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Abstract: This paper describes a rule-based classifier (DEQAR-C), which is set up by the combination of selected 

rules after a two-phase process. In the first phase, the rules are generated and sorted for each class, and then 

a selection is performed to obtain a final list of rules. A real imbalanced dataset regarding the toxicity during 

and after radiation therapy for prostate cancer has been employed in a comparison with other predictive 

methods (rule-based, artificial neural networks, trees, Bayesian and logistic regression). DEQAR-C 

produced excellent results in an evaluation regarding several performance measures (accuracy, Matthews 

correlation coefficient, sensitivity, specificity, precision, recall and F-measure) and by using cross-

validation. Therefore, it was employed to obtain a predictive model using the full data. The resultant model 

is easily interpretable, combining three rules with two variables, and suggesting conditions that are mostly 

confirmed by the medical literature. 

1 INTRODUCTION 

Prostate cancer (PC) is the most commonly 

diagnosed cancer affecting men, and the third 

leading cause of death in men in Europe (Ferlay et 

al., 2013). The American Cancer Society estimated 

that more than 200,000 men are diagnosed in the 

United States with 30,000 deaths (American Cancer 

Society, 2014). Although there is an improvement in 

tumor control rates using radiation dose escalation, 

PC radiotherapy is limited by the proximity of 

surrounding normal tissues and because of the 

observed dose-effect association with toxicity. It is 

essential to understand the true complications 

associated with doses delivered to normal anatomy, 

to ensure the delivery of a sufficient dose with 

minimal complications. The use of intensity-

modulated and image-guided radiation therapy can 

decrease acute toxicity in PC patients (Valeriani et 

al., 2013); (Morimoto et al., 2014). 

Within the field of artificial intelligence and, 

more specifically in machine learning, one of the 

methods employed to extract knowledge from data is 

the use of association rules. Association rule mining 

is a technique whose purpose is to extract strong and 

interesting relationships between patterns in a set of 

data. An association rule takes the form A → C, 

where A (the antecedent) and C (the consequent) 

express a condition (or a conjunction of conditions) 

on variables of the dataset (Agrawal et al., 1993); 

(Rudin et al., 2013). The measures support and 

confidence are used to assess the quality and 

importance of the association rules. The support 

measure evaluates the number of cases in which 

both the antecedent and the consequent of the rule 

hold. The confidence measure is the ratio between 

the support of the rule and the number of cases in 

which the antecedent holds. In order to filter the 

usual huge number of rules generated, the values 

minsup (minimum support) and minconf (minimum 

confidence) are the thresholds that a rule has to 

satisfy to be considered of interest. 

Subgroup discovery is a type of descriptive 

induction whose objective is to generate models 

based on rules using a predictive perspective. It 

emerged as the task of discovering properties of a 

population by obtaining simple (but significant) 

rules, using only one variable in the consequent: the 

class or target variable (Wrobel, 1997); (Gamberger 

et al., 2003); (Domínguez-Olmedo et al., 2015). 

And also, numerous techniques have been 

proposed for classification problems. In this kind of  
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task, a predictive model (classifier) tries to predict, 

with some certainty, the objective variable (of 

categorical type). Some examples of predictive 

methods are artificial neural networks, decision 

trees, logistic regression and Bayesian networks, 

among others (Hastie et al., 2009); (Golhar et al.,  

2017); (Cortés et al., 2015); (Liu et al., 1998). In 

binary classification tasks with imbalanced data, as 

in the case at hand, most algorithms are not usually 

capable of obtaining good results for the minority 

class and, therefore, the overall classification 

performance does not reach adequate values (Sun et 

al., 2009); (Rastgoo et al.,  2016). The technique 

proposed in this paper has achieved an improved 

precision in both classes, thanks in part to an 

alternating selection of rules for each class. 

The rest of the paper is organized as follows. 

Section 2 gives a description of the methods 

employed in this work. The experimental setup is 

presented in Section 3. Section 4 describes the 

experimental results and discussion. And the last 

section presents the conclusions. 

2 METHODS EMPLOYED 

2.1 Description of DEQAR-C 

DEQAR-C is a rule-based classifier that works by 

using a list of selected rules and a default class, both 

of them obtained during the training process. Figure 

1 illustrates this training process, which is composed 

of two phases. 

In the first phase, the "rule generation phase", 

DEQAR-C generates rules from the training dataset. 

This generation of rules is based on a method 

developed to extract knowledge in the form of 

association rules (Domínguez-Olmedo et al., 2011); 

(Domínguez-Olmedo et al., 2012); (Domínguez-

Olmedo and Mata, 2016). It employs a deterministic 

approach to generate rules without a previous 

discretization of the numerical variables. Instead of 

discretizing, what may result in suboptimal results 

(Grosskreutz and Ruping, 2009), the process uses a 

dynamic generation of conditions. DEQAR-C 

obtains an ordered list of rules (called ranking) for 

each possible value of the class variable, storing 

separately the best rules in each class according to 

their values of confidence and support.  

In the second phase, the "rule selection phase", a 

selection of the rules from all the rankings is done, 

by starting in the ranking of the rule with the highest 

confidence-support value and alternating iteratively 

between these rankings to select rules from them. 

The parameter maxrules determines the maximum 

number of rules that will form the classifier. Figure 

2 presents an example of this rule generation for a 

dataset with two classes, and also shows a possible 

selection of rules using a value of 3 for maxrules. 

Figure 1: Training process in DEQAR-C. 

The detail of the final selection process is shown 

in Algorithm 1, which takes as input the set of cases 

in the training dataset, the rankings of rules and the 

parameter maxrules. After starting in the ranking 

with the best rule (step 3), the process continues 

selecting rules from the different rankings, but only 

those rules covering some case not covered by a rule 

previously selected (step 8). In the case of a binary 

classification, the process would alternate in the 

selection of rules for the two possible classes (if 

there were still rules not processed in both rankings). 

The procedure stops when all the rules have been 

processed or the number of selected rules reaches 

maxrules (step 17). At the end, the default class will 

be the one having the greatest number of cases not 

covered by any of the selected rules. 
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Figure 2: Example of the generation and selection of rules. 

Algorithm 1: Rules Selection in DEQAR-C. 

Input: training dataset, rankings of rules, maxrules 

Output: final list of rules, default class 
 

 1: T = set of cases in the training dataset 

 2: nRules = 0 

 3: r = ranking with the best rule according   

    to the highest confidence-support value 

 4: stop = FALSE 

 5: while NOT stop do 

 6:   if ranking r has more rules to process 

      then 

 7:     R = next rule in ranking r 

 8:     if rule R covers at least one case  

           in T then 

 9:       add R to the final list of rules 

10:       nRules = nRules + 1 

11:       T = T - cases covered by rule R 

12:       r = next ranking (alternate) 

13:     end if 

14:   else 

15:     r = next ranking (alternate) 

16:   end if 

17:   if all the rules were processed OR    

         nRules = maxrules then 

18:     stop = TRUE 

19:   end if 

20: end while 

21: return the list of selected rules and 

           the default class 

To classify a new case, DEQAR-C will search 

the list of rules for the first one where the case 

matches its antecedent, assigning the class of that 

rule. If no rule is found, the default class is assigned. 

Algorithm 2 shows this process. 

Algorithm 2: Classification process in DEQAR-C. 

Input: list of rules, default class, a new case to classify 

Output: predicted class 
 

 1: r = 1 

 2: matched = FALSE 

 3: while NOT matched AND r ≤ number of 

          rules do 

 4:   if the case matches the antecedent of  

         rule r then 

 5:     predictedClass = class of rule r 

 6:     matched = TRUE 

 7:   end if 

 8:   r = r + 1 

 9: end while 

10: if NOT matched then 

11:   predictedClass = default class 

12: end if 

13: return predictedClass 

2.2 Classifiers Used in the Comparison 

Several predictive methods have been employed in a 

comparison with DEQAR-C. Methods based on 

rules (ZeroR, PART), artificial neural networks 

(MultilayerPerceptron), trees (J48, RandomForest), 

Bayes (BayesNet, NaiveBayes) or logistic regression 

(Logistic) have been used. Some of their 

characteristics are shown below: 

 ZeroR. It is a classification method that only 

relies on the target variable (class), simply 

predicting the majority class. It can be useful to 

determine a baseline performance. 

 PART. It generates a decision list by using a 

separate-and-conquer strategy (Frank and 

Witten, 1998). 

 MultilayerPerceptron. A classifier that uses an 

artificial neural network with backpropagation. 

The nodes in this network are all sigmoid 

(Rumelhart et al., 1986). 

 J48. It uses a pruned or unpruned C4.5 decision 

tree (Quinlan, 1993). A decision tree builds a 

classification model in the form of a tree 

structure. 

 RandomForest. It constructs a forest of random 

trees, an ensemble learning method for 

classification, regression and other tasks 

(Breiman, 2001). 

 BayesNet. It employs a Bayes network, a 

probabilistic graphical model that represents a 

set of random variables and their conditional 

dependencies (Pearl, 1985). 

 NaiveBayes. It is based on Bayes theorem with 

independence assumptions between predictors. 

Despite its simplicity, it often outperforms more 

sophisticated classification methods (John and 

Langley, 1995). 
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Table 1: Variables and units of the dataset. 

Variable Units/Values 

Age years 

Indication treatment Post-prostatectomy , Primary Prostate Cancer, Recurrence 

Radiation technique Tomotherapy, RapidArc 

Gleason score 2..10 

T stage T1 , T1b , T1c , T2 , T2a , T2b , T2c , T3 , T3a , T3b , T4 

Diagnosis PSA1 ng/mL 

Risk Low, Intermediate, High 

ADT2 No ADT, Short Term, Long Term 

Radiation time days 

Planning tumor volume cc 

Prostate radiation dose Gy 

Fractionation Gy 

Pelvic treatment Yes, No 

Bladder volume cc 

Bladder mean dose Gy 

Bladder median dose Gy 

GU acute toxicity +, - 
1PSA: prostate specific antigen 
2ADT: androgen deprivation therapy 

 

 Logistic. It builds a multinomial logistic 

regression model with a ridge estimator (Le-

Cessie and van Houwelingen, 1992). 

3 EXPERIMENTAL SETUP 

3.1 Dataset Description 

In this work, a dataset about the toxicity effects 

during and after treatment of PC (Lopez et al., 2015) 

has been used. This dataset includes the clinical (i.e. 

age), pathological (i.e. Gleason score, T score), and 

therapeutic (i.e. radiation dose, fractionation, whole 

pelvic lymph node irradiation, radiation technique) 

information as well as the out-come (acute 

genitourinary [GU] toxicity) of 162 PC patients 

treated with arc radiation therapy from June 2006 

through May 2012 at two institutions from different 

nationalities (Europe and Latin-America). 

The names of the 17 selected variables in the 

dataset are shown in Table 1. The numerical 

variables are 10 and the class variable is binary ('+' 

for a toxicity grade ≥ 2, '-' for a toxicity grade < 2), 

with a distribution for class '+' of 23.5% of the cases. 

Therefore, it is an imbalanced dataset with a 3.3:1 

ratio of negative/positive cases. 

 

Ethical Considerations. All identifiable 

information about the patients was adequately 

removed from the da-ta to preserve anonymity. 

3.2 Evaluation Criteria 

In a binary classification problem, such as the one 

we are presenting, we can denote with TP (True 

Positive) the number of positive cases correctly 

classified, with TN (True Negative) the number of 

negative cases correctly classified, with FN (False 

Negative) the number of positive cases incorrectly 

classified, and with FP (False Positive) the number 

of negative cases incorrectly classified. 

The following evaluation measures were 

employed in the comparison: accuracy, Matthews 

correlation co-efficient, the average value of 

sensitivity and specificity, precision, recall and F-

measure. A description of these measures is 

presented below: 

 

 Accuracy: the proportion of true results (both 

true positives and true negatives) among the 

total number of cases examined. 

 

Accuracy = 
FP+FN+TN+TP

TN+TP
               (1) 

 

 MCC: Matthews correlation coefficient, which 

measures the quality of binary classifications 

(Matthews, 1975). 

 

       MCC = 

 
 FN)+(TNFP)+(TNFN)+(TPFP)+(TP 

FNFP-TN  TP




(2) 
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 Average value of sensitivity and specificity: 

sensitivity is the proportion of positives cases 

that are correctly identified as such, and 

specificity is the proportion of negatives cases 

that are correctly identified as such. 

avg (Se, Sp)  = 5.0









FP+TN

TN

FN+TP

TP
     (3) 

 Precision: analogous to positive predictive value 

(PPV). 

precision  = 
FP+TP

TP
                     (4) 

 Recall: analogous to sensitivity. 

recall  = 
FN+TP

TP
                        (5) 

 F-measure: the harmonic mean of precision and 

recall. 

F-measure  = 2




 ecallrprecision 

 ecallr precision 
       (6) 

4 EXPERIMENTAL RESULTS 

4.1 Results of the Comparison 

The classifiers previously mentioned were evaluated 

in the task about the prediction of toxicity effects in 

the radiotherapy treatment of PC. The evaluation 

measures were calculated by using stratified 10-fold 

cross-validation. Cross-validation reduces the 

variance of the estimates and improves the 

estimation of the generalization performance. In k-

fold cross-validation, the original data is partitioned 

into k equal size subsets. Then, a single subset is 

retained as the validation data and the remaining k-1 

subsets are used as training data. The process is 

repeated k times, with each of the k subsets used 

exactly once as the validation data (Arlot and 

Celisse, 2010). At the end, the final validation result 

is calculated from all the partial results. 
The machine learning software Weka (Frank et 

al., 2016) was used to run the classifiers ZeroR, 

PART, MultilayerPerceptron, J48, RandomForest, 

BayesNet, NaiveBayes and Logistic. For a fair 

comparison, the final values of the parameters used 

in all the classifiers were the ones that yielded the 

best results after testing several combinations of 

values (grid search). 

The results for accuracy, MCC and average 

value of sensitivity and specificity are displayed in 

Table 2 and Figure 3. As can be seen, DEQAR-C 

obtained excellent results, which seems to support 

the proposed selection of high confidence-support 

rules for each class, not only to obtain high values of 

general accuracy but also to get a satisfactory 

prediction for both classes. The imbalance in the 

dataset (38 positive cases and 124 negative cases) 

adds more difficulty to the classification task. The 

results of DEQAR-C were the best regarding these 

three evaluation measures. The classifiers 

NaiveBayes and MultilayerPerceptron also obtained 

good results, but the difference for MCC, in 

comparison with DEQAR-C, is important. Matthews 

correlation coefficient is generally regarded as being 

one of the best measures to describe the confusion 

matrix of true and false positives and negatives by a 

single number, especially suitable to the case of 

imbalanced data learning (Powers, 2011). 

Table 2: Results for accuracy, MCC and average(Se, Sp). 

Classifier accuracy MCC avg(Se,Sp) 

ZeroR 0.765 0.000 0.500 

PART 0.710 0.185 0.592 

MultilayerPerceptron 0.710 0.199 0.601 

J48 0.698 0.118 0.556 

RandomForest 0.765 0.161 0.546 

BayesNet 0.710 0.185 0.592 

NaiveBayes 0.698 0.210 0.611 

Logistic 0.716 0.132 0.559 

DEQAR-C 0.772 0.358 0.677 

The results for the measures associated with a 

particular class (precision, recall and F-measure) are 

shown in Tables 3 and 4. DEQAR-C did not obtain 

the best F-measure result for negative toxicity (the 

majority class); but its result was close to the best, 

and obtained the best precision. Regarding the 

positive toxicity, DEQAR-C obtained the best 

precision, recall and F-measure; the classifier 

NaiveBayes was the second best. As can be seen, the 

F-measure for this minority class was not very high 

in all the classifiers, and only DEQAR-C surpassed 

the value 0.5. 

Table 3: Results for precision, recall and F-measure 

(toxicity '+'). 

Classifier Precision Recall F-Measure 

ZeroR 0.000 0.000 0.000 

PART 0.378 0.368 0.373 

MultilayerPerceptron 0.385 0.395 0.390 

J48 0.333 0.289 0.310 

RandomForest 0.500 0.132 0.208 

BayesNet 0.378 0.368 0.373 

NaiveBayes 0.378 0.447 0.410 

Logistic 0.357 0.263 0.303 

DEQAR-C 0.514 0.500 0.507 
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Figure 3: Results for accuracy, MCC and average(Se, Sp). 

Table 3: Results for precision, recall and F-measure 

(toxicity '+'). 

Classifier Precision Recall F-Measure 

ZeroR 0.000 0.000 0.000 

PART 0.378 0.368 0.373 

MultilayerPerceptron 0.385 0.395 0.390 

J48 0.333 0.289 0.310 

RandomForest 0.500 0.132 0.208 

BayesNet 0.378 0.368 0.373 

NaiveBayes 0.378 0.447 0.410 

Logistic 0.357 0.263 0.303 

DEQAR-C 0.514 0.500 0.507 

Table 4: Results for precision, recall and F-measure 

(toxicity '-'). 

Classifier Precision Recall F-Measure 

ZeroR 0.765 1.000 0.867 

PART 0.808 0.815 0.811 

MultilayerPerceptron 0.813 0.806 0.810 

J48 0.791 0.823 0.806 

RandomForest 0.783 0.960 0.862 

BayesNet 0.808 0.815 0.811 

NaiveBayes 0.821 0.774 0.797 

Logistic 0.791 0.855 0.822 

DEQAR-C 0.848 0.855 0.851 

The results for the measures associated with a 

particular class (precision, recall and F-measure) are 

shown in Tables 3 and 4. DEQAR-C did not obtain 

the best F-measure result for negative toxicity (the 

majority class); but its result was close to the best, 

and obtained the best precision. Regarding the 

positive toxicity, DEQAR-C obtained the best 

precision, recall and F-measure; the classifier 

NaiveBayes was the second best. As can be seen, the 

F-measure for this minority class was not very high 

in all the classifiers, and only DEQAR-C surpassed 

the value 0.5. 

4.2 Prediction Model 

After testing and comparing the described classifiers 

by stratified cross-validation, the full dataset was 

used to obtain a prediction model for the GU 

toxicity. DEQAR-C was executed with the same 

parameters that achieved the best results in cross-

validation (minsens = 0.7, delta = 0.05, maxAttr = 2, 

maxrules = 3). The parameters minsens, maxAttr and 

delta are used in the rules generation phase, 

controlling the search for rules and the conditions 

for the numerical variables (Domínguez et al., 

2015). After this execution, three rules were selected 

(see Table 5) and the default class was set to '-'. 

As can be seen, the rules are simple with two 

variables, because of the constraint due to the 

parameter maxAttr (maximum number of variables 

in the antecedent). 

The combination of these three rules achieves a 

covering of 76% of the cases, and from the 39 

remaining cases, 28 are negative ones. 

The simplicity of the obtained classifier also 

makes it more interpretable. It can be easily 

analyzed to discover the conditions most likely to be 

of influence in the toxicity effects, in contrast with 

the greater complexity of other models such as 

artificial neural networks or Random Forest. As an 

example, Figure 4 shows some of the 24 rules 
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Table 5: Rules obtained in the final classifier. 

Antecedent GU acute toxicity 

Technique = Tomotherapy    AND   Planning tumor volume ≤ 218.62 - 

Prostate radiation dose  ≥  70.02   AND   Bladder volume ≥ 63.67 + 

Technique = Tomotherapy    AND   Fractionation ≤ 2.52 - 

 

obtained after executing the classifier PART (some 

of them with five conditions). 

 

Figure 4: Rules obtained by PART classifier. 

4.3 Application to Clinical Practice 

As can be seen by analyzing the rules in Table 5, 

five of the sixteen independent variables in the 

dataset are employed in the model: Technique, 

Planning tumor volume, Prostate radiation dose, 

Bladder volume and Fractionation. They can be 

considered of great relevance in this model for GU 

toxicity, because the predictions mainly depend on 

their values. Also, some relative importance could 

be established between them, because there exists an 

ordering in the rules and the search for a match 

follows this order. 

These variables and their associated values could 

be seen as risk factors for GU toxicity. These risk 

factors are mostly confirmed by the literature 

(Acevedo-Henao et al., 2014); (Ahmed et al., 2013); 

(Aizer et al., 2011); (Lopez et al., 2013), which may 

corroborate the value of the method employed. 

Better stratification of patients based on their 

own expected tumor and normal tissue factors will 

enable therapy to be highly tailored. Prostate cancer 

patients with low-risk toxicity (e.g., men treated 

with Tomotherapy and having a lower prostate 

volume) might be able to receive a more intense 

treatment. Additionally, we can better define the 

individual patient subgroups that benefit from 

specific components of radiation therapy.  

5 CONCLUSIONS 

In this work we have presented the application of 

several predictive methods to data regarding the 

toxicity of radiation therapy for prostate cancer. This 

dataset exhibits some imbalance in the classes, with 

a 3.3:1 ratio of negative/positive cases. 

A rule-based classifier (DEQAR-C) was 

described, which works without discretizing the 

numerical variables and by selecting a subset of the 

best rules extracted for each class. This method was 

compared to other classifiers by using cross-

validation with several evaluation measures. 

DEQAR-C produced outstanding results in this 

classification task, with higher prediction 

performance in both classes than the rest of 

classifiers. Therefore, it was employed to obtain a 

predictive model using the full data. The simplicity 

of the model (three rules with two variables) also 

makes it more interpretable, which may be useful in 

obtaining knowledge from medical data and 

subsequently applying it into the clinical practice. 

As future work, it would be interesting to test the 

proposed approach in another real classification 

problem or simultaneously with more datasets. 
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