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Abstract. We introduce a new logic called Signal Convolution Logic
(SCL) that combines temporal logic with convolutional filters from digi-
tal signal processing. SCL enables to reason about the percentage of time
a formula is satisfied in a bounded interval. We demonstrate that this
new logic is a suitable formalism to effectively express non-functional
requirements in Cyber-Physical Systems displaying noisy and irregular
behaviours. We define both a qualitative and quantitative semantics for
it, providing an efficient monitoring procedure. Finally, we prove SCL at
work to monitor the artificial pancreas controllers that are employed to
automate the delivery of insulin for patients with type-1 diabetes.

1 Introduction

Cyber-Physical Systems (CPS) are engineering, physical and biological systems
tightly integrated with networked computational embedded systems monitoring
and controlling the physical substratum. The behaviour of CPS is generally mod-
elled as a hybrid system where the flow of continuous variables (representing the
state of the physical components) is interleaved with the occurrence of discrete
events (representing the switching from one mode to another, where each mode
may model a different continuous dynamics). The noise generated by sensors
measuring the data plays an important role in the modes switching and it can
be captured using a stochastic extension of hybrid systems.

The exhaustive verification for these systems is in general undecidable. The
available tools for reachability analysis are based on over-approximation of the
possible trajectories and the final reachable set of states may result too coarse
(especially for nonlinear dynamics) to be meaningful. A more practical approach
is to simulate the system and to monitor both the evolution of the continuous
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and discrete state variables with respect to a formal requirement that specifies
the expected temporal behaviour (see [4] for a comprehensive survey).

Temporal logics such as Metric Interval Temporal Logic (MITL) [13] and
its signal variant, Signal Temporal Logic (STL) [7], are powerful formalisms
suitable to specify in a concise way complex temporal properties. In particular,
STL enables to reason about real-time properties of components that exhibit
both discrete and continuous dynamics. The Boolean semantics of STL decides
whether a signal is correct or not w.r.t. a given specification. However, since a
CPS model approximates the real system, the Boolean semantics is not always
suitable to reason about its behaviour, because it is not tolerant to approximation
errors or to uncertainty.

More recently, several notions of quantitative semantics (also called robust-
ness) [7,9,14] have been introduced to overcome this limitation. These semantics
enrich the expressiveness of Boolean semantics, passing from a Boolean concept
of satisfaction (yes/no) to a (continuous) degree of satisfaction. This allows us
to quantify “how much” (w.r.t. a given notion of distance) a specific trajec-
tory of the simulated system satisfies a given requirement. A typical example is
the notion of robustness introduced by Fainekos et al. in [9], where the binary
satisfaction relation is replaced with a quantitative robustness degree function.
The positive or negative sign of the robustness value indicates whether the for-
mula is respectively satisfied or violated. This notion of quantitative semantics
is typically exploited in the falsification analysis [8,16,4,1] to systematically gen-
erate counterexamples by searching, for example, the sequence of inputs that
would minimise the robustness towards the violation of the requirement. On the
other hand, the maximisation of the robustness can be employed to tune the
parameters of the system [3,2,4,6] to obtain a better resilience. A more thorough
discussion on other quantitative semantics will be provided in Section 2.

Motivating Challenges. Despite STL is a powerful specification language, it
does not come without limitations. An important type of properties that STL
cannot express are the non-functional requirements related to the percentage of
time certain events happen. The globally and eventually operators of STL can
only check if a condition is true for all time instants or in at least one time
instant, respectively. There are many real situations where these conditions are
too strict, where it could be interesting to describe a property that is in the
middle between eventually and always. Consider for instance a medical CPS,
e.g., a device measuring glucose level in the blood to release insulin in diabetic
patients. In this scenario, we need to check if glucose level is above (or below)
a given threshold for a certain amount of time, to detect critical settings. Short
periods under Hyperglycemia (high level of glucose) are not dangerous for the
patient. An unhealthy scenario is when the patient remains under Hyperglycemia
for more than 3 hours during the day, i.e., for 12.5% of 24 hours (see Fig. 1 left).
This property cannot be specified by STL. A second issue is that often such
measurements are noisy, and measurement errors or short random fluctuations
due to environmental factors can easily violate (or induce the satisfaction) of a
property. One way to approach this problem is to filter the signal to reduce the



Fig. 1. (left) A graphical representation of the property ϕ : G(t) ≥ 180 for at least
12.5% in [0,24h], meaning that the concentration of glucose has to be greater than 180
for at least 3h in 24h. (right) A graphical representation of the property ψ : G(t) > 70
for at least 95% in [0,24h]. The bars represents the percentage.

impact of noise, This requires a signal pre-processing phase, which may however
alter the signal introducing spurious behaviours. Another possibility, instead is
to ask that the property is true for at least 95% of operating time, rather than for
100% of time, this requirements can be seen as a relaxed globally condition (see
Fig. 1 right). Finally, there are situations in which the relevance of events may
change if they happen at different instants in a time window. For instance, while
measuring glucose level in blood, it is more dangerous if the glucose level is high
just before meal, that means “the risk becomes greater as we move away from
the previous meal and approach the next meal”. To capture this, one could give
different weights if the formula is satisfied or not at the end or in the middle of a
time interval, i.e., considering inhomogeneous temporal satisfaction of a formula.
This is also not possible in STL.

Contributions. In this paper, we introduce a new logic based on a new tem-
poral operator, 〈kT , p〉ϕ, that we call the convolution operator, which overcomes
these limitations. It depends on a non-linear kernel function kT , and requests
that the convolution between the kernel and the signal (i.e., the satisfaction of ϕ)
is above a given threshold p. This operator allows us to specify queries about the
fraction of time a certain property is satisfied, possibly weighting unevenly the
satisfaction in a given time interval T , e.g., allowing to distinguish traces that
satisfy a property in specific parts of T . We provide a Boolean semantics, and
then define a quantitative semantics, proving its soundness and correctness with
respect to the former. Similarly to STL, our definition of quantitative seman-
tics permits to quantify the maximum allowed uniform translation of the signals
preserving the true value of the formula. We also show that SCL is strictly more
expressive than STL(♦,�) (the fragment of STL which considers only eventu-
ally ♦ and globally � operators) and then we provide the monitoring algorithms
for both semantics. Finally, we show SCL at work to monitor the behaviour of an
artificial pancreas device releasing insulin in patients affected by type-I diabetes.



Paper structure. The rest of the paper is organized as follows. In Section 2 we
discuss the related work. Section 3 provides the necessary preliminaries. Section 4
presents the syntax and the semantics of SCL and discuss its expressiveness. In
Section 5, we describe our monitoring algorithm and in Section 6 we show an
application of SCL for monitoring an insulin releasing device in diabetic patients.
Finally, we draw final remarks in Section 7.

2 Related Work

The first quantitative semantics, introduced by Fainekos et al. [9] and then used
by Donze et al. [7] for STL, is based on the notion of spatial robustness. Their
approach replaces the binary satisfaction relation with a function returning a
real-value representing the distance from the unsatisfiability set in terms of the
uniform norm. In [7] the authors consider also the displacement of a signal in the
time domain (temporal robustness). These semantics, since are related with the
uniform-norm, are very sensitive to glitches (i.e., sporadic peaks in the signals
due to measurement errors).

To overcome this limitation Rodionova et al. [14] proposed a quantitative
semantics based on filtering. More specifically they provide a quantitative se-
mantics for the positive normal form fragment of STL which measures the num-
ber of times a formula it is satisfied within an interval associating with different
types of kernels. However, restricting the quantitative semantics to the positive
normal form gives up the duality property between the eventually and the glob-
ally operators, and the correctness property, which instead are both kept in our
approach. Furthermore, their work is just theoretical and there is no discussion
on how to efficiently evaluate such a properties.

In [1], Akazaki et al. have extended the syntax of STL by introducing aver-
aged temporal operators. Their quantitative semantics expresses the preference
that a specific requirement occurs as earlier as possible or for as long as possible,
in a given time range. Such time inhomogeneity can be evaluated only in the
quantitative semantics (i.e. the new operators, at the Boolean level, are equal
to the classic STL temporal operators). Furthermore, the new operators force
separations of two robustness (positive and negative) and it is lost also in this
case the correctness property.

An alternative way to tackle the noise of a signal is to consider explicitly their
stochasticity. Recently, there has been a great effort to define several stochastic
extensions of STL, such as Stochastic Signal Temporal Logic (StSTL) [12], Prob-
abilistic Signal Temporal Logic (PrSTL) [15] and Chance Constrained Temporal
Logic (C2TL) [11]. The type of quantification is intrinsically different, while the
probabilistic operators quantify on the signal values, our convolutional operator
quantifies over the time in which the nested formula is satisfied. Furthermore,
all these approaches rely on the use of probabilistic atomic predicates that need
to be quantified over the probability distribution of a model (usually a subset
of samples). As such, they need computationally expensive procedures to be
analyzed. Our logic, instead, operates directly on the single trace, without the



kernel expression

constant (flat(x)) 1(x)/(T1 − T0)

exponential (exp[α](x)) exp(αx)/
∫
T

exp(ατ)dτ

gaussian (gauss[µ, σ](x)) exp((x− µ)2)/σ2)/
∫
T

exp((x− µ)2)/σ2)dτ

Table 1. Different kind of kernels.

need of any probabilistic operator, in this respect being closer to digital signal
processing.

3 Background

In this section, we introduce the notions needed later in the paper: signals,
kernels, and convolution.

Definition 1 (Signal). A signal s : T → S is a function from an interval
T ⊆ R to a subset S of Rn, n < +∞. Let us denote with D(T ;S) a generic set
of signals.

When S = {0, 1}, we talk of Boolean signals. In this paper, we consider piecewise
constant signals, represented by a sequence of time-stamps and values. Different
interpolation schemes (e.g. piecewise linear signals) can be treated similarly as
well.

Definition 2 (Bounded Kernel). Let be T ⊂ R a closed interval. We call
bounded kernel a function kT : R→ R such that:∫

T

kT (τ)dτ = 1 and ∀t ∈ T, kT (t) > 0. (1)

Several examples of kernels are shown in Table 1. We call T the time window
of the bounded kernel kT , which will be used as a convolution 5 operator, defined
as:

(kT ∗ f)(t) =

∫
t+T

kT (τ − t)f(τ)dτ

We also write kT (t) ∗ f(t) in place of (kT ∗ f)(t).
In the rest of the paper, we assume that the function f is always a Boolean

function: f : R → {0, 1}. This implies that ∀t ∈ R, (kT ∗ f)(t) ∈ [0, 1], i.e. the
convolution kernel will assume a value in [0, 1] This value can be interpreted
as a sort of measure of how long the function f is true in t + T . In fact, the
kernel induces a measure on the time line, giving different importance of the
time instants contained in its time window T . As an example, suppose we are
interested in designing a system to make an output signal f as true as possible
in a time window T (i.e., maximizing kT ∗ f). Using a non-constant kernel kT

5 This operation is in fact a cross-correlation, but here we use the same convention of
the deep learning community and call it convolution.



will put more effort in making f true in the temporal regions of T where the
value of the kernel kT is higher. More formally, the analytical interpretation of
the convolution is simply the expectation value of f in a specific interval t + T
w.r.t. the measure kT (dx) induced by the kernel. In Fig. 2 (a) we show some
example of different convolution operators on the same signal.

4 Signal Convolution Logic

In this section, we present the syntax and semantics of SCL, in particular of the
new convolutional operator 〈kT , p〉 , discussing also its soundness and correctness,
and finally comment on the expressiveness of the logic.

Syntax and Semantics. The atomic predicates of SCL are inequalities on a
set of real-valued variables, i.e. of the form µ(s):=[g(s) ≥ 0], where g : S → R is
a continuous function, s ∈ S and consequently µ : S → {>,⊥}. The well formed
formulas LSCL of SCL are defined by the following grammar:

ϕ := ⊥ |> |µ | ¬ϕ |ϕ ∨ ϕ | 〈kT , p〉ϕ, (2)

where µ are atomic predicates as defined above, kT is a bounded kernel and p ∈
[0, 1]. SCL introduces the novel convolutional operator 〈kT , p〉ϕ (more precise,
a family of them) defined parametrically w.r.t. a kernel kT and a threshold p.
This operator specifies the probability of ϕ being true in T , computed w.r.t.
the probability measure kT (ds) of T , the choice of different types of kernel k
will give rise to different kind of operators (e.g. a constant kernel will measure
the fraction of time ϕ is true in T , while an exponentially decreasing kernel will
concentrate the focus on the initial part of T ). As usual, we interpret the SCL
formulas over signals.

Before describing the semantics, we give a couple of examples of proper-
ties. Considering again the glucose scenario presented in Section 1. The prop-
erties in Fig. 1 are specified in SCL as ϕ : 〈flat[0,24h], 0.125〉G(t) ≥ 180,
ψ : 〈flat[0,24h], 0.95〉G(t) ≥ 70. We can use instead an exponential increas-
ing kernel to described the more dangerous situation of high glucose closed to
the next meal, e.g. ψ : 〈exp[0,8h], 0.95〉G(t) ≥ 180.

We introduce now the Boolean and quantitative semantics. As the tempo-
ral operators 〈kT , p〉 are time-bounded, time-bounded signals are sufficient to
assess the truth of every formula. In the following, we denote with T (ϕ) the
minimal duration of a signal allowing a formula ϕ to be always evaluated. T (ϕ)
is computed as customary by structural recursion.

Definition 3 (Boolean Semantics). Given a signal s ∈ D(T ;S), the Boolean
semantics χ : D(T ;S)× T × LSCL → {0, 1} is defined recursively by:

χ(s, t, µ) = 1 ⇐⇒ µ(s(t)) = > where µ(X) ≡ [g(X) ≥ 0] (3a)

χ(s, t,¬ϕ) = 1 ⇐⇒ χ(s, t, ϕ) = 0 (3b)

χ(s, t, ϕ1 ∨ ϕ2) = max(χ(s, t, ϕ1), χ(s, t, ϕ2)) (3c)

χ(s, t, 〈kT , p〉ϕ) = 1 ⇐⇒ kT (t) ∗ χ(s, t, ϕ) ≥ p (3d)



Moreover, we let χ(s, ϕ) = 1 ⇐⇒ χ(s, 0, ϕ) = 1.

The atomic propositions µ are inequalities over the signal’s variables. The
semantics of negation and conjunction are the same as classical temporal logics.
The semantics of 〈kT , p〉ϕ requires to compute the convolution of kT with the
truth value χ(s, t, ϕ) of the formula ϕ as a function of time, seen as a Boolean
signal, and compare it with the threshold p.

An example of the Boolean semantics can be found in Fig. 2 (left - bottom)
where four horizontal bars visually represent the validity of ψ = 〈k[0,0.5], 0.5〉(s >
0), for 4 different kernels k (one for each bar). We can see that the the only kernel
for which χ(s, ψ) = 1 is the exponential increasing one k = exp[3] .

Definition 4 (Quantitative semantics). The quantitative semantics ρ :
D(T ;S)× T × LSCL → R is defined as follows:

ρ(s, t,>) = +∞ (4a)

ρ(s, t, µ) = g(s(t)) where g is such that µ(X) ≡ [g(X) ≥ 0] (4b)

ρ(s, t,¬ϕ) = −ρ(ϕ, s, t) (4c)

ρ(s, t, ϕ1 ∨ ϕ2) = max(ρ(ϕ1, s, t), ρ(ϕ2, s, t)) (4d)

ρ(s, t, 〈kT , p〉ϕ) = max{r ∈ R | kT (t) ∗ [ρ(s, t, ϕ) > r] ≥ p} (4e)

Moreover, we let ρ(s, ϕ) := ρ(s, 0, ϕ).

where [ρ(s, t, ϕ) > r] is a function of t such that [ρ(s, t, ϕ) > r] = 1 if
ρ(s, t, ϕ) > r, 0 otherwise. Intuitively the quantitative semantics of a formula
ϕ w.r.t. a primary signal s describes the maximum allowed uniform translation
of the secondary signals g(s) = (g1(s), . . . , gn(ϕ)(s)) in ϕ preserving the truth
value of ϕ. Stated otherwise, a robustness of r for ϕ means that all signals
s′ such that ‖g(s′) − g(s)‖∞ ≤ r will result in the same truth value for ϕ:
χ(s, t, ϕ) = χ(s′, t, ϕ). Fig. 2(b) shows this geometric concept visually. Let us
consider the formula ϕ = 〈k[0,3], 0.3〉(s > 0), k a flat kernel. A signal s(t) satisfies
the formula if it is greater than zero for at most the 30% of the time interval
T = [0, 3]. The robustness value corresponds to how much we can translate s(t)
s.t. the formula is still true, i.e. r s.t. s(t) − r still satisfies ϕ. In the figure, we
can see that r = 0.535. The formal justification of it is rooted in the correctness
theorem (Theorem 2).

Soundness and Correctness. We turn now to discuss soundness and correct-
ness of the quantitative semantics with respect to the Boolean one. The proofs
of the theorems can be found in the on-line version of the paper on arXiv.

Theorem 1 (Soundness Property). The quantitative semantics is sound with
respect to the Boolean semantics, than means:

ρ(s, t, ϕ) > 0 =⇒ (s, t) |= ϕ and ρ(s, t, ϕ) < 0 =⇒ (s, t) 6|= ϕ



Fig. 2. (left - top) A Boolean signal s(t) TRUE in [0.3, 0.9] and FALSE outside. (left
- middle) Convolution of the kernel function (exp[3][0,0.5]∗s)(t) (blue), (exp[−3][0,0.5]∗
s)(t) (orange), (flat[0,0.5] ∗ s)(t) (green) and (gauss[0,0.5] ∗ s)(t) (red) with the signal
above in the time windows. The horizontal threshold is set to 0.5. (left - bottom) The
4 horizontal bars show when χ(s, ψ, t) = 1, with ψ = 〈k[0,0.05], 0.5〉(s > 0), i.e when
(k[0,0.5] ∗ s)(t) > 0.5. (right) Example of quantitative semantics of SCL. A signal s(t)
satisfies the formula ϕ = 〈k[0,3], 0.3〉(s > 0), with k a flat kernel, if it is greater than zero
for at most the 30% of the time interval T = [0, 3]. The robustness value corresponds
to how much we can translate s(t) s.t. the formula is still true, i.e. ρ(s, ϕ) = r s.t.
s(t)− r still satisfies ϕ, (red line). In the figure we can see that ρ(s, ϕ) = 0.535.

Definition 5. Consider a SCL formula ϕ with atomic predicates µi := [gi(X) ≥
0], i ≤ n, and signals s1, s2 ∈ D(T ;S). We define

‖s1 − s2‖ϕ := max
i≤n

max
t∈T (ϕ)

|gi(s1(t))− gi(s2(t))|

Theorem 2 (Correctness Property). The quantitative semantics ρ satisfies
the correctness property with respect to the Boolean semantics if and only if, for
each formula ϕ, it holds:

∀s1, s2 ∈ D(T ;S), ‖s1 − s2‖ϕ < ρ(s1, t, ϕ)⇒ χ(s1, t, ϕ) = χ(s2, t, ϕ)

Expressiveness. We show that SCL is more expressive than the fragment of
STL composed of the logical connectivities and the eventually ♦ and globally �
temporal operators, i.e., STL(♦,�).

First of all, globally is easily definable in SCL. Take any kernel kT , and
observe that �Tϕ ≡ 〈kT , 1〉ϕ, as 〈kT , 1〉ϕ holds only if ϕ is true in the whole
interval T . This holds provided that we restrict ourselves to Boolean signals of
finite variation, as for [13], which are changing truth value a finite amount of
times and are never true or false in isolated points: in this way we do not have
to care what happens in sets of zero measure. With a similar restriction in mind,
we can define the eventually, provided we can check that kT (t) ∗ χ(s, t, ϕ) > 0.

To see how this is possible, start from the fundamental equation kT (t) ∗
χ(s, t,¬ϕ) = 1 − kT (t) ∗ χ(s, t, ϕ). By applying 3d and 3b we easily get



χ(s, t,¬〈kT , 1 − p〉¬ϕ) = 1 ⇐⇒ kT (t) ∗ χ(s, t,¬ϕ) < 1 − p ⇐⇒ kT (t) ∗
χ(s, t, ϕ) > p. For compactness we write 〈kT , p〉∗ = ¬〈kT , 1 − p〉¬, and thus
define the eventually modality as ♦Tϕ ≡ 〈kT , 0〉∗ϕ. By definition, this is the
dual operator of �T . Furthermore, consider the uniform kernel flatT : a prop-
erty of the form 〈flatT , 0.5〉ϕ, requesting ϕ to hold at least half of the time
interval T , cannot be expressed in STL, showing that SCL is more expressive
than STL(♦,�).

Note that defining a new quantitative semantics has an intrinsic limitation.
Even if the robustness can help the system design or the falsification process
by guiding the underline optimization, it cannot be used at a syntactic level. It
means that we cannot write logical formulas which predicate about the property.
For example, we cannot specify behaviors as the property has to be satisfied in
at least the 50% of interval I, but we can only measure the percentage of time
the properties has been verified. Furthermore, lifting filtering and percentage
at the syntactic level has other important two advantages. First, it preserves
duality of eventually and globally operator, meaning that we are not forced to
restrict our definition to positive formulae, as in [14], or to present two separate
robustness measures as in [1]. Second, it permits to introduce a quantitative
semantics which quantifies the robustness with respect to signal values instead
of the percentage values and that satisfies the correctness property.

5 Monitoring Algorithm

In this section, we present the monitoring algorithms to evaluate the convolu-
tion operators 〈kT , p〉ϕ. For all the other operators we can rely on established
algorithms as [13] for Boolean monitoring and [7] for the quantitative one.

Boolean Monitoring. We provide an efficient monitor algorithm for the
Boolean semantics of SCL formulas. Consider an SCL formula 〈k[T0,T1], p〉ϕ and
a signal s. We are interested in computing χ(s, t, 〈k[T0,T1], p〉ϕ) = [H(t)− p ≥ 0],
as a function of t, where H is the following convolution function

H(t) = kT (t) ∗ χ(s, t, ϕ) =

∫
t+T

kT (τ − t)χ(s, τ, ϕ)dτ (5)

It follows that the efficient monitoring of the Boolean semantics of SCL is
linked to the efficient evaluation of H(t)− p, which is possible if H(t+ δ) can be
computed by reusing the value of H(t) previously stored. To see how to proceed,
assume the signal χ(s, t, ϕ) to be unitary, namely that it is true in a single
interval of time, say from time u0 to time u1, and false elsewhere. We remark
that is always possible to decompose a signal in unitary signals, see [13].

In this case, it easily follows that the convolution with the kernel will be
non-zero only if the interval [u0, u1] intersects the convolution window t + T .
Inspecting Figure 3, we can see that sliding the convolution window forward of a
small time δ corresponds to sliding the positive interval of the signal [u0, u1] of δ
time units backwards with respect to the kernel window. In case [u0, u1] is fully



Fig. 3. Sketch of the general monitoring algorithm. The green arrows represents [u0, u1]
in the constitutional window at time t, the red arrows instead represents the same
interval at time t+ δ (backwards translation).

contained into t + T , by making δ infinitesimal and invoking the fundamental
theorem of calculus, we can compute the derivative of H(t) with respect to time
as d

dtH(t) = kT (u0− t)−kT (u1− t). By taking care of cases in which the overlap
is only partial, we can derive a general formula for the derivative:

d

dt
H(t) = kT (u0− (t+T0))I{u0 ∈ t+T}− kT (u1− (t+T1))I{u1 ∈ t+T}, (6)

where I is the indicator function, i.e. I{ui ∈ t + T} = 1 if ui ∈ t + T and
zero otherwise. This equation can be seen as a differential equation that can
be integrated with respect to time by standard ODE solvers (taking care of
discontinuities, e.g. by stopping and restarting the integration at boundary times
when the signal changes truth value), returning the value of the convolution for
each time t. The initial value is H(0), that has to be computed integrating
explicitly the kernel (or setting it to zero if u0 ≥ T1). If the signal χ(s, t, ϕ) is
not unitary, we have to add a term like the right hand side of 6 in the ODE of
H(t) for each unitary component (positive interval) in the signal. We use also a
root finding algorithm integrated in the ODE solver to detect when the property
will be true or false, i.e. when H(t) will be above or below the threshold p.

The time-complexity of the algorithm for the convolution operator is pro-
portional to the computational cost of numerically integrating the differential
equation above. Using a solver with constant step size δ, the complexity is pro-
portional to the number of integration steps, times the number NU of unitary
components in the input signal, i.e. O(NU (Ts/δ)). A more detailed description
of the algorithm can be found in Appendix ??.

Quantitative Monitoring. In this paper, we follow a simple approach to
monitor it: we run the Boolean monitor for different values of r and t in a
grid, using a coarse grid for r, and compute at each point of such grid the
value H(t, r) = kT (t) ∗ [ρ(s, t, ϕ) > r] − p. Relying on the fact that H(t, r) is
monotonically decreasing in r, we can find the correct value of r, for each fixed t,
by running a bisection search starting from the unique values rk and rk+1 in the
grid such that H(t, r) changes sign, i.e. such that H(t, rk) < 0 < H(t, rk+1). The



bounds of the r grid are set depending on the bounds of the signal, and may be
expanded (or contracted) during the computation if needed. Consider that the
robustness can assumes only a finite number of values because of the finite values
assumed by the pieacewise-constant inputs signals. A more efficient procedure
for quantitative monitoring is in the top list of our future work, and it can be
obtained by exploring only a portion of such a grid, combining the method with
the boolean monitor based on ODEs, and alternating steps in which we advance
time from t to t+ h (fixing rt to its exact value at time t), by integrating ODEs
and computing H(t+h, rt), and steps in which we adjust the value of rt at time
t + h by locally increasing or decreasing its value (depending if H(t + h, rt) is
negative or positive), finding rt+h such that H(t+ h, rt+h) = 0.

6 Case Study: Artificial Pancreas

In this example, we show how SCL can be useful in the specification and moni-
toring of the Artificial Pancreas (AP) systems. The AP is a closed-loop system
of insulin-glucose for the treatment of Type-1 diabetes (T1D), which is a chronic
disease caused by the inability of the pancreas to secrete insulin, an hormone
essential to regulate the blood glucose level. In the AP system, a Continuous
Glucose Monitor (CGM) detects the blood glucose levels and a pump delivers
insulin through injection regulated by a software-based controller.

The efficient design of control systems to automate the delivery of insulin is
still an open challenge for many reasons. Many activities are still under control
of the patient, e.g., increasing insulin delivery at meal times (meal bolus), and
decreasing it during physical activity. A complete automatic control includes sev-
eral risks for the patient. High level of glucose (hyperglicemia) implies ketacidosis
and low level (hypoglycemia) can be fatal leading to death. The AP controller
must tolerate many unpredictable events such as pump failures, sensor noise,
meals and physical activity.

AP Controller Falsification via SMT solver [18] and robustness of STL [5] has
been recently proposed. In particular, [5] formulates a series of STL properties
testing insulin-glucose regulatory system. Here we show the advantages of using
SCL for this task.

PID Controller. Consider a system/process which takes as input a function
u(t) and produces as output a function y(t). A PID controller is a simple closed-
loop system aimed to maintain the output value y(t) as close as possible to a set
point sp. It continuously monitors the error function, i.e., e(t) = sp − y(t) and

defines the input of the systems accordingly to u(t) = Kp · e(t) +Ki ·
∫ t

0
e(s)ds+

Kd · ddte(t). The proportional (Kp), integral (Ki) and derivative (Kd) parameters
uniquely define the PID controller and have to be calibrated in order to achieve
a proper behavior.

System. PID controllers have been successfully used to control the automatic
infusion of insulin in AP. In [18], for example, different PID have been synthesized



to control the glucose level for the well studied Hovorka model [10]:

d

dt
G(t) = F(G(t), u(t),Θ), (7)

where the output G(t) represents the glucose concentration in blood and the in-
put u(t) is the infusion rate of bolus insulin which has to be controlled. The vector
Θ = (dg1, dg2, dg3, T1, T2) are the control parameters which define the quantity
of carbohydrates (dg1, dg2, dg3) assumed during the three daily meals and the
inter-times between each of them T1 and T2. Clearly a PID controller for Eq. (7)
has to guarantee that under different values of the control parameters Θ the glu-
cose level remains in the safe region G(t) ∈ [70, 180]. In [18], four different PID
controllers that satisfy the safe requirement, have been discovered by leveraging
SMT solver under the assumption that the inter-times T1 and T2 are both fixed to
300 minutes (5 hrs) and that (dg1, dg2, dg3) ∈ (N (40, 10),N (90, 10),N (60, 10)),
which correspond to the average quantity of carbohydrates contained in break-
fast, lunch and dinner6. Here, we consider the PID controller C1 which has been
synthesized by fixing the glucose setting point sp to 110mg/dl and maximizing
the probability to remain in the safe region, provided a distribution of the con-
trol parameter Θ as explained before. We consider now some properties which
can be useful to check expected or anomalous behaviors of an AP controller.

Hypoglycemia and Hyperglycemia. Consider the following informal spec-
ifications: never during the day the level of glucose goes under 70mg/dl, and
never during the day the level of glucose goes above 180mg/dl, which techni-
cally mean that the patient is never under Hypoglycemia or Hyperglycemia,
respectively. These behaviours can be formalized with the two STL formu-
las ϕHO

STL = �[0,24h]G(t) ≥ 70 and ψHR
STL = �[0,24h]G(t) ≤ 180. The problem

of STL is that it does not distinguish if these two conditions are violated for
a second, few minutes or even hours. It only says those events happen. Here
we propose stricter requirements described by the two following SCL formu-
las ϕHO

SCL = 〈flat[0,24h], 0.95〉G(t) ≥ 70 for the Hypoglycemia regime, and
ϕHR
SCL = 〈flat[0,24h], 0.95〉G(t) ≤ 180 for the Hyperglycemia regime. We are

imposing not that globally in a day the hypoglycemia and the hyperglycemia
event never occur, but that these conditions persist for at least 95% of the day
(i.e., 110 minutes). We will show above in a small test case how this requirement
can be useful.

Prolongated Conditions. As already mentioned in the motivating exam-
ple, the most dangerous conditions arise when Hypoglycemia or Hyperglycemia
last for a prolongated period of the day. In this context a typical condition
is the Prolongated Hyperglycemia which happens if the total time under
hyperglycemia (i.e., G(t) ≥ 180) exceed the 70% of the day, or the Prolon-
gated Severe Hyperglycemia when the level of glucose is above 300mg/dl
for at least 3 hrs in a day. The importance of these two conditions has been

6 N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2.



explained in [17], however the authors cannot formalized them in STL. On
the contrary, SCL is perfectly suited to describe these conditions as shown
by the following two formulas: ϕPHR

SCL = 〈flat[0,24h], 0.7〉G(t) ≥ 180 and
ϕPSHR
SCL = 〈flat[0,24h], 0.125〉G(t) ≥ 300. Here we use flat kernels to mean that

the period of a day where the patient is under Hyperglycemia or Severe Hyper-
glycemia does not count to the evaluation of the boolean semantics. Clearly, an
hyperglycemia regime in different times of the day can count differently. In order
to capture this “preference” we can use non-constant kernels.

Inhomogeneous time conditions. Consider the case of monitoring Hyper-
glycemia during the day. Even if avoiding that regime during the entire day
is always a best practice, there may be periods of the day where avoiding it
is more important than others. We imagine the case to avoid hyperglycemia
with a particular focus on the period close to the first meal. We can ex-
press this requirement considering the following SCL formula: ϕPHR

SCL(Gauss) =

〈gauss[0.03, 0.1][0,24h], 0.07〉G(t) ≥ 180. Thanks to an decreasing kernel, indeed,
the same quantity of time under hyperglycemia which is close to zero counts more
than the same quantity far from it.

Correctness of the insulin delivery. During the Hypoglycemia
regime the insulin should not be provided. The SCL formula:
�[0,24h](〈flat[0,10min], 0.95〉G(t) ≤ 70 → 〈flat[0,10min], 0.90〉 I(t) ≤ 0)
states that if during the next 10 minutes the patient is in Hypoglycemia for
at least the 95% of the time then the delivering insulin pump is shut off (i.e.,
I(t) ≤ 0) for at least the 90% of the time. This is the “cumulative” version of the
STL property �[0,24h](G(t) ≤ 70 → I(t) ≤ 0) which says that in hypoglycemia
regime no insulin should be delivered. During the Hyperglycemia regime the
insulin should be provided as soon as possible. The property SCL formula:
�[0,24h](G(t) ≥ 300 → 〈exp[−1][0,10min], 0.9〉 I(t) ≥ k) says that if we are in
severe Hyperglycemia regime (i.e., G(t) ≥ 300) the delivered insulin should
be higher than k for at least the 90% of the following 10 minutes. We use a
negative exponential kernel to express (at the robustness level) the preference
of having a higher value of delivered insulin as soon as possible.

Test Case: falsification. As a first example we show how SCL logic can be
effectively used for falsification. The AP control system has to guarantee that
the level of glucose remains in a safe region, as explained before. The falsifica-
tion approach consists in identifying the control parameters (Θ∗) which force
the system to violate the requirements, i.e., to escape from the safe region. The
standard approach consists in minimizing the robustness of suited temporal logic
formulas which express the aforementioned requirements, e.g., ϕHR

SCL, ϕ
HO
SCL. In

this case the minimization of the STL robustness forces the identification of the
control parameters which causes the generation of trajectories with a maximum
displacement under the threshold 70 or above 180. To show differences among
the STL and SCL logics, we consider the PID C1 + Hovorka model and perform
a random sampling exploration among its input parameters. At each sampling



Fig. 4. (left),(middle) The solution of the SCL formula falsification (red line) maxi-
mize the time under Hypoglycemia (left) and Hyperglycemia (right), whereas the solu-
tion of the STL formula falsification (blue line) maximizes the displacement w.r.t the
predicate thresholds. (right) Solution of the falsification for the SCL properties ϕPHR

SCL

(blue line) and ϕPHR
SCL(Gauss) (red line) which implement flat and gaussian kernel,

respectively.

we calculate the robustness of the STL formulas ϕHO
STL and the SCL formula

ϕHO
SCL and separately store the minimum robustness value. For this minimum

value, we estimate the maximum displacement with respect to the hypoglycemia
and hyperglycemia thresholds and the maximum time spent violating the hypo-
glycemia and hyperglycemia thresholds. Fig. 4(left, middle) shows the trajectory
with minimum robustness. We can see that the trajectory which minimize the
robustness of the STL formula has an higher value of the displacement from
the hypoglycemia (13) and hyperglycemia (98) thresholds than SCL trajectory
(which are 11 and 49 respectively). On the contrary, the trajectory which min-
imizes the robustness of the SCL formula remains under hypoglycemia (for 309
min) and hyperglycemia (for 171 min) longer than the STL trajectory (189 min
and 118 min, respectively). These results show how the convolutional operator
and its quantitative semantics can be useful in a falsification procedure. This
is particularly evident in the Hyperglycemia case (Fig. 4 (middle) ) where the
falsification of the SCL Hyperglycemia formula ϕHR

SCL shows two subintervals
where the level of glucose is above the threshold. In order to show the effect of
non-homogeneous kernel, we perform the previous experiment, with the same
setting, for properties ϕPHR

SCL and ϕPHR
SCL(Gauss). From the results (Fig. 4 (right))

is evident how the Gaussian kernel of property ϕPHR
SCL(Gauss) forces the glucose to

be higher of the hyperglycemia threshold just before the first meal (t ∈ [0, 200])
and ignores for example the last meal (t ≥ 600).

Test Case: noise robustness. Now we compare the sensitivity to noise of SCL
and STL formulae. We consider three degrees of hypoglycemia hk(t) = {G ≤ k},
where k ∈ {55, 60, 65, 70} and estimate the probability that the Hovorka model
controlled by the usual PID C1 (i.e., PID C1 + Hovorka Model) satisfies the STL
formulas ϕk

STL = ♦[0,24h] hk and the SCL formulas ϕk
SCL = 〈flat[0,24h], 0.03〉hk

under the usual distribution assumption for the control parameters Θ. The re-
sults are reported in column “noise free” of Table 6. Afterwards, we consider a
noisy outcome of the same model by adding a Gaussian noise, i.e., ε ∈ N (0, 5),



noise free with noise
h55 h60 h65 h70 h55 h60 h65 h70

♦[0,24h] 0.00 0.19 0.81 1.00 0.98 1.00 1.00 1.00

〈flat[0,24], 0.03〉 0.00 0.00 0.20 0.91 0.00 0.02 0.77 1.00

Table 2. Results of the falsification test case. The performance of STL and SCL for-
mulas verified on the PID C1 + Hovorka model with noise and noise free are compared.
The STL formula on the noisy model is uninformative.

to the generated glucose trajectory. We estimate the probability that this noisy
system satisfies the STL and SCL formulas above, see column “with noise” of
Table 6. The noise correspond to the disturbance of the original signals which
can occur, for example, during the measurement process.

As shown in Table 6, the probability estimation of the STL formulas changes
drastically with the addition of noise (the addition of noise forces all the trajec-
tory to satisfy the STL formula). On the contrary, the SCL formulas ϕk

SCL are
more stable under noise and can be even used to approximate the probability
of the STL formulas on the noise-free model. To better asses this, we checked
how much the STL formula ϕk

STL and the SCL formula ϕk
SCL, evaluated in the

noisy model, agree with the STL formula ϕk
STL evaluated in the noise-free model,

by computing their truth value on 2000 samples, each time choosing a random
threshold k ∈ [50, 80]. The score for STL is 56%, while SCL agrees on 78% of
the cases.

7 Conclusion

We have introduced SCL, a novel specification language that employs signal pro-
cessing operations to reason about temporal behavioural patterns. The key idea
is the definition of a family of modal operators which compute the convolution
of a kernel with the signal and check the obtained value against a threshold.
Our case study on monitoring glucose level in artificial pancreas demonstrates
how SCL empowers the classical temporal logic operators (i.e., such as finally
and globally) with noise filtering capabilities, and enable us to express temporal
properties with soft time bounds and with non symmetric treatment of time
instants in a unified way.

The convolution operator of SCL can be seen as a syntactic bridge between
temporal logic and digital signal processing, trying to combine the advantages
of both these two worlds. This point of view can be explored further, bringing
into the monitoring algorithms of SCL tools from frequency analysis of signals.
Future work includes the release of a Python library, and the design of efficient
monitoring algorithms also for the quantitative semantics. Finally, we also plan
to develop online monitoring algorithms for real-time systems using hardware
dedicated architecture such as field-programmable gate array (FPGA) and dig-
ital signal processor (DSP).
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