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Abstract—Current signature detection mechanisms can be
easily evaded by malware writers by applying obfuscation tech-
niques. Employing morphing code techniques, attackers are able
to generate several variants of one malicious sample, making the
corresponding signature obsolete. Considering that the signature
definition is a laborious process manually performed by security
analysts, in this paper we propose a method, exploiting static
analysis and Machine Learning classification algorithms, to
identify whether a mobile application is modified by means of one
or more morphing techniques. We perform experiments on a real-
world dataset of Android applications (morphed and original),
obtaining encouraging results in the obfuscation technique(s)
identification.

I. INTRODUCTION

The widespread diffusion of mobile devices has induced
a growing interest in malware writers, in particular for the
Android operating system, that is the most widespread en-
vironment for such devices1. This trend has been increasing
across years, from 2.3 million of new malware samples in
2015, to 3.2 millions in 2016, and 3.5 millions in 20172.

Conventional antimalware software are based on the
signature-based paradigm: a threat may be recognized only
if it is known [1, 2, 3]. Antimalware signatures are essentially
code snippets gathered from real-world malicious samples and
used by antimalware software by means of several pattern-
matching heuristics applied to the code under analysis, that
will be labelled as being either benign or malicious. The
procedure for obtaining a signature from a malware sample is
neither automatic nor instantaneous, though: security analysts
need to obtain a sample of the malware, then they need to
develop a suitable signature (or ascertain that the sample can
be correctly labelled with the signatures already available) and
finally push the new signature to all the antimalware tools,
usually with an online update mechanism.

Unfortunately, once a suitable signature has been developed,
malware writers can easily elude the detection by applying
obfuscation techniques [4], that is, by modifying the mal-
ware code sufficiently enough to escape the pattern-matching
heuristics of the antimalware tools, while still preserving the
malicious capabilities of that code. As a matter of fact, when

1https://www.statista.com/statistics/271774/share-of-android-platforms-
on-mobile-devices-with-android-os/

2https://nakedsecurity.sophos.com/2017/11/07/2018-malware-forecast-the-
onward-march-of-android-malware/

such techniques are able to alter to code fragments involved
in the signature generation, the threat is no longer recognized
as such [5, 6].

There is a proliferation of the so-called variants of a given
malware, in particular in the Android landscape3: if an attacker
distributes 1000 instances of a piece of malware and one
of those instances is detected, then all the other instances
may be detected with the same signature. But if the attacker
distributes 1000 variants of a piece of malware, the likelihood
that many of them will not be detected by a single signature is
much higher. Strategies of this kind are attractive to attackers,
because obfuscating a malware sample is much cheaper and
quicker than developing and distributing a signature capable of
detecting all those variants. The security analyst processes to
inspect malicious behaviour usually involve a fair amount of
time consuming and laborious work [7], while attackers are
able to generate (often using automatic tools) a plethora of
variants of a given malicious payload [8].

The main effort provided by research community in last
years was aimed to malicious behaviour identification in
mobile environment [9, 10, 11, 12], while the code obfuscation
techniques identification is poorly investigated in literature.
In this paper we propose a method to detect automatically
whether a sample of code has been modified by means of
one or more obfuscation techniques, focusing on code for
mobile environments (Android). Our proposal is based on
static analysis (i.e., the proposed method does not need to
execute the application, thus the analysis does not require
infecting a device) and machine learning techniques.

The paper proceeds as follows: the next section discusses
the current state-of-the-art related to code obfuscation identi-
fication; Section III describes the proposed method; results of
the experiments evaluation are provided in Section IV; finally,
conclusions are drawn in Section V.

II. RELATED WORK

In this section, we review the recent literature related to
code obfuscation techniques identification in mobile malware
landscape.

A framework able to inject a set of morphing techniques has
been proposed by researchers in [1] with the aim of evaluating

3https://www.csoonline.com/article/3027598/cyber-attacks-espionage/27-
of-all-malware-variants-in-history-were-created-in-2015.html
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the current antimalware technologies against morphed variants
of malware. The main outcome of the paper is that all the
studied antimalware software are vulnerable to trivial code
transformations.

Authors in [2] evaluate 10 antimalware tools using 6 original
and morphed mobile malware belonging to 6 different families.
The authors conclude that the antimalware are susceptible
to common widespread evasion techniques. A similar anal-
ysis has been conducted in [6], considering recent Android
malware detection approaches based on Machine Learning,
instead of existing antimalware tools: the authors show that
methods based on dynamic analysis are much more robust to
obfuscation than those based on static analysis, which are, in
general, more accurate on non-obfuscated samples.

Alterdroid [13] is a malware analysis framework consisting
in the analysis of the behavioral differences between the orig-
inal application and a set of automatically generated versions
of it, where a number of modifications have been carefully
injected (the so-called variants). In addition, Alterdroid per-
forms a dynamic analysis (i.e., every app is executed over a
time span equal to 120 s) to identify the malware.

Researchers in [14] investigate the optimal set of instruc-
tions being executed to identify obfuscated Android malware
using the SVM classifier. They find a set of instructions that
are good indicators of malware and determine how long the
program needs to run in order to obtain an accurate classifi-
cation. They obtain an average accuracy equal to 84.4%.

An interesting framework for the automatic generation of
variants of Android applications is presented in [15], with the
aim of assessing the effectiveness of current Android anti-
malware tools.

Beyond works that explicitly deal with obfuscated malware,
there is a number of approaches for the detection of Android
malware which are stated to be robust to obfuscation. Most
of them are based on features extracted by means of dynamic
analysis which is designed to capture the actual behavior of an
application, rather than its statically viewed code. Significant
examples in these respects include [16, 17, 18].

The MalDozer [16] tool considers API calls, a common
kind of outcome deriving from dynamic analysis, and analyzes
them with deep learning to identify Android malware. In the
evaluation authors obtain an F1-Score ranging from 96% to
99% on real-world Android applications.

The RevealDroid tool [17] is stated to be obfuscation
resilient thanks to a set of features including sensitive APIs
and intents usage and information flows. The effectiveness of
the selected features is evaluated using two different simple
classifiers, which obtain an accuracy ranging between 93%
and 96% in malware detection. Authors evaluate RevealDroid
also in malware family identification obtaining an accuracy
equal to 87% and 95% for all the combinations of features
and classifiers.

Finally, the authors of [18] propose to use a wide range of
metrics concerning the device resources consumption in order
to discriminate between malware and benign applications, the
metrics being stated to be robust to camouflage. They show

that, when capturing those metrics in a precise experimental
setting, very good detection effectiveness (greater than 99%
on 2000 applications) can be achieved.

III. APPLICATION REPRESENTATION AND OBFUSCATION
DETECTION

A. The obfuscation techniques

Android runs compiled Java code stored in .dex files
targeting the Dalvik virtual machine. We obtained a human-
readable Dalvik bytecode (the smali representation) from the
.dex file of the application under analysis, using apktool4, a
tool for reverse engineering which allows to decompile and
recompile Android applications. apktool is able to decode
resources to nearly original form and rebuild them after
making some modifications.

We designed, implemented, and publicly released5 a Java
tool able to apply a set of code modifications (i.e., obfusca-
tions) to a smali representation in an automated way.

In the following we describe the considered obfuscation
techniques which have been shown to be widely used by
malware creators [19, 4]:

1) Disassembling & Reassembling. We disassemble and
then reassemble with apktool the compiled Dalvik byte-
code. This procedure modifies the ordering with the
.dex file of several items. Signatures relying on the
order of different items in the .dex file will likely be
ineffective with this transformation.

2) Repacking. Every Android application contains a devel-
oper signature key that will be lost after disassembling the
application and then reassembling it. In order to create
a new key, we use the signapk6 tool to embed a new
signature key in the reassembled app to avoid detection
by signatures that match the developer keys.

3) Changing package name. Each Android application is
identified by a unique package name. This transformation
is focused at renaming the application package name,
using a random string generator, in both the Android
Manifest and all the application classes, to elude detection
by signatures based on package name.

4) Identifier renaming. To avoid detection signatures rely-
ing on identifier names, this transformation renames each
package name and class name by using a random string
generator, in both Android Manifest and smali classes,
handling renamed classes invocations.

5) Data encoding. The .dex files contain all the strings
and arrays used in the code. Strings could be used
to create detection signatures to identify malware. To
elude such signatures, this transformation encodes strings
with a Caesar cipher with a fixed key equal to 3. This
technique has also been applied to the code of the so-
called metamorphic malware [20, 21]. The original string

4http://ibotpeaches.github.io/Apktool/
5Anonymized for double-blind review.
6https://code.google.com/p/signapk/



Figure 1. An example of the application of the data encoding obfuscation technique. The box above shows a snippet of the original smali code gathered by
the .dex of the application under analysis, while the box below shows the corresponding code snippet after the application of the data encoding technique.

will be restored during application run-time, with a call
to a smali method that knows the Caesar key.

6) Call indirections. Some detection signatures could ex-
ploit the call graph of the application. To evade such
signatures, we designed and implemented a transforma-
tion which mutates the original call graph, by modifying
every method invocation in the smali code with a call to a
new method inserted by the transformation which simply
invokes the original method.

7) Code Reordering. This transformation is aimed at mod-
ifying the instructions order in smali methods. A random
reordering of instructions has been accomplished by
inserting goto instructions with the aim of preserving
the original runtime execution trace. Considering that the
reordering is random, this is considered the strongest ob-
fuscation technique able to alter the signature provided by
current antimalware technologies [4]. The transformation
was applied only to methods that do not contain any type
of jumps (i.e., if, switch, recursive calls).

8) Junk Code Insertion. These transformations introduce
code sequences that have no effect on the business logic
of applications. This is considered a weak technique: for
this reason, antimalware technologies are usually able to
identify samples obfuscated only with this technique [22].
The transformation provides three different types junk
code insertions: (a) insertion of nop instructions into each
method, (b) insertion of unconditional jumps into each
method, and (c) allocation of three additional registers
on which garbage operations are performed.

Figures 1 and 2 show two examples of the application of the
Data encoding and Code Reordering obfuscation techniques,
respectively.

B. Obfuscation detection method

We consider the problem of detecting code obfuscation on
both trusted and malware Android apps. In particular, given
an app a, we aim at identifying which of the code obfuscation



Figure 2. An example of the application of the code reordering obfuscation technique. The box above shows a snippet of the original smali code gathered by
the .dex of the application under analysis, while the box below shows the corresponding code snippet after the application of the code reordering technique.

techniques mentioned in the previous section (if any) have
been applied to a.

We adopt two different strategies to detect obfuscation: a
feature-based approach, composed by a features extraction
phase and subsequent application of established supervised
binary classification techniques, and a direct classification ap-
proach based on Long Short-Term Memory Recurrent Neural
Networks (LSTM-RNN). Both approaches are preceded by
a common initial phase of pre-processing during which a
is converted to sequences of opcodes through decompilation.
Each phase is described in detail below.

In the app conversion phase, we start extracting the .dex
file from the original .apk file of a. Decompiling the .dex
file, we obtain the sequence of machine level instructions of a,
each formed by an opcode and relative parameters. We discard
the parameters and then segment the sequence of opcodes into
subsequences, based on the Java method in a to which they
belong. Each Java method thus corresponds to a subsequence
of opcodes and the final representation of a is a unordered list
(a bag) of sequences of opcodes.

Then, we process the resulting bag of sequences according
to one of the two following approaches. In both cases, we
assume that a number of samples of obfuscated and non-
obfuscated apps are available.

1) Feature-based approach: We base this approach on the
method proposed in [10], a supervised binary classification
method which has been shown to lead to good discriminat-
ing properties for what concerns opcodes sequences, slightly
modifying it to better fit the problem addressed in this work.

Given the target obfuscation technique τ that we want to
detect, we say that a is positive if a has been obfuscated with
τ , otherwise we say that a is negative.

In a learning phase, we denote the set of positive apps
available for learning (i.e., the set of apps obfuscated with
τ ) as AP and the set of negative apps available for learning
(i.e., the set of apps not obfuscated with τ ) as AN . First, we
compute the frequency f(a, o) for each ngram of opcodes o
in a, n being a parameter of the method. Each such frequency
is a candidate feature. Since the number of features may be
remarkably large, we perform a feature selection computing
for each o its global frequencies relatively to AP and to AN ,
through the following formulas:

f̄P (o) =
1

|AP |
∑
a∈AP

f(a, o) (1)

f̄N (o) =
1

|AN |
∑
a∈AN

f(a, o) (2)



and then calculating the relative difference using:

d(o) =
abs(f̄P (o)− f̄N (o))

max(f̄P (o), f̄N (o))
(3)

We discard those o for which d(o) = 1 (i.e., those ngrams
which occur only in AP and never occur in AN or viceversa)
to avoid obtaining a classifier that fails to generalize. Then
we create the set O of selected features choosing the k
ngrams with the highest value of d(o) among the remaining
ones, where k is a parameter of the method, ensuring that
O does not contain ngrams that are subsequences of another
ngram also present in O. After this feature extraction phase,
we we train a binary classifier based on the frequencies in
a of the features determined by O. We experimented with
three popular binary classification methods, namely Support
Vector Machines (SVM), Random Forest (RF), and Multi-
Layer Perceptron (MLP). The outcome for this phase is hence,
for each obfuscation technique τ , (a) the set O of relevant
ngrams and (b) the trained classifier.

In the prediction phase, we consider the bag of sequences
of the application a being analyzed and, for each obfuscation
technique τ , (i) we extract the features (i.e., frequences of
the ngrams determined by O), and (ii) we apply the learned
classifier obtaining a binary prediction, meaning that a is
deemed to be (positive) or not to be (negative) obfuscated
with the technique τ .

2) Direct classification approach: In this approach, a fur-
ther preprocessing step is performed on each app both in the
learning and the prediction phase, the preprocessing consisting
in obtaining a single opcode sequence by concatenating all the
sequences in the app bag of sequences (in the order resulting
from the app conversion phase).

In the learning phase, we build a set A of labeled apps where
each app a is associated with nτ binary labels l1, . . . , lnτ ,
where li = 1 if a has been obfuscated (at least) with the
ith technique τi, and li = 0, otherwise. Then, we build a
larger set A′ starting from A such that for each element
〈a, (l1, . . . , lnτ )〉 ∈ A, there are one or more elements
〈aj , (l1, . . . , lnτ )〉 ∈ A, where aj is the jth chunk of the
concatenated opcode sequence of a, with chunks length equal
to l, l being a parameter of the method—the binary labels
do not change. Then, we train a LSTM-RNN on A′: the
network has an output layer of nτ neurons, each representing
an obfuscation technique. In other words, just one classifier
(the trained LSTM-RNN) can detect the obfuscation by means
of zero or more of the nτ techniques. Moreover, since the
LSTM-RNN operates directly on the opcode sequence, there
is no need for feature selection.

In the prediction phase, after the same preprocessing de-
scribed above, we apply the trained LSTM-RNN to the app
concatenated opcode sequence, thus obtaining nτ predictions
corresponding to the nτ obfuscation techniques.

IV. EXPERIMENTAL EVALUATION

A. Data

We performed an experimental evaluation of the proposed
approaches using a dataset consisting of 6600 apps. The used
dataset is a subset of the one used in [10] and contains 3300
Android malware apps and 3300 trusted (i.e., non malware)
apps. We included also malware apps in the dataset because
we wanted to assess the obfuscation detection ability of the
proposed approaches, regardless of the fact that the analyzed
app is malware or not.

We separately applied several obfuscation techniques
(through the tool introduced in the previous section) to each
app, obtaining one version of the app per obfuscation tech-
nique. The obfuscation techniques we actually used are a
subset of 6 techniques from those presented in Section III-A,
in particular:

1) Changing package name
2) Identifier renaming
3) Data encoding
4) Call indirections
5) Code reordering
6) Junk code insertion

The remaining two techniques (Disassembling & reassembling
and Repacking) do not modify the code itself and are implicitly
performed during the application of the other techniques, so
we did not include them as target techniques in our dataset.

The resulting dataset consists of 52 800 apps, and includes,
for each of the 6600 original apps, the non-obfuscated version
of the app, a version obfuscated by applying all of the 6
techniques listed above, and 6 other obfuscated versions, one
for each obfuscation technique.

B. Experimental procedure

In this section, we present methodology and results of our
experiments in identifying obfuscation techniques on Android
apps for the proposed approaches.

In our feature-based approach, we experimented with three
different classifiers: SVM with Gaussian kernel and c = 1, RF
with ntree = 500, and MLP with 4 hidden layers. Concerning
the feature extraction, we set the opcode length to n = 3 and
the number of features k = 5000, for SVM and RF; for MLP,
we experimented varying the value of k in [250, 5000].

In the direct classification approach, we used a LSTM-RNN
with a single LSTM layer of 60 neurons followed by two fully-
connected hidden layers and the output layer; we trained the
network for one epoch using a batch size of 1024. We set the
length of each chunk to l = 200 to keep a reasonably long
sequence of opcodes without exceeding the memory capability
of the LSTM cells.

We assessed our approaches detection ability separately for
each technique. In each case, we performed a 10-fold cross-
validation, that is, we split our dataset in 10 segments (evenly
distributing positive and negative apps in each segment) and
repeated our experiments 10 times, choosing each time a
different segment as testing set and the union of the remaining



Table I
EFFECTIVENESS OF THE PROPOSED APPROACHES IN TERM OF AUC AND EER (AVERAGE AND STANDARD DEVIATION ACROSS THE 10 FOLDS) IN

IDENTIFYING DIFFERENT OBFUSCATION TECHNIQUES, CONSIDERING THE CASE OF LEARNING SET WITH APPS OBFUSCATED WITH All techniques (LEFT)
OR WITHOUT THOSE APPS (RIGHT).

w/ All techniques w/o All techniques

Classifier Technique AUC EER AUC EER

SV
M

Any technique 0.69±0.01 0.35±0.01 0.63±0.04 0.40±0.04
Junk code 0.94±0.05 0.13±0.11 0.90±0.10 0.16±0.14
Identifier renaming 0.72±0.11 0.36±0.07 0.68±0.12 0.38±0.08
Data encoding 0.98±0.01 0.06±0.01 0.94±0.03 0.09±0.03
Code reordering 0.93±0.05 0.14±0.09 0.85±0.10 0.20±0.12
Change package name 0.71±0.11 0.36±0.07 0.51±0.09 0.48±0.04
Call indirection 0.89±0.10 0.16±0.14 0.86±0.12 0.21±0.15

R
F

Any technique 0.84±0.02 0.24±0.02 0.84±0.02 0.24±0.02
Junk code 0.97±0.02 0.07±0.06 0.89±0.10 0.15±0.14
Identifier renaming 0.82±0.08 0.27±0.06 0.61±0.02 0.41±0.01
Data encoding 1.00±0.00 0.01±0.01 0.96±0.02 0.07±0.02
Code reordering 0.97±0.02 0.08±0.05 0.87±0.11 0.18±0.14
Change package name 0.82±0.08 0.27±0.06 0.61±0.02 0.40±0.02
Call indirection 0.94±0.06 0.11±0.10 0.84±0.10 0.22±0.12

M
L

P

Any technique 0.83±0.01 0.25±0.01 0.84±0.01 0.25±0.01
Junk code 0.97±0.02 0.07±0.06 0.90±0.10 0.16±0.14
Identifier renaming 0.80±0.06 0.30±0.04 0.59±0.07 0.44±0.05
Data encoding 0.99±0.01 0.03±0.01 0.78±0.16 0.27±0.19
Code reordering 0.97±0.03 0.09±0.05 0.77±0.10 0.30±0.11
Change package name 0.80±0.06 0.30±0.04 0.57±0.09 0.44±0.05
Call indirection 0.92±0.08 0.13±0.12 0.70±0.07 0.39±0.05

L
ST

M
-R

N
N

Any technique 0.83±0.07 0.23±0.07 0.85±0.08 0.20±0.09
Junk code 0.97±0.01 0.06±0.01 0.95±0.02 0.08±0.02
Identifier renaming 0.72±0.03 0.34±0.01 0.52±0.14 0.49±0.11
Data encoding 0.74±0.04 0.33±0.03 0.56±0.15 0.48±0.11
Code reordering 0.79±0.06 0.28±0.06 0.65±0.09 0.41±0.09
Change packet name 0.72±0.03 0.34±0.02 0.52±0.14 0.49±0.12
Call indirection 0.73±0.03 0.33±0.01 0.56±0.12 0.48±0.12

ones as training set. We measured the effectiveness in terms
of global Area Under the ROC Curve (AUC) and Equal Error
Rate (EER). The ROC (Receiver Operating Characteristic)
curve is created by varying the threshold of a binary classifier
and plotting the resulting true positive rate (TPR) against the
false positive rate (FPR). Starting from the ROC curve, AUC
is calculated simply computing the area under the curve. EER
is obtained equalizing the false positive rate and false negative
rate (FNR), where FNR = 1− TPR.

In order to gain more insights, we also introduced an
addition classification task, denoted by Any technique, in
which the positives are the apps obfuscated with at least one
technique.

We executed two full suites of experiments, with different
compositions of the training set. A first suite with the training
set constructed with the full dataset and a second suite in
which we removed from the training set all the apps obfuscated
with all the obfuscation techniques. This choice allowed us to
explore a more specific classifier trained on a single technique
and therefore without any knowledge of the other techniques.

For what concerns learning time, we measured a total
learning time per fold in the order of minutes for MLP and RF,
of several hours for SVM, and of a few days for LSTM-RNN.
Concerning the prediction time, MLP and RF took less then
1 s to classify the entire testing set, while SVM and LSTM-

RNN took tens of seconds. We conducted our experiments
on a machine with 8 core running at 2.4 GHz and 32 GB of
RAM.

C. Results and discussion

Table I shows the results achieved by the various classifiers
for each obfuscation technique. The table shows the average
value of the index (AUC or EER) and its standard deviation
across the 10 folds.

There are three main observations which can be made based
on the results in Table I. First, there are some obfuscation
techniques which our approaches, in general, are more effec-
tive in detecting than others. In particular, the Data encoding
technique appears to be easily detected by all the approaches,
with RF trained including All techniques samples reaching an
AUC of 1.0, which corresponds to an EER of 0.01: MLP and
SVM reach AUC = 0.99 (EER = 0.03) and AUC = 0.98
(EER = 0.06), respectively. On the other hand, Identifier
renaming seems to be the obfuscation technique which is
harder to detect.

Second, figures show that the inclusion in the learning data
of sample of applications obfuscated with all the techniques is
in general beneficial. In particular, the AUC obtained with All
techniques is always greater than without All techniques, for
all the approaches and all the techniques with the exception of



Any technique. We think that this finding suggests that, despite
the fact that including samples which are obfuscated with more
than one technique may confuse the classifier, the number of
different samples in the learning data plays a crucial role:
by including All techniques samples, we essentially double
the number of positive samples, hence making the learning
data larger and, likely, more representative of the unknown
data to be classified in the testing phase. Accordingly, this
improvement does not manifest in the case of Any technique,
for which the learning set is large enough also w/o including
the All technique samples.

Third, Table I shows that there are differences among the 4
considered approaches. RF appears to be the best performing
one; yet, the difference with MLP is negligible. A larger
difference in both AUC and EER is instead observable w.r.t.
LSTM-RNN. We argue that a better effectiveness detection
could be obtained with a finer tuning of the parameters,
including the number of epochs of training: indeed, however,
we observed in our experiments that only small improvements
were obtained after the batches corresponding to the first
epoch.

In Figure 4, we show the box plots for the AUC values
which are summarized in Table I. Besides confirming the pre-
vious finding, Figure 4 shows that there are some techniques
for which all the approaches exhibit a rather wide interval
of AUC values (e.g., Identifier renaming). This finding may
corroborate our previous reasoning about the importance of
the amount of data available for learning, at least for some
technique: more or less fortunate conditions result in greater
or lower detection effectiveness in the testing phase.

Finally, in order to better investigate the effectiveness of
the feature-based approaches, we performed a further suites
of experiments by varying the value for the parameter k (i.e.,
the number of ngrams actually considered, see Section III-B1)
when coupled with the MLP classifier. The results are shown
in Figure 4, which plots the AUC vs. the value of k.

It can be seen that k has a different impact on the effec-
tiveness of detection of the various obfuscation techniques. In
general, the greater k, the better. Yet, it can be seen that for
Junk code and Code reordering, negligible improvements are
obtained with k > 1000. Interestingly, the former technique
is the one for which LSTM-RNN is the closer to the best
approach (RF): this may suggest that different approaches are
appropriate for different techniques.

V. CONCLUDING REMARKS AND FUTURE WORK

Generating a signature from malicious samples is a la-
borious and time-consuming process for malware analysts.
Furthermore, even once a threat is identified, malicious writers
can construct many variants of a given malware quickly and
cheaply by applying several obfuscation techniques. Detecting
all such variants with a single signature is extremely hard.

In this paper we proposed a method aimed at identifying au-
tomatically whether a sample under analysis has been modified
by means of obfuscation techniques. The method is based on
established supervised binary classification techniques (SVM,

Random Forest, and Multi-Layer Perceptron) operating on
ad hoc features deriving from static analysis, which have
already been shown to be suitable for classification of Android
malware; as a second option, we also explored the usage of
Long Short-Term Memory Recurrent Neural Networks, which
can operate directly on the sequences of opcodes.

We evaluated the proposed method on a dataset of real-
world Android applications modified by means of the follow-
ing obfuscation techniques: changing package name, identifier
renaming, data encoding, code reordering and junk code
insertion. The results are promising: for some techniques,
almost perfect detection is possible (e.g., Equal Error Rate
≤ 0.01 with Random Forest for detecting the Data encoding
technique), whereas for others the detection looks harder.
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