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Abstract: Recent phishing campaigns are increasingly targeted to specific, small 

population of users and last for increasingly shorter life spans. There is thus an 

urgent need for developing defense mechanisms that do not rely on any forms of 

blacklisting or reputation: there is simply no time for detecting novel phishing 

campaigns and notify all interested organizations quickly enough. Such mechanisms 

should be close to browsers and based solely on the visual appearance of the 

rendered page. One of the major impediments to research in this area is the lack of 

systematic knowledge about how phishing pages actually look like. In this work we 

describe the technical challenges in collecting a large and diverse collection of 

screenshots of phishing pages and propose practical solutions. We also analyze 

systematically the visual similarity between phishing pages and pages of targeted 

organizations, from the point of view of a similarity metric that has been proposed as 

a foundation for visual phishing detection and from the point of view of a human 

operator. 

Keywords: Security, phishing, human factors. 

1. Introduction 

Phishing is still a central security issue on the Internet. The most common and widely 

used defense mechanisms are based on forms of reputation: when a user attempts to 

visit a web site or IP address that is known to host phishing campaigns, access is 

automatically inhibited or made possible with an explicit warning to the user. Such 

defense mechanisms are integrated in modern browsers and are often deployed in 

web application firewalls that monitor outbound connections at the border of 

organizations. The reputation of web pages and IP addresses is based on information 

shared automatically by several actors on the Internet which systematically collect 

and share information about ongoing attacks. This way, when an actor detects an 

attack campaign based on pages at a certain URL or IP address, the whole community 

learns of that specific attack and may inhibit access to the corresponding location 

quickly. Furthermore, sharing and correlating information about suspicious activities 

improve the ability of detecting attacks for the whole community.  
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Recent attack campaigns tend to be more targeted to specific and small 

population of users and last for increasingly shorter life spans [1, 2]. Indeed, the most 

sophisticated campaigns often rely on phishing pages crafted for a single target (spear 

phishing). There is thus an urgent need for developing additional phishing defense 

mechanisms that do not rely on any forms of blacklisting or reputation: there is simply 

no time for detecting novel phishing campaigns and notify all interested organizations 

quickly enough. 

A very promising framework in this respect consists in detecting phishing pages 

based solely on their visual features. The framework is based on an image classifier 

embedded in the browser and equipped with prior knowledge of the legitimate 

protocol, domain name pair(s) of each website of interest to the user. When the 

browser has loaded a web page p, the classifier determines whether the screenshot of 

p belongs to one of the visual classes corresponding to each website to be protected. 

In case of a match, the tool compares the actual protocol, domain name of p to those 

expected for that website and warns the user in case of a mismatch. The resulting 

defensive mechanism would implement the procedure that any technically-savvy and 

constantly vigilant user applies in practice, except that in this case the procedure 

would be automated and thus available to every user and continuously. The resulting 

scenario would thus raise the bar for attackers considerably. 

There have been several proposals in the literature for actually implementing a 

framework of this kind [3-6], based on features extracted from web pages with image 

processing techniques (e.g., [7-9]). Recent advances in image classification based on 

deep learning could open new directions of research and enable practical solutions 

[10]. One of the major impediments to research in this specific, important area is the 

lack of systematic knowledge about how phishing pages actually look like. Are they 

an exact replica of the targeted page? Is a phishing page available at every resolution 

supported by a browser? Is a phishing page able to display correctly both in a 

smartphone and in a desktop? While the literature abounds of reports providing 

quantitative indexes about observed campaigns, we are not aware of any systematic 

analysis of the visual properties of phishing pages. In particular, we are not aware of 

any publicly available dataset of screenshots, which is an essential resource for any 

research and development effort is this area. 

In this work we investigate this important issue. Our contribution is as follows: 

first, we describe in full detail the procedure for constructing a large dataset of 

screenshots of phishing pages. With this procedure we have collected and labelled 

more than 800 pages and 23,000 screenshots at different resolutions. We cannot 

release this dataset publicly because, unfortunately, doing so would violate the terms 

of service of the targeted companies. However, we believe that describing the 

technical problems for collecting a dataset of this kind, along with the corresponding 

solutions, is a valuable contribution. Second, we quantify the visual similarity 

between phishing pages and the corresponding targeted pages with a similarity metric 

that has been proposed as a powerful foundation for visual phishing detectors [5, 11]. 

This similarity metric, called Normalized Compression Distance (NCD) [12] is based 

on information theory and has been applied successfully in a number of different 

application domains [13-15]. Third, we compare the visual similarity quantified by 

https://paperpile.com/c/b3YQnB/zauo+fcp1
https://paperpile.com/c/b3YQnB/j2Wn+yoIx+PNFH+s8xn
https://paperpile.com/c/b3YQnB/ZX8R+vj45+PH6p
https://paperpile.com/c/b3YQnB/otks
https://paperpile.com/c/b3YQnB/PNFH+VTQq
https://paperpile.com/c/b3YQnB/C8sb
https://paperpile.com/c/b3YQnB/iMVv+m6Hq+2oTO
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NCD to visual similarity as perceived by a human operator. According to our 

analysis, pages that are very similar in terms of NCD are indeed very similar visually. 

Unfortunately, the opposite is not true: pages that are not similar in NCD may look 

very similar to a human operator. This fact may constitute a serious weakness of using 

NCD as a foundation for visual phishing detection, because a detector of this kind 

would not be able to warn the user of a phishing attempt. We complete our study by 

showing a simple way for crafting a (phishing) page that looks very similar visually 

to the targeted page but very different in terms of NCD, thereby circumventing NCD-

based visual phishing detectors. 

2. Dataset acquisition 

2.1. Data source and technical problems 

We collected our dataset from Phishtank (https://www.phishtank.com). Phishtank 

is a service in which users submit suspected phishing pages and other users verify 

whether the submitted page is a real phishing attempt. The information made 

available by Phishtank is used by a number of defensive products: as soon as a 

phishing page is verified, all such products block access to that page. Phishtank 

Provides a Downloadable Dataset (PDB) of phishing page entries, updated once per 

hour. Each PDB entry contains: phishing page URL; name of the company that the 

phishing page attempts to impersonate; two flags that indicate if the phishing page is 

verified and still online. A page URL submitted to Phishtank becomes verified after 

other Phishtank users have visited that URL and decided that the page is indeed a 

phishing page. 

Company name “Other” is used by default for entries in which a more specific 

company name has not been assigned. Company names are not assigned with perfect 

recall, i.e., an entry could be labelled “Other” even though that entry corresponds to 

a page attempting to impersonate company name “Facebook”. Company names are 

not assigned with perfect precision either, i.e., entries may be occasionally labelled 

with wrong company names. 

Each PDB version contains about 30K entries and Phishtank contributors insert 

about 200 new entries per day. Collecting a dataset with many screenshots of several 

companies is significantly difficult and hard to automate, though:  

● Most entries (about 75%) are associated with company name “Other”. 

● Most of the entries (about 80%) that are associated with a company name 

target either Facebook or Paypal. 

● Most of the screenshots (about 70%) that may be acquired by downloading 

PDB and then connecting to verified URLs are not usable for a screenshot dataset 

because they represent pages that are either: 

o blocked (by the browser, or by some defensive mechanism along the path 

between the browser and the web server hosting the phishing page), or 

o disabled (by the web hosting provider), or 

o labelled with a wrong company name, or 

o malfunctioning, or 
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o useful as a phishing sample only at some browser resolutions (e.g., when 

rendered for a desktop but not for a smartphone or vice versa). 

In other words, few new screenshots can be collected each day and the 

distribution of such screenshots over companies tends to be very sparse, except for 

very few heavily targeted companies. 
Blocked and disabled pages are particularly relevant and unavoidable because 

many defensive mechanisms are based on monitoring the content of PDB itself and 

reacting as soon as a new entry is inserted. The figures above are estimates that we 

obtained in several preliminary acquisition campaigns. Their relevance is not in the 

exact value of each figure but rather in the underlying, intrinsic problem. 

Based on these problems, we carefully designed a dataset acquisition procedure 

aimed at collecting tens of URLs for several companies, with 30 different resolutions 

for each URL. We describe such procedure and its result in the next section. 

2.2. Dataset acquisition procedure 

We acquired the phishing page screenshots by means of a procedure repeated each 

hour, as follows. 

Step 1. Download PDB; let PDB0 denote the last version of PDB that we 

downloaded. 

Step 2. Remove from PDB0 entries that were not flagged as verified and online, 

entries already processed in earlier iterations and entries whose URLs are duplicate 

of URLs in other entries (PDB occasionally contains such entries). 

Step 3. Construct a temporary list T-PDB containing all remaining entries of 

PDB0, ordered in a per-company stratified way; for companies with more than 1000 

already acquired URLs, insert into T-PDB only 5 entries. 

Step 4. Process each entry e in T-PDB as follows (e.u denotes the corresponding 

URL): 

a. If e.u is hosted at an IP address owned by CloudFlare, then discard e and 

skip to the next entry (the reason for this step is explained below); 

b. Download e.u; in case of any download error (e.g., TCP connection error, 

TLS error, HTTP 400,500 codes), then discard e and skip to the next entry; 

c. Acquire 30 screenshots of e.u in a headless-mode Google Chrome 

browser; 15 different screen resolutions in desktop-mode, and 15 different screen 

resolutions in mobile-mode. 

In case of any errors during the acquisition of a snapshot, retry the acquisition 

up to three times and skip the acquisition of the snapshot if the error persists; in case 

10 snapshots have been skipped, skip to the next entry. Errors in a snapshot 

acquisition are detected either as an exception raised by the headless browser or as a 

fully white rendered page. 

Step 5. Terminate the procedure after one hour and restart from Step 1. 

We iterated the described operations between 23 July 2018 and 4 August 2018. 

While downloading the dataset, we also attempted to estimate the life time of a 

phishing page, i.e., for how long the page is made available by the server on which 

the page is hosted. For completeness of analysis, we provide our estimation 

methodology and results in the Appendix. 
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We disabled the integrated warnings for dangerous and deceptive web pages in 

the headless Google Chrome browser, otherwise the browser would have not 

rendered the actual content of the phishing page. We executed the above procedure 

(i.e., all the DNS and HTTP traffic) through the TOR anonymity network, in order to 

bypass the protection mechanisms on the frontier of our University network that 

would have prevented the rendering of several phishing pages. 

Visual inspection of a sample of the acquired screenshots indicated the presence 

of a number of pages in which some of the components could not be downloaded and 

pages that were correctly downloaded but that displayed a form of “content removed” 

or “user banned” message. For this reason, we checked all the acquired screenshots 

visually in order to: 

● Discard screenshots without any element for user interaction (form, buttons, 

links). 

● Discard screenshots displaying error messages. 

During this step we also: 

● Discarded screenshots from entries annotated in Phishtank with wrong 

company names. 

● Imposed an upper bound to the number of URLs for each company to 60 (i.e., 

once this quantity was reached for a given company, we skipped the visual inspection 

of any further screenshot of that company). 

The reason for the check on whether the page is accessed through CloudFlare 

(Step 4a) is the following. CloudFlare is a company that offers services for improving 

performance and security of web sites (https://www.cloudflare.com). Such services 

are implemented by means of proxy servers placed in between users and web sites. 

Such a placement actually occurs at the DNS level, that is, by letting the name of the 

web site map to the IP address of a CloudFlare web server. End users will not notice 

that they are accessing the web site through CloudFlare, except that they will 

experience better performance and security. During preliminary experiments, we 

found that usage of CloudFlare is common in Phishtank-indexed pages, probably 

because those pages are located on large web hosting infrastructures that use 

CloudFlare services. Most importantly, we found that CloudFlare is quite fast in 

replacing Phishtank-indexed pages with either interstitial pages or pages displaying 

error messages (probably because CloudFlare blocks pages indexed by Phishtank). 

By discarding URLs that have to be accessed through CloudFlare, thus, we greatly 

decreased the number of pages to be checked visually without significantly 

decreasing the number of screenshots useful for our dataset. 

The following table summarizes the resulting composition of our dataset, along 

with a summary of the screenshots that either have not been acquired or have been 

discarded after a visual inspection (“Missing screenshots” column) and of the URLs 

for which there is not even a single screenshot available (“Missing URLs” column). 

It can be seen that for 31 URLs (3.8% of the total) we could not acquire any 

screenshot. The number of screenshots that could not be acquired was 526, 

corresponding to 2.27% of all the acquired screenshots. It can be seen that all the 

missing screenshots in desktop mode are associated with only three targeted 

companies, which suggest that such mistakes were present only in a few specific 



 48 

phishing campaigns. Thus, these data tend to confirm the intuition that phishing pages 

tend to visualize correctly on desktops. On the other hand, the missing screenshots in 

mobile mode are much more numerous than in desktop mode (481 vs 45) and more 

spread across targeted companies. Thus, these data suggest that the crafting of 

phishing pages for mobile screens tends to be less accurate than for desktops. 
 

Table 1. Composition of collected dataset 

Company 
Number of 

URLs 

Number of 

Screenshots 

Missing URLs Missing screenshots 

Desktop Mobile Desktop Mobile 

ABSA Bank 60 1788 0 0 0 12 

Dropbox 60 1751 2 0 0 19 

Orange 60 1764 1 0 0 21 

PayPal 60 1668 5 0 0 57 

Yahoo 60 1777 0 0 0 23 

Microsoft 59 1707 0 0 9 54 

Facebook 56 1624 0 1 13 28 

Google 53 1580 0 0 0 10 

Adobe 51 1469 3 0 0 16 

MyEtherWallet 39 1145 1 0 0 10 

Alibaba.com 36 1060 0 0 0 20 

eBay, Inc. 36 1080 0 0 0 0 

AOL 27 734 2 0 23 23 

Binance 20 443 7 0 0 52 

DHL 18 508 1 0 0 17 

Itau 14 346 3 0 0 29 

JPMorgan Chase and Co. 14 385 2 0 0 5 

ASB Bank Limited 13 388 0 0 0 2 

Internal Revenue Service 13 390 0 0 0 0 

Apple 11 309 0 0 0 21 

Amazon.com 9 227 1 0 0 28 

Netflix 9 213 2 0 0 27 

Banco De Brasil 7 208 0 0 0 2 

U.S. Automobile Association 7 209 0 0 0 1 

Bank of America Corporation 5 150 0 0 0 0 

Bradesco 4 120 0 0 0 0 

Wells Fargo 3 86 0 0 0 4 

Santander UK 1 30 0 0 0 0 

Total 805 23159 30 1 45 481 
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3. Normalized compression distance 

3.1. Motivation and definition 

In order to gain systematic insights into phishing pages, we assessed the visual 

similarity between phishing pages and original pages. To this end, we followed the 

approach proposed in [5, 11], which quantified the visual similarity between a pair of 

web pages by means of the NCD [12] between the rendered images of those pages 

(full details of this computation are provided below). The experiments in [5, 11] 

demonstrated that such a quantification of visual similarity is both effective and 

useful in the context of visual detection of phishing pages. 

NCD is a similarity metric that has been used successfully in a number of 

broadly different application domains [13-15] and is defined in terms of a 

compression algorithm C. Given two byte strings x, y, let xy denote their 

concatenation; let C(z) denote the length of string z compressed by C. The NCD 

between x and y, denoted NCD(x, y) is defined as: 

NCD(x, y) = (C(xy) – min(C(x), C(y))) / max(C(x), C(y)). 

The intuition is that if x and y are very similar to each other, then compressing 

their concatenation will produce a byte string whose length is almost identical to the 

length of either of the two strings. 

The rationale of the approach in the context of phishing detection is the 

following. A visual phishing detector embedded in a browser is equipped with a set 

V of pairs v, URL(v), where v is a rendered web page and URL(v) its identifier. 

Whenever the browser has rendered a page u: 

1. The detector computes the NCD between u and each page in V; 

2. If this value is below a predefined threshold, then the detector compares 

URL(u) and URL(v); 

3. If these identifiers are different, then u is a phishing attempt targeting v and 

a form of warning is exposed to the user. 

Although this basic idea may be augmented in several ways (e.g., the details of 

the comparison between URL(u) and URL(v), usage of a dynamic threshold or of a 

classifier based on NCD), the basic framework is appealing because it automates 

many of the actions that a technically-savvy user usually applies for defending 

him/herself from phishing attacks. We refer the reader to the cited papers for full 

details (including the potential latency and scalability issues intrinsic in the 

approach). 

Using NCD for comparing the visual similarity of two web pages requires 

several implementation decisions: which format for rendered images; which 

compression algorithm; how to implement concatenation (i.e., by placing images side 

by side or one on top of the other). Furthermore, NCD is not symmetrical, i.e., 

NCD(x, y)  <>  NCD(y, x), thus the ordering in the comparisons is not irrelevant. We 

computed C(x) for an RGB image x with the following steps: 

Step 1. We constructed rx, that is, the in memory representation of x, in the form 

of array of bytes. 

Step 2. We compressed rx with LZMA algorithm obtaining the array of bytes c 

as output; we used the following configuration for LZMA: preset 9, the maximum 

https://paperpile.com/c/b3YQnB/PNFH+VTQq
https://paperpile.com/c/b3YQnB/C8sb
https://paperpile.com/c/b3YQnB/PNFH+VTQq
https://paperpile.com/c/b3YQnB/iMVv+m6Hq+2oTO
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compression; dictionary size 256 MiB; raw output format, c does not contain LZMA 

headers and checksums.  

Step 3. C(x) is the length of the byte-array c. 

We computed C(xy) for the concatenation of images x and y with the same steps, 

where the concatenation is obtained by stacking x on top of y (i.e., a vertical 

concatenation). 

3.2. NCD between phishing page and targeted page 

We considered two sets of screenshots: OP (Official Pages) and PP (Phishing Pages). 

We computed two sets of NCD distances. Let p denote a page in PP; we denote by 

o(p) a page in OP among the ones for the organization targeted by p.  

● S (Same Company): for each page p in PP, NCD(p, o(p)); 

● D (Different Company): for each p in PP, for each page p in OP such that 

p <>o(p), NCD(p, p); 

In order to construct the above-mentioned sets, we considered only pairs of 

images with the same resolution; in case the same resolution is not available for both 

images, we did not compute the corresponding NCD. 

Having constructed sets S and D, we compared the distributions of the NCD 

values in those sets for testing the following alternative hypotheses: 

● H0: The median of NCD values in S is equal to the median of NCD values  

in D; 

● H1: The median of NCD values in S is smaller than the median of NCD values 

in D; 

If we accept H1 then phishing pages tend to be indeed closer, in NCD terms, to 

the genuine page being targeted than to other genuine pages. This fact may be 

important as a foundation for visual phishing detectors.  

We tested these hypotheses on the full sets S, D as well as on their subsets 

containing only values obtained from images with the same resolution. Such a 

distinction allows gaining deeper insights into whether phishing pages are actually 

designed to take the possibility of different browser resolutions into account or not. 

The results are given in Table 2. Each row corresponds to a test. Columns 

“Resolution” and “Browser” indicate the image pairs used in the test, while columns 

|S| and |D| contain, respectively, the number of pairs in S and the number of pairs in 

D used for that test. 

It can be seen that our data indeed confirm H1 (low p-values) for the full sets S, 

D as well as for nearly all their subsets that we have considered. We have emphasized 

in bold the only five cases in which p-value>0.05 and thus the data do not suffice to 

confirm H1. 

Our dataset thus supports the hypothesis that a phishing page is closer, in terms 

of NCD, to the page of the targeted organization than to pages of other organizations. 

This property could be useful as a foundation of a visual phishing detector as 

described in the introduction: The detector would compare the URL of the rendered 

page to the URL of the closest page in the set of pages to protect and raise a warning 

in case of a mismatch. Unfortunately, as we will show in the next section, NCD does 

not capture the notion of visual similarity adequately for a phishing detector.  
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Table 2. Statistical significance (p-value) of Wilcoxon test and Z-test (see the text) 

Resolution Browser |S| |D| p-value Wilcoxon p-value Z-test 

All All 45190 1112760 0.000 0.000 

All desktop 22595 556380 0.000 0.000 

All mobile 22595 556380 0.000 0.000 

[1366, 768] desktop 1509 37141 0.006 0.000 

[1920, 1080] desktop 1511 37189 0.007 0.000 

[1440, 900] desktop 1509 37141 0.138 0.000 

[1600, 900] desktop 1509 37141 0.529 0.000 

[1280, 800] desktop 1507 37093 0.017 0.000 

[1536, 864] desktop 1507 37093 0.100 0.000 

[1280, 1024] desktop 1509 37141 0.001 0.000 

[1024, 768] desktop 1505 37045 0.001 0.000 

[1280, 720] desktop 1505 37045 0.004 0.000 

[1680, 1050] desktop 1507 37093 0.426 0.000 

[1360, 768] desktop 1505 37045 0.000 0.000 

[2560, 1440] desktop 1509 37141 0.023 0.000 

[1280, 768] desktop 1505 37045 0.003 0.000 

[1093, 615] desktop 1505 37045 0.004 0.000 

[1024, 600] desktop 1503 36997 0.001 0.000 

[768, 1024] mobile 1505 36995 0.000 0.000 

[1280, 800] mobile 1508 37192 0.000 0.000 

[600, 1024] mobile 1510 37240 0.000 0.000 

[601, 962] mobile 1505 36945 0.000 0.000 

[800, 1280] mobile 1507 37093 0.000 0.000 

[1024, 1366] mobile 1509 37141 0.000 0.000 

[360, 640] mobile 1517 37333 0.000 0.000 

[375, 667] mobile 1496 37054 0.000 0.000 

[720, 1280] mobile 1516 37384 0.000 0.000 

[414, 736] mobile 1516 37334 0.000 0.000 

[320, 568] mobile 1514 37286 0.000 0.000 

[320, 534] mobile 1499 36951 0.000 0.000 

[320, 570] mobile 1494 36756 0.000 0.000 

[480, 800] mobile 1492 36758 0.000 0.000 

[1080, 1920] mobile 1497 36903 0.051 0.000 

 

The reason is because pages that are very different in terms of NCD may 

nevertheless be visually very similar to each other. In other words, a phishing page 

may appear very similar to the targeted page although the two pages are associated 

with an NCD sufficiently large to not trigger the detector. 
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4. NCD and visual similarity 

We constructed 773 pairs of screenshots taken from a phishing page p and from the 

corresponding targeted page o(p). Then, we visually assessed their differences in 

relation to their NCD distance. To obtain these pairs, for each phishing page p we 

considered only the o(p) with smallest NCD from p; and, we considered only the 

1366×768 resolution, desktop mode. We emphasize that this is a qualitative 

assessment performed by a single subject and that this assessment is not sufficient to 

determine whether a given user will indeed fall prey of a phishing attack based on p. 

Despite this limitation, we believe our analysis may provide useful and interesting 

insights. 

The most important findings are as follows: 

● For pairs with NCD < 0.8100, all phishing pages look extremely similar, if 

not visually identical, to the targeted page.  

● For pairs with NCD < 0.9957, only 45% of the pairs are visually similar. 

● For pairs with 0.9957 < NCD, 98% of screenshot pairs are visually different. 

The remaining 2% of pairs are visually very similar. 

The last finding is quite significant because it demonstrates that NCD may fail 

at detecting whether two pages are visually very similar. Unfortunately, as we will 

show in the next section, an attacker may exploit this fact rather easily, i.e., by 

crafting a phishing page p that looks very similar to the targeted page o(p) while 

ensuring that NCD(p, o(p)) is sufficiently high to fool a NCD-based phishing 

detector. 

4.1. NCD distribution in our dataset 

In order to gain deeper insights into the distribution of NCD values in our dataset, we 

proceeded as follows. We labelled each pair as either a GoodClone or a 

NotGoodClone, depending on the perceived similarity between the two elements of 

the pair. Then, we assessed the distribution of such a label based on the NCD distance 

between the two elements of the pair. To this end: 

1. We computed the NCD distance corresponding to the first quartile NCD1, the 

second quartile (median) NCD2, the third quartile NCD3 of the distribution of NCD 

values in set S (defined in the previous section). The results were 0.9993, 1.0307, 

1.0560, respectively. 

2. We split the interval of observed NCD values in four intervals: From 0 to 

NCD1, from NCD1 to NCD2, from NCD2 to NCD3, from NCD3 to the maximum NCD 

value observed. We named these intervals as Low, Mid-low, Mid-high and High, 

respectively. 

3. We counted the percentage of GoodClone labels in each interval. 

The results are in Table 3. 

Table 3. Distribution of NCD values 

NCD range Interval name GoodClone labels 

NCD < 0.9957 Low 45% 

0.9957<NCD<1.0307 Mid-low 3% 

1.0307<NCD<1.0560 Mid-high 3% 

1.0560 < NCD High 1% 
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We provide interesting examples for the High interval below. In Figs 1-4, the 

images in each pair indeed look quite different visually (phishing page top, targeted 

page bottom). Despite the visual difference, though, the overall look of the phishing 

page could be perceived by users as sufficiently similar to that of the targeted page 

and thus suffice to execute an attack successfully. In other words, in these examples, 

the phishing page is sufficiently different from the targeted page to circumvent 

detection by a NCD-based visual phishing detector, yet the user might perceive the 

phishing page as being the legitimate one. 
 

 
Fig. 1. High NCD difference (NCD=1.1100) 

 

 
Fig. 2. High NCD difference (NCD=1.1100) 
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Fig. 3. High NCD difference (NCD=1.0800) 

 

Fig. 4. High NCD difference (NCD=1.0600) 

While the previous examples showed image pairs in which the phishing page is 

visually different from the targeted page but exhibits a very similar look, Figs 5 and 

6 show image pairs in which the phishing page is nearly identical to the targeted page. 

In these figures, thus, detecting the phishing attack is even harder than in the previous 

case. Figs 5 and 6 are in the High interval (thus images in each pair are sufficiently 

different in terms of their NCD to not be detected by a NCD-based visual phishing 

detector) because the phishing page contains large images absent from the targeted 
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page. This fact implies that the information conveyed by the two images in each pair 

is sufficiently different to lead to a large NCD value. Fig. 7 shows an image pair in 

which the phishing page is broken, thus it does not constitute any risk to users. Not 

surprisingly, this image pair is the High interval as well. 
 

 

Fig. 5. High NCD difference (NCD=1.1000) 

 

Fig. 6. High NCD difference (NCD=1.0700) 

 



 56 

 

Fig. 7. High NCD difference (NCD=1.0700) 

 

4.2. Deceiving NCD 

While performing our analysis, we realized rather quickly that crafting a phishing 

page p that looks almost identical to the targeted page o(p), while ensuring that 

NCD(p, o(p)) is large (thereby circumventing a visual phishing detector based on 

NCD) is quite simple. All that is needed is applying a transformation to o(p) that 

changes its visual appearance only slightly, while leading to a very different bit level 

representation. Merely altering brightness and/or zoom of o(p) is a simple and 

effective means of implementing such transformation. Table 4 quantifies the NCD 

between a phishing page and the targeted page when the former is constructed by 

applying these transformations to the latter. Fig. 8 shows the original page and the 

page obtained with both transformations considered. 
 

 

Table 4. NCD distance of a phishing page obtained with adversarial 

transformations to the targeted page from the targeted page itself 

Transformation NCD 

Brightness increased by 5% 0.99676 

Centered zoom-in of 5% performed with Bilinear interpolation 0.8293159 

Both (brightness and then zoom) 0.9957 
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Fig. 8. Original page (top), phishing page with high NCD obtained by altering brightness and zoom 

only slightly (bottom) 
 

To place these figures in perspective, it suffices to recall the findings in the 

previous section, which show that a phishing detector calibrated for classifying a page 

as suspicious with NCD values above 0.9957 would flood the user of meaningless 

warnings (false positives), thereby making the approach impractical. Specifically, by 

using the value in the table as a classification threshold (0.9957), our dataset would 

exhibit 55% false positive rate. 

We did not apply these transformations systematically to our full dataset; 

however, we verified on several randomly selected images that this finding appear to 

have general validity. Furthermore, we remark that we considered only two very 

simple transformations that do not depend on the targeted page. In the page of the 

figure an attacker would have many other opportunities for increasing NCD further 

while maintaining visual similarity, for example by slightly altering the color of the 

logo, of the banner, of the fonts. In general, an even more effective strategy consists 

in modifying the targeted page by adding elements that are small (so that they do not 

raise suspicions to the user) and complex (so that their bit representation cannot be 

compressed very much, thereby contributing to a larger NCD distance from the 

targeted page). 
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5. Conclusion 

There is an urgent need of developing phishing detection mechanisms able to 

complement current defenses based on the reputation of the page accessed by the 

browser. Such mechanisms should be close to browsers and based solely on the visual 

appearance of the rendered page. A crucial prerequisite for developing such 

mechanisms consists in the availability of a large and diverse collection of 

screenshots of phishing pages. Unfortunately, publicly releasing such a dataset would 

violate the terms of service of targeted companies and collecting such a dataset raises 

several technical challenges. 

We have described such challenges in detail along with practical solutions. The 

proposed procedure allowed us to collect tens of thousands of screenshots, from 

hundreds of different phishing pages targeting about 20 different companies. Based 

on the collected dataset, we could analyze the appearance of real phishing pages at 

different resolutions. We found that phishing pages tend to render correctly at all 

resolutions used in desktops but tend to have more problems at resolutions used in 

tablets and smartphones. Most importantly, this dataset allowed us to assess in detail 

the usage of a similarity metric based on information theory that could constitute a 

powerful foundation for visual phishing detectors. 

Unfortunately, our analysis has shown that pages that are very different 

according to this metric may still be perceived as “sufficiently similar” by a human. 

Furthermore, we have also shown that there are simple ways for an attacker to craft 

a phishing page that looks very similar to the targeted page but is very dissimilar to 

that page according to the considered metric. This fact implies that a visual phishing 

detector based on that similarity metric is unlikely to work. The key issue is that even 

if the phishing page and the targeted page convey highly different information, such 

as different background images, such a difference may not be perceived as such by a 

user. According to our analysis, a visual phishing detector should not focus on the 

detection in a page of portions that are identical to portions of pages to be protected, 

but rather it should detect more high-level similarities in the overall style and look, 

which is still a difficult research issue.  
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Appendix. Life time of a phishing page 

For completeness of analysis, we attempted to estimate the life time of a phishing 

page, i.e., for how long the page is made available by the server on which the page is 

hosted. Usage of Phishtank data unavoidably leads to a raw estimation of such a 

figure, for several reasons. In particular, when a page is inserted in Phishtank, the 

page may have been active already for an unknown time; furthermore, Phishtank 

updates its dataset once every hour. 

The life time of a phishing page is usually longer than the time for which the 

phishing page may be accessed by all potential victims, because many phishing pages 

are blocked by the browser, or by some defensive mechanism along the path between 

the browser and the web server hosting the phishing page. Indeed, the presence of a 

page in Phishtank is often the event that triggers such mechanisms. However, 

estimating the life time of a phishing page is important in order to gain insights into 

the reaction time of the infrastructure hosting the page. Pages that are blocked by 

most browsers and web firewalls should not remain active for a long time: The 

infrastructure should deactivate the account responsible for the page, or take similar 

actions, quickly. In this respect, we remark that phishing attacks are increasingly 

using each page in fewer email messages in order to bypass the most effective and 

most diffused security mechanisms, i.e., those relying on the reputation of the page 
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being accessed. Thus, obtaining information on the typical reaction time is important 

to better understand the current scenario. 

We followed a procedure similar to the one used in [16] (the cited paper 

estimated the reaction time to web defacements based on the content of Zone-H, a 

web archive that played for defacements the same role that Phishtank plays for 

phishing pages): we downloaded the Phishtank database and checked the availability 

of each URL every hour; we assumed that when a download returns an error, either 

at the TCP level, or at the TLS level, or at the HTTP level, the page is no longer 

available; we considered the time interval between the download error and the 

submission time (an information that Phishtank makes available for each page in its 

database) as an approximation of the life time of that page. 

We executed this procedure with the same settings described in Section 2.1, i.e., 

we disabled the integrated warnings for dangerous and deceptive web pages in the 

headless Google Chrome browser, and conveyed all the traffic through the TOR 

anonymity network. Since the Phishtank database contains many entries associated 

with “old” phishing pages that are no longer available, we considered only entries 

that were inserted less than 2 days since the beginning of our monitoring activity. 

Furthermore, in order to keep the number of URLs to check more manageable, we 

stopped checking each page that has been available for at least two days. As a result 

of the choices just described, we could check 42,155 URLs. We omit the estimated 

cumulative probability distribution for space reasons and provide only the 

corresponding values for the first quartile, second quartile (median) and third quartile: 

1 hour, 8 hour and 37 hours respectively. These figures demonstrate that the 

administrators of the infrastructures that host phishing pages tend to react quite 

slowly despite the fact that those pages have been inserted in a public, easily 

accessible and widely known archive of phishing attacks. 
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