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Abstract—Battery energy storage systems are fundamental
components in microgrids operations, therefore it is important
to adopt models suitable to properly evaluate the performance
of these electrical systems. Different methodologies for battery
modeling have been developed and tested in this work: (i)
Empirical model, in which batteries are described by analytic
expressions not based on electrochemical processes; (ii) Equiva-
lent electrical circuit model, in which batteries are described
in terms of electrical quantities. These approaches allow to
adapt the model to different battery technologies: both the
emerging Li-ion and the consolidated lead acid are considered
in this paper. The proposed models are implemented in the
software Poli.NRG, a Matlab based procedure for microgrid
sizing developed by Energy Department of Politecnico di Milano.
Simulations are based on a real case study relevant to a microgrid
in a rural area: Ngarenanyuki Secondary School in Tanzania.
The proposed methodology is used to design a new microgrid
based on photovoltaic and energy storage system, comparing
the results obtained adopting different modeling approaches and
different technologies. Eventually, results are critically analyzed
and discussed in order to compare accuracy, computational
effort, costs and opportunities.

Index Terms—Energy storage, Battery models, Microgrids,
Rural electrification

ACRONYMS

BESS Battery Energy Storage System
SOC State of Charge
SOH State of Health
SOR State of Resistance
NPC Net Present Cost
LL Loss of Load
LLP Loss of Load Probability
LCoE Levelized Cost of Energy
OCV Open Circuit Voltage
DOD Depth of Discharge

I. INTRODUCTION

Distributed small scale electricity generation could result
nowadays the most convenient solution to address the problem
of rural electrification in developing countries, where rural
areas are widespread and national grid extension costs could
be prohibitive. Stand alone systems are mainly constituted of
power generation units based on renewable energy sources
and Battery Energy Storage System (BESS). Given the high
variability and low reliability of renewable energy sources,

BESS are pivotal. Moreover, BESS represent the second major
cost in stand alone systems due to their high investment
cost and limited lifetime [1]. A proper battery modeling
in off-grid system sizing tool is fundamental for decision
makers in order to opt for the best investment. The most
common battery models used in this kind of applications are
the so called empirical (or analytical) models. These models
represent BESS with simplified approaches, nevertheless they
could introduce not negligible approximations [2]. In such a
framework, the scope of the present work is to propose a
novel approach to model batteries in sizing tools that can be
adapted to different battery’s technologies as the emerging
Li-ion and the consolidated lead acid [3]. A proper battery
modeling in microgrid design has to be able to estimate
together the State of Charge (SOC) and the State of Health
(SOH) of the battery. The SOC is necessary to evaluate
the amount of charge already stored in the battery and to
compute the amount of energy that cannot be provided to the
load (Loss of Load (LL)), while the SOH of the batteries
takes into account bounds on lifetime due to irreversible
degradation processes. Actually, battery aging can be divided
into calendar and cycle aging that cause capacity and power
fade. The rate of degradation depends on batteries operational
and floating conditions. It is worthwhile to underline how
a proper evaluation of batteries degradation is necessary to
compute replacement costs.

II. MICROGRID SIZING METHODOLOGY CONSIDERED

The scope of the present work is to develop a novel
procedure to model battery systems in dimensioning tools
for off-grid plants; in particular the proposed approaches
are integrated in the tool Poli.NRG, a new methodology
developed by the Energy Department of Politecnico di Milano
for sizing stand alone systems. Poli.NRG is a comprehensive
procedure, written in Matlab environment, that allows for a
robust design of a photovoltaic (PV)+BESS plant: it couples
the atypical features of rural contexts (i.e. unpredictability
of energy sources and load consumption uncertainties) with
proper component models, by including estimation errors into
the design phase [4]. The software is composed of four
building blocks, related to different phases of the design
procedure.
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1) Data inputs gathering: information regarding electric-
ity consumption, power generation, fixed and variable
equipment costs and weather data are collected.

2) Inputs processing: the collected input data are processed
in order to obtain daily load profiles and power gen-
eration profiles. Load profiles are generated with the
subroutine LoadProGen which, using a stochastic ap-
proach, is able to formulate different daily load profiles
starting from field data [5]. Yearly profile is generated
by aggregating randomly the daily load profiles and
lifetime load profiles are obtained by assuming possible
load evolution scenarios.

3) System modeling and simulation: this block includes
mathematical models of system’s components, namely
PV and BESS. Simulations run with a time step ∆k of
one minute during all the plant lifetime LT . At each
time step k, the energy required or provided to the
batteries is given by an energy balance between load
consumption and photovoltaic power generation:

Ebatt(k) = EPV (k)− Eload(k)

ηinv
(1)

Where Eload(k) is the load consumption, EPV (k) is the
production from PV and ηinv is the inverter efficiency.
Microgrid optimal design is based on performance in-
dexes: Loss of Load Probability (LLP) is the amount
of energy not provided to the load (LL) over the total
energy required during the plant lifetime.

LLP =

∑LT
k=1 LL(k)∑LT

k=1Eload(k)
(2)

Net Present Cost (NPC) is the present value of all the
costs of investment (Inv) and operation of the system
(O&M ) over the project lifetime, it is evaluated as the
sum of the net cash flows during each year y actualized
with the expected discount factor r.

NPC =

LT∑
y=1

Inv(y) +O&M(y)

(1 + r)y
(3)

Levelized Cost of Energy (LCoE) is an indicator that
measures lifetime costs divided by energy production.

LCoE =
r(1 + r)LT

(1 + r)LT − 1

NPC

(1− LLP )
∑LT

k=1Eload(k)
(4)

4) Output formulation: a heuristic optimization method is
used to find the most robust design of the systems. The
optimization algorithm is divided in two steps: firstly,
the searching space is defined, i.e. the ranges of PV
and BESS to be investigated; secondly, the optimal
combination of PV and BESS is found within the
searching space (for more details about the equations
and the architecture of the adopted procedure see [4]
and [6]). The second step utilizes a heuristic procedure
to find the optimal plant size: the adopted algorithm
is based on the imperialistic competitive algorithm

that is an iterative process progressively exploring the
searching space. The optimum solution is found as the
combination of PV+BESS having the minimum NPC
whilst respecting LLP constraint of 5%. The new load
profiles are simulated until a convergence criterion is
fulfilled.

The tool is available free of charge [7].

III. BESS MODELS INVESTIGATED

Three different models of BESS have been developed and
integrated in the tool Poli.NRG. These models are detailed in
the following paragraphs.

A. M1 - Simplified empirical model

It is the simplest, but also the most common, model found
in scientific literature [8]. Battery is characterized by constant
efficiency that takes into account energy losses during charge
(ηch) and discharge (ηdis). The energy flows entering Ech(k)
or exiting Edis(k) the battery at each time step k are computed
as follows:

Ech(k) = Ebatt(k) · ηch (5)

Edis(k) =
Ebatt(k)

ηdis
(6)

where Ebatt(k) is defined in eq. 1. The SOC of the battery
at each time step is computed as:

SOC(k) = SOC(k − 1) +
Ech/dis(k)

EBESS
(7)

where EBESS is the nominal capacity of the battery.
The model is subject to performance constraints:

• Maximum value for the power to energy ratio PEratio,
which is the maximum power input/output with respect
to the rated capacity of the batteries. Given a time step
∆k, the maximum energy the battery can provide Emax

is defined as:

Emax = EBESS · PEratio ·∆k (8)

If the battery is asked to provide an energy Ebatt(k)
greater than Emax, a loss of load has to be taken into
account:

LL(k) = (|Ebatt(k)| − Emax) · ηinv (9)

• Minimum and maximum value for SOC, that will prevent
permanent damage to the battery. As a consequence, if
the battery is asked to discharge to a SOCth(k) that is
lower than the minimum SOC admissible SOCmin, the
state of charge at time step k is saturated to SOCmin

and the energy required by the loads that the system is
not able to supply is evaluated as LL:

LL(k) = (SOCmin − SOCth(k)) · EBESS · ηdis · ηinv
(10)

The SOH is not estimated by the model. To account for
degradation, some constraints are imposed to the battery:



• Maximum number of cycles before replacement, to ac-
count for cycle aging. The equivalent cycle (Eqcycle)
linked to the single time step is calculated as:

Eqcycle(k) =

∣∣∣∣SOC(k)− SOC(k − 1)

2

∣∣∣∣ (11)

Then, the amount of equivalent cycles (Eqcycles) are
computed as follows:

Eqcycles(k) = Eqcycles(k − 1) + Eqcycle(k) (12)

• Maximum number of years before replacement, to ac-
count for calendar aging.

B. M2 - Complete empirical model

It is an improved class of the model previously described.
Given the evidence that battery efficiency depends on E-rate
[9], which is defined as the ratio of power to rated energy:

Erate(k) =
|Pbatt(k)|
EBESS

=
|Ebatt(k)|/∆k

EBESS
(13)

a cubic correlation has been adopted to properly model
efficiency degradation at higher E-rate.

η(k) = aE3
rate + bE2

rate + cErate + d (14)

Similarly, cycle aging is taken into account with a decrease
of SOH during lifetime that is proportional to the number of
cycles and to the capacity fade index cf

SOH(k) = SOH(k − 1)− Eqcycle(k) · cf(k) (15)

cf differs according to the technology: is a function of E-
rate when considering lithium ion batteries and a function
of the depth of discharge (DOD) when considering lead acid
batteries [10] [11].
Thereafter, in the proposed model the constraints that limit
battery lifetime are:

• Minimum SOH before replacement, to account for cycle
aging;

• Maximum number of years before replacement, to ac-
count for calendar aging.

In this model, SOC at each time step is properly computed
taking into account capacity fade:

SOC(k) = SOC(k − 1) +
Ech(k)/dis(k)

EBESS · SOH(k)
(16)

C. M3 - Electrical model

In the electrical models, batteries are represented by equiv-
alent electrical circuits that aim to model as accurately as
possible operation parameters, e.g. voltage and current char-
acteristics at the external terminals. Models can be defined
with respect to time or frequency domain according to the
deployed circuital elements [12] [13]. A simplified electrical
equivalent circuit model is proposed as a valid alternative to
the more widespread analytic models. The proposed circuit
(Fig. 1) is a passive model. It is composed of a capacitance
Cb that represents battery equilibrium condition, in series with
a resistance Rint to account for losses during operation; both

the parameters depend on SOC and aging conditions. Voltage
across Cb is the Open Circuit Voltage (OCV) while voltage
drop across Rint is the overpotential of the cell. The approach
proposed to set the relation between internal resistance and
SOC is based on electrochemical impedance spectroscopy:
laboratory testing has to be performed at different battery
SOC to define the resistance as the real part of impedance
at a specific frequency [14]. Reference frequency is related
to the load input profile; while Cb, as a function of OCV
(Fig. 2), is determined from the cell discharge curve (Fig. 3)
by applying the capacitor’s constituent equation.

Cb

Rint

I

V

Fig. 1. Electrical circuit model for BESS.

Fig. 2. Intercalation capacitance vs OCV.

Fig. 3. Open circuit voltage vs SOC.

The following equations characterize the cell:
I = Pcell/V

I = Cb(OV C) · dOV C
dt

V = OCV (SOC) +Rint(SOC) · I
(17)

In order to be implemented in Poli.NRG, they have to be
solved numerically. The power flowing in each cell is defined
as:

Pcell(k) =
Ebatt(k)

∆k ·Ncells
(18)

The number of cells Ncells is equal to the size of the BESS
divided by the capacity of the cell. Therefore, the current I(k)
can be computed as:

I(k) =
Pcell(k)

V (k − 1)
(19)



OCV(k) and V(k) are updated accounting for Cb and Rint at
the previous time step:

OCV (k) = OCV (k − 1) +
I(k)

Cb(k,OCV (k − 1))
(20)

V (k) = OCV (k) +Rint(k, SOC(k − 1)) · I(k) (21)

The constraints that limit the flows through the battery are:

• Maximum power to energy ratio PEratio. In the case in
which Ebatt(k) ≥ Emax the BESS is not able to provide
all the energy required to feed the loads. The loss of load
of the system is computed as:

LL(k) = (|Ebatt(k)| − Emax) · ηinv (22)

• Maximum and minimum voltage. Voltage limits are
correlated to battery SOC and to the charging/discharging
current; when the theoretical voltage V th(k) that the
battery should reach at time step k is lower than Vmin,
the battery is not able to feed the load and a loss of load
is computed as:

LL(k) = |Ebatt(k)| · ηinv (23)

Cycle aging is taken into account with SOH and SOR (State
of Resistance) indicators. SOH variation during lifetime is the
same as for empirical model; SOR accounts for resistance
growth due to degradation process inside the battery. It
increases with the number of cycles for lead acid cell and
with the number of cycles and C-rate in lithium ion.
The capacity Cb and the resistance Rint are updated among
the simulations to take into account degradation:

Cb(k) = Cb(0) · SOH(k) (24)

Rint(k) = Rint(0) · SOR(k) (25)

Battery is replaced when either SOH has reached the
minimum value (cycle aging) or the battery has reached the
maximum number of years (calendar aging).

The three models have been parametrized for a lithium
and lead acid cell with data taken from literature, datasheets
and experimental measurements. The electrical model for
a lithium ion cell has been validated with measures taken
at the Energy Storage Research Center (ESReC) located in
Nidau (CH). The measurements were carried out within the
framework of the collaboration between Politecnico di Milano
(DoE) and CSEM-PV Center (Swiss Center for Electronics
and Microtechnology). The tested cell is the Lithium Nickel
Cobalt Oxide (LNCO) cell BostonPower Swing5300 [15].
Detailed description about laboratory testing is reported in
[14]. It is worthwhile to depict that the proposed models
are capable to represent many different energy storage
technologies; in order to demonstrate the effectiveness of the
approach, some numerical simulation have been performed
on the aforementioned commercial product.

IV. SIMULATION AND RESULTS

A real life case study has been taken into consideration:
a microgrid feeding the Ngarenanyuki Secondary School, in
Tanzania [16]. The energy consumption of the school has been
monitored since 2015. Through a field survey, data about the
loads have been collected and consumption has been classified
in daily loads (e.g classroom lights, household appliances,
water pump) and occasional three phase loads (mainly a mill
machine). They were used to generate stochastic load profiles
extended for the entire plant lifetime (20 years) considering
a constant yearly energy consumption. Cost figure about
PV modules, batteries and off-grid inverters are collected
from a survey among Tanzanian local suppliers, while O&M,
other investment costs and modeling parameters have been
estimated based on experience. Eventually, the procedure has
been executed over the system lifetime to size a new microgrid
based on PV and BESS, devoted to substitute the already
present undersized stand alone system. In particular, the three
proposed BESS models have been implemented with the
two driving technologies Li-ion and lead acid and eventually
they have been compared in terms of sizing results, costs
and simulation time. Tables I and II summarize the BESS
parameters in input to Poli.NRG.

TABLE I
LITHIUM ION BATTERY SPECIFICATIONS

Lithium ion
M1 M2 M3

SOC initial 1 1 1
SOC min 0 0 -
PE ratio [kW/kWh] 2 2 2
SOH min - 0.8 0.8
Calendar life [years] 12 10 10
Cycle life [n cycles] 2000 f(Erate) f(Crate)
Charge efficiency % 97.5 f(Erate) -
Discharge efficiency % 97.5 f(Erate) -
Cell capacity [Ah] - - 5.3
Max voltage [V] - - 4.2
Min voltage [V] - - 2.75

TABLE II
LEAD ACID BATTERY SPECIFICATIONS

Lead Acid
M1 M2 M3

SOC initial 1 1 1
SOC min 0.5 0.5 -
PE ratio [kW/kWh] 0.25 0.25 0.25
SOH min - 0.8 0.8
Calendar life [years] 8 8 8
Cycle life [n cycles] 1500 f(DOD) f(DOD)
Charge efficiency % 90 f(Erate) -
Discharge efficiency % 90 f(Erate) -
Cell capacity [Ah] - - 10
Max voltage [V] - - 2.17
Min voltage [V] - - 2

A. Operation simulation

Poli.NRG simulates the operation of the PV+BESS system
for the whole lifetime of the microgrid and it evaluates for



each time step k the values of the variables of the system.
The proposed approach is based on simulation detailed in time
step limited to one single minute. This is to properly evaluate
fluctuations in load/generation power profiles. Consequently
BESS injections/withdrawals are solved each minute driving
to an accurate evaluation of the BESS performances and
bounds. As an example, when considering complete empirical
model M2 the efficiency of the BESS changes according to the
state of charge and the charging/discharging power at every
single time step. In Fig. 4 an example of the efficiency for
the optimal size of BESS is plotted both for Li-ion system
and for lead acid. Similarly, the proposed approach allows
a clear evaluation of the equivalent cycles dispensed by the
BESS (Fig. 5). Equivalent cycles affect the performance of
the BESS and the number of times it has to be changed over
the total lifetime of the microgrid.
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Fig. 4. Comparison of the efficiency trend for Li-ion and lead acid (optimal
size of BESS simulated for seven days).
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Fig. 5. Comparison of the equivalent cycles for Li-ion and lead acid (optimal
size of BESS simulated for seven days).

B. Robust design

Figures 6 and 7 display the maps of solutions of the
simulations with the three BESS models proposed for lead
acid and lithium ion technology. The map of solutions is
composed of different areas of solutions that are related to the
specific BESS model adopted in the simulation. Each area of
solutions represents with contour lines the resulting optimal
combinations of PV and BESS size among the simulated life-
time profiles LC. The contour line of the optimal combinations
is a curve along which specific combinations have appeared
with the same frequency (i.e., it represents isolines). The
robust design (BESSrobust and PVrobust) is evaluated as the
combination that resulted to be the optimal with the highest

frequency (Table III). NPC, LCOE and LLP are evaluated
as the mean values of each solution in which BESSrobust

and PVrobust appear. The parameter LCrobust represents the
number of simulated load profiles until convergence. Every
simulation provides an optimal solution, since the dispersion
of the optimal solutions is limited, the convergence criterium
is respected and the sizing with the high frequency of occur-
rence is selected as the global optimum of the robust design
process.
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Fig. 6. Sizing results of Poli.NRG with lead acid BESS systems.
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Fig. 7. Sizing results of Poli.NRG with Li-ion BESS systems.

C. Lead acid versus Li-ion technology

Regarding lead acid technology, the empirical model tends
to overestimate system size with respect to the robust design
using electrical model (+18%), as it can be seen from Table
III. The overestimation can be caused both by the different
estimation of SOC and SOH and by the different parametriza-
tion of Model 2 and Model 3. For the simulations, Model
2 is based on manufacturer’s data, while Model 3 relies on
experimental data. This could motivate the gap between the
NPC estimations. In the simulation performed, BESS optimal
size calculated adopting the simplified empirical model (M1)
is an intermediate value between the other two models while
PV size is noticeably bigger than PVrobust provided by M2,
due to the fact that battery operates with a lower efficiency in
M1 with respect to M2. This implies that even if the parame-
ters in input to the simplified empirical model (efficiency and



TABLE III
RESULTS OF POLI.NRG SIMULATIONS WITH DIFFERENT BATTERY TECHNOLOGIES AND MODELING APPROACHES

BESS BESS PVrobust BESSrobust NPC LCoE LLP Simulation LCrobust

technology model [kW ] [kWh] [k$] [k$/kWh] [%] time [min] [#]
M1 14.2 105 119.82 0.644 4.99 8 114

Lead acid M2 12.9 112 118.66 0.637 4.99 45 124
M3 12.35 94.5 114.85 0.617 4.99 67 114
M1 11.9 60.6 120.50 0.648 4.90 7 101

Li-ion M2 12.9 48.6 116.28 0.625 4.99 45 108
M3 12.8 49.1 116.22 0.624 5 140 98

maximum number of cycles) are correctly estimated, simu-
lation results could not resemble the ones of more sophisti-
cated approaches. Considering Li-ion technology simulations,
electrical and empirical models result to have very similar
system sizes while the simplified empirical model shows a
non negligible difference. The resulting NPC is very similar
between M3 and M2 methodologies while it is significantly
higher when using the more simplified approach. The results’
similarity among M2 and M3 for lithium ion is likely due to
models’ parametrization: the values of the variable parameters
of the different BESS models and degradation curves have
been computed from the same experimental measurements.

D. Computational time

As reported in Table III, computational time for simulating
one lifetime load profile LC strongly varies with the BESS
modeling approach adopted (to the present work, an Intel i7
4700k-16 Gb has been used). Empirical model takes almost
6 times the simulation time needed for simplified empirical
model, both for lead acid and lithium ion technologies;
electrical lead acid model computational effort is 8 times
higher than the simplest model, while for lithium ion batteries
is even 18 times higher.

E. Cost analysis

In the study performed lead acid batteries have been as-
sumed at 150 $/kWh, while Li-ion option at 400 $/kWh.
Nevertheless, for a proper economics evaluation, it is nec-
essary to account also for batteries’ replacement costs for a
proper analysis of the costs associated to each technology.
Actually, lead acid batteries have to be replaced three times
during plant lifetime while lithium ion batteries only one. For
this reason NPC of the plant with lithium ion batteries is only
2000 $ higher than with lead. Moreover, the LCOE of the two
technological options are considerably similar.

V. CONCLUSIONS

Three modeling approaches have been proposed and
parametrized both for lithium and lead acid technologies.
The models differ greatly in terms of computational effort:
the higher the model’s complexity, the higher the compu-
tational time. The empirical simplified model M1 leads to
an oversizing of the plant with consequent overestimation
of investment costs. Complete empirical (M2) and electrical
models (M3) are instead comparable when data are taken
from laboratory measurements. In conclusion it is relevant to

highlight the necessity of a proper and smart BESS modeling
when facing off-grid systems design. The models proposed
have been coded in a tool (free of use) designed to support
investors in the choice of the most robust solution for the
study case under investigation.
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