C. Estimation of 

the Hansen parameters of FL-BP, giving approximated parameters of (c) dispersive force: 

15-18 MPa1/2; (d) polar force: 5-12 MPa1/2 and (e) hydrogen bonding force: 5-10 MPa1/2. 
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Figure 3.16a shows vials with the BP exfoliated in CHP (vial on the left) and the BP 

exfoliated in acetone at different dilution ratios (from the second left to right: no-dilution, 

40%, 30%, 20%, 10% and 5%). Their corresponding extinction spectra are reported in Figure 

3.16b, with the extinction coefficient for BP flakes dispersed in acetone being shown as an 

inset. The slope of this curve indicates that the extinction coefficient is 600 L g−1 m−1.  

There is discrepancy between the extinction coefficient measured in this work and the 

previous values reported in literature, see Table 3.4. This difference is due to the diverse 

particle size distributions (thickness/lateral size), the refraction indexes of the solvents, and 

the wavelength at which the measurement is carried out. [350] The concentration of the FL-

BP flakes in CHP (FL-BPCHP) is obtained using extinction coefficient at 

465nm = 1500 L g−1 m−1, [235] attaining 0.6 g L−1, and the concentration of BP flakes in 

acetone is obtained with the estimated extinction coefficient at 660nm = 600 L g−1 m−1, 

indicating a concentration of 0.35 g L−1. 

 

Figure 3.16. (a) Photograph of the FL-BP dispersions in CHP (first from the left) and acetone 

at different concentrations (from the second left to right). (b) Extinction spectra of the FL-BP 

dispersions in acetone at different concentrations, in different blue tones, and FL-BP 

dispersions in CHP, in orange. The inset shows the calibration curve according to the Beer-

Lambert law, yielding an extinction coefficient of ~600 L g−1m−1, at 660 nm.  

Table 3.4. Reported extinction coefficients for liquid phase exfoliated FL-BP in diverse 

solvents. 

Solvent 
Thickness 

(nm) 

Lateral size 

(nm) 

Wavelength 

(nm) 

Extinction coefficient 

(L g-1m-1) 
Ref. 

DMF 10 200* 1176 4819 [234] 

DMSO 20 400* 1176 5373 [234] 



68 
 

NMP 10 100 660 263 [351] 

H2O 5 100 660 209 [352] 

CHP 6 100 465 1500§ [235] 

Acetone 5 30 660 600 This work 

 

* Lateral size estimated by dynamic light scattering. § Value of absorption coefficient. 

3.5.2. Morphological characterization of BP flakes in CHP and acetone 

Raman spectroscopy gives important information about the vibrational modes of exfoliated 

crystals. The Raman spectra of BP consists of three peaks, one out-of-plane mode (Ag
1
, located 

at 365 cm−1) and two in-plane modes (Ag
2
 and B2g, located at 471 cm−1 and 440 cm−1 

respectively, Figure 3.17). [353, 354] The positions and the intensity ratios between these 

peaks change depending on the T, [355] oxidation, [356, 357]  strain, [358, 359] and number of 

layers. [352, 360]  

 

Figure 3.17. (a) Scheme of the FL-BP Raman active modes. (b) Raman spectra of the Bulk BP 

(dark yellow line), of the FL-BP cast from a CHP dispersion (orange line) and of FL-BP cast 

from a dispersion in acetone (blue line). 

Figure 3.17b shows the Raman spectra of the starting bulk material (dark yellow), the BP 

exfoliated in CHP (orange) and the one in acetone (blue). The exfoliated samples display Ag
1
 

at ~362.0 cm−1, B2g at ~434 cm−1 and Ag
2  at ~467 cm−1, which is consistent with previous 

studies on liquid phase exfoliated BP, obtaining FL-BP. [235, 351] The Raman spectra on both 

samples, compared with the one of bulk material, suggest that the LPE process does not 

damage the BP structure and the number of layers is reduced with respect to bulk BP. [357] 
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The TEM characterization provides a detailed insight into the morphology and structure of the 

exfoliated BP flakes. The lateral size distribution analysis indicates that the FL-BP flakes 

exfoliated in acetone are smaller, with a lateral size of 30 nm (Figure 3.18a and 3.18b), 

compared with the ones exfoliated in CHP, which are 60 nm (Figure 3.18c and 3.18d). The 

FL-BP flakes thickness distribution, estimated by AFM analysis, indicates that the BP flakes 

exfoliated in acetone peak at 7 nm (~13 staked phosphorene layers, Figure 3.18e and f), while 

the ones in CHP peak at 8.1 nm (~16 staked phosphorene layers, Figure 3.18g and h). The 

TEM and AFM analysis indicates that FL-BP can be produced either using CHP or acetone. 

Figures 3.19a and 3.19f report the STEM analysis of FL-BP produced in acetone and CHP 

(FL-BPacetone and FL-BPCHP, respectively). The compositional mapping by EDS, (Figure 3 b-d 

and g-i) shows that flakes are composed of P with no appreciable presence of O. Moreover, 

after the FL-BPacetone and FL-BPCHP production, both samples retained the crystal structure of 

FL-BP, as shown by HRTEM images in Figs. 3.19e and j. 
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Figure 3.18. Transmission electron microscopy of FL-BP in (a) acetone and (c) CHP, and 

their corresponding lateral size distributions (b and d). Atomic force microscopy images of 

(e) FL-BPacetone and (g) FL-BPCHP, and (f and h) their corresponding thickness distributions.  

The structural analysis of the exfoliated flakes is a challenging task due to the crystalline 

degradation of the thinnest flakes upon exposure to ambient conditions. [357] The degradation 

of FL-BP flakes is due to the presence of oxygen groups favouring the formation of PO 

groups. [228, 234, 235] In the case of LPE–BP, it has been reported that CHP and NMP form 

solvation shells adjacent to the BP surface, which prevents oxidation. [235] 



71 
 

 

Figure 3.19. (a) STEM image of FL-BPacetone sheets. (b) STEM image of a selected FL-

BPacetone sheet and corresponding d) EDS maps showing the distribution of P (c) and O (d). e) 

HRTEM image of an FL-BPacetone sheet oriented in its 010 axis with the FT reported as an 

inset. (f) STEM image of several overlapping FL-BPCHP sheets, g) STEM image of an FL-

BPCHP sheet with the EDS maps showing the distribution of P (h) and O (i). (j) HRTEM of the 

FL-BPCHP sheet in the 010 orientation with the FT as an inset. 

In light of this, an ageing study comparing FL-BPacetone with FL-BPCHP is performed. Electron 

energy loss spectroscopy (EELS) analysis is performed to determine the chemical bonding in 

the samples, at different storage times during a three months period. The comparison of the 

EELS collected from the flakes after different storage times in CHP (Figure 3.20a) and in 

acetone (Figure 3.20b) indicates that both samples undergo gradual oxidation over a three 

months period following the exfoliation process. This is evident from the rise of the peak at 

~136 eV, in addition to the P L2,3-edge at ~130 eV (labelled as P0) which corresponds to 

elemental P (Figure 3.20a and b). The peak at ~136 eV (labelled as PXOY) has previously 

been attributed to oxidation of BP flakes [227, 361, 362] and is also a dominant feature in the 

P L2,3-edge from P2O5. [227, 361, 362]  The corresponding EEL spectra focused on the 

oxygen K-edge region (Figure 3.20c) from the two samples following more than three months 

of ageing, exhibit weak but distinguishable signals associated with the presence of oxygen 

(arrowed). In contrast, no clear signal in the same energy range is observed in the spectra 

from the as-exfoliated samples.  
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Figure 3.20. The EELS characterization of the FL-BP degradation in acetone and in CHP. 

EEL spectra exhibiting the phosphorus L-edge, collected from the FL-BP flakes stored in (a) 

CHP and in (b) acetone for different time, indicated in the graphs, following the exfoliation in 

the respective solvents. An EEL spectrum from the flakes stored in air for 75 days following 

the exfoliation in acetone is included for comparison in (b). The P L2,3-edge at ~130 eV 

corresponds to elemental P (P0), while the appearance of this edge at higher energies 

indicates that P is in a higher oxidation state. The additional peak observed here at ~136 eV 

has been attributed to oxidation of FL-BP flakes, [227, 361, 362]  hence it is labelled PXOY. 

(c) EEL spectra in the oxygen K-edge region collected from the FL-BP flakes stored in CHP 

and in acetone for 100 and 107 days, respectively. The oxygen K-edge signal from the flakes 

after storage in the respective solvents is considerably weaker than the oxygen signal from the 

acetone-exfoliated flakes stored in air for 75 days, included for comparison in (c). (d) 

Evolution of the intensity ratio of the PXOY to P0 signals in the EEL spectra collected after 

different storage times in CHP (blue circles) and in acetone (orange circles). Additional data 

from the CHP-exfoliated sample stored in air up to two weeks are also included for 

comparison in (d) (open blue circles). Each data point is an average of six measurements. The 

dashes lines are power-low fits to the experimental data points.  
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Although no significant differences are immediately visible between the EEL spectra from the 

two samples after comparable storage times in their respective solvents, the intensity ratio of 

the PXOY signal at 136 eV versus the P0 signal at 130 eV, plotted in Figure 3.20d, is slightly 

but consistently higher in the spectra collected from the FL-BPCHP over the initial two months. 

After more than three months of storage (~100 days of storage in the respective solvents), 

both samples reach a similar level of oxidation (1.52 PXOY to P0 ratio, Figure 3.20d). The rate 

of oxidation of the FL-BP in both solvents is nevertheless significantly lower than in air 

(additional data points from the FL-BPCHP left in air for two weeks are included for 

comparison; light blue circles in Figure 3.20 d). This is evident from the prominent oxygen K-

edge in the spectrum from the acetone-exfoliated sample left in air for 75 days (the topmost 

spectrum in Figure 3.20c) compared to the oxygen signals from flakes stored in the two 

solvent for more than three months.  

The FL-BP flakes exposed to air in the present work retained their crystalline structure and 

most of the phosphorous in the elemental form within the initial couple of weeks, however the 

prolonged exposure to air gradually lead to their oxidation and structural degradation. The 

EEL spectrum from the acetone-exfoliated sample left in air for 75 days included in Figure 

3.20b (green line) indicates a chemical shift from 130 eV to ~136 eV and exhibits additional 

features at higher energies, both consistent with the formation of phosphorus oxide. [227, 361, 

362]  The oxidation is accompanied by a significant structural transformation. What are 

initially fine crystalline FL-BP flakes in aggregates (Figure 3.21a), after exposure to air for 75 

days transformed into amorphous clusters (Figure 3.21b), similar to droplet-like features 

reported previously. [227, 361-363] The compositional analysis based on EELS indicates that 

the composition of the amorphous clusters is approximately P54O46 (expressed in at%; Figure 

3.21c). The compositional analysis is based on the P L-edge found here at 136 eV and O K-

edge at ~532 eV, both extracted from the raw spectra by removing the background fitted 

according to a power law model and using the Hartree-Slater model for the cross-section 

calculation.     

After 12 weeks of aging time, both FL-BPacetone and FL-BPCHP samples retain their 

crystallinity, as is evident from the HRTEM image of an FL-BPacetone flake, shown in the 110 

zone axis (Figure 3.22a). However, the degradation of the flakes is visible as a surface-

localized amorphous coating which is 2 to 5 nm thick, as can be appreciated from the side-

view image of the flake reported in Figure 3.22b. 
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Figure 3.21.The degradation of the FL-BP flakes in air. (a) An aggregate of flakes after 

exfoliation in acetone and (b) a similar aggregate after exposure to air for 75 days. (c) An 

EEL spectrum from the flakes after oxidation in air for 75 days exhibiting prominent 

phosphorus and oxygen edges used for quantification. The carbon K-edge at 284 eV 

originates from the amorphous carbon TEM grid support. 

 

Figure 3.22. Study on the structural degradation of FL-BPacetone (a to d) and FL-BPCHP (e to 

h) flakes after 12 weeks of storage in the respective solvents. (a) A FL-BPacetone flake in the 

110 zone axis exhibiting the structure of bulk BP. The corresponding FT is shown as an inset 

to (a). (b) An 8 layered thick flake shown edge-on, in which the individual phosphorene 

monolayers of ~ 0.52 nm in thickness within the flake can be clearly resolved. The same flake 

also exhibits an amorphous layer on the surface (see yellow arrow) and the corresponding (c) 

oxygen and (d) phosphorus EFTEM elemental maps indicate that this layer is oxygen-rich. A 

thick amorphous layer is also present on the FL-BPCHP flakes (see arrows in e). The flake 

shown in (e) is in the 010 zone axis, with the corresponding FT shown as an inset. 

Additionally, a thinner (brighter in contrast in TEM image in (f)) flake overlapping the flake 

shown in (e) exhibits clear signs of structural degradation. The corresponding (g) oxygen and 

in particular (h) phosphorus EFTEM elemental maps clearly indicate the fragmentation of the 

thinner flake (yellow arrows in h). 
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The distance between two adjacent BP layers is 0.52 nm, [364] as is shown by the arrows (see 

Figure 3.22b). The compositional analysis of this flake (Figure 3.22c and d) by EFTEM 

indicates that the amorphous surface layer is oxygen-rich (Figure 3.22c), while the central 

crystalline part of the flake remains phosphorus-rich (Figure 3.22d). The presence of a thick 

amorphous layer is also evident on the FL-BPCHP (see arrows in Figure 3.22e). Fragmentation 

accompanying oxidation is also observed with thin flakes, such as the one shown in Fig 3.22f 

and g, overlapping the thicker (darker in contrast) flake. The degradation of the thinner flake 

(light contrast) is clearly visible from the EFTEM map of phosphorus (see arrows in Figure 

3.22h). 

The spectroscopic and morphological characterizations show that the exfoliation of bulk BP 

can be performed in acetone as successfully as in high-b.p. solvents such as CHP. Detailed 

structural and compositional characterization of the exfoliated material also demonstrates that 

the oxidation by aging FL- BPacetone is similar to aging FL-BPCHP. The exfoliation of BP in 

acetone is therefore an affordable alternative to the exfoliation process carried out exploiting 

high-b.p. and toxic solvents, offering a safe and sustainable route for the exfoliation, storage 

and deposition processes of FL-BP flakes.  

In conclusion, it is demonstrated the exfoliation of bulk black phosphorus with acetone, 

creating a new way to formulate functional inks to be exploited for the designing of few-

layers BP-based devices. The exfoliation of BP and its dispersion in 14 different solvents give 

us the possibility to evaluate the dispersability properties of few-layers BP. It has been 

estimated: (i) the surface energy to be in the range of 55-70 mJm-2; (ii) the Hildebrand 

parameter to be 21 MPa1/2 and (iii) the Hansen parameters to be 15-18 MPa1/2 for a dispersive 

force, 5-12 MPa1/2 for a polar force and 5-10 MPa1/2 for a hydrogen bonding force. Among the 

different trials, it has been found that exfoliation in acetone leads to exfoliated FL-BP flakes 

with average lateral size of 30 nm and thickness of 7 nm (corresponding to 13 layers). 

Additionally, The EELS and Raman spectroscopies demonstrates that the exfoliated BP flakes 

in acetone show an aging (oxidation and degradation) that is comparable with the one 

obtained by using high-b.p. solvents, e.g., CHP. These results will give an opportunity for the 

exploitation of FL-BP flakes in acetone as an active material for the realization of LIB anodes 

which will be reported in chapter 6. 
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Chapter 4:  

Application of graphene for lithium ion batteries 

4.1. Introduction  

Graphene flakes, obtained from the LPE of pristine graphite, represent an ideal yet not fully 

explored material platform for LIB anodes. [202] Besides all the properties of graphene that 

are beneficial for LIB applications, such as large surface to mass ratio (2600 m2/g),[192] high 

electrical conductivity, [193] and high mechanical strength, [194] the LPE graphene flakes 

have high crystallinity, [159] a key feature for promoting fast electron transport in the 

electrode. [129] Moreover, the high specific surface area [192] of graphene flakes could allow 

Li+ uptake on both basal planes and at the edges, providing more active sites for Li+ storage. 

[196] Thus, graphene flakes prepared by LPE of graphite are emerging as a promising anode 

material for LIB. [198] As mentioned in chapter 2, LPE exploited the ultra-sonication 

process to exfoliate 2D flakes from their bulk counterparts in a specific solvent, having the γ 

as close as to the surface energy of 2D flakes. [188, 365] So far, NMP has been considered as 

one of the most-effective solvents for the production of graphene flake via LPE because its γ 

is 41.2 mN m-1, which is close to graphene’s surface energy (46.7 mN m-1). (detailed 

discussion in section 2.1.2). However, NMP is not an environmentally friendly solvent. [249, 

250] Moreover, NMP has high b.p. (202°C), [3] therefore its evaporation process usually 

requires high temperature, (>150°C) [67, 249] coupled with high vacuum conditions to avoid 

the oxidation of the graphene flakes. [159, 249] These issues limit the LPE graphene based 

ink obtained in NMP for the application of energy conversion and storage devices. [159] Non-

toxic and low-b.p. solvents such as water [243, 366, 367] and some alcohols, [368] which 

would be crucial to develop a fully environmentally compatible deposition/coating process, 

[159, 249] require the addition of stabilizing agents, e.g., polymers or surfactants, [287, 367] 

for the optimal dispersion of the flakes. Unfortunately, the presence of such stabilizers in the 

ink compromises the graphene flake electrochemical properties once deposited onto the 

current collector. [272] A viable strategy to overcome the aforementioned issues relies in the 

exploitation of co-solvents, e.g., water/EtOH, [249, 369] and water/isopropanol, [251, 370] to 

tune the rheological properties of low-b.p. solvents for the formulation of graphene flake-

based inks. However, the concentration of the as-produced ink is still low (< 1 g L-1), [249, 

251] thus not ideal for applications where highly concentrated ink is needed, e.g., the 

production of battery electrodes. 
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Besides the issues on the development of novel and high-performance anode materials, 

advances in the electrode fabrication processes are also important. In fact, the electrode 

preparation [371-376] is time-consuming and expensive with a strong impact on the cost of 

the LIB technology. [377-379] Additionally, the composition and morphology of the electrode 

are critical for LIB operation, because both composition and morphological inhomogeneity 

can hinder the diffusion of Li+ throughout the electrode itself, resulting in a high charge 

transfer resistance of electrode materials during lithiation/de-lithation process. [380] Finally, 

the weight of the binder, being a material not involved in the lithiation/de-lithiation processes, 

has a negative effect on the electrochemical performance of the anode, limiting both the 

specific capacity and the energy density of LIBs. [381] For instance, PVdF is reported to 

swell, e.g., the PVdF binder in a Si battery has shown a 20% thickness change in the 

electrolyte during the charge/discharge process) [382] in contact with electrolytes based on 

carbonate solvents. This phenomenon causes solvent decomposition, resulting in capacity 

fading of LIBs during operation. [382-384] Moreover, PVdF requires the use of toxic and 

expensive organic solvents, coupling with extra steps to mix and combine with active 

materials to form a complete electrode material. [371, 385] In this regard, tremendous efforts 

have been made to develop binder-free electrodes for LIBs, [377] mostly exploiting the direct 

deposition of the active materials onto the current collectors. [371-374] However, most of the 

proposed methods such as electrophoretic deposition of hollow Co3O4, [371] sputtering of Ge 

embedded in carbon matrix, [372] CVD of CNT and Si nanowire, [373, 374] have not met the 

requirements in terms of scalability and low-cost production. Another route, e.g., vacuum 

filtration, has been reported as promising method for low-cost and mass production of the 

binder-free carbon-based anodes, without any current collector support substrate. 

Nevertheless, the anodes are still facing limitation of large irreversible capacity and low 

reversible capacity. For example, the binder-free SWNTs anode shows an irreversible 

capacity of 1000 mAh g-1, while the RGO and CNT/GO free-standing anodes show the 

capacity of 300 and 330 mAh g-1, respectively.  

Besides the issues of solvent and electrode fabrication, the performance of graphene-based 

LIBs is still controversial. In fact, graphene and its derivatives, such as GO [386-388] and 

RGO, [117, 160, 389] are widely investigated for the realization of LIB electrodes. Recently, 

RGO, GO and their hybrids/composites with electrochemically active material have been the 

most investigated materials as promising choices of anodes for LIB. [117, 160, 389-391] 

Although RGO can provide large initial capacity value (> 2000 mAh g-1), [392] it suffers 

large irreversible capacity and high voltage hysteresis upon lithiation/de-lithiation. This 

phenomena is due to the heteroatoms/functional groups, e.g., O- and H-containing in 
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functional groups, and the presence of defects, e.g., micro-pores, vacancies, etc., which 

diminish the conductivity and act as Li+ traps during lithiation/de-lithiation. [393, 394] In 

order to avoid such negative effects of the functional groups and defects, pristine graphene 

flakes produced by the LPE of graphite, [202] are a viable replacement for graphite, GO and 

RGO as anode active material. The anode composed by pristine SLG flakes have shown a 

promising specific capacity of 744 mAh g-1, with the assumption of Li+ adsorbed on both 

sides of graphene, forming a Li2C6 stoichiometry. [196] However, the Li+ storage is 

thermodynamically unstable in pristine SLG electrode during lithiation/de-lithiation, where 

only low Li+ occupancy levels can be achieved. [157, 395] In contrast, MLG has shown 

several improvements in terms of electrochemical and thermal stability within the LIBs 

operational temperature range (-20/60o C), [201, 396] as well as mechanical stability of the 

electrode.  [397] However, there are no considerable gains in specific capacity of MLG-based 

anode with respect to that of graphite anode. [5, 396] This raises a natural question. What 

about what lies in between? Is there a critical flakes size where both beneficial properties of 

graphite, e.g., low operating voltage, and graphene (high conductivity and short diffusion 

paths) are found? Is FLG a good active material for next-generation Li-ion batteries? Despite 

the fact that it is well accepted that dimensions (lateral size and thickness) of the flakes [202] 

as well as their edges, [198] are expected to play key roles on the Li+ storage mechanisms [36, 

44, 198, 202, 398] the link between these morphological properties, and electrochemical 

performances has not been established yet, neither for RGO, [159, 392, 399-402] nor with the 

less investigated un-functionalized flakes. 

This chapter presents the investigation on the electrochemical performance of binder-free 

single SLG/ FLG flakes based anode for LIB and the study on the role of graphene flake 

dimensionality on the electrochemical performance of anodes based on FLG and MLG flakes. 

The graphene flakes are obtained by LPE of graphite in NMP. A solvent exchange process is 

exploited to first remove the NMP and then to re-disperse the exfoliated SLG/FLG flakes in 

EtOH. The binder-free SLG/FLG flakes based anode is successful formed via a one-step 

fabrication of LIB anodes (drop-casting an environmentally friendly graphene flake-based ink 

on a Cu substrate at room temperature), without the addition of conductive additives. The 

anode is assembled in half-cell configuration, achieving a reversible specific capacity of 503 

mA h g-1 after 100 cycles. Moreover, the full LIB configuration using binder-free SLG/FLG 

flakes anode and commercial LNMO cathode, exhibits the reversible specific capacity of 

~100 mA h g-1. This process is able to avoid the conventional time-consuming preparation 

and deposition of the anode electrodes, promoting a novel strategy to produce graphene based 

electrodes in fast and efficient way. Additionally, the binder-free anodes based on FLG and 
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MLG flakes are fabricated to explored role of flake dimensionality on the lithiation/de-

lithiation processes and electrochemical properties. The electrochemical results show that 

decreasing graphene flake dimension (lateral size and thickness) leads to an increase of the 

initial specific capacity from ~590 to ~1270 mAhg−1 which is however linked with a 

significant increase of the irreversible capacity. Especially, the Li+ storage by adsorption is 

predominant compared with intercalation for the Li+ storage in the case of anodes composed 

of small flake size (< 100 nm). In this thesis, the study of the role of graphene flakes 

dimension on its Li+ storage ability provides insightful guidelines practical exploitation of 

graphene-based electrodes. 

4.2. Graphene-based binder-free anode for lithium ion batteries 

This section provides a protocol to design binder-free graphene-based anodes for LIBs, 

starting from LPE of pristine graphite, solvent exchange process and drop-casting, opening 

the way to the optimization of energy/power densities and lifetime environmentally friendly 

LIBs. Briefly, graphite is exfoliated in NMP via ultra-sonication process, [260, 403] 

producing a heterogeneous dispersion of thin/thick and small/large graphitic flakes. [159] The 

obtained dispersion is subsequently ultra-centrifuged (10000 rpm), exploiting the SBS 

process, [202, 261] result in an ink enriched in SLG and FLG flakes. A solvent exchange 

process is exploited to replace NMP with EtOH, in order to obtain an environmentally 

friendly graphene ink for the deposition onto the current collector (see section 2.1.3.1). 

Comparing the structural analysis by TEM and Raman (Figure 3.2a and b) characterizations 

of graphene flakes in both NMP and EtOH (see section 3.1.1), it is demonstrated that the 

solvent exchange process does not affect the structural and morphological properties of the 

graphene flakes. Then, the graphene-based ink in EtOH is drop-casted onto Cu substrate 

under air atmosphere at room temperature and then dried at 120°C and 10-3 bar for 30 min in a 

vacuum oven. The as-produced binder-free electrodes have a mass loading of SLG and FLG 

flakes of 1 mg. The film covers homogeneously the Cu substrate, both at macroscopic (Figure 

4.1a) and microscopic (Figure 4.1b) levels, with a thickness of 15 µm (inset to Figure 4.1b).  
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Figure 4.1. (a) Photograph of the Cu-supported SLG- and FLG-based electrode. (b) SEM 

image of the graphene electrode. The inset shows the thickness of the SLG- and FLG-based 

electrode measured by using a profilometer. 

The as-produced anode is also characterized by Raman spectroscopy in order to evaluate the 

quality of the flakes composing the electrode. Figure 4.2a shows typical Raman spectra of 

grapheme flakes (in EtOH) deposited onto the SiO2 substrate and binder-free graphene anode. 

Besides, Figure 4.2b exhibits no correlation in the distributions of the I(D)/I(G) vs. 

FWHM(G) in the both cases of graphene ink and graphene anode, indicating that no 

additional defects on SLG and FLG flakes are caused by the deposition process. [277, 404, 

405] Moreover, the 2D peak still shows a Lorentzian line-shape distinctly different from that 

of graphite. In fact, the statistical analysis of I(2D)/I(G) (Figure 4.2c) and Pos(2D) (Figure 

4.2d) of the as-prepared electrode indicates that the electrode is composed of a collection of 

SLG and FLG flakes,[202, 262] which, also if stacked together, are however electronically 

decoupled. 



81 
 

 

Figure 4.2. (a) Raman spectra of the graphene EtOH ink (red) and the graphene electrode 

(dark gray), (b) I(D)/I(G) ratios as a function of FWHM(G), and histograms of (c) I(2D)/I(G) 

and (d) Pos(2D). 

The anode based on SLG and FLG flakes are tested against metallic Li in a half-cell 

configuration. Figure 4.3a reports the CVs performed at a scan rate of 50 µV s-1, carried out to 

get a complete electrochemical response for the Li ion transfer. [406] The scan range is from 

1 V to 5 mV vs. Li/Li+, covering the formation of the SEI [407] and the lithiation/de-lithiation 

process for carbon materials. [408] The first CV scan shows a broad reduction peak with a 

maximum at 0.55 V and an onset at 0.8 V, which is associated with the SEI formation due to 

side reactions or the reduction of the electrolyte at the surface of the electrode. [407] The 

absence of this peak in the following scans indicates that the SEI formation is stable, which 

guarantees a good cycle life of the anode, without further decomposition reactions. [407] 

Additionally, there is a current increase (~20%) in the 0.1 – 0.3 V range passing from the 1st 

to the 5th cycle. This electrochemical behavior can be associated with a slow activation of the 

lithiation/de-lithiation processes that gradually enhance the capacity of the SLG/FLG-based 

anode over cycling. [396]  

The binder-free electrode based on SLG and FLG flakes shows a specific capacity of 503 mA 

h g-1 at a current density of 0.1 A g-1 after the 100th charge/discharge cycle in the range from 

50 mV to 3 V vs. Li/Li+ and a coulombic efficiency of 99.5% (Figure 4.3b). Moreover, the 

half-cell cycled at different current densities presents excellent charge/discharge cyclability as 

well. In fact, a specific capacity of 610 mA h g-1 is reached when the graphene-based anode is 
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cycled at 0.05 A g-1. Additionally, specific capacity values of 260 mA h g-1 and 150 mA h g-1 

have been reached after 20 cycles at current densities of 0.5 A g-1 and 1 A g-1, respectively. 

Figure 4.3b and c, presents the voltage profiles of the electrodes during the 1st, 10th, 50th and 

100th galvanostatic charge/discharge cycles. The latter are performed at a current density of 

0.1 A g-1 between 5 mV and 3 V vs. Li/Li+, in order to complete the lithiation/de-lithiation 

(charge/discharge) process in the SLG/FLG-based anode during each cycle. From the first 

voltage profile, the irreversible specific capacity is calculated to be 500 mA h g-1, which 

represents about half of the total charge capacity. Such a high irreversible charge capacity 

value is typical for graphene-based anodes and it is presumably due to the large surface area 

[195, 396] (325 m2 g-1, measured by BET) and edge reactivity of the SLG/FLG flakes 

compared to graphite-based anodes. [392]  

The voltage profiles show that more than 50% of the electrode capacity is delivered at a 

potential lower than 0.25 V vs. Li /Li+ with a flat plateau up to the 100th cycle (Figure 4.3c). 

Such a low potential is comparable to the values obtained using graphite (0 – 0.4 V vs. 

Li/Li+), leading to a high energy efficiency of batteries. [396] In order to understand the effect 

of voltage cut-off on both the specific capacity and coulombic efficiency of the graphene-

based anode, we tested the electrode cycled at two different cut-off voltages, one between 50 

mV and 2 V and the other one between 50 mV and 3 V. As shown in Figure 4.3d, the specific 

capacities of the electrode tested in these two different voltage ranges are similar, with a 

capacity loss lower than 5% for the first 50 cycles for both test conditions. Also the coulombic 

efficiency is quite similar, with a value >99% achieved after 8 and 5 cycles for the electrode 

cycled up to 2 V and 3 V, respectively. Moreover, the electrode cycled up to 2 V shows no 

gradual increase of the specific capacity upon cycling as instead shown by the electrode 

cycled up to 3 V. As mentioned before, this specific capacity increase is linked to the slow 

activation of the anode. [396] It indicates that a small quantity of irreversible capacity, which 

may be related to the edge effects of the graphene flakes, [202] requires high voltage (2 – 3 V) 

to be completed. 
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Figure 4.3. (a) Cyclic voltammetries at a scan rate of 50 µVs-1. (b) Specific capacity and 

Coulombic efficiency over charge/ discharge galvanostatic cycles between 50mV and 3V. The 

galvanostatic cycling at 0.1 A g-1 (triangles) is compared with the one at different current 

densities (diamond). (c) Voltage profile upon galvanostatic charge/discharge of graphene 

electrodes at 0.1 A g-1 between 50mV and 3V. (d) Specific capacity and Coulombic efficiency 

over galvanostatic cycles at current density of 0.1 A g-1 between 50 mV and 2 V (circle) and 

between 50 mV and 3 V (triangles), respectively. 

The binder-free SLG/FLG-based anode is further studied in LIB configuration, coupling it 

with a commercial cathode material, e.g., LNMO. The latter is considered as one of the most 

promising candidates in the development of high energy/power LIBs, [409, 410] thanks to its 

high theoretical specific capacity (146.7 mAh g-1) [411] and high working voltage (around 4.7 

V vs. Li/Li+). [412] Before the full LIB assembly, the pre-lithiation step is carried out on the 

anode to improve the working voltage and the energy density as well as to reduce the 

irreversible capacity loss, increasing the Li+ concentration of the electrolyte. [413] The 

aforementioned properties positively contribute to the cell cycling stability. [414] The reason 

behind the choice for the pre-lithiation process of the anode only for the full battery 

configuration and not for the half-cell configuration, relies on the fact that the LNMO cathode 

has limited Li+ source compared to the metallic Li foil (used for the half-cell configuration 

tests). [413] Thus, the LNMO cathode is not able to provide sufficient Li+ for the formation of 

SEI film without negatively affecting the cell cycling stability. [413] Moreover, in designing 

the battery, it is of paramount importance to reach an optimal balance of cathode and anode 
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electrodes both in term of weight and electrochemical properties. [413-415] The weight ratio 

we used in trying to optimize the anode/cathode balancing is 1/3.5, which takes into account 

the difference in specific capacity of the two electrodes. As shown in Figure 4.4a, the 

SLG/FLG-LNMO full battery operates at a high voltage (~ 4.5 V) with a voltage profile 

similar to the typical LNMO one, [411] confirming appreciable anode performance with a 

substantially constant working voltage lower than 0.20 V vs. Li/Li+. [412] The plot of the 

specific capacity as a function of the galvanostatic charge/discharge cycles (Figure 4.4b) 

shows a rather stable specific capacity of ~100 mAh g-1 with respect to the mass of LNMO, 

and a coulombic efficiency of ~ 99 % achieved after 5 cycles. A major drawback of the 

LNMO-based batteries is their capacity fade, [416, 417] which is caused by the 

decomposition of the electrolyte at the electrode/electrolyte interface at the high working 

voltage (~ 4.7 V). [416] The capacity and the stability of SLG-FLG/LNMO full battery are 

comparable to those of state of the art LNMO-based batteries. [418-421] Although further 

research needs to be done on the optimization of LNMO cathodes and electrolyte, the results 

obtained by using the binder-free SLG/FLG-based electrodes, both in half- and full-cell 

configuration, strongly encourage their exploitation as advanced and high performance anode 

in LIBs. 

 

Figure 4.4. (a) Voltage profile upon galvanostatic charge/ discharge of graphene/LNMO full 

battery. 10th, 20th and 30th cycle at 1 C (146 mA g-1 vs. LNMO). (b) Specific capacity and 

coulombic efficiency over charge/discharge galvanostatic cycles at 1 C between 3 V and 5 V 

of graphene/LNMO full battery.  

4.3. The influence of graphene flake morphology on electrochemical properties of 

graphene based anode in lithium ion batteries 

This section brings out the answers for the questions about the role of graphene flake 

morphology (i.e., lateral size and thickness) on the electrochemical properties of anodes based 

on FLG and MLG flakes, as mentioned in section 4.1. As reported in section 3.1.2, a set of 
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FLG and MLG flake dispersions (in NMP) are obtained and marked as Sample #1, #2, #3 and 

#4, corresponding to the lateral size (ranging from 75 to 380 nm) and thickness (from 2 to 20 

nm), see Figure 3.6. The Raman results of these samples in Figure 3.8 confirm that Samples 

#1, #2 and #3 are composed of MLGs, while Sample #4 mostly contains FLG. In order to 

meet the requirements of fast deposition and non-toxicity, [150, 249] the sediments of the four 

samples are collected and dispersed in EtOH, allowing the simple one-step fabrication of 

binder-free electrodes. [3] The electrodes do not contain any additional conductive carbon, 

e.g., carbon black, which is widely used in literature, [422] in order to avoid interfering with 

the electrochemical response of the graphene flakes, e.g., by contributing to the Li+ storage 

capacity. The graphene dispersions deposited onto the Cu substrates are characterized by 

SEM, see Figure 4.5.  

 

Figure 4.5. (a), (b), (c), (d) Low resolution SEM images and (e), (f), (g), (h) high resolution 

SEM images of Sample #1, #2, #3 and #4 deposited onto a Cu substrate, respectively. 
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The micrographs recorded at low magnification (Figure 4.5a, b, c and d), and representative 

for the whole area, testify the homogeneity of the binder-free electrodes, independently from 

the flake size. Higher magnification images (Figure 4.5e, f, g and h) reveal that, as the flake 

dimension decreases, the electrodes surface becomes more flat and compact, which from one 

hand could improve the electronic transport amongst the flakes, but, on the other hand, may 

not be beneficial for the lithium storage capacity and transport. The lateral sizes and thickness 

of the graphene flakes are expected to have a significant influence on their Li+ storage 

characteristics. [5, 195] The voltage profiles of Figure 4.6a show that upon the first lithiation, 

the specific capacity of the electrode increases from 591 mAh g-1 to 1267 mAh g-1 as the 

average lateral size and thickness of the flake decreases from Sample #1 to Sample #4. 

However, in the following opposite process, Li+ ions are released only to a certain extent, 

revealing a significant irreversible capacity, e.g., 40% for Sample #1. As the flakes get 

smaller in both lateral size and thickness, more amount of charge is irreversibly consumed in 

the first cycle, resulting in only 35% coulombic efficiency for Sample #4, see Figure 4.6a. 

Accordingly, the loss of capacity may be ascribed to the irreversible electrolyte 

decomposition process leading to the formation of a solid electrolyte interphase (SEI) on the 

electrode surface. As previously discussed, changes in dimensions naturally leads to changes 

in surface area and edge defects (see Table 3.1 and Figure 3.7), and thus in turn, of electrode 

reactivity. [423] In fact, as confirmed by the evident plateau evolving in all samples below 0.9 

V (Figure 4.6a), the charge associated to such irreversible process increases with decreasing 

flake sizes.  

 

From the 2nd cycle onward, the specific capacity of Sample #1 and Sample #2 rapidly 

stabilizes without considerable fade, setting on values of 341 and 366 mAh g-1, respectively, 

at the 20th cycle. The higher capacity provided by the smaller/thinner flakes appears to be 

partially lost upon cycling (Fig 6b). The flake size has a noticeable influence on the potential 

window in which the capacity is delivered. During lithiation and de-lithiation cycles, Samples 

#1 and Sample #2 provide more stable capacities, mainly delivered at low potentials in the 

0.005-0.2 V and 0.005-0.25 V range for lithiation and de-lithiation, respectively), compared to 

Samples #3 and Sample #4 (Figure 4.6b). As the flakes dimension decreases, larger 

contributions arise from the more positive potential range instead (namely, 0.2-3 V and 0.25-3 

V for lithiation and de-lithiation). Such behavior suggests that adsorption of Li+ (on the 

flakes’ surface or edges) is the mechanism primarily responsible for charge storage in small 

lateral size FLG flakes, [202, 394] whereas, intercalation of Li+ (in between the layers) is the 

main process occurring in MLG flakes. By analyzing the capacity evolution upon the first 20 
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cycles (see Figure 6b), the Li+ adsorption mechanism (between 0.2/0.25-3 V) appears to be 

rather stable, and does not affect the electrodes cyclability in the case of big flake size based 

anodes (Samples #1 and Sample #2). Differently, it is evident that the decay observed for 

small flakes arises, for the largest extent, from the low potential region (below 0.25/0.2 V). 

This suggests that Li intercalation in small size MLG (sample #3) and FLG (sample #4) is 

somehow less reversible than in larger graphene flakes. 

 

Figure 4.6. (a) Voltage profiles ( 1st cycle and 20th cycle) and (b) Voltage profiles evolution (in 

the cycle range 2-20) of the electrodes based on Sample #1, Sample #2, Sample #3, and 

Sample #4 (current density: 0.1 A g-1). 

In order to get further understanding in the Li+ storage process in FLG- and MLG-based 

electrodes, a differential capacity analysis is carried out in the 0.005-0.3 V potential range, see 

Figure 4.7. For Samples #1 and #2 the Li+ storage process evolves with a series of very sharp 

peaks, demonstrating fast kinetics and high reversibility. As extensively reported in literature, 
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[424-426] the voltage peak sequence may be explained with the co-existence of phases, 

similar to those observed for graphite (four-stage or staging mechanism). [425] From the 

more diluted phase (>IV) to the fully lithiated one (I), all the main intercalation stages can be 

clearly detected in the samples with larger flakes (Samples #1 and #2). The different 

lithiation/de-lithiation stages are still detectable in Sample #3, however with weaker peaks for 

the IV to III and III to II stage-transitions. The former transition almost completely vanishes 

by further reducing the dimension of the flakes, e.g., for Sample #4, suggesting that the 

majority of the flakes possesses a thickness lower than six layers, as indeed confirmed by the 

AFM (Figure 3.6 c and d) and Raman results (see Figure 3.8). The good news here is that the 

polarization associated with each intercalation stage, which is a kinetic parameter associated 

to the energy required to expand the van der Waals gap across two adjacent graphene layers 

by contrasting the repulsive interactions between guest species, [425] is not affected by the 

flake size. However, while large and thick flakes (Samples #1 and #2) show stable and highly 

reversible intercalation behavior, Samples #3 and #4 display a loss of such feature upon the 

first 20 cycles, which accounts for the aforementioned capacity fading (see Figure 4.6).  

 

Figure 4.7. Differential capacity plots for the 1st (dash) and 20th (solid) cycle (current rate: 

0.1 Ag−1) of the electrodes based on Sample #1, Sample #2, Sample #3, and Sample #4. 

Small lateral size MLG- and FLG-flakes (Samples #3 and #4) would be expected to enable 

faster Li+ diffusion due to the shorter diffusion lengths for ion transport compared to the large 

lateral size flakes. However, the rate capability test in Figure 4.8a shows that the capacities of 

Samples#3 and #4 are inferior to those of Samples#1 and #2 under all different current loads 

(0.1 to 10 A g-1). Noteworthy, Samples#1 and #2 provide good capacity retention up to 2 A 

g−1 with respect to Samples #3 and #4. Unexpectedly, Sample#3 shows anomalously poor (but 
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reproducible) rate performance, whose cause remains unknown and will be investigated 

further. After the rate capability test, the electrodes based on Samples#1 and #2 show a full 

capacity recovery at 0.1 A g−1 , with a coulombic efficiency approaching 100%, whereas 

Samples#3 and #4 show a steeper capacity fading, e.g., only 74% capacity retention for 

Sample#3).  

A further contribution to a deeper understanding of the Li+ storage mechanism of MLG- and 

FLG-based electrodes is provided by EIS, see Figure 4.8b, c, d and e, which shows the typical 

signature of insertion electrodes, e.g., a redox reaction which involves charge transfer 

resistance (RCT) coupled with insertion of guest ions contained in an electrolyte into the 

physical structure of a solid host). [195] The first feature, occurring at high frequency 

expressed for a phenomena such as Li+ diffusion through the SEI and/or with particle-particle 

and particle-collector contact resistances [427] both of which might indeed be in force in this 

study, with FLG- and MLG-flakes taking the role of the aforementioned particles. In fact, the 

slightly distorted shape of the semicircle suggests a scattered distribution of time constants, 

which makes it difficult to separate each contribution, as the sub-semicircles are highly 

overlapped due to very similar time constants. 

 

Figure 4.8. (a) Rate capability test of the graphene flake electrode samples. (b)-(e) Nyquist 

plots of partially lithiated graphene flake electrode samples (collected at 0.075 V) with the 

main contributions of SEI, contact, and charge transfer resistances are highlighted. 



90 
 

Moreover, both SEI and contact resistances are influenced by the flake dimension in a 

complex manner. Remarkably, the resistance of the mid-frequency semi-circle (from ca. 6-10 

Hz to 0.1 Hz), attributed to the RCT of the Li+ uptake process in the FLG- and MLG-based 

electrodes, displays a significant increase upon the decrease in the flake dimensions. This 

behavior is in agreement with several literature reports, [195, 428-430] where both theoretical 

and experimental results have in fact demonstrated that, as the (defect-free) graphene 

thickness approaches the single-layer limit, the lower Li-to-C binding energy and the stronger 

coulombic repulsions amongst Li+ may hinder high occupancy. [157, 430] It is evident that 

changes in dimensions can have great influences on the Li+ storage capability of FLG- and 

MLG- flakes. However, besides looking at the bare capacity values, we should not forget 

other parameters, which are equally important for practical application in LIBs. As the flakes 

size decreases, more capacity is delivered at high potentials. As a matter of fact, high 

lithiation/de-lithiation potential and sloping voltage profiles, however, might result in reduced 

and non-constant voltage output from the battery. The normalized charge and discharge cycles 

reported in Figure 4.9a and b clearly highlight to which extent the intercalation ( < 0.2 and < 

0.25 V) and adsorption ( > 0.2 and > 0.25 V) storage contribute to the total state of charge 

(SOC) or depth of discharge (DOD) of the FLG- and MLG-based anodes. As summarized in 

Figure 4.9c, the intercalation is predominant in large and thick flakes, while it becomes less 

evident in the smaller and thinner ones. The contribution of adsorption in small and thin flakes 

is particularly relevant during Li+ extraction, where it can account for up to 65% of the whole 

delivered capacity, e.g., in Sample#4). Such discrepancy between charge and discharge gives 

rise to a voltage hysteresis, common for carbonaceous materials. [408, 431] As shown in 

Figure 4.9d, the higher de-lithiation potentials, associated with the reduction in dimensions of 

the flakes, do increase considerably the electrode average voltage during discharge. This has a 

detrimental effect on the voltage efficiency which, ultimately, is reduced from 40% 

(Sample#1 and #2) to 25% (Sample#4). 
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Figure 4.9. Normalized voltage profiles of the four graphene-based samples in terms of (a) 

SOC and (b) DOD (obtained from the 20th cycle at 0.1 A g−1). (c) Contribution of the 

intercalation mechanism to the total charge (calculated as the percentage of charge stored 

below 0.2 V or delivered above 0.25 V for lithiation and de-lithiation, respectively). (d) Effect 

of lithiation and de-lithiation average potentials on the voltage efficiency of the graphene 

anodes (the average potentials are obtained by the integral of the voltage profiles divided by 

the specific gravimetric capacity. The voltage efficiency is calculated as the ratio between de-

lithiation and lithiation average potentials). 

4.4. Conclusion 

In this chapter, graphene flakes (SLG/FLG) obtained by LPE of graphite in NMP and then 

followed by a solvent exchange process to re-disperse in environmentally friendly solvent, 

e.g., EtOH, are used to fabricate a binder-free SLG/FLG-based anode for LIBs. This approach 

has several advantages in the production of anode for lithium ion batteries. First of all, the 

solvent exchange process can be considered as a fast, efficient and low-cost method to remove 

NMP from the graphene flakes, prior the deposition on the current collector. The solvent 

changes from NMP to EtOH can reduce the pollution and also facilitate the electrode 

deposition, leading to recycle the solvent (NMP) and then use for another LPE process of 

graphite. Secondly, the absence of any conductive agent and binder allows using a simple, 
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one-step process to deposit the SLG/FLG-based film onto the Cu substrate, avoiding time-

consuming and costly preparation procedures. The binder-free SLG/FLG-based anode 

exhibits a reversible specific capacity of 503 mA h g-1 after 100 cycles at a current density of 

100 mA g-1 with a coulombic efficiency > 99.5% (Figure 4.3b). Moreover, this anode is also 

used in a full-cell configuration (commercial LNMO as cathode), exhibiting a working 

voltage around 4.7 V and a reversible specific capacity of 100 mA h g-1. The one-step 

fabrication of binder-free SLG/FLG-based anode is paving the way to produce high 

energy/power density electrodes for LIBs through a facile coating process, with consequent 

reduction of the environmental impact and production costs. 

Taking the advantages of the fabrication of binder-free graphene anode, a systematic and 

comprehensive study on the role of the morphology of MLG- to FLG-flakes on their 

electrochemical properties as anode for LIB is carried out. The results demonstrate that 

changes in the flakes dimension have indeed a significant impact into their capability of Li+ 

storage. The decrease in flake lateral size/thickness does enable higher specific capacity 

values in the first cycle. Nevertheless, the capacity loss due to the SEI formation dramatically 

increases with the decrease in flake lateral size/thickness. Smaller flakes also show slower 

charge transfer kinetics attributable to lower Li-to-C binding energies and stronger coulombic 

repulsion among Li+, with respect to the larger counterparts. It should be noted that the 

staging behavior of graphite, the typical “fingerprint” of the intercalation mechanism, is 

always observed in all samples (Figure 4.7). However, the intercalation mechanism becomes 

less reversible with the shrinking of flake sizes. This phenomenon arises from surface 

passivation, trapping of Li+ due to defects, or other effects that still need to be clarified by 

further studies. Furthermore, a larger contribution of Li+ adsorption to the overall storage 

capacity can be clearly noticed passing from MLG to FLG flakes. This has a detrimental 

effect on the average de-lithiation voltage, which substantially increases with decreasing the 

flake dimension, resulting on lower voltage efficiency with respect to anodes based on MLG 

layer graphene. In general, the results in section 4.3 demonstrate that the mission of finding 

the ultimate anode material for LIBs is still on-going. Graphene is probably a part of it, but, 

may not be the main character for the task. Fully exploiting the advantages of graphene, e.g., 

high conductivity and large surface area, to composite with other types of anode materials, 

e.g, Si, TMOs and TMSs, can be more promising than graphene alone.  
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Chapter 5: 

Application of molybdenum trioxide and 

molybdenum disulfide for lithium ion batteries 

5.1. Introduction 

Since graphene has been recognized more suitable as a supporting material in anodes for 

LIBS, the ever-increasing efforts have been devoted toward seeking promising 2D materials 

as active material in anodes to replace graphite. As discussed in Chapter 1, TMOs and TMSs 

are found to be the potential substitutions for graphite due to their very high specific capacity 

with respect to graphite. However, the issues of poor rate-capability and fast capacity fading, 

resulting from volume change and low intrinsic conductivity, are still limiting these materials 

for practical application in LIB anode. To overcome these issues, the strategies of 

nanostructure and composite/hybrid are proposed. This chapter introduces the studies on the 

production, processing and electrochemical properties of layered MoO3 and MoS2, which are 

the typical representatives of TMOs and TMSs, respectively, for LIB anode.  

In the field of LIBs, orthorhombic MoO3 (α-MoO3), the most thermodynamically stable phase 

of MoO3, [432, 433] has been demonstrated as a very promising anode material, thanks to its 

high theoretical specific capacity of 1117 mAh g−1. [203, 204] Additionally, the interlayer 

spacing as large as 0.69 nm of α-MoO3 with respect to that of graphite (0.34 nm) guarantees 

its Li+ host capability. [434, 435] Moreover, its higher intercalation voltages (1.5 – 2.3V vs. 

Li/Li+) compared to that of graphite (< 0.4 vs Li/Li+) could reduce the safety problems caused 

by the electrolyte decomposition, especially for the utilization in EVs, HEVs. [436] Similar to 

α-MoO3, MoS2 has drawn significant interest as promising substitutes for the graphite thanks 

to its high theoretical capacity (670 mAh g−1), [437] large interlayer spacing (0.62 nm) [72] 

and high intercalation voltages (~ 0.5-1.1 V vs. Li/Li+). [216] Nevertheless, there are issues 

that still need to be solved for these materials: (i) the fast capacity fading of the bulk MoO3 

and MoS2 because of the volume change during lithiation/de-lithiation, [72, 217, 218] (ii) the 

low rate-capability due to the low electrical conductivity of MoO3 and MoS2. [214, 219-221] 

To overcome these issues, one of the most encouraging strategies for these 2D materials are 

reducing the lateral size of their bulk counterpart by nanostructuring, [4, 182, 438-441] and 

mixing the resulting nanostructures of MoO3 and MoS2 with carbon-based nanomaterials, 

such as amorphous carbon, [330, 442, 443] CNTs [167, 209, 444] and graphene, [211, 241, 

445] to form composite/hybrid materials. Recently, the exploitation of various nanostructures 
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of both MoO3 and MoS2 composite/hybrid material as anode materials have demonstrated 

significant improvements, with respect to the bulk MoO3 and MoS2, in term of specific 

capacity [446-449] and electrochemical stability. [438, 442, 450] Nevertheless, the costly 

production processes used, [438, 439, 442, 445] e.g., CVD [206, 438, 451] or hydrothermal 

methods, [168, 330, 439, 440, 442] pose scalability challenges towards practical industrial 

application. [155, 206, 452] Additionally, the use of toxic materials [306, 453, 454] as well as 

binders [4, 455, 456] are also limiting factors for practical use.  

This chapter firstly presents the investigation on production of nano-sized MoO3, MoS2 flakes 

and their carbon-based hybrid/composite. Secondly, the insightful studies on their 

electrochemical performances are carried out to demonstrate the effects of carbon-based 

nanomaterials on the electrochemical performances of MoO3 and MoS2. The LPE processes 

[237, 238] of bulk MoO3 and MoS2 in IPA are exploited as a facile and effective method for 

producing nano-sized MoO3 and MoS2 flakes, see section 2.1.3.3 and 2.1.3.4 for the detailed 

procedures. The hybrid structure of SWNTs-bridged MoO3 is synthesized by mixing 

multilayer MoO3 flakes with solution processed SWNTs and used as an active binder-free 

material for LIBs. Both the MoO3 exfoliation process and the SWNTs dispersing are carried 

out in isopropanol, allowing a simple deposition onto the Cu substrate. The designed binder-

free solution processed hybrid MoO3/SWNTs anode displays a specific capacity of 865 

mAhg−1 at 100 mAg−1 after 100 cycles, with a columbic efficiency of 99.7%. The SWNTs 

addition determines a network structure with the MoO3 providing (i) long channels for 

electronic charge transport; (ii) an active anode material, instead of polymeric binder, offering 

extra capacity for Li+ storage: (iii) a buffer frame in the electrode, which reduces the capacity 

fading caused by the volume variation of MoO3 flakes during the lithiation/delithiation 

process. To further confirm the essential roles of SWNTs, the electrochemical properties of 

the multilayers MoO3 combined with CB nanoparticles are characterized. This structure is not 

able to create the network structure seen with SWNTs, yielding a significant capacity fading 

of the resulting battery. These results set the basis for the exploitation of exfoliated 2D MoO3 

sheets as anodic materials in LIBs. Meanwhile, the MoS2/C hybrids with three different 

weight ratios of carbon are formed by thermal decomposition of PAA (as carbon source) in Ar 

atmosphere. The hybrid structures consist of exfoliated MoS2 flakes incorporated in carbon 

network. The as-prepared MoS2/C hybrids are deposited onto Cu substrate, in order to 

investigate the effect of different carbon contents on the electrochemical properties of MoS2. 

The MoS2/C electrode with optimized carbon content features a high reversible specific 

capacity of 521 mAh g-1 after 100 cycles, with a columbic efficiency of 99.7%. The results 

confirm that carbon network not only improves the electrical conductivity of electrode by 
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facilitating the electron transport, but also acting as a buffer layer for active materials to avoid 

its volume change upon cycling. Through the optimization of the electrochemical properties, 

our study demonstrates a process that is promising for a production of MoS2/C hybrid for Li+ 

storage application. 

5.2. Carbon nanotubes-bridged MoO3 hybrid structure as high performance anode for 

lithium ion batteries 

This section provides a simple, low-cost, non-toxic method to fabricate binder-free hybrid 

MoO3/SWNTs electrode, by a solution processing of SWNTs, and then mixing with MoO3 

flakes and depositing the mixture on Cu substrate. This is a promising strategy for exploiting 

the exfoliated MoO3 flakes in LIB anodes, delivering high energy and power densities as well 

as long lifetime. As discussed in section 2.1.3.3, the MoO3 flakes in dispersion are obtained 

by LPE of pristine MoO3 in IPA, while the SWNTs and CB are dispersed in IPA by 

sonication. The diameter of SWNTs is estimated to be in the ~1.37–1.45 nm range by Raman 

spectroscopy whereas the diameter of the SWNTs bundle is ~10 nm according to TEM 

images and the corresponding statistical analysis, see Figure 3.10. The TEM images of Figure 

3.11b display the MoO3 flakes with lateral sizes ranging from 50 to 300 nm. The hybrid 

MoO3/SWNTs shown in Figure 3.11d clearly demonstrates that the bundles of SWNTs act as 

bridges to connect isolated MoO3 flakes, forming an interconnected network in the mixture of 

these two materials. The as-prepared samples are then exploited for the realization of 

electrodes, e.g., anodes, for LIBs. In particular, solution processed MoO3 flakes and the 

hybrid MoO3/SWNTs mixed with ratio of 9:1 are deposited onto Cu substrates. A reference 

sample, e.g., MoO3 mixed with 10% CB, is also prepared by using the same process. The 

mass loading of MoO3, MoO3/SWNTs and MoO3/CB in the corresponding electrodes has 

been calculated as 0.80 mg, 0.74 mg and 0.75 mg, respectively. The morphology of the 

MoO3/SWNTs and MoO3/CB electrodes is characterized by SEM. The SEM image of the 

MoO3 electrode (Figure 5.1a) shows MoO3 flakes with regular polygonal shapes, which are 

homogenously distributed onto the Cu substrate. Figure 5.1b shows how the morphology of 

the hybrid MoO3/SWNTs is dominated by the MoO3 flakes inserted in the mesoporous 

network of SWNTs bundles. In contrast, the morphology of the MoO3/CB electrode is 

dominated by large aggregates of CB, ~ 400 nm in diameter, with a few MoO3 flakes 

observed and pointed with white arrows in the image of Figure 5.1c. In order to corroborate 

the presence of SWNTs, MoO3 or CB, Raman spectroscopy is performed on the three 

electrodes of MoO3, MoO3/SWNTs and MoO3/CB samples deposited onto Cu substrates. In 

Figure 5.1d, the typical Raman features of MoO3, which has been shown in Figure 3.11a, 

[310, 457, 458] can be observed in all three samples. However, it is worth to mention that the 
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Raman signals of SWNTs and CB dominates the Raman spectra of the MoO3/SWNTs and 

MoO3/CB electrodes, respectively. 

 

Figure 5.1. Scanning electron microscope images of (a) MoO3, (b) MoO3/SWNTs and (c) 

MoO3/CB deposited onto Cu substrates. (d) Raman spectra of the MoO3/SWNTs (green), 

MoO3/CB (red) and MoO3 (blue) electrodes, deposited onto Cu substrates.  

The CV results (Figure 5.2a) of the three samples, e.g., MoO3, MoO3/CB and MoO3/SWNTs 

are collected at a scan rate of 50 µVs-1 starting from 5 mV vs Li/Li+ potential, to cover the 

lithiation processes in both MoO3 and SWNTs. [459] In the first reduction sweep, the MoO3 

exhibits two peaks at 2.3 and 2.7 V, which can be linked with the insertion of Li ions into the 

interlayers of the MoO3 structure to form LixMoO3, and another peak at 0.4 V, which 

corresponds to the conversion reaction of LixMoO3 into Mo and Li2O. [210, 460] The two 

processes determine, the accommodation of six Li ions in each MoO3, reaching theoretical 

specific capacity of 1117 mAhg−1, [203, 204] as summarized by equation 5.1 and 5.2. [210, 

460]  

                                                     MoO3+xLi
+
+ xe-

 
→  LixMoO3                               

(5.1) 

                                              LixMoO3+(6-x)Li
+
+ (6-x)e

-

 
→ Mo+3Li2O                     (5.2) 

In the reverse oxidation process, metallic Mo is converted into amorphous MoO2, in the 1.0 V 

to 2.2 V range. [210] From the 2nd cycle onward, a clear a shift is observed in the conversion 

reaction peak at 0.4 V, which is consistent with the formation, upon oxidation, of MoO2 with 
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lower reactivity with respect to MoO3. [171] Furthermore, in the second cycle a new peak, at 

1.5 V, appears which can be assigned to the lithium insertion into amorphous MoO2.
 [171, 

461] For the MoO3 and the hybrid MoO3/CB samples, the reduction peaks at 1.5 V and 0.4 V 

rapidly disappear during the following 8 cycles. On the contrary, in the case of MoO3/SWNTs 

sample the intensity of these two peaks is maintained from cycle 2 to cycle 10, leading to a 

remarkable improvement on its electrochemical stability with respect to the other two 

samples. 

 

Figure 5.2. (a) Cyclic voltammograms and (b) Charge/discharge voltage profiles of MoO3, 

MoO3/CB and MoO3/SWNTs as anodes against Li foil in half cell configuration.  

Figure 5.2b shows the charge/discharge voltage profiles of bulk MoO3 at 100 mAg-1, in order 

to get a complete electrochemical response for the Li ion transfer, [462] during the 

lithiation/de-lithiation process at the anode. In the 1st charge (lithiation) process, two plateaus 

at 2.3 V and 0.4 V are observed in all the three samples. These two plateaus have already been 

attributed to the formation of LixMoO3 and its following conversion reaction into metallic Mo 

and LiO2, respectively. [210, 460] These reactions have also contribution on the large initial 

specific capacity obtained in the three samples, e.g., 864 mAhg-1 for MoO3, 1332 mAhg-1 for 

MoO3/CB, and 1357 mAhg-1 for MoO3/SWNTs. The higher initial specific capacity shown by 
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both the MoO3/SWNTs and MoO3/CB samples, compared with the MoO3 sample, can be 

associated to the enhanced electrical conductivity in the hybrid electrodes due to the presence 

of the carbon nanomaterials. [439, 463] On the contrary, significant differences for the three 

samples are shown by the specific capacities obtained at the 1st discharge (de-lithiation) 

process. In fact, initial specific capacities of 481, 625 and 962 mAhg-1
 are achieved for the 

MoO3, MoO3/CB, and MoO3/SWNT samples, respectively. For all the 3 samples, the capacity 

drop between the 1st charge and discharge processes (Figure 5.3a), is caused by the 

combination of several irreversible processes, including: (i) the SEI formation; [155] (ii) the 

structural modulation during Li+ insertion/extraction into the inter-layers and intra-layers of 

MoO3; [171] (iii) the conductivity loss caused by the electrode pulverization upon 

lithiation/de-lithiation. [464] 

For the MoO3 and MoO3/CB samples, a coulombic efficiency as low as 55.7% and 46.9% is 

observed at the 1st cycle, respectively, see Figure 5.3a. Moreover, both samples show capacity 

fading upon cycling, which is the main drawback of MoO3 anodes due to the pulverization of 

the electrode, [439] with capacity loss of 84% and 64%, respectively, after 60 cycles. 

Alternatively, the MoO3/SWNTs sample shows a coulombic efficiency as high as 70.9% at 

the 1st cycle, a value which is significantly enhanced compared to the MoO3 and MoO3/CB 

samples. Additionally, the MoO3/SWNTs sample shows a tangible improvement on the 

stability of the electrochemical performance, delivering reversible capacity of ~950 mAh g-1 

at 50th cycle, with only a 1.2% capacity loss from the 1st cycle. 

In order to further understand the different electrochemical performance of the three MoO3-

based electrodes, the EIS for all the three samples at charged state, after 60 cycles are carried 

out. The Nyquist plots of the electrodes are presenting a semi-circle at high-to-medium 

frequency, [465] demonstrating the different interface resistances in the three samples. The 

interface resistance occurring at high frequency is associated with phenomena such as Li+ ion 

diffusion through the SEI film and/or in the active material, and the contact layer between the 

electrode and current collector. [427, 466, 467] As obtained from Figure 5.3b, the interface 

resistance of the MoO3 sample is ~160 Ω, which is significantly reduced to ~ 80 Ω for the 

MoO3/CB sample. The MoO3/SWNTs hybrid structure gives the lowest value of interface 

resistance, e.g., ~ 40 Ω, which is one fourth and one half with respect to the ones shown by 

the MoO3- and MoO3/CB-based electrodes, respectively. The reduction of the interface 

resistance upon the addition of carbon additives, especially SWNTs, compared with the 

MoO3, might be attributed to the different structural morphology of the electrodes after 

lithiation/de-lithiation processes. [439, 465]  
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Figure 5.3. (a) Specific capacity and coulombic efficiency over charge/discharge 

galvanostatic cycles, and (b) Electrochemical impedance spectroscopy of MoO3 (red), 

MoO3/SWNTs (green) and MoO3/CB (black) as anodes against Li foil in half cell 

configuration.  

Therefore, in order to understand the relation between the electrochemical performance of the 

three samples and their structural morphology after charge-discharge cycles, the post-mortem 

SEM measurements on MoO3, MoO3/CB and MoO3/SWNTs electrodes after 60 

charge/discharge cycles are carried out. As shown in Figure 5.4a, the MoO3 electrode clearly 

presents cracks and fractures with width of 200-400 nm, likely caused by the volume change 

during the charge/discharge cycles. These cracks determine a drop in the electrical 

conductivity, with consequent capacity fading, [204, 468] as clearly presented in Figure 5.3. 

As shown in Figure 5.4b, large cracks over 1 µm are observed in the MoO3/CB electrode as 

well.  

Even if, compared to free MoO3, the presence of CB seems able to furnish better electrical 

conductivity during the first cycles, the MoO3/CB electrodes still suffer a remarkable capacity 

fading upon cycling. This is likely due to the inability of CB to keep the anode material in 

continuous contact with the current collector. [468, 469] Although the MoO3/SWNTs sample 

shows cracks after 60 cycles, the cracks are much narrower with respect to the ones presented 

by the MoO3 and MoO3/CB electrodes. Moreover, the carbon network of nanotubes ensures 

high electrical conductivity upon the expansion/contraction processes of MoO3. This 

conductive framework is therefore beneficial for both mechanical stability [470] and the 

specific capacity of the anodes. 
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Figure 5.4. SEM images of (a) MoO3, (b) MoO3/CB, (c) MoO3/SWNTs electrodes after 60 

charge/discharge galvanostatic cycles and (d) Specific capacity at different current densities 

of MoO3/SWNTs anodes measured against Li foil in half cell configuration.  

 

In order to further investigate the electrochemical activities of the MoO3/SWNTs hybrid 

electrode at fast charge/discharge processes, the MoO3/SWNTs electrode is 

charged/discharged at different specific currents. As shown in Figure 5.4d, the specific 

capacities of MoO3/SWNTs electrode after 10 cycles at each specific current have been 

recorded as ~956 mAh g−1, to ~863 mAh g−1, ~757 mAh g−1, ~645 mAh g−1, when the 

specific currents varies from 0.1 to 0.2, 0.5 and 1 A g−1, respectively. A drop of ~30% with 

the specific current rising from 0.1 to 1 A g−1, and a coulombic efficiency of ~99 % strongly 

suggested that the MoO3/SWNTs hybrid electrode is very promising for the application of fast 

charge-discharge devices. 

From the obtained results of MoO3, MoO3 CB and MoO3/SWNTs electrodes, it is clear that 

the SWNTs addition (10% with respect to the MoO3 flakes) is beneficial for the 

electrochemical properties of the as-produced electrodes. Thus, in order to further investigate 

the contribution of the SWNTs to the MoO3/SWNTs hybrid anode, another two electrodes 

with weight ratios of 20% and 30% for SWNTs, are prepared following the preparation 

processes described in section 2.4.1.2. As shown in Figure 5.5a, b and c, the three 

MoO3/SWNTs hybrid anodes show a homogenous coverage of SWNTs and MoO3 flakes onto 

the Cu substrates. The presence of the hybrids SWNTs and MoO3 flakes is confirmed by the 
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Raman spectra of the three samples shown in Figure 5.5d. The spectra are normalized to the 

signal of G+ peak of the SWNTs. The spectra show the Raman peaks of the MoO3 in the 

region of 200-1000 cm-1, which decrease in intensity, with respect to the G+ peak of the 

SWNTs, as the percentage of SWNTs increases in the MoO3/SWNTs hybrid. For the 

MoO3/SWNTs-30% hybrid anode the Raman spectrum is dominated by the SWNTs signal 

due to their high Raman cross section. [29, 471, 472]  

 

Figure 5.5. Scanning electron microscope images of MoO3/SWNTs hybrids coated onto Cu 

substrates with SWNTs weight ratio of (a) 10%, (b) 20% and (c) 30%, with respect to the 

MoO3 flakes. All scale bars are 1 μm. (d) Raman spectra, acquired with an excitation 

wavelength of 514.5 nm, of MoO3/SWNTs hybrids with 10% (light green), 20% (green), and 

30% (dark green) SWNTs relative content with respect to MoO3. 

The CV, galvanostatic charge/discharge and EIS measurements are carried out to understand 

the effects of SWNTs/MoO3 weight ratio on the electrochemical performances of the 

MoO3/SWNTs hybrid anodes. As shown in Figure 5.6a, the CV curves of the three 

MoO3/SWNTs hybrid samples have clearly demonstrated the insertion of Li ions into the 

interlayers of the MoO3 structure to form LixMoO3 at 2.3 V. Additionally, the irreversible 

reduction peak at 0.4 V observed in all the three samples can be attributed to the conversion 

reaction of LixMoO3 into Mo and LiO2. A new peak at 1.5 V is appearing from the second 

cycle onward, representing the Li ion insertion into amorphous MoO2. Moreover, the intensity 

of the aforementioned peak drops significantly at the second cycle, due to the lower reactivity 

of MoO2 compared to the one of MoO3. [3, 473] However, the intensity drop of this peak (at 
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0.4 V) is reducing with the increase of the SWNTs percentage in the MoO3/SWNTs, as a 

result of the decreasing contribution from MoO3 reaction in the hybrid structure. Moreover, 

two peaks at 1.5 V and 0.4 V in all three samples are observed without any shift or intensity 

drop in the following cycles from 2 to 10, leading to the stable electrochemical performance 

of the MoO3/SWNTs hybrid anodes. 

The post-mortem SEM images of the three MoO3/SWNTs electrodes shown in Figure 5.6b, c 

and d clearly demonstrate that the SWNTs in the MoO3/SWNTs electrode create a network 

between the cracked “islands” following the MoO3 volume change during charge/discharge 

cycles. [439, 465] Notably, the width of the cracks is reducing with the percentage increase of 

SWNTs in the MoO3/SWNT hybrids. A possible explanation could be linked with the fact 

that the increasing amount of SWNTs, as buffer between the MoO3 flakes, can efficiently 

attenuate the volume change during charge/discharge cycles, reducing the mechanical 

degradation of the electrodes and leading to stable electrochemical performances. 

 

Figure 5.6. (a) Cyclic voltammograms of MoO3/SWNTs hybrids with different SWNT weight 

ratios as anodes against Li foil in half cell configuration. Scanning electron microscope 

images of (b) MoO3/10%SWNTs, (c) MoO3/20%SWNTs and (d) MoO3/30%SWNTs electrodes 

after 100 charge/discharge galvanostatic cycles. 
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As shown in Figure 5.7a, while the percentage of SWNTs in the MoO3/SWNT electrodes 

rises from 10% to 30%, the initial capacities of the three samples reach 1357, 1161 and 1044 

mAhg-1, with corresponding discharge capacity at the first cycle of 927, 675, and 566 mAhg-1, 

respectively. The specific capacity and coulombic efficiency (Figure 5.6a) demonstrate that 

all the hybrid electrodes with different mixed ratios show remarkable stable cyclability up to 

50 cycles, if compared with the MoO3 anode.  

The EIS results of the 3 samples shown in Figure 5.7b, demonstrates how the higher is the 

percentage of SWNTs in the hybrid MoO3/SWNTs electrodes, the lower is their RCT. In fact, 

RCT values of ~40 Ω, ~30 Ω and ~17 Ω have been obtained for the sample with 10%, 20% 

and 30% of SWNTs with respect to the MoO3 flakes, respectively. However, although higher 

percentage of SWNTs, e.g., 20-30%, in the hybrid structure can provide better electrical 

conductivity, e.g., RCT of 30 Ω and 17 Ω for the electrodes containing 20% and 30% of 

SWNTs with respect to the MoO3 flakes) this is not directly associated to an increase of the 

electrode specific capacity. In fact, the increasing percentage of SWNTs has determined a 

tangible decrease of the specific capacity with respect to the total loading of MoO3/SWNT 

hybrid electrodes. This could be linked with the high irreversible capacity that affect CNTs-

based anode for LIBs. [254] In fact, the irreversible capacity increases from 32% for the 10% 

MoO3/SWNTs sample to 46% in the case of 30% MoO3/SWNTs one. Moreover, the 10% 

MoO3/SWNTs sample shows the highest capacity retention (71.6% after 50 cycles) over 

charge/discharge cycles, obtained by dividing the charge-capacity to the initial capacity 

(Figure 5.2a), amongst the electrodes, e.g., the hybrids MoO3/SWNTs and the MoO3 one. 

Moreover, the specific capacity of each electrode is calculated, as shown in Figure 5.7d, 

labeled by different SWNTs content from 0 to 30%. The specific capacities are calculated 

using the mass loading of MoO3 and MoO3/SWNTs, respectively. In both cases, the 10% 

SWNTs sample reaches the highest specific capacity of 1028 mAhgMoO3
−1  and 926 

mAhgMoO3/SWNTS
−1 , see Figure 5.7d, which represent the 92% and 82%, respectively, of the 

theoretical specific capacity of MoO3. [203, 204] The MoO3/SWNTs binder-free anode in this 

work favorably compares with state of the art MoO3-based LIB, as reported in literature. [154, 

211, 432, 439, 474, 475] The reported electrochemical analysis indicates that the addition of 

10% SWNTs in the hybrid structure with MoO3 flakes represents the best compromise in term 

of mechanical and electrochemical properties of the as-produced anodes. 
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Figure 5.7. (a) Specific capacity and coulombic efficiency over charge/discharge 

galvanostatic cycles, and (b) Electrochemical impedance spectroscopy of MoO3/SWNTs 

hybrid electrodes with different SWNTs weight ratios as anodes against Li foil in half cell 

configuration. (c) Capacity retention of MoO3/SWNTs hybrid anodes and d) Specific capacity 

of MoO3/SWNTs hybrid anode calculated with respect the weight of MoO3 (red) and the 

hybrid structures, respectively (green). 

5.3. Molybdenum disulfide flakes/amorphous carbon hybrid as anode for lithium ion 

batteries 

Similar to MoO3/SWNTs hybrid system, the goal of MoS2/C in MoS2 based anode is to 

exploit the key features of amorphous carbon in improving the electrical conductivity of 

electrode and accommodating the volume change of MoS2 during lithiation/de-lithiation. The 

production of MoS2 flakes via LPE and the synthesis of MoS2/C hybrid via thermal 

decomposition of a carbon source (PAA) provide a promising strategy to obtain 2D 

crystals/carbon hybrid for LIB anode. In this work, the MoS2 flakes obtained by LPE of bulk 

MoS2 having an average lateral size of ~ 90 nm, see Figure 3.12a, which is advantageous for 

Li+ diffusion due to the decrease in diffusion length. The AFM analysis, XRD and Raman 

spectroscopy (Figure 3.12c, d, e and f) demonstrate the reduction in thickness of MoS2 layers 

without any change in crystal structure, with respect to its bulk counterpart, whereas the XPS 

results (Figure 3.12g and h) confirm the stable chemical structure of MoS2 flakes after the 

LPE process. These results suggest that the physical and chemical properties of the obtained 
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MoS2 flakes are not affected by the LPE process. As reported in section 2.2.2, The MoS2/C 

hybrids obtained by the thermal decomposition of MoS2/PAA mixtures are named as MoS2/C-

1, MoS2/C-2, and MoS2/C-3, corresponding to the different mixing ratios of MoS2 and PAA 

by weight at 1:1, 1:2 and 1:4, respectively. The carbon content in MoS2/C-1, MoS2/C-2, and 

MoS2/C-3 samples is estimated to be ~ 10.1, 16.1 and 29.9 wt% with respect to the total 

weights of hybrid samples by TGA results (Figure 3.13a). The HR-TEM images (Figure 

3.13d, e and f) demonstrate that the thickness of carbon layer in MoS2/C hybrids increase with 

the increase in carbon content.  

The MoS2 flakes and MoS2/C powders are mixed with CB, and a binder (PAA) in IPA, 

forming the slurry. The electrodes are made by depositing the slurry onto Cu disks, see 

section 2.2.2. The surface morphology of the electrodes is evaluated by HR-SEM, Figure 5.8. 

In the case of MoS2 electrode, the MoS2 flakes are distributed in random orientations, as 

indicated by the arrows in Figure 5.8a. This feature is favorable for Li+ storage due to the 

increase in active sites at the surface of electrode. [327] The SEM images of MoS2/C 

electrodes show the formation of particles, suggesting the covering of carbon onto the MoS2 

flakes, see Figure 5.8b, c and d.  

 

Figure 5.8. High-Resolution-SEM of (a) MoS2, (b) MoS2/C-1, (c) MoS2/C-2 and (d) MoS2/C-3 

electrodes. 
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The covering of carbon onto the MoS2 flakes is expected to form an electrical conductive 

network, which acting as a buffer prevents the volume change of MoS2 during lithiation/de-

lithiation. However, a large amount of carbon content also increases the thickness of carbon 

layer onto the MoS2 flakes (Figure 5.8d), hindering the diffusion of Li+ during lithiation/de-

lithiation. [163, 337] Therefore, the appropriate portion of carbon on MoS2 flakes need to be 

optimized in order to not only provide an effective conductive network between the MoS2 

flakes, but also allow a facile Li+ diffusion during cycling process. The electrochemical 

properties of MoS2 and MoS2/C electrodes as anode for LIBs assembled in a half-cell 

configuration are firstly investigated by means of CV technique. The CV measurement is 

carried out with the scan rate of 50 µVs-1 over the potential range from 3.00 to 0.005 V vs 

Li/Li+. Figure 5.9a shows the CV curves of MoS2 electrode. In the 1st cycle, the first reduction 

peak at ~1.03 V links to the formation of LixMoS2 by the intercalation of Li+ into MoS2 

layers. The small reduction peak at ~0.70 V may be caused by the formation of SEI onto the 

surface of the MoS2 electrode. [72] The reduction peak at ~ 0.46 V is instead associated to the 

formation of Li2S and metallic Mo nanoparticles via a conversion reaction of LixMoS2. [72, 

334, 476] The oxidation peak at ~ 2.32 V is attributed to oxidation of Li2S into Li+ and 

sulphur (S). [72, 334, 476] Meanwhile, the broad and weak peak at ~ 1.63 V indicates the 

partial oxidation of metallic Mo to form MoS2. [214, 327] The CV result of MoS2 electrode 

shows a new reduction peak at ~ 1.90 V in the 2nd cycle, which corresponds to the reduction 

of S to form Li2S. Besides, the oxidation peak observed at ~ 2.32 V is attributed to oxidation 

of Li2S. The two reduction and oxidation peaks in 2nd cycle constitute a reversible redox 

couple. [72, 334, 476] From the 2nd cycle, the electrochemical mechanism of MoS2 is mainly 

dominated by the reversible conversion reaction of S to Li2S. [477] In general, the redox 

processes of MoS2 can be summarized according to the following reactions: [72] 

 MoS2 + xLi+ → LixMoS2                   (5.3) 

 LixMoS2 + (4-x)Li+ + (4-x)e- → Mo + 2Li2S                   (5.4) 

 Li2S → S + 2Li + 2e-                             (5.5) 

 S + 2Li + 2e- → Li2S                             (5.6) 

However, the intensities of two reduction peaks (at ~ 1.03 and ~ 0.45 V) drastically decrease 

in the 2nd and 3rd cycles because of the consumption of residual MoS2, which is not 

completely reduced during the 1st cycle. From 3rd cycle, the intensity of reduction peak at ~ 

1.90 V is slightly increased (24.9 mA g-1) with respect to the 2nd cycle, which is attributed to 

an activation process of the electrode materials. [478] Importantly, in the case of MoS2 and 
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MoS2/C-1 electrodes, it is observed that the intensities of oxidation peaks at ~ 2.32 V 

significantly decrease with the increasing of cycle number. In specific, the intensity 

differences of these peaks between 1st and 2nd cycles are 45 mA g-1 and 18 mA g-1 for MoS2 

and MoS2/C-1 electrodes, respectively. These CV behaviors suggest that in the case of MoS2 

electrode, irreversible electrochemical processes take place due to irreversible redox reactions 

during lithiation/de-lithiation, see equations 5.3 and 5.4. [327] These irreversible redox 

reactions progressively produce insulated S, see equation 5.5 and 5.6, which can hinder the 

electron transport of MoS2 electrode during cycling, resulting in its irreversible 

electrochemical processes. [479] The irreversible electrochemical processes are alleviated in 

the case of MoS2/C-1 electrode due to the support of carbon network. However, these 

processes are still observed because the insufficient carbon content cannot completely cover 

all the MoS2 flakes in the case of MoS2/C-1 electrode (see HR-TEM image in Figure 3.13d), 

which still cannot completely improve the electron transport within the electrode.  

 

Figure 5.9. Cyclic voltammograms of (a) MoS2, (b) MoS2/C-1, (c) MoS2/C-2 and (d) MoS2/C-3 

electrodes at a scan rate of 50 µV s-1. 

For MoS2/C-2 and MoS2/C-3 electrodes (Figure 5.9c and d), the intensities of oxidation peaks 

at ~ 2.32 V in the initial three cycles are overlapped. The MoS2/C-2 and MoS2/C-3 electrodes 

exhibit a reversible electrochemical process, in contrast to MoS2 and MoS2/C-1 electrodes 

which do not present this process, indicating that the sufficient carbon content improves the 

electrical conductivity of MoS2. It is noteworthy to mention that the potential differences 
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between redox peaks at ~ 1.92 and 2.32 V, after 3 cycles, is 440, 390, 330 and 350 mV, for 

MoS2, MoS2/C-1, MoS2/C-2 and MoS2/C-3 electrodes, respectively. This fact confirms that 

MoS2/C electrodes have lower overall resistance and better electrochemical reversibility than 

in the MoS2 electrode. [215, 480] As the carbon content increase, a broadening of the 

reduction peak set at ~0.46 V Li/Li+, together with a slight decrease in the peak current, is 

observed. This modification finds its explanation in kinetics limitation, e.g., Li+ diffusion 

through carbon thickness, of LixMoS2 – Li2S conversion buffered by carbon matrix. [481] 

Galvanostatic charge/discharge cycling measurements are carried out at a current density of 

100 mA g-1 over the potential range from 3.00 to 0.005 V vs Li/Li+ in order to fully 

investigate the electrochemical response for the Li+ storage of the MoS2 and MoS2/C 

electrodes. In Figure 5.10, the charge/discharge voltage profiles of MoS2 and MoS2/C 

electrodes show similar electrochemical behaviours. They clearly indicate two distinct voltage 

plateaus at ~ 1.05 and 0.54 V in the 1st charge process (lithiation), which correspond to the Li+ 

intercalation and conversion reaction of LixMoS2 to metallic Mo and Li2S, respectively, see 

equations 5.3 and 5.4. [336, 482, 483] Simultaneously, a severe reduction in the 1.05 V 

plateau length happens. This is because the Li+ intercalation reaction (equation 1), 

corresponding to 1.05V plateau, is progressively limited as the thickness of carbon layers 

increase (~ 0.8, 2.4 and 13.8 nm for MoS2/C-1, MoS2/C-2 and MoS2/C-3, respectively), see 

Figure 3.13c, d and f. Carbon matrix tortuosity and thickness might be responsible for the 

limited lithium diffusion and the direct switch to a conversion mechanism yielding metallic 

Mo and Li2S. Thus, the increase in thickness of carbon layer can be considered as a drawback 

for the intercalation of Li+ into MoS2 layers. 

A voltage plateaus at ~ 2.25 V is observed in the 1st discharge process (de-lithiation), the 

voltage plateaus at ~ 1.92 V in the 2nd charge process, associated with the reversible redox 

reaction of Li2S/S couple, which always appears in the subsequent cycles. [218, 336, 482, 

483] The voltage plateaus in the charge/discharge voltage profiles are consistent with the 

reduction and oxidation peaks in the CV results of the MoS2 and MoS2/C electrodes (Figure 

5.9). Nevertheless, the MoS2/C electrodes exhibit a good overlapped charge and discharge 

potential curves, upon 100 cycles with respect to MoS2 electrode, a sign of a good reversible 

reaction during lithiation/de-lithiation. The initial irreversible capacities (the capacity 

difference between 1st charge and discharge) of the MoS2, MoS2/C-1, MoS2/C-2 and MoS2/C-

3 electrodes are 295, 338, 416 and 444 mAh g-1, respectively. The rise of the initial 

irreversible capacities with the increasing of carbon content could be due to the fact that the 

amount of amorphous carbon offers more active sites, e.g., defects, for irreversible Li+ storage 

in the 1st lithiation. [162, 168, 169, 484]  
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Figure 5.10. Voltage profiles upon galvanostic charge/discharge of (a) MoS2, (b) MoS2/C-1, 

(c) MoS2/C-2 and (d) MoS2/C-3 electrodes at 0.1 A g-1 between 3.00 to 0.005 V vs Li/Li+. 

In order to clarify the Li+ storage capability of carbon network which may contribute to the 

irreversible specific capacity of MoS2/C electrodes, the galvanostatic charge/discharge 

measurement of amorphous carbon electrode is carried out at a current density of 0.1 A g-1 

over the potential range from 3.00 to 0.005 V vs Li/Li+. The amorphous carbon is obtained by 

the thermal decomposition of PAA, and the preparation of amorphous carbon electrode is 

following the preparation steps of MoS2 and MoS2/C electrodes reported in section 2.4.1.3. As 

shown in Figure 5.11a, the charge/discharge voltage profile of amorphous carbon electrode 

shows the specific capacity of ~ 285 mAh g-1 in the initial charge process. From subsequent 

charge processes, the electrode exhibits the continuously capacity fading of ~ 145, 117 and 94 

mAh g-1 corresponding to the 2nd, 5th and 20th cycles, respectively. The capacity fading during 

cycling suggests the irreversible Li+ storage process of amorphous carbon electrode, 

associated to the presence of active sites, e.g., defects, in amorphous carbon. [162, 168, 169, 

484] The irreversible Li+ storage in amorphous carbon contributes to the increase in 

irreversible capacities of MoS2/C electrodes, as shown in Figure 5.10. 
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Figure 5.11. (a) Voltage profiles upon galvanostic charge/discharge of amorphous carbon 

electrode at 0.1 A g-1 between 5 mV and 3 V; (b) HAADF-STEM image of MoS2 electrode 

after 100 charge/discharge galvanostatic cycles and elemental maps of (c) F and (d) P 

acquired by STEM-EDS. 

A further contribution to the initial irreversible capacity can be attributed to the formation of 

SEI on the surface of the electrodes. To confirm the formation of SEI, the elemental mapping 

of MoS2 electrode after 100 charge/discharge cycles is carried out by STEM-EDS 

measurements. Figure 5.11b shows a high angular annular dark field - scanning TEM 

(HAADF)-STEM image of MoS2 electrode materials, for which the corresponding elemental 

maps are demonstrated in Figure 5.11c and d. The distribution of fluorine (F) and phosphor 

(P) on the electrode can be used to identify the formation of SEI. The components of SEI are 

always contributed from the reduction and decomposition of the electrolyte. In this work, the 

LiPF6 is used as the lithium salt (see section 2.4.2), which decomposes into LiF and a small 

portion of PF5 through the reactions 5.7 and 5.8, see the equation 5.7. [485, 486] The presence 

of F confirms the formation of LiF, while P is barely visible probably due to small amount of 

PF5 in the observed area.                      

                  LPF6 (solv) → LiF (s) + PF5 (s)                              (5.7) 
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The formation of SEI in MoS2 electrode is in agreement with the small broad peak at ~ 0.7 V 

in the first cycle of its CV curve (see Figure 5.9a). In the cases of MoS2/C electrodes, the 

increase in irreversible capacity with higher content of carbon can be attributed to the 

excessive interphase between MoS2/amorphous carbon and electrolyte, leading to 

considerable side reactions of SEI formation on MoS2/amorphous carbon. [330, 483, 487] 

To further understand the mechanism for the effect of carbon content on the electrochemical 

performance of the MoS2/C electrode, the EIS of MoS2, MoS2/C electrodes are acquired from 

a frequency of 10 kHz to 10 mHz. The Nyquist plots of all electrodes, Figure 5.12, consist of 

a depressed semi-circle in the high frequency region and a sloping straight line in the low-

frequency region. The semi-circles are described by means of a generalized RC-circuit (the 

inset in Figure 5.12a) with electrolyte resistance RE (resistance caused by the mass transport 

of Li+ through electrolyte), RCT (including the electron transfer to the reactive center MoS2), 

and a constant phase element (CPE) for the electrode/electrolyte interface. [162, 488] The 

high frequency region is associated with the RCT, whereas the low-frequency line is 

descriptive of the Li+ diffusion impedance within the electrode which is described by the 

Warburg circuit element (ZW) in RC-circuit. [337, 488-490] Figure 5.12a shows the Nyquist 

plots of MoS2 and MoS2/C electrodes after the 1st lithiation/de-lithiation, at charged state. The 

RCT values are ~ 85, 37, 29 and 70 Ω for MoS2, MoS2/C-1, MoS2/C-2 and MoS2/C-3 

electrodes, respectively. The RCT of the MoS2/C electrodes are thus lower than that of the 

MoS2 electrode. This clearly indicates that the electrical conductivity of the MoS2/C 

electrodes is higher than that of MoS2 electrodes. This fact confirms that the incorporation of 

carbon improves the electrical conductivity of the MoS2/C electrodes by constructing a 

conductive network between MoS2 flakes, and thus greatly enhance electron transport within 

electrode during the lithiation/de-lithiation process. [306, 327] The MoS2/C-2 electrode shows 

the lowest value of RCT with respect to MoS2/C-1 and MoS2/C-3 electrodes, suggesting that 

MoS2/C-2 is endowed with the proper amount of carbon content so that a reasonable 

compromise between improved electrical conductivity of the electrode and the limited Li+ 

diffusion through the carbon is obtained. [327, 491] Besides, among the three MoS2/C 

electrodes, the MoS2/C-3 electrode exhibits the highest RCT value. The increase in carbon 

content results in the increase in the thickness of carbon layer covering the flakes (Figure 

3.13d, e and f). This feature prolongs the pathway for electron transfer across the MoS2/C in 

the MoS2/C electrode with respect to that of MoS2/C-1 and MoS2/C-2 electrodes, leading to 

the increase of the RCT. The Nyquist plots of MoS2 and MoS2/C electrodes after the 100 

cycles, at charged state in Figure 5.12b shows the same trend as the plots in Figure 5.12a. The 

RCT value of MoS2/C-1, MoS2/C-2 and MoS2/C-3 electrodes exhibit the values of ~ 26, 21, 



112 
 

and 58 Ω. The decrease in the RCT values of MoS2/C electrodes after 100 cycles with respect 

to the 1st cycle can be explained based on the CV data and voltage profiles, as shown in 

Figure 5.9 and 5.10. According to the voltage profiles of MoS2/C electrodes, the voltage 

plateaus at ~ 1.05 and 0.54 V related to the intercalation and conversion reactions (equation 

5.3 and 5.4), are observed at the 1st charge process, see Figure 5.10b, c and d. From the 2nd 

charge, these voltage plateaus are still observed as the sloping curves. This is because the 

MoS2 has not been completely consumed after the 1st charge process, therefore, the residual 

MoS2 continuously contribute to the intercalation and conversion reactions at the 2nd charge 

process. These features can also be observed by the broadened shape of reduction peaks at ~ 

1.03 and 0.45 V in the 2nd cycle of CV data with respect to that of 1st cycle (Figure 5.9b, c and 

d). Compare to the 1st charge process, the diminished voltage plateau at ~ 1.05 and 0.54 V are 

diminished at the 100th charge process, (Figure 5.10b, c and d) suggesting the complete 

consumption of residual MoS2 via the intercalation and conversion reactions. [492-494] Thus, 

the high RCT values after the 1st cycle compared to that of the 100th cycle in MoS2/C 

electrodes are attributed to the formation of residual MoS2 which can limit the electron 

transfer across MoS2/C. However, the RCT value of the MoS2 electrode increases strictly after 

100 cycles (~ 174 Ω) because of structural destruction of the active material upon cycling. 

The EIS results confirm the effects of carbon on the electrochemical performances of the 

MoS2/C electrodes after cycling.  

 

Figure 5.12. Electrochemical impedance spectroscopy of MoS2, MoS2/C-1, MoS2/C-2 and 

MoS2/C-3 electrodes at charge state (a) after the 1st cycle and (b) after the 100th cycles. 

The specific capacity and coulombic efficiency over charge/discharge galvanostatic cycles at 

100 mA g-1 of MoS2, MoS2/C electrodes are shown in Figure 5.13a. Remarkably, the specific 

capacity of the MoS2 electrode increases from 859 to 939 mAh g-1 from 2nd to 9th cycle, but 
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rapidly decrease to 161 mAh g-1 after 100 cycles. The increase in specific capacity of MoS2 

electrode in the few initial cycles is due to the continuous conversion reactions of LixMoS2, 

recognized also in the reduction peaks at ~ 1.03 and 0.45 V in CV data (Figure 5.9a). These 

reactions trigger the volume change of MoS2, leading to the electrode pulverization, resulting 

in the introduction of defect sites. These sites may serve to trap more Li+ during subsequent 

lithiation processes, and could explain the gradual increase in specific capacity. [163, 168, 

174, 495] However, this phenomenon takes place in the initial cycles because the electrode 

pulverises rapidly, resulting in an electrical contact loss between MoS2 and current collector, 

leading to a significant capacity fading in the following cycles. [72, 489] It is notable that the 

cyclability and specific capacities of the MoS2/C electrodes is superior to that of the MoS2 

electrode. This demonstrates that carbon network not only hinders the capacity fading of 

MoS2 flakes by buffering the volume change, but also enhances the electrical conductivity of 

electrode, by forming the carbon matrix as a conductive network. [334, 478, 491] The 

MoS2/C-1, MoS2/C-2 and MoS2/C-3 electrodes retain stable specific capacities of 310, 521, 

356 mAh g-1, with a coulombic efficiency of ~ 99.6, 99.7 and 98.2 %, respectively, after 100 

cycles. It is notable that the MoS2/C-1 electrode exhibits a low specific capacity with respect 

to that of MoS2/C-2 and MoS2/C-3 electrodes. This result is attributed to the partial carbon 

covering on MoS2 flakes, due to the insufficient carbon content, which is confirmed by HR-

TEM image (Figure 3.13d). The incomplete embedding of MoS2 flakes into carbon network is 

associated to capacity loss of ~ 698 mAh g-1 (~ 80% of initial capacity) after 100 cycles, due 

to the structural failure by pulverization. However, the MoS2/C-1 electrode is still able to 

preserve the reversible capacity (~310 mAh g-1), as shown in Figure 5.13a. [336, 483] In 

contrast, the MoS2/C-2 electrodes exhibits a significant higher specific capacities (521 mAh g-

1) with respect to MoS2/C-1 and MoS2/C-3 electrodes, demonstrating the high reversible Li+ 

storage ability and good structural stability of MoS2/C-2, due to the sufficient carbon content 

providing the complete conductive carbon network which can effectively accommodate the 

volume change as a buffered layer, and also improve the electrical conductivity of the 

electrode. However, although the MoS2/C-3 electrode shows a stable cycling performance, its 

specific capacity (356 mAh g-1) is drastically lower than that of MoS2/C-2 electrode 

(521 mAh g-1). The thickness of carbon layer induces an elongated diffusion pathway of Li+, 

leading to low specific capacity. [166, 337]  

The electrochemical characterization at varying current densities are performed (Figure 5.13b) 

to investigate the rate capabilities of the MoS2/C electrodes. The MoS2/C-2 achieves the best 

rate capability among the three MoS2/C electrodes, with ~ 546 mAh g−1 at 100 mA g−1 and 

~272 mAh g-1 at 2000 mA g-1. The specific capacity restores to ~ 500 mAh g-1 when the 
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current rate is changed back to 100 mA g-1, featuring capacity retention of ~ 91.6 %. The 

MoS2/C-3 electrode exhibits a specific capacity of ~ 402 mAh g-1 at 100 mA g−1 and ~ 

156 mAh g-1 at 2000 mA g-1. The specific capacity restores to ~ 371 mAh g-1 when the current 

rate is changed back to 100 mA g-1, displaying capacity retention of ~ 92.3 %. The high 

values of capacity retention of MoS2/C-2 and MoS2/C-3 electrodes confirm the role of carbon 

in structural preservation of MoS2 flakes, protecting the electrode from pulverization during 

lithiation/de-lithiation. [337] On the contrary, MoS2/C-1 electrode shows rapid capacity decay 

as the current density increases, indicating a capacity retention of 32.6 % when the current 

rate is reset from 2000 mA g-1 to 100 mA g-1. This is attributed to the insufficient carbon 

content, which is in agreement with the galvanostatic charge/discharge cycling test (Figure 

5.13a).  

 

Figure 5.13. (a) Specific capacity and Coulombic efficiency over charge/discharge 

galvanostatic cycles at 100 mA g-1 and (b) rate performance at different current densities 

from 0.1 to 2.0 A g-1 of MoS2, MoS2/C-1, MoS2/C-2 and MoS2/C-3 electrodes. The specific 

capacity capacities are normalized by the mass of MoS2/C hybrids. 

To further study the effect of carbon content on the electrochemical behaviors of the 

electrodes, the morphologies of MoS2, MoS2/C-1, MoS2/C-2 and MoS2/C-3 electrodes after 

100 charge/discharge cycles are examined by post-mortem SEM. As shown in Figure 5.14a, 

the MoS2 electrode clearly exhibits fractures with width of ~ 3µm (indicated by arrows), 

likely caused by the volume change during the charge/discharge cycles. These fractures 

contribute to the decrease in electrical conductivity (Figure 5.12b), and the significant 

capacity fading of the electrode (Figure 13a) [468, 496, 497]. On the surface of MoS2/C-1 

electrode the small fractures with the width of ~ 800 nm are observed as shown in Figure 

5.14b. This apparently shows that the pulverization of MoS2/C-1 electrode is less severe than 

that of the MoS2 electrode. These small fractures in MoS2/C-1 electrode are caused by partial 



115 
 

pulverization during cycling due to lacking of carbon covered on flakes which is confirmed 

by HR-TEM images (Figure 3.13d) and galvanostatic charge/discharge cycling test (Figure 

5.13a). By contrast, the surface of MoS2/C-2 and MoS2/C-3 electrode show a homogenous 

morphology and the presence of fractures mostly cannot be observed, demonstrating that the 

pulverization is hindered by carbon network. Thanks to the structure stability, both electrical 

conductivity and reversible specific capacity of MoS2/C electrodes are improved if compared 

with the MoS2 electrode, as clearly shown in Figure 5.12 and 5.13a, respectively. 

 

Figure 5.14. High resolution SEM images of (a) MoS2, (b) MoS2/C-1, (c) MoS2/C-2 and (d) 

MoS2/C-3 electrodes after 100 charge/discharge galvanostatic cycles. 

5.4. Conclusion 

In this chapter, I described the experimental procedure for the realization of a high 

performance binder-free MoO3/SWNTs hybrid anode for LIBs, based on MoO3 flakes 

obtained via LPE method, combined with solution processed SWNTs. Contrary to CB 

nanoparticles, the SWNTs addition determines a network structure with the MoO3, which is 

beneficial for the mechanical and electrochemical performances of the as-produced anode by 

providing (i) long channels for electronic charge transport; (ii) an active anode material, 

instead of polymeric binder, offering extra capacity for Li ions storage: (iii) a buffer frame in 

the electrode, which reduce the capacity fading caused by the volume expansion of MoO3 

flakes during the lithiation process. The designed binder-free solution processed hybrid 
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MoO3/SWNTs (90:10) anode has demonstrated a specific capacity of 865 mAhg−1 at 100 

mAg−1 after 100 cycles, with a columbic efficiency of 99.7% and a capacity fading of 0.02% 

per cycle. This work exhibits that the low-cost, non-toxic, binder-free hybrid MoO3/SWNTs 

can boost the development of high-performance anodes for LIBs.  

The LPE process of bulk MoS2 in IPA is also used to produce MoS2 flakes with lateral size of 

~ 90 nm. A subsequent thermal composition of PAA in the mixture with MoS2 flakes 

successfully created the MoS2/C hybrids for LIB anodes. The MoS2/C electrodes exhibited 

high capacity, an improved cyclability, and high rate cycling compared with MoS2 electrode. 

In particular, MoS2/C-2 electrode, with a ~16.11%wt of carbon content delivers a reversible 

specific capacity of 521 mAh g-1 at 100 mA g-1 after 100 charge/discharge cycles. These 

aspects unveiled an optimum value of carbon content in effectively embedding MoS2 flakes 

With respect to that of MoS2 electrode (~ 174 Ω) after 100 cycles, the low RCT value of 

MoS2/C-2 electrode (~ 26 Ω), confirms that the proper carbon portion provides an effective 

conductive network. These results are ascribed to (i) a conductive network of carbon 

connecting the MoS2 flakes, and facilitating the Li+ diffusion and the electron transport; (ii) 

the carbon network acts as a buffer layer, easing the volume change of MoS2 flakes during the 

lithiation/de-lithiation process. Therefore, the MoS2/C hybrid fabrication protocol is a 

promising tool for the production of MoS2/carbon hybrids and also can be easily extended to 

the construction of other 2D nano-crystals dispersed in amorphous carbon networks for LIB 

application. 
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Chapter 6:  

Application of black phosphorous for lithium ion 

batteries 

6.1. Introduction 

Black phosphorous (BP) has recently attracted a great deal of interest because of its extremely 

high theoretical specific capacity of 2596 mA h g− 1. [147-149] This high theoretical specific 

capacity can be achieved thanks to the puckered structure of BP which allows uptaking three 

Li+ to form Li3P compounds. [186] Additionally, the BP can exhibit outstanding 

charge/discharge rate because the  puckered structure allows the fast Li+ diffusion is 104 times 

faster than it is in graphene [226], e.g., the diffusion energy barrier in BP is 0.09eV [498] and 

in graphene is 0.327eV [198]. Moreover, when exfoliated into single layer (phosphorene) or 

into FL-BP flakes, the increased available surface area can further enhance the 

electrochemical activity, which is beneficial for energy storage applications. [186] 

The exfoliation of bulk BP into single- or few-layer flakes can be achieved by several 

strategies, such as MC, BM and LPE [183, 184] methods. The MC method exfoliate BP based 

on consecutively peeling off crystal layers by using adhesive tape, [142] but it is only suitable 

for research activities due to both the limited scalability and morphological heterogeneity of 

the exfoliated flakes. [142] The other exfoliation technique, e.g., BM [185, 186] can meet the 

requirement of scalable production, but usually introduces impurities in the obtained products. 

[145, 187] In contrast, LPE [150, 241, 499] is an affordable and scalable alternative to MC. 

[183, 184] The LPE of BP in both aqueous [500] and organic solvents [235, 360, 369] has 

been recently demonstrated which opened up possibilities to use the exfoliated BP in 

applications as light absorbers, [501, 502] and energy storage devices. [500, 503] However, 

current approaches for the LPE of BP present several issues especially in aqueous 

environment, where the chemical integrity of the exfoliated flakes is compromised due to the 

oxidation promoted by the presence of O2/H2O. [227-229] The formation of phosphorus-oxide 

species, i.e. P2O5 and P2O4,
 [230] has been reported when the BP is exposed to air. These 

processes increase the roughness of the flakes and accelerate their degradation. [231] 

Performing the LPE in pure organic solvents solves this issue, since the presence of water and 

O2 is avoided. The organic solvents that commonly used to exfoliate BP are generally toxic 

(Health code ≥ 2 NFPA704), [232] and have a b.p. usually above 100 °C, e.g. NMP, 

b.p. = 202°C, [233] DMF, b.p. = 153°C [234] CHP, b.p. = 284°C [235] or formamide (b.p. = 
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210 °C). [236] The solvent b.p. is critical for several applications because the solvent removal 

is of paramount importance for the realization of high performance anodes of batteries, [3, 

504] and it is also relevant for the development of electronic, [249, 505]  and optoelectronic 

devices. [161, 502] In general, the solvent removal is performed by heating the deposited 

sample or device above the solvent b.p. However, annealing procedures always run the risk of 

either degrading the material or damaging the device. Furthermore, in some cases the solvent 

degrades when heated, i.e. NMP, [506] thus it leaves contaminants or impurities on the as-

prepared devices, [507] which are detrimental to their performance. [508] A possible solution 

for these problems is to use an easy-to-remove solvent, preferably one that is not toxic, not 

degrading with the annealing temperature. To date, however, a clear solution to overcome 

such an issue has not been found. 

As discussed in section 3.5, the importance of the solvent selection, which is of paramount 

importance for the ink storage, treatment, deposition and drying, crucial for the application as 

anodes for LIBs. In specific, the selected solvent should be able to: (i) exfoliate BP; (ii) keep a 

stable dispersion of the exfoliated flakes, i.e. the exfoliated flakes should not flocculate or 

precipitate; (iii) prevent the degradation of the exfoliated flakes by oxidation; (iv) be easily 

removed without leaving impurities. Interestingly, the exfoliation is also possible in acetone 

(see section 3.5.1), a well-known non-toxic solvent with a low-b.p. [231] The exfoliation in 

acetone is attractive for real applications, e.g. polymer composites and functional inks, for 

both of which the drying time and toxicity are key factors to be considered. The exfoliation of 

BP in acetone is a feasible and up-scalable approach which allows fast deposition of 

homogeneous films of FL-BP flakes onto Cu substrate as anodes for LIBs. The study on 

electrochemical properties of FL-BP exfoliated in acetone indicates that it is promising with 

regards to the fast charge/discharge LIBs. Overall, the presented process is a step forward 

towards the fabrication of phosphorene-based devices.  

6.2. Few-layer black phosphorous as anode for lithium ion batteries 

The successful exfoliation of BP in acetone exploiting a low-b.p. solvent, not toxic, not 

degrading with the annealing temperature, offers the possibility to scale-up the production, 

[150, 241] for applications in the energy storage sector. To further highlight this point, this 

section will analyse the electrochemical properties of FL-BPacetone-based anode, comparing to 

the one based on FL-BPCHP. To this end, both dispersions are mixed with a conductive agent 

and a binding material, i.e. CB and PVdF, respectively, then deposited onto Cu substrates (see 

section 2.4.1.4). The SEM images of the samples show the mixture of the FL-BP, PVdF and 

CB, covering the copper substrates (see Figure 6.1a and b, obtained from acetone and CHP 
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dispersions, respectively). The optical pictures, reported as insets in Figure 6.1a and b, show 

the copper substrate coated with the FL-BP/CB/PVdF. These images demonstrate that a 

complete and uniform coverage of the substrate is achieved with the FL-BPacetone sample. In 

contrast, for the deposited FL-BPCHP, the substrate is not uniformly coated. This 

inhomogeneous material distribution is attributed to the slow drying/evaporation of the CHP 

(hours timescale), and the temperature required to dry the electrode (~180°C). The 

heterogeneity in terms of material distribution, e.g., FL-BP and CB/PVdF, on the electrodes is 

also analysed by using EDS and Raman mapping. The presence of FL-BP is characterized by 

means of EDS, analysing the Kα energy of phosphorus (2.013 eV), while the presence of CB 

or PVdF is identified by investigating the Kα energy of carbon (0.277 eV). In the FL-BPacetone 

sample, the EDS mapping (Figure 6.1c) shows that the phosphorus, in red, is homogenously 

distributed onto the substrate and evenly spread with the carbon, in cyan. On the contrary, for 

the FL-BPCHP sample (Figure 6.1d), the phosphorus distribution suggests that the FL-BP is 

aggregated, while the carbon is uniformly distributed. The Raman mapping of the film-like 

deposited samples further support the different distribution of FL-BP in the two samples by 

monitoring the signal to baseline ratio of the 𝐴𝑔
1  peak. The Raman mappings of FL-BPacetone 

and FL-BPCHP are shown in Fig. 6e and Fig. 6f, respectively. The Raman mapping of FL-

BPacetone shows the homogenous presence of the 𝐴𝑔
1  peak, with an average intensity of 0.5, 

which confirms the uniform distribution of FL-BP crystals crystals onto the substrate. On the 

contrary, the FL-BPCHP Raman mapping presents preferential areas where the 𝐴𝑔
1  peak is 

concentrated (intensity 1) and others where the 𝐴𝑔
1  peak is not present (intensity 0), indicating 

aggregation of the FL-BP flakes. 

The FL-BP-based anodes are then tested against a Li foil in a half-cell configuration, as 

described in the methods section. The electrochemical results of the FL-BP anodes are 

summarized in Figure 6.2. The CV measurement (Figure 6.2a) are performed at a rate of 

30 µVs −1 in order to get an electrochemical response for the Li ion transfer from the Li foil to 

the FL-BP-based anodes. [509, 510] The CV scan ranges from 0.05 V to 3 V vs Li+/Li, which 

is within the reaction range of both the formation of the solid-electrolyte interface (SEI) and 

the lithiation/de-lithiation processes for the BP material. [147] The first CV reduction cycle 

shows multiple peaks around 0.6-1.0 V, which are attributed to the phase change from BP → 

LixP → LiP → Li2P → Li3P. [147] 
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Figure 6.1. Scanning electron microscopy images of electrodes made of a) FL-BPacetone and b) 

FL-BPCHP, mixed with CB and PVdF deposited onto copper substrates. c) Energy-dispersive 

X-ray spectrometry elemental mapping of carbon (cyan) and phosphorus (red) of FL-BPacetone 

and d) FL-BPCHP. Raman mapping on the electrodes plotting the signal to baseline intensity 

of the 𝐴𝑔
1  peak of e) FL-BPacetone and f) FL-BPCHP. 

The voltage profiles of the FL-BP electrodes during the 1st, and 20th galvanostatic 

charge/discharge cycles are performed at a specific current of 100 mA g−1 between 50 mV and 

3 V vs Li+/Li, in order to complete the lithiation/de-lithiation (charge/discharge) process 

during each cycle (Figure 6.2b). From the first voltage profile of the FL-BPacetone anode, an 

initial capacity of 1732 mAh g−1 and a discharge capacity of ~510 mAh g−1 are measured. 

Such a high irreversible capacity (~1220 mAh g−1) is typical of nanoflake size-based anodes, 

[5, 511] and similar behaviour has already been reported for BP-based anodes. [148, 234] The 

high irreversible capacity is associated to the large quantity of Li ions that are consumed for 

the SEI formation on the FL-BP large surface area and trapped by the high energy binding on 

the edges. [5, 511] The voltage profiles of both FL-BP anodes show that more than 80% of the 

electrode capacity is delivered at a potential that is lower than 1 V vs Li+/Li over the 20 

cycles.  Such a low potential is beneficial for the application of the FL-BP anode material to 

target high energy-efficiency LIBs. [191] 
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As shown in Figure 6.2c, both FL-BP anodes present a significant capacity which fades within 

the first 10 cycles. This could be caused by the large volume change that originates from the 

lithiation/de-lithiation processes during different LiXP phases. [147] However, the FL-BPacetone 

anode stabilizes at a specific capacity of ~480 mAh g−1, with a coulombic efficiency of 99.6% 

after 100 charge/discharge cycles, taken at a current density of 0.1 A g−1. Meanwhile, the 

anode based on FL-BPCHP, tested under the same experimental conditions, shows a specific 

capacity of ~200 mAh g−1 with a coulombic efficiency of 99.6%. To get further insights on 

the performances, the two FL-BP electrodes are cycled between 50 mV to 3 V vs Li+/Li at 

specific currents ranging from 0.1 to 1 A g−1 in order to investigate the electrochemistry 

activities of the samples during fast lithiation/de-lithiation (charge/discharge) processes.  The 

results, presented in Figure 6.2d, demonstrate that the FL-BPacetone electrode presents stable 

discharge cyclability with a specific capacity of 447 mAh g−1 at a specific current of 0.2 A g−1 

after the 20th charge/discharge and a coulombic efficiency of 99.7%. On the other hand, under 

the same experimental conditions, the FL-BPCHP electrode reaches a specific capacity of 

185 mAh g−1 and a coulombic efficiency of 99.4% (Figure 6.2c and d). 

Furthermore, for the FL-BPacetone based anode, specific capacities of 382 mAh g−1 and 

345 mAh g−1 are reached at current densities of 0.5 A g−1 and 1 A g−1, respectively. Only less 

than a 30% drop in the specific capacities (from 480 mA g−1 to 345 mAh g−1) is observed for 

the FL-BPacetone anode which was tested at both a low (0.1 A g−1) and a high current density 

(1 A g−1), indicating that the FL-BPacetone based battery is a promising option for fast 

charge/discharge devices. [149, 195, 512] Although the specific capacity of the FL-BPCHP 

anode also presents a drop of 10% with the specific current varying from 0.1 to 1 A g−1, its 

specific capacity still remains below 200 mAh g−1, i.e. 50% lower than the one based on FL-

BPacetone. Moreover, the FL-BPacetone-based anode outperforms previously reported anodes 

based on solution processed BP (i.e. ~200  mAh  g-1 at 0.1  A  g-1 after the second discharge 

cycle, [500] and ~250 mAh  g-1 at 0.1  A  g-1 after the first discharge cycle [234]). The 

difference in the electrochemical performances of the two different anodes, i.e. the specific 

capacity, is attributed to the aggregation of the FL-BPCHP after the deposition, as demonstrated 

by both the SEM and Raman mappings reported in Figure 6.1. In contrast, the FL-BPacetone 

flakes do not aggregate after the deposition onto the copper substrate. 
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Figure 6.2. The electrochemical analysis of the FL-BP film (acetone exfoliated sample data 

points shown in blue; CHP exfoliated sample data points shown in orange). (a) Cyclic 

voltrammetries at a scan rate of 30 µVs−1 and (b) voltage profile upon galvanostatic 

charge/discharge of BP-based electrodes at 0.1 A g−1 between 50 mV and 3 V. Thick and thin 

lines correspond to 1st and 20th cycle, respectively. (c) Specific capacity and coulombic 

efficiency over galvanostatic charge/ discharge and cycling between 50 mV and 3 V at 0.1 Ag-

1 (d) and different specific currents, for both the FL-BPacetone- and FL-BPCHP-based electrode 

6.3. Conclusion 

In conclusion, the exfoliation of bulk BP in acetone has been exploited for the realization of 

LIB anodes. The FL-BPacetone flakes are homogenously distributed onto the current collector 

substrate thanks to the fast solvent removal. The FL-BPacetone based anodes, tested in half-cell 

configuration, achieved a specific capacity of 480 mA g−1 at a current density of 0.1 A g−1, 

with a coulombic efficiency of 99.6% after 100 charge/discharge cycles. The FL-BPacetone-

based anode outperformed the FL-BPCHP- based one (~200 mAh g−1 after 100 cycles at 0.1 A 

g−1, achieving a coulombic efficiency of ~99.0%). The proposed liquid phase exfoliation 

process can also be scaled-up since the use of acetone does not present environmental risks, 

whereas both CHP and NMP do. Finally, the exfoliation of BP in acetone can be further 

improved by the addition of acetone-soluble polymers, thus enabling the large-scale 

production of FL-BP/polymer composites. 
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Chapter 7:  

Conclusion and outlook  

Up to date, the search for novel materials is still one of the crucial quests for the development 

of high-performance lithium ion batteries (LIBs). In this context, two dimensional materials 

(2D) have been recognized as promising candidates for future LIB applications because their 

unique structure not only provides the efficient ion transport channels between the layers, 

facilitating the diffusion of Li+, but also offers the large surface area for Li+ storage. 

Graphene, transition metal oxides (TMOs) and transition metal sulfides (TMSs) and black 

phosphorous (BP) have been recognized as promising materials for future LIB technology. 

Therefore, this thesis focused on the production of graphene, MoO3 (as a representative for 

TMOs) and MoS2 (as a representative for TMSs) and BP by liquid phase exfoliation (LPE) of 

their bulk counterparts for LIB anodes. The study of graphene anode provides a fast and 

simple preparation route to fabricate binder-free graphene anode for the improvement of 

specific capacity with respect to commercial graphite anode. Moreover, the study on the 

effects of flakes dimensions (lateral size and thickness) on the electrochemical performance of 

graphene flakes as anode material provides the guidelines for the practical exploitation of 

graphene-based electrodes. In addition to graphene, the understanding of the electrochemical 

properties of MoO3 and MoS2 provides a strategy in material synthesis, e.g., single wall 

carbon nanotube bridge-MoO3 flakes (MoO3/SWNTs) hybrid and MoS2 flakes/amorphous 

carbon hybrid (MoS2/C), to overcome the current issues of these materials for LIB anode, e.g., 

volume change upon cycling, low electrical conductivity. Furthermore, the activity on the 

exfoliation of BP in different solvents offers the opportunity to understand the role of solvent 

parameters on exfoliation and dispersability of BP flakes. Based on this, we can determine the 

ideal solvent which can meet the requirement for the exfoliation of BP and the realization of 

LIBs. The aim of this chapter is to summarize the most relevant results achieved on graphene, 

MoO3, MoS2 and BP based anodes. In addition, the future developments for each of these 

materials in LIB technology are discussed. 

7.1. Graphene-based anode for lithium ion batteries 

The aim of my research on graphene based LIB anode relied on the exploitation of LPE to 

produce graphene flakes from graphite (LPE graphene) because the LPE graphene flakes have 

high crystallinity, that is, a key feature for assuring fast electron transport to the electrode 

support. In this work, the obtained graphene ink after LPE process is enriched in single- 

(SLG) and few-layer (FLG) graphene flakes. However, the drawback of LPE graphene is the 
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use of high boiling-point, toxic solvent, e.g, N-Methyl-2-pyrrolidone (NMP) which is a 

critical issue both for the electrode deposition and the health and environment. Therefore, the 

solvent-exchange process of graphene flakes by using vacuum filtration was exploited to 

exchange NMP into a low-b.p. and environmental-friendly solvent, e.g, ethanol (EtOH). In 

addition, it is important to evaluate the influence of solvent exchange process on the physical 

and chemical properties of the graphene flakes. To this aim, transmission electron microscopy 

(TEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy have been used. In 

particular, comparing the TEM and Raman characterizations of graphene flakes in NMP and 

EtOH, it is clearly demonstrated that the solvent exchange process does not affect the 

structural and morphological properties of the graphene flakes. Besides, the XPS analysis 

indicates that from one hand the solvent exchange process does not induce oxidation of the 

graphene flakes and from the other hand, it allows the removal of ~50% of the NMP 

molecules adsorbed onto the graphene flakes. Briefly, the solvent exchange process allows 

obtaining high crystallinity graphene flakes in EtOH, which enables the fast electrode 

fabrication at room temperature with respect to graphene flakes in NMP.  

Taking the advantage of solvent exchange process, I fabricated the binder-free graphene 

anode via drop-casting graphene flakes in EtOH at room temperature (one-step fabrication) 

and studied its electrochemical properties. The graphene electrode in half-cell configuration 

exhibits remarkable electrochemical performance and stability, a charge/discharge specific 

capacity of 503 mA hg-1 after 100 cycles at a current density of 100 mA g-1 with a coulombic 

efficiency > 99.5%. Moreover, the graphene anode shows its functionality also in a full-cell 

configuration, exploiting commercial LiNi0.5Mn1.5O4 (LNMO) as cathode, with a reversible 

specific capacity of ~ 100 mAh g-1.  The results obtained by using the binder-free graphene 

electrodes, both in half- and full-cell configuration, provides useful guidelines for the 

practical exploitation not only for graphene but also for other 2D materials as stand-alone 

anode materials in LIBs. Moreover, compared to the commercial graphite anode the one-step 

preparation route of binder-free graphene anode is opening the way to the improvement of 

capacity (by utilizing 100% the weight of active material) through a low-cost, facile coating 

process (drop-casting of graphene dispersion at room temperature), with consequent reduction 

of the environmental impact (using environmental friendly solvents).  

The dimension (lateral size and thickness) of the graphene flakes has an important role in the 

Li+ storage mechanisms, but the link between these morphological properties, and 

electrochemical performances were not established yet. Therefore, the sorting of graphene 

flakes after the exfoliation of graphite with various dimensions by means of sedimentation 

based separation (SBS) has been carried to clarify the roles of graphene flakes dimension on 
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electrochemical performance of LIB anode.  The SBS exploiting different centrifugal speeds, 

coupling with the solvent exchange process allows producing four dispersions of graphene 

flakes in NMP. The TEM and AFM measurements have been exploited for the 

characterization of the flakes morphology of the four samples. In particular, the graphene 

flakes dimension decreases, from Sample#1 to #4, with the increase in centrifugal speed. The 

Raman spectroscopies of graphene flakes in the four samples show that Sample#1 and #2 are 

mostly formed of thick (20–50 layers) MLG flakes, while Sample#3 is composed of thinner 

multi-layer graphene (MLG) (10–15 layers) and Sample#4 comprised of FLG flakes. 

Importantly, the obtained electrochemical results demonstrate that the MLG flakes (20–50 

layers) having average lateral size ranging from 180-380 nm, have not yet demonstrated 

considerable gain in maximum specific capacity (~ 341–366 mAh g-1) compared to the 

theoretical specific capacity of graphite (372 mAh g-1). Meanwhile, more capacity is delivered 

at high potentials (> 0.2 V vs Li/Li+) upon graphene flake size reduction, due to the 

preferential Li+ storage by adsorption rather than intercalation in small lateral size (~100 nm) 

and thin (< 15 layers) flakes, resulting in reduced and non-constant voltage output, which is a 

detrimental factor for voltage efficiency. This study demonstrates that graphene might be still 

involved in the list of ultimate LIB electrode materials, but it may not be considered as the 

active materials. Nevertheless, graphene can be used as a supporting platform for other types 

of active materials in composite or hybrid structures, e.g., conductive agent, buffered layer for 

volume change of active material, etc.  

7.2. Molybdenum oxides- and molybdenum disulfide-based anode for lithium ion 

batteries 

In the second part of my PhD program, I started to investigate the electrochemical properties 

of MoO3, MoS2 flakes and their carbon-based hybrid structures with the aim to contribute in 

the understanding on the effects of carbon materials on Li+ storage ability of MoO3 and MoS2. 

Although MoO3 and MoS2 exhibit high theoretical capacity with respect to that of graphite, 

these materials are still commonly facing the issues of volume change upon cycling and low 

electrical conductivity. Thus, nanostructuring and hybrid synthesis were proposed to be the 

viable strategies to overcome the current issues of MoO3 and MoS2. In particular, the nano-

sized MoO3 and MoS2 flakes reduce the length for Li+ diffusion and mitigate the volume 

change during charging/discharging process with respect to their bulk counterparts. In 

addition to nanostructuring, the synthesis of MoO3/SWNTs and MoS2/C hybrid is an effective 

strategy to exploit the preeminent properties of carbon-based materials, e.g., high electrical 

conductivity and mechanical strength, to compensate for the limited properties of active 

materials, e.g., buffering the volume change and enhancing the conductivity of electrodes.  
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In the case of MoO3 flakes-based anode, the MoO3/SWNTs hybrid was formed by exploiting 

a simple solution mixing process. The SWNTs in MoO3/SWNTs hybrid play a role of 

bridging the isolated MoO3 flakes, forming an interconnected network in the mixture of 

MoO3/SWNTs. This structure enables long channels for electron transport and a buffered 

frame for accommodating the volume change of active material during lithiation/de-lithiation 

process. Indeed, the surface morphology of the MoO3/SWNTs hybrid electrode after 100 

charge/discharge cycles demonstrates that the  SWNTs  in  the  MoO3 /SWNT electrode  

create  a  network  between  the  cracked  ‘islands’  following the MoO3 volume change 

during  charge/discharge cycles. Hence, the MoO3/SWNTs hybrid anode displays a high 

specific capacity of ~ 865 mAh g−1 at 100 mA g−1 after 100 cycles, with a columbic efficiency 

of ~99.7%. This study set the basis for the exploitation of exfoliated MoO3 flakes as anode 

materials in high LIB. Moreover, the binder-free MoO3/SWNTs hybrid anode prepared by a 

simple method can boost the development of high performance anodes for LIBs. 

Taking advantages of the knowledge on the use of carbon based material in MoO3/SWNTs 

hybrid, I successfully synthesized the amorphous carbon/MoS2 flakes hybrid. The hybrid 

structure consists of MoS2 flakes incorporated in an amorphous carbon network. The carbon 

in the MoS2/C hybrid plays the role of conductive network, promoting the electron transport 

and also acts as a buffer layer for the active material, accommodating its volume variation 

upon cycling. However, controlling the carbon content (wt%) in MoS2/C hybrids is also an 

important task because it determines the thickness of carbon layer which highly influence to 

the Li+ diffusion in the electrode. To do so, I synthesized three MoS2/C hybrids with different 

carbon contents of ~10.00%, 16.11% and 29.86% corresponding to sample MoS2/C-1, 

MoS2/C-2 and MoS2/C-3, respectively. The thickness of the carbon layer is found to increase 

with the increase in carbon content in the MoS2/C hybrids. Especially in the MoS2/C-1 hybrid, 

the low carbon content is unable to completely cover the MoS2 flakes. The electrochemical 

performance of MoS2/C hybrids demonstrates that all hybrid electrodes feature a stable 

reversible capacity and low charge transfer resistances (RCT) upon 100 charge/discharge 

cycles with respect to that of pristine MoS2. This indicates the role of carbon in improving the 

electrode conductivity and buffering volume change of MoS2. Indeed, the morphology of the 

electrode surface after 100 cycles show that with the increase in carbon content, the formation 

of fractures gradually disappears on the surface of hybrid electrodes, confirming the role of 

carbon network in the structural preservation, avoiding pulverization of electrodes. Moreover, 

it has been observed that the insufficient carbon content in MoS2/C-1 sample leads to the 

pulverization of electrode, whereas the excess carbon content in MoS2/C-3 sample limits the 

Li+ diffusion. As a result, both MoS2/C-1 and -3 electrodes exhibit lower reversible specific 
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capacity than that of the MoS2/C-2 one, which features a proper amount of carbon covering 

on MoS2 flakes. The improved electrochemical performance of MoS2/C-2 sample with respect 

to MoS2/C-1 and -3 ones indicates that proper carbon content not only improves the electrical 

conductivity of the electrode by facilitating the electron transport, but also acts as a buffer 

layer for active materials to avoid its volume change upon cycling.  

In summary, the electrochemical performances of MoO3/SWNTs and MoS2/C electrodes 

demonstrate an effective strategy in hybrid/composite synthesis to produce high performance 

LIB anode. Both the MoO3/SWNTs and MoS2/C hybrids are produced by facile fabrication 

protocols that can also be easily extended to the construction of hybrid structures of other 2D 

nano-crystals in carbon-based material networks for LIB application. 

7.3. Black phosphorous based anode for lithium ion batteries 

In the last activity of my thesis, the production of FL-BP was carried out via LPE to 

investigate the solvent parameters which are relevant to the selection of an ideal solvent for 

the exfoliation of BP. In specific, the selected solvent should be able to: (i) exfoliate BP; (ii) 

keep a stable dispersion of the exfoliated flakes, i.e. the exfoliated flakes should not flocculate 

or precipitate; (iii) prevent the degradation of the exfoliated flakes by oxidation; (iv) be easily 

removed without leaving impurities. The exfoliation of BP in 14 different solvents were 

carried out and then the dispersability properties of few-layers BP (FL-BP) where evaluated,  

based on γ, Hansen solubility and Hildebrand parameters. Among the different trials, although 

the N-Cyclohexyl-2-pyrrolidone (CHP) is the solvent that promotes the highest concentration 

compared with all the other solvents, but it still showing the drawbacks of toxicity and high-

boiling point (b.p.), the detrimental factors in LIB technology. Importantly, it has been 

recognized that the BP exfoliation is also possible in acetone, a well-known non-toxic solvent 

with a low-b.p. The  morphological  and  structural  characterization  reveals that the 

exfoliated BP flakes in acetone are undamaged by the LPE process, and have an average 

lateral size of ~30 nm and an average thickness  of  ~7 nm. More importantly, by using 

electron energy loss (EEL) and Raman spectroscopies, it is demonstrated that the aging of 

exfoliated BP flakes in acetone is comparable with the one obtained by using high-b.p. 

solvent, e.g., CHP. The successful exfoliation of BP in acetone creates the feasible and up-

scalable approach for fast electrode deposition in LIB technology. The FL-BLacetone-based 

anode outperformed the FL-BPCHP - based one. These findings indicate that the FL-BPacetone -

based LIB anode is promising with regards to the design of fast charge/discharge devices. 

Overall, the presented process is a step forward towards the fabrication of phosphorene-based 

devices. 
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7.4. Future development 

Liquid phase exfoliation of layered material is an effective strategy to produce 2D materials 

with low-cost, simplicity and high output, which can be applied for LIBs to reach the 

industrial-scale. This method can not only be used for MoO3 and MoS2, but can also be 

extended to other 2D crystals. The key parameter of LPE is the solvent used in the process 

which determines the production yield. The current solvents to exfoliate 2D crystal are mostly 

high-b.p. and toxic organic solvents, e.g., NMP, DMF, CHP, benzyl benzoate, etc. which are 

not favourable for future LIB technology. Therefore, the searching and the new solvents and 

modifying the composition of solvents to meet the requirements of exfoliation of 2D crystals, 

e.g., the surface energy of solvents have to be close to the surface tension (γ) of 2D flakes, the 

solvents have to be non-toxic, low-b.p., etc., is one of the future missions for research 

community to further develop the industrial-scale production of LIB materials.  

In this thesis, the solvent exchange process of graphene flakes via vacuum filtration technique 

was explored as a promising route to the processing of environmentally friendly graphene ink, 

which allows one step fabrication of binder-free electrode for LIBs. This approach should be 

further exploited for other 2D materials, e.g., TMOs, TMSs for the realization of LIB anode 

with high capacity. However, the vacuum filtration technique still has a drawback of losing 

material in filtering membrane. Thus, the solvent exchange process can be realized by other 

techniques, which should be further investigated for the realization of the simple, fast, 

effective and low-cost electrode fabrication.  

Furthermore, the understanding of the role of graphene flakes dimension on their Li+ storage 

ability provides the guidelines for the practical exploitation of graphene-based electrodes. One 

of the potential future directions in graphene-based LIB is exploiting hybrid structures of 

graphene with an active material with high theoretical capacity, e.g., alloying materials, 

TMOs and TMSs, to fully utilize the novel properties of graphene, e.g., high electrical 

conductivity, large surface area and high mechanical strength for the improvement of the Li+ 

storage ability. As discussed in section 1.2.3, although exhibiting the large theoretical 

capacities, Si, TMOs, TMSs alone are still facing with the issues of low conductivity and 

large volume change. Owing to the impressive electrical conductivity, graphene was proposed 

as a conductive agent to improve the conductivity of these electrodes. [513] Moreover, the 

large surface area of graphene can buffer the volume change of active materials in Si, TMOs 

and TMSs electrodes. Besides, superior thermal conductivity of graphene can be 

advantageous for dissipating the heat generated in LIBs in the case of high current loads. 

[514] Recently, six models of graphene-based composites have been reported: encapsulated, 
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mixed, wrapped, anchored, sandwich-like and layered models [513], see Figure 7.1. The uses 

of each model depend on the design of active materials. For example, the 

graphene/nanoparticles based composites are commonly described by the encapsulated, 

mixed, wrapped and anchored models, whereas sandwich-like and layered models are 

associated to the composites of graphene and other 2D materials. In the case of LPE graphene 

flakes, the mixed model can be the ideal case for designing LIB anode material. [515]  

 

Figure 7.1. Structural models of graphene composites. [191] 

The activities on MoO3 and MoS2 based anodes enable the use of carbon based materials in 

improving the electrochemical performance of anodes based on 2D materials. It should be 

noted that the electrochemical performances of MoO3/SWNTs and MoS2/C highly depend on 

the characteristics of adopted carbon based materials, such as the structure, morphology and 

content. Hence, optimization of the carbon network and synthesis of novel hybrid/composite 

structures, are the critical strategies for the future development of MoO3 and MoS2 for high 

performance LIB anodes. The choice of carbon-based materials for hybrid/composite 

structure with MoO3 or MoS2 is not limited to SWNTs and amorphous carbon. For example, 

the hybrid structures of MoO3/graphene or MoS2/graphene should be exploited for the 

realization of high performance LIB anode.  Moreover, the development of well-designed 

architectures based on MoO3 and MoS2 materials could bring a new way to develop advanced 

TMOs- and TMSs-based electrodes with high energy density, high power density, and long 

cycle life for LIBs. Also, it is necessary to further develop and optimize the protocols for 

large-scale and environmentally friendly production of TMOs, TMSs and their 

hybrid/composites for LIBs applications. In addition, the control of lateral size and thickness 

of layered TMOs and TMSs via SBS can provide an enhanced specific surface area, increased 

number of active sites, and a faster ion transport, which could generate electrode materials for 

high rate electrochemical energy storage. The electrochemical properties of the 2D flakes can 
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be further improved by a rational structure design based on nanoscale manipulation of 2D 

flakes, such as aligning 2D nanosheets or constructing 3D nanosheets interconnected 

networks. To some extent, although the rechargeable performance of TMO-and TMSs-based 

materials has been studied, the correspondence between structure and performance is needed 

to be further clarified. The actual mechanism underlying these electrochemical properties is 

somewhat unclear to researchers. Further investigations into the trigger origin of 

electrochemical reaction and the principle of capacity retention need to be carried out. In this 

regard, in-situ TEM observation and operando X-ray techniques combined with cyclic 

voltammetry technology are strong tools for researches of electrochemical mechanism. The 

above proposed studies will pave a way for the innovative design of high performance LIB 

anodes based on TMOs and TMSs. 

As for BP exfoliation, the LPE of BP in acetone still can be further improved by the addition 

of acetone-soluble polymers which can scale-up the production. Thus, formulating the 

acetone-based solvents is one of the essential works for future development of large-scale 

production of FL-BP based anode for LIBs and other applications. In the field of LIBs, the 

low-b.p. of acetone allows fast fabrication of FL-BLacetone based anode which exhibiting the 

stable specific capacity. However, the anode also shows large irreversible capacity during the 

first few cycles before getting a stable performance, resulting in a relatively low specific 

capacity with respect to the report from Cui et al. [149] In this regard, further studies need to 

be realized to investigate the morphology of BP flakes which is able to plays a very important 

role in irreversible Li+ storage. The defeats on the flakes edges may trap the Li+ producing the 

observed capacity loss. Besides, the FL-BP  flakes in this thesis have favorable panel structure 

with controllable dimension can not only fully exploit the large inter-layer space for the fast 

charge-discharge approaching, but also minimize the damage caused by its volume change 

during cycles. Moreover, its high rate capacity and stability is attractive for industrial 

applications. Therefore, I believe that the FL-BLacetone based anode is promising and can be 

further improved for high-performance LIBs. Several strategies have been considered to 

improve BP batteries. For instance, by coating or bonding the BP flakes surface/edges with 

carbon materials and increasing the percentage of BP flakes in the electrode. In this way the 

battery is expected to exhibit better performances in terms of capacity and energy density. 

However, the additives have to be selected properly. The 2D or 3D structured additives, such 

as CNTs and graphene networks, are also expected to improve the conductivity of the anode 

materials and prevent the volume change. Binder materials with high elastic property may 

also take into the further investigation list. 
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