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Abstract
Protein X-ray crystallography will remain the most powerful method to obtain 

the protein 3D atomic structures in foreseeable future. However, the production 
of the protein crystal as well as it quality (order, intensity of diffraction, radiation 
stability) remains the major problem. Many important proteins including those of 
life science interest and pharmaceutical industry impact are difficult to crystallize. 
The second major problem in protein crystallography is radiation damage of 
obtaining crystals which can only be partially overcome by existing methods. In 
the present work we use the protein LB nanotemplate crystallization method - 
generalized procedure for triggering of crystallization of any given protein, which 
allows to obtain radiation stable and high quality diffracting crystals for further 
X-ray analysis by synchrotron radiation. We apply LB nanotemplate method to 
crystallization of L-asparaginase from Rhodospirillum rubrum. This protein has 
potential application for combined chemical and enzymatic therapy of malignant 
blood disorders and therefore for new anticancer drug development. We also 
compare the diffraction quality of asparagines crystal obtained by classical method 
and LB nanotemplate and report preliminary X-ray diffraction characterization 
by synchrotron radiation.
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Introduction
L-asparaginases

L-asparaginase (L-asparagine amidohydrolase; EC 3.5.1.1) is an enzyme 
that catalyzes the conversion of nonessential amino acid L-asparagine to 
L-aspartate and ammonia and to a lesser extent the formation of L-glutamate 
from L-glutamine. Bacterial L-asparaginases have been successfully used as 
therapeutic agents to treat childhood acute lymphoblastic leukemia (ALL) since 
the early 1970s [1]. Administration of L-asparaginase has been found to reduce 
L-asparagine levels in the blood and to selectively inhibit malignant growth [2]. 
In contrast to normal cells, leukaemic cells are characterized by a generally low 
expression of asparagine synthetase [3]. As a result, they are unable to synthesize 
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activity in vivo [14-18]. RrA subunit has small molecular 
weight (18 kDa; monomer contains 172 amino acids). This 
enzyme is non-toxic, immunologically different from EcA and 
ErA preparations, and could possibly be used for replacement 
therapy in case of development of hypersensitivity toward 
L-asparaginases generally used in the clinical practice. 
Later site-directed mutagenesis of Rhodospirillum rubrum 
L-asparaginase was performed in order to identify sites 
of the protein molecule important for its therapeutic and 
physicochemical properties. Ten multipoint mutant genes were 
obtained, and five recombinant RrA variants were expressed in 
E. coli BL21 (DE3) cells and isolated as functionally active 
highly purified proteins [15]. Positive characteristics of RrA 
determining future perspectives of this novel enzyme for 
oncology include short amino acid sequence and extremely 
low L-glutaminase activity (˂ 0.01% of L-asparaginase 
activity), suggesting highly efficiency selectivity and specificity 
of antitumor action.

Langmuir-Blodgett protein thin film nanotechnology
Langmuir-Blodgett (LB) protein thin film nanotechnology 

was proven to give encouraging results both for crystallization 
of proteins [19-21] and for the exceptional radiation stability 
of the obtained crystals and microcrystals [22, 23]. The LB 
method consist in bringing the protein molecules on the air-
water interface of the Langmuir- Blodgett trough, compression 
of the created monolayer by means of Teflon barriers up to 
surface pressure corresponding to the highly packed and 
ordered system, deposition of the resulting monolayer using 
LB or Langmuir-Schaefer (LS) method to the solid surface 
(glass slide), which, after been dried in the nitrogen flux, can 
be used as a nanotemplate for trigging and accelerate protein 
crystallization [24].

Several protein non easily crystallizable by classical 
methods were successfully crystallized by LB nanotemplate 
method, as human CK2α, ribosomal SsIF2α and SsIF2β, 
phage GroEL, bovine cytochrome P450scc, oxygen-bound 
Hell’s Gate Globin I [25-29]. While in the classical methods 
extensive search of the crystallization conditions should be 
performed, using large screening sets and robotic systems, LB 
method allows to reduce the number of trials, being the protein 
molecules already organized in the ordered bi-dimensional 
structure with the protein molecules from the solution, helping 
to overcome the energy barrier of crystallization by forming 
the specific aggregates inside the LB film. This hypothesis was 
confirmed by in situ synchrotron radiation microGISAX study 
of the phenomena occurring on the LB protein film-protein 
solution interface during LB protein crystallization [30]. 
Recently, it was confirmed that proteins can be crystallized 
in undersaturation conditions using LB nanotemplate [31]. 
Moreover, the microcrystals obtained by this methods results 
to be stable to the highly intense synchrotron radiation in 
comparison with those obtained by classical methods [32].

In the past decade, LB nanotemplate method contribute 
to open the new avenue in structural proteomics [33-35]. 
Therefore, application of this method appears to be useful to 
new L-aparaginase proteins crystallization with the aim to 
obtain highly ordered and radiation stable crystals for further 

their own L-asparagine and rely on extracellular supplies of 
this amino acid for survival and growth [4]. 

The use of L-asparaginases proteins from E. coli and Erwinia 
chrysanthemi for combined chemical and enzymatic therapy 
of malignant blood disorders (acute lymphoblastic leukemia, 
non-Hodgkin and Hodgkin lymphoma, lymposarcoma etc.) 
accompanied by severe side effects – neuro- and nephrotoxicity, 
hypersensitivity reactions resulting in anaphylactic shock 
or neutralization of drug and drug resistance; formation 
of anti-asparaginase antibodies resulting in diminished 
efficacy of the L-asparaginase therapy, impairment of protein 
synthesis leading to pancreatitis, impaired coagulation and 
cerebrovascular complications. Expression, purification, 
crystallization and 3D atomic structure resolution of 
L-asparaginase homologs from alternative microbial source, as 
Rhodospirillum rubrum and several type I asparaginases from 
plant pathogenic bacteria, together with protein engineering 
of the active site appear to be the important task in improving 
of antitumor property, diminished toxicity and immunogenic 
effects for clinical trials and therapy, thereby creating the 
possibility for the development of new potent drug for 
malignant blood disorders.

Yet only two L-asparaginase enzymes, one from E. coli 
(EcA) and another from Erwinia chrysanthemi (ErA), are 
used in the chemotherapy of acute leukaemia and lympho and 
reticuloblastomas, due to their lowest toxicity among the large 
variety of similar enzymes with known antitumor activity 
[5]. Various side-effects, such as immunosuppresion, hepato- 
and neurotoxicity, acute pancreatitis, thromboembolisis and 
other dysfunctions limit the therapeutic use of bacterial 
asparaginases [6]. It is thought that one of the main reasons of 
L-asparaginase toxicity is its L-glutaminase activity [7]. 

All bacterial L-asparaginases are subdivided into two 
main families. The main criteria for their discrimination 
include extra or intracellular localization, affinity to particular 
substrates and quaternary structure [8]. It is generally accepted 
that type I L-asparaginases are constitutively expressed 
enzymes localized in cytoplasm and characterized by high Km 
values (10-3 M) for L-asparagine. They include intracellular 
L-asparaginases from E. coli, Bacillus subtilis, Methanococcus 
jannaschii, Pyrococcus horikoshii etc. [9, 10]. Km values of 
these enzymes for L-asparagine are about 3.5 mM, and they 
likely do not exhibit antitumor activity. On the opposite, 
type II bacterial L-asparaginases are periplasmic enzymes 
characterized by lower Km for asparagine (around 10–5 M) 
and wide substrate specificity [11]. Bacterial L-asparaginases 
are 140–150 kDa homotetramers more accurately described 
as dimers of intimate dimers, each defined by A/C and B/D 
monomeric interactions. Each monomer is organized into 
two well distinct domains, a large N-terminal domain and a 
smaller C-terminal domain, connected by a linker region. Four 
independent catalytic sites are located at the intersubunits 
interface of the intimate dimers with amino acid residues 
contributed by both monomers [12, 13]. 

Previously we reported about a new recombinant Type 
I asparaginase from Rhodospirillum rubrum (RrA), the first 
intracellular L-asparaginase with recognized antiproliferative 
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X-ray analysis by synchrotron radiation, diffraction data 
collection and 3D atomic structure resolution. The 3D atomic 
structure of new L-Asparaginases mutant described above 
could elucidate their structural features important for their 
antitumor activity.

Materials and Methods
Reagents

Chemicals of p.a. quality were used. The suppliers were: 
Difco-Laboratories (Detroit, USA), Merck (Darmstadt, 
Germany), Amersham Biosciences (Freiburg, Germany), 
Serva (Heidelberg, Germany), Pharmacia (Uppsala, Sweden), 
Bio-Rad (Hercules, California, USA), Fluka (Buchs, 
Switzerland), Sigma-Aldrich (St.-Louis, USA) аnd Millipore 
Corporation (Schwalbach, Germany). Water used in the 
preparation of all reagents was purified by passage through a 
Milli-Q Water System (Millipore Corporation, Bedford, MA, 
USA). Enzymes and reagents for PCR were purchased from 
SibEnzyme (Novosibirsk, Russia).

The crystallization screens, crystallization Linbro plates, 
siliconized glass slides and vacuum grease were purchased 
from Hampton Research (Aliso Viejo, California, USA).

Bacterial strains, culture conditions, protein purification
The E. coli BL21(DE3) strain (Novagen, Madison, 

WI, USA) transformed with pET23 plasmid (Invitrogen, 
Waltham, MA, USA) for the expression of the RrA mutant 
E149R, V150P, F151T variant with removed T7 tag [16] was 
cultured according to conditions described earlier [14-16].

All purification stages were performed at +4 °C. Biomass 
was suspended in ten volumes of buffer ‘‘A’’ (10 mM sodium 
phosphate buffer, 1 mM Glycine, 1 mM EDTA, pH 7.8) 
and destroyed by ultrasound treatment. Cell debris and 
unbroken cells were removed by centrifugation (35,0009 g, 
30 min). Supernatant, containing the enzyme, was applied to 
Q-Sepharose column (1.5 x 44 cm) equilibrated with the same 
buffer. Protein was eluted with a linear gradient of 0-1.0 M 
NaCl. Column fractions were examined for protein content 
by spectroscopy at 280 nm and enzyme activity. The active 
fractions were combined and chromatographed on DEAE-
Toyopearl 650 m (2.5 x 37 cm) analogously to Q-Sepharose—
procedure. Buffers with different pH were used for the different 
mutant forms of L-asparaginase. Protein concentration was 
determined by Sedmak method with our minor modifications 
[14].

Determination of L-asparaginase activity
L-Asparaginase activity was determined by the routine 

procedure based on the direct nesslerization of ammonia 
produced upon hydrolysis of L-asparagine with minor 
modifications as described [15]. Enzyme activity was 
expressed as international units (IU). An IU was defined as 
that amount of enzyme which catalyzes the formation of  
1 µmole of ammonia per minute under conditions of the assay. 
Specific activities were 140 IU per milligram of protein.

LB nanotemplate technique 
RrA thin film was prepared on the water–area interface 

of the Langmuir-Blodgett trough bath (Langmuir-Blodgett 
Trough with the teflon bath, NT-MDT LB5 trough, or 
similar, e.g. KVS NIMA LB through), spreading 100 µm 
of protein solution with Hamilton syringe and compressing 
protein monolayer to a surface pressure of 20 mN/m by means 
of a Langmuir–Blodgett teflon barriers [16-18]. The LB film 
formation can be observed by surface pressure measurements 
by Wilhelmi plate balance and Brewster Angle Microscopy. 
A protein monolayer was deposited on the siliconized glass 
cover slide of 20 mm diameter (Hampton Research, HR3-
231) by the Langmuir–Schaefer method (horisonatl lift). The 
transferred monolayer was immediately dried in the gaseous 
nitrogen flux. The second layer can be then deposited onto the 
first one. LB film quality can be characterized by AFM and 
nanogravimetry. This highly ordered 2D protein nanotemplate 
was utilized for triggering 3D protein crystal formation by a 
hanging-drop vapour diffusion protein crystallization method 
modification. 

Protein crystallization by classical vapour diffusion and LB 
nanotemplate methods

Vapour diffusion hanging drop method was used for 
initial search for crystallization conditions. The initial screen 
was performed using the crystal screen kits from Hampton 
Research (USA). Crystal Screen and crystal Screen II (HR2-
110; HR2-112). Five microliter protein solution in the buffer 
were mixed with five microliters of precipitant solution (salt or 
other crystallizing agent) on the siliconized glass cover slide 
and equilibrate over the reservoir (1 ml) with the precipitant 
solution at controlled temperature (20 °C) and sealed on the 
crystallization plate (Linbro plate, Hampton Research, HR3-
17°) using vacuum grease (Hampton Research, HR3-510)

The droplets were carefully observed at 24, 48 and 72 
hours after plating with optical microscope (Olympus, Japan). 
Crystallization conditions resulting in promising precipitates 
in the droplets (in comparison of precipitates that are not worth 
pursuing) were used for a second screen using the LB film 
nanotemplate. In this case, the 5 µl droplet of protein solution 
mixed with 5 µl of the precipitant was placed on the glass slide 
covered with LB two thin film nanotemplate and equilibrate 
over the reservoir (1 ml) at controlled temperature (20 °C) 
as previously described [19-21]. As in the classical hanging-
drop method, the glass slide with the protein template and 
the drop of protein/precipitant solution was equilibrated over 
the reservoir (1 ml) with the precipitant solution at controlled 
temperature (20 °C) and sealed on the crystallization plate 
using vacuum grease.

Both in the case of classical and LB nanotemplate method 
he droplets were constantly observed by means of optical 
microscopy. 

RrA analysis by MALDI-TOF
The RrA protein solution before crystallization as well 

as dissolved RrA crystals was analyzed by Autoflex Matrix 
Assisted Laser Desorption Ionization Time-of-Flight 
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(MALDI-TOF) Mass Spectrometer (Bruker Daltonics, 
Leipzig, Germany) operated in linear mode.

For matrix preparation 10 mg of sinapinic acid was 
dissolved in 600 μL of deionized water, 100 μL of 3% TFA and 
300 μL of acetonitrile, vortex for 1 minute and centrifuged for 
1 minute to precipitate any undissolved sinapinic acid. 1 μL 
of sample was mixed with 9 μL of matrix in a microcentrifuge 
tube for a final concentration of 10 pmol/μL. 1-2 μL of the 
sample/matrix solution was loaded onto the MS plate and 
allowed to dry. MALDI TOF mass spectra were acquired with 
a pulsed nitrogen laser in positive ion mode. Biotools (Bruker 
Daltonics) software was used for MS data interpretation.

X ray diffraction data collection
All X-ray data were collected at microfocus high-energy 

beamline ID23–1, ESRF, Grenoble, France (wavelength 
0.9763 Å, E = 12.709 keV), which permits beam size down 
to 50 micron. A classical and LB crystal was cryocooled to 
100 K using its mother liquor containing in addition 30% 
of glycerol as a cryoprotectant. Five high-resolution datasets 
were collected for both LB and classical crystals using freshly 
frozen crystals. The incident flux per image was 6.5 x 106 
photon/s/mm2. The data were recorded on an ADSC Q315r 
CCD detector at a crystal to detector distance of 159.7 mm. 
All data sets obtained were processed with MOSFLM and the 
CCP4 suite [36] and the model phases calculated by molecular 
replacement method using Molrep (ccp4) and Phaser (Phenix). 
REFMAC5 [37] was used for models refinement.

Ab initio modelling of asparaginase
Low resolution ab-initio model of asparaginase has been 

computed with the Ab Initio Relax routine of the Rosetta 
modeling software [38]. The procedure consists of four steps: 
1) prediction of secondary structure with PSIPRED, a tool 
based on Support Vector Machines analyzing sequence profiles 
compiled upon multiple sequence alignment of sequences 
sharing similarity with the query protein [39]; 2) the retrieval 
from the PDB-based Robetta library (http://robetta.bakerlab.
org/index.html) of 3- and 9-residue fragments endowed with 
known structure and sharing similarity with the protein to be 
modeled; 3) a coarse-grained conformational search of the 
fragment arrangement based on a knowledge-based scoring 
function; 4) an all-atom refinement procedure using the 
Rosetta force field.

500 different and independent models were generated. 
Models with clashes on backbone or sidechain atoms were 
discarded. Each model is scored by Rosetta evaluating 
different energetic terms, including van der Waals interaction, 
pairing of secondary structures, overall packing density. The 
best scoring model was selected and corresponds to an overall 
energy of -24.8 REU (Rosetta Energy Units). Stereochemical 
parameters were further checked with the procheck routine 
[40].

Results and Discussion
The RrA mutant E149R, V150P, F151T without 

N-terminal T7 tag was purified with final concentration of  
12 mg/ml in Sodium Phosphate buffer pH 6.5. The MS 
spectra of purified protein is presented on figure 1. It can be 
conclude that the protein sample is rather pure and suitable for 
further crystallization experiments.

The classical hanging drop crystallization screen was 
tested and observed by optical microscopy. The precipitate 
in the droplets usually have various nature and morphology. 
Amorphous precipitate does not show birefringence, while 
microcrystalline precipitate does. Although one may not obtain 
good-quality crystals from the initial screening, the presence 
of oils, gels, phase separation, spherulites, microcrystals, 
needles or plates in some of the crystallization experiments 
can be called prominent conditions and be a good starting 
points for the subsequent optimization step. A reversible 
precipitate (microcrystalline or amorphous) that re-dissolves 
upon dilution is a positive result, while irreversible precipitate 
that cannot be re-dissolved indicates protein denaturation. 
The promising results (microcrystals and microcrystalline 
precipitate) was observed in the droplet congaing 10 µl of 
protein solution of 6 mg/ml, 0.05 M Sodium Cacodilate, 
0.1M NaAcetate and 15% PEG 8000 at pH 6.5 with reservoir 
containing 1 ml of 0.1M Sodium Cacodilate, pH 6.5; 0.2M 
Sodium Acetate; PEG 8000 30%. Using LB nanotemplate (2 
LB RrA layers) with the same crystallization conditions the 
larger RrA crystals were be obtained. In is worth to notice 
that re-dissolved RrA crystals result in the same MS spectra 
as presented on figure 1, confirming that the protein has been 
properly crystallized.

After optimization procedure, the best crystal obtained 
by classical hanging drop method were of size 30 x 10 x 

Figure 1: Mass Spectrometry (MALDI-TOF) of RrA protein, resulting 
in sharp high peak corresponding to molecular weight of 19.52 kDa and 
small peak corresponding to molecular weight of 39.04 kDa, likely due to 
RrA dimer.

http://robetta.bakerlab.org/index.html
http://robetta.bakerlab.org/index.html
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10 micron and of approximate number of 20 crystal per 
droplet. In comparison, the RrA crystals, obtained by LB 
nanotemplate were of larger size about 60 x 20 x 20 micron 
and lower average number of crystals in the droplets (about 
10 per droplets). Generally, the protein LB crystals grow faster 
than those crystals grown by classical hanging drop method, as 
was reported previously, and this is the case also of the present 
study. The crystal described above observed at 48 hours after 
plating are shown on the figure 2. 

The diffraction quality of the crystals, obtained by LB 
nanotemplate crystallization method is significantly higher 
than those obtained by classical method. Indeed, the LB RrA 
crystal diffraction data was collected at 1.54 Å resolution, 
while classical crystal resolution data sets were collected at 3.2 
Å resolution. During the X-ray synchrotron analysis it was 
found that the RrA forms multiple crystals, however, the ID 
23-1 microfocus beamline allows to center the single fraction 
of the crystal cluster. Moreover, larger LB film grown crystal 
have larger single fractions (Figure 3).

According to preliminary structural analysis of X-ray 
diffraction data, RrA crystals belongs to point group P222, 
with cell parameters 56.4, 72.1, 77.2 A. It is worth to notice 
that these cell parameters are very similar to those of the 
structure with PDB code 5K0H, corresponding to structure of 
the human factor XA [41] with the space group P212121 and 
cell parameters are 56.3, 72.4, 77.1 A. However, a refinement 
starting from the 5K0H coordinates shows that our data do 
not correspond to the latter structure.

Different protein model taken from the PDB were used 
as a template for structure refinement: Structures with PDB 
code 1WNF, 1WLS, 4Q0M, 2JK0 was refined against LB 
crystals data sets using molecular replacement method with 
Molrep (ccp4) and Phaser (Phenix). L-asparaginases with 

known 3D structures are 325-328 amino acid-long proteins, 
while the length of RrA is only 172 amino acids. Structures of 
the four asparaginases deposited at the PDB (1WNF, 1WLS, 
4Q0M, 2JK0) are very similar (r.m.s.d less than 2 Å). The 
highest homology (30%) was found between RrA protein and 
1WLS. From the analysis of resulting models, RrA protein 
corresponds to a domain of asparaginase 1WLS (Figure 4). 
The solvent content with 1 protein molecule in the asymmetric 
unit is 70%, while with 2 molecules in the asymmetric unit is 
remains 40%.

However, molecular replacement with this template does 
not give a correct solution. For this reason, the asparaginase 
model were improved using Molecular Dynamics (MD) 
approach. Two MD simulation were made - the first 
simulation was done at constant temperature 300K, during 
time of 25 ns. In the second simulation the temperature was 
varied (Figure 5). The resulting models represent minimized 
average structures obtained during 20-25 ns. 

In the parallel, the ab initio structure modeling was 
performed on the base of RrA primary structure. The 
secondary structure predicted with PSIPRED (Figure 6A) 
includes 4 α-helices with lengths ranging from 10 to 15 
residues, and 7 β-strands 4 or 5 residue long. Reliability of 
secondary structure prediction is high, as indicated by the 
confidence values associated to each prediction (Conf rows in 
figure 6A). The ab initio model is shown in figure 6B. Predicted 
α-helices and β-strands are highlighted in magenta and 

Figure 2: RrA protein microcrystals in the droplets observed by optical 
microscopy under polarized light at 100X magnification: (A) crystals 
growth by classical hanging drop; (B) crystal grown by LB nanotemplate 
method; (C) RrA LB crystals measured by objective lens scale micrometer 
ruler (one scale division correspond to 10 microns).

Figure 3: RrA microcrystals mounted in the nylon cryoloop into the liquid 
nitrogen stream at ID 23-1 beamline at ESRF before X-ray diffraction 
data collection: (A) multiple crystals; (B) single crystal.

Figure 5: Temperature variation for molecular dynamics simulation.

Figure 4: (A) The RrA molecule (yellow) corresponding to the one domain 
of asparaginases of other organisms. (B) Possible structure of RaA dimer 
based on the X-ray diffraction data.
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yellow, respectively, and largely coincide with the secondary 
elements present in the computed model. The overall structure 
appears to be a α/β fold, with a core where the protein chain 
is organized in extended conformation and it is surrounded 
by helices. The low resolution of the model does not allow 
to exactly determine the pattern of interactions among the 
β-strands: a parallel β-sheet is formed by strands 3 (residues 
81-86), 4 (residues 108-111) and 5 (residues 142-146), while 
the topology of other four strands is less resolved. In particular 
the conformation of terminal regions is poorly determined in 
the model and requires further refinements.

Both MD and ab initio models were refined against 
LB crystals data sets. As results from model analysis, MD 
simulation models are more close then PDB models, while the 
ab initio model fit better to the X-ray data than MD models 
with final R value of about 0.4, although the electron density 
map is not completely corresponds to the model.

Conclusion
Due to LB nanotemplate method, the well diffracting 

RrA crystal were obtained and X-ray diffraction data suitable 
for 3D atomic structure restructure determination at 1.54 Å were 
collected in comparison to the classical hanging drop method, 

resulting in 3.4 Å diffracting crystals. LB nanotemplate 
method allows to improve the diffraction quality and radiation 
stability of protein crystals, as described in details in [42]. 
However, the RrA structure appears to be different from 
existing PDB asparaginases structures and models based on 
them. Indeed, ab initio model is closer to the experimental 
data. In order to solve the 3D atomic structure by molecular 
replacement method, ab initio model may require further 
refinements and optimization. In alternative, the phase 
problem for this structure could be solved by single- or multi-
wavelength anomalous diffraction (SAD or MAD) after the 
Se-methionine derivative of the protein is produced and 
crystallized or by heavy atom derivatization of RrA crystals. 
The resulting 3D atomic structure will be the subject of the 
separate communication.
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