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Abstract— This letter presents a more accurate mathematical
analysis, with respect to the one performed in Chung et al.’s 2001
paper, of belief-propagation decoding for Low-Density Parity-
Check (LDPC) codes on memoryless Binary Input - Additive
White Gaussian Noise (BI-AWGN) channels, when considering
a Gaussian Approximation (GA) for message densities under
density evolution. The recurrent sequence, defined in Chung et
al.’s 2001 paper, describing the message passing between variable
and check nodes, follows from the GA approach and involves
the function φ(x), therein defined, and its inverse. The analysis
of this function is here resumed and studied in depth, to obtain
tighter upper and lower bounds on it. Moreover, unlike the upper
bound given in the above cited paper, the tighter upper bound
on φ(x) is invertible. This allows a more accurate evaluation of
the asymptotical performance of sum-product decoding of LDPC
codes when a GA is assumed.

Index Terms— LDPC codes, threshold, Gaussian approxima-
tion, density evolution, sum-product algorithm, upper bound.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes are a class of
channel block codes first introduced in 1960 by Gallager [1].
Due to the technical limits of that age, they were scarcely
considered for almost 30 years, and were re-invented in the
mid 1990s by, among the others, Luby et al. [2]. Since
their performance can approach the Shannon limit, they were
quickly included in modern standards such as IEEE802.11,
802.16, 10G-BaseT Ethernet, and Digital Video Broadcasting.

LDPC codes are still under intense study using tools that
require the understanding of the convergence behavior of their
iterative decoding process. For example, to design irregular
LDPC codes a density-evolution algorithm was used in [3],
which, unfortunately, may be unattractive because it requires
intensive computations. Another approach is to use extrinsic
information transfer (EXIT) charts, which are simpler, because
they provide a one-dimensional (1-D) analysis, but ignore
information about the probability distribution function (pdf)
of messages, resulting in a loss in accuracy.

There have been a number of approaches to 1-D analysis of
LDPC codes (see, e.g., [4]), all of them based on the obser-
vation that the pdf of the decoders log-likelihood ratio (LLR)
messages is approximately Gaussian. This approximation is
quite accurate for messages sent from variable nodes, but
becomes less accurate for messages sent from check nodes,
unless the check nodes degree distribution polynomial ρ(x)
(see next section) is concentrated on a few degrees. Despite
its limits, the use of the Gaussian Approximation (GA) is
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very useful when an efficient and low complexity method is
needed. See its recent use, e.g., to obtain bounds on LDPC
decoding thresholds in [5], rate-compatible puncturing patterns
for LDPC codes1 in [6] and [7], analytical Bit-error rate (BER)
expressions in [8], and UEP LDPC codes in [9].

In [4], following the GA approach, the iterative message
passing between variable and check nodes was described
mathematically by means of a recurrent sequence involving
a function, called φ(x), therein defined, and its inverse. Its
analysis is here resumed and studied in depth, to obtain tighter
upper and lower bounds on it. To show their usefulness, a
piecewise approximation of φ(x) is defined, similar but better
than the one in [4]. With this new approximation, better GA
thresholds can be obtained, closer to the thresholds evaluated
with density evolution than the GA thresholds reported in [4].

Moreover, unlike the upper bound in [4], the tighter upper
bound on φ(x) obtained is invertible by means of the Lambert
W -function. Its invertibility allows, first of all, the extension
of the stability condition under the GA to variable node
degree distributions λ(x) of minimum degree i1 > 2 (see
next section): being, in this case, λ′(0) = λ2 = 0, this is
useful to design LDPC codes presenting a linear minimum
distance growth with the block length with probability 1
[12]. These codes unfortunately cannot reach capacity under
iterative decoding, since the achievement of capacity requires
λ2 6= 0. However, in this latter case, the block error probability
might converge to a constant [12]. Secondly, the invertibility
of the tighter upper bound on φ(x) allows the computability of
the approximated residual word error probability Pl at the l-th
iteration, given in [4], and not only of its rate of convergence.

The letter is organized as follows. Section II reviews the GA
for irregular LDPC codes and the function φ(x) defined in [4],
and Section III the bounds on it proven in [4]. In Sections III-
A, III-B, and III-C a tighter upper and lower bound on φ(x)
are given, and a new approximation of φ(x) is defined, similar
but better than the one in [4]. A more general, with respect to
the one in [4], stability condition under the GA is presented
in Section IV and in Section V it is shown that the tighter
upper bound on φ(x) allows the computability of Pl in the
same hypotheses. Finally, Section VI summarizes the results.

II. GA FOR IRREGULAR LDPC CODES

In this section, we focus on irregular LDPC codes [3]
since they are known to perform better than regular ones
[2]. Moreover, it was shown in [4] that message densities
can be approximated as Gaussians for regular LDPC codes or

1Useful in Automatic Repeat-reQuest / Forward Error Correction (ARQ /
FEC) schemes [10] and for Unequal Error Protection (UEP) applications [11].
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Gaussian mixtures for irregular LDPC codes, and thus, from
this viewpoint, regular LDPC codes may be seen as a particular
case of irregular ones.

Irregular LDPC codes are defined by specifying the dis-
tribution of the node degrees in their Tanner graphs. In
particular, in the edge-perspective degree distribution, λi is the
fraction of edges in the Tanner graph connecting to a degree-
i variable node, and ρj is the fraction of edges connecting
to a degree-j check node. To specify the degree distribution,
the following polynomials are defined: λ(x) :=

∑dl
i=i1

λix
i−1

and ρ(x) :=
∑dr
j=2 ρjx

j−1, being dl (respectively dr) the
maximum variable (respectively check) node degree. The dl-
tuple {λi} and dr-tuple {ρj} both add up to 1.

Consider an irregular LDPC code with edge-perspective
degree distributions λ(x) and ρ(x). Denote with v the output
message of a variable node and with u the output message of
a check node. Assuming that irregular LDPC codes message
distributions for AWGN channels are approximately Gaussian,
since their variance σ2 is shown in [4] to be related to the mean
m by the relation σ2 = 2m, due to the symmetry condition,
we can keep the means only. Denoting the means of u and v
by m

(l)
u and m

(l)
v at the l-th iteration, respectively, the LLR

message u0 from the channel can be assumed to be Gaussian
with mean mu0 = 2/σ2

n, where σ2
n = N0/2 is the variance of

the channel noise.
For a degree-i variable node at the lth iteration, the mean

of the output yields m(l)
v,i = mu0 + (i− 1)m

(l−1)
u , where mu0

is the mean of u0 and m(l−1)
u is the mean of u at the (l−1)-th

iteration. Defining φ(x) as in [4]

φ(x) =

{
1− 1√

4πx

∫
IR
tanhu2 e−

(u−x)2
4x du if x > 0

1 if x = 0
(1)

and letting the codeword length tend to infinity (so that we
can invoke a cycle-free Tanner graph argument) the check
node update rule for an irregular code becomes m

(l)
u,j =

φ−1
(
1−

[
1−

∑dl
i=i1

λiφ(m
(l)
v,i)
]j−1)

. By linearly combining
these means for degree-2, . . . , dr check nodes we get:

m(l)
u =

dr∑
j=2

ρjφ
−1
(
1−
[
1−

dl∑
i=i1

λiφ
(
mu0+(i−1)m(l−1)

u

)]j−1)
(2)

Defining s = mu0
and tl = m

(l)
u , (2) may be rewritten as

tl = f(s, tl−1) (3)

where f(s, t) is defined, through the fj(s, t), as:

fj(s, t) := φ−1
(
1−

[
1−

dl∑
i=i1

λiφ(s+ (i− 1)t)
]j−1)

(4)

f(s, t) :=

dr∑
j=2

ρjfj(s, t) (5)

III. THE FUNCTION φ(x)

For the function (1), these lower and upper bounds have
been proved in [4], holding for x > 3 and for x > 0,

respectively:(
1− 3

x

)√π

x
e−x/4 < φ(x) <

(
1 +

1

7x

)√π

x
e−x/4 (6)

A. A tighter upper bound on φ(x)
The following theorem gives a tighter upper bound on φ(x).
Theorem 1

φ(x) <

√
π

x
e−x/4 =: ψ(x) ∀x > 0 (7)

Proof: In [4] we find

φ(x) = 4

∞∑
k=0

(−1)k ex (k2+k)Q
(√x

2
(1 + 2 k)

)
(8)

and, using the classical upper bound on the Q-function [13]
Q(x) < 1

x
1√
2π

e−x
2/2, φ(x) can be upper bounded by:

φ(x) < 4
∑∞
k=0(−1)kex(k

2+k)
√

2
x

1
1+2 k

1√
2π

e−
1
2
x
2 (1+2k)2

= 4
∑∞
k=0(−1)k

1
1+2 k ex (k2+k− 1

4−k−k
2) 1√

x
1√
π

= 4 1√
x

1√
π

e−x/4
∑∞
k=0(−1)k

1
1+2 k = 4 1√

x
1√
π

e−x/4 π4
where the classical series

∑∞
k=1

(−1)k+1

2 k−1 = π
4 has been used

([14], p. 9, 0.232 #2), and, in conclusion, the thesis follows.

Notice that (7) is a tighter upper bound than the one in (6),
since the term 1/(7x) of (6) has been replaced in (7) with 0.

The bound ψ(x) in (7) is invertible by means of the principal
branch of the real Lambert W-function (which is the inverse of
x ex for x > −1). The corresponding upper bound on φ−1(y)
is:

φ−1(y) < 2W
( π

2y2

)
0 < y ≤ 1 (9)

B. A tighter lower bound on φ(x)
The following theorem gives a tighter lower bound on φ(x).
Theorem 2(

1− π2

4

1

x

)√π

x
e−x/4 < φ(x) ∀x > π2

4
(10)

Proof: Using (8) we have, by a classical lower bound on
the Q-function [13]

(
1
x −

1
x3

)
1√
2π

e−x
2/2 < Q(x),

φ(x) > 4
∑∞
k=0(−1)k ex (k2+k)

(
1√

x
2 (1+2 k)

− 1(√
x
2 (1+2 k)

)3) 1√
2π

e−
1
2
x
2 (1+2 k)2

= 4 e−x/4
√

2
x

1√
2π

·
(∑∞

k=0(−1)k
1

2 k+1 −
2
x

∑∞
k=0(−1)k

1
(2 k+1)3

)
= 4 e−x/4 1√

x
1√
π

(
π
4 −

π3

32
2
x

)
where the series

∑∞
k=1

(−1)k+1

2 k−1 = π
4 and

∑∞
k=1

(−1)k+1

(2 k−1)3 =
π3

32 have been used ([14], p. 9, 0.232 #2 and 0.234 #4,
respectively), and, in conclusion, the thesis follows.

Notice that (10) is a tighter lower bound than the one in (6)
and has a wider domain. Essentially, the constant 3 of (6) has
been replaced in (10) with π2/4 ≈ 2.467.

In Fig. 1 is reported a graph of φ(x), obtained applying the
Mathematica(R) statement, numerically approximating φ(x),
published in [6] using the analysis of [7], and its old and new
lower and upper bounds.
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Fig. 1. Graphs of φ(x) (thick) and its old (dashed) and new (solid) bounds.

C. A new piecewise approximation of φ(x)

The function φ(x) can be approximated with a piecewise
defined approximation as the one in [4]. This approximation,
defined through an exponential function and the average of the
tighter bounds (7) and (10), can be used, instead of the exact
values of φ(x), to speed up the calculations with less sacrifice
in accuracy with respect to [4]:

φ(x) ≈

{
e−0.4527 x

0.864+0.0218 if 0 ≤ x ≤ 10√
π
x e−x/4

(
1− π2

8 x

)
if x > 10

(11)

With regard to regular LDPC codes, Table I reports in the
first 4 columns the values of Table I in [4] (apart from the
codes rates, given by r = 1 − j/k), in the 5-th the errors of
Table I in [4] recalculated with greater precision, in the 6-th the
corresponding values σGAnew computed using (11), and in the
7-th the new errors εnew in dB between the new approximated
and exact thresholds. As may be seen from the table, all the
new computed thresholds are closer to the thresholds evaluated
with density evolution than the GA thresholds reported in [4].
Moreover, applying the set of software instructions produced
in [15] to evaluate these thresholds, instead of implementing
the algorithm sketched in [4], a computational time at least
one order of magnitude lower is needed (see [15]).

With regard to irregular LDPC codes, as example we
consider the rate-1/2 irregular LDPC code given in Eq. (17)
of [4] with degree distributions:

λ(x) = 0.23403x+ 0.21242x2 + 0.14690x5 + 0.10284x6

+0.30381x19

ρ(x) = 0.71875x7 + 0.28125x8

(12)
Applying (11) we get a GA threshold σGAnew = 0.9538,
closer to the density evolution one σexact = 0.9669 (reported
in [4]) than the GA threshold σGA = 0.9473 computed in [4].

IV. EXTENSION OF THE STABILITY CONDITION

To extend the stability condition given in [4] to degree
distributions λ(x) of minimum degree i1 ≥ 2, we can write
the following

Theorem 3
As t� (as t gets very large, or, equivalently, the probability

TABLE I
APPROXIMATE THRESHOLD VALUES FOR VARIOUS (j, k)-REGULAR LDPC

CODES.

j k σGA σexact ε [dB] σGAnew εnew [dB]
3 6 0.8747 0.8809 0.061 0.8802 0.007
4 8 0.8323 0.8376 0.054 0.8374 0.002
5 10 0.7910 0.7936 0.028 0.7958 0.024
3 5 1.0003 1.0093 0.077 1.0063 0.026
4 6 1.0035 1.0109 0.063 1.0094 0.013
3 4 1.2517 1.2667 0.103 1.2589 0.054
4 10 0.7440 0.7481 0.047 0.7486 0.006
3 9 0.7051 0.7082 0.038 0.7097 0.019
3 12 0.6297 0.6320 0.031 0.6340 0.028

of error gets very small), f(s, t) becomes

f(s, t) = 2

dr∑
j=2

ρjW (Ajz(s, t) ez(s,t)) +O(t−1) (13)

where z(s, t) := s+(i1−1)t
2 and Aj := 1

(j−1)2λ2
i1

.
Proof: When t � since, as shown in Fig. 1, the

function φ(x) has a rapid decrease in x, only the first terms
of
∑dl
i=i1

λiφ(s + (i − 1)t) are important in determining
fj(s, t) in Eq. (4). Thus, we can simplify that sum to:∑dl

i=i1
λiφ(s+ (i− 1)t)

= λi1φ(s+ (i1 − 1)t) +O(λi2φ(s+ (i2 − 1)t)),
being λi1 and λi2 the first and second nonzero λi’s, respec-
tively, and observing that, as regards the irregular LDPC codes
having the check nodes degree distribution polynomial ρ(x)
concentrated on a few degrees (for which GA results accurate),
λi2 is never significantly larger than λi1 (see, e.g., Table II in
[3]), and that they are both very significant. By the expansion

(1− x)n = 1− nx+O(x2); x→ 0

fj(s, t) = φ−1((j−1)λi1φ(s+(i1−1)t)+O(φ(s+(i1−1)t)))

where we used φ(s+ (i2 − 1)t)� φ(s+ (i1 − 1)t). Then

φ(fj(s, t)) = (j−1)λi1φ(s+(i1−1)t)+O(φ(s+(i1−1)t))

Using the bound defined in (7),

φ(fj(s, t)) =

√
π

s+ (i1 − 1)t
e−

s+(i1−1)t−4log((j−1)λi1
)

4 +O(t−1)

and, applying (9),

fj(s, t) = 2W
(s+ (i1 − 1)t

2
e
s+(i1−1)t−4log((j−1)λi1

)

2

)
+O(t−1)

that can be rewritten as

fj(s, t) = 2W (Ajz(s, t) ez(s,t)) +O(t−1) (14)

and applying (5) we get the result.
Applying the method defined in [15], instead of searching

the minimum value of the parameter s = mu0
granting the

convergence of (2), we can solve a problem of quadratic
degeneracy. When the partial second derivative ftt(s, t) is 6= 0
the problem of quadratic degeneracy is the system of equations{

f(s, t) = t
ft(s, t) = 1

(15)
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being ft(s, t) the partial derivative of f(s, t) with respect to
t.

Remembering that dW (x)
dx = 1

x+eW (x) , and applying (15) to
(13) and its partial derivative with respect to t, we get 2

∑dr
j=2 ρjW (Ajz(s, t) ez(s,t)) = t

2
∑dr
j=2 ρj

zt(s,t) e
z(s,t)(1+z(s,t))

z(s,t) ez(s,t)+eW (Ajz(s,t) ez(s,t))−logAj
= 1

(16)

Given the channel and ρ(x), its solution (λ∗i1 , t
∗), obtained

applying the set of software instructions produced in [15],
gives rise to a general stability condition [3] λi1 < λ∗i1 , valid
∀i1 ≥ 2, unlike the stability condition λ2 < λ∗2 proved in [4],
holding for i1 = 2 only, which is a particular case of this
general one. The result of [4] can be derived approximating
(14) with fj(s, t) = 2W

(
(z(s, t) + aj)e

z(s,t)+aj
)
+ O(t−1),

where aj := −2log((j − 1)λi1). Calling x := z(s, t) + aj ,
and being W (xex) = x for x > 0, since fj(s, t) = 2x, we
find the same asymptotical approximation for fj(s, t) of [4].
Applying (5) and getting its partial derivative with respect to
t, (15) becomes{

s+ (i1 − 1)t− 4logλi1 − 4
∑dr
j=2 ρj log(j − 1) = t

i1 − 1 = 1
(17)

Its solution is 4logλ∗2 = s − 4
∑dr
j=2 ρj log(j − 1), i.e., we

obtain the same λ∗2 given in [4], holding for i1 = 2 only.
Taking as example the rate-1/2 irregular LDPC code (12)

and solving (16) with i1 = 2 and s = 2/σ2
GAnew derived in

Section III-C, we get λ∗2 = 0.2384. Given the density evolution
threshold σexact = 0.9669 computed in [4], the maximum
stable value of λ2 is λ∗2 = exp(1/2σ2

exact)/ρ
′(1) = 0.2345

[3]. On the other hand, solving (17) with s = 2/σ2
GA (given

in [4]) we get λ∗2 = 0.2402. Thus, solving the more precise
system (16) and using the better approximation (11) to evaluate
the GA threshold, we get a λ∗2 = 0.2384 closer to the density
evolution one λ∗2 = 0.2345 than the λ∗2 = 0.2402 computed
solving (17), i.e., using the λ∗2 expression given in [4].

V. COMPUTABLE APPROXIMATION OF WORD RESIDUAL
ERROR PROBABILITY

The solution of (16) determines, besides the maximum
stable value of λi1 , λ∗i1 , also the convergence abscissa t∗. The
stability condition for the convergence of tl to ∞ in (3) with
l � when t0 is large enough [4], is λi1 < λ∗i1 ; t ≥ t0 = t∗.
The asymptotical approximation of f(s, t) given in [4] is
f(s, t) = s+(i1−1)t−4logλi1−4

∑dr
j=2 ρj log(j−1)+O(t−1)

and 4 log
λ∗
i1

λi1

∣∣∣
i1=2

≈ s − 4 log λ2 − 4
∑dr
j=2 ρj log(j − 1).

Thus, it may be written as f(s, t)
∣∣
i1=2

≈ t + 4 log
λ∗
2

λ2
,

and tl = f(s, tl−1)
∣∣
i1=2

≈ tl−1 + 4 log
λ∗
2

λ2
. In conclusion,

tl
∣∣
i1=2

≈ t0 + 4l log
λ∗
2

λ2
with t0 = t∗. This reobtains Eq. (20)

in [4] with the constant c (not given in [4]) equal to t0 = t∗.
Applying the approximation of f(s, t) given in [4], and

getting ft(s, t), the solution of (17) determines λ∗2 but not
t: thus, the constant c of Eq. (20) in [4] cannot be determined.
It follows that the asymptotical approximation of the word
residual error probability Pl at the l-th iteration, given in [4],

cannot be computed either, because the constants a, b, d, and
f involved in it depend not only on the degree distributions
and s, as said in [4], but also on c. Instead, the tighter upper
bound (7) on φ(x) allows the calculation of c = t0 as solution
of (16) for i1 ≥ 2, thus allowing the computability of Pl at
the l-th iteration (and not only the determination of its rate of
convergence (λ2/λ

∗
2)

2l).

VI. CONCLUSIONS

In this letter, the derivation of tighter lower and upper
bounds on the function φ(x) defined in [4] was addressed.
To show the usefulness of these two bounds, a new piecewise
approximation of φ(x) has been defined, with which better GA
thresholds can be obtained, closer to the thresholds evaluated
with density evolution than the GA thresholds given in [4].
Moreover, thanks to the invertible upper bound on φ(x), it
has been possible to extend the stability condition under the
GA to degree distributions of minimum degree i1 ≥ 2, useful
to design LDPC codes presenting a linear minimum distance
growth with the block length.
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