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Abstract— The simulation of uncertainties due to renewable and 
load forecasts is becoming more and more important in security 

assessment analyses performed on large scale networks. This 

paper presents an efficient method to account for forecast 

uncertainties in probabilistic power flow (PPF) applications, 

based on the combination of PCA (Principal Component 

Analysis) and PEM (Point Estimate Method), in the context of 

operational planning studies applied to large scale AC grids. The 
benchmark against the conventional PEM method applied to 

large power system models shows that the proposed method 

assures high speed up ratios, preserving a good accuracy of the 

marginal distributions of the outputs.  

Index Terms-- uncertainty, risk, security, power systems, Point 
Estimate Method, Principal Component Analysis. 

I. INTRODUCTION  

The increasing penetration of non-programmable Renewable 

Energy Sources (RES) increases the uncertainty of power 
system operation. An urgent requirement arises, to include 
RES and load forecast uncertainties in security assessment 

studies, both in operational planning and in nearly real time 

operation [1], [2]. Probabilistic Power Flow (PPF) can help to 
achieve this goal [2]-[7], [10].  

Different approaches have been proposed for PPF. Monte 

Carlo (MC) sampling technique is accurate in modeling the 

uncertainties but it is time-consuming [2]. To improve its 
efficiency different variance of reduction techniques, such as 

importance sampling, have been proposed [3]; even though 

they reduce the number of individual deterministic power 
flow runs, still thousands of computations are necessary to 
solve large scale systems. Though less accurate with respect 

to MC sampling, analytical methods, like the cumulants’ 

methods [4]-[5], are very efficient in case of independent 
variables, but accounting for dependence requires the 

computation of cumbersome integrals which slow down the 

overall computation, especially in case of thousands of 

stochastic variables. The Point Estimate Method (PEM) [6]-
[8] is a hybrid method that represents a good tradeoff of 

accuracy and computational burden. This method requires a 

number of “deterministic” calculations which grows linearly 
with the number of stochastic variables: in case of large scale 

grids, the very high number of stochastic variables may make 

the PEM not convenient with respect to a conventional MC 
sampling approach. 
The original contribution of the present paper is to propose a 

flexible method to account for uncertainties in power system 

applications, which can calibrate the level of accuracy and 
computational efficiency according to the specific required 

application. In practice, the method can assure a strong 

reduction of the computational time with a precise 

quantification of the accuracy loss, which must be compared 
to the needs required by the specific application. Even though 

it’s easy to parallelize the PEM runs, it must be considered 

that in the operational planning stage the need to assess large 
sets of contingencies with different features (fault location, 
type and duration) over a large set of plausible operating 

scenarios may greatly benefit by an approach which speeds 

up the evaluation of uncertainties. In this sense, the proposed 
approach might bring even more valuable benefits in 

applications like probabilistic dynamic security assessment, 

where time consuming domain simulations are required. 
The paper is organized as follows: Section II proposes the 

novel methodology. Section III describes the uncertainty 

models adopted in the simulations, the benchmark method, 

the comparison metrics and the set-up of the simulation 
scenarios on two test systems of medium-large size. Section 

IV presents and discusses the simulation results. Section V 
draws some conclusions.  
 

II. METHODOLOGY 

The proposed method combines a dimensionality reduction 
technique like the PCA (Principal Component Analysis) [9] 

with the Point Estimate Method which is a well-known 

hybrid method for the treatment of stochastic variables. The 

workflow of the proposed method is given in Figure 1. The 
inputs of the workflow consist in a set of dependent non-

Gaussian stochastic variables X s.t. dim(X) = N.  



The main steps are the following: 

1. Use Third Order Polynomial normal Transformation 

(TPNT) [10] by applying the expression 
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Ni ,...,1=  and evaluate the 2N+1 points in terms of 

original dependent non-Gaussian variables X. This step is 

convenient for two reasons: 
a. the original variables under study (i.e. the forecast 

errors of loads and RES injections) are usually far 

from being symmetric.  
b. The gaussianity of the variables is a convenient 

property for subsequent steps of the workflow 
 

The outputs of this transformation consist in a set of N 
dependent normal transformed variables Z characterized 

by normal marginals and a correlation matrix Rz and in a 

set of parameters, called L-moments 
i

λ  (i=1, …, 4), used 

to build coefficients a0,i-a3,i. 
2. Two alternative PCA decomposition schemes are applied: 

(1) application to correlation matrix Rz (correlation-based 
PCA), (2) application to the covariance matrix diag(a1,i) * 

Rz * diag(a1,i) related to variables a0,i *Zi which represent 
the first order normal approximations of X’s without 

means (the PCA works better in case of Gaussian 

variables). Both schemes allow to model a defined 
fraction of explained variance equal to r. The outcomes 

consist in a smaller set of n (with n << N depending on 

parameter r) retained normal and independent variables 

called Principal Components that are linear combinations 
of variables a0,i *Zi, and in the transformation matrix Q 

linking the principal components (PCs) to variables Z. 
3. As the PCs are independent variables, one can apply the 

PEM (Point Estimate Method) to them, getting 2n+1 
vectors of PCs, and the relevant 2n+1 weights W  

4. Using matrix Q it’s possible to backproject the 2n+1 

vectors of PCs onto 2n+1 vectors of the dependent 
transformed variables Z 

5. In the end, the application of the L-moments to the 2n+1 

vectors of variables Z leads to the 2n+1 vectors of original 

variables X. 
6. The generated vectors of variables X are then applied to 

the specific “power system analysis” tool (in the present 
study a load flow tool). 

7. The 2n+1 results of the quantity of interest V (a node 
voltage or a branch power flow) are combined with the 

weights W computed at step 3, to obtain the raw moments 

of the marginal distribution of the quantity itself. 
 

III. TEST SYSTEMS AND SCENARIO SET-UP 
The test systems to validate the present method are the IEEE 
118 buses test system [11] and a 9241 bus model of the pan-

European power system provided by the FP7 EU project 

Pegase [12]. The proposed method has been implemented 
using MATPOWER [13].  
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Figure 1. Flowchart of the proposed approach 

 

A. Uncertainty modeling 

The stochastic variables considered are the forecast errors 

for N loads and renewable injections. The approach presented 

in the simulations implements models drawn from different 
studies [14]-[17]. In particular, the non-symmetry of the 

forecast errors, derived from statistical analyses of historical 

data, suggests the use of non-symmetric distributions (like 

beta distributions) for wind and solar generation forecast 
errors. It is worth remarking that systematic errors in 

forecasts may determine a non-null mean value for the 

forecast errors, especially with regard to RES generation. The 

standard deviation of RES generation forecast errors depends 
on [15]-[17]: 



• Level of aggregation of RES: the larger is the number of 

wind/solar farms aggregated into the same “equivalent” 
generation, the lower is the standard deviation 

• Geographic extension of the RES aggregation: given the 
same number of RES sources aggregated into a single 

“equivalent” injection, the larger the area where they are 
distributed the higher the compensation effect among 

RES, thus the smaller is the standard deviation expressed 

in % of the total rating of the relevant injection 

• The forecast time horizon: typically the larger the time 

horizon the larger the variance in forecast errors. 
 

The standard deviation associated with load forecasts is 

usually very low (typically 1-4 % of the actual power).  

Load forecast errors have been assumed Gaussian 
distributions as in [17], while renewable injection forecast 

errors depend on the current forecast value of the injections 

and – depending on this forecast value- may be represented 

by a beta distributions (for forecast values not to close to 0 or 
1 p.u. of the rated power of the renewable plant) or with a 

truncated normal distributions (for more extreme values close 

to 0 or 1 p.u.) [6], [18]. In a general approach, the PV forecast 
error variance also depends on the clearness index [17]: 

however, the simulations performed in the present paper are 

not aimed to demonstrate the effect of a changing weather, 

thus they assume a clearness index corresponding to the worst 
weather conditions (i.e. maximum variance of the forecast 
error).  

The spatial dependence model neglects potential non-linear 
dependencies and it is represented by a correlation matrix 

built as a Toeplitz matrix with a generating vector composed 

by linearly decreasing values from 1 to 0. The theorem in 

[19] assures the positive definiteness of the matrix built with 
a generating vector of linearly decreasing values – including 

negative ones - provided that the sum of the vector 

components is positive. 

B. Benchmarking method 

The benchmark method used to validate the proposed 
approach consists in the well-established PEM method with 

Third Order Normal Transformation, already discussed and 

validated for PPF by the authors in [6]. This method consists 
in the following steps: 

1. Apply the TPNT to the original variables X (dim(X)=N) 

to get normal dependent variables Z with correlation 

matrix Rz , L-moments and coefficients a0,i-a3,i to link Z’s 
with X’s. 

2. Apply the Cholesky decomposition to Rz and get the 

Cholesky matrix Gz 

3. Perform the PEM procedure on normal independent 
variables Y getting the 2N+1 vectors for Y variables, and 
the corresponding 2N+1 vector of weights 

4. Multiply Gz by the 2N+1 vectors of Y’s to derive the 
2N+1 vectors of variables Z 

5. Apply the L-moments computed at step 1 to derive the 

2N+1 vectors of original variables X 

6. Run the deterministic power flow and get the 2N+1 
values of the quantity of interest V 

7. Combine the weights at step 3 and the values of V to get 

the raw moments of the marginal distribution of V 
 

The basic difference with the proposed method is that the 

benchmark method does not perform any dimensionality 
reduction. Thus the number of vectors to be evaluated at step 

6 are 2N+1 >> 2n+1, depending on the chosen fraction of 
explained variance. 

C. Metrics for the validation 

First of all, the quantities of interest investigated in the result 
comparison will be the node voltage magnitudes and phases, 

and the active and reactive flows along the branches. 

The metrics chosen to compare the probability distributions 

of these variables obtained by the two methods (PEM and 
PROP in the following) can be divided into two groups: 

- Component-oriented metrics, which compare the 

performance of the proposed method vs the benchmark at 
component level (local level), focusing on individual 
buses and branches. 

- System-oriented metrics, which compare the 

performance at system level (aggregated level), 
considered the whole set of buses and branches. They 

consist in suitable combination of component-oriented 

metrics. 

The local metrics adopted for the comparison are: 

- The absolute errors on the first two statistical moments 
(mean and standard deviation) on j-th bus voltage or j-th 

branch power flow, as reported in (1). 
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- The Average Root Mean Square (ARMS) error of the 

CDF’s, which is defined in (2) 
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where Np is the number of points at which the CDF’s 

have been evaluated, while 
PEM

jCDF  and 
PROP

jCDF  

are respectively the values of the CDF’s computed with 

the two methods (PEM = benchmark method, PROP= 

proposed method) at j-th evaluation point, j = 1 … Np. 
 

The system oriented metrics are: 

- 1, 5, 10, 50, 90, 95 99th quantiles of the distribution of 

|∆µ| and |∆σ|. 

- The weighted average of the relative errors as reported in 

(3), with weights corresponding to the statistical 

moments computed with the benchmark, i.e. 
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where 
%)( || jPVµ∆  and 

%)( || jPVσ∆  are the relative errors of 

the first two statistical moments on j-th bus voltage or j-th 

branch power flow and they are given in (4). 

PEM

jPV

PEM

jPV

PROP

jPV

jPV

)(

)()(

%)( ||
µ

µµ
µ

−
=∆

,  
PEM

jPV

PEM

jPV

PROP

jPV

jPV

)(

)()(

%)( ||
σ

σσ
σ

−
=∆

   (4) 

In the present context, the main goal is to assure small errors 

between the benchmark and the proposed method: to this 

purpose, relative errors in (4) are not so useful as absolute 

errors in (1) because they could emphasize large errors on 

very low variance variables). 
 

D. Scenario set up: IEEE 118 bus test system 

This relatively small test system [11] is used to prove the 
concept of the proposed methodology. The grid contains 19 

generators, 35 synchronous condensers, 177 lines, 9 

transformers, and 91 loads. For simulation purposes, N = 10 

out of 19 synchronous generators (at buses 10, 12, 25, 26, 31, 

46 49, 59, 54 and 61) are replaced as equivalent renewable 

injections (5 wind parks and 5 solar parks) with the same 

rating as the original synchronous generator.  

As for the uncertainty model, each wind (solar) park is 

composed by 2 (0.1) MW rated wind turbines (solar panels) 

on an equivalent area of 30 km. Unless differently specified, 

the 24 hour ahead forecast error standard deviation is 15% of 
the rated power for each wind turbine and solar panel. The 

forecast horizon adopted in the simulations is 6 h. The spatial 

correlation matrix among forecast errors is a Toeplitz matrix 

with off-diagonal coefficients decreasing linearly from 0.75 

to 0 with 0.25 step. The simulation scenarios are the 

benchmark and the proposed method with r = 0.8 and r = 0.6. 

E. Scenario set up: pan-European grid 

The pan European power system model in [12] includes 9241 

Buses, 14044 Lines, 2234 Transformers, 80 Phase shifters, 

5274 Loads, 289 Compensation banks, 1445 Generation 

Regulating Buses, 27 Areas. The total load is equal to 400 

GW. 100 synchronous generators out of 1445 are replaced 
with equivalent renewable injections with the same rating as 

the original synchronous unit. The spatial correlation matrix 

is a Toeplitz matrix with off-diagonal elements linearly 

decreasing from 1 to 0 with 0.3 steps. As for the uncertainty 

model, the standard deviations for the 6 hour-ahead forecast 

errors of aggregated renewable injections are equal to 5% of 

the rated power of each injection. 

Such a large system can better highlight the benefits coming 

from the proposed approach. In particular, the following 

simulation scenarios are run: the benchmark and the, 

proposed method with r = 0.95, r = 0.9, r = 0.8 and r = 0.6. 
 

 

IV. SIMULATION RESULTS 

The present section illustrates the main results of the 

application of the proposed methods to the two 
aforementioned test systems.  

A. Validation of the proposed method 

The first step consists in the validation of the proposed 

method against the benchmark one. To this aim, TABLE I and 

TABLE II compare the quantiles of the absolute errors on the 

means and the standard deviations of the bus voltages and the 

active power flows obtained from (a) the benchmark method, 

(b) the proposed method with r = 1, which means that no 

dimensionality reduction is performed, respectively for the 

case of correlation-based PCA (TABLE I) and of covariance-

based PCA (TABLE II). 
 

TABLE I - VALIDATION OF THE PROPOSED METHOD AGAINST THE 

BENCHMARK, APPLICATION OF PCA TO CORRELATION MATRIX 

 Quantiles IEEE 118 bus Pan European grid 

|∆µ PEM-PROP
 | 

on bus 

voltages, kV 

1% 0 3.979× 10
-13

 

5% 0 7.013× 10
-8

 

50% 3.587 × 10
-6

 7.618× 10
-6

 

95% 1.554 × 10
-4

 1.122× 10
-4

 

99% 4.1328 × 10-4 2.820× 10-4 

|∆σPEM- PROP| 

on bus 

voltages, kV 

1% 3.856 × 10-9 0 

5% 2.403× 10-7 4.573× 10-7 

50% 1.417× 10
-4

 5.918× 10
-5

 

95% 1.581× 10
-2

 1.113× 10
-3

 

99% 1.093× 10
-1

 2.544× 10
-3

 

|∆µ PEM-PROP
 | 

on active 

power flows, 

MW 

1% 0 0 

5% 0 1.977× 10
-11

 

50% 4.430× 10-4 1.809× 10-5 

95% 3.561× 10-3 1.299× 10-3 

99% 1.067× 10
-2

 3.787× 10
-3

 

|∆σPEM-PROP
| 

on active 

power flows, 

MW 

1% 0 0 

5% 0 0 

50% 4.713× 10
-3

 3.520× 10
-3

 

95% 1.152× 10
-1

 1.138× 10
-1

 

99% 3.582× 10-1 3.354× 10-1 
 

 

TABLE II - VALIDATION OF THE PROPOSED METHOD AGAINST THE 

BENCHMARK, APPLICATION OF PCA TO COVARIANCE MATRIX 

 Quantiles IEEE 118 bus Pan European grid 

|∆µ PEM-PROP | 

on bus 

voltages, kV 

1% 0 4.110× 10-6 

5% 0 6.402× 10-8 

50% 8.1556 × 10
-6

 7.673× 10
-6

 

90% 1.2102 × 10
-4

 1.045× 10
-4

 

99% 5.5832 × 10
-4

 4.094× 10
-4

 

|∆σPEM-PROP
| 

on bus 

voltages, kV 

1% 0 0 

5% 5.530× 10-7 3.373× 10-7 

50% 1.966× 10-4 4.237× 10-5 

95% 1.739× 10-2 1.256× 10-3 

99% 1.104× 10
-1

 3.537× 10
-3

 

|∆µ PEM-PROP
 | 

on active 

power flows, 

MW 

1% 3.000× 10
-14

 0 

5% 8.600× 10
-14

 2.217× 10
-11

 

50% 2.235× 10
-4

 1.407× 10
-5

 

95% 2.624× 10-3 1.578× 10-3 

99% 6.133× 10-3 5.263× 10-3 

|∆σPEM-PROP| 

on active 

power flows, 

MW 

1% 0 0 

5% 2.035× 10
-7

 0 

50% 5.582× 10
-3

 2.530× 10
-3

 

95% 1.263× 10
-1

 1.406× 10
-1

 

99% 2.232× 10
-1

 6.416× 10
-1

 
 

The validation tests performed show that the first two 

statistical moments obtained with the proposed approach, 

which performs an alternative sampling of 2N+1 PEM points 

with IR = 1, have a very good matching with the ones 

obtained from the benchmark method. The statement holds 
valid for both the PCA decomposition schemes.  

For the IEEE 118 bus case, Figure 2 compares the 2N+1 

points obtained by the two PCA decomposition schemes with 

respect to the 2N+1 points got from the benchmark method, 

for the machine with largest variance (i.e. G10) and one 



stochastic injection with much smaller variance (G46). The 

two schemes are consistent with each other; however, it can 

be seen that the covariance based method proposes 2N+1 

points closest to the “benchmark” points. The correlation-

based PCA underestimates the contribution of injection G10 

with larger variance. Similarly it can be verified that the 

contribution of the injection with the smallest variance (G31) 

is overestimated by the correlation-based PCA.  
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Figure 2. Scatterplot of 2N+1 points for G10 and G46 injections for the 

benchmark method (red squares), the correlation based PCA PEM (cyan 

triangles) and the covariance based PCA PEM (black circles) 
 

This fact has an impact on the localization of the branches 

with largest errors on standard deviations: in the correlation 

based approach, the largest standard deviation errors (up to 

0.39 MW) are detected on the branches with highest 

sensitivities (i.e. high PTDF’s - Power Transfer Distribution 

Factors) towards the stochastic injections with largest 

variances (e.g. lines 9-10 and 8-9), and with smallest 

variances (e.g. lines 17-31, 31-32).  

Simulations performed considering different sizes of grid 

models and a fraction of explained variance lower than 1 

show that the number of retained PC’s for the covariance-

based PCA is much lower than the one for covariance based 

PCA (e.g. the speed up factor between the two PCA 

decompositions passes from 2.25 for r = 0.95 to 4.20 for r = 

0.6 considering the European grid model described in section 

III), assuring an accuracy linearly increasing with fraction r 

(see subsection IV.C). For the present application context, the 

covariance-based PCA (henceforth named “cov-PCA”) shows 

an acceptable accuracy performance with a much smaller 

computational burden with respect to correlation-based PCA, 

thus cov-PCA is selected as the PCA decomposition for 

further analyses in the paper. 

B. IEEE 118 bus test system 

The goal is to compare the statistical moments and the ARMS 

for bus voltage magnitudes and active power flows obtained 

from three different methods: (a) the benchmark approach, 

(b) the proposed approach with a fraction of explained 

variance r equal to 80%, (c) the proposed approach with r = 

60%. The simulations show that adopting a r = 0.8 (0.6), the 

number of retained PCs is 3 (2). 

TABLE III and TABLE IV report respectively the top ten bus 

voltages magnitude with the largest absolute errors on the 

first two statistical moments (mean and standard deviation), 

in case of r = 0.8. 

TABLE V instead summarises quantiles Qp (p=1, 5, 50, 90 and 

99%) for the distribution of absolute errors |∆µ PEM-PROP
 | and 

|∆σPEM-PROP| over the sets of branches and nodes for the two 

cases r = 0.8 and r = 0.6. It’s worth noticing that using the 

proposed approach with r = 0.6 allows to get still acceptably 

accurate results with a speed up ratio of 2.1 of the benchmark. 
 

TABLE III – TOP TEN BUSES WITH THE LARGEST ABSOLUTE ERRORS ON THE 

MEANS AND THE STANDARD DEVIATIONS OF BUS VOLTAGES – IEEE 118 BUS 

TEST SYSTEM, COV-PCA 

Bus ID  |∆µ PEM-PROP
|, kV Bus ID  

 |∆σ PEM-PROP
|, kV 

38      0.0069636 38      0.11687 

30      0.0029745 33      0.018775 

64     0.0025073 9      0.018255 

47      0.0020667 43      0.015339 

63     0.0017572 44      0.013183 

45     0.001347 37      0.01008 

23      0.0012254 52      0.0083285 

48      0.0012054 51      0.0078239 

17     0.0011293 64      0.0068806 

67      0.00098598 45      0.0068 

 

TABLE IV - TOP TEN BRANCHES WITH THE LARGEST ABSOLUTE ERRORS ON 

THE MEANS AND THE STANDARD DEVIATIONS OF ACTIVE POWER FLOWS – 

IEEE 118 BUS TEST SYSTEM, COV-PCA 

Branch ID  

|∆µ PEM-PROP |, MW Branch ID  |∆σPEM-PROP|, 

MW 

17-31 0.61057 26-25 3.518 

31-32 0.57804 60-61 2.3993 

38-65 0.53379 8-5 2.1697 

65-68 0.53333 64-61 2.1189 

46-47 0.5184 11-12 1.9124 

30-17 0.47942 49-66 1.7138 

68-69 0.46559 49-66 1.7138 

30-38 0.43931 54-59 1.691 

23-32 0.41931 54-56 1.6611 

25-27 0.35945 55-59 1.6143 
 

TABLE V – QUANTILES QP FOR THE ABSOLUTE ERRORS FOR BUS VOLTAGES 

AND BRANCH ACTIVE POWER FLOWS – IEEE 118 BUS TEST CASE, COV-PCA 

 p r= 0.8 r = 0.6 

|∆µ PEM-PROP | on 

bus voltages, kV 

1% 3.979× 10-15 2.842× 10-14 

5% 6.821× 10-14 5.684× 10-14 

50% 2.228× 10-4 2.665× 10-4 

95% 2.199× 10
-3

 5.482× 10
-3

 

99% 6.405× 10
-3

 1.502× 10
-2

 

|∆σPEM-PROP
| on 

bus voltages, kV 

1% 1.274× 10
-6

 1.955× 10
-7

 

5% 2.697× 10
-6

 1.907× 10
-6

 

50% 8.700× 10-4 1.285× 10-3 

95% 1.621× 10-2 6.924× 10-2 

99% 1.031× 10-1 1.230× 10-1 

|∆µ PEM-PROP
 | on 

active power 

flows, MW 

1% 2.998× 10
-14

 5.542× 10
-14

 

5% 2.075× 10
-13

 1.918× 10
-13

 

50% 1.975× 10
-2

 2.236× 10
-2

 

95% 3.714× 10
-1

 5.161× 10
-1

 

99% 5.621× 10-1 7.437× 10-1 

|∆σPEM-PROP| on 

active power 

flows, MW 

1% 0.000 0.000 

5% 3.29× 10-7 0.000 

50% 8.26× 10
-2

 3.536× 10
-1

 

95% 1.624 3.706 

99% 2.317 9.195 
 

In fact the standard deviation error of the power flow on 

branch 9-10 (the branch with the highest variance absolute 

error) corresponds to 2% of the initial branch power flow, and 

in both cases the median absolute error on both voltages and 

branch power flows is largely below the maximum absolute 

error. In terms of ARMS, the proposed approach assures good 

matchings in the shape of the CDF’s for both bus voltages 

and active power flows also for r = 0.6, as demonstrated by 



the low ARMS values in TABLE VI reporting the quantiles of 

ARMS distribution with a number of points Np = 2000. 
 

TABLE VI – QUANTILES QP FOR ARMS DISTRIBUTION OVER THE NODE 

VOLTAGES AND ACTIVE POWER FLOWS – IEEE 118 BUS TEST CASE, COV-PCA 

 p r = 0.8 r = 0.6 

ARMS on bus voltages, kV 1% 1.578× 10
-11

 3.660× 10
-11

 

5% 1.061× 10
-5

 1.484× 10
-4

 

50% 3.913× 10
-4

 6.334× 10
-4

 

95% 2.126× 10-3 2.904× 10-3 

99% 6.474× 10-3 4.729× 10-3 

ARMS on active power flows, MW 1% 6.764× 10-11 6.383× 10-11 

5% 6.719× 10
-5

 1.997× 10
-10

 

50% 3.176× 10
-4

 6.126× 10
-4

 

90% 9.695× 10
-4

 2.172× 10
-3

 

99% 2.273× 10
-3

 2.482× 10
-3

 
 

TABLE VII shows the system-oriented indicators (weighted 

averages of absolute errors on the means and standard 

deviations) for r = 0.8 and r = 0.6. It is worth noticing that 

one can achieve a system-level percentage error lower within 

10% over the means and standard deviations of |V| at PQ 

nodes and branch active power flows. 
 

TABLE VII – WEIGHTED AVERAGE PERCENT ERRORS ON THE MEANS AND THE 

STANDARD DEVIATIONS– 118 BUS TEST CASE 

 Weighted 

average 

percent 

error on bus 

voltage 

means εµV,% 

Weighted 

average 

percent error 

on bus voltage 

standard 

deviations 

εσV,% 

Weighted 

average 

percent error 

on power 

flow means 

εµP,% 

Weighted 

average 

percent error 

on power flow 

standard 

deviations 

εσP,% 

r = 1 2.463× 10
-5

 5.675 1.209× 10
-3

 0.3221 

r=0.8 3.421× 10
-4

 6.549 1.484× 10
-1

 4.125 

r=0.6 9.496× 10
-4

 1.825× 10 1.958× 10
-1

 1.352× 10 
 

Figure 3 reports the pdf and the CDF of the active power flow 

along branch 26-25 (the one with largest absolute error on the 

standard deviations in case of cov-PCA) for the two fractions 

of explained variance. It can be noticed that there is not a 
significant improvement from r = 0.6 to r = 0.8. The PTDFs 

relating to branch 26-25 show the strong sensitivity of this 

branch towards stochastic injections at buses 26 and 25.  
 

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1
CDF of the P flow on branch 25-26

MW

P
ro

b
a
b
ili

ty

 

 

50 60 70 80 90 100 110 120 130
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
pdf of the P flow on branch 25-26

MW

PEM

PEM covPCA (r=0.6)

PEM covPCA (r=0.8)

 
Figure 3. CDF (left) and pdf (right diagram) of the active power flow along 

branch 26-25 for the two fractions of explained variance (r=0.8 and 0.6) 
 

Figure 4 shows the loadings of the PC’s on the injections at 

buses 26 and 25. Loadings are the coefficients of the linear 

combinations of PC’s which provides the original variables 

and represent how much a variable is sensitive to a PC. From 

Figure 4(a) it can be found that the two injections are very 

sensitive to the fifth PC. Thus, a dimensionality reduction 

with r = 0.8 (and only three retained PC’s) does not allow a 

good reconstruction of the stochastic injection at bus 26. 

Considering a 90% fraction of explained variance leads to 4 

retained PC’s, which are still not sufficient to improve the 

matching with the benchmark. Instead, a 95% fraction of 

explained variance leads to five retained PC’s: this allows a 

reconstruction of the pdf which is much closer to the one 

obtained from the benchmark (see Figure 4(b) comparing the 

pdf’s of the branch flow for r=90% and r=95%). 
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a) b) 

Figure 4. Loadings of PC’s on injection at bus 26 (left diagram) and pdf 

(right diagram) of the P flow on branch 26-30 for r = 0.9 
 

C. The 9241 bus model of the pan-European network 

TABLE VIII reports quantiles Qp with p = 1%, 5%, 50%, 90% 

and 99% for the ARMS distributions of the bus voltage 

magnitudes |V| and the active power flows “P”, respectively 

over the set of PQ nodes and branches. The header of the 

table also reports the number of retained components in each 

case of application of the proposed method.  
 

TABLE VIII – QUANTILES QP FOR THE ARMS DISTRIBUTION OF |V| ON PQ 

NODES AND OF ACTIVE POWER FLOWS – PAN EUROPEAN GRID MODEL 
 

TABLE IX reports the quantiles of the absolute errors of the 

means and the standard deviations of |V| and P respectively 

over the whole set of buses and of branches. Of course, 

neglecting a fraction of the total variance implies high errors 

in variance estimation for the power flows of the branches 

and the voltages at the nodes close to the stochastic injections 

with higher participation factors on the discarded PC’s. This 

can be acceptable for a preliminary and fast investigation of 

the major sources of uncertainty in the grid. For more detailed 

probabilistic security evaluation, a higher IR must be 

considered. The proposed method allows to achieve speed up 

factors up to 8.3, 18.9 respectively for r = 0.8 and r = 0.6. 

The system oriented metrics for the different fractions of 

explained variance (from 1 to 0.6) are reported in TABLE X. 

Thus, the percent errors on the standard deviations of 

individual branch power flow or voltage magnitudes can be 

higher that the percentage of the discarded variance of the 

 p r=0.95 (258 

retained 

PCs) 

r=0.9 (186 

retained 

PC’s) 

r = 0.8 (118 

retained 

PC’s) 

r = 0.6 (53 

retained 

PC’s) 

ARM

S on 

volta

ges 

|V|, 

kV 

1% 7.793× 10-5 1.567× 10-4 3.273× 10-4 6.357× 10-4 

5% 2.309× 10-4 3.780× 10-4 6.461× 10-4 1.154× 10-3 

50% 1.763× 10
-3

 2.144× 10
-3

 2.642× 10
-3

 3.447× 10
-3

 

95% 1.609× 10
-2

 1.547× 10
-2

 1.480× 10
-2

 1.449× 10
-2

 

99% 1.927×10-2 1.867×10-2 1.744×10-2 1.670×10-2 

ARM

S on 

active 

flows 

MW 

1% 8.838× 10-8 1.193× 10-7 2.339× 10-7 1.591× 10-7 

5% 8.289× 10
-5

 1.622× 10
-4

 3.518× 10
-4

 5.828× 10
-4

 

50% 7.500× 10
-4

 1.198× 10
-3

 1.710× 10
-3

 2.709× 10
-3

 

95% 2.665× 10
-3

 3.404× 10
-3

 3.763× 10
-3

 5.117× 10
-3

 

99% 1.677× 10
-2

 1.676× 10
-2

 1.654× 10
-2

 1.602× 10
-2

 



inputs depending on the sensitivities derived from the 

Jacobian, but the system–level amount of discarded 

“variance” in the outputs has a good matching with the 

amount of discarded “variance” on the inputs.  
 

TABLE IX – QUANTILES Qp FOR THE ABSOLUTE ERRORS ON THE MEANS AND 

THE VARIANCES– PAN EUROPEAN GRID MODEL 

 p r = 0.95 r = 0.9 r = 0.8 r = 0.6 

|∆µEM-

PROP
| 

on bus 

voltag

es, kV 

1% 6.87×10-12 7.63×10-12 7.67×10
-12

 8.33×10
-12

 

5% 2.425×10-5 2.814× 10-5 4.155×10-5 4.172×10-5 

50% 1.825× 10-3 2.871× 10-3 3.931×10-3 5.474×10-3 

95% 3.449× 10
-2

 5.851× 10
-2

 8.391×10
-2

 1.310×10
-1

 

99% 9.726× 10
-2

 1.739× 10
-1

 2.377×10
-1

 3.997× 10
-1

 

|∆σPEM

-PROP
| 

on bus 

volt.ag

es, kV 

1% 0 0 0 0 

5% 2.898× 10-5 4.944× 10-5 9.010×10-5 1.922× 10-4 

50% 1.563× 10-3 2.537× 10-3 3.992×10-3 7.250× 10-3 

95% 1.862× 10-2 2.634× 10-2 3.664×10-2 5.325× 10-2 

99% 4.568× 10
-2

 6.220× 10
-2

 7.474× 10
-2

 1.133× 10
-1

 

|∆µPEM

-PROP
| 

active 

flows, 

MW 

1% 0 0 0 0 

5% 1.174× 10-9 1.349× 10-9 1.476×10-9 1.676× 10-9 

50% 7.569× 10-2 1.173× 10-1 1.553×10-1 2.231× 10-1 

95% 3.423 5.713 7.810 1.174× 10 

99% 9.005 1.461× 10
1
 1.989×10

1
 3.175× 10

1
 

|∆σPEM

-PROP
| 

active 

flows, 

MW 

1% 0 0 0 0 

5% 2.106× 10
-8

 4.151× 10
-8

 1.907×10
-7

 1.460× 10
-7

 

50% 1.146× 10-1 1.858× 10-1 3.059×10-1 5.533× 10-1 

95% 2.824 4.093 5.638 9.604 

99% 6.825 1.052× 10 1.496×101 2.062× 101 

 

TABLE X – WEIGHTED AVERAGE PERCENT ERRORS ON THE MEANS AND THE 

STANDARD DEVIATIONS OF BUS VOLTAGES AND BRANCH ACTIVE POWER 

FLOWS – PAN EUROPEAN GRID MODEL 

 Weighted 

average 

percent 

error on bus 

voltage 

means εµV,% 

Weighted 

average percent 

error on bus 

voltage standard 

deviations εσV,% 

Weighted 

average 

percent 

error on 

power flow 

means εµP,% 

Weighted 

average percent 

error on power 

flow standard 

deviations εσP,% 

r = 1 1.769× 10
-5

 0.5122 2.850× 10
-4

 0.6661 

r=0.95 3.419× 10-3 7.26 5.772× 10-1 10.34 

r=0.90 5.790× 10-3 10.360 9.401× 10-1 1.578× 101 

r = 0.8 8.060× 10-3 14.2565 1.2940 22.4558 

r = 0.6 1.267× 10
-2

 23.6577 1.9973 35.9716 
 

V. CONCLUSIONS 

This paper proposes an efficient method to speed up the 

probabilistic power flow in large power systems with 

hundreds of stochastic injections by combining PEM and 

PCA. The validation for r = 1 against the standard PEM 

method on medium and large-size systems demonstrates the 

good matching between the two approaches in terms of 

absolute errors on the means and the standard deviations. 

Simulations also highlight the effect of dimensionality 

reduction on the accuracy and the execution time: even 

though the errors on standard deviations may be high close to 

the stochastic injections, the median errors on means and 

standard deviations are still acceptable, attaining speed up 

factors up to 19. Simulations also show that the discarded 

“variance” in the PPF outputs well matches the discarded 

“variance” on the inputs. The method can be effectively used 
in planning studies for fast estimation of the uncertainties 

from a large number of stochastic injections on the security of 

large power systems. Future work will consist in an optimal 

selection of the PC's to attain a minimum target of 

"explained" variance in a defined subset of PPF outputs. 
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