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Abstract: The upward trends in renewable energy penetration, cross-border flow volatility and electricity
actors’ proliferation pose new challenges in the power system management. Electricity and market
operators need to increase collaboration, also in terms of more frequent and detailed system analyses,
so as to ensure adequate levels of quality and security of supply. This work proposes a novel
distributed load flow solver enabling for better cross border flow analysis and fulfilling possible data
ownership and confidentiality arrangements in place among the actors. The model exploits an Inexact
Newton Method, the Newton–Krylov–Schwarz method, available in the portable, extensible toolkit
for scientific computation (PETSc) libraries. A case-study illustrates a real application of the model for
the TSO–TSO (transmission system operator) cross-border operation, analyzing the specific policy context
and proposing a test case for a coordinated power flow simulation. The results show the feasibility of
performing the distributed calculation remotely, keeping the overall simulation times only a few times
slower than locally.

Keywords: cross-border flows; distributed computing; inexact Newton methods; load flow analysis;
PETSc; grid operators cooperation; smart grids

1. Introduction

Power grids are among the most complex man-made systems. The increasing penetration of
fluctuating and only partially-predictable Renewable Energies Sources as well as new connections of
distributed energy resources (DER) have even more increased the complexity of grid management for
grid operators, while actually consisting in an opportunity to schedule resources more flexibly. In this
context, grid operators will have a more and more important role in operating the grid optimally,
planning and re-dispatching distributed resources more frequently, applying demand side management
techniques, collaborating closely both at the market level and with each other. According to these
preambles, it is reasonable to assume more frequent power flow calculations, made by grid operators,
possibly coordinated, to assess voltage profiles, to manage congestions and to achieve best utilization
of resources [1].
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At the same time, the electricity sector is becoming an ever more liberalized and competitive
market, where parties act strategically to maximize their profits and hence struggle to share sensible
information. This poses on one hand the necessity of sharing more information among grid operators
to coordinate grid operation, on the other, keeping confidentiality of information for the sake of
competitive, strategical and political reasons.

This work presents the development of a new distributed power flow (DPF) trial-tool, thereby testing
its performances and providing a case-study in the context of TSO–TSO coordination at cross-borders.
The same approach could be exploited in the future also to foster the TSO–DSO (distribution system
operator) operations, as discussed in Section 5.1. Regarding the current and expected growing interaction
between TSO and DSO, see for instance [2–4].

In order to carry out the distributed algorithm, a suitable mathematical approach has been
adopted. Traditionally power flows are solved by means of exact-Newton (EN) methods, in order
to maximize computational efficiency [5]. EN solvers are based on a nonlinear iteration step that
approximate the problem to a linear one. The arising Jacobian linear system is then solved by means
of a direct linear solver (e.g., lower-upper (LU) matrix factorization). Direct solvers are robust, solve
exactly a linear system and ensure fast computational time for the majority of cases that can be
faced in practice. However, such methods are not well suited to parallelization. On the other hand,
inexact Newton (IN) methods [6–8] are based on an inner iterative linear procedure. Such solvers
are notoriously less robust than direct methods due to the outer-inner iterative procedure that they
have to carry out. However, in the context of power flow equations, reference [9] has already shown
good robustness properties in the range of grid operations of interest for Newton–Krylov methods.
Newton–Krylov methods are an example of IN Methods.

The DPF tool proposed in this work is indeed based on an IN method,
the Newton–Krylov–Schwarz (NKS). The NKS has good convergence properties and provide
the solution through a minimal amount of linear iterations as the Newton–Krylov showed in [9].
The main role of the Schwarz preconditioner is to carry out the parallellism, hence allowing
the remote-coordinated solution of power flow equations. It’s worth keeping in mind that
the minimization of linear iterations is of fundamental importance to minimize the amount of
communication messages among workstations and thus keep the overall simulation time near
standard-local power flow simulations. This is the second main role of Schwarz preconditioner.
By sharing a small amount of nodes among entities involved in the computation, namely called
overlapping nodes (more detailed description in Section 3.2), the convergence is greatly accelerated.
It is crucial to underline that only a small amount of overlapping nodes is sufficient to decrease
the number of linear iterations by a great amount. Reference [10] provides a rigorous proof that shows
the exponential dependence between the number of overlapping variables and iteration count.

The idea of choosing NKS to carry out the DPF is definitely based on achieving data-locality
sacrificing the least possible computational efficiency. The mathematical methodology of Section 3
and the implementation methodology of Section 4 explains how the data-locality is achieved.
The implementation is done using portable, extensible toolkit for scientific computation (PETSc) [11,12],
a powerful parallel library for solving complex mathematical problems, so that the power flow
computations can be done on remote computer clusters (more information about PETSc can be
found in Appendix A). In Section 5, a study case is presented. Firstly, a policy review on TSO–TSO
common interaction in the EU is done; then, the test case used is presented. The test case
represents a portion of the European grid topology taken from the MATPOWER (Ithaca, NY, USA)
libraries [13,14], namely the case9241pegase.m [15,16]. Section 6 presents the results obtained, showing
that computational efficiency can be just slightly traded to achieve the remote simulation. Eventually,
conclusions are drawn and presented in Section 7.
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2. Power Flow

In this work, we use the standard formulation of the power flow problem (further details can
be found, for example, in [17]), based on the standard bus classification. The PQ (P and Q for
active and reactive power, respectively) buses act as loads on the grid. They mainly withdraw
power from a given bus. The PV (P for active power and V for voltage magnitude) buses are the
generating buses. They mainly inject power into the grid. The slack bus acts as both a reference for
the calculation of voltage angles and magnitudes as well as act as a balance for losses. These losses
are known only after the solution of the power flow (and cannot be determined before the load flow
computation). We will consider a network made of N buses, with one single Slack bus. The power
flow problem is the problem of finding the power flows over the grid that grid operators solve to
get a steady-state assessment of the grid, hence to plan and operate the grid efficiently and safely.
Given the topology, a model for each component in the grid (i.e., transformers, phase-shifters, loads,
bus, generators and branches), the demand and production for electricity and the voltage magnitudes
at PV buses, the power flow problem consists of the determination of the voltage magnitude and phase
at PQ buses and of the voltage phase for the PV buses. (In this work, we use the MATPOWER
modelling of components. Our DPF solver actually takes as input the MATPOWER case format
(mpc). Demand and production profiles are known as a result of the hourly clearing of an electricity
market. Once the power flow problem is solved, power losses, currents flows and power flows can
be consequently determined easily). The power flow problem thus consists of the determination of
2(N − G− 1) unknowns for the PQ buses and G unknowns for PV buses, resulting in a total number
of unknowns of 2(N − 1)− G. An equal number of equations that do not introduce further unknowns
must be defined to solve the power flow problem. These equations are namely the active and reactive
power balances for PQ buses and reactive power balance for PV buses.

Below, we will make the above formal under mathematical terms. For the generic bus p, the power
flow equations take the following (nodal) form:

−Pp +
N

∑
q=1

VpVq(Gpq cos δpq + Bpq sin δpq) = 0

−Qp +
N

∑
q=1

VpVq(Gpq sin δpq − Bpq cos δpq) = 0

(1)

where Vp, δp are the nodal voltage magnitude and voltage angles, respectively, δpq = δp − δq, the Pp,
Qp are the net injections (or withdrawals) of active power and reactive power, Gp, Bp are the nodal
conductance and susceptance with respect to the generic bus p. Gp and Bp values are obtained
following to the definition of the nodal admittance matrix Y (of dimensions pxp), which, in turn,
is constructed from modelling of components in the grid. Let us remind readers that:

Yp = Gp + jBp (2)

Let us now introduce the vector of unknowns x as:

x =

(
V
δ

)
(3)

and the active and reactive power mismatch functions F(P)
p , F(Q)

p relative to the bus p as:

−Pp + Pp,comp(x) = F(P)
p (x) = 0 (4)

−Qp + Qp,comp(x) = F(Q)
p (x) = 0 (5)



Energies 2018, 11, 2910 4 of 17

where the terms:

Pp,comp =
N

∑
q=1

VpVq(Gpq cos δpq + Bpq sin δpq) (6)

Qp,comp =
N

∑
q=1

VpVq(Gpq sin δpq − Bpq cos δpq) (7)

contain the unknowns and will be computed terms over the iteration process, as it will be shown
further below. Rather, the Pp and Qp are pre-defined known values. In other terms, the problem sets
as: find the values of x that make Pp,comp and Qp,comp equal to Pp and Qp, respectively, that make:

F(x) =

(
F(P)(x)
F(Q)(x)

)
=

(
F(P)

1 (x), . . . , F(P)
N−1(x)

F(Q)
1 (x), . . . , F(Q)

N−G−1(x)

)
= 0 (8)

thus, the solution of Equation (8) is a problem of finding the zero-vector of the nonlinear function:

F(x) = 0 (9)

with respect to x.
Solution of Equation (9) can be only carried out iteratively. In Power Flow context, the most

common approach is based on Newton–Raphson’s method (NR). Newton’s method approximates
the nonlinear problem to a linear problem, from the generic iteration k to k + 1 according to:

F(x(k+1)) = F(x(k)) +∇F(x(k))∆x(k) = 0 (10)

which means that, at each step k + 1, the solution vector is the zero vector of the local approximation
function F(x(k)). Notice that application of the gradient operator to a vector yields a matrix. In tensor
algebra, scalars, vectors and matrices are interpreted as tensors of order zero, one and two, respectively.
Under this nomenclature, say that t is the order of the tensor T, then the gradient operator applied to
T gives a tensor T′ of order t + 1. Thus, we define:

J(x(k)) = ∇F(x(k)) (11)

as the Jacobian matrix (namely, the matrix of the partial derivatives) and:

∆x(k) = x(k+1) − x(k) (12)

as the correction vector on solution. From Equation (10), we thus define the nonlinear step update as:

x(k+1) = x(k) − J(x(k))−1F(x(k)) (13)

where, as initial guesses on V and δ, we take the regular flat start, which means that all voltage
magnitudes are set at 1 per-unit and all voltage angles are set to zero.

Since NR is only locally convergent, the nonlinear iteration is usually modified to increase
robustness according to:

x(k+1) = x(k) − λ(k) J(x(k))−1F(x(k)) (14)

where λ(k) parameters are chosen so as to minimize the norm:∥∥∥J(x(k))∆x(k) + F(x(k))
∥∥∥

2
(15)

to ensure a descent direction for the norm of F at each iteration. This modification takes the name of a
line-search method.
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Summarily, our IN method solves the power flow problem through the following two steps:

Step 1: solve (approximately) J(x(k))∆x(k) = −F(x(k)),

Step 2: update x(k+1) = x(k) + λ(k)∆x(k).

IN methods differentiate depending upon the linear solver used in the first step. In the next
section, this aspect will be discussed in detail.

3. Linear Solvers

The arising Jacobian’s linear system can be either solved through direct techniques (i.e., in one single
step) or through an inner linear iteration procedure. Given a linear system Ay = b, direct methods
factorize A (e.g., LU matrix factorization) to get the linear system into an equivalent-eased form.
On the other hand, iterative linear solvers attempt to find a solution through a sequence of repeated
approximations. In this work, an iterative method is used to specifically accommodate the parallelism,
hence the data-locality for grid operators. This is practically carried out by coupling a Krylov
accelerator with a domain decomposition technique, which works as a preconditioner. This latter
aspect will be analyzed further on. The most of iterative procedures are based on a linear fixed point
iteration scheme, namely:

x(l+1) = f (x(l)) (16)

where f is a linear function giving the convergence properties of the succession and l stands for
the number of linear iterations.

In this work, we make use of an IN method based on a Krylov Subspace Projection method (KSP)
that we briefly discuss in the next subsection.

3.1. Krylov Subspace Methods

Krylov Subspace Methods are considered among the most accepted techniques for solving
large sparse linear systems in a broad range of subjects [18]. Given a full rank matrix A of order n,
representing the coefficient matrix of the linear system, the idea of KSP is to look for solution into
a projected space K out of A, where A denotes the space spanned by the columns of A. The KSP
subspace is built starting from the initial residual r0, involving A-matrix multiplications:

Km(A, r0) = span {r0, Ar0, A2r0, . . . , Am−1r0} (17)

where m << n the dimension of K. Notice that K is of actual dimension m only in the case the vectors
above are linear independent. KSP searches for an approximate solution xm of Ax = b into the affine
space x0 +K in the form:

xm = x0 + ω (18)

The correction vector ω has m unknown components, hence the same amount of constraining
equations must be imposed. This is done through the Petrov–Galerkin (PG) condition:

b− Axm ⊥ L (19)

where L is another subspace of dimension m related to K. The choice of L distinguishes the projection
process. Two main classes of KSP derive from that: when L ≡ K, the projection is orthogonal,
namely the KSP orthogonal; otherwise, it is oblique.

The PG condition not only gives a set of constrains; it practically sets the norm minimization
of the error for orthogonal projection processes and the residual minimization for oblique processes,
thus giving convergence in least iterations. This is why KSP methods are also known as accelerators.
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Let us shortly derive an expression for the correction vector ω. Since ω ∈ K, given a basis for K,
we can write:

ω = Wmα (20)

where Wm is the matrix representation of the KSP basis in Equation (17) and α a vector of m components.
The imposition of PG condition actually makes the m components of α, a set of optimal parameters
for the minimization of the error (orthogonal projections) or of the residual (oblique projections).
A euristic interpretation of this is that Wm sets the direction of the update and α the length of the update.
Since the error/residual is minimized (set to zero) along each independent direction, a KSP based on
dim{K} = n would converge, to the exact solution (round-off errors aside) exactly in n projection steps.

In practice, the projection process of a KSP method involves dimensions much lower than n. This is
for two reasons: (1) the projection process is increasingly computationally expensive as the dimension
of K scales up; and (2) an approximate solution is sufficient. KSP does not build the whole subspace at
the beginning, but rather starts ortho-normalizing each new Ari with respect to the previous. When m
increases too much, the projection process is restarted taking as x0 = xm. This flexible feature of KSP
greatly decreases the possibilities for the iterative procedure to fail.

The literature offers a broad range of KSP methods, showing drawbacks and advantages
depending on the mathematical problem at issue. In the context of IN methods for AC power
flow problems, the Generalized Minimal RESidual method (GMRES, [19]) already has shown good
robustness and least iteration count [9,20]. These justify the use of GMRES for this work. Summarily,
GMRES calculates the solution through two subsequent steps:

xm = x0 + Wmym

ym = argminy ‖b− Ax‖2
(21)

where ym minimizes the residual at projection step m over the Krylov Subspace of dimension m.
The calculation of ym vector requires the solution of a least-squares problem of dimension (m+ 1) x (m),
hence computations are much less expensive than the initial ones. However, GMRES can be used
standalone, and its preconditioned version can even perform better. In the following subsection,
preconditioning is introduced, the core underlying idea that allows for carrying out the DPF.

3.2. Preconditioned-Generalized Minimal RESidual Method

Preconditioning is a broad used technique that can have different aims, depending upon
application. In the literature, preconditioned-Krylov have been used to improve the robustness
and provide a fast-time solution for huge problems [21,22]. In this work, the main aim of
preconditioning is to accomodate the parallel solution of the power flow equations. At the same time,
the overlapping variables related to adjacent sub-networks ease the remote solution by decreasing
the number of linear iterations. Various formulations of preconditioning are proposed in the literature.
In this work, we use the left-preconditioning formulation, based on:

M−1 J∆x(k) = −M−1F(x(k)) (22)

This system is equivalent to the original one and thus yields the same solution. This leads to an
important result in the power flow context: the distributed solution will be exactly the same as in a
global power flow simulation, which means the same as solving locally one single network.

The preconditioned-GMRES iteration proceeds with the straightforward application of the GMRES
algorithm to the modified system of Equation (22) by solving Equation (21) and eventually updating
the solution according to:

∆x(l+1)(k) = ∆x(l)(k) + W(l)(k)
m y(l)(k)

m (23)

In the next section, we introduce the specific preconditioner applied in this work.
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3.3. Domain Decomposition

Domain decomposition methods (DDMs) are known as divide-and-conquer techniques. The idea
is to split the initial problems into many sub-problems, which are much easier to solve. DDMs can be
either used directly (as standalone techniques) or as preconditioners, for solution of linear systems.
In this work, the overlapping additive-Schwarz method (ASM) (for a detailed mathematical description
of ASM, see, for instance, [23]), a DDM technique, is used to decompose the network into separate
zones, which only share some nodes with each other. The idea is showed in Figure 1 for a simple
two-zones network with two overlapping buses.

Figure 1. Additive Schwarz method with overlapping nodes.

What mathematically ASM does is to divide into blocks the coefficient matrix of the linear system
and let those blocks overlap through a small number of elements, which are those that practically are
related to overlapping buses in the network. Each block is related to a zone in the network. This is
formalized into:

M−1
ASM =

S

∑
t=1

RT
t A−1

t Rt (24)

where RT
t and Rt are respectively the prolongation and restriction operators and S the total number of

blocks. The RT
t and Rt operators extract/put the t block of A into the consistent dimension. Each block

is then assigned to a processor and solved as a separated linear system. Sub-solvers can be defined at
will for sub-problems. In this work, a direct solver based on LU factorization is used. As to the shared
unknowns, each block solves them giving out a different solution. The update for these unknowns is
relaxed and mediated among the solution provided by neighboring blocks, leading to fast convergence
at interface [10].

3.4. Newton–Krylov–Schwarz

The action of the NKS algorithm for a parallel solution of the power flow problem practically
combines different techniques together. This can be outlined as follows in Figure 2.

The Newton method allows for getting the nonlinear problem into a sequence of linear ones
through Equation (14). Line-search fosters the minimization of nonlinear iterations.

An inner iterative procedure is then started by means of GMRES preconditioned by ASM.
The Krylov solver works as an accelerator for the iterative solution of the Jacobian’s linear problem,
giving the least number of linear iterations to solve the problem.

Schwarz preconditioning both reduces the amount of linear iterations by letting the sub-zones to
overlap and allows for the network decomposition into sub-zones itself. For each sub-zone, there is
a sub-linear problem that is solved directly by means of LU factorization. Interfacing nodes are shared,
meaning that the related equations are solved by all the zones sharing them.

Therefore, the Krylov–Schwarz linear solver manages the convergence at neighboring zones.
The procedure runs until convergence is reached, according to a given tolerance.
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Newton: until non linear residual is small Do:

k→ k+1

1. Solve −J(xk)∆x = −F(xk) using Krylov - Schwarz

Krylov: until linear residual is small Do:

l→ l+1

2. Solve Equation 21
3. Compute linear residual rk,l

4. Preconditioning using Schwarz

Schwarz:

5. Perform each block using
Equation 24

Figure 2. Newton–Krylov–Schwarz algorithm.

The way the algorithm works suggest the possibility to carry out distributed calculations on
different workstations, which is part of the scope of this work. According to ASM, messages about
computed variables at interface must be exchanged between workstations. Hence, overall time of
computation will be both affected by message communications and computations, which also means
that both software and hardware architectures are fundamental to get practically implementable results.
In the next sections, the implementation methodology for the DPF calculation is presented.

4. Distributed Power Flow

The parallel execution of code must be supported by proper hardware. Parallel computing
simulations are carried out on shared-memory systems to minimize the communication times related to
message passing of information among processors. This is fundamental in parallel computing, since it is
all about minimization of overall computational time. On the other hand, distributed computing
does not focus on speeding-up computations; it is rather used out of necessity to perform calculations
in different geographical locations, keep confidentiality of information, to provide fault-tolerance,
and others. In these kinds of applications, the machines are physically separated, meaning that
the architecture is distributed-memory based. In this work, a distributed computation of power flow
guaranteeing complete confidentiality of information is desired, while keeping an acceptable overall
time of simulation.

In this section, a description of the parallel implementation, of the hardware, of the software
tools, of assumptions and test cases used to carry out distributed computing of power flow equations
are presented.

4.1. Parallel Implementation Using Message Passing

The NKS algorithm is schematically represented in Figure 2. This algorithm can be formulated
as a sequence of vector and matrix-vector operations. Vector operations include inner products
and updates. Matrix-vector operations include the matrix-vector multiplication. Vectors and matrices
are distributed across the various processors involved in the computation. Each processor has a
unique identifier referred to as rank. A form of message passing between the processors is thus
required to perform computations. We distinguish between local and global communications.
Local communications involve only a only a few processors across an interface separating subnetworks.



Energies 2018, 11, 2910 9 of 17

Global communications involve all processors involved in the computation. Global communication
are required to execute the aforementioned vector operations. In computing for instance the inner
product of two vectors, each processor computes the inner product of the subvectors that it owns.
All non-rank-0 processors subsequently send their result to the rank-0 processor. This rank-0 processor
finally computes the final answer. The size of the message in this example is equal to the size of
a double precision data type. The number of messages depends on factors such as the algorithmic
variant of the NKS method and the number of iterations required in outer, intermediate and inner-most
loop. Local communications are required to compute for instance the matrix-vector products. Before
the actual computations take place, data between neighboring processors needs to be exchanged.
The size of the message in this example is equal to the size a double precision data type times
the number of nodes that two processors share. The number of local communication is again a function
of algorithmic variant and number of iterations.

4.2. Software—PETSc

PETSc (see Appendix A for more details) is a collection of a variety of numerical libraries
for solving efficiently complex mathematical problems. The hierarchy is shown in Figure 3,
which highlight in red the PETSc objects used for the distributed calculation. For the context of
this work, PETSc has been selected for mainly three reasons: (1) The PETSc libraries are implemented
to work in parallel and manage inter-process communication on their own through the underlying
message passing interface (MPI) protocol [24]; (2) PETSc offers an implementation of the NKS as well
as an already implemented code for solving AC power flow equations named power.c. If the power.c
program is called sequentially (i.e., by typing from terminal ./power), by default, power makes use of
the nonlinear solver class SNES to carry out the nonlinear line-search Newton iteration (see Section 2)
for solution of Equation (9). The power.c code must be first compiled to produce the executable
power. This can be done by simply typing into its containing directory make power. Then, KSP and PC
objects are called by SNES to solve the Jacobian’s linear system. If the user wants to use a different
linear and nonlinear solvers, he can just specify them at run-time (this includes the NKS solver).
Parallel run of power.c can be done by means of MPI command mpiexec. (To execute the parallel
run the user must type in the folder containing the power executable: mpiexec <np> ./power where
np is the number of processes the user desires to use.) (3) PETSc offers specific sub-classes to handle
structured and unstructured grid (in our context, electricity grids) for modelling and managing
the topology and the physics for large-scale networks (an application example can be found in [25]).
In this work, these are the DMPlex and DMNetwork sub-classes, built on top of DM class, to manage
electricity grids actually used by power.c. These abstractions provide several routines and features
for network system composition and decomposition. In power.c, the decomposition is managed by
the function DMNetworkDistribute and it follows an e.g., partitioning among processors. The nodes
and all the attached components are then split according to the e.g., ownership.

Since this work aims at keeping confidentiality of information for entities involved in
the computation, a proper graph partitioning method must be employed to decompose the network
according to grid operators ownership. There are six different partitioners that allow the user to
decompose the problem in the most suitable way for his own application [26,27]; by default, PETSc
decomposes the grid in such a way that all the processors own approximately the same number of
elements, hence not respecting the ownership of grid operators. Our application code (dpower.c to
reflect the improved distributed attitude of the code) uses power.c as a template and has thus been
developed to use a shell partitioner, meaning making the partition of network as desired and following
topological criteria that reflect the ownership of zones of grid operators.
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Figure 3. Numerical libraries of PETSc, with emphasis on those used for the distributed power flow
(DPF) model [11].

4.3. Hardware—Cluster Computing

To test out the distributed model, a simple cluster of two machines is employed. The two machines
are physically separated (so they are not memory-shared machines) and actually make up a simple
distributed computing cluster. Generally speaking, the overall performance of a distributed computing
environment is mostly set by communication time among workstations. The technical hardware
specifications used for the simulation are below.

The first workstation (machine1) is an 8-node 32 GB RAM machine, each node being an Intel Xeon
E3-1275 3.50 Ghz (Santa Clara, CA, USA) running on an Ubuntu 17.10 64-bit GNU/Linux distribution
and mounting a network card of 1 Gbit/s. The second workstation (machine2) is a 4-node 4 GB
RAM machine, each node being an Intel Core i3-3110M 2,4 Ghz, running on a GNU/Linux Mint
18.3 64-bit distribution and mounting a network card of 100 Mbit/s. Notice that different GNU/Linux
distributions have been used on purpose to guarantee portability of the model. Moreover, a quite
low-performing network card is used on machine2 to purposely act as a bottleneck, to consider a not
extremely high-performance environment. This is because, in reality, grid operators would likely
coordinate through a lower performance wide area network (WAN).

The distributed computing simulation is tested under three different network configurations,
all running on two processors: (a) a reference case, where distributed computation is done on
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2-nodes on the same machine (the master); (b) run on 1-processor on master and on 1-processor
client through a mid-latency wireless local area network (WLAN) managed by a switch (108 Mbit/s of
ideal maximimum data transfer); and (c) the same as (b), but this time workstations are connected at
the switch through a 100 Mbit/s cable. These different network configurations aim at simulating real
conditions for DPF computing, hence understanding the practical feasibility. Notice that, only in case
(c), the actual transfer rate is almost that of the cable capacity (i.e., 100 Mbit/s). To get the actual transfer
rate in case (b), we checked the Linux Network Manager, which showed: 72 Mbit/s for the master
machine and 54 Mbit/s for the client machine as transfer rate, so that the client acts as a bottleneck for
the system setting the actual transfer rate to 54 Mbit/s.

Latency influence of communications on the overall times can be seen by comparing (a) with (b)
and (c) (Table 1). The codes are compiled using the MPICH2 compiler MPICC, where MPICH2
is a portable open-source wide-used MPI implementation by Argonne National Laboratory.
The configuration of machines cluster have been done through GNU bash built-in commands of
UNIX systems. First, the MPIUSER profiles on both machines have been configured. Then, connection
between machines is configured through SSH (Secure Shell) command capabilities. The standard
SSH configuration is used, so that message passing actually take place through underlying TCP

(Transfer Control Protocol). In order to control the stability of transfer rate (i.e., to control the network
traffic), each simulation is repeated up to 10 times, excluding simulation times that prove to be
much slower (hence clearly affected by network traffic) and eventually taking the average of
the left-over values.

Although the cluster computing setup is simple, it allows for demonstrating the feasibility of
the model as well as to test out the influence of message passing communications between machines
on the overall simulation time.

5. Case Study

This section presents a case study used to validate the DPF model. Firstly, a short review for
the current national cross-border flow management is presented; then, the DPF solver is inserted into
the corresponding context. Finally, the test case for validation is presented.

5.1. Policy Motivation

In the specific context of European electricity grid, the harmonization of markets with grid
operation is the matter of concern for the next generation power grids. In order to cooperate fruitfully
and allow power flows from one network to the other following market rules, grid operators need
to interact closely. Although this would result in a better resource management both at transmission
and distribution level across Europe, grid operators still struggle for sharing detailed information
(particularly in real-time data or short-term trends correlated to the electricity market). For this reason,
collaboration is still hindered.

At a high-voltage transmission level, the wholesale national markets define different market
zones (in a few cases, like Italy or Sweden, Finland, Denmark, Norway, countries are split into multiple
market zones). In order to allow exchanges between markets, some market coupling criteria are
employed to link the markets and allow electricity to flow from one zone to the other. Wholesalers buy
together with energy the right to transmit that energy using cross-border interconnection capacity
(through so-called “implicit auctions”) to actually import (or export) electricity from/to another market
zone. Cross-border capacity is first calculated by grid operators and then implicitly (or sometimes
explicitly) auctioned in the power market (or, in case of explicit allocation, through a separate capacity
allocation market). In this context, the aim is to allocate in the market the greatest possible cross-border
capacity while ensuring a safe grid operation. There are two main methodologies currently applied
in Europe for cross-border capacity calculation and subsequent implicit allocation in the day ahead
markets (DAMs): (1) the available transfer capacity (ATC) methodology; and (2) the Flow-Based
(FB) methodology, with the second being more complex but giving a better estimation on available
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capacity. These methods are hence used to define a “physical flow domain”, that is then integrated in
the DAM coupling clearing so that the outcome of the market respect the physical constraints given at
the borders. A quick overview on ATC and FB methodologies can be found in [28].

It is straightforward to think that better ex-ante capacity estimations allow for releasing more
capacity, thus a better economic arrangement [29] and ultimately a truly integrated and a more
efficient European power market. A distributed calculation of power flow equations aim at providing
full-confidentiality of input-output data for entities involved in the computation, while ensuring that
feasible simulation times may find its application in the European framework. In this way, entities may
include detailed input information (load forecast, generating units, critical network elements (CNEs)
modelling, short-term market trends, bounds correlated with maintenance activities, etc.) and actually
carry out a coordinated capacity calculation, obtaining an exact forecast on interfacing flows from
the computation.

It is worthwhile to stress that the DPF model could also be applied to foster TSO–DSO cooperation.
At distribution level, the current integration of RES generation is changing the way the grid is operated.
The distribution grid is turning from a passive fit-and-forget approach to an active grid. At the same
time, distributed resources (such as storage and flexible loads) are showing up as a possibility
to manage the grid more efficiently. All this is changing the role of DSOs to actively manage
the distribution grid. In this context, we expect the need of more frequent power flow calculations and a
closer cooperation among operators, yet keeping them unbundled on functional roles. The specific
application of DPF in this context could be thought as follows. Regular power flow simulations made
by TSOs do not include distribution grid nodes. At the same time, TSOs do not have access to all
the information at distribution level (nor will they reasonably have it in the future, for unbundling
of grid operator set by policy) while actually owning assets at the distribution level. In this context,
a DPF computation, where TSO and DSOs respectively input their detailed data and confidentially,
receives computed complex voltages and exact power flows over owned branches. Considering both
HV and MV buses of a rather large national European grid (e.g., Italy), the solution of a power flow
problem would lead to hundreds of thousands of buses. This is a complexity that conventional direct
methods barely address, which is well addressed by Newton–Krylov methods instead, as it has been
shown in [9]. In this paper, a TSO–TSO case study is investigated; future activities will be focused on
TSO–DSOs scenarios’ formulation and analysis.

5.2. Test Case

The case study is structured imagining that two grid operators have to perform a coordinated
power flow simulation over their managed network. The test case will serve both as a framework to
test the feasibility of the DPF model in terms of remote simulation times, according to grid operators’
needs, and to assess the influence of the overlap in speeding up the overall simulation time.

To test out the model, we created a new MATPOWER case out of case9241pegase.m (see Figure 4),
where this latter is a case that can be found in the MATPOWER libraries. Such case models the high voltage
EU Transmission Network of 24 state members detailing 9241 buses, 1445 generators, 16049 branches
and 1319 transformers. There are nine voltage levels: 750, 400, 380, 330, 220, 154, 150, 120, 110 kV.

The case9241pegase.m case is divided into zones, each zone representing a national transmission
grid. Our test case is built up by extracting two zones from the case9241pegase.m, namely the Zone 4
and Zone 5 (which correspond to Zones D and E in Figure 4). In order to avoid confusion, Zone 4 will
be simply called Zone 1 and Zone 5 will be called Zone 2.

Notice that zone 1 has 682 buses, 1172 branches and 169 generators. Zone 2 is characterized by
1354 buses, 1992 branches and 260 generators. The two zones are connected by a single branch.
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Fig. 2. Top view of the 9241 European system.

TABLE III
EFFECT OF NETWORK REDUCTION AND NUMBER OF THREADS IN XPRESS

Fig. 2 gives a top view of the European system, the power
flows exchanged at the base case between countries, and the
location of PSTs.
All numerical results and CPU times are given for the fol-

lowing configuration:
• two processors Intel Xeon E5640 4 cores 8 threads CPU
2.66 Ghz 64 bits ram 24 Go cache size 12 MB;

• version 7.3 of Hyper Xpress.

B. Overcoming Computational Issues: Effect of Network
Reduction and XPRESS Solver Options

In order to render our approach tractable computationally we
rely on an errorless grid reduction and investigate appropriate
options for the XPRESS solver.
Let us consider the outage of a line which carries 47

MW. Table III provides the objective function, the computa-
tional time, and the overall uncertainty for two grid models:
the whole model (i.e., 9241 nodes) and the reduced model
of 4067 nodes (this is composed of the set of countries

), and for two values of the number
of threads in XPRESS. The objective of the benchmark BLV
problem is 0.8125 pu and decision variables work properly as
no action on the 79 PSTs is taken. Note that, after eliminating
5174 nodes of the external systems, the BLV converges to
the same objective function value and no change of discrete
variables is observed, which proves an excellent agreement
with the simulation that uses the whole model. It is noteworthy
to observe that, for the same accuracy of results, the compu-
tational time is roughly reduced by a factor of 5 thanks to the

TABLE IV
COMPUTATIONAL TIME (S) OF FIXED POINT ALGORITHM

FOR COVERING A SINGLE CONTINGENCY

network reduction and further by a factor of 2 thanks to the
proper choice of the number of threads in XPRESS.
In the sequel of the paper, unless otherwise specified, we

model in detail only the internal system, which is composed of
the set of countries and which con-
siders 4067 buses, whereas the external nodes are eliminated by
the Ward reduction method.
We further evaluate the effect of the number of threads in

XPRESS for the outage of a line which carries 1208MW, which
we analyze in detail in the next subsection. When the number
of threads is enforced to 1 (respectively to 4), the whole process
converges in 638 (respectively 373) s. Table IV provides the
computational effort of SCOPF and BLV modules at each it-
eration. One can remark that expectedly the BLV takes signifi-
cantly more time than the SCOPF, as BLV iterates between sev-
eral MILP problems whereas the SCOPF solves a single MILP,
and that the SCOPF effort is rather insensitive to the number of
threads. This significant computational effort fully justifies the
proper setting of this parameter. Furthermore, if we adopt the set
of countries as internal zone, choice which leads
to consider only 1734 buses, the whole process converges now
in 187 s (mipthreads=4).

C. Contingencies Requiring Preventive Actions

We consider the outage of a line which carries 1208MWwith
respect to the uncertainties induced by the active load power
injections in systems N and B. In our simulations the range of
uncertainties is limited only by the set of system constraints in
pre-contingency state, which implies that the power balance is
satisfied and that the permanent power flow limits are met.
Table V provides the iteration details of the fixed point algo-

rithm and Table IV provides the computational effort of SCOPF
and BLV modules at each iteration. One can observe that the
worst-case is not controllable only by corrective actions as the
objective of the BLV at the first iteration is larger than 1. How-
ever, as larger amount of preventive actions are taken at each
iteration, the worst-case severity decreases monotonically until
the worst-case becomes controllable by preventive actions.
It is worth discussing the underlying mechanism of decision

variables in this case. Since the PSTs are assumed in a “flow
control” mode, and that immediately after the contingency their
monitored flow is below the threshold as shown in Fig. 3,
the PSTs do not act at all to relieve the overload. However, if we
assume that the PSTs are classical remedial actions, they prove
being very efficient in removing the overload, as the worst-case

Figure 4. The partitioning of the case9241pegase.m test case in zones. This test case was taken from
MATPOWER. The zones D,E can be identified. From [15].

6. Numerical Results

According to Section 4.3, three scenarios are simulated. The shell partitioner splits the network
according to zone 1 and 2 ownership. Results in terms of simulation time are reported in Table 1
(s represents the number of overlapping variables). Notice that each simulation has been repeated up
to 10 times and eventually averaged (see Section 4.3) to control the impact of network traffic.

Table 1. Simulation times (s) for shell Partitioner (ASM: additive Schwarz method).

Preconditioner (a) (b) (c)

Block Jacobi 1.40 8.1 2.95
ASM (s = 1) 1.40 7.59 2.96
ASM (s = 2) 1.39 7.42 2.95
ASM (s = 3) 1.39 7.65 2.95
ASM (s = 4) 1.40 7.66 2.96
ASM (s = 5) 1.40 7.71 2.96
ASM (s = 6) 1.40 7.96 2.98
ASM (s = 7) 1.40 8.05 3.01

The results show that increasing the number of overlapping variables over 2 does not lead to
a decreasing simulation time. This is due to the topology of the case taken into account. In fact, Zone 1
and Zone 2 are connected through one branch, which means that there are only two off-diagonal block
elements in the Jacobian matrix. Setting the overlap to 2 includes all the off-diagonal elements
into blocks, thus solving the linear problem in the least number of iterations. In other terms,
increasing the overlap cannot decrease the number of iterations and hence the simulation time.

On the other hand, the performance gain would be greater if the number of off-diagonal elements
was higher. This fact can be seen in the case of simple partitioner. In this case, the network is not
split through the connection branch, but somewhere else. With this partition, the amount of off-block
diagonal elements increases, as the branches connecting the zones are increased.

Increasing overlap values leads to a decreasing number of linear iterations, but, at the same time,
it increases the message passing of information between processors during the single linear iteration.
Basically, higher overlap value effort for message passing becomes greater than the advantages due
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to a decreasing number of linear iterations. The optimal overlap value should take into account
both aspects as shown in Table 2.

Table 2. Simulation times (s) for shell Partitioner.

Preconditioner (a) (b) (c)

Block Jacobi 5.42 285 48.9
ASM (s = 1) 1.76 41 7.9
ASM (s = 2) 1.33 11.8 3.21
ASM (s = 3) 1.29 9.96 3.02
ASM (s = 4) 1.28 9.73 2.95
ASM (s = 5) 1.27 9.03 2.87
ASM (s = 6) 1.27 9.08 2.87
ASM (s = 7) 1.28 9.16 2.87

In Figure 5, the above performances are represented into two distinct charts in terms of simulation
time ratios. The time-ratio values are obtained dividing the simulation times of (b) and (c) by simulation
time of (a) (best scenario, i.e., local simulations) in order to get a comparison between local times
and distributed simulation times.

(a) simple (b) shell

Figure 5. Simulation time-ratios of (b) and (c) over (a), for both simple and shell partitioners.

The latency introduced due to communications through inter-connection between workstations
proves to be as reasonable (same order of magnitude). In reality, grid operators would rather
communicate through a WAN or a cloud rather than a WLAN or Ethernet cable. This could certainly
cause delays in the simulation. However, this is not expected to be a relevant issue. First, we adopted
rather conservative WLAN speeds on purpose; second, fast WAN interconnection can nowadays
reach even 1 GBit/s; third, the main scope here is to keep data confidentiality for parties involved in
the computation, so that the overall delay is offset by the possibility of achieve confidentiality.

In any case, a test case based on WAN interconnection will be investigated in future works to
further assess the possibility for reality applications of the model, hopefully simulating more than two
operators taking part in the simulation.
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7. Conclusions

The paper showed the possibility to carry out remote power flow computations by taking
advantage of the Newton–Krylov algorithm, preconditioned by a DDM (Schwarz). This has been
proved that it can be done in a reasonable time, contextualized to real grid operators’ needs, hence
only slightly trading computational efficiency for data-locality. The study case presented in Section 5
gives a practical application of the model proposed while arranging in a policy context, where TSOs
are encouraged to collaborate to align their simulations. The results also show the crucial role of
overlapping variables in minimizing the number of linear iterations, the key factor to reduce overall
simulation times when performing remote coordinated calculations. Finally, given the promising
performances obtained by the algorithm proposed, future research activities will be focused on
TSO–DSO study cases, i.e., scenarios also identified fitting with the properties of the proposed
mathematical formulation.
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Appendix A. PETSc

The portable, extensible toolkit for scientific computation (PETSc) is a set of data structures
and routines that provide an interface for the implementation of large-scale application codes on parallel
and serial architectures. Application codes can be written in Fortran, C, C++, Python and MATLAB.
Advantages and possibilities include combined electromechanical-electromagnetic transient simulations,
combined transmission-distribution analysis, electromechanical transients simulation, power flow
application, power system optimization, and electromagnetic transients simulation.

Among other things, the message-passing inter-processor communication standard protocol,
MPI [24], is integrated in PETSc in order to minimize the inputs of the user in this sense. MPI package
and BLASLAPACK (a package for basic matrix-vector operations) are the foundations of PETSc,
onto which are then built increasingly complex packages. The KSP and PC packages manage
the iterative linear solvers (some of them: conjugate gradient (CG), generalized minimal residual
method (GMRES), bi-conjugate gradient method (BICG), minimal residual method (MINRES)
and many others) and preconditioners (some of them: block-jacobi (BJACOBI), additive schwarz (ASM),
incomplete LU factorization (ILU) and many others), respectively. SNES class include nonlinear solvers
instead (some of them include: line-search Newton [NEWTONLS], trust region Newton–Raphson
(NEWTONTR) and many others), which, on their own, call the sub-classes (i.e., KSP and PC as needed).
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