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Abstract: Taking advantage of unique molecular absorption lines in the mid-infrared 
fingerprint region and of the atmosphere transparency window (3-5 µm and 8-14 µm), mid-
infrared silicon photonics has attracted more research activities with a great potential for 
applications in different areas, including spectroscopy, remote sensing, free-space 
communication and many others. However, the demonstration of resonant structures 
operating at long-wave infrared wavelengths still remains challenging. Here, we demonstrate 
Bragg grating-based Fabry-Perot resonators based on Ge-rich SiGe waveguides with 
broadband operation in the mid-infrared. Bragg grating waveguides are investigated first at 
different wavelengths from 5.4 µm up to 8.4 µm, showing a rejection band up to 21 dB. 
Integrated Fabry-Perot resonators are then demonstrated for the first time in the 8 µm-
wavelength range, showing Q-factors as high as 2200. This first demonstration of integrated 
mid-infrared Fabry-Perot resonators paves the way towards resonance-enhanced sensing 
circuits and non-linear based devices at these wavelengths. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In the recent years, mid-infrared (MIR) silicon photonics is attracting a lot of attention [1–3]. 
Taking advantage of the unique molecular absorption lines in the MIR range [4,5], silicon 
photonics has been proposed as a convincing solution for the development of high-
performance and cost-effective MIR integrated sensors. A large number of applications are 
foreseen, for instance, real-time environmental monitoring [6,7], bio-sensing and medical 
diagnosis [8,9]. Interestingly Germanium (Ge) and Silicon Germanium (SiGe) alloys are 
strong candidates for extending the operation wavelength of silicon photonics in the mid-IR 
[10–16]. In this context Ge-rich SiGe graded index waveguides have been recently 
demonstrated as a promising platform benefiting from the wide transparency window of Ge to 
achieve deep-MIR operation, beyond 8 µm [17–20]. Furthermore, the strong 3rd order 
nonlinearity of SiGe shows a huge potential in the field of non-linear active devices for 
efficient optical frequency generation and conversion [11,21,22]. 

The integrated resonator is a key building block for the enhancement of on-chip sensing, 
spectroscopy and nonlinear optics. Si-based on-chip MIR resonators have been reported 
previously [23–27], however on-chip integrated resonant structures are still missing for 
wavelengths beyond 5.6 µm. We have thus chosen to use broadband Ge-rich SiGe graded 
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calculations, an optimized ratio of 70% was obtained to maximize the coupling efficiency, 
corresponding to WEtch = 3.5 µm. Such optimized performance of the device coupling 
efficiency is attributed to an improved overlap factor between the optical mode and the 
grating. Finally, the wideband characteristics of the graded SiGe guiding platform allow for 
efficient tailoring of the central operating wavelength of Bragg grating waveguides by simply 
modifying the grating period according to the Bragg condition. The simulated transmission 
spectral response of different Bragg grating waveguides are shown in Fig. 2(b) (blue curves). 
A 2D method and an eigenmode expansion (EME) solver was used for the calculation [29]. 

The SiGe graded-index waveguides were firstly grown using a low energy plasma 
enhanced chemical vapor deposition (LEPECVD) technique, which allows a tight control of 
the alloy composition in the growth direction [30]. The Bragg grating waveguides were 
fabricated using an electron beam lithography, followed by an inductive coupled plasma 
(ICP) etching. Firstly, a partial shallow–etch level of 0.4 µm was performed to define the 
Bragg grating, followed by a second etching step of 4 µm to define the waveguides. A 
scanning electronic microscope (SEM) image of the fabricated Bragg grating waveguide is 
shown in Fig. 2(a). 

Fabricated devices were characterized using a free-space configuration with a tunable 
quantum cascade laser (QCL). Additional details about the testing set-up can be found in Ref 
[18]. Figure 2(b) shows the simulated (blue curve) and the measured (orange curve) spectral 
responses of Bragg grating waveguides with 250 grating periods and various grating period 
lengths (Λ = 0.74, 0.88, 1.02 µm), thereby shifting the operating wavelength of the rejection 
band from 5.4 to 7.3 µm. The experimental results are in good agreement with the numerical 
simulations. The slight difference in wavelength is due to the different grating width between 
simulation (WEtch = WWG), and experiment (WEtch = 0.7 × WWG) due to the restriction of 2D 
simulations. A reduction of the effective index of the Bloch mode is thus responsible for a 
blue-shift of the rejection band in the simulations in comparison with the experiments. Figure 
2(c) shows the measured transmission of Bragg grating waveguide, comprising different 
lengths, i,e. different number of Bragg grating periods, while maintaining a constant grating 
period of 0.88 µm, providing rejection centered at λ = 6.4 µm. It can be seen that the 
minimum transmittance (i.e. rejection of the Bragg grating) decreases as the number of 
periods increases, which corresponds to an increase of the Bragg grating reflection. A 
maximum rejection of 21.6 dB was measured. The minimum transmittance has also been 
calculated as a function of the number of periods and compared to experiments in Fig. 2(d), 
obtaining comparable trends. 

3. Fabry-Perot resonators 

From the demonstration of MIR Bragg grating waveguides, it has been possible to design and 
fabricate Fabry-Perot resonators. This was implemented by integrating two identical Bragg 
gratings as reflecting mirrors, with a straight waveguide in between, thereby acting as a 
cavity. It is worth mentioning that despite being able to sweep the central wavelength of the 
Bragg grating at will over the studied wavelength range in the MIR (as seen in Fig. 2(b)), we 
decided to focus the demonstration of FP resonators especially around of λ ≈8 µm, where on-
chip resonant structures are crucially missing. 

The schematic view of the fabricated FP resonator are shown in Fig. 3(a). Figure 3(b) 
shows a reference simulated transmittance of a FP resonator with following parameters: Λ = 
1.1 µm, N = 280 and a cavity length Lcav of 70 µm. The resonant peak is situated at a 
wavelength of 7.906 µm. Figure 3(c) shows the experimental results achieved for two FP 
resonators using Bragg mirrors with N = 280, Lcav = 70 µm and different periods of 1.1 and 
1.16 µm, operating at wavelengths of 7.95µm and 8.35 µm, respectively. The −3 dB 
resonance bandwidths are measured to be 5.3 and 6.5 nm, respectively. This corresponds to 
loaded Q-factors of 1514 and 1272, respectively. Bragg grating reflectivity values of around 
88% and 85% are thus estimated. Both FP resonators exhibit comparable performance in 
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Lorentzian function is: 
( )0 2 2

0

1 2

4
y y

x xπ
Γ= +

 − + Γ 

. The R-squared value of 

Lorentzian fit is 0.97. 

4. Conclusion 

In conclusion, we demonstrated Bragg gratings waveguides and Bragg-grating-based Fabry-
Perot resonators operating in the long-wave MIR region. Benefiting from the wideband 
waveguide design, and following the Bragg condition, the Bragg gratings and Fabry-Perot 
resonators were investigated over a wavelength range from 5.4 µm up to 8.4 µm. The Bragg 
grating structure is based on a top-surface waveguide corrugation that provides a rejection 
higher than 20 dB. We also implemented Fabry-Perot resonators by facing two Bragg grating 
mirrors one in front of each other within a certain distance to control the cavity length. The 
resonators are demonstrated up to 8.4 µm wavelength with a Q-factor higher than 1000 in all 
cases. A maximum Q-factor reaching 2200 is demonstrated at 7.95 µm wavelength by 
increasing the grating length. This first demonstration of resonators in such deep-MIR region 
paves the way to further investigation of new MIR resonance-enhanced sensing circuits in the 
molecular fingerprint region. Moreover, benefiting from the strong nonlinearity, the 
enhancement of non-linear effects in SiGe alloys is also anticipated using these new MIR 
cavities. 
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