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A branch-and-bound approach to schedule a no-wait
flow shop to minimize the CVaR of the residual work

content.

Abstract

The aerospace industry ranks among the largest manufacturing industries in

the world facing a significant growing phase as well as an increased competi-

tion. This paper addresses the scheduling of a set of jobs in a paced assembly

line in presence of uncertainty affecting the availability of production resources,

stemming from the assembly process in the aircraft manufacturing industry.

The production problem is modeled as a no-wait paced permutation flow shop

and solved providing a robust scheduling solution minimizing the conditional

value-at-risk (CV aR) of the residual work content, i.e., the amount of workload

that cannot be completed during the cycle time in the stations, due to a lack of

available resources. A branch-and-bound approach is developed and applied to

randomly generated instances as well as to an industrial problem related to the

production of aircrafts.

Keywords: Stochastic scheduling, Robust scheduling, Conditional value at

risk, Aircraft manufacturing

1. Introduction and Problem Statement

The aerospace industry ranks among the largest manufacturing industries

in the world in terms of people employed (counting 2 million directly involved

and 6 million considering the entire industrial ecosystem), and value of output,

with the turnover of the top 20 companies reaching $ 500 billion in 2014 [1].

Although it can be considered a mature market, with almost $200 billion

worth of global net orders in 2016 and more than 23000 aircrafts currently in
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service, commercial aviation is a dynamic and continuously growing industry.

The two major civil aircraft manufacturers, Airbus and Boeing, are expecting

a robust growth of the air travel demand for the future. More specifically,

Airbus predicts a demand for almost 35000 new aircrafts in the next 20 years,

whereof 60% shall contribute to the global fleet growth and 40% will replace old

aircrafts [2]. On the other hand, Boeing estimates 41000 new deliveries in the

period between 2017 and 2036, for a market value of $6.1 trillion in its global

market forecasts [3].

At the same time, aircrafts production is historically characterized by high

levels of backlog. During last years, the backlog even increased, reaching a

global value of almost 10 equivalent years of production [4].

Grounding on these considerations, aircraft manufacturers are strongly fo-

cused to increase the efficiency of their production facilities to take advanced of

the current business opportunity and face the competition of emerging manu-

factures in Asia and South America.

The focus of this work is aligned with this perspective, addressing the schedul-

ing of the assembly process of aircrafts. More specifically, this work aims at

providing a robust approach for the sequencing of the final assembly process of

aircrafts, coping with the uncertainty possibly affecting production resources.

The final assembly process of modern civil aircrafts is traditionally operated

in paced flow shops. Aircrafts enter the first station of the assembly line and

proceed to the following according to a cycle time whose value is in the order

of some days. In each station assembly operations are performed taking advan-

tage of production resources, i.e., tools, fixtures, and workers. Although modern

aircrafts are a rather standardized design, they are extremely complex and cus-

tomized products counting more than 3000 operations to be accomplished in

their assembly process. Most of these relates to structural components and are

the same for a given model of aircraft. On the contrary, other operations de-

pends on the specific customization selected and, hence, the actual workload

assigned to the stations can vary. The assembling of complex make-to-order

products is often modeled as the execution of one-of-a-kind project, paving the
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way to the adoption of project scheduling approaches able to cope with the

variable characteristics of the jobs to be processed [5].

Due to the constraints imposed by the cycle time, this variability entails an

intrinsic planning complexity and workload peaks have to be managed through

overtime working hours or by shifting the completion of some operations to

the next stations, disturbing the standard execution of the process. For this

reason, being able of sequencing the aircraft with the objective of minimizing

the deviation of the workload in the stations respect to the expected one is a

major requirement. An additional complexity to this planning problem is added

by the uncertainty typical in such complex process:

1. the availability of the workforce can vary over time due to personnel sick-

ness, absenteeism or interference with the requirements coming from the

other assembly processes;

2. assembly operations can require more effort than expected in case addi-

tional tests and verifications are required to match the stringent safety

regulations of the aircraft industry;

3. the delay of components to be assembled could cause unpredicted delays.

Although all of these factors are relevant, the availability of workforce is the

prominent source of uncertainty since it has the highest impact on the man-

agement of the production. In this paper we address the scheduling of a set of

jobs in a paced assembly line in presence of uncertainty affecting the availabil-

ity of production resources, modeled as a random variable. The manufacturing

system is modeled as a no-wait permutation flow-shop [6]. The proposed ap-

proach addresses the definition of a robust schedule minimizing the conditional

value-at-risk (CV aR) of the residual work content, i.e. the amount of workload

that cannot be completed during the cycle time in the stations, due to a lack

of available resources. A branch-and-bound approach is developed to solve the

described problem to optimality. The objective function used, the CV aR, is

a measure of risk widely used in the financial research, e.g. in portfolio opti-

mization [7] and is used as a robustness measure associated to a schedule. The
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proposed approach is tested on randomly generated instances and finally applied

to an industrial case taken from the aeronautic industry.

2. State of the Art

Flow shop scheduling is a rather common research area. A wide survey on

this class of problems is provided in [6] covering formalization and terminology

aspects, theoretical results as well as optimization approaches and algorithms

for different classes of problems, e.g., hybrid, permutation or no-wait flow shop.

Additional surveys are [8] and [9] specifically addressing more than 400 scien-

tific contributions for no-wait problems, i.e., systems where, for technological or

other reasons, once a job is started, it must flow through every stage to com-

pletion without any delay in process, thus, without the possibility to wait in a

buffer.

Since the general flow shop scheduling problem is NP-hard (except for the

simple case of 2-machine systems and some particular cases of the 3-machine

systems [6]), most of the research efforts have been devoted to the development

of approximated solution approaches with the aim to obtain near-optimal solu-

tions in a reasonable computational time rather than solving them to optimality

[10, 11, 12, 13].

Among the available solution approaches, the branch-and-bound is a com-

mon tool but, due to the complexity of the flow shop scheduling problem, only

few contributions are available addressing flow shops with multiple machines. In

[14], a branch-and-bound approach is used for a permutation flow shop schedul-

ing problem whose branching scheme considers different subproblems represent-

ing a sub-set of jobs at the end of the complete sequence. Starting from this

partial sequence, new sub-problems are derived by adding one more jobs be-

fore the already defined sequence. A depth-first strategy is pursued, prioritizing

nodes with longer partial sequences to find a first complete solution as soon as

possible. The same problem has been addressed in [15] developing new bounds

able to cope with a number of jobs to schedule greater than 20. In [16], the
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special case of the no-wait flow shop problem with due dates is considered and a

mixed integer programming model, two quadratic mixed integer programming

models, two constraint programming models and a novel graph representation

are provided. The aim is to identify a large number of infeasible solutions and

support exact solution algorithms based on the enumeration of the remaining

possible schedules.

All the papers cited so far aim to minimize a scalar function of the process

completion time or, in some cases, a weighted sum of two or more of these

functions, i.e., the total and maximum tardiness, lateness and earliness, the

number of tardy or late or early jobs, etc. When addressing paced flow-shop

systems, these objective functions are partially not applicable, since the flow

time is univocally determined by the cycle time.

This specific class of problems has been addressed in [17], handling the prob-

lem of workforce planning in synchronous production systems. Specifically, a

paced production system is considered where all the stations have the same

production cycle and a feasible schedule is identified that minimizes a linear

function of the workforce and total flow time costs. Heuristic algorithms are

developed for problems with an arbitrary number of work stations. This work

finds application in labor intensive production environments, typical in the au-

tomotive or aircraft industries. However, a relevant limitation of this approach

in relation to the problem addressed in this paper is the set of decisions that can

be taken. The approach in [17] considers the possibility of varying the assign-

ment of the workforce to production cycles and stations. On the contrary, the

approach we propose is aimed for short-term scheduling decisions and considers

workforce availability as an input, since it has been planned at a higher level.

An additional requirements is the fact that, at the execution phase, fluctuations

of the availability of the workforce can occur, thus, scheduling approaches have

to be able to cope with the associated uncertainty.

Stochastic and robust scheduling approaches have attracted a significant

amount of research in the last years driven by the consideration that, in manu-

facturing processes, uncertainty can stem from different sources, both internal
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and external, affecting the performance of the production system.

In [18], the authors handle the problem of uncertainty affecting the process-

ing times of the activities in a resource constrained project scheduling problem.

Grounding on the fact that in uncertain contexts it is not possible to define prob-

abilities for uncertain events, the authors propose a minimax regret approach

aimed at the minimization of the largest possible difference in makespan between

the selected solution and the optimal makespan for a given scenario. A further

distinction must be done between proactive and reactive robust approaches.

Proactive scheduling approaches incorporate information about uncertainty in

a baseline schedule, pursuing ex-ante stability. Reactive approaches, on the con-

trary, only provide a proper strategy to modify the schedule when unexpected

events occur.

A proactive-reactive approach is proposed in [19] where a two-stage stochas-

tic programming formulation is used to devise a robust production planning

problems in a manufacturing-to-order system minimizing the expected value of

the makespan over a set of scenarios. First-stage decisions define the baseline

schedule whereas second-stage ones represent reactions to be taken after the

occurrence of uncertain events. In this case, the expression quality robustness

is used, i.e. the insensitivity of the plan, in terms of the target performance,

to the occurrence of uncertain events [20]. Thus, a robust plan can undergo

modifications with the aim at preserving the performance in terms of the value

of the objective function.

A different class of robust approaches is aimed at the solution robustness, or

stability [20], i.e., the insensitivity of the solution in terms of the start times of

the activities.

Most of the described approaches consider as objective function the expected

value of a scheduling performance indicator. Although this provides significant

benefits in comparison with pure deterministic approaches, the expected value

is not able to fully take into account the stochastic nature of the problem. A

more powerful approach is being able of balancing the expected performance

and the penalty incurred with the occurrence of less probable but high-impact
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scenarios. To this aim, the concept of risk is suitable to support a different class

of scheduling approaches.

Financial research has been paying attention to the concepts of risk indica-

tors and robustness for a long time and recent research trends have shown a

renewed interest toward these aspects also in the scheduling domain.

The Conditional Value-at-Risk has been firstly introduced as a risk indicator

by [7] as a criterion for the optimization of a portfolio of financial assets to

mitigate the associated risk, pitting it against the already widely used Value-

at-Risk. The advantages of CVaR over VaR are described and motivated and,

in addition, an approach is described to minimize the conditional value at risk

of a given random variable without the need to calculate the value-at-risk. This

result is relevant from a practical point of view because of the considerable

difficulties related to the calculation of the VaR, especially when scenarios are

used to model the uncertainty.

In [21] the use of the CVaR is introduced as a criterion for stochastic schedul-

ing problem proposing a scenario-based mixed integer programming formulation

for general scheduling problems and solving it through a L-shaped algorithm

and a heuristic approach tailored to the single machine total weighted tardiness

problem. The VaR is also used to support robust scheduling in [22] and [23].

The authors implement a solution approach that exploit a branch-and-bound

framework to optimize the maximum weighted tardiness.

3. Problem Formulation

The systems under study consists of an assembly line organized as a flowshop

where no buffer exists between the stations. Although this could seem a rather

restrictive hypothesis, it is rather common in many manufacturing environments

due to technological or logistic reasons. An example are Manufacturing-To-

Order (MTO) environments where, due to the dimension or characteristics of the

processed products (e.g., a turbine or an aircraft), it is not feasible to have one

or more of them waiting in a buffer. As previously described, such systems are
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commonly referred to as nondelay or no-wait flow shops [6]. Another example is

food processing, where canning operations must immediately follow cooking to

guarantee the freshness of the product. A direct consequence of this assumption

is that, since no job can overtake another while processed, only permutation

schedules are possible, i.e., the sequence of jobs for the first station is the same

in all the following stations.

A special case for no-wait flow shops, and this is the one we focus on, are

synchronous (or paced) lines. In these systems, a set of jobs is to processed on

m stations arranged in a series so that each job visits all the stations in the same

order. The flow time in each station is the same for all the jobs and represents

the production cycle (or period) measured in units of time. Paced assembly

lines are also defined as synchronous since jobs move from a station to the next

one simultaneously at the end of every cycle.

Hence, we consider a set of jobs J to be processed in a paced no-wait flow

shops consisting ofm stations. The line operates according to a given production

period or cycle c whose length is T time periods (e.g., hours or days). Thus, the

whole planning horizon is partitioned in a set of cycles C. The processing of the

jobs in the stations entails the use of a set of resources K. Each job Jj has a

resource requirement wj,i,k representing the requirements of resource k for job j

in station i. In general terms, wj,i,k is a random variable, since the real amount

of a resource needed to process a job can be affected by uncertainty.

Due to the characteristics of the system under study, the scheduling of the

jobs has to follow the structure of the cycles, hence, an arbitrary schedule or

sequence S is defined in terms of the selection of the job to enter the first station

of the line at each cycle time c.

The availability ak,c of each resource k in each cycle c is modeled as random

variable. Each scheduled job entails a resource consumption wj,i,k in the cycle

time c where it is going to be processed in station i, according to a sequence S.

These resource requirements are subtracted from the resource availability and,

since this is a random variable, the remaining availability of that resource is a

random variable as well.
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In case the availability of a resource is not sufficient to satisfy the require-

ments of a job in a given cycle c, the fraction of this requirements that cannot

be satisfied represents work that will not be possible to complete in that cycle.

We define the residual work content as the global amount of workload that

cannot be completed in the stations due to a lack of resources. Let us define

the residual resource availability, rak,cpSq, as the amount of resource k still

available in cycle c given the schedule S. If we consider a schedule with a single

job j entering the first station in the line at cycle p, its processing will entail

a consumption of resources in all the m stations in the line. Namely, j will be

processed in station 1 at cycle c, in station 2 at cycle c`1 and in the last station

at cycle c`m´ 1. The resource consumption of job j at cycle c, according to

a schedule S where it is sequenced in position p is:

rcj,k,cpSq “

$

’

&

’

%

´wj,c´p`1,k if c P tp, . . . p`M ´ 1u

0 otherwise

(1)

The resource availability rak,cpSq, modeling the amount of resource avail-

able in each cycle after the jobs in S have been processed, can be calculated

subtracting the resource consumption calculated in Equation 1 to the amount

of the available resources:

rak,cpSq “ ak,c ´
ÿ

jPJ

rcj,k,cpSq (2)

Since ak,c is a random variable and rcj,k,cpSq a constant, this reduces to

summing the resource consumption of all the scheduled jobs in cycle c and then

right-shifting ak,c according to this quantity. This residual availability can as-

sume negative values, when the available resources are not enough the satisfy the

requirements of the scheduled jobs. As previously declared, the fraction of the

cumulative resource requirements exceeding the resource availability represents

work that will not be accomplished in the cycle time and requiring overtime

work or being completed at the end of the assembly process. We define the

residual work content for a given resource k in a given cycle c as:
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rwck,cpSq “ minp´rak,cpSq, 0q (3)

Thus rwck,cpSq is a random variable assuming values in the positive domain

only (if unaccomplished work is likely to occur). The total residual work content

is defined as the cumulative amount of the uncompleted work for all the cycles

and obtained through a convolution of the rwck,cpSq for all c P T :

trwckpSq “ f
cPT

prwck,cpSqq (4)

The total residual work content trwckpSq is a random variable and, aiming

at mitigating its impact on the assembly system, we pursue a robust schedule

by minimizing its conditional value-at-risk (CV aR)

The cumulative distribution function of trwckpSq is defined using the fol-

lowing:

FtrwckpS, ζq “ P ptrwck ď ζ|Sq (5)

As defined in [24] and using the notation in [7], the value-at-risk α (V aRα)

of the value of the performance indicator z associated with the decision x is:

ζαpSq “ mintζ|FtrwckpS, ζq ě αu (6)

The α ´ CV aR of (5) associated to a schedule S is the mean of the α-tail

distribution of trwckpSq:

FαtrwckpS, ζq “

$

’

&

’

%

0 forζ ă ζαpSq,

rFαtrwckpS, ζq ´ αs { r1´ αs forζ ě ζαpSq,

(7)

Given this distribution, we aim at minimizing the CV aR to guide the so-

lution algorithm towards a schedule that could be considered optimal from a

risk-related point of view.

The described problem formulation is resumed in the following sets, param-

eters, variables:
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Sets/indices

J : set of jobs to be scheduled, indexed by j.

M : set of stations in the flow shop, indexed by i.

K : set of resources, indexed by k.

T : set of cycle times, indexed by c.

Paramenters

ak,c : availability of resource k in cycle c, is modelled through a stochastic

distribution.

wj,i,k : resource consumption of job j in relation to resource k and station i, is

a deterministic value.

Decision variables

S : a schedule.

rak,cpSq : residual availability of resource k in cycle c given the schedule S, is

a random variable.

rcj,k,cpSq : resource consumption of job j in relation to resource k and cycle

time c given the schedule S, is a deterministic variable.

rwck,cpSq : residual work content for resource k in cycle c given the schedule

S, is a random variable.

trwckpSq : total residual work content of resource k given the schedule S, is a

random variable.

FtrwckpS, ζq : cumulative distribution function for trwckpSq.

FαtrwckpS, ζq : α´ CV aR of trwckpSq.
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4. Branch and bound algorithm

As described in Section 3, we consider the vector of decision variables S

where Sl defines which job is scheduled in position l. If these decision variables

are addressed sequentially, a branching scheme is obtained with a root node

(level 0) where no job has been sequenced. From this node, n branches depart,

one for each job that can be the next in the sequence. In general, a node at

level l ´ 1 ă n of the branching tree represents a partial schedule containing a

sequence with the first l ´ 1 jobs. From this node, n ´ l ` 1 branches depart,

each one modeling a different job to be sequenced next. At each level l the

branching tree contains n!{pn´ lq! nodes [25].

4.1. Nodes evaluation

At each node, a lower and an upper bound of the target performance (the

total residual work content) are calculated to determine the most promising

branches and prune the dominated ones. At each node in the branching tree, a

set of jobs Q P J has been already scheduled while the remaining jobs in J zQ

are still to be sequenced. Namely, the contribution to the objective function

provided by a job j already scheduled in position p (or, equivalently, entering

the assembly line at cycle time p) can be calculated according to Equations

(1), (2) and (3). A different approach has to be used for the contribution of

unscheduled jobs. For these, a lower bound of the resource consumption can

be estimated hypothesizing that it will be equal to the lowest resource request

among the unscheduled jobs wJ zQ,i,k. In the same way, an upper bound can be

calculated as the highest resource request among the unscheduled jobs wJ zQ,i,k.

Hence, given a partial schedule S, withQ being the set of jobs already scheduled,

the upper bound of the resource consumption of a job j is:

rcj,k,cpSq “

$

’

’

’

’

&

’

’

’

’

%

´wj,c´p`1,k if j P Q, c P tp, . . . p`M ´ 1u

´wJ zQ,c´p`1,k if j P J zQ, c P tp, . . . p`M ´ 1u

0 otherwise

(8)
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while the lower bound is:

rcj,k,cpSq “

$

’

’

’

’

&

’

’

’

’

%

´wj,c´p`1,k if j P Q, c P tp, . . . p`M ´ 1u

´wJ zQ,c´p`1,k if j P J zQ, c P tp, . . . p`M ´ 1u

0 otherwise

(9)

Grounding on this, in each node, the lower (trwcLBk pSq) and upper (trwcUBk pSq)

bound of the residual work content can be calculated by randomly assigning the

entering of the unscheduled jobs in the line in the unallocated cycles, and then

using Equations (2), (3) and (4).

4.2. Dominance rules

The definition of the dominance rules among the nodes of the tree gorunds

on the formalization of the problem in Section 3, with the availability of the

resources in each cycle rak,cpSq being a random variable. On the contrary, the

resource requirements for each job is a deterministic value. Let us consider a

given sequence Ŝ and imagine to add a new job j in the sequence. This job

will consume part of the available resources and, thus, the consequent resource

availability rak,cpŜ ` tjuq could only be diminished in comparison with the

previous one (rak,cpŜq). This consideration entails the possibility to define be

a first-order stochastic dominance of the distribution of the residual resource

availability for schedule Ŝ respect to Ŝ ` tju, i.e.,

rak,cpŜq ě rak,cpŜ ` tjuq (10)

Notice that this dominance is linked to the fact that, every time a new job

is scheduled, the distribution of rak,c does not change in shape but it is shifted

to the right.

Furthermore, referring to the residual work content, every time a new job is

scheduled,

FtrwckpŜ ` tju, ζq ě FtrwckpŜ, ζq @ ζ (11)
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Due to the fact that the shape of Ftrwck never changes but it is only shifted

as new jobs are scheduled, the position of the CVaR respect to the distribution

never changes and, as the distribution is shifted, it is shifted as well. For this

reason, the dominance provided by the upper and lower bounds for the total

residual work content can be exploited to prune the nodes in the tree.

4.3. Application example

A description of the branch-and-bound approach is provided through an

example of the evaluation of a node. Let us consider a set of jobs to be scheduled

in a flow shop consisting of 3 stations. The aim of the approach is to find the

schedule that minimizes the CVaRα, with α “ 0.05, of the residual work content.

As illustrated in Figure 1, let us consider the evaluation of a node with a partial

schedule S :“ p´, 1,´, 2,´,´,´, ...q, with job 1 being processed in the first

station at cycle 2 and job 2 at cycle 4 respectively, and let us consider a generic

resource k. For these two jobs, their resource request wj,i,k is fitted according to

the station and cycle where these jobs are processed according to S. Since S is

incomplete, for the undecided positions in the sequence, an upper bound (Figure

1, below) and lower bound (Figure 1, above) of the resource requests (rcj,k,cpSq,

rcj,k,cpSq) are considered. Then, the distributions of the residual work content

(rwck,c) is computed both in the upper (Figure 1, below) and lower bound case

(Figure 1, above). Operating a convolution on these distributions, then the

upper and lower bound distribution of the total residual work content (trwcUBk ,

trwcLBk ) are calculated. Starting from these distributions, upper and lower

bounds of the conditional value-at-risk (CVaRUBα ,CVaRLBα ) can be obtained.

According to what described in Section 4.2, the distribution of the total residual

work content for any leaf rooted by the considered node lies between the upper

and lower bound distributions and, consequently, also the CVaRleafα of that leaf

(complete schedule) is bounded by the upper and lower bounds obtained.

Figure 1: Example evaluation of a node in the branching tree.
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5. Industrial Application

A first testing of the branch-and-bound approach has been carried out for

validation. To this aim 10 9-jobs instances have been generated with the fol-

lowing characteristics:

• the resource availability of the stations within the cycle time is triangularly

distributed whose parameters pa, b, cq are randomly sampled;

• the workload requirement for a job j in station m is a deterministic quan-

tity, whose value is randomly sampled from a discrete uniform distribution.

The described instances have been solved through the branch-and-bound

approach obtaining an optimal sequence for the jobs. Hence, a complete enu-

meration of the solutions is operated and the best sequence found compared

with the optimal one obtained through the branch-and-bound approach. For all

the tested instances the algorithm was able to found the optimal solution.

To assess the viability of the described branch-and-bound approach, it has

been applied to the scheduling of the final assembly process of narrow-body,

short-haul aircrafts (Figure 2).

Figure 2: The Airbus A320 final assembly line in Tianjin (courtesy of Airbus).

A commercial aircraft, as stated before, is an extremely complex and highly

customizable product. Starting from the base aircraft model, customers select

the desired customization through a set of available options. Among these, the

most relevant ones entailing additional workload at the assembly phase are:

in-flight entertainment devices, systems for mobile communications providing

internet access and mobile telephone services, additional galleys, lavatories and

stowages, additional fuel tanks to increase the operational flexibility of the air-

craft, cargo loading systems to carry containers and pallets on the aircraft, rear

galley and lavatory configuration for people with reduced mobility.

The assembly line implementing this process is partitioned in different seg-

ments. Our focus is on the one managed with a cycle time, which carry out
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all the main assembly activities for the aircrafts, i.e., the structural parts, the

cabin and the customization options. This assembly line consists of five stations

capable to process different jetliner models and equip them with all the possible

custom features. Workers and tools are available in the stations to execute the

assembly process. The tools (e.g., fixture, handling devices) are always available

since they constitute a specific equipment for each station and have a negligi-

ble failure rate. On the contrary, the availability of the workers is affected by

stochastic fluctuations due to personnel sickness and absenteeism. The resource

requirements of the aircraft to be assembled depend on the specific model and

customization but is considered deterministic. In fact, at the time of scheduling,

the orders are completely defined and the workload to be accomplished in each

station of the lines to assemble the aircraft known.

The approach has been tested considering the historical data of the avail-

ability of the workers in a whole year as well as the pool of orders (in total

68) assembled in the same period. The availability of the workers per working

day has been modeled fitting a triangular distribution on the available historical

data.

The performance of the branch-and-bound approach is evaluated in terms of

the time to find the optimal solution and the fraction of explored nodes respect

to the total number of nodes in the branching tree. A set of 20 9-jobs problem

instances have been created by sampling the jobs to be processes from the a

pool of 68 real orders assembled in the line ı̀n a given period. The branch-and-

bound algorithm has been used to minimize the Conditional Value-at-Risk of

the Residual Work Content. Moreover, different value of risk levels has been

tested, namely α “ 0.05 and α “ 0.10, for a total of 80 experiments. The

branch-and-bound algorithm has been completely coded in C++ using the BoB++

library [26, 27] and the Boost library [28]. The experiments have been performed

using 8 parallel threads on an Intel 4-Core i7 Processor 7700-HQ running at 3.4

GHz and 16 GB of DDR4 SDRAM.

The performance of the proposed algorithm are resumed in Table 1. The

average time to find an optimal solution is about 4830 seconds, ranging from a
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Table 1: Performance of the B&B approach.

Solution Time [s] Pruning Efficiency [%]

R
is

k
L

e
v
e
l 0.05

Avg 4810 Avg 0.581

Min 4614 Min 0.583

Max 5033 Max 0.589

0.10

Avg 4850 Avg 0.581

Min 4613 Min 0.581

Max 5220 Max 0.589

minimum of 4613 to a maximum of 5220 seconds. Also the fraction of the total

number of nodes in the tree explored to find the optimum has been considered,

labeled with the name Pruning Efficiency. Namely, the algorithm needs to eval-

uate 58% of the nodes on average. For both the solution time and the pruning

efficiency, the risk level used seems not having any significant effect. This be-

havior is confirmed by the graph in Figure 3 showing the relationship between

the solution time and the number of evaluated nodes for all the tests instances

solved, whereas the boxplot in Figure 4 highlights the variability ranges of the

solution time fo the different risk levels considered.

Figure 3: Scatterplot of the solution time against the number of explored nodes to find a

solution.

Figure 3 also confirms a reasonable behavior, i.e., the dependence of the

solution time from the number of nodes to be evaluated. In fact, every time

a new node is explored, a set of convolution operations have to be executed,

according to what described in Section 4.2.

Figure 4: Scatterplot of the solution time against the number of explored nodes to find a

solution.

To assess the effectiveness of the proposed approach, a set of 68 jobs has

been taken into consideration and the branch-and-bound algorithm used to find
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the optimal solution in terms of the CVaR. The solution required a significant

amount of time (about 15 hours). The sequence obtained has been evaluated

calculating the distribution of the residual work content to obtain the minimum

and maximum value, the mean, the VaR and the CVaR. A characterization of

the approach has been executed in two steps. First, the same problem has been

solved using a deterministic approach, i.e., assuming the availability of the re-

sources deterministic and looking for the schedule minimizing the total deviation

of the requested amount of resource respect to the availability of the resource

over the whole scheduling horizon. The deterministic scheduling approach has

been implemented through a MIP formulation. In addition, the performance of

the schedule provided by the branch-and-bound algorithm has been also com-

pared with the one obtained using the schedule used by the company in the same

planning period. For these two solutions, the calculation of the distribution of

the residual work content (under the hypothesis that the resource availability

is uncertain) has been carried out exploiting the same branch-and-bound algo-

rithm. The generation of the branching tree has been constrained to be limited

to the nodes (and the single leaf) representing a given solution.

The result of the comparison are reported in Table 2, values are anonymized

because of their commercially sensitive nature, they are expressed as a percent-

age of the highest value of the residual work content found out by adopting the

real schedule used in the company. The best results in terms of the minimiza-

tion of the CVaR are achieved with the proposed stochastic branch-and-.bound

approach. As expectable, the most consistent comparative advantage of using

the proposed approach (that however implies a higher computational effort) lies

in the reduction of the worst cases impact, i.e. in the lowering of 0.05-VaR,

0.05-CVaR and maximum value of the distribution.

Furthermore, the complete distribution for the solution obtained through

the proposed aproach and the real schedule implemented in the company are

reported in Figure 5 showing how the minimization of the CVaR actually pro-

vides a better solution with regards to this, by shaping the distribution of the

residual work content so that the right tail is smaller. Nevertheless, at the same

18



Table 2: Comparison of the B&B solution with the deterministic and the real ones.

CVaR Det Real

min 19.18% 17.30% 23.41%

max 90.88% 95.20% 100.00%

mean 46.58% 51.07% 55.47%

5%-VaR 65.60% 69.94% 75.95%

5%-CVaR 71.33% 76.40% 80.57%

time, the whole distribution is shifted towards the left causing also the mean

value and the VaR to be reduced. Again, the residual work content in Figure

5 is expressed in relative terms due to confidentiality of the industrial data.

Hence, a residual work content of 0.50 is an amount of hours that is 50% of

the maximum amount registered. This reference value is the same for the two

distributions.

Figure 5: Distribution of the residual work content obtained with the minimization of the

CV aR (top) and the real sequence (bottom).

6. Conclusions

This work proposed a robust scheduling approach for a no-wait flow shop

under resource availability uncertainty and cycle time. The motivation for this

approach stem from an industrial case in the aircraft manufacturing industry.

To pursue robustness, the aim is to minimize a function of the risk associated

to the residual work content, i.e., the amount of work that cannot be accom-

plished in the cycle time. The risk function used was the conditional value at

risk. To cope with this problem, a branch-and-bound approach was designed,

implemented and tested showing promising results although the computational

times are rather high. Moreover, with regards to the industrial application.

considerable improvements have been obtained with respect to the scheduling
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approach currently. Further improvements of the approach will pursue different

branching schemes to foster the rapid identification of dominated or dominating

scheduling decisions and reduce the solution time.
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[15] C.-S. Chung, J. Flynn, Ö. Kirca, A branch and bound algorithm to min-

imize the total tardiness for m-machine permutation flowshop problems,

European Journal of Operational Research 174 (1) (2006) 1–10.

[16] H. Samarghandi, M. Behroozi, On the exact solution of the no-wait flow

shop problem with due date constraints, Computers & Operations Research

81 (2017) 141–159.

[17] G. L. Vairaktarakis, X. Cai, C.-Y. Lee, Workforce planning in synchronous

production systems, European Journal of Operational Research 136 (3)

(2002) 551–572.

[18] C. Artigues, R. Leus, F. T. Nobibon, Robust optimization for resource-

constrained project scheduling with uncertain activity durations, Flexible

Services and Manufacturing Journal 25 (1-2) (2014) 175–205.

[19] A. Alfieri, T. Tolio, M. Urgo, A two-stage stochastic programming project

scheduling approach to production planning, The International Journal of

Advanced Manufacturing Technology 62 (1-4) (2012) 279–290.

21



[20] M. Lambrecht, E. Demeulemeester, W. Herroelen, Proactive and reactive

strategies for resource-constrained project scheduling with uncertain re-

source availabilities, Journal of Scheduling 11 (2) (2007) 121–136.

[21] S. C. Sarin, H. D. Sherali, L. Liao, Minimizing conditional-value-at-risk for

stochastic scheduling problems, Journal of Scheduling 17 (1) (2013) 5–15.

[22] T. Tolio, M. Urgo, J. Vancza, Robust production control against propaga-

tion of disruptions, CIRP Annals - Manufacturing Technology 60 (1) (2011)

489–492.

[23] M. Urgo, J. Vancza, A Branch-and-Bound Approach for the Single Machine

Maximum Lateness Stochastic Scheduling Problem to Minimize the Value-

at-Risk , Flexible Services and Manufacturing Journal.

[24] P. Artzner, F. Delbaen, J. M. Eber, D. Heath, Coherent Measures of Risk,

Mathematical Finance 9 (3) (1999) 203–227.

[25] M. L. Pinedo, Scheduling Theory Algorithms and Systems, Springer, 2010.

[26] B. L. Cun, F. Galea, P. Vander-Swalmen, T. Menouer, Bob++: A frame-

work to solve combinatorial optimization problems., http://www.prism.

uvsq.fr/~blec/bobpp/ (2012).

[27] A. Djerrah, B. Le Cun, V.-D. Cung, C. Roucairol, Bob++: Framework

for solving optimization problems with branch-and-bound methods., in:

D. Kurlander, M. Brown, R. Rao (Eds.), 15th IEEE International Sympo-

sium on High Performance Distributed Computing, ACM Press, 2006, pp.

369–370.

[28] Boost c++ libraries, http://www.boost.org (2017).

22


	00Frontespizio DMEC - Open Acces - Author’s Accepted Manuscript_V00
	11311_1071595

