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Abstract Numerous kinds of uncertainties may affect an economy, e.g. economic,
political, and environmental ones. We model the aggregate impact by the uncertainties
on an economy and its associated financial market by randomised mixtures of Lévy
processes. We assume that market participants observe the randomised mixtures only
through best estimates based on noisy market information. The concept of incomplete
information introduces an element of stochastic filtering theory in constructing what
we term “filtered Esscher martingales”. We make use of this family of martingales
to develop pricing kernel models. Examples of bond price models are examined,
and we show that the choice of the random mixture has a significant effect on the
model dynamics and the types of movements observed in the associated yield curves.
Parameter sensitivity is analysed and option price processes are derived. We extend
the class of pricing kernel models by considering a weighted heat kernel approach,
and develop models driven by mixtures of Markov processes.
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1 Introduction

In this paper, we develop interest rate models that offer consistent dynamics in the short,
medium, and long term. Often interest rate models have valid dynamics in the short
term, that is to say, over days or perhaps a few weeks. Such models may be appropriate
for the pricing of securities with short time-to-maturity. For financial assets with long-
term maturities, one requires interest rate models with plausible long-term dynamics,
which retain their validity over years. Thus the question arises as to how one can
create interest rate models, which are sensitive to market changes over both short and
long time intervals, so that they remain useful for the pricing of securities of various
tenors. Ideally, one would have at one’s disposal interest rate models that allow for
consistent pricing of financial instruments expiring within a range of a few minutes up
to years, and if necessary over decades. One can imagine an investor holding a portfolio
of securities maturing over various periods of time, perhaps spanning several years.
Another situation requiring interest rate models that are valid over short and long terms,
is where illiquid long-term fixed-income assets need to be replicated with (rolled-over)
liquid shorter-term derivatives. Here it is central that the underlying interest rate model
possesses consistent dynamics over all periods of time in order to avoid substantial
hedging inaccuracy. Insurance companies, or pension funds, holding liabilities over
decades might have no other means but to invest in shorter-term derivatives, possibly
with maturities of months or a few years, in order to secure enough collateral for their
long-term liabilities reserves. Furthermore, such hedges might in turn need second-
order liquid short-term protection, and so forth. Applying different interest rate models
validated for the various investment periods, which frequently do not guarantee price
and hedging consistency, seems undesirable. Instead, we propose a family of pricing
kernel models which may generate interest rate dynamics sufficiently flexible to allow
for diverse behaviour over short, medium and long periods of time.

We imagine economies, and their associated financial markets, that are exposed
to a variety of uncertainties, such as economic, social, political, environmental, or
demographic ones. We model the degree of impact of these underlying factors on an
economy (and financial markets) at each point in time by combinations of continuous-
time stochastic processes of different probability laws. When designing interest rate
models that are sensitive to the states an economy may take, subject to its response
to the underlying uncertainty factors, one may wonder a) how many stochastic factor
processes ought to be considered, and b) what is the combination, or mixture, of factor
processes determining the dynamics of an economy and its associated financial market.
It is plausible to assume that the number of stochastic factors and their combined impact
on a financial market continuously changes over time, and thus that any interest rate
model designed in such a set-up is by nature time-inhomogeneous. The recipe used
to construct interest-rate models within the framework proposed in this paper can be
summarised as follows:

1. Assume that the response of a financial market to uncertainty is modelled by a
family of stochastic processes, e.g. Markov processes.

2. Consider a mixture of such stochastic processes as the basic driver of the resulting
interest rate models.
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3. In order to explicitly design interest rate models, apply a method for the modelling
of the pricing kernel associated with the economy, which underlies the considered
financial market.

4. Derive the interest rate dynamics directly from the pricing kernel models, or, if more
convenient, deduce the interest rate model from the bond price process associated
with the constructed pricing kernel.

The set of stochastic processes chosen to model an economy’s response to uncer-
tainty, the particular mixture of those, and the pricing kernel model jointly characterize
the dynamics of the derived interest rate model. We welcome these degrees of free-
dom, for any one of them may abate the shortcoming (or may amplify the virtues) of
another. For example, one might be constrained to choose Lévy processes to model the
impact of uncertainty on markets. The fact that Lévy processes are time-homogeneous
processes with independent increments, might be seen as a disadvantage for modelling
interest rates for long time spans. However, a time-dependent pricing kernel function
introduces time-inhomogeneity in the resulting interest rate model. The choice of a
certain set of stochastic processes implicitly determines a particular joint law of the
modelled market response to the uncertainty sources. Although the resulting multi-
variate law may not coincide well with the law of the combined uncertainty impact, the
fact that we can directly model a particular mixture of stochastic processes provides
the desirable degree of freedom in order to control the dynamical law of the market’s
response to uncertainty. In this paper, we consider “randomised mixing functions” for
the construction of multivariate interest rate models with distinct response patterns to
short-, medium-, and long-term uncertainties. Having a randomised mixing function
enables us to introduce the concept of “partially-observable mixtures” of stochastic
processes. We take the view that market agents cannot fully observe the actual com-
bination of factor processes underlying the market. Instead they form best estimates
of the randomised mixture given the information they possess; these estimates are
continuously updated as time elapses. This feature introduces a feedback effect in the
constructed pricing models.

The reason why we prefer to propose pricing kernel models in order to generate the
dynamics of interest rates, as opposed to modelling the interest rates directly, is that
the modelling of the pricing kernel offers an integrated approach to equilibrium asset
pricing in general (see Cochrane 2005; Duffie 2001), including risk management and
thus the quantification of risk involved in an investment. The pricing kernel includes
the quantified total response to the uncertainties affecting an economy or, in other
words, the risk premium asked by an investor as an incentive for investing in risky
assets. In this work we first consider a particular family of pricing kernel models,
namely the Flesaker–Hughston class (see Flesaker and Hughston 1996; Hunt and
Kennedy 2004; Cairns 2004; Brigo and Mercurio 2006). Since our goal in this paper
is to primarily introduce a framework capable of addressing issues arising in interest
rate modelling over short to long term time intervals, we apply our ideas first to the
Flesaker–Hughston class of pricing kernels. We conclude the paper by introducing
randomised weighted heat kernel models, along the lines of Akahori et al. (2014) and
Akahori and Macrina (2012), which extend the class of pricing kernels developed in
the first part of this paper.
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2 Randomised Esscher Martingales

We begin by introducing the mathematical tools that we shall use to construct pricing
kernel models based on randomised mixtures of Lévy processes. We fix a probability
space (�,F , P) where P denotes the real probability measure.

Definition 2.1 Let {Lt }t≥0 be an n-dimensional Lévy process with independent com-
ponents, and let X : � → R

m be an independent, m-dimensional vector of random
variables. For t, u ∈ R+, the process {Mtu(X)} is defined by

Mtu(X) = exp (h(u, X)Lt )

E
[
exp (h(u, X)Lt ) | X

] , (2.1)

where the function h : R+ × R
m → R

n is chosen such that E [ | Mtu(X) | ] < ∞ for
all t ∈ R+.

Given that X is an independent vector-random-variable, it is in particular also inde-
pendent of {Lt }0≤t . This property will be applied in Eq. (2.5).

Proposition 2.1 Let the filtration {Ht }t≥0 be given by Ht = σ
({Ls}0≤s≤t , X

)
. Then

the process {Mtu(X)} is an ({Ht }, P)-martingale.

We note that X is H0-measurable and therefore, that {Ht } is an initial enlargement
of the natural filtration of {Lt } by the random variable X . Furthermore, M0u(X) = 1
and Mtu(X) > 0 for all t, u ∈ R+.

Proof 2.1 The condition that E [ | Mtu(X) | ] be finite for all 0 ≤ t < ∞ is ensured by
definition. It remains to be shown that

E [Mtu(X) | Hs] = Msu(X) (2.2)

for all 0 ≤ s ≤ t < ∞. We observe that the denominator in (2.1) is H0-measurable
so that we can write

E [Mtu(X) | Hs] = E
[
exp (h(u, X)Lt ) | Hs

]

E
[
exp (h(u, X)Lt ) | X

] . (2.3)

Next we expand the right-hand-side of the above equation to obtain

E
[
exp [h(u, X)(Lt − Ls)] exp [h(u, X)Ls] | Hs

]

E
[
exp [h(u, X)(Lt − Ls)] exp [h(u, X)Ls] | X

] . (2.4)

Given X , the expectation in the denominator factorizes since Lt − Ls is independent
of Ls . In addition, the factor exp[h(u, X)Ls] is Hs-measurable so that we may write

E [Mtu(X) | Hs] = exp [h(u, X)Ls]

E
[
exp [h(u, X)Ls] | X

]
E
[
exp [h(u, X)(Lt − Ls)] | Hs

]

E
[
exp [h(u, X)(Lt − Ls)] | X

] .

(2.5)
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Since the increment Lt − Ls and X are independent of Ls , the Hs-conditional expec-
tation reduces to an expectation conditional on X . Thus, Eq. (2.5) simplifies to

E [Mtu(X) | Hs] = exp [h(u, X)Ls]

E
[
exp [h(u, X)Ls] | X

] , (2.6)

which is Msu(X). ��
We call the family of processes {Mtu(X)} parameterised by u ∈ R+ the “ran-

domised Esscher martingales” [see Gerber and Shiu (1994) and Yao (2001) for details
on the Esscher transform]. The randomization is produced by h(u, X) which we call
the “random mixer”.

Example 2.1 Let {Wt }t≥0 be a standard Brownian motion that is independent of X ,
and set Lt = Wt in Definition 2.1. Then,

Mtu(X) = exp
[
h(u, X)Wt − 1

2 h2(u, X)t
]
. (2.7)

Example 2.2 Let {γt }t≥0 be a gamma process with rate parameter m > 0 and scale
parameter κ > 0. Then E[γt ] = κmt and Var[γt ] = κ2mt . We assume that {γt } is
independent of X . Set Lt = γt in Definition 2.1. Then, if h(u, X) < κ−1, we have

Mtu(X) = [1 − κh(u, X)]mt exp
[
h(u, X) γt

]
. (2.8)

3 Filtered Esscher Martingales

In this section we construct a projection of the randomised Esscher martingales
that can be interpreted as follows. Let us suppose that the exact combination of
Lévy processes that forms the stochastic basis of the martingale family {Mtu(X)}
is unknown. That is, we may have little knowledge about how much each of the Lévy
processes involved actually contributes to the stochastic evolution of {Mtu(X)}. The
random vector h(u, X) however, can naturally be interpreted as the quantity inside
{Mtu(X)} that determines at time u the random mixture of Lévy processes driving the
martingale family. Given a certain set of information, the actual mixture might not
be fully observable, though. This leads us to the following construction that applies
the theory of stochastic filtering. For simplicity, we focus on the case where X is a
one-dimensional random variable.

We introduce a standard Brownian motion {Bt }t≥0 on (�,F , P), and define the
filtration {Gt } by

Gt = σ
({Bs}0≤s≤t , {Ls}0≤s≤t , X

)
, (3.1)

where {Bt } is taken to be independent of X and {Lt }. We consider the pair

dXt = 0, (3.2)

dIt = �(t, X)dt + dBt , (3.3)
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where � : R+ ×R → R is a well-defined function. The solution to the signal equation
(3.2) is of course the random variable X . In the theory of stochastic filtering, the
process {It }t≥0 is the so-called observation process. We have

It =
t∫

0

�(s, X)ds + Bt . (3.4)

Next, we introduce the filtration {Ft }t≥0 defined by

Ft = σ
({Is}0≤s≤t , {Ls}0≤s≤t

)
, (3.5)

where Ft ⊂ Gt . The filtration {Ft } provides full information about the Lévy process
{Lt }, however it only gives partial information about the random variable X . Let us
thus consider the stochastic filtering problem defined by

M̂tu = E [Mtu(X) | Ft ] . (3.6)

We emphasize that X is not Ft -measurable and thus {Mtu(X)} is not adapted to {Ft }.
The filtering problem (3.6) is solved in closed form by introducing

Et := exp

⎛

⎝−
t∫

0

�(s, X)dBs − 1
2

t∫

0

�2(s, X)ds

⎞

⎠, (3.7)

where for all t > 0

E

⎡

⎣
t∫

0

�2(s, X)ds

⎤

⎦ < ∞, (3.8)

and

E

⎡

⎣
t∫

0

Es �2(s, X)ds

⎤

⎦ < ∞. (3.9)

The process {Et } is a ({Gt }, P)-martingale (see, e.g., Bain and Crisan 2009), and it may
be used to define a change-of-measure density martingale from P to a new measure B

by setting
dB

dP

∣
∣∣∣Gt

= Et . (3.10)

The B-measure is characterised by the fact that {It } is a ({Gt }, B)-Brownian motion.
The Kallianpur–Striebel formula then states that

E [Mtu(X) | Ft ] =
E

B

[
E−1

t Mtu(X) | Ft

]

EB

[
E−1

t | Ft

] . (3.11)
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This can be simplified to obtain:

E [Mtu(X) | Ft ] =
∞∫

−∞
Mtu(x) ft (x)dx, (3.12)

where the Ft -measurable conditional density ft (x) of the random variable X is given
by

ft (x) =
f0(x) exp

(∫ t
0 �(s, x)dIs − 1

2

∫ t
0 �2(s, x)ds

)

∫∞
−∞ f0(y) exp

(∫ t
0 �(s, y)dIs − 1

2

∫ t
0 �2(s, y)ds

)
dy

(3.13)

and f0(x) is the a priori probability density of X . A similar filtering system is presented
in a different context in Filipović et al. (2012). In that paper, further conditions are
considered on the dynamics of the information process defined in (3.2) and (3.3),
which may be necessary from a modelling point of view depending on the situation
under consideration.

Proposition 3.1 Let {Ft } be given by (3.5), and define the projection M̂tu =
E [Mtu(X) | Ft ], where {Mtu(X)} is given by (2.1). Then, for t, u ∈ R+, {M̂tu} is
an ({Ft }, P)-martingale family.

Proof 3.1 Recall that Ft ⊂ Gt for all t ≥ 0. For s ≤ t , we have

E
[
M̂tu | Fs

] = E [E [Mtu(X) | Ft ] | Fs] ,

= E [Mtu(X) | Fs] ,

= E [E [Mtu(X) | Gs] | Fs] ,

= E [Msu(X) | Fs] ,

= M̂su, (3.14)

where we make use of the tower property of the conditional expectation, and the fact
that {Mtu(X)} is a {Gt }-martingale—since Ht ⊂ Gt and {Bt } is independent of X and
{Lt }. ��

3.1 Filtered Brownian Martingales

We consider Example 2.1, in which the total impact of uncertainties is modelled by a
Brownian motion {Wt }. The corresponding filtered Esscher martingale is

M̂tu =
∞∫

−∞
ft (x) exp

(
h(u, x)Wt − 1

2 h2(u, x)t
)

dx, (3.15)

where the density process { ft (x)}, given in (3.13), is driven by the information process
defined by (3.3).
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Proposition 3.2 The filtered Brownian models have dynamics

dM̂tu =
∞∫

−∞
Mtu(x) ft (x) [h(u, x)dWt + Vt (x)dZt ] dx, (3.16)

where

Mtu(x) = exp
[
h(u, x)Wt − 1

2 h2(u, x)t
]
, (3.17)

Vt (x) = �(t, x) − E [�(t, X) | Ft ] , (3.18)

Zt = It −
t∫

0

E [�(s, X) | Fs] ds, (3.19)

and ft (x) is defined in (3.13).

Proof 3.2 We first show that

dMtu(x) = h(u, x)Mtu(x)dWt . (3.20)

In Filipović et al. (2012) it is proven that

d ft (x) = ft (x) (�(t, x) − E [�(t, X) | Ft ]) dZt , (3.21)

where {Zt }t≥0 is an ({Ft }, P)-Brownian motion, defined by (3.19). Thus by the Itô
product rule, we get

d[Mtu(x) ft (x)] = ft (x)dMtu(x) + Mtu(x)d ft (x) (3.22)

since dWt dZt = 0. This simplifies to

d[Mtu(x) ft (x)] = Mtu(x) ft (x) [h(u, x)dWt

+
⎛

⎝�(t, x) −
∞∫

−∞
�(t, y) ft (y)dy

⎞

⎠ dZt

⎤

⎦ , (3.23)

and we obtain

dM̂tu =
∞∫

−∞
Mtu(x) ft (x) [h(u, x)dWt + Vt (x)dZt ] dx (3.24)

where

Vt (x) = �(t, x) −
∞∫

−∞
�(t, y) ft (y) dy. (3.25)

��
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Remark 1 The dynamics of {M̂tu} can be written in the following form:

dM̂tu = E [Mtu(X)h(u, X) | Ft ] dWt + E [Mtu(X)Vt (X) | Ft ] dZt . (3.26)

3.2 Filtered Gamma Martingales

Let us suppose that the total impact of uncertainties on an economy is modelled by a
gamma process {γt } with density

P(γt ∈ dy) = ymt−1 exp
(− y

κ

)

κmt �[mt] dy, (3.27)

where m and κ are the rate and the scale parameter, respectively. The associated
randomised Esscher martingale is given in Example 2.2, where h(u, X) < κ−1. The
corresponding filtered process takes the form

M̂tu =
∞∫

−∞
ft (x)

(
[1 − κh(u, x)]mt exp

[
h(u, x) γt

])
dx (3.28)

for h(u, x) < κ−1, and where the density ft (x) is given by (3.13).

3.3 Filtered Compound Poisson and Gamma Martingales

We now construct a model based on two independent Lévy processes: a gamma process
(as defined previously) and a compound Poisson process. The idea here is to use the
infinite activity gamma process to represent small frequently-occurring jumps, and to
use the compound Poisson process to model jumps, which are potentially much larger
in magnitude, and may occur sporadically. Let {Ct }t≥0 denote a compound Poisson
process given by

Ct =
Nt∑

i=1

Yi (3.29)

where {Nt }t≥0 is a Poisson process with rate λ. The independent and identically
distributed random variables Yi are independent of {Nt }. The moment generating
function is given by

E
[
exp (	 Ct )

] = exp
[
λt (MY (	) − 1)

]
(3.30)

where MY is the moment generating function of Yi . For h1(u, X) < κ−1, we have
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Mtu(X) = exp (h1(u, X)γt + h2(u, X)Ct )

E
[
exp (h1(u, X)γt + h2(u, X)Ct ) | X

]

= exp (h1(u, X)γt )

E
[
exp (h1(u, X)γt ) | X

] · exp (h2(u, X)Ct )

E
[
exp (h2(u, X)Ct ) | X

]

= M (γ )
tu (X) M (C)

tu (X), (3.31)

where, conditional on X , exp (h1(u, X)γt ) and exp (h2(u, X)Ct ) are independent.
Furthermore,

M (γ )
tu (X) = (1 − κ h1(u, X))mt exp (h1(u, X)γt ), (3.32)

M (C)
tu (X) = exp [h2(u, X)Ct − λt (MY (h2(u, X)) − 1)]. (3.33)

Then, the filtered process takes the form

M̂tu =
∞∫

−∞
ft (x) [1 − κh1(u, x)]mt

× exp
[
h1(u, x) γt + h2(u, X)Ct − λt (MY (h2(u, X)) − 1)

]
dx, (3.34)

where ft (x) is given by (3.13).

4 Filtered Esscher Martingales with Lévy Information

Up to this point, we have considered a Brownian information process given by Eq. (3.3).
However, the noise component in the information process may be modelled by a Lévy
process with randomly sized jumps, that is independent of the Lévy process {Lt } used
to construct the randomised Esscher martingale. In what follows, we give an example
of continuously observed information, which is distorted by gamma-distributed pure
noise.

Example 4.1 Let {γ̃t }t≥0 be a gamma process with rate and scale parameters m̃ and
κ̃ , respectively. We define the gamma information process by

It = X γ̃t . (4.1)

Brody and Friedman (2009) consider such an observation process in a similar situation.
We define the filtration {Gt } by

Gt = σ
({γ̃s}0≤s≤t , {Ls}0≤s≤t , X

)
, (4.2)

and {Ft } by
Ft = σ

({Ls}0≤s≤t , {Is}0≤s≤t
)

(4.3)
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where {It } is given by (4.1). To derive the conditional density of X given Ft , we first
show that {It } is a Markov process with respect to its own filtration. That is, for a ∈ R,

P
[
It < a | Is, Is1 , . . . , Isn

] = P [It < a | Is] (4.4)

for all t ≥ s ≥ s1 ≥ · · · ≥ sn ≥ 0 and for all n ≥ 1. It follows that

P
[
It < a | Is, Is1 , . . . , Isn

] = P

[
It < a

∣∣∣
∣ Is,

Is1

Is
, . . . ,

Isn

Isn−1

]

= P

[
X γ̃t < a

∣∣∣
∣ X γ̃s,

γ̃s1

γ̃s
, . . . ,

γ̃sn

γ̃sn−1

]
. (4.5)

It can be proven that γ̃s1/γ̃s, . . . , γ̃sn /γ̃sn−1 are independent of γ̃s and γ̃t (see Brody et
al. 2008). Furthermore, γ̃s1/γ̃s, . . . , γ̃sn /γ̃sn−1 are independent of X . Thus we have

P
[
It < a | Is, Is1 , . . . , Isn

] = P [It < a | Is] . (4.6)

We assume that the random variable X has a continuous a priori density f0(x). Then
the conditional density of X ,

ft (x) = d

dx
P [X ≤ x | It ] , (4.7)

is given by

ft (x) = f0(x) p (It | X = x)
∫∞
−∞ f0(y) p (It | X = y) dy

= f0(x)x−m̃t exp [−It/(̃κx)]
∫∞
−∞ f0(y)y−m̃t exp [−It/(̃κ y)]dy

, (4.8)

where we have used the Bayes formula. The filtered Esscher martingale is thus obtained
by

M̂tu = E [Mtu(X) | Ft ] . (4.9)

The result is:

M̂tu =
∞∫

−∞
Mtu(x)

f0(x)x−m̃t exp [−It/(̃κx)]
∫∞
−∞ f0(y)y−m̃t exp [−It/(̃κ y)]dy

dx . (4.10)

5 Pricing Kernel Models

The absence of arbitrage in a financial market is ensured by the existence of a pricing
kernel {πt }t≥0 satisfying πt > 0 almost surely for all t ≥ 0. We consider, in general, an
incomplete market and let {St }t≥0 denote the price process of a non-dividend-paying
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asset. The price of such an asset at time t ≤ T is given by the following pricing
formula:

St = 1

πt
E [πT ST | Ft ] . (5.1)

The price of a discount bond system with price process {PtT }0≤t≤T <∞ and payoff
PT T = 1 is given by

PtT = 1

πt
E [πT | Ft ] . (5.2)

The specification of a model for the pricing kernel is equivalent to choosing a model
for the discount bond system, and thus also for the term structure of interest rates, and
the excess rate of return. A sufficient condition for positive interest rates is that {πt }
be an ({Ft }, P)-supermartingale. If, in addition, the value of a discount bond should
vanish in the limit of infinite maturity, then {πt } must satisfy

lim
T →∞ E [πT ] = 0. (5.3)

A positive right-continuous supermartingale with this property is called a potential.
We refer to Meyer (1962) for a presentation of the theory of potentials, and in partic-
ular of class (D) potentials. Flesaker and Hughston (1996) provide a framework for
constructing positive interest rate models, in which the pricing kernel is a so-called
class (D) potential and is modelled by

πt =
∞∫

t

ρ(u) mtu du, (5.4)

where {mtu}0≤t≤u<∞ is a family of positive unit-initialized martingales, and

ρ(t) = −∂t P0t . (5.5)

We emphasize that it suffices to specify a family of positive martingales in order to
model such class (D) potentials, see also Hunt and Kennedy (2004). In what follows,
we construct explicit Flesaker–Hughston models, which are driven by a randomised
mixture of Lévy processes. We develop such a class of pricing kernels by setting

πt =
∞∫

t

ρ(u) M̂tu du (5.6)

where the martingale family {M̂tu}0≤t≤u<∞ is defined by (3.6) with M̂tu > 0 and
M̂0u = 1. Then, the discount bond system is given by

PtT =
∫∞

T ρ(u) M̂tu du
∫∞

t ρ(u) M̂tu du
. (5.7)

123



Randomised Mixture Models for Pricing Kernels 293

The associated instantaneous forward rate {rtT }0≤t≤T is defined by rtT = −∂T ln PtT .
We deduce that

rtT = ρ(T ) M̂tT∫∞
T ρ(u) M̂tu du

, (5.8)

and that the short rate of interest {rt }t≥0 is given by the formula

rt = ρ(t) M̂tt∫∞
t ρ(u) M̂tu du

, (5.9)

where rt := rtt . The interest rate is positive by construction. We note here that the
pricing kernel models proposed in Brody et al. (2011) can be recovered by considering
a special case of the random mixer, namely h(u, X) = h(u). Takaoka (2006) and
Takaoka and Futami (2010) apply weighted averages of geometric Brownian motion
for the development of asset price processes. The equilibrium asset price models
proposed in particular in Takaoka (2006) could be explored further in future research
to find out whether these might be recovered from the pricing kernel models (5.6) or
(12.11).

6 Pricing Kernel Models Driven by Filtered Brownian Martingales

In the case where the filtered martingales driving the pricing kernel are Gaussian
processes, the dynamics of the discount bond system can be expressed by a diffusion
equation of the form (6.2). Inserting the filtered Brownian martingale family (3.15)
into (5.7), we obtain the price process of the discount bond in the Brownian set-up:

PtT =
∫∞

T ρ(u)
∫∞
−∞ ft (x) exp

[
h(u, x)Wt − 1

2 h2(u, x)t
]

dx du
∫∞

t ρ(v)
∫∞
−∞ ft (y) exp

[
h(v, y)Wt − 1

2 h2(v, y)t
]

dy dv
. (6.1)

A similar expression is obtained for the associated interest rate system by plugging
(3.15) into (5.9).

Proposition 6.1 The dynamical equation of the discount bond process is given by

dPtT

PtT
= [rt − θt t (θtT − θt t ) − νt t (νtT − νt t )] dt + (θtT − θt t )dWt + (νtT − νt t )dZt

(6.2)
where

θtT :=
∫∞

T ρ(u) E [Mtu(X)h(u, X) | Ft ] du
∫∞

T ρ(u) M̂tu du
, (6.3)

νtT :=
∫∞

T ρ(u) E [Mtu(X)Vt (X) | Ft ] du
∫∞

T ρ(u) M̂tu du
, (6.4)

θt t = θtT
∣∣
T =t , and νt t = νtT

∣∣
T =t .
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Proof 6.1 First we have

d

⎡

⎣
∞∫

T

ρ(u) M̂tu du

⎤

⎦ =
∞∫

T

ρ(u) dM̂tu du (6.5)

where dM̂tu is given by (3.26). Also,

d

⎡

⎣
∞∫

t

ρ(u) M̂tu du

⎤

⎦ =
∞∫

t

ρ(u) dM̂tu du − ρ(t) M̂tt dt. (6.6)

We then apply the Itô quotient rule to obtain the dynamics of {PtT }. We observe that
the discount bond volatilities are given by

�
(1)
tT = θtT − θt t , (6.7)

�
(2)
tT = νtT − νt t . (6.8)

The market price of risk associated with {Wt } is λ
(1)
t := −θt t ; the one associated

with {Zt } is λ
(2)
t := −νt t . The product between the bond volatility vector �tT =

(�
(1)
tT ,�

(2)
tT ) and the market price of risk vector λt = (λ

(1)
t , λ

(2)
t ) gives us the risk

premium associated with an investment in the discount bond, that is,

�tT · λt = −θt t (θtT − θt t ) − νt t (νtT − νt t ) . (6.9)

��
Proposition 6.2 Let {Mtu(X)} be of the class (2.7), and let {M̂tu} in (5.8) be given
by the martingale family (3.15). Then the dynamical equation of the forward rate is
given by

drtT = [θtT ∂T θtT + νtT ∂T νtT ] dt − ∂T θtT dWt − ∂T νtT dZt (6.10)

where

θtT :=
∫∞

T ρ(u) E [Mtu(X)h(u, X) | Ft ] du
∫∞

T ρ(u) M̂tu du
, (6.11)

and

νtT :=
∫∞

T ρ(u) E [Mtu(X)Vt (X) | Ft ] du
∫∞

T ρ(u) M̂tu du
(6.12)

where Vt (X) is defined by (3.18).

Proof 6.2 We apply the Itô quotient rule to (5.8) to obtain the forward rate dynamics.
We make the observations that

∂T θtT = rtT

(
θtT − E [MtT (X)h(T, X) | Ft ]

M̂tT

)
, (6.13)
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and that

∂T νtT = rtT

(
νtT − E [MtT (X)Vt (X) | Ft ]

M̂tT

)
. (6.14)

��
In particular, if we set

�tT = θtT − θt t , (6.15)

�tT = νtT − νt t , (6.16)

then we can express the risk-neutral dynamics of the forward rate by

drtT = [�tT ∂T �tT + �tT ∂T �tT ] dt − ∂T �tT dW̃t − ∂T �tT d Z̃t , (6.17)

where {W̃t }t≥0 and {Z̃t }t≥0 are Brownian motions defined by the Girsanov relations

dW̃t = dWt + λ
(1)
t dt,

d Z̃t = dZt + λ
(2)
t dt. (6.18)

The dynamical equation (6.17) has the form of the HJM dynamics for the forward rate
under the risk-neutral measure, see Heath et al. (1992).

Example 6.1 As a first illustration, let us now consider the case in which the informa-
tion process is defined by

It = σ Xt + Bt , (6.19)

where σ is a positive constant. It can be proven that this is a Markov process (see
Brody et al. 2011). Equation (6.19) is a special case of the path-dependent observation
process (3.4). Let {Wt } be a standard Brownian motion that is independent of X . Then
from Example 2.1, we have

Mtu(X) = exp
[
h(u, X)Wt − 1

2 h2(u, X)t
]
. (6.20)

We suppose that the a priori distribution of X is uniform over the interval (a, b), where
a ≥ 0 and b > 0. We choose to model the random mixer by

h(u, X) = c exp (−u X) (6.21)

where c ∈ R. Here X can be interpreted as the random rate of the exponential decay
in h(u, X). We obtain the following expressions for the bond price

PtT =
∫∞

T ρ(u)
∫ b

a exp
[
σ x It + ce−ux Wt − 1

2

(
σ 2x2 + c2e−2ux

)
t
]

dx du
∫∞

t ρ(u)
∫ b

a exp
[
σ y It + ce−uy Wt − 1

2

(
σ 2 y2 + c2e−2uy

)
t
]

dy du
, (6.22)

and the associated interest rate

123



296 A. Macrina, P. A. Parbhoo

1 2 3 4 5
t

0.80

0.85

0.90

0.95

1.00

PtT

5 10 15 20 25 30
t

0.02

0.04

0.06

0.08

rt

Fig. 1 Sample paths of discount bond with T = 5 and short rate. We use the filtered Brownian model
with h(u, X) = c exp (−u X) and X ∼ U (a, b). We set a = 0, b = 0.1, σ = 0.1, c = 0.5 and P0t =
exp (−0.04t)

rt = ρ(t)
∫ b

a exp
[
σ x It + ce−t x Wt − 1

2

(
σ 2x2 + c2e−2t x

)
t
]

dx
∫∞

t ρ(u)
∫ b

a exp
[
σ y It + ce−uy Wt − 1

2

(
σ 2 y2 + c2e−2uy

)
t
]

dy
. (6.23)

Since the model is constructed from a single Lévy process, it is not—strictly
speaking—a mixture model as described previously. However, it can be viewed as
a kind of two-factor Brownian model owing to the presence of the observation process
{It }. The bond price and the associated interest rate are functions of time and the two
state variables Wt and It . Thus, it is straightforward to generate simulated sample
paths (Fig. 1).

The parameters a and b influence the rate at which exp (−u X) decays, and together
with c determine the impact of the Brownian motion {Wt } on the bond and interest rate
evolution. When c is close to zero, the impact of {Wt } is very small. For sufficiently
large values of b−a, σ or |c|, the numerical integration in the calculation of the pricing
kernel may fail to converge. For large values of t , we observe that the sample paths
of the short rate revert to r0. Thus, there is built-in reversion to the initial level of the
short rate.

Example 6.2 The following model is related to the one in the above example and
emphasises the flexibility of the framework presented in this paper. We keep the
information process (6.19), but consider f0(x) = 1/

√
2π exp(−1/2x2) for the a

priori density of X and choose a mixing function of the form h(u, x) = g(u)x . Then
we obtain

M̂tu =
∫

Mtu(x) ft (x)dx,

=
√

1 + σ 2t
√

1 + (σ 2 + g2(u))t
exp

[
(σ It + g(u)Wt )

2

2
[
1 + (σ 2 + g2(u))t

] − σ 2 I 2
t

2(1 + σ 2t)

]

,

(6.24)
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where (6.20) and

ft (x) = f0(x) exp
(
σ x It − 1

2σ 2x2t
)

∫
f0(y) exp

(
σ y It − 1

2σ 2 y2t
)

dy

are applied. Assuming that the function g(u) is specified such that the u-integration in
the following expression is finite, we obtain a semi-closed-form for the pricing kernel:

πt =
√

1 + σ 2t exp

[
− σ 2 I 2

t

2(1 + σ 2t)

] ∞∫

t

ρ(u)
√

1 + (σ 2 + g2(u))t

× exp

[
(σ It + g(u)Wt )

2

2
[
1 + (σ 2 + g2(u))t

]

]

du. (6.25)

The associated bond price process is then given by

PtT =
∫∞

T ρ(u)M̂tudu
∫∞

t ρ(u)M̂tudu
,

=
∫∞

T
ρ(u)√

1+(σ 2+g2(u))t
exp

[
(σ It +g(u)Wt )

2

2[1+(σ 2+g2(u))t]

]
du

∫∞
t

ρ(u)√
1+(σ 2+g2(u))t

exp
[

(σ It +g(u)Wt )
2

2[1+(σ 2+g2(u))t]

]
du

, (6.26)

where ρ(u) = −∂u P0u .

7 Bond Prices Driven by Filtered Gamma Martingales

Let {γt } denote a gamma process with E[γt ] = κmt , and Var[γt ] = κ2mt . We consider
a bond price model based on a pricing kernel that is driven by a family of filtered gamma
martingales given by (3.28). Then, Eq. (5.7) for the bond price gives the following
expression:

PtT =
∫∞

T ρ(u)
∫∞
−∞ ft (x) [1 − κh(u, x)]mt exp

[
h(u, x)γt

]
dx du

∫∞
t ρ(v)

∫∞
−∞ ft (y) [1 − κh(v, y)]mt exp

[
h(v, y)γt

]
dy dv

. (7.1)

We now investigate this bond price model in more detail, and in particular show the
effects of the various model components on the behaviour of the bond price.

Example 7.1 Let the information process {It }, driving the conditional density { ft (x)}
be of the form

It = σ t X + Bt , (7.2)

where X is a binary random variable taking the values X = 1 with a priori probability
f0(1), and X = 0 with probability f0(0). We choose the random mixer

h(u, X) = c exp [−bu(1 − X)], (7.3)
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where c < κ−1 and b > 0. Then the expression for the filtered gamma martingale
simplifies to

M̂tu = ft (0) exp
(

ce−buγt

) (
1 − κce−bu

)mt + ft (1) exp (cγt ) (1 − κc)mt , (7.4)

where

ft (0)= f0(0)

f0(0) + f0(1) exp
(
σ It − 1

2σ 2t
) ft (1)= f0(1) exp

(
σ It − 1

2σ 2t
)

f0(0)+ f0(1) exp
(
σ It − 1

2σ 2t
) .

(7.5)

There are a number of degrees of freedom in this model which have a significant
impact on the behaviour of the trajectories. In what follows, we analyse the degrees
of freedom one by one.

A priori probability. When f0(1) = 0, the diffusion {It } plays no role. The sample
paths of the discount bond and the short rate are driven solely by the pure jump process.
The size of the jumps decays over time. As f0(1) increases, there is a greater amount
of diffusion in the sample paths. Furthermore, there is a higher likelihood of obtaining
sample paths for which the size of the jumps do not decay over time. If f0(1) = 1,
then {M̂tu} is no longer u dependent. This yields a stochastic pricing kernel, but flat
short rate and deterministic discount bond prices, see Fig. 2.

Information flow rate σ . As the information flow rate increases, the investor
becomes more knowledgeable at an earlier stage about whether the random variable
may take the value X = 0 or X = 1, see Fig. 3.

Parameters of the gamma process m and κ . The rate parameter m controls the rate
of jump arrivals. The scale parameter κ controls the jump size.

Parameters of the random mixer b and c. The magnitude of c influences the impact
of the jumps on the interest rate dynamics. When c = 0, the pricing kernel, and
thus the short rate of interest, is deterministic. The sign of c affects the direction
of the jumps. For 0 < c < κ−1, the short rate (discount bond) sample paths have
upward (downward) jumps. The opposite is true for c < 0. It should be noted that
exp (c exp [−bu(1 − X)] γt ), and (1 − κc exp [−bu(1 − X)])mt behave antagonisti-
cally in c. For large t , one term will eventually dominate the other. Thus, for both
c > 0 and c < 0, the drift of the short rate trajectories is initially negative and then
becomes positive for large t , see Fig. 4. The parameter b determines how quickly the
jumps are “killed off”. Alternatively, b can be viewed as the rate of reversion to the
initial level of the interest rate. The interest rate process approaches the initial rate
more rapidly for high values of b. When b = 0, M̂tu is no longer u dependent, and we
obtain a stochastic pricing kernel, but flat short rate and deterministic discount bond
prices, see Fig. 5.

Compared to Example 6.1, this model is more robust to variation in the values of
the parameters. An analysis of the sample trajectories suggests that for large t , the
short rate reverts to the initial level r0.
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Fig. 2 Sample paths for discount bond with T = 5, and associated short rate. We use the Brownian-gamma
model with h(u, X) = c exp [−bu(1 − X)] where X = {0, 1} with m = 0.5, κ = 0.5, σ = 0.1, c = −2,
b = 0.03 and P0t = exp (−0.04t). We let (i) f0(1) = 0, (i i) f0(1) = 0.65 and (i i i) f0(1) = 1

8 Bond Prices Driven by Filtered Variance-Gamma Martingales

We let {Lt } denote a variance-gamma process. We define the variance-gamma process
as a time-changed Brownian motion with drift (see Carr et al. 1998), that is

Lt = θγt + �Bγt (8.1)

with parameters θ ∈ R, � > 0 and ν > 0. Here {γt } is a gamma process with rate
and scale parameters m = 1/ν and κ = ν, respectively, and {Bγt } is a subordinated
Brownian motion. The randomised Esscher martingale is expressed by

Mtu(X) = exp [h(u, X)Lt ]
(

1 − θνh(u, X) − 1
2�2νh2(u, X)

)t/ν
, (8.2)

and the associated filtered Esscher martingale is of the form
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Fig. 3 Short rate sample paths for the Brownian-gamma model with h(u, X) = c exp [−bu(1 − X)] and
X = {0, 1}. We choose m = 0.5, κ = 0.5, f0(1) = 0.8, c = −2, b = 0.03 and P0t = exp (−0.04t). We
set (i) σ = 0.005, (i i) σ = 0.4 and (i i i) σ = 1.2
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Fig. 4 Short rate sample paths for the Brownian-gamma model with h(u, X) = c exp [−bu(1 − X)] and
X = {0, 1}. We set m = 0.5, κ = 0.5, f0(1) = 0.5, σ = 0.1, b = 0.03 and P0t = exp (−0.04t). We
choose (i) c = −5, (i i) c = 0 and (i i i) c = 1.5

123



Randomised Mixture Models for Pricing Kernels 301

5 10 15 20 25 30
t

0.01

0.02

0.03

0.04

rt

5 10 15 20 25 30
t

0.01

0.02

0.03

0.04

rt

5 10 15 20 25 30
t

0.01

0.02

0.03

0.04

rt

Fig. 5 Short rate sample paths for the Brownian-gamma model with h(u, X) = c exp [−bu(1 − X)] and
X = {0, 1}. We let m = 0.5, κ = 0.5, f0(1) = 0.5, σ = 0.1, c = −2 and P0t = exp (−0.04t). We choose
(i) b = 0, (i i) b = 0.005 and (i i i) b = 1

M̂tu =
∞∫

−∞
ft (x) exp [h(u, x)Lt ]

(
1 − θνh(u, x) − 1

2�2νh2(u, x)
)t/ν

dx, (8.3)

where ft (x) may be given for example by (3.13) or a special case thereof, or by (4.8)
depending on the type of information used to filter knowledge about X . This leads to
the following expression for the discount bond price process:

PtT =
∫∞

T ρ(u)
∫∞
−∞ ft (x) exp [h(u, x)Lt ]

(
1−θνh(u, x)− 1

2�2νh2(u, x)
)t/ν

dxdu
∫∞

t ρ(v)
∫∞
−∞ ft (y) exp [h(v, y)Lt ]

(
1−θνh(v, y)− 1

2�2νh2(v, y)
)t/ν

dy dv
.

(8.4)

We can also obtain an expression for the short rate of interest by substituting (8.3) into
(5.9). We now present another explicit bond pricing model.

Example 8.1 We assume that X is a random time, and hence a positive random variable
taking discrete values {x1, . . . , xn} with a priori probabilities { f0(x1), . . . , f0(xn)}. We
suppose that the information process {It } is independent of {Lt }, and that it is defined
by It = σ Xt + Bt . We take the random mixer to be h(u, X) = c exp

[−b(u − X)2
]

where b > 0 and c ∈ R. We see in Fig. 6 that the random mixer, and thus the weight
of the variance-gamma process, increases (in absolute value) until the random time
X , and decreases (in absolute value) thereafter.
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Fig. 6 Plot of h(u, xi ) for x1 = 2, x2 = 5, x3 = 10 and x4 = 20, where b = 0.015 and c = 1 (left) and
c = −1 (right)
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Fig. 7 Sample paths for a discount bond with T = 10 and the short rate. We use the variance-gamma
model with h(u, X) = c exp [−b(u − X)2]. We let θ = −1.5, � = 2 and ν = 0.25. We set f0(x1) = 0.2,
f0(x2) = 0.35, f0(x3) = 0.35, f0(x4) = 0.1 and x1 = 2, x2 = 5, x3 = 10, x4 = 20. We choose σ = 0.1,
c = 0.5, b = 0.015 and the initial term structure is P0t = exp (−0.04t)

The associated bond price and interest rate sample paths are shown in Fig. 7. We
observe that over time the sample paths of the interest rate process revert to the initial
level r0. However, some paths may revert to r0 at a later time than others, depending
on the realized value of the random variable X .

9 Chameleon Random Mixers

The functional form of the random mixer h(u, X) strongly influences the interest rate
dynamics. The choice of h(u, X) also affects the robustness of the model: there are
choices in which the numerical integration in the calculation of the pricing kernel
does not converge. So far, we have constructed examples based on an exponential-
type random mixer. However, one may wish to introduce other functional forms for
h(u, X) for which we can observe different behaviour in the interest rate dynamics,
while maintaining robustness. For instance we may consider a random piecewise
function of the form

h(u, X) = g1(u)1{u≤X} + g2(u)1{u>X} (9.1)

where g j : R+ → R for j = 1, 2. The random mixer now has a “chameleon form”:
initially appearing to be g1, and switching its form to g2 at X = u. This results in
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the martingale {M̂tu}, and the resulting interest rate sample paths, exhibiting different
hues over time, depending on the choices of g j ( j = 1, 2). We can extend this idea
further by considering (i) multiple g j , or (ii) a multivariate random mixer of the form

h(u, X, Y1, Y2) = g1(u, Y1)1{u≤X} + g2(u, Y2)1{u>X}, (9.2)

where X > 0, Y1 and Y2 are independent random variables with associated information
processes. In this case, the g j are themselves random-valued functions. Here X can be
regarded as the primary mixer which determines the timing of the regime switch. The
variables Yi (i = 1, 2) can then be interpreted as the secondary mixers determining
the weights of the Lévy processes over two distinct time intervals.

Example 9.1 We now present what may be called the “Brownian-gamma chameleon
model”. We consider the filtered gamma martingale family (3.28) in the situation
where the random mixer h(u, X) has the form

h(u, X) = c1 sin (α1u)1{u≤X} + c2 exp (−α2u)1{u>X} (9.3)

where c1, c2 < κ−1 and α2 > 0. The information process {It } associated with X is
taken to be of the form

It = σ t X + Bt . (9.4)

We assume that X is a positive discrete random variable taking values {x1, x2, . . . , xn}
with a priori probabilities f0(xi ), i = 1, 2, . . . , n. That is, the function h(u, X) will
switch once from sine to exponential behaviour at one of the finitely many random
times. Inserting (3.28), with the specification (9.3), in the expression for the bond price
(5.7), we obtain

PtT =
∫∞

T ρ(u)
∑n

i=1 ft (xi ) [1 − κ h(u, xi )]mt exp
[
h(u, xi ) γt

]
du

∫∞
t ρ(v)

∑n
i=1 ft (yi ) [1 − κ h(v, yi )]mt exp

[
h(v, yi ) γt

]
dv

, (9.5)

where h(u, xi ) is given by (9.3) for X = xi , and

ft (xi ) = f0(xi ) exp
[
σ xi It − 1

2σ 2x2
i t
]

∑n
i=1 f0(yi ) exp

[
σ yi It − 1

2σ 2 y2
i t
] . (9.6)

Since the sine function oscillates periodically within the interval [−1, 1], the integrals
in (9.5) may not necessarily converge to one value. However, at some finite random
time u = X , the sine behaviour is replaced by an exponential decay; this ensures
the integrals in the expression for the bond price converge. Such a behaviour may be
viewed as a regime switch at a random time. In the simulation below, the analysis
of the model parameters is analogous to the one in Example 7.1. It is worth empha-
sizing nevertheless that (i) the a priori probabilities f0(xi ), i = 1, 2, . . . , n have a
direct influence on the length of the time span during which the sine function in the
chameleon mixer is activated, (ii) the magnitude of α1 determines the frequency of
the sine wave, while α2 affects the rate at which reversion to the initial interest rate
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Fig. 8 Sample paths of discount bond with T = 10 and short rate trajectories. We use the Brownian-
gamma chameleon model with h(u, X) = c1 sin (α1u)1{u≤X} + c2 exp (−α2u)1{u>X}. Let X take the
values {x1 = 2, x2 = 5, x3 = 10, x4 = 15} with a priori probabilities { f0(x1) = 0.2, f0(x2) =
0.35, f0(x3) = 0.35, f0(x4) = 0.1}. We set m = 0.5, κ = 0.5, σ = 0.1, c1 = 0.2625, c2 = 0.75,
α1 = 0.75, α2 = 0.02 and P0t = exp (−0.04t)

(in the simulation below r0 = 4 %) occurs, and (iii) the size of c1 determines the
amplitude of the sine, and it significantly impacts the convergence of the numeri-
cal integration. We find that reasonable results are obtained for −κ−1 < c1 < κ−1

(Fig. 8).

10 Model-Generated Yield Curves

The yield curve at any time is defined as the range of yields that investors in sovereign
debt can expect to receive on investments over various terms to maturity. For a calendar
date t and a time to maturity τ , we let Yt,t+τ be the continuously compounded zero-
coupon spot rate for time to maturity τ , that is, the map τ �→ Yt,t+τ . We write

Pt,t+τ = exp
(−τYt,t+τ

)
. (10.1)

Typically, the following yield curve movements are observed: (i) parallel shifts of
the yield curve corresponding to an equal increase in yields across all maturities; (ii)
steepening (flattening) of the yield curve, that is the difference between the yields
for longer-dated bonds and shorter-dated bonds widens (narrows), and (iii) changes
in the curvature and overall shape of the yield curve. The terms “shift”, “twist” and
“butterfly” are also used to describe these yield curve movements. As shown in Fig. 9
below, the two-factor Brownian-gamma model set-up in Example 7.1 is indeed too
rigid to allow for significant changes in the shape of the yield curve. For f0(1) = 1, the
yield curve is flat at all times. For 0 ≤ f0(1) < 1, this model can generate flat, upward
sloping yield curves and in certain cases, slightly inverted yield curves. The variance-
gamma model (Fig. 10) and the Brownian-gamma chameleon model (Fig. 11) show
more flexibility, where changes of slope and different yield curve shapes are observed.
These model may generate flat, upward sloping, inverted and humped yield curves.
We emphasize that these classes of models are able to capture all three types of yield
curve movements.
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Fig. 9 Discount bond curves for the Brownian-gamma model. We let X = {0, 1} with f0(1) = 0.3. We let
m = 2, κ = 0.2, σ = 0.1, c = −2, b = 0.03, P0t = exp (−0.04t). Yield curves for the Brownian-gamma
model. We let X = {0, 1} with f0(1) = 0.3. We let m = 2, κ = 0.2, σ = 0.1, c = −2, b = 0.03,
P0t = exp (−0.04t)

Fig. 10 Discount bond curves for the variance-gamma model with h(u, X) = c exp [−b(u − X)2]. We let
θ = −1.5, � = 2 and ν = 0.25. We set f0(x1) = 0.2, f0(x2) = 0.35, f0(x3) = 0.35, f0(x4) = 0.1 and
x1 = 2, x2 = 5, x3 = 10, x4 = 20. We choose σ = 0.1, c = 0.5, b = 0.015 and the initial term structure
is P0t = exp (−0.04t). Yield curves for the variance-gamma model where h(u, X) = c exp [−b(u − X)2].
We let θ = −1.5, � = 2 and ν = 0.25. We set f0(x1) = 0.2, f0(x2) = 0.35, f0(x3) = 0.35, f0(x4) = 0.1
and x1 = 2, x2 = 5, x3 = 10, x4 = 20. We choose σ = 0.1, c = 0.5, b = 0.015 and the initial term
structure is P0t = exp (−0.04t)

Fig. 11 Discount bond curves for the Brownian-gamma chameleon model. We let X = {x1 = 2, x2 =
5, x3 = 10, x4 = 20} with f0(x1) = 0.15, f0(x2) = 0.35, f0(x3) = 0.35, f0(x4) = 0.15. We let
m = 0.5, κ = 0.5, σ = 0.1, c1 = −0.4375, c2 = −1.25, α1 = 0.75, α2 = 0.02, P0t = exp (−0.04t).
Yield curves for the Brownian-gamma chameleon model. We let X = {x1 = 2, x2 = 5, x3 = 10, x4 = 20}
with f0(x1) = 0.15, f0(x2) = 0.35, f0(x3) = 0.35, f0(x4) = 0.15. We let m = 0.5, κ = 0.5, σ = 0.1,
c1 = −0.4375, c2 = −1.25, α1 = 0.75, α2 = 0.02, P0t = exp (−0.04t)
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11 Pricing of European-Style Bond Options

Let {Cst }0≤s≤t<T be the price process of a European call option with maturity t and
strike 0 < K < 1, written on a discount bond with price process {PtT }0≤t≤T . The
price of the option at time s is given by

Cst = 1

πs
E
[
πt (PtT − K )+ | Fs

]
. (11.1)

By substituting (5.6) and (5.7) into (11.1), we obtain

Cst = 1

πs
E

⎡

⎣

⎛

⎝
∞∫

T

ρ(u) M̂tu du − K

∞∫

t

ρ(u) M̂tu du

⎞

⎠

+ ∣∣∣∣Fs

⎤

⎦ . (11.2)

In the single-factor models that we have considered with a Markovian information
process {It } , we can define the region V by

V :=
⎧
⎨

⎩
y, z :

∞∫

T

ρ(u) M̂tu(Lt = y, It = z) du

−K

∞∫

t

ρ(u) M̂tu(Lt = y, It = z) du > 0

⎫
⎬

⎭
. (11.3)

It follows that the price of the call option is

Cst = 1

πs

∫∫

V

⎛

⎝
∞∫

T

ρ(u) M̂tu(y, z) du

−K

∞∫

t

ρ(u) M̂tu(y, z) du

⎞

⎠ qs(y, z) dy dz (11.4)

where

qs(y, z) = ∂2

∂y ∂z
P [Lt ≤ y, It ≤ z | Fs] . (11.5)

We can use Fubini’s theorem to write this more compactly in the form

Cst = 1

πs

⎛

⎝
∞∫

T

ρ(u)�s(t, u) du − K

∞∫

t

ρ(u)�s(t, u) du

⎞

⎠ , (11.6)
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Fig. 12 Option price surface at s = 2 of call options on a discount bond with T = 10. (i) Simulation based
on the Brownian-gamma model. We set X = {0, 1} with f0(1) = 0.5, m = 0.5, κ = 0.5, σ = 0.1, c = −2,
b = 0.03 and P0t = exp (−0.04t). (i i) Simulation based on the Brownian-gamma chameleon model. We
set X = {x1 = 2, x2 = 5, x3 = 10, x4 = 20} with f0(x1) = 0.15, f0(x2) = 0.35, f0(x3) = 0.35,
f0(x4) = 0.15, m = 0.5, κ = 0.5, σ = 0.1, c1 = 0.35, c2 = 1, α1 = 3, α2 = 0.03, and P0t =
exp (−0.04t)

where

�s(t, u) =
∫∫

V
M̂tu(y, z) qs(y, z) dy dz. (11.7)

We apply Monte Carlo techniques to simulate option price surfaces. A large number
of iterations is required to obtain accurate estimates. To increase precision, variance
reduction techniques or quasi-Monte Carlo methods can be considered (see Boyle et
al. 1997). The choice of the random mixer affects the shape of the resulting option
price surface. The simulations in Fig. 12 are based on (i) the Brownian-gamma model
constructed in Example 7.1, and (ii) the Brownian-gamma chameleon model in Exam-
ple 9.1. The wave across the second option price surface is produced by the sine
function that defines part of the chameleon random mixer.

In the case of a call option with maturity t which is written on a discount bond with
price process (6.26), we can work out a semi-analytical expression for the option price
C0t at time 0. We recall the formula (11.6) and calculate (11.7) for s = 0. Assuming
that {It } and {Wt } are independent, we observe that the density q0(y, z) is given by

q0(y, z)dydz =
∫

f0(x)P[It ∈ dz | X = x]dx P[Wt ∈ dy],

= 1
√

2π(1+σ 2t)
exp

[
− z2

2(1+σ 2t)t

]
dz

1√
2π t

exp

(
−y2

2t

)
dy,

(11.8)

where f0(x) = 1/
√

2π exp(−1/2x2). Then, it follows that

�0(t, u) =
∫∫

V
M̂tu(y, z) q0(y, z)dydz =

∫∫

V

1
√

1 + (σ 2 + g2(u))t

× exp

[
(σ y + g(u) z)2

2
[
1 + (σ 2 + g2(u))t

]

]
1

2π t
exp

[
− y2 − z2

2t

]
dydz. (11.9)
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This is now inserted in (11.6) for s = 0 to obtain the price of the option at time 0.

12 Randomised Heat Kernel Interest Rate Models

In Sects. 2 and 3, we constructed martingales based on Lévy processes and an Esscher-
type formulation. We recall that the pricing kernel is modelled by

πt =
∞∫

t

ρ(u) E [Mtu (X, Lt ) | Ft ] du,

=
∞∫

−∞

∞∫

t

ρ(u) Mtu (x, Lt ) du ft (x) dx . (12.1)

The process {Mtu (X, Lt )} is a unit-initialized positive {Gt }-martingale, and the process

St (X, Lt ) :=
∞∫

t

ρ(u) Mtu (X, Lt ) du (12.2)

is a positive {Gt }-supermartingale. The projection of a positive {Gt }-supermartingale
onto {Ft }, that is

πt := E [St (X, Lt ) | Ft ] , (12.3)

is an {Ft }-supermartingale (Föllmer and Protter 2011, Theorem 3).

12.1 Weighted Heat Kernel Approach

We now model the impact of uncertainty on a financial market by a process that has
the Markov property with respect to its natural filtration, and which we denote {Yt }t≥0.
Of course, the case where {Yt } is a Lévy process, which is a Markov process of Feller
type, is included (see Applebaum 2004).

Definition 12.1 Let {Yt } be a Markov process with respect to its natural filtration. A
measurable function p : R+ × R+ × R → R is a propagator if it satisfies

E [p (t, v, Yt ) | Ys] = p (s, v + t − s, Ys) (12.4)

for (v, t) ∈ R+ × R+ and 0 ≤ s ≤ t .

Next, let {nt }t≥0 be a pure noise process, and let the filtration {Gt } be generated by

Gt = σ
({Ys}0≤s≤t , {ns}0≤s≤t , X

)
, (12.5)
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where {Yt }, {nt }, and the random variable X are all independent. Let G(·) be a positive
bounded function1, and let h : R+ × R → R. Then we set

p(t, v, Yt , X) := E
[
G (h(t + v, X), Yt+v) | Gt

]
. (12.6)

This is a {Gt }-propagator since X is G0-measurable. It follows that

St (X, Yt ) :=
∞∫

0

w(t, v) E
[
G(h(t + v, X), Yt+v) | Gt

]
dv (12.7)

is a {Gt }-supermartingale, see Akahori et al. (2014). Here w(t, v) is a positive function
that satisfies

w(t, v − s) ≤ w(t − s, v) (12.8)

for arbitrary t, v ∈ R+ and s ≤ t ∧ v. Now we define the market filtration {Ft } by

Ft = σ
({Ys}0≤s≤t , {Is}0≤s≤t

)
, (12.9)

where {It } carries information about X , which is distorted by the pure noise {nt }. We
have that Ft ⊂ Gt . Then, by Föllmer and Protter (2011) Theorem 3, the projection

πt := E [St (X, Yt ) | Ft ] (12.10)

is an {Ft }-supermartingale. It follows that

πt = E

⎡

⎣
∞∫

0

w(t, v) E
[
G (h(t + v, X), Yt+v) | Gt

]
dv

∣∣∣∣Ft

⎤

⎦ ,

=
∞∫

0

w(t, v) E
[
E
[
G(h(t + v, X), Yt+v) |Gt

] | Ft
]

dv,

=
∞∫

0

w(t, v) E
[
G(h(t + v, X), Yt+v) | Ft

]
dv. (12.11)

We emphasize that in equation (12.11), E
[
G(h(t + v, X), Yt+v) | Ft

]
is not an {Ft }-

propagator when {It } is not a Markov process. Nevertheless, {πt } is a valid model for
the pricing kernel, subject to regularity conditions.

1 Once a Markov process {Yt } has been chosen, it may be sufficient to relax the boundedness condition,
and choose G(·) to be a positive and integrable function.
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12.2 Quadratic Model Driven by the Ornstein–Uhlenbeck Process

We generate term structure models by using Markov processes with dependent incre-
ments. We emphasize that such models cannot be constructed based on the filtered
Esscher martingales. Let us suppose that {Yt } is an Ornstein–Uhlenbeck (OU) process
with dynamics

dYt = δ(β − Yt ) dt + ϒ dWt , (12.12)

where δ is the speed of reversion, β is the long-run equilibrium value of the process
and ϒ is the volatility. Then, for s ≤ t , the conditional mean and conditional variance
are given by

E [Yt | Ys] = Ys exp [−δ(t − s)] + β (1 − exp [−δ(t − s)]) . (12.13)

Var [Yt | Ys] = ϒ2

2δ
(1 − exp [−2δ(t − s)]) . (12.14)

Let us suppose, for a well-defined positive function h : R+ × R → R+, that

G(h(v, X), Yv) = h(v, X)Y 2
v . (12.15)

Since X is G0-measurable, and by applying (12.13) and (12.14), it follows that

p(u, t, Yt , X) = E

[
h(t + u, X)Y 2

t+u | Gt

]
,

= h(t + u, X) E

[(
Yt+u − E

[
Yt+u | Yt

]+ E
[
Yt+u | Yt

])2 | Yt

]
,

= h(t + u, X)
[
Var
[
Yt+u | Yt

]+ E
[
Yt+u | Yt

]2]
,

= h(t + u, X)

[
ϒ2

2δ

(
1 − e−2δu

)
+ [Yt e−δu + β

(
1 − e−δu)]2

]
.

(12.16)

The pricing kernel is then given by (12.11), and we obtain

πt =
∞∫

0

w(t, u)

[
ϒ2

2δ

(
1 − e−2δu

)
+ [Yt e−δu + β

(
1 − e−δu)]2

]

×
∞∫

−∞
h(t + u, x) ft (x) dx du. (12.17)

It follows that the price of a discount bond is expressed by

PtT = 1

πt
E

⎡

⎣
∞∫

0

w(T, v) E
[
G(h (T + v, X), YT +v) | FT

]
dv

∣∣∣∣Ft

⎤

⎦ , (12.18)
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where {πt } is given in (12.17), and the conditional expectation can be computed to
obtain

∞∫

0

w(T, v)

[
ϒ2

2δ

(
1 − e−2δ(T +v−t)

)
+
[
Yt e−δ(T +v−t) + β

(
1 − e−δ(T +v−t)

)]2
]

×
∞∫

−∞
h(T + v, x) ft (x) dx dv. (12.19)

Example 12.1 We assume that X is a positive random variable that takes discrete
values {x1, . . . , xn} with a priori probabilities { f0(x1), . . . , f0(xn)}. We suppose that
the information flow {It } is governed by

It = σ Xt + Bt . (12.20)

We choose the random mixer to be

h(t + u, X) = c1 exp [−c2(t + u − X)](t + u), (12.21)

where c1 > 0 and c2 > 0, and we assume that the weight function is

w(t, u) = exp [− j (u + t)] (12.22)

for j > 0. Later, we show that this model belongs to the Flesaker–Hughston class.
Therefore, the short rate of interest takes the form

rt = e− j t
E [G(h(t, X), Yt ) | Ft ]∫∞

0 e− j (t+v) E
[
G(h(t + v, X), Yt+v) | Ft

]
dv

. (12.23)

Next we simulate the trajectories of the discount bond and the short rate process. We
refer to Iacus (2008) for the simulation of the OU process using an Euler scheme. We
observe oscillations in the sample paths owing to the mean-reversion in the Markov
process. The associated model-generated yield curves show changes of slope and
shifts. Other changes of shape in the yield curve may be produced by varying the
choice of G(·) and h(·) (Figs. 13, 14).

We conclude by looking at some of the links between the classes of models presented
in this paper. For example, the pricing kernel models (12.11) can be written in the form
(5.4) for a weight function of the form w(t, v) = w̄(t + v), where w̄ : R+ → R+ is
a bounded, non-increasing function, and w̄(t) → 0 for t → ∞. Let us consider an
{Ft }-adapted process {At }t≥0 with right-continuous and non-decreasing paths where
A0 = 0 almost surely. It is assumed that {At } is integrable, that is, E [A∞] < ∞
where A∞ = limt→∞ At . Then, it is stated in Meyer (1962) that any right-continuous
version of the supermartingale {ζt } defined by

ζt = E [A∞ | Ft ] − At (12.24)
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Fig. 13 Sample paths for a discount bond with T = 10 and the short rate for the quadratic OU–Brownian
model with h(t + u, X) = c1 exp (−c2(t + u − X))(t + u) with c1 = 0.02 and c2 = 0.1. We let δ = 0.02,
β = 0.5, ϒ = 0.2 and Y0 = 1. We let x1 = 1 and x2 = 2 where f0(x1) = 0.3 and f0(x2) = 0.7 and
σ = 0.1. The weight function is given by w(t, u) = exp [−0.04(t + u)]

Fig. 14 Discount bond curves for the quadratic OU–Brownian model with h(t + u, X) =
c1 exp (−c2(t + u − X))(t + u) with c1 = 0.01 and c2 = 0.1. We let δ = 0.02, β = 0.5, ϒ = 0.2
and Y0 = 1. We let x1 = 1 and x2 = 2 where f0(x1) = 0.5 and f0(x2) = 0.5 and σ = 0.1. The weight
function is given by w(t, u) = exp [−0.04(t + u)]. Yield curves for the quadratic OU–Brownian model
with h(t + u, X) = c1 exp (−c2(t + u − X))(t + u) with c1 = 0.01 and c2 = 0.1. We let δ = 0.02,
β = 0.5, ϒ = 0.2 and Y0 = 1. We let x1 = 1 and x2 = 2 where f0(x1) = 0.5 and f0(x2) = 0.5 and
σ = 0.1. The weight function is given by w(t, u) = exp [−0.04(t + u)]

is a potential of class (D). It is then proven that a potential belongs to the class (D) if
and only if it is generated by the process {At }, the generator of the potential. It turns
out that the pricing kernel (5.4) is a potential generated by

At =
t∫

0

ρ(u)muudu (12.25)

where we recall that {mtu}0≤t≤u<∞ is a family of positive unit-initialized martingales.
Thus the pricing kernel (5.4) is a class (D) potential.

We consider a Markov process {Yt }, and let the weight function be given by

w(t, v) = w̄(t + v), (12.26)

where w̄ : R+ → R+ is a bounded, non-increasing function. We assume that
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∞∫

0

w̄(t + v) E
[
G (h(t + v, X), Yt+v)

]
dv < ∞. (12.27)

Then, the pricing kernel is given by

πt =
∞∫

0

w̄(t + v) E
[
G (h(t + v, X), Yt+v) | Ft

]
dv. (12.28)

It is sufficient for w̄(s) → 0 as s → ∞ for (12.28) to be a potential. Moreover, (12.28)
is a potential generated by

At =
t∫

0

w̄(u) E [G (h(u, X), Yu) | Fu] du, (12.29)

that is, a potential of class (D). Thus, we can write (12.28) in the Flesaker–Hughston
form:

πt = π0

∞∫

t

ρ(u) mtu du, (12.30)

where

ρ(u) = w̄(u) E[G(h(u, X), Yu)]
π0

, mtu = E[G(h(u, X), Yu) | Ft ]
E[G(h(u, X), Yu)] , (12.31)

and {mtu} is a positive unit-initialized {Ft }-martingale for each fixed u ≥ t . The
constant π0 is a scaling factor.

We note that, for instance, the potential models of Rogers (1997) which can be
generated by the weighted heat kernel approach with w̄(t + v) = exp [−α(t + v)]
where α > 0, are Flesaker–Hughston models. To generate potentials from the weighted
heat kernel approach with a general weight w(t, v), the weight function and G(·)
should be chosen so that E[πt ] → 0 as t → ∞.

Let us suppose that the Markov process {Yt } is a Lévy process. Then the class of
Esscher-type randomised mixture models presented in this paper, for which

Mtu(X, Lt ) = exp [h(u, X)Lt ]

E
[
exp [h(u, X)Lt ] | X

] , (12.32)

cannot be constructed by using the weighted heat kernel approach. We see this by
setting

G (h(v, X), Lt+v) = exp
[
h(v, X)Lt+v

]

E
[
exp

[
h(v, X)Lt+v

] | X
] , (12.33)

and by observing that E[G(h(v, X), Lt+v) | Gt ] is not a {Gt }-propagator. As mentioned
earlier, the class of models introduced by Brody et al. (2011) is included in the class of
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Esscher-type randomised mixture models. Similarly, models based on kernel functions
of the form G(h(x), Yt ) can produce other Esscher-type models by use of the weighted
heat kernel approach. The pricing kernel models proposed in this paper are versatile
by construction, and potentially allow for many more investigations. For instance, we
can think of applications to the modelling of foreign exchange rates where two pricing
kernel models are selected—perhaps of different types to reflect idiosyncrasies of the
considered domestic and foreign economies. In this context, it might be of particular
interest to investigate dependence structures among several pricing kernel models
for all the foreign economies involved in a polyhedron of FX rates. We expect the
mixing function h(u, X) to play a central role in the construction of dependence
models. Furthermore, randomised mixtures models can be applied in a similar way
to the pricing of inflation-linked securities. The application of randomised mixtures
to a multi-curve interest rate set-up is a natural development of the pricing kernel
framework presented in this paper, potentially leading the way to an even more exciting
use of the mixing functions to capture the interaction between credit and liquidity risk
over various time spans.
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