
Agents Interoperability
via Conformance Modulo Mapping

Davide Ancona, Angelo Ferrando, and Viviana Mascardi
DIBRIS, University of Genova, Italy, name.surname@dibris.unige.it

Abstract—We present an algorithm for establishing a flexi-
ble conformance relation between two local agent interaction
protocols (LAIPs) based on mappings involving agents and
messages, respectively. Conformance is in fact computed “modulo
mapping”: two LAIPs τ and τ ′ may involve different agents and
use different syntax for messages, but may still be found to be
conformant provided that a given map from entities appearing in
τ to corresponding entities in τ ′ is applied. LAIPs are modelled
as trace expressions whose high expressive power allows for the
design of protocols that could not be specified using finite state
automata or equivalent formalisms. This expressive power makes
the problem of stating if τ conforms to τ ′ undecidable. We cope
with this problem by over-approximating trace expressions that
may lead to infinite computations, obtaining a sound but not
complete implementation of the proposed conformance check.

Index Terms—Agent Interaction Protocols, Conformance,
Mappings, Trace Expressions

I. INTRODUCTION

We open the paper by means of an example. The example
allows us to explain the research question we address and
to introduce the trace expressions formalism for representing
agent interaction protocols in a gentle way, before their formal
presentation in the body of the paper.

The example scenario is the following: the company
AI4Tour develops chatbots interacting with human beings
in their daily working activities. AI4Tour business is in the
touristic sector and chatbots support touristic operators.

A typical conversation between a touristic agency
TourAgency and the chatbot TravelChat starts with the
request of whether a plane landed1, or a cruise ship docked,
or a train/bus reached the main city station; the chatbot,
by accessing some database or web service in the backend,
answers either “yes”, “not yet”, or “canc” (for canceled), and
then becomes available to answer new questions.

The global agent interaction protocol (GAIP) τ which
norms the simple multiagent system mas involving TA (for
TourAgency) and TC (for TravelChat) might look like

τ = (TA
landed
=⇒ TC:ε ∨ TA

docked
=⇒ TC:ε ∨

TA
train arrived

=⇒ TC:ε ∨ TA
bus arrived

=⇒ TC:ε) ·
1For sake of clarity, we disregard the facts that a flight is characterized by

a code which should be supplied as a parameter to the query, and that when
the chatbot answers and becomes ready to manage a new query, it might be
able to interact with a travel agency different from TourAgency. The trace
expressions formalism supports parameters both at the data level (to model
messages which only differ for the flight code) and at the agent level (to
model multiple concurrent conversations among different agents), but taking
parameters into account would make the presentation more complex and we
opted for keeping it as simple as possible.

(TC
yes
=⇒ TA:ε ∨ TC

not yet
=⇒ TA:ε ∨ TC

canc
=⇒ TA:ε) · τ

where S
msg
=⇒ R represents the interaction consisting of sender

S sending msg to receiver R, landed stands for “did the
plane land?”, docked stands for “did the ship dock?”, and
so on. The : symbol represents the prefix operator between an
interaction and a protocol, and ε represents the empty protocol.
The ∨ symbol models exclusive choice between protocols,
meaning that the travel agency can make only one request
at a time among the allowed ones, and · represents protocol
concatenation, meaning – in this example – that after receiving
one request, the chatbot will react by selecting and sending one
answer among the three allowed ones. Finally, · τ means that
the protocol definition is recursive: after having received and
answered one question, TravelChat is ready to start again.

Another company AI4Moving develops chatbots that in-
teract with citizens to provide useful information for planning
a safe journey within the city boundaries.

A typical conversation between the citizen C and the chatbot
MovingChat starts with C asking if some ship docked
(because the city traffic is highly impacted by cars and trunks
disembarking), or if a train or bus just reached or will reach the
main city station (because C might consider to take that bus
or train, instead of the car); the chatbot answers either “yes”,
“in one hour”, “in two hours”, or “not in the next three hours”,
and moves to the state where it can receive new questions.

The global agent interaction protocol τ ′ governing mas′

which involves C and MC (for MovingChat) is

τ ′ = (C
docked
=⇒ MC:ε ∨ C

train in station
=⇒ MC:ε ∨

C
bus in station

=⇒ MC:ε) · (MC
yes
=⇒ C:ε ∨ MC

in 1 h
=⇒ C:ε ∨

MC
in 2 h
=⇒ C:ε ∨ MC

not in 3 h
=⇒ C:ε) · τ ′

When the AI4Tour company acquires AI4Moving, it
decides to keep providing the services previously offered
by AI4Moving, but re-implementing them with its own
technologies, in the most efficient and less error-prone way.

W.r.t. to the re-implementation of MovingChat, given
that AI4Tour already developed the TravelChat chatbot
which clearly shares some similarities with MovingChat,
the AI4Tour software engineers start wondering whether
TravelChat can be adapted and reused to play the role of
MovingChat. They address the question: “can TravelChat
safely substitute MovingChat provided that suitable map-
pings between messages and between agents in mas and mas′

respectively are applied?”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Genova

https://core.ac.uk/display/162442229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The intuition behind the “mappings” the AI4Tour software
engineers are looking for should be clear. We formally define
them as a map MM : M1 → M2 from the messages that
appear in an interaction protocol τag1 to those that appear in
τ ′ag2, and a map MA : A1 → A2 from the agents that appear
in τag1 to those that appear in τ ′ag2, respectively. To answer
their “substitutability” question, the engineers must:
(1) Move from the global description τ of how TA and TC

interact, to TC’s local agent interaction protocol τTC

(LAIP):

τTC = (
landed⇐= TA :ε ∨ docked⇐= TA :ε ∨

train arrived⇐= TA :ε ∨ bus arrived⇐= TA :ε) ·

(
yes
=⇒TA :ε ∨ not yet

=⇒ TA :ε ∨ canc
=⇒TA :ε) · τTC

In τTC we omit to write TC as sender or receiver, as this
information is implicit. Also, if there were messages in
τ that involved TravelChat neither as the sender not as
the receiver, they would not appear in τTC .

(2) Move from the global description τ ′ of how citizens and
MC interact, to MC’s LAIP, τ ′MC :

τ ′MC = (
docked⇐= C :ε ∨ train in station⇐= C :ε ∨

bus in station⇐= C :ε) · (
yes
=⇒C :ε ∨ in 1 h

=⇒ C :ε ∨
in 2 h
=⇒ C :ε ∨ not in 3 h

=⇒ C :ε) · τ ′MC

(3) Check whether τTC is conformant to τ ′MC ; this is
achieved by looking for mappings MA among agents
and mappings MM among messages involved in τTC

and τ ′MC , such that TravelChat can play the role of
MovingChat in mas′, still ensuring that the GAIP τ ′ is
respected.

(4) Select one couple of mappings among those computed in
step (3), 〈MM, MA〉, based on their semantics/pragmat-
ics.

(5) Implement a means to allow TravelChat and the citizens
to interact, by forcing TravelChat to apply the selected
mappings when interacting with them.

Agent TourAgency in mas must be necessarily mapped
to C in mas′. From a semantic and pragmatic point of view,
the most reasonable message mapping is the one that maps
docked ∈ mas into docked ∈ mas′ (we abuse notation, and
we write msg ∈ mas to mean that msg is one of the messages
exchanged by agents belonging to mas); train arrived into
train in station; bus arrived into bus in station; yes ∈
mas into yes ∈ mas′; not yet into in 2 h; and canc into
not 3 h. The landed message is mapped into no message:
when “pretending to be MovingChat”, TravelChat will
never receive a message whose meaning is close to landed,
as τ ′ does not support it. On the other hand, TravelChat is
not able to discriminate between trains and buses arriving in
one or two hours. The mapping of not yet into in 2 h is a
cautious choice and the citizen will never receive the message
in 1 h, even if it would be supported by τ ′.

From a purely syntactic point of view, and considering
protocol specifications only – hence, disregarding the actual
services and actions that are triggered by reception of mes-
sages –, many other mappings would respect the protocol con-
formance, including the one that maps canc into yes ∈ mas′
and yes ∈ mas into not 3 h.

The research question that we address in this paper is the
one in step (3) above. We point out that such research question
cannot be answered by using ontology matching algorithms
[1]. Ontology matching techniques could indeed be exploited
in step (4) of the process, as we discuss in the Conclusions, but
not in step (3): an ontology represents static knowledge, not
dynamic behaviour. An agent interaction protocol represents
dynamic behaviour, not static knowledge. Checking whether a
protocol is conformant to another must necessarily take such
dynamics into account, which is not required in an ontology
matching process and which raises many subtle issues. For
example, when moving from τ to τ ′ to substitute ag′, ag must
be capable to react at least to all the “passive events” (for
example, receiving a message) that ag′ can address, and to
perform at most all the “active events” (for example, sending
a message) that ag′ can perform, at any stage of the protocol.
This requirement cannot be satisfied by an ontology matching
approach, where it does not even make sense, whereas it is
well known in the protocol conformance literature. Depending
on the expressiveness of the language used to specify GAIPs,
verifying that ag can actually substitute ag′ in a safe way
may be more or less complex, or even impossible to perform
in an exact way. As an example, recursive protocol definitions
are usually disregarded in the literature as they are extremely
complex to manage. The formalism we use for modeling
GAIPs and LAIPs supports recursion, and this is enough to
make existing conformance checking algorithms not powerful
enough for our needs.

Our contribution is an algorithm for addressing step (3)
above when GAIPs are specified as trace expressions [2], [3],
[4], [5], [6], [7], [8], [9]. To demonstrate the feasibility of our
approach, we present an example implemented in JADE [10].

II. RELATED WORK

The works closer to our proposal come from Baldoni and
Baroglio who, together with their colleagues, introduced the
notion of syntactic conformance in the context of interaction
protocols for MAS and Service Oriented Computing (SOC)
scenarios, starting from 2004. Conformance is based on the
notion of interoperability among the entities’ policies (e.g. a
BPEL process [11], similar to some extent to our LAIPs) with
respect to interaction protocols (e.g. a WS-CDL choreography
[12], similar to our GAIPs), through the use of finite state
automata. While in [13], [14], [15] protocols were limited to
involve two entities only, [16] presents an extension supporting
multiple parties. A further extension is presented in [17] where
decision points are explicitly represented.

Besides the fact that we address the conformance between
LAIPs, there are other differences between those works and
ours: first, they assume that entities/messages involved in the



policy and in the protocol respectively, are exactly the same
in order for the conformance check to have some chance
to succeed: no notion of mapping is foreseen; second, the
expressive power of trace expressions is higher than the ex-
pressive power of WS-CDL/BPEL. The presence of expansive
subtraces, introduced later on, makes trace expressions able
to recognize context-free and non context-free languages, and
raises technical problems that do not show up when less
expressive formalisms are used.

Among the works by Baldoni and Baroglio’s team, however,
the most inspiring for our research is [18], recently improved
and extended in [19]. That work presents an agent typing
system, where types are defined as commitments [20]. The
typing includes a notion of compatibility, based on subtyping,
which allows for the safe substitution of agents to roles along
an interaction that is ruled by a commitment-based protocol.
The proposal is implemented in the 2COMM framework [21]
which is based on the Agent & Artifact meta-model [22],
and exploits JADE and CArtAgO [23]. Considering the LAIP
associated with an agent as its “communicative type” is an
almost natural idea in our approach also. The LAIP makes the
communicative interface of an agent explicit and can be used
both to type check an agent w.r.t. the possibility of entering
a MAS normed by some GAIP, and to define a subtyping
relation which we name “is conformant to” relation. The main
difference between our approach and the one discussed in [18]
lies in the adopted formalism and the generality: commitments
without mappings there, trace expressions with mappings here.

Many other works besides those mentioned above aim at
defining and testing conformance in the SOC community,
including [24], [25], [26], [27]. None of them uses formalisms
which are as powerful as context-free grammars, or more, and
none integrates the notion of agents and messages mappings.
Also, some of them are limited to two-party protocols.

When moving to the MAS realm, we can devise the
same differences between our approach and the others as
those identified for SOC approaches: lower expressive power
of the adopted formalisms and less generality, due to the
absence of mappings in the conformance definition. Among
the most notable contributions to protocol conformance, we
may mention [28] where Endriss et al. identify three levels
of conformance, weak, exhaustive, and robust, and explore
how a specific class of logic-based agents can exploit an AIP
formalism based on simple if-then rules to check conformance
a priori or enforce it at runtime. In a similar way, Alberti
et al. exploit the SCIFF abductive proof-procedure [29] for
both a priori and runtime verification of compliance of agent
interactions [30]. In [31], Chopra and Singh formalize the
notions of conformance, coverage and interoperability. In [32]
a formal interoperability test for agents is presented. That work
considers the presence of two agents only, but in an open
scenario where agents can behave differently from the protocol
specification. Finally, in [33], Giordano and Martelli address
the problem of conformance between an agent and a protocol
through an automata-based technique, when the specification
of the protocol is given in a temporal action logic.

III. BACKGROUND AND BASIC DEFINITIONS

a) Trace expressions: Trace expressions are based on
events and event types and can be combined with various
operators. For sake of presentation, in this paper we do not
distinguish between events and event types, and we trace the
last ones back to the notion of interactions.

An interaction is represented by S
msg
=⇒ R where S is the

sender, msg is the message, and R is the receiver. We define
MSG as the function which, given an interaction, returns its
message: MSG(S

msg
=⇒ R) = msg.

A trace expression τ represents a set of possibly infinite
interaction traces and is defined on top of the following
operators:
– ε (empty trace), denoting the singleton set {ε} containing
the empty interaction trace ε,
– int :τ (prefix), denoting the set of all traces whose first
interaction is int and the remainder is a trace of τ ,
– τ1·τ2 (concatenation), denoting the set of all traces obtained
by concatenating the traces of τ1 with those of τ2,
– τ1∧τ2 (intersection), denoting the intersection of the traces
of τ1 and τ2,
– τ1∨τ2 (union), denoting the union of the traces of τ1 and
τ2,
– τ1|τ2 (shuffle), denoting the set obtained by shuffling the
traces in τ1 with the traces in τ2.

To support recursion without introducing an explicit con-
struct, trace expressions are regular terms and can be repre-
sented by a finite set of syntactic equations.

As an example, T = int :T is equivalent to the infinite but
regular term int :int :int :int : . . .. The only trace represented by
T is intω: trace expressions are interpreted in a coinductive
way to represent infinite traces of interactions [34].

The semantics of trace expressions is specified by a transi-
tion relation δ ⊆ T × I × T , where T and I denote the set
of trace expressions and of interactions, respectively. Notation
τ1

int−→ τ2 means (τ1, int , τ2) ∈ δ; the transition τ1
int−→ τ2

expresses the property that the system can safely move from
the state specified by τ1 into the state specified by τ2 when
interaction int takes place. Trace expressions model GAIPs.

b) Expansive trace expressions: The expressive power of
trace expressions is due to the presence of expansive terms.

Def. 3.1: A trace expression τ is expansive iff τ = τ1·τ2
and τ1 is a cyclic term containing τ ; or τ = τ1|τ2 and either
τ1 or τ2 is a cyclic term containing τ ; or τ = τ1∧τ2 and either
τ1 or τ2 is a cyclic term containing τ ; or it contains a subtrace
that is expansive.

Expansive subtraces allow the trace expression formalism
to recognize more than context-free languages. Given a trace
expression τ , exp(τ) is true if τ is expansive.

c) Trace expression over-approximation: Given a trace
expression τ , τ̃ is an over-approximation of τ iff τ is not
expansive and τ̃ = τ ; or τ is expansive and τ̃ is a trace
expression equivalent to a regular expression representing a
superset of the traces recognized by τ .

Since τ̃ is equivalent to a regular expression, it is not ex-
pansive. Given an expansive trace expression τ , there may be



many τ̃ that over-approximate it. The algorithm that computes
one of these non-expansive over-approximations is discussed
in [35].

d) Projection: Let A be a set of agents. Projection [36] is
a function Π : T ×P(A)→ T . Given a trace expression τ and
a set of agents ags ⊆ A as input, Π returns a trace expression
τags which contains only interactions involving agents in ags:
interactions that do not involve agents in ags are removed
from τags. Since in this paper we are interested in projecting
onto a single agent at a time, we will write τag instead of
τ{ag} to denote the projection of τ onto agent ag.

When projected onto S, interaction S
msg
=⇒ R is represented

by
msg
=⇒R (“sending interaction”); when projected onto R, it

is represented by
msg⇐=S (“receiving interaction”). In projected

interactions, we omit to write the agent onto which the
projection is performed. We extend the MSG function intro-
duced for interactions, to sending and receiving interactions:
MSG(

msg
=⇒R) = MSG(

msg⇐=R) = msg. Projected trace
expressions model LAIPs.

e) GAIPs, agents, interactions, and messages: Let mas
be a multiagent system governed by some GAIP modeled
by trace expression τ . We define GAIP (mas) as τ . Let τ
be a trace expression involving all and only agents A and
interactions I. We define AG(τ) as A, INT (τ) as I, and
MSG(τ) as {msg | int ∈ INT (τ) and msg = MSG(int)}.

The definitions of AG, INT and MSG hold for both trace
expressions and projected trace expressions.

IV. LAIP CONFORMANCE MODULO MAPPING

We first give a simpler, but stronger, definition of compli-
ance which does not allow renaming of messages and agents.

Def. 4.1: Given two LAIPs τag1 and τ ′ag2, we say that τag1
is conformant to τ ′ag2, written τag1≤τ ′ag2, iff the following
conditions are coinductively verified:

• ∀msg , ag if ∃τ ′′ag1 s.t. τag1
msg
=⇒ag−→ τ ′′ag1, then ∃τ ′′′ag2 s.t.

τ ′ag2

msg
=⇒ag−→ τ ′′′ag2∧τ ′′ag1≤τ ′′′ag2;

• ∀msg , ag if ∃τ ′′′ag2 s.t. τ ′ag2
msg⇐=ag−→ τ ′′′ag2, then ∃τ ′′ag1 s.t.

τag1

msg⇐=ag−→ τ ′′ag1∧τ ′′ag1≤τ ′′′ag2;

• {τ ′′′ag2 | ∃msg , ag.τ ′ag2

msg
=⇒ag−→ τ ′′′ag2} 6= ∅ implies {τ ′′ag1 |

∃msg , ag.τag1

msg
=⇒ag−→ τ ′′ag1} 6= ∅.

In the following formalization we assume that ag1 is
an agent in mas, and ag2 an agent in mas′, and define
τ = GAIP (mas), τ ′ = GAIP (mas′), τag1 = Π(τ, ag1),
τ ′ag2 = Π(τ ′, ag2) , A1 = AG(τag1), A2 = AG(τ ′ag2),
M1 = MSG(τag1), M2 = MSG(τ ′ag2).

As introduced in Section I, we consider a map MM :
M1 → M2 from the messages that appear in τag1 to those
that appear in τ ′ag2, and a map MA : A1 → A2 from the
agents that appear in τag1 to those that appear in τ ′ag2.

A more general conformance relation modulo mappings
can be defined in terms of the basic conformance relation of
Definition 4.1.

Def. 4.2: Given two LAIPs τag1 and τ ′ag2, and two map-
pings MM and MA on messages and agents, respectively, we
say that τag1 is conformant to τ ′ag2 modulo MM and MA,
written τag1≤〈MM,MA〉τ

′
ag2, iff 〈MM,MA〉(τag1)≤τ ′ag2.

With 〈MM,MA〉(τag1) we denote the trace expression
obtained from τag by replacing all the interactions

msg
=⇒ag

and
msg⇐=ag with

MM(msg)
=⇒ MA(ag) and

MM(msg)⇐= MA(ag), respec-
tively.

Intuitively, the relation τag1≤〈MM,MA〉τ
′
ag2 ensures that

ag1 can safely substitute ag2 in mas′, provided that mappings
MM and MA are applied to messages and agents in τag1,
respectively.

An algorithm for conformance. Given the definitions 4.1
and 4.2, a first question that may arise is whether there
exists an algorithm for deciding if the compliance relation
holds for a pair of trace expressions, and, in case of the
more general notion of conformance modulo mappings, if
such mappings can be computed. Unfortunately, the problem
is undecidable even for the simpler conformance relation of
Definition 4.1; this can be derived by the fact that a context-
free grammar can be encoded into a trace expression, and
that the problem of inclusion between context-free languages
(which is known to be undecidable) can be reduced to the
conformance problem between two trace expressions. Despite
this negative result, it is still interesting to investigate the
existence of algorithms which are sound (even though not
complete) w.r.t. the definition of conformance between trace
expressions.

We define the merging of two maps in the following way:
let MM :M1→M2 and M ′M :M1′ →M2′ be two maps
among messages:

if ∃msg∈M1∩M1′ .MM(msg) 6= M ′M(msg)
then merge(MM,M

′
M) = ∅

else merge(MM,M ′M) = M ′′M :M1∪M1′ →M2∪M2′

such that M ′′M = MM ∪M ′M.
In other words, merging two maps consists in computing

the union of the elements in the maps, unless there is some
conflict, namely, some element is mapped to two different
elements in the two maps. In this case, the maps cannot
be merged (the merged map is empty). For instance, if
MM = {msg1 7→ msg2,msg3 7→ msg4} and M ′M =
{msg3 7→ msg4,msg5 7→ msg6}, the merged map is
M ′′M = {msg1 7→ msg2,msg3 7→ msg4,msg5 7→ msg6}.
If MM = {msg1 7→ msg2} and M ′M = {msg1 7→ msg3},
their merged map is empty.

The same definition can be adopted for merging maps of
agents.

Given two maps MM and MA, a sending interaction
msg
=⇒R

can substitute a sending interaction
msg′

=⇒R′ in the context of
MM and MA iff merge({msg 7→ msg′},MM) 6= ∅ and
merge({R 7→ R′},MA) 6= ∅. The definition for a receiving

interaction
msg⇐=S substituting a receiving interaction

msg′

⇐=S′ is
similar.

The computation of τag1≤〈MM,MA〉τ
′
ag2 is carried out by



the “isConformant” algorithm. The algorithm starts from two
initial agent and message maps, and incrementally adds to
them those mappings which are necessary to ensure agents
interoperability. Consequently, it is possible to obtain partial
maps where some messages and agents have not been mapped
to anything at the end of the computation. Partial maps must
be completed (namely, they must become total maps and be
defined on all the elements in their domain), in order to
be used in practice. Completion can be achieved by adding
dummy elements in the range, and associate the elements in
the domain that had no corresponding element in the range,
with such dummy elements. The completion step is necessary
to ensure that, when actually used to substitute ag1 ∈ mas
to ag2 ∈ mas′, the maps returned by the algorithm can be
applied to all the agents and messages appearing in τag1. The
isConformant algorithm operates by cases, and the following
implication holds:

τag1≤〈cMM,cMA〉τ
′
ag2 ⇐=

〈MM,MA〉 = isConformant(τag1, τ ′ag2, ∅, {ag1 7→ ag2})
and 〈MM,MA〉 6= 〈∅, ∅〉 and complete(MM) = cMM and
complete(MA) = cMA, where complete is the map comple-
tion step sketched above.
Conformance can be lifted to global protocols:

τ≤τ ′ ⇐⇒ ∀agi∈mas.∃ag′
j∈mas′ .τagi≤τ ′ag′

j

τ≤〈MM,MA〉τ
′ ⇐⇒ ∀agi∈mas.∃ag′

j∈mas′ .τagi≤〈MM,MA〉τ
′
ag′

j

Conjecture: Soundness. The conformance algorithm is sound
w.r.t. Definition 4.2.
Claim: No Completeness. The algorithmic implementation of
the conformance test is not complete.

For space constraints, the pseudo-code of isConformant
along with the sketch of the claim proof is available
at https://www.disi.unige.it/person/MascardiV/Download/
supplementalConformanceModuloMapping.pdf.

V. EXAMPLES AND IMPLEMENTATION

Given two MASs mas and mas′ ruled by τ = GAIP (mas)
and τ ′ = GAIP (mas′) respectively, the steps for using an
agent involved in mas inside mas′ are the following: (i)
identify the agent ag1 ∈ mas to be used in mas′; (ii) generate
the set of agents and maps that ensure τag1 conformance
{(ag2, 〈MM,MA〉)|ag2 ∈ mas′, τag1≤〈MM,MA〉τ

′
ag2}; (iii)

select one couple of agents and maps (ag2, 〈MM,MA〉)
from the set, based on domain-dependent criteria that might
involve message similarity, similar behaviours of the mapped
agents, and so on; (iv) generate an interface i for ag1 driven
by (ag2, 〈MM,MA〉); (v) substitute ag2 in mas′ with the
“interfaced version” of ag1: the agents in the MAS obtained
via this substitution still respect τ ′, because of step (ii).

The notion of interface introduced in step (iv) is related to
the actual use of the maps generated during the conformance
check and it is meant as a logical component offering a
“bridging service”, that can be implemented in many different
ways. Hence, the interface i generated in step (iv) realizes the

map-driven translations needed by agents in mas and mas′

to interoperate. Each time ag1 ∈ mas performs the action
of sending a message msg1 to an agent ag1r ∈ mas, the
interface i “intercepts” (from a logical point of view) msg1,
translates it into MM(msg1) = msg2, and forwards msg2
to MA(ag1r) ∈ mas′. In the same way, each time an agent
ag2s ∈ mas′ sends a message msg3 to ag2 ∈ mas′, the inter-
face intercepts msg3, looks for a message msg4 that ag1 can
receive in the current protocol state s.t. MM(msg4) = msg3,
translates msg3 into msg4, and forwards it to ag1.

As an example, let us consider a GAIP τ representing the
protocol where an agent Buyer (Buy) asks to an agent Seller
(Sel) for a resource and if the resource is available, the Seller
can give it in exchange of money, otherwise the Seller informs
the Buyer of the unavailability.

τ = (Buy
res?
=⇒ Sel):

(Sel
res
=⇒ Buy:Buy

money
=⇒ Sel:ε∨Sel no

=⇒ Buy:τ)

Let us consider another similar GAIP τ ′ defining a book-
shop protocol where an agent Client (Cl) asks for a book
to an agent BookShop, and again if the book is available the
BookShop (Shop) agent sells it for a given amount of euros,
otherwise a no avbl message is returned.

τ ′ = (Cl
book?
=⇒ Shop):

((Shop
book
=⇒ Cl:Cl

euros
=⇒ Shop:ε)∨(Shop

no avbl
=⇒ Cl:τ ′))

We want to check if τ is conformant to τ ′, τ≤τ ′. From the
definition of conformance between global protocols, for each
agent ag ∈ τ we must find at least one agent ag′ ∈ τ ′

s.t. τag≤〈MM,MA〉τ
′
ag′ . First of all, we generate the local

perspectives LAIPs of τ and τ ′ through projection.

τBuy = (
res?
=⇒Sel):((

res⇐=Sel :
money
=⇒ Sel :ε)∨(

no
=⇒Sel :τBuy))

τSel = (
res?⇐=Buy):((

res
=⇒Buy :

money⇐= Buy :ε)∨(
no⇐=Buy :τSel))

τ ′Cl = (
book?
=⇒ Shop):((

book⇐=Shop :
euros
=⇒ Shop :ε)∨(

no avbl⇐= Shop :τ ′Cl))

τ ′Shop = (
book?⇐= Cl):((

book
=⇒Cl :

euros⇐= Cl :ε)∨(
no avbl
=⇒ Cl :τ ′Shop))

Then we apply the rules deriving from Definition 4.2, obtain-
ing that (Figure 1c) τBuy≤〈MM,MA〉τ

′
Cl with MM = {res? 7→

book?, res 7→ book, money 7→ euros, no 7→ no avbl}
and MA = {Buy 7→ Cl, Sel 7→ Shop} and (Figure 1d)
τSel≤〈MM,MA〉τ

′
Shop with the same maps. From this, we

derive that τ≤〈MM,MA〉τ
′.

In this example we had no prior knowledge on possibly cor-
rect mappings. In many real scenarios, however, some of the
correct mappings among messages and agents, respectively,
are known in advance. The values ∅, {ag1 7→ ag2} used to
initialize the maps in the definition of τag1≤〈cMM,cMA〉τ

′
ag2

iff 〈MM,MA〉 = isConformant(τag1, τ ′ag2, ∅, {ag1 7→ ag2})
correspond to the worst case where the developer has no
knowledge at all about the possible correct mappings, and
wants to generate all of them for further inspection. If the
developer knows that the initial associations modelled by

https://www.disi.unige.it/person/MascardiV/Download/supplementalConformanceModuloMapping.pdf
https://www.disi.unige.it/person/MascardiV/Download/supplementalConformanceModuloMapping.pdf


(a)

Buyer Seller

res?

res

money

no

(b)

Client BookShop

book?

book

euros

no avbl

(c)

Buyer i BookShop

book?

book

euros

no avbl

res?

res

money

no

(d)

Client i Seller
res?

res

money

no

book?

book

euros

no avbl

Fig. 1: (a) and (b) MASs presented in the example; (c) Buyer sub-
stitutes Client through the interface i driven by MA = {Buyer 7→
Client ,Seller 7→ BookShop}, MM = {res? 7→ book?, res 7→
book ,money 7→ ack ,no 7→ no avbl}); (d) Seller substitutes BookShop
with an interface driven by the same maps.

MM0
and MA0

must hold, he/she can run isConformant(τag1,
τ ′ag2, MM0

, MA0
), forcing the algorithm to extend such initial

knowledge with new associations or to answer that, with these
maps, the protocols are not conformant. This would be the
case for example in Software Product Line applications and
in evolving IoT scenarios where the developer knows which
components in the previous product version/system should be
replaced by which in the new one, and wants to check if it is
possible, respecting the existing communication protocols.

Although introducing the notion of interface for showing
how we can use the mappings generated during the con-
formance check (step (5) presented in Section I deals with
exploiting mappings in practice) makes the presentation almost
simple and intuitive, the actual implementation of such an
interface requires to take care of many aspects dependent
on the adopted MAS framework. Step (5) is in fact heavily
application-dependent and can be faced in different ways,
depending on the applications constraints: it would be possible
for example to insert a “translator agent” into mas′, that
intercepts and manages all interactions involving ag; or to
create a wrapper for agent ag that allows it to automatically
translate incoming and outgoing messages according to MM;
or even to automatically modify ag’s source code, if available,
to hard-wire the MM mapping at source code level. Whatever
the approach is, all the agents in mas′ should be aware that ag′

has been substituted by ag, in order to handle communication
properly.

To demonstrate how to exploit the maps generated by the
conformance testing to substitute JADE (http://jade.tilab.com)
agents with other JADE agents, we adopted an automatic
source code translation approach. The methodology we fol-
lowed consists in three steps:

a) 1st step, conformance checking (corresponding to
steps (i),(ii) and (iii) presented at the very beginning of this
Section): The algorithm presented in Section IV is fully im-
plemented in SWI-Prolog (http://www.swi-prolog.org). Prolog
has been chosen thanks to its built-in support to cyclic terms,
coinduction, and for the possibility to use backtracking for
generating all the existing maps. The implementation of the
algorithm is < 400 LOC.

b) 2nd step, substitution (corresponding to step (iv)):
Let us suppose that ag1 ∈ mas can substitute ag2 ∈ mas′

with maps MA and MM. For demonstrating how substitution
can be put into practice we have opted for a basic approach
where we apply the maps to the source code of ag1, and we
use the modified source code map(ag1) instead of the source
code of ag2 in mas′: we operate on the Java file containing
the JADE class implementing ag1 and we substitute all the
occurrences of agi with MA(agi) and all occurrences of msgi
with MM(msgi). This substitution step is also implemented
in SWI-Prolog (< 30 LOC).

c) 3rd step, execution (corresponding to step (v)): We
recompile map(ag1) and we execute mas′ with map(ag1)
instead of ag2. Despite being simple and applicable only
when the source code is available, this approach demonstrates
how we can actually use the maps generated during the
conformance check, and has been adopted for all the examples
shown in this paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a conformance modulo
mapping algorithm suitable for checking conformance be-
tween local protocols specified as (projected) trace expres-
sions, together with its implementation and usage example.
The paper presents a general solution to the problem with
as few constraints as possible, to make it reusable in as
many situations as possible, but the actual scenarios where
we believe that our approach can be more profitably exploited
involve conformance between different versions of the same
LAIP or LAIPs which are known to be similar, like the
ones presented in Sections I and V. As another example,
a self-driving car may interact with other cars, lights, etc.,
according to the current road norms (LAIP τ1). Norms change
and the new LAIP to which the car must conform, becomes
τ2. Which transformations (mappings) should we implement
over τ1 to ensure it is syntactically conformant to τ2? The
developer in charge of migrating τ1 to τ2 can use our algorithm
for having guarantees on the syntactic compliance, although
he/she cannot have guarantees that semantics is preserved: a
human is required to finally select and validate the produced
mappings. We think that semantic compliance will never be
fully automatized, and for this reason we expect that our

http://jade.tilab.com
http://www.swi-prolog.org


algorithm should be used in scenarios where LAIPs should
not be re-aligned frequently.

W.r.t. the five steps introduced in Section I, we exploited
achieved results for steps (1-2), we devoted the entire paper
to step (3), and we demonstrated how to tackle step (5). More
sophisticated approaches could be followed for step (5), each
with pros and cons. Experimenting some of them, such as
introducing a mediator agent between mas and mas′ acting
as the i interface and generating wrappers for the agents that
must substitute other agents, will be explored in the future.

Step (4) is an open problem which falls outside the scope
of our investigation: in this paper we do not face the issue of
“semantic/pragmatic conformance”, but only that of “syntactic
conformance”. In case some constraints on interactions are
know, for example commitments that must be fulfilled and
that can drive the choice of the most suitable mapping, we
might exploit them. Otherwise, by interpreting messages as
words or sentences in some natural language, we might take
advantage of semantic techniques similar to those used for
matching ontological concepts [37]. Ontology matching could
hence be exploited in the global process we have presented,
in step (4). We remark that if we knew in advance which
are the semantically correct message and agents mappings,
we could feed our algorithm with them and use it as a “plain
conformance checker” like those mentioned above, rather than
a “conformant mappings builder”. Even if we knew all the
correct mappings in advance, however, we could not run any
of the existing conformance checking algorithms on trace
expressions, because of their higher expressiveness.

Finally, an extremely challenging issue would be to identify
mappings where one message used in one MAS corresponds to
a sequence of messages used in another MAS, and to consider
message inputs and outputs as well. This issue will drive our
future directions of investigation.

REFERENCES

[1] Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
[2] Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of

self-monitoring MASs from multiparty global session types in Jason.
In: DALT. Volume 7784 of LNCS., Springer (2012) 76–95

[3] Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for
dynamic checking of protocol conformance in multi-agent systems. In:
SAC, ACM (2013) 1377–1379

[4] Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification
of JADE multiagent systems. In: IDC. Volume 570 of Studies in
Computational Intelligence., Springer (2014) 81–91

[5] Ancona, D., Briola, D., Ferrando, A., Mascardi, V.: Global protocols as
first class entities for self-adaptive agents. In: AAMAS, ACM (2015)
1019–1029

[6] Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou,
P., Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., et al.,
F.M.: Behavioral types in programming languages. Foundations and
Trends in Programming Languages 3(2-3) (2016) 95–230

[7] Ancona, D., Ferrando, A., Mascardi, V.: Comparing trace expressions
and linear temporal logic for runtime verification. In: Theory and
Practice of Formal Methods. Volume 9660 of LNCS. (2016) 47–64

[8] Ancona, D., Ferrando, A., Mascardi, V.: Parametric runtime verification
of multiagent systems. In: AAMAS, ACM (2017) 1457–1459

[9] Ancona, D., Ferrando, A., Franceschini, L., Mascardi, V.: Parametric
trace expressions for runtime verification of Java-like programs. In:
FTfJP@ECOOP, ACM (2017) 10:1–10:6

[10] Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent
Systems with JADE. Wiley (2007)

[11] The OASIS Web Services Business Process Execution Language (WS-
BPEL) Technical Committee: Web services business process execution
language version 2.0. (2007)

[12] Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto,
C.: Web Services Choreography Description Language v. 1.0. (2005)

[13] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.: Verify-
ing the conformance of web services to global interaction protocols: A
first step. In: EPEW/WS-FM. Volume 3670 of LNCS. (2005) 257–271

[14] Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C.:
Verifying protocol conformance for logic-based communicating agents.
In: CLIMA. Volume 3487 of LNCS. (2004) 196–212

[15] Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: Verification of protocol
conformance and agent interoperability. In: CLIMA. Volume 3900 of
LNCS. (2005) 265–283

[16] Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance
verification for guaranteeing interoperability in open environments. In:
ICSOC. Volume 4294 of LNCS. (2006) 339–351

[17] Baldoni, M., Baroglio, C., Chopra, A.K., Desai, N., Patti, V., Singh,
M.P.: Choice, interoperability, and conformance in interaction protocols
and service choreographies. In: AAMAS (2), IFAAMAS (2009) 843–
850

[18] Baldoni, M., Baroglio, C., Capuzzimati, F.: Typing multi-agent systems
via commitments. In: EMAS@AAMAS. Volume 8758 of LNCS. (2014)
388–405

[19] Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type checking
for protocol role enactments via commitments. Autonomous Agents and
Multi-Agent Systems 32(3) (2018) 349–386

[20] Yolum, P., Singh, M.P.: Commitment machines. In: ATAL. Volume
2333 of LNCS. (2001) 235–247

[21] Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-
based MAS architecture. In: EMAS@AAMAS. Volume 8245 of LNCS.
(2013) 38–57

[22] Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems
17(3) (2008) 432–456

[23] Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-
agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems 23(2) (2011) 158–192

[24] Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web
services compatible? In: TES. Volume 3324 of LNCS. (2004) 15–28

[25] Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography
and orchestration: A synergic approach for system design. In: ICSOC.
Volume 3826 of LNCS. (2005) 228–240

[26] Bravetti, M., Zavattaro, G.: Contract based multi-party service compo-
sition. In: FSEN. Volume 4767 of LNCS. (2007) 207–222

[27] Bravetti, M., Zavattaro, G.: A theory for strong service compliance. In:
COORDINATION. Volume 4467 of LNCS. (2007) 96–112

[28] Endriss, U., Maudet, N., Sadri, F., Toni, F.: Protocol conformance for
logic-based agents. In: IJCAI, Morgan Kaufmann (2003) 679–684

[29] Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: The Sciff
abductive proof-procedure. In: AI*IA. Volume 3673 of LNCS. (2005)
135–147

[30] Alberti, M., Gavanelli, M., Lamma, E., Chesani, F., Mello, P., Torroni,
P.: Compliance verification of agent interaction: a logic-based software
tool. Applied Artificial Intelligence 20(2-4) (2006) 133–157

[31] Chopra, A.K., Singh, M.P.: Producing compliant interactions: Con-
formance, coverage, and interoperability. In: DALT. Volume 4327 of
LNCS. (2006) 1–15

[32] Chopra, A.K., Singh, M.P.: Interoperation in protocol enactment. In:
DALT. Volume 4897 of LNCS. (2007) 36–49

[33] Giordano, L., Martelli, A.: Verifying agent conformance with protocols
specified in a temporal action logic. In: AI*IA. Volume 4733 of LNCS.
(2007) 145–156

[34] Ancona, D., Dovier, A.: A theoretical perspective of coinductive logic
programming. Fundam. Inform. 140(3-4) (2015) 221–246

[35] Ferrando, A.: The early bird catches the worm: first verify, then monitor!
Presented at Vortex’16 (2016)

[36] Ancona, D., Briola, D., El Fallah Seghrouchni, A., Mascardi, V.,
Taillibert, P.: Efficient verification of MASs with projections. In:
EMAS@AAMAS. Volume 8758 of LNCS. (2014) 246–270

[37] Mascardi, V., Locoro, A., Rosso, P.: Automatic ontology matching via
upper ontologies: A systematic evaluation. IEEE Trans. Knowl. Data
Eng. 22(5) (2010) 609–623


	Introduction
	Related Work
	Background and Basic Definitions
	LAIP Conformance Modulo Mapping
	Examples and Implementation
	Conclusions and Future Work
	References

