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Abstract. We investigate the problem of outer approximating a coher-
ent lower probability with a more tractable model. In particular, in this
work we focus on the outer approximations made by belief functions.
We show that they can be obtained by solving a linear programming
problem. In addition, we consider the subfamily of necessity measures,
and show that in that case we can determine all the undominated outer
approximations in a simple manner.

1 Introduction

Coherent lower probabilities are one of the most prominent models within impre-
cise probability theory [1]. They can be given a behavioural interpretation in
terms of acceptable betting rates, thus extending Bruno de Finetti’s work on
subjective probability theory; at the same time, they are also equivalent to con-
vex sets of probability measures (credal sets), meaning that they can be regarded
as an epistemic model of imprecise information.

In spite of this, coherent lower probabilities also have a number of drawbacks
that hinder their use in the practice. For instance, their associated credal sets
do not possess a straightforward representation in terms of extreme points; and
their extension to lower previsions of gambles is not unique in general. For these
reasons, it becomes interesting to approximate a coherent lower probability by
a more tractable model. In a previous contribution [2], we did so by means
of 2-monotone lower probabilities, that overcome some of the issues mentioned
above: there is a simple procedure to determine the number of extreme points
of their associated credal sets [3], and they can be uniquely extended to gambles
by means of the Choquet integral [4].

Although our previous results are promising, the use of 2-monotone capac-
ities is not without issues; the most important one, in our view, is the lack
of a compelling interpretation of 2-monotonicity. This has led us to study the
approximation of coherent lower probabilities by means of completely monotone
lower probabilities, or belief functions. They have a number of advantages: first,
they have a clear interpretation from Shafer’s Evidence Theory [5]; they can be
equivalently represented by means of multi-valued mappings [6]; and still they
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are sufficiently general to include as particular cases many interesting models
from imprecise probability theory, such as probability boxes [7] or possibility
measures [8].

The rest of the contribution is organized as follows: after giving some prelim-
inary concepts in Sect. 2, in Sect. 3 we deal with the problem of outer approxi-
mating a coherent lower probability. We recall our results for 2-monotone lower
probabilities in Sect. 3.1, investigate the problem for belief functions in Sect. 3.2
and consider the particular case of possibility measures in Sect. 3.3. Some addi-
tional comments are given in Sect. 4. Due to space limitations, several results,
comments as well as proofs have been omitted.

2 Preliminaries

Let X = {x1, . . . , xn} denote a finite universe with cardinality n. A lower proba-
bility on P(X ) is a function P : P(X ) → [0, 1]. Under an epistemic interpretation,
P (A) may be understood as a lower bound for the unknown probability P0(A)
of the event A. In that case, the available information about the probability
measure P0 is given by the credal set associated with P :

M(P ) = {P probability measure | P (A) ≥ P (A) ∀A ⊆ X}.

The minimum requirement on P we shall consider in this paper is that the bounds
it provides for every event can be attained by some probability in M(P ).

Definition 1. [1] A lower probability P on P(X ) is called coherent when its
credal set M(P ) is non-empty and P (A) = minP∈M(P ) P (A) for every A ⊆ X .

The conjugate of a lower probability P , denoted by P , is called upper probability
and it is given by P (A) = 1 − P (Ac) for every A ⊆ X . P (A) can be interpreted
as an upper bound for the unknown probability of A. When P is coherent, P
can also be computed by P (A) = max{P (A) | P ∈ M(P )} for every A ⊆ X .

One very interesting property that a coherent lower probability may satisfy
is that of k-monotonicity.

Definition 2. [4] A lower probability P : P(X ) → [0, 1] is k-monotone if for
every p ≤ k, and for every A1, . . . , Ap ⊆ X it holds that:

P
( ∪p

i=1 Ai

) ≥
∑

∅�=I⊆{1,...,p}
(−1)|I|+1P

( ∩i∈I Ai

)
.

In particular, 2-monotone lower probabilities possess a number of interesting
properties: for instance, the extreme points of their associated credal set can
be easily determined using the permutations of the possibility space [3]; more-
over, they have a unique extension as an expectation operator that preserves
2-monotonicity: their Choquet integral [9].

If P is k-monotone for every k, it is called completely monotone. It corre-
sponds to a belief function within evidence theory, and we shall denote it Bel in
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this paper. The conjugate upper probability of a belief function is called plausi-
bility function and we shall denote it Pl. A belief function can be equivalently
expressed in terms of its Möbius inverse, which is given by [5]:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B) ∀A ⊆ X .

This function m satisfies
∑

A⊆X m(A) = 1 and m(A) ∈ [0, 1] for every A ⊆ X .
Conversely, m determines the belief function by:

Bel(A) =
∑
B⊆A

m(B).

Given the Möbius inverse m, those events A with strictly positive mass, m(A) >
0, are called focal events.

A particular case of plausibility functions are the possibility measures. They
are connected to the theory of fuzzy sets.

Definition 3. [10] A possibility measure Π : P(X ) → [0, 1] is a function sat-
isfying Π(∅) = 0, Π(X ) = 1 and Π(A ∪ B) = max{Π(A),Π(B)} for every
A,B ⊆ X .

A possibility measure is an instance of plausibility function, while its conjugate
necessity measure is a belief function. They correspond to the particular case
when the focal events are nested by set inclusion, meaning that for every two
focal events E1, E2, either E1 ⊆ E2 or E2 ⊆ E1.

Notation: We shall denote by C2, C∞ and CΠ the classes of 2-monotone lower
probabilities, belief functions and possibility measures on P(X ), respectively.

3 Outer Approximations of Coherent Lower Probabilities

In a recent paper [2] we investigated how to approximate a coherent lower proba-
bility P by a 2-monotone lower probability Q that at the same time (a) does not
introduce new information; (b) is as close as possible to the original model. In
this way, if C denotes a class of coherent lower probabilities, we said that Q ∈ C
is an outer approximation of P in C if Q ≤ P , and it is called undominated if
there is no Q� ∈ C such that Q � Q

′ ≤ P .

3.1 Outer Approximations in C2

One important issue is that of determining how close the outer approximation
is to the original model. In [2], in addition to discussing other possibilities, we
proposed to use the distance put forward by Baroni and Vicig in [11], given by

d(P,Q) :=
∑

E⊆X
(P (E) − Q(E)). (1)
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If we interpret P (E) − Q(E) as the additional imprecision introduced on E
when replacing P (E) with Q(E), then d(P ,Q) can be understood as the total
imprecision added by the outer approximation Q.

In [2], we obtained undominated outer approximations in C2 by using a lin-
ear programming problem and minimizing the distance (1). Next proposition
summarizes some of our results.

Proposition 1. [2] Let P be a coherent lower probability, and let C�
2(P ) denote

the class of undominated outer approximations of P in C2.

1. C�
2(P ) is non-empty, and may have infinite cardinality.

2. Q({x}) = P ({x}) for every x ∈ X and every Q ∈ C�
2(P ).

3. P (A) = maxQ∈C′
2(P ) Q(A) for every A ⊆ X .

3.2 Outer Approximations in C∞

In this section, we outer approximate a coherent lower probability by means of a
belief function. Similarly to our work in [2], we propose to obtain outer approx-
imations that minimize the distance (1) between the initial lower probability P
and the belief function: d(P ,Bel) =

�
E⊆X (P (E) − Bel(E)). In terms of the

Möbius inverse, this can be equivalently expressed as:

d(P ,Bel) =
�

E⊆X

⎛
⎝P (E) −

�
B⊆E

m(B)

⎞
⎠ . (2)

Let C�
∞(P ) denote the class of undominated outer approximations of P in C∞.

Proposition 2. Let P : P(X) → [0, 1] be a coherent lower probability, and
consider the problem of minimizing (2) where m is subject to the following
constraints:

�
B⊆X

m(B) = 1, m(B) ≥ 0 ∀B ⊆ X . (LP-bel.1)

�
B⊆E

m(B) ≤ P (E) ∀E ⊆ X . (LP-bel.2)

1. The feasible region of this linear programming problem is non-empty.
2. Any optimal solution of the linear programming problem belongs to C�

∞(P ).
3. If for a fixed event A we add the constraint

�
B⊆A

m(B) = P (A), (LP-bel.3A)

then the feasible region of the new linear programming problem is non-empty,
any optimal solution Bel belongs to C�

∞(P ) and satisfies Bel(A) = P (A).
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4. If C��
∞(P ) denotes the union, for every A ⊆ X, of the sets of belief functions

that minimize (2) subject to (LP-bel.1)–(LP-bel.3A), then for any event E it
holds that P (E) = maxQ∈C��

∞(P ) Q(E).

This result parallels much of our work in [2]: it tells us that we can obtain undom-
inated outer approximations by means of linear programming, and that we can
guarantee the equality Bel(A) = P (A) for a fixed event A just by adding the
constraint (LP-bel.3A). Some detailed comments about the complexity asso-
ciated with solving the linear programming problem (LP-bel.1)–(LP-bel.2) in
Property 2 can be found in [12].

The main difference with Property 1 is that undominated outer approxima-
tions in C��

∞(P ) may not agree with P on singletons, and also they may not deter-
mine the same order on X . Since belief functions are in particular 2-monotone,
any outer approximation in C∞ is also an outer approximation in C2. However, we
do not have the inclusion C�

∞(P ) ⊆ C�
2(P ): an undominated outer approximation

in C∞ may be dominated in C2, as we shall see in Example 1.

3.3 Outer Approximations in CΠ

We focus now on the subfamily of belief functions given by necessity measures.
Taking conjugacy into account, a necessity measure N∗ outer approximates a
coherent lower probability P if and only if its conjugate possibility measure Π∗

outer approximates the conjugate upper probability P of P , in the sense that
P (A) ≤ Π∗(A) for every A ⊆ X . Since possibility measures appear more fre-
quently in the literature than necessity measures, we shall formulate the problem
in this equivalent manner.

Let C�
Π(P ) denote the class of possibility measures Π∗ that outer approximate

P and are non-dominating in CΠ(P ), meaning that there is no other Π � in CΠ(P )
such that P ≤ Π � � Π∗. Our next result characterizes this class.

Proposition 3. Let P : P(X ) → [0, 1] be a coherent upper probability satisfying
P ({xi}) > 0 for any xi ∈ X . For any permutation σ of {1, . . . , n}, define Πσ :
P(X ) → [0, 1] by:

Πσ({xσ(1)}) = P ({xσ(1)}) and

Πσ({xσ(i)}) = max
A∈Aσ(i)

P
(
A ∪ {xσ(i)}

)
, where for every i > 1:

Aσ(i) =
{

A ⊆ {xσ(1), . . . , xσ(i−1)} | P
(
A ∪ {xσ(i)}

)
> max

x∈A
Πσ({x})

}
,

and let Πσ(A) = maxx∈A Πσ({x}) for every other A ⊆ X . Then:

1. C�
Π(P ) = {Πσ : σ ∈ Sn}, where Sn is the set of permutations of {1, . . . , n}.

2. For every event A ⊆ X , P (A) = minσ∈Sn
Πσ(A).

This result provides us with a simple constructive method for obtaining the
undominated outer approximations of P in CΠ . We also deduce that there are at
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most n! different undominated outer approximations. It is not difficult to show
that this bound is tight.

In this result, we are assuming that P ({xi}) > 0 for every xi ∈ X . This
assumption is not restrictive: if we consider the set X ∗ = {x ∈ X | P ({x}) > 0},
that is bound to be non-empty due to the coherence of P , there exists a one-to-
one correspondence between the credal sets M1 := {P : P (A) ≤ P (A) ∀A ⊆ X}
and M2 := {P : P (A) ≤ P (A) ∀A ⊆ X ∗}, because any P ∈ M1 satisfies
P (X \ X ∗) = 0. As a consequence, any non-dominating outer approximation
Π∗ of the restriction of P to P(X ∗) can be extended to a non-dominating
outer approximation Π � of P , simply by making Π �({x}) = Π∗({x}) if x ∈
X ∗,Π �({x}) = 0 if x ∈ X\X ∗ and Π �(A) = maxx∈A Π �({x}) ∀A ⊆ X .

Remark 1. A somewhat related procedure to that in Property 3 was considered
by Dubois and Prade in [13] and [14, Sect. 3.3] with the name of Optimal Mass
Allocation Procedure; they used it to deal with the problem of outer approximat-
ing belief functions by means of possibility measures. In their formulation, given a
permutation σ, they consider the nested family of events Eσ

j = {xσ(1), . . . , xσ(j)}
for j = 1, . . . , n. If A1, . . . , Ak are the focal events of the initial belief func-
tion to be outer approximated, for every i = 1, . . . , k they define the value
fσ(i) = min{j | Ai ⊆ Eσ

j }, and from it they define the mass of Eσ
j by:

mσ(Eσ
j ) =

∑
i:fσ(i)=j

m(Ai), ∀j = 1, . . . , n.

It holds that mσ(Eσ
1 )+. . .+mσ(Eσ

n) = 1 and Eσ
1 ⊆ . . . ⊆ Eσ

n , so mσ defines a pos-
sibility measure by means of the formula Π(A) =

∑
Eσ

j ∩A�=∅ mσ(Eσ
j ). Although

this possibility measure does not coincide with the one we have denoted Πσ

in Property 3, in the end both procedures give rise to all elements in C′
Π(P ).

Note, nevertheless, that the procedure in [14] may, unlike ours, also produce
dominating outer approximations. �

Although Property 3 provides a procedure for determining non-dominating
outer approximations in CΠ , we should be aware that the non-dominating outer
approximations in CΠ may be conjugate to necessity measures that are domi-
nated in C∞, as our next example shows:

Example 1. Let us consider a four-element space X and the lower probability
P given in Table 1. To see that it is coherent, note that it is the lower enve-
lope of the probabilities (0.1, 0, 0.4, 0.5), (0.4, 0.1, 0.2, 0.3) and (0.3, 0.3, 0, 0.4).
If we minimize Eq. (2) with constraints (LP-bel.1)–(LP-bel.2), we obtain the
optimal solutions Bel1 and Bel2 as well as their convex combinations. If we add
the additional constraint (LP-bel.3A) with A = {x3, x4}, we obtain a linear pro-
gramming problem with infinite solutions; one of them is Bel3. Table 1 also gives
an undominated 2-monotone lower probability Q that outer approximates P . It
holds that Bel2 is dominated by Q, whence we see that Bel2 is an undominated
outer approximation of P in C∞, but not in C2.
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Let us now apply the procedure in Property 3 to obtain the possibility mea-
sure associated with the permutation σ1 = (1, 2, 3, 4). First of all, we define
Πσ1({x1}) = P ({x1}) = 0.4. Then:

A2 = {A ⊆ {x1} | P (A ∪ {x2}) > max
x∈A

Πσ1({x})} = {∅, {x1}}, and

Πσ1({x2}) = max{P (∅ ∪ {x2}), P ({x1} ∪ {x2})} = P ({x1, x2}) = 0.6.

Iterating the procedure,

A3 = {A ⊆ {x1, x2} | P (A ∪ {x3}) > max
x∈A

Πσ1({x})} = {∅, {x1}, {x1, x2}},

whence Πσ1({x3}) = P ({x1, x2, x3}) = 0.7, and finally, Πσ1({x4}) = 1. The
associated possibility measure is depicted in Table 1. Its conjugate necessity mea-
sure Nσ1 is dominated by Bel3. �

Table 1. Coherent lower probability from Example 1 and its outer approximations.

A P (A) P (A) Q Bel1 Bel2 Bel3 Πσ1 Nσ1

{x1} 0.1 0.4 0.1 0.1 0.1 0.1 0.4 0

{x2} 0 0.3 0 0 0 0 0.6 0

{x3} 0 0.4 0 0 0 0 0.7 0

{x4} 0.3 0.5 0.3 0.3 0.3 0.3 1 0.3

{x1, x2} 0.1 0.6 0.1 0.1 0.1 0.1 0.6 0

{x1, x3} 0.3 0.6 0.3 0.2 0.3 0.1 0.7 0

{x1, x4} 0.6 0.7 0.5 0.6 0.5 0.6 1 0.3

{x2, x3} 0.3 0.4 0.2 0.3 0.2 0.2 0.7 0

{x2, x4} 0.4 0.7 0.4 0.3 0.4 0.3 1 0.3

{x3, x4} 0.4 0.9 0.4 0.3 0.3 0.4 1 0.4

{x1, x2, x3} 0.5 0.7 0.5 0.5 0.5 0.4 0.7 0

{x1, x2, x4} 0.6 1 0.6 0.6 0.6 0.6 1 0.3

{x1, x3, x4} 0.7 1 0.7 0.7 0.7 0.7 1 0.4

{x2, x3, x4} 0.6 0.9 0.6 0.6 0.6 0.6 1 0.6

X 1 1 1 1 1 1 1 1

This example also shows that the non-dominating outer approximations in
CΠ do not preserve the order between the events, in the sense that P (A) =
P (B) � Π(A) = Π(B) and P (A) < P (B) � Π(A) ≤ Π(B). To see this, it
suffices to compare P and Πσ1 on singletons. A procedure for defining non-
dominating outer approximations in CΠ that preserve the ordered preferences
between the events can be found in [11, Sect. 6.3].
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4 Conclusions

In this paper, we have investigated the problem of outer approximating a coher-
ent lower probability by means of belief functions. We have focused on those
belief functions that are at the same time as close as possible to the initial model,
while not adding new information, and we have shown that we can obtain these
by means of a linear programming problem, and that they allow us to retrieve
the initial coherent lower probability.

In the particular case of possibility measures we have provided a constructive
procedure for obtaining the non-dominating outer approximations, proving thus
that their number is upper bounded by n!. Our procedure is related to the
optimal mass allocation procedure of Dubois and Prade.

As future lines of research, we would like to consider other particular families
of belief functions, such as probability boxes, and to look at the representation
in terms of multi-valued mappings. In addition, we would like to investigate how
to elicit an outer approximation among all of the possible ones.

Acknowledgements. We acknowledge the financial support by project TIN2014-
59543-P.
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