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Abstract—In this paper, we present the scientific outcomes of the
2017 Data Fusion Contest organized by the Image Analysis and
Data Fusion Technical Committee of the IEEE Geoscience and Re-
mote Sensing Society. The 2017 Contest was aimed at addressing
the problem of local climate zones classification based on a multi-
temporal and multimodal dataset, including image (Landsat 8 and
Sentinel-2) and vector data (from OpenStreetMap). The competi-
tion, based on separate geographical locations for the training and
testing of the proposed solution, aimed at models that were accu-
rate (assessed by accuracy metrics on an undisclosed reference for
the test cities), general (assessed by spreading the test cities across
the globe), and computationally feasible (assessed by having a test
phase of limited time). The techniques proposed by the participants
to the Contest spanned across a rather broad range of topics, and
of mixed ideas and methodologies deriving from computer vision
and machine learning but also deeply rooted in the specificities of
remote sensing. In particular, rigorous atmospheric correction, the
use of multidate images, and the use of ensemble methods fusing
results obtained from different data sources/time instants made the
difference.
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1. INTRODUCTION

AND use/land cover classification at the global scale is one
L of the challenges of geospatial analysis. Providing a unified
categorization of types of human habitats, as well as of land
cover in rural areas, faces great challenges, since the structures
of cities vary greatly depending on architectural, cultural, and
environmental local conditions. Nonetheless, the payback for a
successful characterization would be enormous, since this would
allow a better calibration of climatic models [1], successful
intercities comparisons [2] and, in general, an objective way of
describing cities and their impacts on the environment.

Despite the existence of global built-up layers, such as the
Global Urban Footprint [3] and the Global Built-up Density
of the ESA Urban Thematic Exploitation Platform [4] and
the Global Urban Human Settlements Layer of the Joint Re-
search Center of the European Commission [5], or of re-
gional/continental initiatives such as the Copernicus Urban
Atlas in the European Union [6], we are still lacking a uni-
fied view of land use in multiple categories describing how
the urban space is structured. When considering land use,
it becomes important to consider densities, layouts, and vol-
umes, since most categories will be characterized by buildings
and trees, and what will differentiate them is how they are
organized.

Recently, the concept of local climate zones (LCZs) [1] has
been proposed to provide a land use/land cover description in
this direction. LCZs are a generic, climate-based typology of
urban and natural landscapes, which delivers information on
basic physical properties of an area that can be used by planners
or climate modelers. They are generally applied at a coarse
spatial scale (typically grids of resolution 100 or 200 m), in
order to be able to catch this sense of urban structure that cannot
be perceived when working at single-pixel scale at very high
resolution.

LCZs have taken momentum in the recent Glscience and
remote sensing literature [7]-[9], but most efforts have been
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Fig. 1.

Global worldwide distribution of DFC 2017 data. Training cities (on the left: Berlin, Hong Kong, Paris, Rome, and Sao Paulo) come with

Landsat 8/Sentinel-2 images and OSM layers as well as LCZ maps (classes and colors are defined in Table I). For test cities (on the right: Amsterdam,
Chicago, Madrid, and Xi’An), only satellite images and OSM layers are provided while the LCZ labels remain undisclosed.

put into classifying single cities into the LCZ categories
[10]-[14]. In other words, so far accurate ground references
for each individual considered city are needed to provide ac-
curate LCZ maps. In this respect, several international ef-
forts, such as GeoWiki! and the World Urban Database and
Portal (WUDAPT?), have been organized by researchers to
gather high-quality land cover/land use information worldwide,
typically via crowdsourcing [15], [16], games [17], or other
challenges.

But if the data collection efforts are being very successful,
no models designed explicitly to generalize to additional cities
are available to date. This means that in order to classify a
new city into LCZs, one should lead a separate LCZ campaign
in that same city with volunteers. Moreover, there is evidence
that training samples from unexperienced volunteers can result
in inaccurate classification results [18]. The success of models
trained on some cities when applied to others remains at best un-
clear at the moment. Such problem is known in machine learning
as domain adaptation [19] and has been tackled in remote sens-
ing image processing with various technical solutions including
feature selection, feature extraction, classifier adaptation, and
active learning [20].

The Data Fusion Contest 2017 (DFC17) tackles exactly these
open questions in LCZ classification. More precisely, it aims
at designing new LCZ classification solutions based on open
data, both from remote sensing and GIS, with particular at-
tention to the issue of generalizing results to new urban areas
unseen during model training. It follows a tradition of yearly
data processing competitions [21]-[30] organized by the Image
Analysis and Data Fusion Technical Committee (IADF TC?)
of the IEEE Geoscience and Remote Sensing Society (IEEE
GRSS): Every year since 2006, a dataset has been released to
the scientific community and participants have been invited to
perform a task of interest, which, in the case of the DFC17 was
LCZ classification over several cities using open, global, and
multimodal data.

Uhttp://geo-wiki.org
Zhttp://www.wudapt.org
3http://www.grss-ieee.org/community/technical-committees/data-fusion/

The LCZ classification problem was cast as a 17-classes
classification problem following the definitions in [1] (see
Section II): LCZ reference data, as well as satellite and GIS lay-
ers from OpenStreetMap (OSM), were provided for five cities
(the training cities hereafter). The participants could then train
models and prepare for the blind classification round, for which
a new set of four cities (the zest cities hereafter) were provided
without any ground reference. Participants were asked to submit
their LCZ maps for the test cities on the Data and Algorithm
Standard Evaluation website (DASE*) [31], a platform devel-
oped by IEEE GRSS with the company Ticinum Aerospace S.r.1.
(Pavia, Italy).

In this paper, we report the outcomes of the competition:
After describing the dataset (see Section II), we will discuss first
the overall results of the contest as a whole (see Section III).
Then, we will focus in more detail on the approaches proposed
by the first-place and second-place teams (Sections IV and V,
respectively). Finally, conclusions are drawn in Section VI.

II. DATA OF THE DFC17

Following the idea of an open data contest, free and open data
from different sources were preprocessed and provided for the
five training cities (Berlin, Hong Kong, Paris, Rome, and Sao
Paulo) and the four test cities (Amsterdam, Chicago, Madrid,
and Xi’an), also geographically represented in Fig. 1.

Fig. 2 showcases the data types for the case of Rome, Italy.
In particular, multispectral data from Landsat 8 and Sentinel-2
as well as data from OSM were included. The satellite data
were provided on the target grid at 100-m resolution, whereas
the OSM data were both provided as vector layers and partly
also rasterized on a 5-m grid. The preprocessing was conducted
in SAGA GIS [32]. The detailed information about satellite
and OSM data used in the contest can be found on the IEEE
GRSS website.> Additionally, participants were encouraged to
use and share auxiliary data from free and open sources.

“http://dase.ticinumaerospace.com
Shttp://www.grss-ieee.org/community/technical-committees/data-
fusion/2017-ieee-grss-data-fusion-contest-2/
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(©) (d)

DFC 2017 data for the city of Rome, Italy. (a) Ground truth of the LCZs: see color legend in Table I; (b) Landsat 8 natural composite image (bands

4-3-2), 1 out of 4 dates available for this city; (c) Sentinel-2 natural composite image; (d) zoom in the city center [corresponding to the rectangle area in (b) and

(c)] with LCZ, OSM street layer (in blue) and OSM building layers (in gray).

A. Landsat Images

Landsat 8, launched in 2013, is the latest mission of the
USGS and NASA focused on moderate resolution land satel-
lites. As compared to the previous Landsat missions, it has ad-
ditional spectral bands in the blue and cirrus cloud-detection
wavelengths, improved signal-to-noise ratio and radiometric
resolution, and can collect more images per day [33]. Several
scenes per city [from 2 to 5 different dates, including the one in
Fig. 2(b)] were downloaded from the USGS EarthExplorer por-
tal. Then, the visible, short-wave, and long-wave infrared bands
[therefore excluding the atmospheric band (9) and the panchro-
matic band (8)] were resampled to the 100-m target grid using
an area weighted average.

B. Sentinel-2 Images

Sentinel-2A, launched in 2015, is a European Commis-
sion and ESA mission that provides global multispectral high-
resolution observations of land surfaces. In particular, it aims at
the systematic and frequent provision of high-resolution multi-
spectral imagery for continuity and enhancement of the SPOT
satellite series of the French Space Agency (CNES). These data
aim to provide the basis for the next generation of land-cover
and cover change maps, and operational products on geophys-
ical variables describing the land surface [34]. For this study,
we downloaded Sentinel-2 data via the Amazon Web Services
Archive and resampled, to 100-m resolution, nine multispectral
bands including the visible, vegetation red edge, and short-wave
infrared wavelengths and excluding the atmospheric bands [1, 9,
and 10, see Fig. 2(c)]. One date, corresponding to 1-5 Sentinel-2
tiles, was selected for each site. Additionally, direct links to the
original data (10-20 m) were provided to encourage use of the
additional spatial details included in the full resolution imagery.

C. OSM Layers

OSM is a volunteered geographic information project aiming
at providing open, user-generated maps [35]. The information in
OSM is in vector format (point, line, and polygon geometries)

with linked attribute data. In particular, OSM includes informa-
tion on roads, railways, points of interest, natural features, water
areas, land use, and buildings, among others. Previous studies
proved the effectiveness of OSM to train models for land cover
classification [36], [37], and recently OSM was also explored
for adding value to LCZ classification [38]. The OSM data
were downloaded in shapefile format from the Geofabrik portal
(http://www.geofabrik.de). For some cities, several administra-
tive areas had to be merged. Building footprints (polygon), land
use (polygon), water areas (polygon), and road network (line)
were provided as vector data. Additionally, building footprints,
land use, and water layers were rasterized to a 5-m grid, which
was superimposable with the satellite images.

D. LCZ Ground Truth

For the training cities, we provided a ground truth of the
various LCZ classes on several areas of the considered cities.
The LCZ classes are defined in Table I. These samples were
initially extracted from the WUDAPT database and thoroughly
revised to ensure the highest possible correctness. The training
data were provided as raster layers at 100-m resolution, super-
imposable to the satellite images. The ground truth for the test
set remained (and still remains) undisclosed and was used for
evaluation of the results in DASE.

It is worth noting that the classes in the ground truth were
severely imbalanced (see Table II). In the training set, the class
sizes ranged from 323 to 17 716 samples (i.e., the largest class
had nearly 55 times more samples than the smallest one), and
the average and median sizes were 4814 and 2819 samples,
respectively. On one hand, this distribution in the training set
approximated the proportions of the LCZs in the considered
scenes. On the other hand, it implied an additional challenge for
the classification algorithms, some of which (e.g., support vec-
tor machines) are known to be affected by imbalance issues. The
test set was similarly imbalanced as well. Furthermore, the ratio
between the numbers of training and test samples of each class
ranged from 0.3 to 6.8 (average = 1.9, median = 1.2). This vari-
ability in the training/test balance was a direct consequence of
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TABLE I
LCZ CLASSES
Built types Land cover types
# class # class # class # class
1 Compact high-rise | 6 101 Dense trees | | 106 Bare soil / sand
2 Compact midrise | 7 Light low-rise 102 Scattered trees o o7 Water
3 Compact low-rise [ | 8 Large low-rise 103 Bush, scrub |
4 Open high-rise | o Sparsely built 104 Low plants |
5 Open midrise LB Heavy industry W s Bare rock / paved [ |
TABLE IT
DISTRIBUTION OF THE TRAINING AND TEST SET SIZES OF THE LCZ CLASSES
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# samples train 1642 6103 5738 2098 4759 8891 0 4889 1156 449 17716 2819 1741 14 457 323 503 8561
# samples test 242 4892 1535 2270 2255 8265 0 11230 1072 920 3170 4528 1284 12994 1104 391 4454

the training and test cities being located in different countries
and continents. It also was consistent with the general goal of
the DFC17 of investigating classification approaches that aimed
at generalizing across diverse geographical areas.

III. SUBMISSIONS AND RESULTS

The ranking of the submitted classification maps was based
on an overall accuracy (OA) over the ensembles of cities, in
order to reward the capacity to handle multiple classes as much
as the adaptability to various geographic contexts. Specifically,
we used the average over the ensemble of labeled points from
the four test cities. Let C' be the set of classes (LCZ) and X/ be
the test images to classify (1 < j < 4). Let also X/ C X/ be
the set of points classified with label ¢ € C' in the map uploaded
for image j and let X7~ be the ground truth for the same label
c in the same image j. OA is the proportion of the correctly
classified points over all the classes and all images

OA = ZZ|XJ0X] I

Z] IZC€C|X] | j=1ceC

The evaluation took place only on those ground-truth regions,
but since the location of ground-truth samples was undisclosed,
participants had to submit fully classified maps. Although the
final ranking was based on the OA, we also measured the

Cohen’s Kappa [39] (k = ) (p <> °) where p(a) is the observed

accuracy—quantified through the OA—and p(e) is the accuracy
expected by chance and computed using the confusion matrix),
and the number of actually predicted classes for obtaining addi-
tional insight on the results. In particular, the number of actual
classes in the maps was a relevant indicator because the LCZ
classes in the dataset were quite imbalanced, as discussed in
Section II, the classes were imbalanced and it was important to
identify the possible presence of missed classes.

The four teams that submitted the best-ranked classification
maps were awarded. Their solutions were presented during the
2017 IEEE International Geoscience and Remote Sensing Sym-
posium in Fort Worth, TX, USA. Starting from the top ranked
and then in descending order, the four teams are as follows.

ey

1) WXYZ team: N. Yokoya, P. Ghamisi, and J. Xia from the
University of Tokyo, Japan, DLR, and TU Miinchen, Ger-
many: Multimodal, multitemporal, and multisource global
data fusion for LCZs classification based on ensemble
learning [40].

2) AGT team: S. Sukhanov, R. Heremans, I. Tankoyeu, J.
Louradour, D. Trofimova, and C. Debes from AGT Inter-
national, Germany: Multilevel ensembling for LCZs clas-
sification [41].

3) Camilasa team: C. S. dos Anjos Lacerda, M. Gongalves
Lacerda, L. do Livramento Andrade, and R. Neves Salles
from the Institute of Advanced Studies of the Brazilian
Air Force, Brazil: Classification of urban environments
using feature extraction and random forest [42].

4) Nanjingxyy team: Yong Xu, Fan Ma, Deyu Meng, Chao
Ren, and Yee Leung from the Chinese University of Hong
Kong and the Xi’an Jiaotong University, China: A co-
training approach to the classification of LCZs with mul-
tisource data [43].

In Table III, we provide details about the ten best perform-
ing teams of the leaderboard, as recorded after the three weeks
of the evaluation phase. We group these methods according
to their main characteristics. Namely, we identify random for-
est (RF) type methods (also including rotation forests (RoFs)
and decision tree approaches), boosting (Bo.), deep learning
(DL) [mostly convolutional neural networks (CNNs)], and ex-
pert handcrafted features (Exp.) as main components. These
models were sometimes combined in multiple classifier sys-
tems by some teams. Finally, we also note the use of additional,
open-access data to augment training data (denoted by Add. in
the table).

In the end, the best approaches (which reached values of OA
higher than 70%) were based on ensemble methods: RFs (or re-
cent related developments such as canonical correlation forests
(CCFs) [44]), boosting (with also recent evolutions such as XG-
Boost [45]), and multiple classifier systems that aggregate the
outputs of several classifiers. This is in line with what has been
observed in several recent competitions, as well as in a few
past IEEE GRSS data fusion contests [23], [24], [27]: Using
ensemble models averaging over single classifiers helps filling



YOKOYA et al.: OPEN DATA FOR GLOBAL MULTIMODAL LAND USE CLASSIFICATION: OUTCOME OF THE 2017 IEEE GRSS DATA

1367

TABLE III
Topr 10 RESULTS WITH PERFORMANCE MEASURES AND TYPE OF APPROACH USED: RF, Bo., DL, EXP., ADDITIONAL TRAINING DATA (ADD.)

# Team Approach OA (%) Kappa  No. classes in the submitted maps
RF Bo. DL  Exp. Add.

1 WYXz v v 74.94 0.71 15

2 AGT v v v v v 72.63 0.68 14

3 Camilasa v v 72.34 0.68 16

4 nanjingxyy v v 69.89 0.65 13

5 FIMO, National University, Vietnam v v v v 67.37 0.62 16

6 Wuhan 66.59 0.62 16

7 aboulch, ONERA, France v v 64.30 0.59 14

8 on_by, Xidian University, China v 62.22 0.55 7

9 rainbowl 60.76 0.54 9

10 Sonic, Wuhan University, China v 60.22 0.55 14
1 ' ' ' — different algorithms led to visually very diverse maps: for exam-

Best prod. OA K
sof ple, some confused dense and scattered vegetation, and others
Deep Gradient  Extra  Multi-  Random simply did not retrieve some classes. In Fig. 5(b) or (d), one can

801 Learning Boosting Data model Forest T

70 /
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1 I
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Fig.3. Evolution of the performances of the submissions during the evaluation
phase: OA over time (red) and best OA (blue).

the last mile of the performance gap, since they allow classifiers
to complement one another and partly cope with relatively small
numbers of training instances. Indeed, the number of training
samples in the dataset of DFC17 was not small but not extremely
large either, which was probably the reason why no pure DL ap-
proaches ranked among the winners—a difference in scientific
outcome with respect to classification results observed among
the best-ranking submissions of the previous two editions of the
DFC [28], [30].

Fig. 3 displays the evolution of the performances of the maps
submitted over the time of the evaluation phase. It shows that
DL models were ready to use soon after the release of the test
data (first submissions were received less than 12 h after opening
the server) thus establishing an acceptable baseline with 51.4%
of OA. After the first week however, the lead was taken on by
teams exploiting ensemble methods like extreme gradient boost
or RFs, showing that these approaches can take full advantage
of imbalanced and sparse data once the right hyperparameters
have been found by tuning.

Figs. 4 and 5 show the prediction results for two of the test
cities: Amsterdam and Chicago, respectively. In both the maps,
the city contour could be well distinguished, and few errors
were made between urban and natural categories. However, the

appreciate the benefits of fusing multisource data to obtain maps
that comprehensively detect all considered land covers and land
uses: there is no mis- or unclassified area as in Fig. 5(a) and (c).

In the next sections, the solutions proposed by the first and
second ranked teams are presented. In these sections, the authors
will detail their design, as well as provide additional visual
results and insight of their proposed solutions.

IV. FIRST-PLACE TEAM: WXYZ

This section describes the algorithm developed by the first-
place team and reports the results with a special focus on ana-
lyzing feature importance and the impact of sampling methods
for constructing the training datasets. The algorithm is based
on decision tree ensemble classifiers, namely CCFs [44] and
RoFs [46], using spatial and spectral features extracted from
Landsat 8 and OSM data.

A. Proposed Framework

The algorithm follows an information flow summarized in
Fig. 6, which comprises four steps: preprocessing, feature ex-
traction, classification, and postprocessing. Each step is detailed
in the following sections (Sections IV-A to IV-D). The number
of datasets and the size of training data provided in the con-
test were 16 Landsat 8 images, and 81 845 pixels, respectively.
Therefore, a particular emphasis in the proposed framework was
dedicated to fast, automatic, yet effective approaches to achieve
accurate classification maps in an acceptable CPU processing
time.

1) Preprocessing: Among the multimodal data mentioned
in Section II, only Landsat 8 and OSM data were used as in-
puts. There are three reasons why Sentinel-2 data were not
used in the proposed framework: 1) there are no long-wave
infrared bands; 2) there is only one temporal image for each
city; and 3) scattered clouds are included in the scenes of Hong
Kong, Paris, and Xi’an. Owing to the multitemporality of the
Landsat data, temporal-spectral variability can be taken into ac-
count to train the classifiers effectively. The original Landsat 8
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Fig. 4.
Fig. 5. Predicted classification maps for Chicago. From left to right: WXYZ, AGT, Camilasa, and nanjingxyy teams.
— A heri Spectral reflectance, ) L
Original c;’;‘e’z;;fz 10 m GSD \ Indexes, MPs, etc. CCFs || Spatial Majority
Landsat-8 Upsamplin Landsat-8 / N Filtering Voting \
Feature 100 m GSD Decision
Extraction %Features / Fusion 7/ Output /
/ ; N /\ Spatial Majority
o=t / RoFs = Filtering Voting
R
E " x N
_________________ E N; : Number of forests
N Da}asets / ) N : Number of temporal images
Fig. 6. Flowchart of the algorithm developed by the first ranked team (WXYZ).

images were downloaded via Amazon Simple Storage Service
(Amazon S3). Ground sampling distances (GSDs) of the Land-
sat 8 data are 15, 30, and 100 m for panchromatic, visible and
short-wave infrared, and long-wave infrared bands, respectively.
All 11 bands were taken into account as inputs, as detailed be-
low.

Atmospheric correction and haze removal were performed to
eliminate atmospheric effects in the original Landsat 8 multi-

spectral bands (bands 1-7 and 9) using ATCOR-2/3, version
9.0.0 [47]. The panchromatic and long-wave infrared bands
(bands 8, 10, and 11) were normalized between 0 and 1 in
order to have input spaces of comparable numeric ranges. All
bands were upsampled at a GSD of 10 m based on bicubic inter-
polation so that feature extraction could be easily performed at
a GSD of 100 m. OSM layers were binary, where 0 and 1 mean
absence and presence of elements, respectively, and spatially
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downsampled to a GSD of 10 m to reduce the computational
complexity in the subsequent processing steps.

2) Feature Extraction: Handcrafted features suitable for the
classification of LCZs were extracted from the Landsat 8 and
OSM images. Since decision tree ensemble classifiers can iden-
tify important features from high-dimensional input features, in
the proposed framework various features considered or expected
to be effective for the LCZ classification problem were used as
inputs. A total of 43 features, including spectral reflectance (22),
spectral indices (6), OSM features (3), and spatial features (12),
were extracted at the 100-m GSD: as described in detail in the
following.

1) Mean and standard deviation were computed for each
patch of 10 x 10 pixels for all bands of the 10-m GSD
Landsat 8 data, leading to 22 features. The vector of mean
values represents the mean spectral signature at the 100-m
GSD, and that of standard deviation values indicates the
degree of spectral variability. Although box filtering was
exactly the same as the one used for the data provided in
the contest, it was reprocessed on the reflectance data in
order to use physical values as inputs.

2) Three spectral indices were computed from the 10-m GSD
Landsat 8 data, namely the normalized difference vegeta-
tion index (NDVI), the normalized difference water index
(NDWI), and the bare soil index (BSI). The advantage of
using these indices was already shown for LCZ classifi-
cation [8]. In particular, NDVI is known to be effective to
distinguish the compact and open LCZs. In the same way
as spectral reflectance, mean and standard deviation were
also computed for each patch of 10 x 10 pixels of NDVI,
NDWI, and BSI, resulting in six features.

3) The OSM images were also downsampled at the 100-m
GSD by box filtering. Since the OSM layers are binary, the
three features give the proportions of “buildings,” “land
use,” and “water” at each pixel.

4) Spatial information was extracted from the 10-m GSD
NDVI and OSM “building” images by calculating mor-
phological profiles (MPs) [48] composed of opening and
closing by reconstruction. A circular structuring element
with the sizesof 3 x 3,5 x 5,and 7 x 7 was taken into ac-
count, and thus 12 features were obtained. All MPs were
spatially downsampled at the 100-m GSD by box filtering.

In the proposed framework, multitemporal Landsat 8 images
are treated as different data samples, i.e., if there are N Landsat
8 images for one training city that have P pixels as ground truth,
we have N x P training samples. In the same manner, for each
test city, we can obtain IV classification maps using each base
classifier (RoF or CCF). As there is no available multitemporal
OSM data for the studied areas, OSM was utilized individually
for each city together with all multitemporal Landsat 8 data sam-
ples. Note that some Landsat 8 images that included scattered
clouds were not used.

3) Classification: Two decision tree ensemble methods,
namely CCFs° [44] and RoFs [46], were used for classification.
Generally, decision tree ensemble methods have the following
advantages:

©The source code is available at https:/bitbucket.org/twgr/ccf
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Fig. 7. (a) Uniform sampling and (b) imbalance-corrected sampling for con-
structing training datasets.

1) they are robust to the application to high-dimensional in-
put features;

2) they are robust to missing data;

3) they perform out-of-sample prediction rapidly;

4) they require only slight parameter tuning;

5) they are capable of analyzing feature importance.

These advantages are suitable for the LCZ classification con-

test that includes the following challenges:

1) various types of features, such as the aforementioned
handcrafted features, could be extracted from the input
multimodal dataset, thus resulting in a high-dimensional
input image;

2) there are missing data in the OSM layers;

3)4) the time for testing was limited;

5) itis preferable to recognize which features are important.

RoFs are a decision tree ensemble classifier based on
data transformation (or feature extraction) and random sub-
spaces [46]. Unlike RF, RoFs use random splits of features
and unsupervised principal component analysis for rotation of
feature axes before constructing decision trees. The rotation
of the feature axes aims at improving the accuracy and diver-
sity of individual base classifiers simultaneously. CCFs were
proposed recently as a decision tree ensemble method based on
supervised feature extraction [44]. CCFs first use bagging like
RF and then perform canonical correlation analysis between
features and labels on each training subset for the rotation of
the feature axes. Finally, hyperplane splits of each decision tree
are calculated in a rotated-feature space directed by the label
information. The superior performance of these two ensemble
classifiers over RF was already proven in the remote sensing
community in terms of classification accuracy and generaliza-
tion capability with acceptable computational complexity [49]-
[51].

For both methods, the number of trees was set to 20 with
reference to the work reported in [51]. A total of 15 training
datasets were constructed. The first ten sets were prepared by
splitting the whole training data into ten subsets without replace-
ment [i.e., uniform sampling; see Fig. 7(a)]. The other five sets
were created by extracting the same number of training samples
(i.e., 500) randomly for all classes [i.e., imbalance-corrected
sampling; see Fig. 7(b)]. In this way, it was possible to increase
the diversity of the forests, which played an important role to
improve the classification performance of ensemble classifiers.
Although classes 10, 15, and 16 had fewer than 500 pixels for
training, the total number of training samples for each class
was more than 500 since each city had multitemporal Landsat
8 images and different temporal observations were used as in-
dependent samples. Finally, 15 different forests were built for
each of the CCFs and RoFs based on all training sets.



1370

TABLE IV
FINAL OAS (%) OBTAINED BY ROFS, CCFs, AND THE WXYZ RESULT
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TABLE V
CONFUSION MATRIX OF THE WXYZ TEAM, MODIFIED FROM [40]

Amsterdam  Chicago ~ Madrid ~ Xi’an  All cities
RoFs 64.56 71.34 81.28 51.95 71.63
CCFs 71.65 73.83 80.15 59.37 73.96
First ranked 71.65 73.83 81.28 59.37 74.94

4) Postprocessing: A 3 x 3 majority filter was applied to all
classification maps to reduce the labeling uncertainty and salt
and pepper appearance of the labeled pixels. The final clas-
sification map was obtained for each ensemble method using
majority voting on 15 x N classification maps, where NV is the
number of multitemporal Landsat 8 images for each city. The
visual comparison of the classification maps revealed that CCF
substantially outperformed RoF on Amsterdam, Chicago, and
Xi’an. However, CCF caused considerable misclassification on
large areas of the Madrid dataset, and therefore, we chose the
classification map obtained by RoF for this particular city.

B. Results and Discussion

Figs. 4(a) and 5(a) show the LCZ classification maps obtained
by the presented algorithm for Amsterdam and Chicago, respec-
tively. The WXYZ team achieved a value of OA of 74.94% and
a kappa coefficient of 0.71, as shown in Table III. The OAs ob-
tained by RoFs, CCFs, and the submitted (and first place) result
for each city are shown in Table IV.” Overall, CCFs tended to
outperform RoFs; however, RoFs showed a slightly better result
for Madrid, consistently with the aforementioned remark on the
misclassifications on the data of this city.

Table V shows the confusion matrix with producer’s (PA)
and user’s accuracies (UA). As in [40], the PAs range largely.
The considered classifiers could achieve high accuracies for the
classes with sufficient training data (e.g., classes 6, 8, 11, 14,
and 17). Several class pairs (e.g., classes 2 and 3, classes 4 and 5,
classes 9 and 14) were confused due to similar spectral-spatial
features while they would require height information for further
accuracy improvement.

One of the important findings in [40] was that the classifica-
tion accuracy was improved by 4.65% in terms of OA and 0.05
in terms of kappa coefficient by integrating the classification
results obtained by using the five sets of imbalance-corrected
training data: Table VI shows the change of the confusion matrix
when adding such data to the training set. Each cell corresponds
to the difference between the number of samples before and
after adding the imbalance-corrected training data. The cell’s
background color indicates the proportion of the increased (or
decreased) number of samples, divided by the total number of
test samples per class, which ranges from —1 to 1 where —1,
0, and 1 correspond to red, white, and blue, respectively. Blue
cells on the diagonal of the confusion matrix show the improved
classes (true positives) with the imbalance-corrected training

7The OAs of RoF and CCF on the test samples were separately computed for
this paper after the end of the contest by submitting the corresponding maps to
the DASE web platform.
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TABLE VI
CHANGES IN THE CONFUSION MATRIX WHILE ADDING
IMBALANCE-CORRECTED TRAINING DATA
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The cell color indicates the change of accuracy or the true/false positives (divided by the
total number of test samples for each class), ranging from —1 to 1 (red: —1, white: 0, blue:
+1).

data. On the other hand, red cells other than on the diagonal
indicate mitigated confusions (false positives). We observed the
following.

1) False positives for classes that have large numbers of train-

ing samples, such as classes 6, 8, and 14, were mitigated.
This implies that the classification boundaries of these
major classes are expanded in the feature space due to
the imbalance of the number of training samples, and this
expansion was reduced with the use of the imbalance-
corrected training data.

2) Classes 4 and 13 show significant improvements, fol-

lowed by classes 2, 5, 10, and 12. Among them, classes
4, 10, 12, and 13 have limited numbers of training sam-
ples. The imbalance-corrected training data contributed
to improving classification accuracies of these small
classes.

Fig. 8 shows the ranking of feature importance for the en-
semble of CCFs using all training datasets. Green, blue, and
yellow colors correspond to spectral reflectance, spectral in-
dices, and OSM, respectively. Note that MPs of NDVI and the
OSM building layer are categorized into spectral indices and
OSM, respectively. We observed the following.
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Fig. 9. LCZ classification pipeline of the AGT team.

1) Spectral indices show the highest importance among the
three categories. In particular, NDVI is found as the most
important feature, followed by NDWI and BSIL.

Spectral reflectance information shows the second highest
importance in the categories. The mean values that rep-
resent spectral signatures at a GSD of 100 m are more
important than the standard deviation values that indicate
the degree of spectral variability—a comment consistent
with the limited spatial texture that can be appreciated
at 100-m resolution in images of urban areas and of the
surrounding suburban and vegetated regions.

The OSM-derived features were of lesser importance than
the satellite-derived features for the trained classifiers.
Among the three layers, “land use” shows the highest im-
portance, followed by “building.” “Water” was identified
as the least useful feature, most probably because it was
not available for all cities (for instance, the “water” layer
was unavailable for Berlin).

Table VII summarizes the processing times of feature extrac-
tion, prediction, and postprocessing on the test cities. Calcula-
tions were made on a PC with 4-core Intel(R) Core(TM) i7 CPU
@3.1 GHz. It is shown that the most time-consuming part was
the prediction step, accounting for approximately 90% of the
calculation time of these three steps. This is because the predic-
tion was repeated 15 x N times for each city using 15 different
forests and [V Landsat 8 images. By adding five forests learned
with the imbalance-corrected training datasets, the aforemen-
tioned improvement in classification accuracy (i.e., 4.65% of
OA and 0.05 of kappa coefficient) was achieved in exchange for
1.5 times the prediction time.

2)

3)

V. SECOND-PLACE TEAM: AGT

In this section, we describe the ensemble system for LCZ
classification proposed by the second-place team. This system
was developed to rigorously address all challenges of the given
dataset and the LCZ mapping problem in general: severe class
imbalance (see class distribution in Table II Section II), het-
erogeneous nature of data, noise and varying quality of the
multispectral images (MSI), nonconsistent number of samples
across timesteps, limited number of annotated data as com-
pared to the number of classes and the sample variability. The
proposed method is based on the fusion of the provided image
data (MSI from the Landsat 8 and Sentinel-2 satellites) with the
additional information obtained from the OSM layers. Three
types of classifiers were used within the classification ensem-
ble: CNN, RF, and gradient boosting machines (GBM). RF and
GBM were trained using handcrafted features following an au-
tomatic feature selection process, whereas CNNs were applied
to the raw data directly. At the end, spatial smoothing using a
Markov random field (MRF) was applied to enhance the result-
ing map.

A. Proposed Framework

The overall classification framework is depicted in Fig. 9 and
contains the following modules: data collection/enrichment, fea-
ture extraction and selection, machine learning model learning
and validation, model ensembling, and postprocessing of the
classification results. In the following, we detail each of these
steps.
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1) Data Enrichment: Additional Landsat 8 images were
gathered from the EarthExplorer® system and were combined
with the given MSI (these images were only used for CNN
training). A standard set of spectral features was extracted from
these MSI (see below). The OSM service was used to extract
additional crowdsourced site information data to provide addi-
tional informative features along with the OSM layers already
provided by the contest organizers. To select the most important
features, the feature importance property of the RF classifier
was used.

2) Features: Several features were extracted either from the
MSI stacks or from the OSM datasets.

1) OSM: Features extracted from OSM have been proven
in the past to be a valuable type of information for LCZ
classification problems [52]. On one hand, for some well-
annotated metropolitan areas (e.g., Berlin) the incorpora-
tion of this information may provide a significant boost to
the classification accuracy for many traditional classifiers.
On the other hand, there are many areas where detailed
coverage with OSM information is not available or is very
noisy due either to human factors or to rapid site devel-
opment. In such cases, the performance of a classifier can
significantly degrade by the discrepancies between data
sources and ground references. After an initial analysis of
the OSM information that was provided as a part of train-
ing data, we realized that the quality of the OSM maps
was not optimal and did not incorporate all the valuable
information that is possible to extract from OSM (e.g. nat-
ural, land use, and waterway; see also Section IV-B). Mo-
tivated by potential gains in classification performance,
we exploited other classification-relevant layers of OSM
such as “leisure,” “military,” “nature,” “office,” “shop,”

and “waterway.” These layers were represented in the fea-
ture set as relative coverage areas. To this end, for each
pixel in the dataset, the relative coverage area of each
of the available OSM layers was calculated, as depicted
in Fig. 10(a). Moreover, in order to enrich the dataset
with information about building height and elevation, we
engineered the following features: amount of buildings lo-
cated in the polygon, average and maximum floor number
of the buildings, and average and maximum height of the
buildings.

9% 9

8hitps://earthexplorer.usgs.gov
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validation to ensembling

(b)

Example of calculated relative area of OSM layers for a pixel and the cross-validation strategy used.

2) Spectral Features: Additionally to the OSM features, a
set of standard spectral features was extracted from the
MSI. They included the NDVI, NDWI, and BSI already
mentioned in Section IV-A2, as well as the normalized dif-
ference moisture index [53], the advanced vegetation in-
dex [53], the shadow index [53], the spectral angle mapper
(SAM) [54], and the minimum noise fraction (MNF) [55].
The extraction of each of these features generated a two-
dimensional (2-D) matrix except for the last two features,
which corresponded to 3-D matrices where the third di-
mension was the number of bands for MNF and the num-
ber of classes for SAM. As a reminder, the SAM feature
extraction calculates the spectral angle between the image
spectra and a known spectra (or endmember). It is robust
to differences in illumination, since it uses the vector di-
rection rather than the vector length. The MNF transform
computes the normalized linear combination of the orig-
inal bands that maximizes the signal-to-noise ratio. For
each class, a SAM feature was calculated. The reference
signature was calculated as the mean spectrum over all
the pixels belonging to the respective class.
Since only one Sentinel-2 image was provided per site,
while two or more Landsat 8 images were made available,
we decided to stack the Sentinel-2 image with each avail-
able Landsat 8 image. This way, an extended 3-D data cube
was constructed with a fixed spatial dimension per site
and a spectral band dimension equal to N = N; + Ng,
where N and Ng are the numbers of spectral bands from
Landsat 8 and Sentinel-2, respectively.

3) Classification and Ensembling: Ensemble methods in
classification are generally used to leverage the power of multi-
ple diverse models and achieve higher prediction performance.
Based on the bias-variance tradeoff concept, ensemble methods
have proven their high operational efficiency in many classifi-
cation scenarios, including remote sensing [56] and image anal-
ysis. We applied the idea of ensembles in two ways: by using
an ensemble-based classifier to select relevant features and by
combining the output of several classifiers in order to fuse the
single LCZ maps.

To select the most discriminative features, we trained an RF
classifier using all features extracted from the training dataset
and additional data, and we collected and monitored the feature
importance value provided by the RF classifier. We additionally
included an extra feature that was generated randomly (fol-
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Fig. 11.  Schematic flowchart of the LCZ classification pipeline of AGT.
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Fig. 12. 3 x 3 kernels used in the convolutional layer of our CNN. (a) Kernel
with two weights. (b) Kernel with three weights.

TABLE VIII
EXPERIMENTAL RESULTS BEFORE AND AFTER MRF-BASED POSTPROCESSING

Overall Kappa Number of
accuracy classes predicted
Without postprocessing 65.53% 0.60 16
Final results with postprocessing 72.63% 0.68 14

lowing a uniform distribution on the interval [0, 1]) to get an
intuition of the usefulness of the derived features. We selected
a feature k for further model training only if its importance
was greater than the importance of the random extra feature,
i.e., Iy > Liangom- After performing such filtering, we obtained
a total of 90 features.

To establish a cross-validation framework and learn the mod-
els, we split the training dataset into five folds, each one using
four cities for training and the fifth for validation. On every iter-
ation, a model for every classifier was trained using the training
data folds and validated on the validation one. The used cross-
validation framework is depicted in Fig. 10(b).

The citywise split was dictated by the desire to leverage the
advantage of CNN that allows the processing of spatial data as
it takes neighboring pixels into account for classification. Obvi-
ously, splitting in this way imposes some limitations comparing
to pixelwise splitting.

The design of the classification ensemble consisted of three
layers: the site temporal samples combiner, the first-level
model combiner, and the second-level model combiner. Fig. 11
presents the schematic flowchart of the LCZ classification
pipeline in the case of three temporal inputs. Here, X1, X2, X3
are the raw multitemporal MSIs, X1’, X2/, X3’ are the input
multitemporal features, Y1, Y2, Y3 are the predicted LCZ maps
from a single model, Yenn, Yrr, Yxgp are the combined LCZ

maps from the corresponding models, and Y is the resulting and
final classification map.

1) The site temporal samples combiner is responsible for the
aggregation of quality classification maps that are com-
ing from the same site (city). We estimated the quality
of a predicted map based on the average entropy of the
multinomial class distribution predicted by a classifier:
A classifier that is confident in its prediction shows low
entropy. The entropy

- Z Pclass * IOg (pclass)

class

(@)

was computed for each spatial sample of every tempo-
ral prediction map. For the combination, we picked only
the top A% of the predicted maps showing the highest
average entropy, where A is a predefined value adapted
experimentally for every model type (i.e. A = 5% for the
CNN, A = 30% for the RF, and A = 50% for the GBM).

2) On the first-level model combiner, we aggregated five
LCZ maps coming from the site temporal samples
combiners.

3) The final combination was done on the second-level model
combiner, where three LCZ maps, issued by every type of
model, are combined. The combination on all levels was
done by averaging classifier posterior probabilities, while
in the general case a weighted average approach could
be applied (however, a reliable optimization of weights
would be required in that case).

We chose RF, GBM, and CNN as the base models for the
ensemble since RF is a well-known robust and stable classifier,
GBM is the state of the art in many classification tasks based on
boosting approaches and is not prone to overfitting, and CNN
because they can efficiently capture spatial relationships. The
three classifiers are considered to be the state of the art in the
computer vision domain. With respect to classifier settings, the
following peculiarities are worth mentioning.

1) We used a weighted version of RF, where we assigned
individual weights to every class, calculated according to
the inverse class frequencies in the training data. With that
approach, we were aiming to tackle the class imbalance
problem by making rare classes more significant during
the training phase, so that they have more chances to be
discovered during the classification step.

2) Inorder to select the optimal set of parameters for both RF
and GBM, we employed a grid search technique by sys-
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Resulting LCZ maps for the test cities before postprocessing. (a) Amsterdam. (b) Chicago. (¢) Madrid. (d) Xi’an.

Fig. 14.

tematically going over all possible parameter candidates
with a particular step and selected the ones that provided
the highest performance on the validation set. Note should
be taken on the fact that the hyperparameter tuning showed
minor effects on the resulting performance.

3) For CNN, we trained several architectures in order to find
the one that suited the best. The architectures we consid-
ered were shallow, containing only three layers to prevent
overfitting. The first layer was a 1 x 1 convolution with
batch normalization and a tanh or ReLU nonlinearity. For
the second layer, we designed a special type of convo-
Iutional kernel with high degree of parameter sharing.
The kernel used was symmetric with respect to the origin
in order to share more parameters and achieve rotation
invariance (as shown in [57]; see Fig. 12). With these ker-
nel topologies, we could achieve the highest performance
minimizing the risk of overfitting. The third layer was the
softmax layer that was connected directly to the convolu-
tional layer and produced posterior probability estimates
for all the LCZ classes.

4) During the cross-validation phase for the CNN, we per-
formed early stopping and model selection based on the
accuracy values on the validation set.

4) MRF: As discussed above, RF and GBM are not able to
capture spatial relationships in the MSIs and are prone to pro-
duce noisy and unstable LCZ outputs. On the contrary, CNN
inherently utilizes neighborhood information and outputs more
homogeneous class labels within neighboring regions. The com-
bination of RF, GBM, and CNN for some areas of MSI neutral-

Resulting LCZ maps for the test cities after postprocessing. (a) Amsterdam. (b) Chicago. (c) Madrid. (d) Xi’an.

izes this positive effect of CNN, resulting in LCZ maps covered
with salt and pepper patterns.

To overcome this issue even further, we applied a spatial
smoothing by modeling the resulting label field as an MRF.
Using an MRF model allows considering the class-conditional
probabilities of a classifier (or ensemble of classifiers in case
of probabilistic outputs) and reassigning class labels based on
their spatial context and classification uncertainty. In previous
works [56], [58] it was shown that, under an MRF model as-
sumption, the iterated conditional modes (ICM) algorithm could
be successfully applied, starting from an initial map, in order
to suppress mislabeled pixels and obtain a smooth and stable
output. One of the practical challenges when applying MRF
with ICM is to find the attraction parameter that acts as the
regularization, directly affecting the bias-variance tradeoff. It
should be chosen with much care since too small values do not
bring significant improvement while too large values can lead
to oversmoothing, resulting in a degraded map quality.

We optimized the attraction parameter for every class using
the Tikhonov regularization approach [56] based on our cross-
validation framework described above.

B. Results and Discussion

Table VIII reports the aggregated OA, the corresponding
kappa measure, and the number of predicted classes for the
testing cities.

It is clear that the MRF-based postprocessing was able to
significantly increase the performance of the overall approach
providing a boost in OA of 7.1% and for kappa of 0.08. A
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general overview of the postprocessing effect can be seen by
comparing the classification maps before (see Fig. 13) and after
postprocessing (see Fig. 14).

On one hand, one can see that the effect of reassigning the la-
bels based on the neighborhood made the classification maps
smoother and allowed suppressing misclassifications due to
noise and other data-related issues. On the other hand, post-
processing suppressed small classes significantly, resulting in
the prediction of only 14 of the 17 classes. Generally, while
designing our approach, we could observe the tradeoff between
the OA value and the number of detected classes. Such depen-
dence imposed additional limitations on the way we tackled the
class imbalance problem: resampling-based methods such as
the synthetic minority oversampling technique (SMOTE) [59]
or adapted versions of resampling as in [60] did not bring im-
provements to the OA though allowed to discover more un-
derrepresented classes. In Fig. 15, classification maps obtained
using SMOTE are presented where originally underrepresented
classes became prominent and in some cases led to wrong clas-
sifications. As we were to maximize OA, we did not include
these balancing methods into the final approach.

While training, we observed that due to the limited amount
of annotated data, the CNNs were prone to overfit, which made
it challenging to find the correct model parameters. The CNNs
were considerably outperformed by the tree-based models (RF
and GBM), but still provided smooth maps that, in the end,
were beneficial for the ensemble. In order not to loose spatial
structure of the data, we employed a geographical approach as
a cross-validation strategy, i.e., “onefold—one city.” Stratified
cross validation of independent pixels could be another strategy
that would allow folds to contain data from all training cities,
thus inducing more accurate models. We provide the confusion
matrix for the prediction on the four testing cities in Table IX.

As can be seen from this confusion matrix, the number of
samples for the testing set varied a lot and we were able to quite
accurately detect samples coming from most large classes. More
than 50% of all testing samples corresponded to classes 6, 8, and
14 indicating that discovering only these three classes would
provide already 50% of OA. Conversely, small classes (e.g.,
class 1) did not significantly contribute to the OA. In particular,
there are two distinct “superclasses” that can be seen from the
confusion matrix: {1,2,3,4,5,6,8,9}and {11, 12, 13, 14, 15}.
Most errors occurred within these two groups, thus indicating
the need for more informative features and better preprocess-

Resulting LCZ maps for the test cities after applying the SMOTE class balancing technique. (a) Amsterdam. (b) Chicago. (c) Madrid. (d) Xi’an.
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ing and noise reduction techniques. The first group corresponds
to the built types within the LCZ classes, whereas the second
group corresponds to the land cover types. In order to reduce the
confusion within the built types, additional features represent-
ing the height of the buildings would significantly improve the
recognition rate. A first choice to extract height information is to
consult the OSM data sources. Other experiments, omitted for
brevity, confirmed that this choice indeed helped the classifier
to distinguish the built types classes. A second choice to extract
the height would be based on social media sources, although
a big challenge here would be to filter out the abundant noise
within this type of data. To reduce the confusion within the
land cover group, one could benefit from a feature that would
contain agricultural information for the corresponding pixels.
In this case, the LCZ classes 13 and 14 corresponding to agri-
cultural zones could be disentangled from classes 11 and 12
that are dense and scattered forest, respectively. In particular,
regional agricultural GIS systems could be employed to extract
this kind of information, though it requires a large coordination
effort and additional costs. As a conclusive remark, we provide
Table X that reports the processing times for every step of LCZ
map generation: feature extraction, prediction, ensembling, and
postprocessing. All the calculations were done on a PC with
4-core Intel Xeon CPU E5620 @2.40 GHz. From the table, it
is clear that the feature extraction and postprocessing steps are
consuming the most of the computation time and are compa-
rable in absolute values. Although the postprocessing applied
practically doubles the overall computation time for each city, it
is capable of providing more than 7% improvement of OA and
0.08 increase of kappa measure according to Table VIII.
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TABLE X
LCZ MAP GENERATION TIMES FOR TESTING CITIES (AGT TEAM)

City No. of Feature extr. Prediction Ensemb. Postprocessing
images time (s) time (s) time (s) time (s)
Amsterdam 5 141.5 71.0 1.9 95.8
Chicago 4 9723 5533 12.6 893.9
Madrid 5 582.6 262.7 12.4 429.9
Xi’an 4 208.1 103.7 1.8 198.2

VI. CONCLUSION

In this paper, we summarized the organization and presented
the scientific results of the 2017 IEEE GRSS Data Fusion Con-
test, organized by the IEEE GRSS TADF TC. We described the
dataset and the overall outcomes of the competition, by first
presenting the overall results of the ten top-ranked teams and
then focusing on the strategies proposed by the first-place and
second-place teams. These teams made use of both the image
and OSM data available and developed methodologies rooted
in the latest advances in computer vision and machine learning.
Special focus was given to ensemble methods to fuse classifica-
tion maps obtained by different methodologies or with different
data sources.

By observing the evolution of the outcomes during the three
weeks of the test phase, we noticed that participants first tried to
use recent computer vision methods (DL in particular) to solve
the classification problem proposed to the community. However,
given the limited amount of training data and the specificities
of remote sensing problems, these results were quickly overrun
by methods encoding priors about remote sensing data (such as,
for instance, the thorough atmospheric correction of the Landsat
scenes applied by the winners) or by the use of extra open data
(such as the full resolution scenes used by both the first-place
and second-place teams), or sets of extra images and OSM
layers (used by the second-place team). This shows that, to be
successful for complex tasks such as LCZ classification, one
needs to use all the available types of information that certainly
includes multimodal remote sensing data [61], but also vector
data or ground information [62]. A true multimodal system for
the classification is needed and, through this competition, we
showed examples of how beneficial it could be.

The data will remain downloadable for free from the IEEE
GRSS website.” Ground references were made available for
the training cities, and the DASE evaluation server will remain
open and welcomes new submissions to improve the results
reported in this paper. We hope that these data will serve to
push remote sensing data fusion not only to further improve
methodologically, but also to explore out of the purely image
domain and to contribute to the LCZ mapping community.
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