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Abstract. This paper describes a novel distributing computing middleware named XML-VM. 

Its architecture is inspired by the ‘Grid Computing’ paradigm. The proposed system improves 

many characteristics of previous Grid systems, in particular the description of the distributed 

computation, the distribution of the code and the execution times. XML is a markup language 

commonly used to interchange arbitrary data over the Internet. The idea behind this work is to 

use XML to describe algorithms; XML documents are distributed by means of XML-RPC, 

interpreted and executed using virtual machines. XML-VM is an assembly-like language, 

coded in XML. Parsing of XML-VM programs is performed with a fast SAX parser for JAVA. 

XML-VM interpreter is coded in JAVA. Several algorithms are written in XML-VM and 

executed in a distributed environment. Representative experimental results are reported. 

 

 

1   Introduction 
In the last decade, there has been an increasing interest in the development of systems 

for distributed computing aiming at sharing computing resources available on a large 

scale. These systems exploit the unused CPU cycles of a potentially enormous 

number of computers available in internet, conveying to a final user a large 

computing power at a very low cost. At a smaller scale, they exploit the unused CPU 

cycles of the computers available in the current intranet. These implementations 

originated the computing paradigm known as "GRID Computing" [1-4]. 

Grid computing aims at creating the illusion of a simple yet powerful virtual 

computer. Actually, the computing power is provided by a large collection of 

connected systems. There are many important applications requiring a large amount 

of processing power, for example systems for weather prediction using computational 

models, systems for the solution of theoretical physics and astronomy problems, 

simulations of complex systems, financial markets prediction systems and many 

other. The computing environments for GRID computing are usually very 

heterogeneous from a hardware and software point of views; thus, the first problem to 

be faced is the necessity of developing virtual machines to make the computation 

infrastructure independent from the various platforms. Of course, the most important 

characteristics of a virtual machine are the easiness of use, performance, security and 

scalability. Java is one of the most popular virtual machine. The Java virtual machine 

has been designed for running in various computing environments, from dedicated 

systems to general-purpose machines. However, generally Java requires a remarkable 

amount of computing and memory resources for compilation and execution. 
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One of the problems of the known Grid systems is that they are typically built 

around a monolithic architecture: the remote computing node selected to execute a 

certain application must also execute locally the verification functions, the security 

management, compilation and optimisation. Consequently, these monolithic 

architectures generally are limited in terms of security and scalability, opening to a 

large field of research [5]. Other known problems come from the lack of grid enabled 

software, making it difficult to easily obtain software solutions. 

This paper proposes a contribution in this field of research, developing a 

middleware that hides to the programmer the complexity of the available distributed 

architecture. The issues that we have treated designing the middleware are system 

performance, addressed by means of efficient distribution and interpretation tools, and 

the security, addressed using of SSH protocols. The architecture we propose in this 

paper is based on the XML meta-language, which is a programming language 

normally used for describing data structures.  The key point of this work is that 

rather than using XML to describe data we use XML to describe algorithms. 

Distribution of XML-VM code is performed using XML-RPC high performance 

protocol. Parsing and interpretation of XML-VM documents is performed in JAVA. 

Using XML as a framework to describe both data and algorithms we provide a 

common base that different platforms can manage in different ways. One way may be 

to use transformation sheets, and another way is to write an interpret using an 

appropriate programming language. 

This paper is structured as follows. Section 2 deals with the state of the art, 

describing in particular a representative Grid system highlighting its positive aspects 

and defects. In Section 3, we describe the architecture of the system. In Section 4, we 

summarize the XML-VM language, while in Section 5 we describe some information 

on parsing and interpretation of a XML-VM program. In Section 6, some 

experimental result are shown. In Section 7, some final remarks are reported.  

 

2   Related Work 
This project is inspired by the large scale distributed computing systems for research 

purposes developed over the years. The Great Internet Mersenne Prime Search 

(GIMPS) project [6] started in 1996. The goal of GIMPS is to find Mersenne primes, 

namely prime number of the form Mn = 2n – 1 for some integer n, using computers 

connected via internet. The SETI@Home project [7] started in 1997 to identify non-

random radio patterns generated by some form of intelligent life, excluding at the 

same time random signal patterns generated by natural phenomena like stars and 

supernovas. The Einstein@Home project [8] was officially launched in 2005 for 

searching signals from rotating neutron stars using gravitational-wave detectors. In 

each of these projects, huge amount of data is processed using a parallel computing 

approach: data is broken in small packets, and each packet is sent to the computers 

distributed across the Internet which offer their free CPU times for the processing. 

This is done using a special software downloaded from a web site. Usually this 

software acts as a traditional screen saver, however it contains the implementation of 

the data processing algorithms and the procedures for receiving data and transmitting 

results to the main server. The algorithms implemented on the GRID are always the 

same, while the data to be processed is varying; such a SIMD model is only suitable 

to particular computations. Namely, if we do not have a completely separable 



problem, or if the routines being executed on the data are varying, or if a single node 

needs additional remote tasks, the reported GRID computational model becomes 

absolutely inadequate. 

Other approaches for building a distributed programming system are based on Java 

virtual machines [9]. Some approaches give the programmer an unique environment 

in which the threads are distributed on the different nodes by the operating system. 

This solution is quite complex to develop, since many problems arise concerning both 

implementation and performance. Projects following this approach include the IBM 

cluster VM for Java, the Kaffe virtual machine and the JDSM [10]. 

Other approaches are based on the development of communication mechanisms 

such as, for example, message passing. A typical approach of this kind is RMI 

(Remote Method Invocation). Other approaches are based on extensions of Java with 

parallel programming linguistic constructs. An example of this latter approach is 

JavaParty, developed at the University of Karlsruhe [11]. 

Other approaches are based on CORBA [12]. Miro [13] is an object oriented layered 

client/server robot middleware system based on ACE [14] and the associated real-

time CORBA ORB, TAO.  

The middleware described in this paper is of SIMD type. One of its feature is that it 

is able to distribute the computing load transparently to the programmer. 

 

3   System Architecture 
The architecture of the distributed system described in this paper, namely XML-VM, 

is depicted in Fig.1. XML-VM is structured according to a peer-to-peer principles. A 

central node provides a simple terminal for the collection of the result and the 

measurements of the performances of the system. The central node does not know 

nearly anything about what is happening in the remote nodes, where the computation 

effectively takes place. Each node decides if and when to call other remote nodes and 

the method to execute. On the central node a particular daemon is running, called 

‘name resolve daemon’, which knows the IP of the available remote nodes. A generic 

node ‘A’, when it needs to fork a procedure on a remote node, calls the central node 

for the individuation and resolution of the address of an available remote node. At this 

point, node ‘A’ contacts directly the remote node for the execution of an algorithm; 

this procedure is executed each time a remote call is needed. Clearly, node ‘A’ must 

join the conclusion of the remote call by waiting for the return of results. In our 

system, the distribution of the XML code on the distributed nodes is performed using 

the Fork statement. 

 

<FORK id clone results> 

...data and algorithms to be executed in the remote node, 

expressed in XML-VM... 

</FORK> 

 

Fork implements the following actions: first, an available node is sought in the local 

table, then the code and data are sent to the remote node with XML-RPC. 

Synchronization is performed using the Join statement. The Join tag has the 

following syntax: <JOIN id/> and implements the following operation: waits for the 



termination of the remote node and returns the results to the calling environment 

using the XML-RPC response. 

 

4   The Fork/Join linguistic framework 
The Fork/Join linguistic framework has been introduced by M. Conway [15] and J. 

Dennis [16] in the ’60. Starting from the initial definition, many programming 

languages used the Fork/Join concept in several ways. The Fork/Join operations has 

been largely studied from a queueing point of view [17-19]. The Fork/Join linguistic 

framework is available in Java [20]. Fork generates a concurrent thread of execution, 

while the Join waits for its  termination; in this way it is possible to build 

concurrency. 

 

 

 
 

Fig. 1. XML-VM System Architecture. The gateway computer is the Root Node. Every 

other computer is a computational node and it is configured as root or leaf in a logical 

tree structure. Each node has a reference to its higher-level node and a to a local IP 

table. 

 
In Fig. 2 a system of concurrent processes is shown using an interpretation of the 

Fork operation based on a data type defined by the language, process, which is used 

as an operand of Join to specify the process to synchronize with. A similar approach 

for the implementation of Fork/Join is used in this work. 

 



 
 

Fig. 2. Example of a Fork/Join concurrent processes with a predefined data type 

 

5.   The language XML-VM 
In this Section, we summarize the main characteristics of the XML-VM language. 

First of all, it is worth noting that two sets of memory are generated, declared in Java 

as Array of Object, which simulate registry and a virtual disk available to the virtual 

machine. The registry is constituted by 32 cells numbered from 0 to 31, while the 

virtual disk is constituted by 10000 blocks of data, numbered from 0 to 9999. All the 

data related operations take place on the virtual disk; this means that, for example, if 

we want to make a simple sum of two numbers, the numbers must be stored in two 

data cells of the virtual disk. There are no variables, and every operation must be 

performed specifying the involved cells of memory; from this point of view, XML-

VM is an assembler-like language.  

 

 
 

Fig. 3. The architecture of XML-VM 

 

All the mathematical and logical instructions of the language take only place on 

registers. The storage of data on the virtual disk is performed exclusively through the 

STORE instruction. Instead, the LOAD instruction is the only instruction that allows 

to copy the content of the cells of the virtual disk into the registers. Ten different data 

types are implemented in the language; nine of them follow the Java data types: int, 

long, short, byte, float, double, Boolean, char and string while the tenth data type, 

defined in XML-VM as  “index”,  represents a pointer to another data cell in the 



virtual disk or in  a register. The index data type can be used by the load, store and 

procedure call operations; moreover, this type is fundamental for programming loops. 

The syntax of the language exploits the use of tags attributes as integrating parts of 

the instructions, while nesting of tags is rare. This decision was taken in order to 

facilitate the  XML-VM code writing. A simplified description of the instructions of 

XML-VM, grouped by type, is summarized in Appendix A. 

 

5.1 Parsing and interpretation 

The parser performs a complete analysis of the XML-VM document, expanding all 

the tags, attributes and values.  One of the most complete and used XML parser is 

the Apache Xerces XML Parser. Xerces supports SAX 1.0 and 2.0; SAX stands for 

Simple Api for XML. Once we completed the first version of XML-VM virtual 

machine, embedding the XML-RPC protocol for communication between remote 

nodes, we noticed a decrease of performance due to the slowness of the XML parser. 

In order to overcome this overhead we decided to use the Piccolo XML Parser for 

Java [21], which is a light and fast SAX 1, SAX 2 and JAXP parser. Piccolo is very 

fast and it has been integrated in our system. The high performance reached is mainly 

due to the fact that the parser does not process the Data Type Definition (DTD). The 

interpreter of XML-VM language is written in Java for portability reasons; the 

interpreter executes the actions associated to the XML tags as they are analyzed by 

the parser. 

Let us consider the architecture depicted in Fig.1. The following points are required: 

1 – it is necessary to install on each machine the XML-VM virtual machine; the 

virtual machine is started and works as a service, waiting for remote requests. 

2 – on the central node, we install the same XML-VM virtual machine and the name 

resolve daemon used by remote nodes 

3 – the sources of the algorithms to be executed are published through a web server 

reachable by all the nodes 

4 – now we are ready to launch the distributed execution of the program. 

 

 The pseudocode of the interpret is reported as follows. 

public Object startExe (Object[]arg,xmlvm Machine)throws 

Exception   { 

Initialize XML-VM stack, registry end virtual disk; 

Search the Tag Labels; 

Save the (name, position) couples in the  

LabelLis tarray; 

Verify that all the document is included in 

<XMLVM>…</XMLVM> Tags; 

Find the Tags <START/> or <STRUCT/>; 

Set ‘i’=<START/>Tag position; 

try { 

     for(i<tag.getChildrenCount(); 

if (i-th Tag in ADD LOAD MOV STORE SUB MUL 

DIV  

                   COMP LOCALCALL CALL FORK JOIN  

                   CONV ELEV OPER e RANDOM) 



then  

execute the Tag service routine; 

   else{ 

     if START and LABEL do nothing; 

     if STRUCT restore informations; 

if JEQ, JNEQ, JGR, JNGR execute the 

associated routines; 

if RETURN execute the Return(tag) 

routine; 

if SHOW list registry content; 

   if QUIT exit; 

      } 

} 

} catch(Exception e) 

Measure the time interval from initialization to 

last detected Tag; 

Send the time measure to the name resolution 

routine using XML-RPC; 

End routine; 

} 

 

In the following we report the pseudocode of the implementation of the Fork 

instructions. 

 
public void Fork(xmlvm tag) throws Exception { 

 Extract TO, IP, FILE, NAME and CLONE attributes; 

 If (IP.charAt(0 == ‘N’){ 

Make an RPC call to the Name Resolution 

Module to get the IP corresponding to the 

identifier stored in IP; 

IP = true IP returned by the name resolution 

module; 

args = registry and virtual disk address 

indicated by CLONE; 

  virtual disk = “*RESERVED*”; 

ForkThread remoteCall = new ForkThread(); 

RemoteCall.start(); 

} 

} 

We now report the pseudocode of the implementation of the Join instruction. 

 
public void Join(xmlvm tag) throws Exception { 

 Extract TO and TOPOINTED attributes; 

 if(TO.compareTo(“”) != 0)  

Verify that the TO cells are still not 

*RESERVED*; 



Otherwise, start a cycle to continuously 

monitor the cells; 

  Else{ 

Verify that TOPOINTED cells are still not 

*RESERVED*; 

Otherwise, start a cycle to continuously 

monitor the cells 

 } 

} 

 

6.   Experimental results 
We report some experimental results about typical performance of the Grid 

computing system presented in this paper. In general, the efficiency of a distributed 

application is related to various factors: the network speed, the homogeneity of the 

machines which participate to the Grid, the degree of parallelism of the algorithm. 

  Our experimental study is performed on fifteen computers available in the 

laboratory intranet. Each computer, based on an Intel Core I5 running at 3.40 GHz, is  

a XMLVM node. Three simple applications are written in XML-VM and executed on 

this network. The first application is the sum of two billions of integer numbers. The 

whole series of numbers is split in small sections whose summation is distributed 

among the nodes. The second application is the computation of the  number by 

solving this integral: 

∫
4

1 + 𝑥2
𝑑𝑥

1

0

= 𝜋 

where the [0-1] interval is divided in two billion sections distributed among the 

network. The third application a quicksort sorting algorithm executed on a sequence 

of two billion integers. The quicksort algorithm is implemented in the XML-VM 

distributed computing framework. 

These simple problems allow us to study the behavior of XML-VM executing a 

large number of operations. Clearly, the computing time is dependent on the number 

of machines used in parallel for the elaboration of the algorithms.  

The applications are executed on fifteen nodes and the execution time of each node 

is summed and divided by fifteen. To analyze the overhead of XML parsing, the 

parsing time of each node is averaged over the nodes too. The results are reported in 

Table 1. 

Table 1.  Medium Parsing and Execution Times and Parsing Overhead.  

Application Average 

Parsing Time 

Average  

Execution Time  

Percentage 

Sum 384 ms 5814.32 ms 0.066% 

Integral 531 ms 10662.81 ms 0.05% 

QuickSort 518 ms 7727.3 ms 0.067% 

   

 



The first application is executed on a number of nodes from one to fifteen. What it 

is expected is that the execution time T(n) follows an hyperbolic behavior, since the 

T(n) function should be of the type 1/n, where n is the number of machines involved 

in the distributed computation. The measured values are shown in Fig. 4. The 

absolute time versus the number of machines follows a hyperbolic curve as expected.  

 

Fig. 4 Execution time in seconds of the sum of the two billion integer versus the number of 

distributed nodes. 

In Fig. 5 we report the speedup of the execution time required by the sum operation 

performed on the distributed system compared with the execution time of the same 

operation on a single i5 computer. 

 

Fig.5 Speedup of the execution time obtained with the XML-VM distributed system compared 

to the execution time on a single node. 



The speedup approximately follows the theoretical behavior. 

7. Conclusions and Final remarks 
In this paper we dealt with the problem to design and develop an efficient architecture 

for realizing a computing system based on the Grid approach. We describe a Grid 

system based on XML. Many distributed applications are described. This work is 

based on the idea to use XML for describing algorithms. By means of XML it is 

possible to realize an efficient Grid system; the distribution of the algorithms, which 

is done by means of HTTP protocols, is very fast, the code execution is quickly 

performed by a fast XML parsing and by means of an interpreter we wrote in JAVA. 

The scalability of the system is realized efficiently with a name resolve daemon. Due 

to these reasons, the system performance compare very favorably with other solutions 

based on the distribution of Java code. 

We develop a language, called XML-VM, for describing algorithms, as well an 

XML-VM interpreter to execute these algorithms. Each distributed machine runs 

locally the parser and the interpreter, whose execution is very efficient. The 

distribution of  the methods is efficiently performed with XML-RPC and HTTPS 

protocols. Experimental results show that the practical behavior of the system is in 

agreement with the theoretical expectations.  

Many problems are still open. The distribution of the workload, that is how to 

choose the distributed nodes, has not been considered. Another open aspect is the 

fault tolerance of the system. Similarly, we did not consider the problems related to 

the programming of complex algorithms; this problem could be mitigated by the 

development of an high-level language to XML-VM translator.  

In conclusion, in view of the increasing importance of the Grid computing and of 

the possible future developments of this research, we believe that this paper can give a 

remarkable contribute in several theoretical and applicative fields. 
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Appendix A: XML-VM tags 

 

XML-VM Mathematical tags 

<ADD target=”r1” first=”r2” second=”r3”/>   r1=r2+r3 

<SUB target=”r1” first=”r2” second=”r3”/>    r1=r2-r3 

<CONV register=”r1” target=”r2” to=”type”/>   convert type of r1 to r2 

<DIV first=”r1” second=”r2” result=”r3” rest=”r4”/>   r1=r2*r3+r4 

<ELEV target=”r1” register=”r2” exponent=”r3”/>   r1=r2^r3 

<MUL target=”r1” first=”r2” second=”r3”/>   r1=r2*r3 

 

XML-VM  Data movement tags 

<LOAD register=”r1” index=”m1”/>    r1=disk[m1] 

<MOVE target=”r1” source=”r2”/>    r1=r2 

<STORE to=”m1” type=”type”>     disk[m1]=value 

‘value’</STORE> 

 

XML-VM Logical tags 

 

<CMP first=”r1” second=”r2”/> 

<JEQ to=”label”/>      jump if equal 

<JGR to=”label”/>      jump if greater 

<JNEQ to=”label”/>       jump if not equal 

<JNGR to=”label”/>       jump if not greater 

 

XML-VM Procedure call tags 

 

<CALL ip=”IP:NPORT” file=”Path/filename.xml” name=”name” to=”m5-m7”> 

 <PARAM>      remote synch call 

  r2 

 </PARAM> 

 <PARAM> 

  m15 

 </PARAM> 

 … 

</CALL> 

<FORK id=”N02” file=”Path/file.xml” name=”nome” to=”r5-r7” clone=”m5-m7”/> 

<JOIN to=”r5-r7”/> 

<LOCALCALL name=”name” to=”m5-m7”>   local call 

 <PARAM> 

  r2 

 </PARAM> 

 <PARAM> 

  m15 

 </PARAM> 

 …  

</LOCALCALL> 

<RETURN from=”m5-m7”/> 

 

XML-VM Miscellanea tags 

 

<LABEL name=”name”/>   labels the position  

<QUIT/>     the end of a XML-VM document.   

<START/>     begin of a "stand-alone" document 

<STRUCT/>     begin of a "not stand-alone" document 

 



Appendix B: Testing algorithm written in XML-VM 

 

The algorithm that runs on the central node, written in XML-VM, can be described 

with the following pseudo-code, where the only lines written in XML-VM are that of 

the fork and join instructions: 

 

R0=4000000; 

R1=nr.increments; 

R2=nr.remote.nodes; 

For (n=0; n<R2;n++)   /*for each remote node */ 

{  

 R4=n * nr.increments;  /* 0, nr.inc., 2*nr.inc.,…*/ 

 R5=R4+nr.increments; 

/* N00 means that the remote node is chosen randomly. */ 

/* R4 and R5 are ‘passed’ to the remote node */ 

 <fork “id=N00” file=”url” name=”sum” to=”res loc” clone=”R4 R5”/>  

 <join to=“results“> 

} 

 

Clearly, the role of Fork is to start a section of the algorithm, in parallel to other 

sections, on a remote node whose address is chosen in a suitable manner. The 

algorithm which runs on each remote node is described below in XML-VM: 

 

<?xml version='1.0'?> 

<XMLVM> 

<STRUCT/> 

<LABEL name="Sum"/> 

<STORE to="10" type="double"> 

 0 

</STORE> 

<LOAD register="0" index="10"/> <!-- In R[0] we put the result, set it to zero --> 

<LOAD register="1" index="1"/> <!-- In R[1] we put the first parameter  --> 

<LOAD register="2" index="2"/> <!-- In R[2] we put the second parameter --> 

<ADD first="1" second="31"/> 

<LABEL name="For"/> 

<CMP first="1" second="2"/> <!—if i > n_high then break --> 

<JGR to="EndFor"/> 

<ADD first="0" second="1"/> <!-- result += i --> 

<ADD first="1" second="31"/> <!-- ++i -->  

<JNGR to="For"/>   

<LABEL name="EndFor"/>  

<RETURN from="r0"/> 

<QUIT/> 

  </XMLVM> 


