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Abstract
In this paper, we investigate sufficient conditions on the structure of the eigenspaces of a given
finite family of matrices to assure the existence of an embedded pair of invariant multicones,
which are the smallest and the biggest in a suitable and natural sense.Multicones, very similar
structures to those known in the literature as 1-multicones, are quite natural generalizations
of the classical cones. The conditions we find also suggest us a practical computational
procedure for the actual construction of such invariant embedded pair.
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1 Introduction

In the framework of the so-calledPerron–Frobenius theory (see Perron [15,16] and Frobenius
[9]), the study of endomorphisms admitting an invariant cone finds various generalizations
by several authors in the direction of families of matrices F sharing a common invariant cone.
Even starting from a finite family, infinite sets of matrices immediately occur since one has
to deal with the (possibly infinite) semi-group Σ(F) generated by the initial family.

It turned out soon that the existence of a common invariant cone for a family F simplifies
the study of Σ(F) and, in particular, of its spectral characteristics, such as the joint spectral
radius, defined by Rota and Strang [20] about 60years ago, and the lower spectral radius,
also called the joint spectral subradius, defined by Gurvitz [12] about 20years ago.

Such spectral characteristics of a family of matrices play an important role for the solution
of many applicative problems (see, e.g. the survey by Jungers [14]). Therefore, in the last
decades their study has been deepened, both from the theoretical and from the computational
point of view. In particular, recently some papers have been devoted to analyse the properties
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of the lower spectral radius. We mention, for example, Guglielmi and Protasov [10] and
Guglielmi and Zennaro [11]. Moreover, Bochi and Morris [3] have analysed the continuity
properties of the lower spectral radius assuming the existence of invariant sets for F which
are suitable generalizations of a cone, there called k-multicones (see also Avila et al. [1]
and Bochi and Gourmelon [2]). Substantially, they are homogeneous F-invariant subsets
containing a k-dimensional subspace of R

d and no one of bigger dimension.
Since classical cones turn out to be connected components of 1-multicones, in [6] we have

considered and studied similar structures using simply the term multicone, regardless of any
requirement of invariance with respect to a matrix or a family of matrices. Roughly speaking,
a multicone is a homogeneous set, symmetric with respect to the origin, consisting in the
union of a finite number of cones (its components). Moreover, by using extensively a suitable
notion of duality, we have extended the spectral analysis of a matrix having an invariant cone
to one having an invariant multicone.

In the present paper we enlarge the study contained in [6] to families of matrices sharing
an invariant multicone. Furthermore, we provide a constructive procedure for the actual
detection of an embedded pair of invariant multicones under suitable assumptions on the
family F .

Our main motivation for detecting an embedded pair of invariant multicones is given by
the fact that its existence should allow us to generalize the results given in [10,11] about
the computation of the lower spectral radius to a significantly larger class of matrix families.
Indeed, the theoretical and practical implementation of this idea will be the subject of a future
paper.

In Sect. 2, we resume the main results of [6] which are used in the present paper, making
it self-contained. In particular, we stress the strictly invariant case, which selects the class of
matrices with only one simple leading eigenvalue (here called asymptotically rank-one).

In Sect. 3, we consider families F of matrices sharing an invariant multicone and, mostly,
the asymptotically rank-one case, focussing on the properties of the leading set L(F), which
gathers all the leading eigenvectors. Such families satisfy the so-called Leading set assump-
tions: substantially, each element of Σ(F) is an asymptotically rank-one matrix and L(F)

is disjoint from H(F), the set of the secondary hyperplanes of F . This hypothesis, always
assumed in the sequel, allows us to show, in Sect. 4, that the fragmentation of the leading set
L(F), in the sense of being split into various subsets by the secondary hyperplanes, is finite.

In Sect. 5, we show that L(F) canonically generates the smallest multicone (in a suitable
sense) which is invariant for a family F , called the leading multicone and denoted by KF

mul .
It also turns out to be the smallest invariant multicone having the minimum possible number
of components.

In Sect. 6, we show that the leading multicone KF
mul is embedded in another invariant

multicone, called the secondary multicone and denoted by K̄F
mul , which is the biggest invariant

multicone for F with the same number of components.
In Sect. 7, we propose and theoretically justify a computational procedure directed to

compute the smallest and the biggest invariant multicones KF
mul and K̄F

mul for a family F of
matrices satisfying the “Leading set assumptions” and, at the same time, the corresponding
smallest and biggest invariant multicones for the transpose family FT.

Eventually, in Sect. 8 we mention some open problems.
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2 Preliminaries

We begin this section by recalling some known notions and results, using the same approach
and terminology which have been adopted by Brundu and Zennaro [5,6].

We refer to R
d as a real vector space endowed with the Euclidean product, denoted by

xTy for any x, y ∈ R
d , and with the induced norm ‖x‖2 = xTx .

The metric d(x, y) = ‖x − y‖ and the topological structure of this Euclidean space are
induced in this way.

In this framework, if U is a nonempty subset of R
d , we denote by cl(U ) its closure, by

conv(U ) the convex hull of U , by int(U ) its interior and by ∂U its boundary as a subset of
R

d . We also set R+U := {
αx

∣∣ α ≥ 0 and x ∈ U
}
.

Moreover, any hyperplane H of R
d will be also denoted by H = {h}⊥, where U⊥ stands

for the orthogonal set to U ⊆ R
d and h is a suitable nonzero vector.

Clearly, H splits R
d into two parts, say the positive and the negative semi-spaces,

accordingly to the versus of the chosen h, i.e. Sh+ := {x ∈ R
d

∣∣ hTx ≥ 0} and
Sh− := {x ∈ R

d
∣∣ hTx ≤ 0}.

Definition 1 Let K be a nonempty closed and convex set of R
d and consider the following

conditions:

(c1) R+K ⊆ K (i.e. K is positively homogeneous);
(c2) K ∩ −K = {0} (i.e. K is pointed or salient);
(c3) span(K ) = R

d (i.e. K is full or solid).

We say that K is a quasi-cone if it verifies (c1). If, in addition, it verifies (c2), we say that
K is a cone. Finally, if it satisfies all the above properties, we say that K is a proper cone.

If a cone K is not proper, we also say that it is a degenerate cone.

Note that a quasi-cone K is solid if and only if int(K ) 	= ∅.
If U is a nonempty subset of R

d , we denote by qcone(U ) the quasi-cone generated by U
(i.e. the minimum quasi-cone containing U ), which turns out to be

qcone(U ) = cl (conv (R+U )) = cl (R+conv(U )) .

Whereas qcone(U ) is defined for any set U , the smallest cone containing U may well not
exist. Anyway, if it does exist, then it coincides with qcone(U ) and is denoted by cone(U )

and called the cone generated by U . Moreover, in this case it also holds that

cone(U ) = conv (cl (R+U )) = cl (conv (R+U )) = cl (R+conv(U )) , (1)

i.e. the operators cl(·) and conv(·) can be interchanged.
Now let us recall the notion of duality and some of its properties.

Definition 2 If U is a nonempty set of R
d , then

U∗ :=
{

y ∈ R
d

∣∣ yTx ≥ 0 ∀x ∈ U
}

is called the dual set of U . By convention, we also define ∅∗ := R
d .

Remark 1 Note that {0}∗ = R
d , (Rd)∗ = {0} and, if x ∈ R

d\{0}, then {x}∗ = Sx+ = {y ∈
R

d
∣∣ yTx ≥ 0} is the positive semi-space determined by x . Consequently, if U is a nonempty

subset of R
d , then

U∗ =
⋂

x∈U

Sx+ .

123

3



M. Brundu, M. Zennaro

Hence, U∗ is closed, convex and positively homogeneous, i.e. U∗ is a quasi-cone.

Proposition 1 A quasi-cone K is a cone if and only if K ∗ is solid and, dually, K ∗ is a cone
if and only if K is solid. In particular, K is a proper cone if and only if K ∗ is a proper cone.

Besides the basic properties of the “geometric duality”, the dual of a proper cone also
fulfils the following relations.

Proposition 2 Let K be a proper cone of R
d . Then

int(K ∗) =
{

y ∈ R
d

∣∣ yTx > 0 ∀x ∈ K\{0}
}

(2)

and

K ∗\{0} =
{

y ∈ R
d

∣∣ yTx > 0 ∀x ∈ int(K )
}

.

Definition 3 Two positively homogeneous subsets U and V of R
d are said to be (strictly)

separated if there exists a hyperplane H = {h}⊥ such that

U\{0} ⊆ int
(

Sh+
)

and V \{0} ⊆ int
(

Sh−
)

.

We say that H is a separating hyperplane for U and V .
If we only require

U ⊆ Sh+ and V ⊆ Sh−,

we say that U and V are weakly separated.

Finally, we report a known “separation-type” theorem (see, e.g. Holmes [13] and Rock-
afellar [18]).

Theorem 1 Any two cones K (1) and K (2) of R
d are (strictly) separated if and only if K (1) ∩

K (2) = {0}.

2.1 Multicones and their properties

Following Brundu and Zennaro [6], now we present the key definition of multicone passing
through that of symmetric cone. We also review its main properties and report the most
important related results.

Definition 4 Any subset of R
d of the form Ksym = K ∪ −K , where K is a cone, is called

symmetric cone of R
d . We also conventionally say that K and −K are the positive and the

negative part of Ksym and denote them by K+ and K−, respectively.
Moreover, if K is proper, then Ksym is said to be proper, too.

Clearly, there exists a hyperplane H such that H ∩ Ksym = {0}.

Definition 5 Consider a finite collection of symmetric cones K (1)
sym, . . . , K (r)

sym such that

(m1)
K (i)

sym ∩ K ( j)
sym = {0} whenever i 	= j; (3)
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(m2) there exists a hyperplane H of R
d such that

H ∩ K (i)
sym = {0} for all i = 1, . . . , r .

Then the set

Kmul :=
r⋃

i=1

K (i)
sym

is called a multicone of R
d , the K (i)

sym’s are its symmetric components and the K (i)
± ’s are its

(conic) components (also denoted simply by K (i)). The number r of symmetric components
is called the fragmentation index of Kmul . Finally, H in (m2) is called a splitting hyperplane
for Kmul .

Note that, as a particular case, a symmetric cone is a multicone with fragmentation index
r = 1.

Given a multicone Kmul = ⋃r
i=1 K (i)

sym , we can choose a particular splitting hyperplane
H = {h}⊥ and label as positive the conic components contained in the positive semi-space
Sh+, i.e. we set

K (1)
+ ∪ · · · ∪ K (r)

+ \{0} ⊆ int
(

Sh+
)

and K (1)
− ∪ · · · ∪ K (r)

− \{0} ⊆ int
(

Sh−
)

. (4)

The above splitting hyperplane H , chosen once for ever, is called the labelling hyperplane
of Kmul .

From Theorem 1, it turns out that, for any pair of conic components K (i)
+ and K ( j)

+ ,
condition (m1) of Definition 5 implies that there exists a separating hyperplane, say Hi j . But,
in general, Hi j does not necessarily split Kmul .

Definition 6 If for all pairs of conic components K (i)
+ and K ( j)

+ there exists a separating
hyperplane Hi j which is also splitting, then Kmul is said to be reduced. Otherwise, it is said
to be nonreduced.

The notion of reduced multicone is independent of the choice of the labelling hyperplane.
In [6] we have proposed a procedure to canonically embed any nonreduced multicone Kmul

into a reduced one, say K̃mul , called the reduction of Kmul .
The following notion extends the analogous one given for cones and symmetric cones.

Definition 7 Amulticone Kmul is said to be proper if each of its conic components is a proper
cone. If we only require that span(Kmul) = R

d , we say that Kmul is weakly proper.

2.2 Duality of multicones

The concept of duality cannot be directly extended to symmetric cones. For instance, if Ksym

is proper, its dual set (accordingly to Definition 2) is the trivial subspace {0}. For this reason,
in [6] we introduced a suitably modified notion and symbol.

Definition 8 Let Ksym = K+ ∪ K− be a symmetric cone of R
d . Then the set

K †
sym := K ∗+ ∪ K ∗− = K ∗+ ∪ −K ∗+

=
{

y ∈ R
d

∣∣ yTx ≥ 0 ∀x ∈ K+ or yTx ≥ 0 ∀x ∈ K−
}

is called the dual set of Ksym .
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Observe that, in general, K †
sym is not a symmetric cone itself, but the union of two quasi-

cones only (even if still symmetric with respect to the origin).

Example 1 Let x ∈ R
d\{0} and let Ksym := cone({x}) ∪ −cone({x}) (which is nothing but

span({x})). Then we have that (see Remark 1)

K †
sym = cone({x})∗ ∪ −cone({x})∗ = Sx+ ∪ −Sx+ = R

d . �

Indeed, by Proposition 1, K †
sym is a symmetric cone if and only if Ksym is proper and, in

this case, K †
sym is proper, too.

The most natural definition of the dual of a multicone is the intersection of the dual sets
of its symmetric components.

Definition 9 Let Kmul = ⋃r
i=1 K (i)

sym be a multicone. Then

K †
mul :=

r⋂

i=1

(
K (i)

sym

)†

is called the dual set of Kmul .

In order to conveniently investigate the structure of the above dual set,weneed the auxiliary
notion of associated quasi-cone.

Consider a multicone Kmul = ⋃r
i=1 K (i)

sym and the quasi-cone generated by the generic
union of r conic components

K̂σ1...σr := qcone
(

K (1)
σ1

∪ · · · ∪ K (r)
σr

)
,

where σi ∈ {+,−}. We set

Σ :=
{
(σ1, . . . , σr ) ∈ {+,−}r

∣∣ K̂σ1...σr 	= R
d
}

,

which clearly is the union of

Σ+ := {(+, σ2, . . . , σr ) ∈ Σ} and Σ− := {(−, σ2, . . . , σr ) ∈ Σ}.
Definition 10 Let r† be the cardinality of Σ+ and, for k = 1, . . . , r†, set

K̂ (k)
+ := K̂+ σ2(k)···σr (k), (+, σ2(k), . . . , σr (k)) ∈ Σ+

and K̂ (k)
− := −K̂ (k)

+ . We say that K̂ (1)
± , . . . , K̂ (r†)

± are the quasi-cones associated with Kmul

and r† is called the dual fragmentation index of Kmul .

Since Kmul ⊆ K̂ (k)
+ ∪ K̂ (k)

− for all k = 1, . . . , r†, it obviously holds that

Kmul ⊆
r†⋂

k=1

(
K̂ (k)

+ ∪ K̂ (k)
−

)
. (5)

Theorem 2 Let Kmul = ⋃r
i=1 K (i)

sym be a multicone and let K̂ (1)
± , . . . , K̂ (r†)

± be its associated
quasi-cones. Then

K †
mul =

r†⋃

k=1

(
K̂ (k)

+
)∗ ∪

(
K̂ (k)

−
)∗

.
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Furthermore, if Kmul is weakly proper, then all the
(

K̂ (k)
±

)∗
’s are cones. In this case, by

defining the symmetric cones

K † (k)
sym :=

(
K̂ (k)

+
)∗ ∪

(
K̂ (k)

−
)∗

,

it holds that

K †
mul =

r†⋃

k=1

K † (k)
sym (6)

and at least one of the K † (k)
sym ’s is proper.

Finally, if Kmul is proper, then K †
mul is a multicone (clearly weakly proper).

In any case, even if Kmul is proper, its dual multicone K †
mul may well have got some

degenerate conic components, but not all. Thus, if we remove them, we obtain a proper
multicone.

Definition 11 Let Kmul be a proper multicone. Then the set consisting of all the proper conic
components of K †

mul is called the proper dual multicone of Kmul and is denoted by K ×
mul .

It is clear by definition that

int(K ×
mul) = int(K †

mul)

and, by equality (6), that K ×
mul is the union of all and only the proper symmetric cones K † (k)

sym .
Therefore, by setting

Σ× :=
{
(σ1, . . . , σr ) ∈ {+,−}r | K̂σ1...σr is a proper cone

}
,

whose cardinality is denoted by 2r×, we obtain immediately the following fact.

Proposition 3 Assume, without loss of generality, that the first r× elements in

{K † (1)
sym , . . . , K † (r†)

sym } are proper symmetric cones. Then we have

K ×
mul =

⋃

(σ1,...,σr )∈Σ×

(
Kσ1...σr

)∗ =
r×⋃

k=1

K † (k)
sym .

The number r× is called proper dual fragmentation index of Kmul and coincides with the
number of all its possible labellings.

Many properties of the duality of proper cones are inherited by the duality of proper
multicones, possibly weakened somehow.

Proposition 4 If Kmul , K (1)
mul , K (2)

mul are proper multicones, then

K ††
mul ⊇ Kmul and K ××

mul ⊇ Kmul , (7)

int(K †
mul) = int(K ×

mul) =
{

y ∈ R
d

∣∣ yTx 	= 0 ∀x ∈ Kmul\{0}
}

(8)

and

K †
mul\{0} =

{
y ∈ R

d
∣∣ yTx 	= 0 ∀x ∈ int(Kmul)

}
.
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Furthermore,

K (1)
mul ⊆ K (2)

mul �⇒
(

K (1)
mul

)† ⊇
(

K (2)
mul

)†
and

(
K (1)

mul

)× ⊇
(

K (2)
mul

)×

and

K (1)
mul\{0} ⊆ int(K (2)

mul) �⇒ int
(
(K (1)

mul)
†
)

⊇
(

K (2)
mul

)† \{0}. (9)

The notion of proper dual multicone induces a low relevance of nonreduced multicones
(see Definition 6).

Theorem 3 Let K̃mul be the reduction of a proper multicone Kmul . Then

K ×
mul =

(
K̃mul

)×
(10)

and, consequently, their proper dual fragmentation indices coincide.

In dimension 2, any proper multicone Kmul verifies the equality K ×
mul = K †

mul and more-
over the inclusions in (7) are always equalities. This is no longer true in dimension d ≥ 3,
and thus, we need the following definitions.

Definition 12 We say that a proper multicone Kmul is reflexive if

K ††
mul = Kmul

and that it is properly reflexive if

K ××
mul = Kmul .

The next two results regarding properly reflexive multicones are noteworthy.

Proposition 5 Any properly reflexive proper multicone Kmul is also reduced.

Proposition 6 For any proper multicone Kmul , the proper dual K ×
mul is properly reflexive

(i.e. K ×××
mul = K ×

mul ) and hence is reduced.

2.3 Matrix invariance of multicones

Let F denote either the real field R or the complex field C. Throughout this paper, we denote
by F

d×d the space of the d × d matrices on F.
If A ∈ F

d×d , we identify it with the corresponding endomorphism of F
d whose kernel

and image will be denoted by ker(A) and range(A).
If λ ∈ F is an eigenvalue of A of algebraic multiplicity k, we denote by Vλ := ker(A −

λI ) the associated eigenspace and by Wλ := ker((A − λI )k) the generalized eigenspace
corresponding to λ. Clearly, Vλ ⊆ Wλ are both invariant for A.

If A is a real matrix, we can take F = R or F = C.
If λ ∈ R, then Wλ is a linear subspace of R

d of real dimension k.
Otherwise, if λ ∈ C\R, take F = C and consider Wλ ⊆ C

d . Since the conjugate of λ

is an eigenvalue as well, set UC(λ, λ̄) := Wλ ⊕ Wλ̄ ⊆ C
d . It turns out that UR(λ, λ̄) :=

UC(λ, λ̄) ∩ R
d is a linear space of real dimension 2k, invariant under the action of A.

Therefore, if λ1, . . . , λr ∈ R and μ1, μ̄1 . . . , μs, μ̄s ∈ C\R are the distinct roots of the
characteristic polynomial, then

r⊕

i=1

Wλi ⊕
s⊕

i=1

UR(μi , μ̄i ) = R
d . (11)
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Finally, recall that the set σ(A) of its (real or complex) eigenvalues is called the spectrum
of A and the nonnegative real number

ρ(A) := max
λ∈σ(A)

|λ|

is called the spectral radius of A.
The eigenvalues whose modulus is ρ(A) are called leading eigenvalues, and the cor-

responding eigenvectors are called leading eigenvectors. The remaining eigenvalues and
eigenvectors are called secondary eigenvalues and secondary eigenvectors, respectively.

Let us draw our attention to matrices of the following type, already considered in [5,6].

Definition 13 A matrix A ∈ R
d×d is said to be asymptotically rank-one if the following

conditions hold:

(i) ρ(A) > 0;
(ii) either ρ(A) or −ρ(A) is a simple eigenvalue of A (denoted in the sequel by λA);
(iii) |λ| < ρ(A) for any other eigenvalue λ of A.

Remark 2 A matrix A is asymptotically rank-one if and only if AT is so.

The term “asymptotically rank-one” is inspired by the following known fact.

Proposition 7 If A is an asymptotically rank-one matrix, then there exists

Â∞ := lim
k→∞ Ak/λk

A

and such limit is the rank-one matrix Â∞ = (vTAh A)−1vAhT
A, where vA and h A are the

(unique up to a scalar factor) leading eigenvectors of A and AT, respectively.

Definition 14 A subset U of R
d is said to be invariant under the action of the matrix A on

R
d (in short, invariant for A) if A(U ) ⊆ U .

The following properties easily follow from (11).

Proposition 8 Let A ∈ R
d×d be an asymptotically rank-one matrix and let vA be the eigen-

vector corresponding to the leading eigenvalue λA = λ1. Then

R
d = VA ⊕ HA, with HA :=

r⊕

i=2

Wλi ⊕
s⊕

i=1

UR(μi , μ̄i ), (12)

where

(i) VA := VλA = span(vA);
(ii) the linear space HA is a hyperplane of R

d , invariant for A;
(iii) Ax ∈ HA �⇒ x ∈ HA.

The next notions and results about matrix invariance of multicones have been introduced
and proved in [6].

Definition 15 If A is an asymptotically rank-one matrix, then the eigenspace VA will be
called the leading invariant line of A, whereas the hyperplane HA will be called secondary
invariant hyperplane of A and we shall write HA = {h A}⊥ for a suitable vector h A.
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Proposition 9 If A is an asymptotically rank-one matrix, then h A is the leading eigenvector
of the transpose matrix AT, i.e. h A = vAT or, equivalently, HA = (VAT )⊥ or, equivalently
ATh A = λAh A.

Note that, by applying the foregoing result to the transpose matrix AT, its secondary
hyperplane HAT can be expressed by

HAT = {vA}⊥ = V ⊥
A . (13)

Definition 16 We say that a weakly proper multicone Kmul is strictly invariant under the
action of the matrix A (in short, strictly invariant for A) if

A(Kmul\{0}) ⊆ int(Kmul).

Not all the properties of invariant cones transfer directly to invariant symmetric cones and
multicones. Indeed, in this more general context, the situation modifies as follows.

Lemma 1 If Kmul is a strictly invariant multicone for A, then it holds that

Kmul ∩ ker(A) = {0}. (14)

Proposition 10 (localization) Let a multicone Kmul = ⋃r
i=1 K (i)

sym be invariant for a matrix

A. Then for each symmetric component K (i)
sym there exists a symmetric component K ( j)

sym,

possibly different from K (i)
sym, such that

A(K (i)
sym) ⊆ K ( j)

sym . (15)

Moreover, if
int(Kmul) ∩ ker(A) = ∅, (16)

then, for each proper conic component K (i), if any, there exists a conic component K ( j) such
that

A(K (i)) ⊆ K ( j).

The finiteness of the number of symmetric components gives immediately the following
result.

Corollary 1 Let a multicone Kmul = ⋃r
i=1 K (i)

sym be invariant for a matrix A. Then there exist

a positive integer s ≤ r and a symmetric component K (k)
sym such that

As(K (k)
sym) ⊆ K (k)

sym .

Moreover, if Kmul is proper and (16) holds, then there exist a positive integer p ≤ 2r and a
conic component K (k) such that

Ap(K (k)) ⊆ K (k).

Then the classical spectral results concerning matrices admitting an invariant cone can be
extended to the multicone case as follows.

Theorem 4 Let a proper multicone Kmul = ⋃r
i=1 K (i)

sym be invariant for a matrix A. Then
there exists an integer s ≤ r such that:
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(i) ±ρ(A)s is an eigenvalue of As;
(ii) the multicone Kmul contains a leading eigenvector v of As corresponding to such eigen-

value ±ρ(A)s .

Theorem 5 Let a proper multicone Kmul be invariant for a matrix A and let (16) hold. Then
the dual multicone K †

mul is invariant for the transpose matrix AT and

int(K †
mul) ∩ ker(AT) = ∅. (17)

Moreover, if the stronger property (14) holds, then the proper dual multicone K ×
mul is

invariant for AT, too.

In general, the above result cannot be reversed because not all proper multicones are
reflexive and/or properly reflexive, as the inclusions in (7) only are assured and not vice versa
(see [6] for more details).

In the case of asymptotically rank-one matrices (see Definition 13), some of the previous
results take a more specific form.

Theorem 6 Let a proper multicone Kmul = ⋃r
i=1 K (i)

sym be invariant for an asymptotically
rank-one matrix A. Then we have:

(i) there exists a symmetric component K (k)
sym such that A(K (k)

sym) ⊆ K (k)
sym and vA ∈ K (k)

sym;

(ii) int(K †
mul) ∩ HAT = ∅;

(iii) if also (16) holds, then the conic component K (k)
+ is such that

A(K (k)
+ ) ⊆

⎧
⎨

⎩

K (k)
+ if λA > 0,

−K (k)
+ if λA < 0,

so that K (k)
+ is invariant for A2;

(iv) if K ×
mul is invariant for AT, then

int(Kmul) ∩ HA = ∅.

The next result shows that asymptotically rank-one matrices play an important role.

Theorem 7 If a matrix A admits a strictly invariant (weakly proper) multicone, then it is
asymptotically rank-one.

Finally we report the most significant refinements of the previous results in the strictly
invariant case.

Proposition 11 Let a weakly proper multicone Kmul = ⋃r
i=1 K (i)

sym be strictly invariant for
a matrix A. Then:

(i) for each proper conic component K (i), there exists a proper conic component K ( j),
possibly different, such that

A(K (i)\{0}) ⊆ int(K ( j)); (18)

(ii) there exists a proper conic component K (k) which is strictly A2-invariant and, more
precisely, such that

A(K (k)\{0}) ⊆
⎧
⎨

⎩

int(K (k)) if λA > 0,

int(−K (k)) if λA < 0
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and vA ∈ int(K (k)).

Theorem 8 Let a proper multicone Kmul be strictly invariant for a matrix A. Then:

(i) both K †
mul and K ×

mul are strictly invariant for the transpose matrix AT;

(ii) both K ×†
mul and K ××

mul are strictly invariant for A;

(iii) K †
mul ∩ HAT = K ×

mul ∩ HAT = {0};
(iv) Kmul ∩ HA = K ††

mul ∩ HA = K ××
mul ∩ HA = {0}.

Corollary 2 Let Kmul be a properly reflexive (proper) multicone. Then Kmul is strictly invari-
ant for A if and only if the proper dual K ×

mul is strictly invariant for the transpose matrix
AT.

2.4 Embedded pairs of multicones

We conclude this section by considering an embedded pair of multicones

Kmul =
r⋃

i=1

K (i)
sym ⊆ K ′

mul =
s⋃

k=1

K ′(k)
sym .

We can assume without any restriction that K ′(k)
sym , k = 1, . . . , t , are those symmetric com-

ponents of K ′
mul for which

K ′(k)
sym ⊇ K (i)

sym for some i (19)

(possibly more than one) and that

Kmul ∩ K ′(k)
sym = {0} for all k = t + 1, . . . , s. (20)

Definition 17 If Kmul and K ′
mul are an embedded pair of multicones, then K̄mul :=

⋃t
k=1 K ′(k)

sym is called the submulticone of K ′
mul covering Kmul .

Proposition 12 Let Kmul ⊆ K ′
mul be an embedded pair of invariant multicones for a matrix

A satisfying (19) and (20). Then the submulticone K̄mul of K ′
mul covering Kmul is invariant

for A, too.

Proof ByProposition 10, condition (15) holds for bothmulticones Kmul and K ′
mul . Therefore,

since each symmetric component of K̄mul is also a symmetric component of K ′
mul , (19) and

(20) imply that (15) holds for K̄mul as well. In turn, this fact clearly yields the invariance of
K̄mul . ��

3 Families of matrices with common invariant multicones

The results reported in the last part of the previous section are useful in order to appropriately
treat families of matrices.

In the literature, some results on the existence of an invariant cone K for a given family of
matrices are available (see, for example, Edwards et al. [8], Rodman et al. [19] and Protasov
[17]). In particular, wemention that a theoretical characterization of finite irreducible families
having an invariant cone K is given in [17].
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It is also known that a family of matrices may have an invariant or a strictly invariant
multicone with r ≥ 2 symmetric components even if it does not admit any symmetric cone
with such properties (see, for instance, Example 3 in Sect. 7).

In this paper, we investigate the existence of invariant and strictly invariant multicones for
finite families of matrices in a geometric way, namely in terms of suitable conditions on the
distribution of the leading and secondary eigenvectors of all the products of the elements of
the family. Our study also includes the case of families containing singular matrices, which
needs to take particular consideration of the location of the kernels.

Throughout this paper, F = {A1, . . . , Am} denotes a finite family of real d × d matrices.
For each k ≥ 1, put Σk(F) := {Aik · · · Ai1 | i1, . . . , ik ∈ {1, . . . , m}} the set of all products
of length (or degree) k and

Σ(F) :=
⋃

k≥1

Σk(F)

the product semi-group.

Definition 18 We say that a cone (respectively, multicone) is invariant or strictly invariant
for the family of matrices F = {A1, . . . , Am} if it is so for each matrix Ai , i = 1, . . . , m.

Remark 3 If a cone, or amulticone, is invariant for the family ofmatricesF , then it is invariant
for any P ∈ Σ(F) as well. The same holds for strict invariance.

Dealing with families F of nonsingular matrices, very similar structures to multicones
have been considered by Bochi and Morris [3] (see also Bochi and Gourmelon [2]). They
introduced the definition of k-multicone, where k may take integer values between 1 and the
dimension d of the matrices, which is more general than our definition of multicone. More
precisely, a proper multicone in our sense is always a 1-multicone, whereas the opposite is
not necessarily true. In fact, we require that the connected conic components of a multicone
be convex, which is not assumed a priori in [3].

In [3] it has been proved that the existence of a strictly invariant 1-multicone is equivalent
to the family F being 1-dominated, i.e. to the existence of constants C > 0 and τ ∈ (0, 1)
such that

σ2(Pk)

σ1(Pk)
≤ Cτ k ∀Pk ∈ Σk(F) and ∀k ≥ 1. (21)

Here the σi (P)’s, i = 1, . . . , d , denote the singular values of the matrix P , i.e. the square
roots of the eigenvalues of the positive semidefinite matrix PTP listed in nonincreasing order
according to multiplicity.

It is worth remarking that, for families of matrices also including singular elements, the
mentioned characterization may well fail (see Example 7.1 in [3]).

The following results are obvious consequences of the foregoing definitions and classical
well-known spectral results, reported, e.g. in [5].

Proposition 13 If a family F of matrices has an invariant proper cone K , then each product
P ∈ Σ(F) is such that:

(i) the spectral radius ρ(P) is an eigenvalue of P;
(ii) K contains a leading eigenvector v corresponding to ρ(P);
(iii) the secondary eigenvectors and generalized eigenvectors of P do not belong to int(K ).

Note that, usually, statement (iii) is not included in the standard formulations of the
Perron–Frobenius theorem (see, e.g. Vandergraft [21]).
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Proposition 14 If a family F of matrices has a strictly invariant proper cone K , then each
product P ∈ Σ(F) satisfies the following conditions:

(i) P is an asymptotically rank-one matrix with λP = ρ(P) > 0;
(ii) int(K ) contains the leading eigenvector vP ;
(iii) the secondary eigenvectors and generalized eigenvectors of P do not belong to K .

As is observed in Remark 3, the existence of a (strictly) invariant cone or multicone for
F affects all the matrices in the semi-group Σ(F). Therefore, many of the results proved for
matrices may be easily transferred to families.

In particular, Theorems 5 and 8 give rise to the following result, where the transpose
family FT := {AT

1 , . . . , AT
m} is involved.

Proposition 15 Let a proper multicone Kmul be invariant for a family of matrices F =
{A1, . . . , Am} and let condition (16) hold for any Ai . Then:

(i) K †
mul is invariant for FT and condition (17) holds for any AT

i ;

(ii) if, in particular, Kmul is strictly invariant forF , then K †
mul and K ×

mul are strictly invariant
for FT.

Corollary 2 focuses on the case of reflexive multicones and here is the obvious extension
to families of matrices.

Theorem 9 Let Kmul be a properly reflexive (proper) multicone and let F be a family of
matrices. Then Kmul is strictly invariant for F if and only if K ×

mul is strictly invariant for FT.

Now consider an embedded pair of multicones

Kmul =
r⋃

i=1

K (i)
sym ⊆ K ′

mul =
s⋃

k=1

K ′(k)
sym

satisfying conditions (19) and (20). Then Proposition 12 immediately extends to families.

Proposition 16 Let Kmul ⊆ K ′
mul be an embedded pair of invariant multicones for a family

of matrices F . Then the submulticone K̄mul of K ′
mul covering Kmul is invariant for F , too.

As in the last part of Sect. 2, from now on throughout this section we shall work with
asymptotically rank-one matrices only. Anyway, the next definition is necessary since, even
if all the matrices Ai , i = 1, . . . , m, are asymptotically rank-one, it is not guaranteed that all
products P ∈ Σ(F) are so.

Definition 19 We say thatF is an asymptotically rank-one family of matrices if each product
P ∈ Σ(F) is so.

Remark 4 As a consequence of Remark 2, it turns out that a family F of matrices is asymp-
totically rank-one if and only if the transpose family FT is so.

If F is an asymptotically rank-one family of matrices, then, with reference to the notation
introduced in Sect. 2 (see Proposition 8 and Definition 15), it is rather natural to define the
leading set of the family F as

L(F) =
⋃

P∈Σ(F)

VP
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and the secondary set of the family F as

H(F) =
⋃

P∈Σ(F)

HP .

Note that both L(F) and H(F) are homogeneous and symmetric sets.
The next results characterize the geometry of the leading and secondary sets with respect

to a (strictly) invariant multicone.

Theorem 10 If a proper multicone Kmul is invariant for an asymptotically rank-one family
F of matrices, then it holds that

cl(L(F)) ⊆ Kmul (22)

and
int(K †

mul) ∩ cl(H(FT)) = ∅. (23)

Proof By Theorem 6-(i) we have that vP ∈ Kmul for any P ∈ Σ(F). Therefore, L(F) ⊆
Kmul , and hence, since Kmul is closed, (22) is proved.

On the other hand, by Theorem 6-(ii) we have int(K †
mul) ∩ HPT = ∅ for any P ∈ Σ(F).

Consequently, int(K †
mul) ∩ H(FT) = ∅, and hence, by standard topological arguments, we

obtain (23). ��
The foregoing theorem establishes the mutual position of K †

mul and H(FT) in (23). In
order to obtain an analogous relationship between Kmul and H(F), we have to assume the
further condition that Kmul does not intersect ker(P) for any P ∈ Σ(F) [see Theorems 5
and 6-(iv)]. In principle, it seems to be hard to actually verify such a condition on infinitely
many matrices, but the next lemma will show that it is sufficient to perform a finite number
of computations only.

Lemma 2 Let a multicone Kmul be invariant for a family F = {A1, . . . , Am} and let

Kmul ∩ ker(Ai ) = {0}, i = 1, . . . , m. (24)

Then Kmul ∩ ker(P) = {0} holds for any P ∈ Σ(F).

Proof The proof is carried out by induction on the degree of the product P . The hypothesis
(24) assures the validity of the thesis for the products of degree 1. Thus we assume it to hold
for all P ∈ Σk(F) and consider a product Q ∈ Σk+1(F), which can be written in the form
Q = P A for some P ∈ Σk(F) and A ∈ F .

Now, if we suppose that Qx = P Ax = 0 for some x ∈ Kmul , then we obtain Ax ∈
Kmul ∩ ker(P) by the invariance of Kmul . Therefore, the inductive hypothesis implies that
Ax = 0 and, consequently, that x = 0 because of (24). ��
Corollary 3 If an asymptotically rank-one family F of matrices has an invariant proper
multicone Kmul and satisfies condition (24), then K ×

mul is invariant for FT and

int(Kmul) ∩ cl(H(F)) = ∅. (25)

Proof By Lemma 2 and Theorem 5 we have that K ×
mul is invariant for PT for any P ∈ Σ(F).

Hence, by Theorem 6-(iv), we obtain

int(Kmul) ∩ HP = ∅
for any P ∈ Σ(F). Therefore, int(Kmul)∩H(F) = ∅ and, so, standard topological arguments
yield (25). ��
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Since the existence of a strictly invariant multicone implies that the family F is asymp-
totically rank-one (see Theorem 7), now we are in a position to prove a stronger version of
Theorem 10. To this aim, we need first three technical preliminary results.

Lemma 3 If K is a cone and A is a matrix such that K ∩ ker(A) = {0}, then

(i) A(K ) is a cone;
(ii) A(K )\{0} = A(K\{0}).

In particular, if K is strictly invariant for A, then (i) and (ii) hold.

Proof (i) Since K is positively homogeneous and closed, its image A(K ) is closed (see
Proposition 3 in Borwein and Moors [4]). It is immediate to see that A(K ) is convex and
positively homogeneous.

We are left to show that it is pointed. For, let x ∈ A(K ) ∩ (−A(K )) = A(K ) ∩ A(−K ).
Hence x = Ay = A(−z) for suitable y, z ∈ K . Therefore, y + z ∈ K ∩ ker(A) and so, by
assumption, y + z = 0. This implies that y = −z ∈ K ∩ (−K ) = {0}, since K is pointed.
Hence x = 0.

(ii) Obvious.
The last claim follows from the well-known fact that K strictly invariant for A implies

K ∩ ker(A) = {0}. ��
An immediate generalization of the above fact to multicones is the following.

Lemma 4 If the multicone Kmul is strictly invariant for F , then for all i = 1, . . . , m,

Ai (Kmul)\{0} = Ai (Kmul\{0}) ⊆ int(Kmul).

Lemma 5 If the multicone Kmul = ⋃r
i=1 K (i)

sym is strictly invariant for F , then for all i =
1, . . . , 2r the set

Wi := K (i) ∩
m⋃

j=1

A j (Kmul)

is a (possibly empty) finite union of cones. In particular, its convex hull

K̄ (i) := cvx (Wi ) (26)

is a cone. Finally,

K̄ (i)\{0} ⊆ int(K (i)).

Proof The set Wi is a union of cones by Proposition 11-(i) and Lemma 3-(i). Moreover, if
H is the labelling hyperplane of Kmul , then Wi\{0} is entirely contained in the interior of a
semi-space defined by H . In this situation, the convex hull of a finite union of cones equals
their sum which, in turn, is a cone (see Proposition 3.38 in [5]). Therefore, K̄ (i) is a cone.

Finally, since Kmul is strictly invariant for F , then by Lemma 4

Wi\{0} = K (i) ∩
m⋃

j=1

A j (Kmul\{0}) ⊆ K (i) ∩ int(Kmul) = int(K (i)).

Therefore, since cvx(Wi )\{0} = cvx(Wi\{0}), and since int(K (i)) is convex, it turns out that

K̄ (i)\{0} = cvx(Wi )\{0} ⊆ int(K (i)),

So the proof is complete. ��
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Theorem 11 If a proper multicone Kmul is strictly invariant for a family F of matrices, then
the following facts hold:

cl(L(F))\{0} ⊆ int(Kmul), (27)

K †
mul ∩ cl(H(FT)) = {0}, (28)

Kmul ∩ cl(H(F)) = {0}. (29)

Proof Let us define the auxiliary set

K̄mul :=
r⋃

i=1

K̄ (i)
sym,

where K̄ (i)
± , i = 1, . . . , r are defined in (26).

It is easy to see that K̄mul is a submulticone of Kmul (not necessarily proper).
A straightforward computation shows that A j (Kmul) ⊆ K̄mul for any j = 1, . . . , m.
The first consequence is that A j (K̄mul) ⊆ K̄mul for any j = 1, . . . , m, i.e. K̄mul is

invariant for F .
The second consequence is that

P(Kmul) ⊆ K̄mul (30)

for any P ∈ Σ(F). Since each leading eigenvector vP belongs to Kmul (see Theorem 6), we
also have that vP = λ−1

P PvP ∈ P(Kmul) and, hence,

L(F) ⊆
⋃

P∈Σ(F)

P(Kmul) ⊆ K̄mul .

Therefore, since K̄mul is closed,

cl(L(F)) ⊆ K̄mul .

But Kmul is strictly invariant for F , so that Lemma 5 yields

K̄mul\{0} ⊆ int(Kmul). (31)

The two inclusions give (27).
Now observe that there surely exists a proper multicone K̃mul between K̄mul and Kmul

such that
K̄mul\{0} ⊆ int(K̃mul) ⊆ K̃mul\{0} ⊆ int(Kmul). (32)

From Lemmas 1 and 2 and (30), for any P ∈ Σ(F) we obtain

P(Kmul\{0}) ⊆ K̄mul\{0}
which, in turn, yields

P(K̃mul\{0}) ⊆ K̄mul\{0}.
Therefore, K̃mul is strictly invariant for F . On the other hand, the last inclusion in (32) and
(9) yields

K †
mul\{0} ⊆ int(K̃ †

mul).

Therefore, Theorem 10 applied to the pair (K̃mul ,F) proves (28).
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Finally, Proposition 15-(ii) tells us that K ×
mul is strictly invariant for FT and hence, by

(28) applied to the pair (K ×
mul ,FT), we obtain

K ×†
mul ∩ cl(H(F)) = {0}.

Since Kmul ⊆ K ××
mul ⊆ K ×†

mul , we can conclude with (29). ��
Remark 5 Note that (27) and (29) are stronger forms of (22) and (25), respectively.

Moreover, if Kmul satisfies (29), then all the hyperplanes belonging toH(F) are splitting
for it (see Definition 5).

The following result is an immediate consequence of (27) and (29).

Corollary 4 If a family F of matrices has a strictly invariant proper multicone, then

cl(L(F)) ∩ cl(H(F)) = {0}. (33)

4 Geometric fragmentation and invariance of the leading set

This section is devoted to understand the geometry of the leading set L(F). Nevertheless, we
start by proving a useful property concerning an arbitrary family H of hyperplanes, which
will be later applied to the secondary set H(F).

Proposition 17 Let X ⊂ R
d be a closed connected set and H be a family of hyperplanes

such that
X ∩ cl(H) = ∅. (34)

Then

conv(X) ∩ cl(H) = ∅.

Proof Clearly, X ∩ H = ∅ for all H = {h}⊥ ∈ H and so, X being connected, X ⊆ int(Sh+)

(up to the sign of h).
By the convexity of int(Sh+), we have that conv(X) ⊆ int(Sh+). Hence,

conv(X) ∩ H = ∅. (35)

By (34) it is enough to show that any point x ∈ conv(X)\X does not belong to cl(H).
Observe that there exists a minimal set of distinct points {v1, . . . , vn} ⊂ X and corre-

sponding scalars t1, . . . , tn ∈ [0, 1] such that

x =
n∑

i=1

tivi and
n∑

i=1

ti = 1. (36)

Since x /∈ X and the set {v1, . . . , vn} is minimal, we have that ti 	= 0 and ti 	= 1 for all
i = 1, . . . , n. Moreover, the polytope

T := conv({v1, . . . , vn})
clearly contains x and is contained in conv(X). In particular, by (35)

T ∩ H = ∅. (37)
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On the other hand, assumption (34) assures that there exist n open balls centred in
v1, . . . , vn , respectively, which do not intersect cl(H). Consequently, there exist n closed
balls Bi := B(vi , δ), i = 1, . . . , n, of the same radius δ, such that

Bi ∩ H = ∅. (38)

It is clear that the set Y := B1 ∪ . . . ∪ Bn ∪ T is closed and connected and that Y ∩ H = ∅
by (37) and (38). So, applying again the initial argument to Y , we obtain that (35) holds, i.e.

conv(Y ) ∩ H = ∅.

Finally, observe that the closed ball Bx := B(x, δ) is contained in conv(Y ). In fact, if
y ∈ Bx , then y = x + w, where w is a vector such that ‖w‖ ≤ δ. Moreover, (36) implies
that y = ∑n

i=1 ti yi , where yi := vi + w and, clearly, yi ∈ Bi for all i = 1, . . . , n.
Therefore, the open ball of radius δ/2 and centred in x is contained in conv(Y ) and does

not meet H. In other words, x ∈ int(Rd\H), i.e. x /∈ cl(H) as required. ��
Now we recall some known topological facts, whose proof may also be easily derived

from Lemma 3.26 in [5].

Lemma 6 If X ⊂ R
d is a compact set, then conv(X) is compact as well. In addition, if 0 /∈

conv(X), then R+conv(X) is closed and there exists cone(X) which satisfies the equalities

cone(X) = R+conv(X) = conv(R+ X).

Corollary 5 Let X ⊂ R
d be a compact connected set and H be a family of hyperplanes such

that

X ∩ cl(H) = ∅.

Then

cone(X) ∩ cl(H) = {0}.
Proof By Proposition 17 we have conv(X) ∩ cl(H) = ∅. Hence, we immediately obtain
R+conv(X) ∩ cl(H) = {0} and, thus, since 0 /∈ conv(X), Lemma 6 concludes the proof. ��

In order to try to reverse Theorem 11, we shall always assume the conditions we have seen
to hold for a family ofmatrices sharing a strictly invariantmulticone: first, to be asymptotically
rank-one (by Theorem 7) and, second, to satisfy (33).

Both the above properties concern the leading eigenvalues and the geometry of the leading
set L(F). So we shall refer to them as the “Leading set assumptions”, together with the
additional demand for irreducibility of F .

For convenience of the reader, we recall this notion.

Definition 20 We say that a family of matricesF = {A1, . . . , Am} is reducible if there exists
a nonzero proper linear subspace L ⊂ R

d invariant for each Ai , i = 1, . . . , m. Otherwise,
we say that F is irreducible.

Note that irreducibility is not restrictive since reducibility only relocates many investiga-
tions into spaces of lower dimensions.

Remark 6 The above notion of reducibility given for a family F has nothing to do with
the well-known notion of reducibility of a matrix A to upper triangular form via similarity
transformations with permutation matrices.

Indeed, most of singleton familiesF = {A} are reducible, although the underlying matrix
A may well be irreducible in the classical sense.
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Assumption 1 (Leading set assumptions) The family F satisfies the following properties:

(i) F is irreducible;
(ii) F is asymptotically rank-one;
(iii) cl(L(F)) ∩ cl(H(F)) = {0}.

First of all, we show that condition (iii) means that L(F) is finitely “fragmented” as
illustrated by the following result.

Theorem 12 Let the family F satisfy Assumption 1. Then there exists a proper multicone
Kmul satisfying (27) and (29), i.e.

cl(L(F))\{0} ⊆ int(Kmul)

and

Kmul ∩ cl(H(F)) = {0},
respectively.

Proof Let H = {h}⊥ ∈ H(F) and let us denote by Sd the closed hypersphere ofR
d of radius

1 centred in the origin. Moreover, let Ŝ := Sd ∩ Sh+ be the positive semisphere and define
the sets L̂ := cl(L(F)) ∩ Ŝ and Ĥ := cl(H(F)) ∩ Ŝ.

Observe that L̂ and Ĥ are closed subsets of Sd and hence are compact as well. Moreover,
Assumption 1-(iii) implies that L̂∩Ĥ = ∅, and thus, their Euclidean distance δ := dist(L̂, Ĥ)

is strictly positive.
Consequently, the compactness of L̂ implies the existence of a finite family of open balls

of R
d , say U1, . . . , Us , of radius δ/2, centred in suitable points of L̂ such that

(
s⋃

i=1

cl(Ui )

)

∩ Ĥ = ∅ and

(
s⋃

i=1

Ui

)

⊃ L̂. (39)

Note that the set

s⋃

i=1

cl(Ui ) ∩ Ŝ

has got a finite number of connected components and denote them by Û1, . . . , Ût .
Now set K (i)

+ := cone(Ûi ) and, with obvious notation, Kmul := ⋃T
i=1 K (i)

sym . Observe that
Kmul is a proper multicone and that H is one of its labelling hyperplanes. It is also clear that
Kmul satisfies condition (27) by construction.

Finally, note that Ûi ∩ cl(H(F)) = ∅ by (39) and so, by Corollary 5,

K (i)
+ ∩ cl(H(F)) = {0}, i = 1, . . . , t,

proving (29). ��

The foregoing theorem shows that the set of all the multicones Kmul which satisfy con-
ditions (27) and (29) is nonempty. A fortiori, there exist multicones verifying the weaker
conditions (22) and (25), which will reveal to constitute the right environment where to look
for invariant multicones.
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Definition 21 We say that the minimum fragmentation index r of the multicones Kmul sat-
isfying conditions (22) and (25), i.e.

cl(L(F)) ⊆ Kmul (40)

and
int(Kmul) ∩ cl(H(F)) = ∅, (41)

is the spectral fragmentation index of the family F and that any of such multicones having
r symmetric components is a spectral multicone for F .

Lemma 7 If Kmul is a spectral multicone for F , then each of its conic components K (i)

intersects the leading set L(F)\{0}.
Proof If not, we could consider the multicone K̃mul obtained by suppressing all the conic
components which do not intersect L(F)\{0}. Clearly, K̃mul would still fulfil (40) and (41)
but with a smaller number of components, against the fact that Kmul is spectral. ��
Proposition 18 If Kmul is a spectral multicone forF , then each two distinct conic components
are weakly separated by a secondary hyperplane.

Proof First observe that assumption (41) implies H ∩ int(Kmul) = ∅ for all H ∈ H(F).
Now assume by contradiction that K (i) ∪ K ( j) ⊆ Sh+ for all H ∈ H(F).

If K ( j) = −K (i), then K (i)
sym ⊆ Sh+. So necessarily K (i) is a degenerate cone and K (i)

sym ⊆
H . But K (i)

sym meets L(F)\{0} by Lemma 7 and this contradicts Assumption 1-(iii).
Now let K ( j) 	= −K (i). Then, by a result of Holmes [13] (see also [6]), we obtain that

cl(conv(K (i) ∪ K ( j))) is a cone, say T+. Thus we can consider the multicone K̃mul obtained
by replacing K (i) ∪ K ( j) by T+ and the union of their opposites by T− := −T+.

Clearly, the fragmentation index of K̃mul is r −1. Therefore, if we show that K̃mul verifies
(40) and (41), we obtain a contradiction.

Since Kmul ⊆ K̃mul , relation (40) comes immediately.
In order to show also (41), it is enough to prove that

int(T+) ∩ cl(H(F)) = ∅. (42)

From the assumption on K (i) and K ( j), for each H ∈ H(F) we have

T+ = cl(conv(K (i) ∪ K ( j))) ⊆ Sh+,

since the half-space Sh+ is convex and closed. Therefore, int(T+) ∩ H = ∅ for all H and
hence, by standard topological arguments, int(T+) being an open set, we obtain the requested
equality (42). ��

The next result makes the notion of fragmentation of the leading set L(F) more precise.

Proposition 19 Let Kmul = ⋃r
i=1 K (i)

sym be a spectral multicone and, for any i = 1, . . . , r ,
let

L(F)
(i)
± := K (i)

± ∩ L(F).

Then, by denoting either of the sets L(F)
(i)
± simply by L(F)(i), we have:

(i) any two distinct setsL(F)(p) andL(F)(q) are separated by some hyperplane H ∈ H(F);
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(ii) if Jmul = ⋃r
i=1 J (i)

sym is another spectral multicone, then for any p = 1, . . . , 2r there
exists q ∈ {1, . . . , 2r} such that K (p) ∩ L(F) = J (q) ∩ L(F).

Proof (i) It comes from Proposition 18 and condition (iii) of Assumption 1.
(ii) Note that any conic component J (q) cannot intersect more than one of the sets L(F)(p)

because Jmul satisfies (41). Therefore, since also Jmul contains the entire L(F) and has
exactly 2r conic components, each of them must contain just one entire set L(F)(q),
and so the thesis is proved.

��
Setting with obvious notation

L(F)(i)sym := L(F)
(i)
+ ∪ L(F)

(i)
−

for any i = 1, . . . , r , the previous result shows that the “fragmentation” of the leading set

L(F) :=
r⋃

i=1

L(F)(i)sym,

is independent of the particular spectral multicone containing it. It is also clear that the above
decomposition is only induced by the secondary set H(F).

Definition 22 The sets L(F)
(i)
sym are called essential symmetric components of L(F) and the

sets L(F)(i) essential conic components.

Remark 7 Theorem 10 and Corollary 3 tell us that, if F is asymptotically rank-one, then any
proper invariant multicone Kmul satisfying (24) necessarily fulfils also (40) and (41). There-
fore, the number of its symmetric components is ≥ r , where r is the spectral fragmentation
index of F .

In particular, if equality holds, Kmul is a spectral multicone and each of its symmetric
(respectively, conic) components contains exactly one essential symmetric (respectively,
conic) component L(F)

(i)
sym (respectively, L(F)(i)).

Theorem 13 Let the family F satisfy Assumption 1. Then there exists a proper spectral
multicone K̃mul satisfying (27) and (29), i.e.

cl(L(F))\{0} ⊆ int(K̃mul)

and

K̃mul ∩ cl(H(F)) = {0},
respectively.

Proof Let Kmul be the proper multicone given by Theorem 12.
For each i = 1, . . . , 2r , consider the conic components of Kmul meeting L(F)(i) and

replace them by their conic hull. The obtained multicone K̃mul clearly verifies (27) and
(29) (with an argument analogous to the one used in the proof of Proposition 18) and its
fragmentation index is r . ��

Now we are going to show the central result of this section, that is, cl(L(F)) is invariant.
The next results are strictly connected to thewell-known“powermethod” for the numerical

approximationof the leading eigenvalue and eigenvector of an asymptotically rank-onematrix
(see, e.g. Dahlquist and Björk [7]) and give a possible hint for an iterative construction of the
set cl (L(F)).
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Lemma 8 Let (Rn)n be a sequence of asymptotically rank-one matrices, (λn)n the cor-
responding leading eigenvalues and (xn)n the corresponding leading eigenvectors with
‖xn‖ = 1. Moreover, assume that

lim
n→∞ Rn = R,

where R is a rank-one matrix whose leading eigenvalue is λ 	= 0 and leading eigenvector is
x with ‖x‖ = 1. Then it holds that

lim
n→∞ λn = λ and lim

n→∞ xn = x . (43)

Proof Since R is a rank-one matrix, we have that dim(ker(R)) = d − 1 and, thus, its
characteristic polynomial is p(z) = (z −λ)zd−1. Analogously, since Rn is an asymptotically
rank-one matrix, its characteristic polynomial is pn(z) = (z − λn)qn(z), where qn(z) is a
polynomial of degree d − 1 whose roots all have a modulus < |λn |. On the other hand, the
coefficients of the characteristic polynomial are continuous functions of thematrix. Therefore,
limn→∞ pn(z) = p(z) for each z ∈ C and, hence, limn→∞ qn(z) = zd−1 for each z ∈ C

and the left-hand limit in (43) holds.
In order to prove the right-hand limit, consider the sequence (xn)n and assume, without

loss of generality, that xTxn ≥ 0. Since ‖xn‖ = 1 for all n, possibly by extracting a suitable
subsequence, we can assume that it converges to a limit vector y such that ‖y‖ = 1 and
xTy ≥ 0.

Now, each vector xn may be written in the form

xn = αn x + un,

where αn ∈ R and un ∈ ker(R) are uniquely determined. Therefore, Rxn = λαn x and so

λxn = αnλx + (λ − λn)xn + (Rn − R)xn .

On the other hand, letting n → ∞ in both the above equalities, we clearly get y = αx + u
for some α ∈ R and u ∈ ker(R) and also λy = αλx . Since λ 	= 0, ‖x‖ = ‖y‖ = 1 and
xTy ≥ 0, we conclude that α = 1 and y = x .

Finally, if we assume that not all the sequences (xn)n converge to x , then we can find
another subsequence which is uniformly bounded away from x and which, by using the same
arguments as before, is proved to necessarily converge to x , making the absurde. So the proof
is complete. ��
Lemma 9 Let the family F of matrices satisfy Assumption 1 and let v ∈ R

d be such that
v /∈ H(F). Then

cl (L(F)) ⊆ cl (Σ(F)span(v)) . (44)

In particular, if v ∈ L(F) (i.e. v = vQ for some Q ∈ Σ(F)), the equality holds.

Proof Let vP ∈ L(F), where P ∈ Σ(F) is an asymptotically rank-onematrix. Then, defining
P̃ := P/λP , we can apply Proposition 7 to P and get

lim
k→∞ P̃kv = (

(vTP h P )−1vP hT
P

)
v = αvP , (45)

where α := (vTP h P )−1hT
Pv. Since v /∈ HP by assumption, we have hT

Pv 	= 0 and, so, α 	= 0.
Consequently,

vP ∈ cl

⎛

⎝
⋃

k≥1

P̃kspan(v)

⎞

⎠ = cl

⎛

⎝
⋃

k≥1

Pkspan(v)

⎞

⎠ ⊆ cl (Σ(F)span(v)) ,
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where the equality follows from the fact that span(v) is homogeneous. Therefore, L(F) ⊆
cl (Σ(F)span(v)), and hence, we get (44).

Now consider the general element PvQ of Σ(F)span(vQ) and show that PvQ ∈
cl (L(F)). Note that vQ /∈ HP by Assumption 1-(iii). Therefore, (45) becomes

lim
k→∞ P̃kvQ = βvP

for some β 	= 0. Still by Assumption 1-(iii), we have βvP /∈ HQ . Consequently, for k̂

sufficiently large it holds that P̃ k̂vQ /∈ HQ and, so, Pk̂vQ /∈ HQ either. Therefore, the same
arguments used before, applied to the asymptotically rank-one matrix Q, lead to

lim
n→∞ Q̃n Pk̂vQ = γ vQ,

where Q̃ := Q/λQ and γ = (vTQhQ)−1hT
Q Pk̂vQ 	= 0, and in turn to

lim
n→∞ P Q̃n Pk̂−1PvQ = γ PvQ .

Now, all the products Rn := P Q̃n Pk̂−1 are asymptotically rank-one by Assumption 1-
(ii). Furthermore, Q being asymptotically rank-one, Proposition 7 clearly implies that

R := limn→∞ P Q̃n Pk̂−1 is a rank-one matrix and, consequently, that PvQ is its (unique)

leading eigenvector. Therefore, since the (normalized) leading eigenvectors of P Q̃n Pk̂−1

and P Qn Pk̂−1 clearly coincide, by Lemma 8 we can conclude that PvQ ∈ cl (L(F)) and,
so, Σ(F)span(vQ) ⊆ cl (L(F)). Passing to the closure completes the proof. ��

The following result and its consequences come out directly.

Theorem 14 Let the family F of matrices satisfy Assumption 1. Then the set cl (L(F)) is
invariant for F .

Corollary 6 Let the family F satisfy Assumption 1. Then span (L(F)) = R
d .

Proof By Theorem 14, the linear space span (L(F)) = span (cl (L(F))) is invariant for F
as well. The assumed irreducibility of F yields the result. ��
Remark 8 Theorem 14 also implies that, if the family F of matrices satisfies Assumption 1,
then

PvQ /∈ cl (H(F)) for all P, Q ∈ Σ(F).

This fact tells us that, in the secondpart of the proof ofLemma9,we can choose k̂ = 1. In other
words, PvQ is the leading eigenvector of the rank-one limit matrix P Q̃∞ := limn→∞ P Q̃n .

The next result is an immediate consequence of Theorem 14 and Remark 8.

Corollary 7 Let the family F of matrices satisfy Assumption 1. Then the set cl (L(F)) \{0} is
invariant for F .

Even if the whole leading set spans the ambient space R
d , it is not difficult to see that this

is not necessarily true for each single essential conic component.
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Example 2 Consider the 2 × 2 family F = {A, B}, where

A =
⎡

⎣
1 −1

0 0

⎤

⎦ and B =
⎡

⎣
0 0

1 1

⎤

⎦

are rank-one matrices. It holds that

λA = 1, vA = [1, 0]T, HA = ker(A) = span
([1, 1]T)

and

λB = 1, vB = [0, 1]T, HB = ker(B) = span
([1,−1]T)

.

It is immediate to see that all P ∈ Σ(F) are rank-one matrices and that

L(F) = span({vA}) ∪ span({vB}) and H(F) = HA ∪ HB .

Moreover, span({vA}) and span({vB}) are separated by HA and HB . Therefore, either of them
is an essential symmetric component of L(F) which does not span the whole ambient space
R
2. ��
The following property will be crucial in the sequel.

Definition 23 We say that the family F is L-full if

span
(
L(F)(i)

)
= R

d , i = 1, . . . , 2r .

Remark 9 If F is L-full, then each cone containing L(F)(i) is proper.

We conclude this section with a result that generalizes Proposition 9 to an asymptotically
rank-one family of matrices.

Proposition 20 Let the family F of matrices satisfy Assumption 1. Then

cl(H(F)) =
⋃

h∈L(FT))\{0}
{h}⊥.

Proof If x ∈ cl(H(F))\{0}, there exists a sequence (xn)n such that limn→∞ xn = x , where
xn ∈ HPn and Pn ∈ Σ(F). Thus, for each n, we can consider a leading eigenvector h Pn =
vPT

n
∈ L(FT) (see Proposition 9). Obviously

hT
Pn

xn = 0 (46)

and we can assume
‖h Pn ‖ = 1. (47)

Since the sequence (h Pn )n is uniformly bounded, it is not restrictive to suppose that there
exists a vector h with ‖h‖ = 1 such that limn→∞ h Pn = h, so that h ∈ cl(L(FT))\{0}. On
the other hand, by (46) we obtain

hTx = (h − h Pn )
Tx + hT

Pn
(x − xn)

and hence, by using the Cauchy–Schwartz inequality and (47), we get

|hTx | ≤ ‖h − h Pn ‖ · ‖x‖ + ‖x − xn‖
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which, for n → ∞, yields hTx = 0.
Conversely, let x 	= 0 such that hTx = 0 for some h ∈ cl(L(FT))\{0}. Then there exists

a sequence (h Pn )n converging to h and such that h Pn ∈ L(FT)\{0}.
Now, for each n we consider the orthogonal projection x̂n of x onto the hyperplane HPn .

Clearly, Pythagoras’ theorem yields

‖x̂n‖2 = ‖x‖2 − ‖x − x̂n‖2 < ‖x‖2. (48)

Hence, the sequence (x̂n)n is uniformly bounded and, consequently, it is not restrictive to
assume that it converges to a vector x̂ ∈ cl(H(F)).

Assume by contradiction that
x − x̂ 	= 0. (49)

Since 0 	= x − x̂n ∈ (HPn )
⊥, we get h Pn = αn(x − x̂n) for some αn 	= 0. Thus, the

convergence of h Pn and x̂n implies the existence of limn→∞ αn , say α, clearly nonzero, and
that h = α(x − x̂). Since hTx = 0, then x̂Tx = ‖x‖2 and, therefore,

‖x‖4 = (x̂Tx)2 ≤ ‖x̂‖2 · ‖x‖2 = ‖x‖4 − ‖x‖2 · ‖x − x̂‖2 < ‖x‖4,
where the second equality follows from (48) for n → ∞ and the last strict inequality from
x − x̂ 	= 0 and x 	= 0.

We conclude that (49) cannot hold and, hence, that x = x̂ ∈ cl(H(F)). ��
Corollary 8 Given a family of matrices F , the following conditions are equivalent:

(i) cl (L(F)) ∩ cl (H(F)) = {0};
(ii) hTv 	= 0 for all v ∈ cl(L(F))\{0} and h ∈ cl(L(FT))\{0};
(iii) cl

(L(FT)
) ∩ cl

(H(FT)
) = {0}.

In particular, the family F of matrices satisfies Assumption 1 if and only if the transpose
family FT does so.

Proof Conditions (i) and (ii) are equivalent by Proposition 20. Moreover, since the latter
condition is clearly symmetric in F and FT and since (FT)T = F , conditions (ii) and (iii)
are also equivalent by Proposition 20 applied to FT.

To conclude the proof, we observe that, as is easy to see, F is irreducible if and only if
FT is so and that F is asymptotically rank-one if and only if FT is so (see Remark 4). ��

As a consequence of the previous results, we have the following corollary [generalizing
Proposition 8-(iii)].

Corollary 9 Let the family F of matrices satisfy Assumption 1. Then

{x ∈ R
d | Px ∈ cl(H(F)) for some P ∈ Σ(F)} ⊆ cl(H(F)).

Proof If Px ∈ cl(H(F)), by Proposition 20 there exists

h ∈ cl
(L(FT)

) \{0} (50)

such that
(PTh)Tx = hTPx = 0. (51)

Consequently, x ∈ {PTh}⊥ and thus, again by Proposition 20, we are left to show that
PTh ∈ cl

(L(FT)
) \{0}.

But this holds since, by Corollary 8, also the transpose family FT satisfies Assumption 1
and, therefore, by Corollary 7 applied to the transpose family, cl

(L(FT)
) \{0} is invariant

for FT. ��
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5 Existence of the “smallest” invariant multicone

In this section, we prove the existence of an invariant multicone for a finite family of matrices
F under the “Leading set assumptions”. Observe that Theorem 10 forces us to look for it
among the multicones containing L(F), i.e. satisfying condition (40).

Let the family F of matrices be L-full and satisfy Assumption 1 and let r be its spectral
fragmentation index. We set

KF (i)
+ := cone

(
L(F)

(i)
+

)
and KF (i)

− := cone
(
L(F)

(i)
−

)
(52)

and

KF
mul :=

r⋃

i=1

KF (i)
sym . (53)

Since F is L-full, all the cones (52) are proper by Remark 9.

Proposition 21 In the above assumptions, the following properties hold:

(i) Kmul ⊇ KF
mul for any spectral multicone Kmul ;

(ii) KF
mul is a proper multicone, spectral itself.

Thus KF
mul is the smallest spectral multicone for F .

Proof (i) By Remark 7, each conic component of a spectral multicone Kmul contains exactly
one essential conic component. Then K (i) ⊇ KF(i) for all i .

(ii) Note first that Theorem 13 assures the existence of spectral multicones. Therefore, from
the previous inclusion and from the fact that KF

mul is a union of symmetric cones, it
follows that KF

mul verifies (m1) and (m2) of Definition 5 and thus is a multicone itself.
Moreover, by (52) and (53), KF

mul has got as many conic components as the number of
essential conic components of L(F), that is 2r .

We are left to show that KF
mul verifies (40) and (41). Observe first that, by (52),

cl
(L(F)(i)

) ⊆ KF (i) for all i = 1, . . . , 2r , and this implies (40). Finally,

int(KF
mul) ∩ cl(H(F)) = ∅

comes immediately from (i) and from the fact that each spectral multicone verifies (41). ��
Definition 24 We say that the multicone KF

mul is the leading multicone of F .

Now we show that KF
mul is not only spectral, but also verifies a stronger property than

(41).

Proposition 22 The leading multicone KF
mul satisfies condition (29), i.e.

KF
mul ∩ cl(H(F)) = {0}, (54)

and is reduced.

Proof Property (54) follows from Theorem 13 and Proposition 21-(i).
In order to prove the last claim, recall that KF

mul is spectral by Proposition 21-(ii). Thus, by
Proposition 18, for any i 	= j there exists a hyperplane Hi j ∈ H(F) which weakly separates
KF (i) from KF ( j).

On the other hand, by (54) we necessarily have that

KF (i) ∩ Hi j = {0} = KF ( j) ∩ Hi j .
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Therefore, Hi j strictly separates KF (i) from KF ( j).
Finally, since Hi j ∈ H(F), it is a splitting hyperplane for KF

mul by Remark 5. So KF
mul is

reduced (see Definition 6). ��
In order to show the invariance of KF

mul , we need a preliminary result which better focuses
the invariance of cl(L(F)) (see Theorem 14).

Let us use the following notation: consider the decomposition of L(F) as the union of its
2r essential conic components L(F)(i). So, setting Li := cl(L(F)(i)), we can write

cl(L(F)) =
2r⋃

i=1

Li .

Lemma 10 Assume that F verifies Assumption 1 and let P ∈ Σ(F). Then for any i ∈
{1, . . . , 2r} there exists j ∈ {1, . . . , 2r} such that

P(Li ) ⊆ L j .

Proof If it were not so, there would exist two nonzero vectors v1, v2 ∈ Li such that Pv1 ∈
L j\{0} and Pv2 ∈ Lk\{0}, with j 	= k. By Proposition 19, there exists HQ ∈ H(F) which
weakly separates Li from L j . Therefore, there exists a vector y such that

P(βv1 + (1 − β)v2) = β Pv1 + (1 − β)Pv2 = y ∈ HQ .

Let x := βv1 + (1 − β)v2. Note that x ∈ conv(Li\{0}) = conv(Li )\{0}, as is easy to see.
Moreover, since L(F)(i) is positively homogeneous, equality (1) yields

conv(Li ) = conv(cl(L(F)(i))) = KF(i)

and, so, x ∈ KF(i)\{0}.
On the other hand, Px ∈ cl(H(F)). So, by Corollary 9 it follows that x ∈ cl(H(F)).

Hence

x ∈ KF
mul ∩ cl(H(F)) = {0},

where the above equality follows from Proposition 22, and this is impossible since x 	= 0.
��

Theorem 15 Let the family F be L-full and satisfy Assumption 1. Then the leading multicone
KF

mul is invariant for F .

Proof Clearly, it is enough to show that, if P ∈ Σ(F), then for any i ∈ {1, . . . , 2r} there
exists j ∈ {1, . . . , 2r} such that

P(KF(i)) ⊆ KF( j).

Since KF(i) = cl(conv(L(F)(i))), we have

P(KF(i)) ⊆ cl(P(conv(L(F)(i)))) ⊆ cl(conv(P(L(F)(i)))) ⊆ KF( j)

where the first and the second inclusions come from the continuity and the linearity of the
map P , respectively, while the last one comes from Lemma 10. ��
Corollary 10 Let the family F be L-full and satisfy Assumption 1. Then both (KF

mul)
† and

(KF
mul)

× are invariant for FT.
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Proof Equation (54)means that (14) and, hence, also (16) hold for anymatrix ofF . Therefore,
we can apply Proposition 15-(i) to themulticone KF

mul , invariant forF , obtaining that (KF
mul)

†

is invariant for FT.
Moreover, Corollary 3 implies that (KF

mul)
× is invariant for FT, too. ��

6 Existence of the “biggest” invariant multicone

As illustrated in the previous sections, the leading multicone KF
mul is, in some sense, the

“smallest” invariant multicone which can be naturally associated with the family F of matri-
ces. Now, starting again from the essential fragmentation of L(F), we want to define an
invariant multicone, in some sense the “biggest”, containing L(F) and not intersecting
cl(H(F)) but on the boundary.

To this purpose, consider an L-full family F satisfying Assumption 1 and, for each i =
1, . . . , r , the essential component L(F)

(i)
+ of the leading set. Moreover, for any P ∈ Σ(F),

denote by S(i)
P+ the closed semi-space determined by HP containing L(F)

(i)
+ .

Consider now a spectral multicone Kmul = ⋃r
i=1 K (i)

sym and observe that, for any P ∈
Σ(F), its positive conic components satisfy

L(F)
(i)
+ ⊆ K (i)

+ ⊆ S(i)
P+,

since Kmul verifies (40) and (41). Hence,

K (i)
+ ⊆

⋂

P∈Σ(F)

S(i)
P+.

Therefore, it comes natural to define the set

K̄F (i)
+ :=

⋂

P∈Σ(F)

S(i)
P+. (55)

Remark 10 From the above argument, it is clear that, if Kmul = ⋃r
i=1 K (i)

sym is a spectral
multicone, then

K (i)
+ ⊆ K̄F (i)

+
for all i = 1, . . . , r . Obviously, the same holds for the opposite components.

Proposition 23 For each i = 1, . . . , r , the set K̄F (i)
+ is a proper cone and verifies

KF (i)
+ \{0} ⊆ int(K̄F (i)

+ ), (56)

int(K̄F (i)
+ ) ∩ cl(H(F)) = ∅ (57)

and
∂ K̄F (i)

+ ⊂ cl(H(F)). (58)

Proof With reference to Definition 1, it is clear that the set K̄F (i)
+ is positively homogeneous.

Now assume by contradiction that it is not salient, i.e. there exists x 	= 0 such that span(x) ⊂
K̄F (i)

+ , which means that span(x) ⊂ S(i)
P+ for all P ∈ Σ(F) and, consequently, span(x) ⊂

HP for all P ∈ Σ(F).
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On the other hand, by Proposition 9, we have that

vTPT x = 0 for all PT ∈ Σ(FT),

but this is impossible because L(FT) spans the whole R
d by Corollaries 8 and 6 applied to

the transpose family FT. Finally, K̄F (i)
+ is solid since it contains L(F)

(i)
+ (see Remark 9), so

it is a proper cone.
In order to show (56), just observe that KF (i)

+ ⊆ K̄F (i)
+ . Now, using (54) and (58), we

obtain KF (i)
+ ∩ ∂ K̄F (i)

+ = {0} as required.
In order to show (57), let us recall that

int
(

K̄F (i)
+

)
⊆

⋂

P∈Σ(F)

int
(

S(i)
P+

)
.

In particular, for each x ∈ int
(

K̄F (i)
+

)
it holds that x /∈ HP for all P ∈ Σ(F). Therefore,

x /∈ H(F) and, so, int(K̄F (i)
+ ) ∩ H(F) = ∅. By standard topological arguments we get the

required equality.
Now let us prove that, if x ∈ K̄F (i)

+ \cl(H(F)), then x ∈ int(K̄F (i)
+ ).

Clearly, there exists δ > 0 such that B(x, δ)∩cl(H(F)) = ∅. In particular, B(x, δ)∩Hp =
∅ for all P ∈ Σ(F). Therefore, B(x, δ) ⊆ S(i)

P+ for all P ∈ Σ(F) and so (58) is proved. ��

Consequently, with K̄F (i)
− := −K̄F (i)

+ , i = 1, . . . , r , we obtain the symmetric cones

K̄F (i)
sym := K̄F (i)

+ ∪ K̄F (i)
− . (59)

Instead of proving directly that
⋃r

i=1 K̄F (i)
sym verifies conditions (m1) and (m2) of Def-

inition 5, i.e. that it is a multicone, we shall prove that each K̄F (i)
sym is a symmetric

component of another multicone. To the aim of doing this, we consider the transpose family
FT = {AT

1 , . . . , AT
m} and the fragmentation of its leading set L(FT) into its essential conic

components L(FT)(k), k = 1, . . . , 2s, i.e.

L(FT) =
2s⋃

k=1

L(FT)(k).

The number s of essential symmetric components of L(FT) (i.e. the spectral fragmentation
index of FT) does not necessarily equal r , the one of L(F).

Recall that Assumption 1 on F is transmitted to FT (see Corollary 8). On the contrary,
it is not difficult to convince oneself that the property of being L-full is not transmitted.
Therefore, from now on it will be necessary to assume explicitly that also FT is L-full, i.e.
that

span
(
L(FT)(k)

)
= R

d , k = 1, . . . , 2s.

The above hypothesis allows us to perform the construction of the leading multicone also
for FT, obtaining KFT

mul and, in particular, by Proposition 22, that

KFT

mul ∩ cl(H(FT)) = {0}.
In this framework, now we investigate the relations between the conic components of the

dual multicone (KFT

mul)
† and the cones K̄F (i)

± .
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Lemma 11 Let KF (i) and KFT (k) be any two conic components of the leading multicones
of F and FT, respectively. Then for all v ∈ KF (i)\{0} and for all h1, h2 ∈ KFT (k)\{0} it
holds that

(vTh1)(v
Th2) > 0. (60)

Proof Consider h1, h2 ∈ cl(L(FT)(k))\{0}. By Proposition 22 applied to the family FT,
these vectors are not separated by cl(H(FT)).

Therefore, using the expression of cl(H(FT)) given in Proposition 20, we get (60) for all
v ∈ cl(L((FT)T))\{0} = cl(L(F))\{0}. In particular, (60) holds for all v ∈ cl(L(F)(i))\{0}
and h1, h2 ∈ cl(L(FT)(k))\{0}.

We complete the proof by using (1) and standard convexity arguments. ��
Lemma 12 For any i = 1, . . . , r and k = 1, . . . , 2r† one of the following two possibilities
necessarily occurs:

KFT (k)\{0} ⊆ int((KF (i)
+ )∗) or KFT (k)\{0} ⊆ int((KF (i)

− )∗). (61)

Consequently,

cone
(

KFT

mul ∩ int((KF (i)
+ )∗)

)
∪ cone

(
KFT

mul ∩ int((KF (i)
− )∗)

)

is a symmetric cone associated with KFT

mul .

Proof Observe that (61) follows from Lemma 11 and implies that int((KF (i)
+ )∗) induces

a partition of KFT

mul in two unions of conic components, symmetric to each other. By the

convexity of the cone int((KF (i)
+ )∗), we obtain the last claim (see Definition 10). ��

Theorem 16 Let both the families F and FT be L-full and satisfy Assumption 1. Then each
K̄F (i)

sym is a symmetric component of the proper dual multicone (KFT

mul)
×.

Proof First observe that K̄F (i)
+ is a proper cone (see Proposition 23). Therefore, byTheorem2

(which describes (KFT

mul)
† in terms of associated cones) and by Lemma 12, it is enough to

show that, for all i = 1, . . . , r ,

K̄F (i)
+ =

(
cone

(
KFT

mul ∩ int((KF (i)
+ )∗)

))∗
. (62)

Note first that by definition S(i)
P+ = {h(i)

P }∗ where (h(i)
P )Tv > 0 for all v ∈ cl(L(F)

(i)
+ )\{0}.

It is easy to see that this last condition is equivalent to (h(i)
P )Tv > 0 for all v ∈ KF (i)

+ \{0},
i.e. to h(i)

P ∈ int((KF (i)
+ )∗).

On the other hand, h(i)
P = vPT ∈ L(FT), so

K̄F (i)
+ =

⋂

h∈Wi

{h}∗, where Wi := L(FT) ∩ int((KF (i)
+ )∗),

and hence, by Remark 1,

K̄F (i)
+ =

(
L(FT) ∩ int((KF (i)

+ )∗)
)∗

.

Finally recall that, as can be found in [6],
(
L(FT) ∩ int((KF (i)

+ )∗)
)∗ =

(
cone

(
L(FT) ∩ int((KF (i)

+ )∗)
))∗

.
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Therefore, in order to prove (62), it is enough to show that

cone
(
L(FT) ∩ int((KF (i)

+ )∗)
)

= cone
(

KFT

mul ∩ int((KF (i)
+ )∗)

)

and this holds by using (61) and (1). ��
At this point we can introduce the multicone collecting the symmetric cones defined in

(59).

Definition 25 The proper multicone

K̄F
mul :=

r⋃

i=1

K̄F (i)
sym

is called the secondary multicone of F .

In analogy to what we saw for the leading multicone KF
mul , we have the following facts

concerning the secondary multicone.

Proposition 24 Let both the families F and FT be L-full and satisfy Assumption 1. Then the
following properties hold:

(i) Kmul ⊆ K̄F
mul for any spectral multicone Kmul ;

(ii) the proper multicone K̄F
mul is spectral itself.

Thus K̄F
mul is the biggest spectral multicone for F .

Proof (i) It immediately follows from Remark 10.
(ii) The fragmentation index of K̄F

mul is the right one by construction. Moreover, (40)
follows from (56) and (41) from (57). ��

Now we show that K̄F
mul is not only spectral, but also verifies a stronger property than

(40).

Proposition 25 The secondary multicone K̄F
mul satisfies condition (27), i.e.

cl(L(F))\{0} ⊆ int(K̄F
mul),

and is reduced.

Proof The inclusion follows immediately from (56) and from the definition of KF
mul . The

reducibility follows from Theorem 16 and Proposition 6. ��
Proposition 23 and Theorem 16 also give rise to the chain of inclusions

KF
mul\{0} ⊆ int(K̄F

mul) ⊆ int((KFT

mul)
×) (63)

and, with reference to Definition 17, clearly assure the following result.

Proposition 26 Let both the families F and FT be L-full and satisfy Assumptions 1. Then
K̄F

mul is the submulticone of (KFT

mul)
× covering KF

mul .

Indeed, the second inclusion in (63) may be actually strict. If this is the case, then (KFT

mul)
×

have got some more symmetric components than K̄F
mul and precisely those which do not

intersect the leading set L(F).
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Remark 11 Assuming as usual that both F and FT are L-full and satisfy Assumption 1, we
can apply Theorem15 to the familyFT obtaining that KFT

mul is invariant forFT. Consequently,
(23) yields

int((KFT

mul)
×) ∩ cl(H(F)) = ∅

since (FT)T = F , and this is consistent to and confirms (57).

We conclude this section with the last of the main results of the paper.

Theorem 17 Let both the families F and FT be L-full and satisfy Assumption 1. Then the
multicones K̄F

mul , (KFT

mul)
† and (KFT

mul)
× are invariant for F .

Moreover, also the open set int(K̄F
mul) is invariant for F .

Proof We have that KFT

mul is invariant for FT (see Remark 11). Thus, Corollary 10 implies

that (KFT

mul)
† and (KFT

mul)
× are invariant for (FT)T = F . Consequently, the invariance of

K̄F
mul follows from the invariance of KF

mul , inclusions (63) and Proposition 16.
Finally, let x ∈ int(K̄F

mul). If Px /∈ int(K̄F
mul), then Px ∈ ∂(K̄F

mul) and hence, by (58),
Px ∈ cl(H(F)). Therefore, by Corollary 9, x ∈ cl(H(F)) contradicting (57). ��

7 Basic computational procedure

We conclude the paper with the outline of a procedure able to compute the “smallest” and
the “biggest” invariant multicones KF

mul and K̄F
mul (and also KFT

mul and K̄FT

mul ) of a family F
of matrices under Assumption 1 in the case that both F and FT are L-full.

The algorithm we are going to propose is of iterative type. Although it is assured to
converge in infinitely many iterations, it would be desirable that it ends successfully in a
finite number of them. Therefore, we shall give a criterion to recognize this nice occurrence,
which is actually feasible.

The idea is to provide finite systems of generators (i.e. sets of edges) of certain polyhedral
multicones, say Kmul and K̄mul , which approximate or, possibly, coincide with KF

mul and
K̄F

mul .
Unfortunately, apart from the irreducibility of F (very easy to check), in most of practical

cases we do not know a priori whether the hypotheses made above are satisfied or not and,
therefore, the iterations might not converge. For this reason, the algorithm is designed in
such a way that the assumptions on the matrices can be monitored in real time while running.
Should we find that one of them fails to hold, the procedure would be stopped without any
output. In particular, whenever we process a matrix P ∈ Σ(F), we verify whether it is
asymptotically rank-one or not.

Even when the algorithm ends successfully in a finite number of iterations, it furnishes an
embedded pair of invariant multicones without assuring that the family F is asymptotically
rank-one and, consequently, without assuring the existence of L(F) and H(F) (and hence
the existence of KF

mul and K̄F
mul ). Therefore, a fortiori, we are not sure that the computed

multicones Kmul and K̄mul actually coincide with KF
mul and K̄F

mul . This is due to the fact that
we are not able to establish whether a family F is asymptotically rank-one or not from the
sole knowledge of a finite subset of Σ(F).

In the light of the foregoing discussion, now we present the theoretical background of
our algorithm, assuming that the family F is irreducible but not necessarily asymptotically
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rank-one. This requirement is imposed on the generators Ai ofF and on the various matrices
P ∈ Σ(F) involved by the procedure only. Also the separation between the leading and the
secondary set is checked limited to the same matrices.

Let us first recall that, for any asymptotically rank-one matrix P , we haveR
d = VP ⊕ HP ,

where VP is the leading eigenspace, HP is the secondary hyperplane and it holds that VPT =
H⊥

P [see (13)].
Consider finite subsets Σ̃ and Ω̃ of Σ(F) and a pair of (finite) sets L̃ and L̃T satisfying

the following properties:

(p1) any P ∈ Σ̃ ∪ Ω̃ is asymptotically rank-one;
(p2) L̃ = Ṽ ∪ W̃ , where

Ṽ := {VP
∣∣ P ∈ Σ̃}

and W̃ is a finite subset (possibly empty) of
{

Q(VR) � L(F)
∣∣ Q ∈ Ω̃ and R ∈ Σ̃

}
;

(p3) L̃T = ṼT ∪ W̃T, where

ṼT := {VPT

∣∣ P ∈ Σ̃}
and W̃T is a finite subset (possibly empty) of

{Q̄T(VR̄T ) � L(FT)
∣∣ Q̄ ∈ Ω̃ and R̄ ∈ Σ̃}.

Remark 12 If Assumption 1 holds, property (p1) is necessarily true.

Note also that W̃ and W̃T are not necessarily related, although L̃ and L̃T are strictly linked
to each other.

Then we define

H̃ :=
⋃

h∈L̃T\{0}
{h}⊥ and H̃T :=

⋃

v∈L̃\{0}
{v}⊥

and assume that

(p4) L̃ ∩ H̃ = {0} and L̃T ∩ H̃T = {0}.
Remark that, since Σ̃ and Ω̃ are finite, property (p4) may be actually checked.
Reasoning like in the proof of Lemma 9 and in Remark 8, we easily find that, if R ∈

Σ̃ (assuming without restriction that λR = 1), a vector QvR belonging to W̃ is leading
eigenvector of the rank-one limit matrix Q R∞ of the sequence of products Q Rn as n → ∞,
i.e. QvR = vQ R∞ . In fact, property (p4) assures that QvR /∈ HR .

Moreover, still by using similar arguments it is easy to see that the vector hQ R∞ coincides
with h R , the leading eigenvector of RT. Since vR ∈ Ṽ , it holds that hQ R∞ = h R ∈ ṼT ⊆ L̃T.

Summarizing, the vectors of W̃ are leading eigenvectors of rank-one limit matrices whose
secondary hyperplanes are orthogonal to vectors of ṼT ⊆ L̃T. Hence, such hyperplanes are
already included in H̃, i.e.

Q(VR) = VQ R∞ ⊆ L̃ �⇒ HQ R∞ = {h R}⊥ ⊆ H̃.

Vice versa, the hyperplane {QvR}⊥ = {vQ R∞}⊥, which is contained in H̃T, is the sec-
ondary hyperplane of the rank-one limit matrix (Q R∞)T = (RT)∞QT of the sequence of
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transpose products (RT)n QT as n → ∞. However, similarly as before, we can see that the
leading eigenvector v(RT)∞ QT of (RT)∞QT is equal to vRT ∈ ṼT ⊆ L̃T.

Summarizing again, the hyperplanes of H̃T of the type {QvR}⊥ are secondary hyperplanes
of rank-one limit matrices whose leading eigenvectors belong to ṼT ⊆ L̃T. Hence, such
leading eigenvectors are already included in L̃T, i.e.

{QvR}⊥ = H(RT)∞ QT ⊆ H̃T �⇒ V(RT)∞ QT = VRT ⊆ L̃T.

Of course, similar arguments apply to the vectors Q̄Th R̄ ∈ L̃T, so that

Q̄T(VR̄T ) = VQ̄T(R̄T)∞ ⊆ L̃T �⇒ HQ̄T(R̄T)∞ = {vR̄}⊥ ⊆ H̃T

and

{Q̄TvR̄}⊥ = HR̄∞ Q̄ ⊆ H̃ �⇒ VR̄∞ Q̄ = VR̄ ⊆ L̃.

Remark 13 If Assumption 1 holds, from the above discussion it appears that

L̃ ⊆ cl(L(F)) and L̃T ⊆ cl(L(FT)) (64)

and, dually, that
H̃ ⊆ cl(H(F)) and H̃T ⊆ cl(H(FT)). (65)

Therefore, in this case, property (p4) is necessarily true.

In Sect. 4 we saw that the decomposition ofL(F) into its essential symmetric components
is only induced by the secondary set H(F). In the same way, we consider the (uniquely
determined) decomposition of L̃ induced by H̃. We denote it by

L̃ =
r̃⋃

i=1

(
L̃(i)

+ ∪ L̃(i)
−

)
,

where the positive and the negative parts, called again the essential components, are deter-
mined by the choice of a particular hyperplane Ĥ ∈ H̃.

Remark 14 If Assumption 1 holds, by (64) and (65) we have that r̃ ≤ r , where r is the
spectral fragmentation index of F .

We also make the following assumption:

(p5) span(L̃(i)
± ) = R

d , i = 1, . . . , r̃ .

In our terminology, polyhedral multicones are those having polyhedral cones as conic
components. Recall that a polyhedral cone can be defined either as the cone generated by a
finite number of half-lines or, equivalently, as a finite intersection of semi-spaces.

In analogy to the notion of KF
mul , we introduce the corresponding multicone associated

with L̃.

Definition 26 The multicone

Kmul :=
r̃⋃

i=1

K (i)
sym,
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where K (i)
sym := K (i)

+ ∪ K (i)
− with

K (i)
+ := cone(L̃(i)

+ ) and K (i)
− := cone(L̃(i)

− ), (66)

is called the partial leading multicone corresponding to L̃.
Note that, since L̃ is the union of a finite number of straight lines, Kmul is of polyhedral

type and so we can find, uniquely determined, a minimum subset of them, say Ẽ , such that,
with Ẽ(i)

± := Ẽ ∩ L̃(i)
± , i = 1, . . . , r̃ , relations (66) become

K (i)
+ := cone(Ẽ(i)

+ ) and K (i)
− := cone(Ẽ(i)

− ). (67)

Remark that, in the geometric terminology, the half-lines constituting Ẽ(i)
± are the edges

of the cone K (i)
± . Hence, for the sake of brevity, Ẽ will be called the set of the edges of Kmul .

As done before, we give the notion analogous to K̄F
mul in the polyhedral case.

Definition 27 Consider the set

K̄mul :=
r̃⋃

i=1

K̄ (i)
sym,

where
K̄ (i)

sym := K̄ (i)
+ ∪ K̄ (i)

− , K̄ (i)
+ :=

⋂

h∈L̃T\{0}
S(i)

h+, (68)

and, as usual, for any h ∈ L̃T\{0}, we denote by S(i)
h+ the closed semi-space determined

by H = {h}⊥ containing K (i)
+ . Such a set will be called the partial secondary multicone

corresponding to L̃.
Note that similar arguments to those used in the proof of Proposition 23 allow us to

conclude that the sets K̄ (i)
+ are proper cones.

Similarly as in Sect. 6, the forthcoming Proposition 27 assures that K̄mul is actually a
multicone (in particular, that the cones K̄ (i)

+ satisfy conditions (m1) and (m2) of Definition 5).
Moreover, it is polyhedral since each of its conic components is a finite intersection of semi-
spaces.

As done before, starting from the pair of sets L̃T and H̃T, we arrive at defining the essential
components, which we assume to be such that

(p6) span(L̃T (i)
± ) = R

d , i = 1, . . . , s̃.

Remark 15 Here, if Assumption 1 holds, still by (64) and (65) we have that s̃ ≤ s, where s
is the spectral fragmentation index of FT.

In analogy with the previous Definitions 26 and 27, we introduce the multicones KT
mul

and K̄T
mul , referred to the transpose family FT.

Remark 16 Similarly to what we saw in Proposition 23, the just defined partial leading and
secondary multicones fulfil the following properties:

Kmul\{0} ⊆ int(K̄mul), int(K̄mul) ∩ H̃ = ∅ and ∂ K̄mul ⊆ H̃
and

KT
mul\{0} ⊆ int(K̄T

mul), int(K̄T
mul) ∩ H̃T = ∅ and ∂ K̄T

mul ⊆ H̃T.
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Definition 28 Any pair (L̃, L̃T) enjoying the properties (p1–p6) is called a consistent pair of
sets of leading eigenvectors for the families F and FT.

Reasoning in the sameway as in Sect. 6, we obtain the following analogues of Theorem 16
and Proposition 26.

Proposition 27 Let (L̃, L̃T) be a consistent pair of sets of leading eigenvectors for the fam-
ilies F and FT. Then each symmetric component of the partial secondary multicones K̄mul

(respectively, K̄T
mul ) is a symmetric component of the proper dual (KT

mul)
× (respectively,

K ×
mul ).

Proposition 28 Let (L̃, L̃T) be a consistent pair of sets of leading eigenvectors for the families
F and FT. Then K̄mul is the submulticone of (KT

mul)
× covering Kmul and, dually, that K̄T

mul
is the submulticone of K ×

mul covering KT
mul .

Moreover, the following result is similar to Theorem 17 even if requires the invariance of
the partial leading multicones.

Theorem 18 Let (L̃, L̃T) be a consistent pair of sets of leading eigenvectors for the families
F and FT. If the partial leading multicones Kmul and KT

mul are invariant for F and FT,
respectively, then also K̄mul , (KT

mul)
† and (KT

mul)
× are invariant for F and, dually, K̄T

mul ,

K †
mul and K ×

mul are invariant for FT.

Anyway, we cannot prove the invariance of int(K̄mul) and int((KT
mul)

†) because the ana-
logue of Corollary 9 is not assured to hold for H̃ if this set does not equal cl(H(F)).

The foregoing theorem obviously suggests to stop the algorithm when it produces a pair
(Kmul , KT

mul ) of invariant multicones for F and FT.
In addition, the next result shows that, in case of F being asymptotically rank-one, the

output (Kmul , KT
mul ) of this procedure coincides with the pair (KF

mul , KFT

mul) itself.

Theorem 19 Let the family F be asymptotically rank-one and let (L̃, L̃T) be a consistent
pair of sets of leading eigenvectors for F and FT. If the partial leading multicones Kmul and
KT

mul are invariant for F and FT, respectively, then:

(i) cl(L(F)) ∩ cl(H(F)) = {0} (hence, Assumption 1 holds);
(ii) F and FT are L-full;
(iii) Kmul = KF

mul and KT
mul = KFT

mul ;

(iv) K̄mul = K̄F
mul and K̄T

mul = K̄FT

mul .

Proof By Theorem 10 we have that (40) holds for F , i.e.

cl(L(F)) ⊆ Kmul

and, since (FT)T = F , also that (23) holds for FT, i.e.

int((KT
mul)

†) ∩ cl(H(F)) = ∅. (69)

Finally, Remark 16 and Proposition 28 yield

Kmul\{0} ⊆ int((KT
mul)

†), (70)

so that (i) is proved.
Concerning (ii), F is L-full by property (p5) and FT is L-full by property (p6).
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In order to show (iii), observe that inclusions (69) and (70) imply the validity of condition
(16) for Kmul for all P ∈ Σ(F). Thus, Kmul being invariant for F , Remark 7 tells us that
r̃ ≥ r . Since the opposite inequality holds in any case (see Remark 14), we conclude that
r̃ = r . Finally, again Remark 7 assures that Kmul is a spectral multicone for F . Hence, in
particular, Kmul ⊇ KF

mul .
To show the opposite inclusion, just observe that not only L̃ ⊆ cl(L(F)) holds, but also

L̃(i) ⊆ cl(L(F)(i)), for all i , still by Remark 7. Thus (iii) is proved.
Finally, by (iii) and Propositions 26 and 28, the proof of (iv) is completed. ��
The localization result (see Proposition 10) implies that the invariance of Kmul for F is

equivalent to the fact that, for each conic component K (i) and for each A ∈ F , there exists a
conic component K ( j) such that

A(K (i)) ⊆ K ( j).

However, in this (polyhedral) case, thanks to (67), the above condition can be checked just
by verifying that

A(Ẽ(i)) ⊆ K ( j). (71)

Observe that the “global” condition A(Ẽ) ⊆ Kmul is weaker than the validity of (71) for
all i = 1, . . . , r̃ . In fact, it is not sufficient to assure the invariance of Kmul , and hence, it
cannot be assumed as a stopping criterion for the algorithm.

Of course, the same arguments can be repeated for L̃T and the corresponding partial
leading multicone KT

mul .
In order to allow a more efficient computation, it is useful to also observe that Proposi-

tion 27 implies

K̄mul ⊆ (KT
mul)

† and K̄T
mul ⊆ K †

mul

and hence, by (8),
int(K̄mul) ∩ {h}⊥ = ∅ ∀ h ∈ KT

mul\{0} (72)

and, dually, that

int(K̄T
mul) ∩ {v}⊥ = ∅ ∀ v ∈ Kmul\{0}.

In fact, for the actual construction of K̄mul defined by (68), condition (72) suggests that it
is sufficient to confine ourselves to consider the semi-spaces S(i)

h+ for h ∈ ẼT, the set of the
edges of KT

mul , i.e.

K̄ (i)
+ =

⋂

h∈ẼT\{0}
S(i)

h+ , i = 1, . . . , r̃ . (73)

Analogously, we have that

K̄T (i)
+ =

⋂

v∈Ẽ\{0}
S(i)
v+ , i = 1, . . . , s̃. (74)

Now we are in a position to present our iterative algorithm (see Algorithm 1).
Note that the way Algorithm 1 selects the products P used to define the sets L̃k and L̃T

k
automatically assures that the corresponding sets Σ̃k and Ω̃k verify the inclusion Ω̃k ⊆ Σ̃k .
Therefore, it is sufficient to monitor property (p1) on the elements of Σ̃k , which is, in this
case, nothing but Σk(F).
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Data: F = {A1, . . . , Am }
begin

1 compute VA and VAT for each A ∈ F ;

2 define L̃1 := ⋃
A∈F VA and L̃T

1 := ⋃
A∈F VAT ;

3 compute H̃1 and H̃T
1 and the essential components of L̃1 and L̃T

1 ;
4 set k:=1;
5 if (p4) is not satisfied stop;
6 while L̃k does not satisfy (p5) or L̃T

k does not satisfy (p6) do
7 compute VP and VPT for each P ∈ Σk+1(F);
8 if not all P ∈ Σk+1(F) are asymptotically rank-one stop;
9 define L̃k+1 := L̃k ∪ ⋃

P∈Σk+1(F) VP and L̃T
k+1 := L̃T

k ∪ ⋃
P∈Σk+1(F) VPT ;

10 set k := k + 1;

11 compute H̃k and H̃T
k and the essential components of L̃k and L̃T

k ;
12 if (p4) is not satisfied stop;

end
13 set κ1 := k;

14 compute the edges Ẽκ1 and ẼTκ1 of the corresponding partial leading multicones Kκ1 and KT
κ1
;

15 set i := 1;

16 while Kκi is not invariant for F or KT
κi

is not invariant for FT do
17 set L̃κi := L̃κi ∪ F(Ẽκi ) and L̃T

κi
:= L̃T

κi
∪ FT(ẼTκi

);

18 compute VP and VPT for each product P ∈ Σκi +1(F);
19 if not all P ∈ Σκi +1(F) are asymptotically rank-one stop;

20 define L̃κi +1 := L̃κi ∪ ⋃
P∈Σκi +1(F) VP and L̃T

κi +1 := L̃T
κi

∪ ⋃
P∈Σκi +1(F) VPT ;

21 set k := κi + 1;

22 compute H̃k and H̃T
k and the essential components of L̃k and L̃T

k ;
23 if (p4) is not satisfied stop;
24 compute the edges Ẽk and ẼTk of the corresponding partial leading multicones Kk and KT

k ;

25 while L̃k does not satisfy (p5) or L̃T
k does not satisfy (p6) do

26 compute VP and VPT for each product P ∈ Σk+1(F);
27 if not all P ∈ Σk+1(F) are asymptotically rank-one stop;
28 define L̃k+1 := L̃k ∪ ⋃

P∈Σk+1(F) VP and L̃T
k+1 := L̃T

k ∪ ⋃
P∈Σk+1(F) VPT ;

29 set k := k + 1;

30 compute H̃k and H̃T
k and the essential components of L̃k and L̃T

k ;
31 if (p4) is not satisfied stop;
32 compute the edges Ẽk and ẼTk of the corresponding partial leading multicones Kk and KT

k ;
end

33 set i := i + 1 and κi := k;
end

34 compute K̄κi and K̄T
κi

using (73) and (74), respectively;

Result: Kκi , K̄κi , KT
κi
, K̄T

κi
end

Algorithm 1: Basic iterative algorithm

Observe also that the way of selecting the sets L̃k and L̃T
k precisely fulfils the requirements

(p2) and (p3).
Moreover, something can be pointed out.
On the one hand, if the procedure ends successfully in a finite number of iterations, we

obtain a pair (Kκi , KT
κi

) of invariant polyhedral multicones for F and FT. But (unless this
fact is known a priori for some other reasons) even in this case we are not guaranteed that F
is asymptotically rank-one.
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Nevertheless, if it is so, the computed invariant pair equals the pair of leading multicones
(KF

mul , KFT

mul) by virtue of Theorem 19.
On the other hand, if the procedure never ends, nothing can be said.
However, as before, if F is asymptotically rank-one, then the sequence of computed pairs

of partial leading multicones (Kk, KT
k ) clearly converge to (KF

mul , KFT

mul) as k → ∞.
At the end of the fair, the main target of our procedure, i.e. to find a pair of invariant

polyhedral multicones, is reached as long as the algorithm stops. Our dedication to consider
also theoretical results under the hypothesis that F is asymptotically rank-one is justified by
the fact that it is a necessary condition for the existence of a strictly invariant multicone.

We justmention thatmany tricksmaybeused aiming atmakingAlgorithm1more efficient,
which we do not point out in our summary of the procedure, but leave to the interested reader.

For example, as the most obvious, in order to avoid underflow/overflow occurrences, it is
always advisable to normalize the computed eigenvectors and all their images in the elements
of the families F and FT (see line 17).

Moreover, still rather obvious, one has not to recompute the leading eigenvector vPn = vP

and the secondary hyperplane HPn = HP of a power Pn whenever the matrix P has already
been involved by the algorithm. Nor, analogously, the leading eigenvector and the secondary
hyperplane of a cyclic permutation Q P whenever thematrix P Q has already been processed,
since vQ P = QvP Q and HQ P = Q HP Q .

It is also clear that it is important to use an efficient method to select the essential com-
ponents of L̃k and L̃T

k (see lines 1, 11, 22, 30) and the edges Ẽk and ẼT
k of the corresponding

partial leading multicones Kk and KT
k (see lines 14, 24, 32). Regarding this task, we observe

that, apart from the trivial case of dimension d = 2, it is difficult to establish a priori how
many the edges are.

Keeping well in mind that, in general, the number κi of iterations needed to conclude
successfully the procedure (if any) is not predictable a priori, in order to give a rough estimate
of the computational cost of each iteration, we first observe that the most time-consuming
elementary operation consists in the computation of the eigenspaces of a new product P (i.e.
vP and HP ). In turn, this operation is increasingly expensive with the dimension d of the
matrices. Thus, the choice of a suitable numerical method, in accordance with the particular
structure of the matrices, is crucial for the overall efficiency of the algorithm. Clearly, also
the cardinality m of the family F makes the difference in that, to a first approximation, an
upper bound to the cost of the k +1st iteration equals m times the cost of the kth one. In fact,
one has to perform the exhaustive analysis of all the matrices of Σk+1(F), whose cardinality
is m times that of Σk(F).

Finally, it is worth remarking that, in view of what above, the overall computational
complexity may reveal to be rather high (exponential in κi ). Therefore, it would be interesting
to study some strategies which, without reducing the chances of final success, allow us
to disregard large subsets of Σk+1(F) on the basis of the structure of the just computed
multicones Kk and KT

k .

Example 3 Consider the 2 × 2 matrix family F = {A, B}, where

A =
⎡

⎣
3 0

0 1
3

⎤

⎦ and B =
⎡

⎣
− 2

9
5
9

− 5
2

11
2

⎤

⎦

are asymptotically rank-one with λA = 3 and λB = 5.2460... .
Running Algorithm 1 results in the following steps.
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(s1)

L̃1 = L̃(1)
1 ∪ L̃(2)

1 and L̃T
1 = L̃T (1)

1 ∪ L̃T (2)
1 ,

where L̃(1)
1 = VA, L̃(2)

1 = VB , L̃T (1)
1 = VAT , L̃T (2)

1 = VBT , so that (p5) and (p6) are
not satisfied (see Fig. 1).

(s2)

L̃2 = L̃(1)
2 ∪ L̃(2)

2 ∪ L̃(3)
2 and L̃T

2 = L̃T (1)
2 ∪ L̃T (2)

2 ∪ L̃T (3)
2 ,

where L̃(1)
2 = VA, L̃(2)

2 = VAB , L̃(3)
2 = VB∪VB A, L̃T (1)

2 = VAT , L̃T (2)
2 = VBT∪V(AB)T ,

L̃T (3)
2 = V(B A)T , so that (p5) and (p6) are not satisfied again (see Fig. 2).

(s3)

L̃3 = L̃(1)
3 ∪ L̃(2)

3 ∪ L̃(3)
3 and L̃T

3 = L̃T (1)
3 ∪ L̃T (2)

3 ∪ L̃T (3)
3 ,

where L̃(1)
3 = VA ∪ VA2B , L̃(2)

3 = VAB ∪ VAB A ∪ VAB2 , L̃(3)
3 = VB ∪ VB A ∪ VB A2 ∪

VB AB ∪ VB2 A, L̃T (1)
3 = VAT ∪ V(B A2)T , L̃T (2)

3 = VBT ∪ V(AB)T ∪ V(A2B)T ∪ V(B AB)T ∪
V(AB2)T , L̃T (3)

3 = V(B A)T ∪ V(AB A)T ∪ V(B2 A)T , so that (p5) and (p6) are eventually
satisfied (see Fig. 3).

(s4) The edges of K3 are Ẽ(1)
3 = VA ∪ VA2B , Ẽ(2)

3 = VAB ∪ VAB A, Ẽ(3)
3 = VB A ∪ VB A2

and those of KT
3 are ẼT (1)

3 = VAT ∪ V(B A2)T , ẼT (2)
3 = V(AB)T ∪ V(A2B)T , ẼT (3)

3 =
V(B A)T ∪ V(AB A)T .

(s5) By analysing condition (71), it turns out that

A(K (1)
3+) ⊆ K (1)

3+, A(K (2)
3+) ⊆ K (1)

3+, A(K (3)
3+) ⊆ K (2)

3+,

B(K (1)
3+) ⊆ K (3)

3−, B(K (2)
3+) ⊆ K (3)

3+, B(K (3)
3+) ⊆ K (3)

3+,

and, analogously, that

AT(K T (1)
3+ ) ⊆ K T (1)

3+ , AT(K T (2)
3+ ) ⊆ K T (3)

3+ , AT(K T (3)
3+ ) ⊆ K T (1)

3+ ,

BT(K T (1)
3+ ) ⊆ K T (2)

3+ , BT(K T (2)
3+ ) ⊆ K T (2)

3+ , BT(K T (3)
3+ ) ⊆ K T (2)

3+ .

Therefore, K3 and KT
3 are invariant for F , and hence, the algorithm ends successfully.

(s6) With S(i)
P := S(i)

h P +, by using (73) it turns out that

K̄ (1)
3+ = S(1)

A ∩ S(1)
A2B

, K̄ (2)
3+ = S(1)

AB ∩ S(1)
AB A, K̄ (3)

3+ = S(1)
B A ∩ S(1)

B A2 ,

and, with S(i)
PT := S(i)

vP +, by using (74) we have that

K̄T (1)
3+ = S(1)

AT ∩ S(1)
(B A2)T

, K̄T (2)
3+ = S(1)

(AB)T
∩ S(1)

(A2B)T
,

K̄T (3)
3+ = S(1)

(B A)T
∩ S(1)

(AB A)T
.

��
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Fig. 1 Left figure: L̃1 (solid) and H̃1 (dashed). Right figure: L̃T
1 (solid) and H̃T

1 (dashed)
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Fig. 2 Left figure: L̃2 (solid) and H̃2 (dashed). Right figure: L̃T
2 (solid) and H̃T

2 (dashed)
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Fig. 3 Left figure: L̃3 (solid) and H̃3 (dashed). Right figure: L̃T
3 (solid) and H̃T

3 (dashed)

8 Conclusions and open problems

One of the main goals of this paper has been the detection of sufficient conditions on the
structure of the eigenspaces of a given finite family F of matrices to assure the existence
of (the embedded pair of) the “smallest” and the “biggest” invariant multicones KF

mul and
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K̄F
mul . The conditions found suggest an effective computational procedure for such invariant

embedded pair.
Our study can lead to a generalization to multicones of the so-called Barabanov antinorm

for a family of matrices (see Guglielmi and Protasov [10] and Guglielmi and Zennaro [11]),
which will be the subject of a future paper.

Anyway, some interesting questions still remain open.
The cited conditions (assumed in Sect. 4) guarantee the existence of an embedded pair of

invariant multicones for F . The natural question arises: are they sufficient to assure also the
existence of a strictly invariant multicone? In other words, to assure 1-dominance? [see (21)]

In general, are the “smallest” and the “biggest” invariant multicones KF
mul and K̄F

mul
reflexive?

An important question from the computational point of view: are the conditions assumed
in Sect. 4 sufficient to always assure that KF

mul and K̄F
mul are of polyhedral type?

Finally, what of the theory developed in the present paper could be saved and
adapted/extended to more general cases of matrix families which fail to be asymptotically
rank-one?
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