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Abstract
Vaccinology was developed for the first time in 1796 when Jenner 

empirically implemented a vaccine against smallpox using animal-to-human 
cowpox inoculation. Since then, it has become a very complex science due to 
the merging of disciplines ranging from structural and functional, cellular and 
molecular biology and immunology to bioinformatics and nanobiotechnology, 
as well as systems biology and synthetic biology and engineering. In the frame 
of evidence-based medicine (EBM), evidence-based vaccinology emerged 
as an important sub-field: vaccinology has nowadays become more and more 
predictive and personalized. With the discovery that many patients with cancer 
develop antibodies against p53 (the so-called oncoantibodies), it was evident 
that oncoprotein are immunogenic and can be used for immunotherapeutics 
purposes. In this manuscript, we report Nucleic Acid Programmable Protein 
Arrays (NAPPA)-based Quartz Crystal Microbalance (QCM) measurement of 
p53 immunogenicity and kinetics, in the perspective of developing an effective 
p53 therapy. NAPPA-based QCM_D can be a useful platform for proving 
the immunogenicity of oncoprotein-based vaccines. Recently, the field of 
vaccinology has extended from vaccines for infectious diseases to vaccines not 
only preventive but also therapeutic for chronic-degenerative diseases such as 
cancer. Peptide-based immunotherapeutics has been proven to be quite effective 
for cancer treatment and NAPPA-based QCM_D has the promise of providing 
clinicians with quick, rapid and cheap measurement of oncoprotein kinetics and 
bindings with immune cells. Moreover, it can be a precious tool for implementing 
personalized and predictive vaccinology.
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Introduction
Vaccinology was developed for the first time in 1796 when Jenner 

empirically implemented a vaccine against smallpox using animal-to-human 
cowpox inoculation [1]. Since then, it has become a very complex science due 
to the merging of disciplines ranging from structural and functional, cellular and 
molecular biology and immunology to bioinformatics and nanobiotechnology, as 
well as systems biology and synthetic biology and engineering [2, 3]. 
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protein is p53 and its role will be discussed further in this 
manuscript. 

NAPPA Technology
NAPPA is an innovative technology which avoids the 

time-consuming task of obtaining highly purified proteins 
[31]. Complementary DNAs (cDNAs) of selected genes 
tagged with a C-terminal glutathione S-transferase (GST) 
are spotted on the microarray surface and expressed using 
a cell-free transcription/translation system (IVTT, in vitro 
transcription and translation). The newly expressed protein is 
then captured onto the array by an anti-GST antibody that 
has been co-immobilized with the expression clone on the 
microarray surface. The advantages and benefits of NAPPA 
technologies can be summarized as follows: 

It spares time and the challenging process of obtaining 
highly purified proteins since expression, purification, 
stabilization and preservation of the protein and its subsequent 
spotting on the assay are replaced by a single step. 

Availability of cDNAs and clones began with an old 
cooperation with the Virginia G. Piper Center for Personalized 
Diagnostics, Biodesign Institute, Arizona State University, 
Tempe, AZ, USA.

Protein integrity and stability, being freshly expressed in a 
cell–free mammalian system at the needed time, avoiding any 
not natural folding or post-translational modifications. 

Proteins expressed on the NAPPA arrays preserve their 
functions and are properly folded and biologically active. 
NAPPA microarray has, in fact, been successfully used for 
the study of different kinds of protein-protein interaction. 
Our previous published data taken together with data from 
the extant literature show that proteins displayed on the array 
can be used for functional assays up to 24 hours after the 
protein expression. Moreover, NAPPA arrays printed with 
the cDNAs of interest can be even stored for more than six 
months. The expression of the proteins is performed just when 
the microarray is needed, and for this reason it is not necessary 
to worry about protein stability above the 24 hours window. 

NAPPA microarrays can be useful in biomarkers 
discovery and for other clinical applications [32, 33], especially 
in the effort of moving towards Personalized Medicine [34-
38]. NAPPA can be used also as a sensing system platform 
enabling the development of biosensor [39]. For this task we 
coupled NAPPA with a new generation of conductometric 
devices, namely QCM. QCM_D indeed appears a promising 
tool to study protein-protein interactions especially in the field 
of oncology, both cellular and molecular. 

To the best of our knowledge, we coupled for the first 
time QCM_D with NAPPA technology for biomedical 
applications. The objective of the present research regards 
the analysis of multiple protein-protein interaction towards 
potentially useful clinical applications, namely in the field of 
vaccinology. QCM-based application for vaccine design and 
implementation has been described only by Rutledge and 
collaborators [40]. The authors developed an antigenic mimic 
of the Ebola glycoprotein.

In the frame of evidence-based medicine (EBM), 
evidence-based vaccinology emerged as an important sub-
field [4] vaccinology has nowadays become more and more 
predictive and personalized [5-7].

In 1986 for the first time genetic engineering was applied 
to vaccine development and recombinant virus-like particle 
(VLP) vaccine produced in yeast was launched as a vaccine 
against hepatitis B. In the Nineties, Rino Rappuoli, Global 
Head of Vaccines Research at Novartis, Siena, Italy, introduced 
the concept of reverse vaccinology for the design of a vaccine 
[8-10] first against Neisseria meningitidis and very recently 
against Streptococcus B group. Since then due to the explosion 
of OMICS sciences [11, 12] and technologies, biomolecular 
arrays have emerged as an important tool for vaccine 
development and implementation: research has focused above 
all on the exploitation of DNA arrays for different purposes, 
assessing safety and immunogenicity, evaluating the stability 
of the virus and bacterium strain, identifying sub-types and 
genotyping the strain responsible of the outbreak. Only 
recently protein arrays were used to discover new antigenic 
determinants for vaccine development, such as membrane 
proteins and other components or virulence factors, especially 
those expressed at high values, which are expected to better 
stimulate the lymphocyte reactions. 

Plant biotechnology is another field which has greatly 
contributed to the advancement of vaccine production, making 
it possible to yield a large amount of vaccine at a lower cost 
and faster [13-15]. 

Vaccines represent an important tool of global health policy 
and vaccinomics is a new strategy emerged from converging 
disciplines, like bioinformatics, nanobiotechnologies, plant 
biotechnology and OMICS sciences, which has enabled 
scientists to design and developed personalized vaccines [5, 
16-23].

Among the avenues being presently explored, NAPPA-
based vaccines identification appears to represent an 
additional promising future perspective in the frame of the 
new OMICS-based Public Health. Vaccinology has emerged 
as a complex interdisciplinary science, especially because of 
the contributions of the new OMICS disciplines. In addition 
to what was anticipated some time ago, only recently were 
protein arrays used to discover new antigenic determinants 
for vaccine development [24-30]. NAPPA-based sensors 
could be used for screening the affinity between the identified 
proteins and the immunological synapse (CD4, TCR, MHC 
complex).  Affinity kinetics can be evaluated also using classical 
techniques, or new efforts to evaluate it via Atomic Force 
Microscopy (AFM) and Surface Plasmon Resonance (SPR). 

In this manuscript, we report and discuss some preliminary 
results of protein expression of genes related to vaccinology, 
in particular to cancer vaccines and immunotherapeutics. 
Experiments have been carried out coupling Nucleic Acid 
Programmable Protein Array (NAPPA) with a recently 
improved nanogravimetric apparatus which exploits the quartz 
crystal microbalance with frequency (QCM_F) and quartz 
crystal microbalance with dissipation monitoring (QCM_D) 
technologies, both in static and in flow condition. The selected 
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p53 as Peptide Vaccine for Tumors
With the discovery that many patients with cancer 

develop antibodies against p53 (the so-called oncoantibodies), 
it was evident that oncoprotein are immunogenic and can be 
used for immunotherapeutics purposes [41-49].

p53 is a 53-kiloDalton phosphoprotein oncosuppressor, 
encoded by a 20-kilobases gene situated on the short arm of 
human chromosome 17 and, due to its biological importance, 
termed as the “guardian of the genome” and the “policeman of 
oncogenes” [50, 51]. Mutated, it is involved in up to 70% of 
human tumors, being responsible of cell growth arrest, 
senescence, apoptosis in response to an array of stimuli such 
as DNA damages (DSBs, or double-strand-breaks), hypoxia, 
telomeres shortening, cell adhesion, oncogene activation and 
other molecular and cellular stresses [52].

Mutations in the TP53 gene characterize 50% of all 
reported cancer cases [53]. In the other cases, the gene is not 
mutated but the p53 pathway is often impaired (Figure 1). p53-
based therapy is quite effective in the cure of cancer. TP53 may 
be delivered as a gene therapy or since the p53 protein is over-
expressed in many cancers, may be exploited as a peptide-based 
vaccine. p53 is indeed immunogenic, since it elicits the response 
of immune system and in some patients autoantibodies are 
found (these antibodies are also called oncoautoantibodies). 

So far p53-based vaccines have been exploited for the 
following tumors: head and neck squamous carcinoma, 
breast and ovarian cancer, colorectal tumor, lung cancer, 
pancreatic adenocarcinoma, sarcoma, melanoma, glioma and 
hepatocellular carcinoma, as well as for metastatic diseases.

Ishizaki and collaborators [55] used a modified vaccinia 
Ankara (MVA) vaccine expressing human p53 (MVA-p53) 

and attenuated recombinant Listeria monocytogenes expressing 
human p53 (LmddA-LLO-p53) as a homologous/
heterologous prime/boost in a human p53 knock in Hupki 
mouse model. As adjuvant, they employed to synthetic 
double-strand RNA (polyinsosinic:polycytidylic acid) and 
unmethylated CpG-containing oligodeoxynucleotide to 
activate the innate immune system via Toll-like receptors. 
Some groups [56, 57] assessed the response of an injection 
of p53 peptides in patients with metastatic melanoma. 
van der Burg and coauthors [58] evaluated the effect of a 
recombinant canarypoxvirus (ALVAC) vaccine encoding wild-
type human p53 in patients with colorectal cancer. A similar 
experimentation was carried out by other groups [59, 60], 
with similar encouraging results. Hoffmann and co-workers 
[61] used the HLA-A2.1-restricted wild type p53(264-272) 
epitope to generate cytotoxic T-lymphocytes from circulating 
precursor T cells of healthy donors and patients with squamous 
carcinoma of the head and neck. Autologous peptide-pulsed 
dendritic cells-based approach proved to be quite effective. 
Antonia and collaborators [62] experimented a dendritic cells-
transduced approach with the full-length wild-type p53 gene 
delivered via an adenoviral vector in patients with small cell 
lung cancer. Similar results were obtained by another group 
[63]. Shi and colleagues [64] experimented a p53-based vaccine 
for lung adenocarcinoma. Andrade and coauthors [65] used 
the HLA-A2-restricted wild type polymorphic p53(65-73) 

against squamous carcinoma of the head and neck. Rahma and 
coworkers [66] used p53:264-272 peptide for treating patients 
with recurrent ovarian cancer, with Montanide, GM-CSF and 
interleukin-2 as adjuvant molecules. Schuler and collaborators 
[67] used adjuvant dendritic cell-based vaccination against p53 
for head and neck squamous carcinoma, using a HLA-restricted 
p53 epitope and an additional Th tetanus toxoid peptide. Svane 
and collaborators [68] investigated the usefulness of a dendritic 

Figure 1: p53 – crystal structure obtained from (Cho et al.)[54] – is an important oncogene, whose mutations are frequently detected in human cancer (data analyzed 
from the database www.p53.iarc.fr).

http://www.p53.iarc.fr
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cell-based p53 targeting vaccine for treating breast cancer, with 
interleukin-2 as adjuvant. Mayordomo and co-workers [69] 
assessed the efficacy of dendritic cell-based p53 vaccine in a 
murine model of sarcoma. Cicinnati and collaborators [70] 
used a wild type p53-based immunotherapeutic approach for 
patients with hepatocellular carcinoma. They used p53(149-
157) and wild type p53(264-272) HLA-A*0201 restricted 

epitopes. Terashima and collaborators [71] demonstrated the 
effectiveness of p53-peptide therapy for pancreatic carcinoma. 
Lomas and collaborators [72] assessed an idiotypic vaccine, 
composed of a pool of eight peptides derived from the 
complimentarity determining regions (CDRs) of human 
anti-p53 antibodies.

QCM_D Conductometer 
Nanogravimetry [31] makes use of functionalized 

piezoelectric quartz crystals (QC), which vary their resonance 
frequency (f) when a mass (m) is adsorbed to or desorbed 
from their surface. This is well described by the well-known 
Sauerbrey’s equation: 

Δf/f0 = – m/A∙ρ∙l 

where f0 is the fundamental frequency, A is the surface area 
covered by the adsorbed molecule and ρ and l are the quartz 
density and thickness, respectively. 

Quartz resonators response strictly depends on the 
biophysical properties of the analyte, such as the viscoelastic 
coefficient. The dissipation factor (D) of the crystal’s oscillation 
is correlated with the softness of the studied material and its 
measurement can be computed by taking into account the 
bandwidth of the conductance curve 2∙Γ, according to the 
following equation: 

D = 2∙Γ/f 

where f is the peak frequency value. 

In our analysis we introduced also a “normalized D factor”, 
DN, that we defined as the ratio between the half-width half-
maximum (Γ) and the half value of the maximum value of the 
conductance (Gmax) of the measured conductance curves [31]: 

DN = 2∙Γ/Gmax 

DN is more strictly related to the curve shape, reflecting 
the conductance variation [31, 32]. The QCM_D instrument 
was developed by Elbatech (Elbatech srl, Marciana – LI, 
Italy). The quartz was connected to an RF gain-phase detector 
(Analog Devices, Inc., Norwood, MA, USA) and was driven 
by a precision DDS (Analog Devices, Inc., Norwood, MA, 
USA) around its resonance frequency, thus acquiring a 
conductance versus frequency curve (“conductance curve”) 
which shows a typical Gaussian behaviour. The conductance 
curve peak was at the actual resonance frequency while the 
shape of the curve indicated how the viscoelastic effects of 
the surrounding layers affected the oscillation. The QCM_D 
software, QCMAgic-Q5.3.256 (Elbatech srl, Marciana – LI, 
Italy) allows to acquire the conductance curve or the frequency 
and dissipation factor variation versus time. In order to have 
a stable control of the temperature, the experiments were 
conducted in a temperature chamber. Microarrays were 
produced on standard nanogravimetry quartz used as highly 
sensitive transducers. The QC expressing proteins consisted 
of 9.5 MHz, AT-cut quartz crystal of 14 mm blank diameter 
and 7.5 mm electrode diameter, produced by ICM (Oklahoma 
City, USA). The electrode material was 100 Å Cr and 1000 
Å Au and the quartz was embedded into glass-like structures 
for easy handling [31, 37, 39]. The NAPPA-QC arrays were 
printed with 100 spots per QC. Quartzes gold surfaces were 

Figure 2: Conductance curve of p53 gene spotted onto the array and being 
expressed.

Figure 4: Conductance curve of p53 gene spotted onto the array and being 
expressed. The curves have been collected and analyzed at the different steps of 
the expression protocol, using the NanoProbe technology.

Figure 3: Normalized conductance curve of p53 gene spotted onto the array and 
being expressed.
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coated with cysteamine to allow the immobilization of the 
NAPPA printing mix. Briefly, quartzes were washed three 
times with ethanol, dried with Argon and incubated over 
night at 4°C with 2 mM cysteamine. Quartzes were then 
washed three times with ethanol to remove any unbound 
cysteamine and dried with Argon. Plasmids DNA coding for 
GST tagged proteins were transformed into E. coli and DNA 
were purified using the NucleoPrepII anion exchange resin 
(Macherey Nagel). NAPPA printing mix was prepared with 
1.4 μg/ul DNA, 3.75 μg/ul BSA (Sigma-Aldrich), 5 mM BS3 
(Pierce, Rockford, IL, USA) and 66.5 μg polyclonal capture 
GST antibody (GE Healthcares). Negative controls, named 
master mix (hereinafter abbreviated as “MM”), were obtained 
replacing DNA for water in the printing mix. Samples were 
incubated at room temperature for 1 hour with agitation and 
then printed on the cysteamine-coated gold quartz using the 
Qarray II from Genetix. In order to enhance the sensitivity, 
each quartz was printed with 100 identical features of 300 
microns diameter each, spaced by 350 microns center-to-
center. The human cDNAs immobilized on the NAPPA-
QC was TP53. Gene expression was performed immediately 
before the assay, following the protocol described in [31]. 
Briefly, IVTT was performed using HeLa lysate mix (1-Step 
Human Coupled IVTT Kit, Thermo Fisher Scientific Inc.), 
prepared according to the manufacturers’ instructions. The 
quartz, connected to the nanogravimeter inside the incubator, 
was incubated for 10 min at 30°C with 40 μl of HeLa lysate 
mix for proteins synthesis and then, the temperature was 
decreased to 15°C for a period of 5 min to facilitate the 

proteins binding on the capture antibody (anti-GST). After 
the protein expression and capture, the quartz was removed 
from the instrument and washed at room temperature, in 500 
mM NaCl PBS for 3 times. The protocol described above 
was followed identically for both negative control QC (the 
one with only MM, i.e, all the NAPPA chemistry except the 
cDNA) and protein displaying QC. After protein expression, 
capture, and washing the QCs were used for the interaction 
studies QC displaying the expressed protein was spotted in 
PBS at increasing concentrations at 22°C. Reproducibility 
of the experiments was assessed computing the coefficient of 
variation (CV, or σ*), using the following equation: 

σ* = σ/μ, 
where σ is the standard deviation, and μ is the mean. 

QCM_D measures were calibrated for frequency and for 
D factor shifts. The calibration curves equation (obtained with 
Ordinary Least Squares methods, OLS) are: 

Δf= – 7.16 – 231.18 m; with r2= 0.9986, 

and: 
D = 0.831 + 0.286 η; with r2= 0.9990. 

We analyzed the conductance curves acquired in NAPPA-
QCs in different steps of the expressing and capturing 
process: after the addition of human IVTT lysate at 30°C 
(“IVTT addition”), i.e. prior protein expression; after 10 min 
from the addition of human IVTT lysate, i.e. after protein 
expression (“IVTT addition 10 min”); after the final washing 
process with PBS (“Post-wash”). In Figures 2-4 are reported 

Figure 5: Protocol for assessing immunogenicity of p53 oncoprotein in human samples (human blood), in static and flow condition.
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the conductance curves of p53 spotted on quartz blanks being 
expressed. In Figure 5, protocol for assessing immunogenicity 
of p53 oncoprotein in human samples (human blood), in static 
and flow condition, is shown.

Conclusions
NAPPA-based QCM_D can be a useful platform for 

proving the immunogenicity of oncoprotein-based vaccines. 
Recently, the field of vaccinology has extended from vaccines 
for infectious diseases to vaccines not only preventive but 
also therapeutic for chronic-degenerative diseases such as 
cancer. Peptide-based immunotherapeutics has been proven 
to be quite effective for cancer treatment and NAPPA-based 
QCM_D has the promise of providing clinicians with quick, 
rapid and cheap measurement of oncoprotein kinetics and 
bindings with immune cells. Moreover, it can be a precious 
tool for implementing personalized and predictive vaccinology.
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