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Abstract—Functional electrical stimulation (FES) is an ef-
fective technology in post-stroke rehabilitation of the upper
limbs. Because of the complexity of the system, traditional linear
controllers are still far to drive accurate and natural movements.
In this work, we apply reinforcement learning (RL) to design a
nonlinear controller for an upper limb FES system combined
with a passive exoskeleton. RL methods learn by interacting
with the environment and, to efficiently use the collected data, we
simulated large numbers of experience episodes through artificial
neural network (ANN) models of the electrically stimulated arm
muscles. The performance of the novel control solution was
compared to a PID controller on five healthy subjects during
planar reaching tasks. Both controllers correctly drove the arm
at the target position, with a mean absolute error < 1◦. The RL
control significantly outperformed the PID in terms of setting
time, position accuracy and smoothness. Future trials are needed
to confirm these promising results.

Index Terms—Functional Electrical Stimulation; Reinforce-
ment Learning; Hybrid Robotic Systems; Neuroprosthetics.

I. INTRODUCTION

Functional Electrical Stimulation (FES) is a technology
used to artificially activate hemiparetic muscles to produce
functional movements. A recent Cochrane review reported
evidence that goal-oriented repetitive movement therapy im-
proves arm and hand functions after stroke [1]. In the past
few years, the combined use of FES and robotic technologies
have been proposed to improve the rehabilitation outcomes [2],
[3]. Passive exoskeletons for upper limbs are well indicated to
support patients as they remove the gravitational load but give
the subject the role to execute the tasks. On the other hand,
it has been recently shown that FES has a positive effect on
upper limb activity compared with both no intervention and
training alone [4].
However, considerable difficulties are encountered in the
development of control systems for hybrid robotic systems
since the dynamics of the electrically stimulated human arm
is highly nonlinear and its physiological properties are not
completely known [5]. Classical controllers, based on linear
assumptions, are reliable, but they have limited performance
because they rely on the model accuracy [6]. Nonlinear

controllers can perform better [7], but they become time-
consuming to fine-tune on different subjects. Moreover, they
do not take into account the time-variations of the human
arm system due, for example, to muscle fatigue or muscle
strengthening [8].
Reinforcement Learning (RL) has been recently proposed to
control a simulated upper limb FES system [9]. RL uses artifi-
cial intelligence methods to make an agent learn the best way
to act on a system, namely a policy, from experience collected
by interacting with it. RL represents a nonlinear and adaptive
control solution and it does not require prior knowledge about
the system. However, large numbers of experience episodes are
often needed to achieve good performance. Thus, RL control
algorithms are usually trained in a simulated environment,
before being applied to the real system.
In this work, we investigated the feasibility of RL to control
an upper limb FES system combined with a passive robotic
device for weight relief in a real environment. To reach
this aim, we defined a simple control problem consisting
of planar elbow flex-extension movements. We chose the
Proximal Policy Optimization (PPO) algorithm [10], which has
been shown to outperform several state-of-the-art algorithms in
continuous control tasks. To overcome the issue of continued
interaction with the system, we trained the algorithm in a
simulated environment consisting in a subject-specific artificial
neural network (ANN) model of the electrically stimulated
human arm. Finally, the performance of the PPO algorithm
was compared to that of a PID controller, which was chosen
because it represents the closed-loop system most reliable and
used in FES applications.

II. METHODS

A. Apparatus

We used a lightweight passive exoskeleton to support the
right arm, characterized by 3 degrees of freedom (DoF):
elbow flex-extension, shoulder rotation in the frontal plane and
shoulder elevation, see Fig. 1. Each DoFs can be independently
locked by activating electromagnetic brakes.
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Fig. 1. The right arm passive exoskeleton.

The elbow angular position was measured by a goniometric
sensor (Vert-X 13 E, ConTelec AG) embedded in the joint.
The gravity compensation module consisted of a carbon fiber
tube with springs inside, whose pretension was adjustable.
A current-controlled stimulator (RehaMovePro®, Hasomed
GmbH), which provided biphasic pulses through surface self-
adhesive electrodes (Pals®) was used. Two stimulation chan-
nels were simultaneously connected: one to the biceps and one
to the triceps muscle. The exoskeleton and the stimulator were
controlled by an embedded processor (BeagleBoneBlackTM )
in which the I/O communication was set at 25 Hz.

B. Selection of the Motor Tasks

In our control problem, we considered target-reaching tasks
in the horizontal plane. The elbow angle φ(· ) was allowed
to move from 50◦ (complete flexion) to 180◦ (complete
extension). Starting from an initial angle φs, identified as
the subjects’ relaxed arm position, the control system had to
properly stimulate the two arm muscles to reach a prescribed
target angle φt. For each subject, we defined two flexion or
two extension tasks. The target angles of the flexion tasks were
selected in the range (50◦, φs), while those of the extension
tasks, in the range (φs, 180◦). We referred to the target closer
to the initial angle as “low target” φtl , and to the other one as
“high target” φth.

C. RL Formalization

We start formalizing the mathematical framework used
to describe the system and the optimal control problem. A
sequential decision-making problem can be formalized as a
Markov Decision Process (MDP) M = {} where S is the
continuous state space, A is the continuous action space, P
is a Markovian transition kernel where P (s′|s, a) defines the
transition density from state s to s′ under action a, R is
the reward function r(s, a) = E[r|s, a], γ ∈ (0, 1) is the
discount factor and µ is the initial state distribution. The
agents behaviour is modelled as a policy π, where π(·|s) is the
density distribution over A in state s. The goal of the agent is

to find a policy π(a|s) which maximizes the sum of collected
discounted rewards:

J(π) = Eπ

[
+∞∑
k=0

γkrk

∣∣∣s0 ∼ µ,M] . (1)

We consider episodic MDPs with effective horizon I . In
this setting, we can limit our attention to episodes of length
I . An episode is a sequence of states, actions and rewards
(s0, a0, r0, s1, a1, r1, . . . , sI−1, aI−1, rI−1) observed by fol-
lowing a policy (i.e., ai ∼ π(·|si)), where s0 ∼ µ. The
reward is the scalar value provided by the environment which
represents the immediate utility of executing the action ai in
the state si.

Our MDP. In the considered problem, at each time step
i, the system state is described as si = [φi, φ̇i, φ̈i]

′ ∈ R3,
where φi is the elbow angular position, φ̇i is the instantaneous
angular velocity and φ̈i is the instantaneous angular accelera-
tion. The electrical currents of the two stimulation channels
were the inputs and, in order to reduce the complexity of
the control problem, we chose to modulate the stimulation
frequency rather than the current or the pulse width. Avoiding
also the co-contraction of the biceps and the triceps muscles,
we defined a scalar control variable, a, which encoded, at each
time sample, the action of sending a single stimulation pulse
to biceps muscles (ai = 1), to the triceps (ai = 2) or to none
of them (ai = 0).

The reward function expresses the overall goal and provides
indications to the agent on how to achieve the task. We
designed the reward as follows:

r(si, ai, si+1) = −(φt − φi+1)2 − α· φ̈i+1, (2)

where α is a scaling parameter. The effect of such reward
function was to penalize the distance from the target and
the instantaneous acceleration with the aim of promoting
smoother movements.
In our experiments, we set I equal to 50 time instants, γ
equal to 0.99 and α equal to 10.

1) RL Solution with the PPO Algorithm: We decided to
face the continuous RL problem by using Proximal Policy Op-
timization (PPO) algorithm. This method is a policy gradient
approach that constrains the policy update to avoid disruptive
steps. This surrogate objective represents a lower bound to the
policy performance. PPO works by optimizing a surrogate loss
based on standard policy performance measure (see Eq. 1) by
stochastic gradient ascent. The policy πθ is encoded through
a parametric representation (e.g., ANN) with parameters θ.
Defining the probability ratio as ρi(θ) = πθ(ai|si)

πθold
(ai|si) , where

θold is the vector of policy parameters before the update, a
surrogate objective is defined as:

L(θ) = Êi[ρi(θ)Âi], (3)

where the expectation Êi[·] indicates the empirical average
over a finite batch of samples and Âi is an estimator of the
advantage function [12]. Starting from Eq. 3, PPO modifies



the objective to prevent steps moving policy πθ far away from
πθold

. The PPO objective is as follows

LPPO(θ) = Êi
[
min

{
ρi(θ)Âi, ηi

}]
ηi := clip(ρi(θ), 1− ε, 1 + ε) · Âi

The term ηi prevents the update to move too far away from
the previous policy (i.e., ρi(θ) = 1) by constraining ρi in the
closed interval [1− ε, 1 + ε].

We used the PPO implementation in rllab [11].1 We
choose a multi-layer perceptron with two hidden layers of 26
hyperbolic tangent (tanh) neurons each and a softmax output
layer as function estimator. This structure defines the policy
distribution over the three discrete actions (a ∈ {0, 1, 2}).
We finally set the max path length parameter equal to the
episode duration I , the batch size equal to I · 100 and the
total number of iteration equal to 150. The parameter ε was
set to 0.2.

2) The ANN Model of the Human Arm: As explained
above, the algorithm needs to interact with the system to
collect samples of the current policy πθ. As mentioned in the
introduction, we want to avoid to interact with the real system
at each update, and thus we rely on a parametric model of the
system. We decided to model the subject’s arm response to the
electrical stimulation using a feedforward ANN. This allows
to represents the nonlinear dynamics that characterizes the
system. The data for building the model were collected during
a subject-specific acquisition session. The ANN estimated the
state transition dynamics of the system given the agents action:

sn+1 = fw(sn, an), (4)

where n is the discrete time index, fw(· ) is the estimated
dynamics of the environment, w is the vector of the neural
network weights and sn = [φn, φ̇n, φ̈n, h

1
n, h

2
n, h

′1
n , h

′2
n ] is

the enlarged state. To increase the amount of information
in the input, we extended the state sn by including four
additional signals, hchn and h

′ch
n (with ch ⊂ {1, 2}, indicating

the stimulation channel), defined as:

hchn =


n∑
c=1

ac if an = ch

h1n−1 otherwise
, h

′ch
n =


n∑
c=1

ac if an = ch

0 otherwise

Those signals keep memory about the past stimulation
sequences and take into account the muscle fatigue.

An acquisition protocol was designed to collect the training
data for the ANN (see Section III-A), and the training dataset
was defined as follows: the input was a matrix including
both the enlarged state and the action at the time sample
n, and the output was the vector of the state at the time
sample n + 1. The Keras python library2 was used to train
a single-layer feedforward ANN with 13 tanh hidden neurons,

1The rllab library is available on GitHub (https://github.com/rllab).
2Keras library is available at https://keras.io.

selecting the mean squared error as loss function and the Adam
optimization algorithm [13]. Note that the policy does not
observe the enlarged state but only a projection of the first
three components (see Sec. II-C).

D. PID Control Solution

To define the PID control solution, a SISO plant was
considered. The input of the plant was the stimulation pulse
width and the output was the elbow angle obtained in response
to the given input. The stimulation frequency was fixed at
25Hz and the current was set at a subject-specific value as
described in Section III-A. The incremental PID control law
was considered:

u(n) = u(n−1) +kI(n)e(n) +KP∆e(n) +kD∆2e(n), (5)

where n is the discrete time instant, e(n) = φt − y(n),
∆e(n) = e(n) − e(n − 1) and ∆2e(n) =
e(n) − 2e(n − 1) − e(n − 2). The proportional, integral
and derivative parameters of the PID are kP , kI and kD
respectively. The output y was the elbow angle and the
control action u(n) was the pulse width (µs) at the time
instant n.

1) Step-Response Identification of the Human Arm: Con-
sidering the output signal y(· ) and the input signal u(· ), we
used a 2nd-order linear time-invariant system with two poles
and one zero to model the system dynamics through the step
response method:

G(z−1) =
Y (z−1)

U(z−1)
=

b1z
−1

1 + a1z−1 + a2z−2
, (6)

where Y (z−1) and U(z−1) are the z-transformations of y(· )
and u(· ), respectively.
We probed the human arm with the step sequence defined in
Eq. 7:

u(n) =

{
u if 0 ≤ n ≤ Ntot
0 if n < 0

(7)

where u is a fixed pulse width value and Ntot is the duration
of the step signal.
The step sequence was applied 10 times and the average
response signal was computed. The system parameters were
estimated by applying the instrumental variable (IV) method
[14] for discrete time systems.

2) Calibration of the PID parameters: Once identified
the plant dynamics G(z−1), we considered the PID transfer
function in the z-domain:

C(z−1) =
U(z−1)

e(z−1)
=
ki + (1− z−1)kp + (1− 2z−1 − z−2)kd

1− z−1
.

(8)
Then, we considered the nominal closed loop transfer function
H(z−1):

H(z−1) =
C(z−1)G(z−1)

1 + C(z−1)G(z−1)
. (9)

https://github.com/rllab
https://keras.io


The Matlab® automatic PID parameters calibration tool3 was
used to tune the PID gains. We designed the PID controller by
balancing the reference tracking and the disturbance rejection
performances, while keeping the minimum phase margin. We
finally chose the parameters that allowed the closed-loop
stability, with the minimum phase margin and no overshoot
in the transient phase.

III. EXPERIMENTAL PROTOCOL AND PARTICIPANTS

Five healthy subjects (males, average age: 25.25 ± 1.25)
were recruited for the study. Each subject was involved in
two sessions: a calibration and a testing session.

A. Calibration Session

1) System configuration: The exoskeleton lengths are ad-
justed on the subject anthropometric measures, the wrist
prono-supination and the humeral rotation were fixed on a
comfortable position for the subject. The shoulder DoFs were
locked by the brakes. The current amplitude was identified
separately for the two channels (cur1 and cur2) fixing the
pulse width at 400µs and increasing the stimulation amplitude
every second in steps of 1mA till reaching a value, tolerated
by the subject, able to produce a functional movement without
reaching the full range of motion.

2) Acquisition of data for the ANN model of the human arm:
During the acquisition session, the subject was asked to be
relaxed. The stimulation frequency was randomly modulated
by setting a probability to send a pulse to the two channels
at each time instant. The stimulation was sent alternately to
the two channels in order to cover the whole range of motion.
The acquisition procedure lasts 25 minutes and a total number
of 35000 samples were collected.

3) Recovery Phase: The subject was allowed to recover for
5 minutes.

4) Acquisition of the data for the PID fine tuning (step
response): First, the initial position φs was chosen. Then,
starting always from that position, the pulse width step se-
quence u (defined in Section II-D1) was sent ten times. The
value u was set to 400µs, the total duration of the step signal
was set to 50 time instants with at least 10 seconds between
two consecutive steps.

B. Testing Session

Each subject tested both controllers in two different tasks
(low and high range target) starting always from the same
rest position. For each task and each controller 10 repetitions
were carried out for a total of 40 repetitions per subject. Each
repetition lasted 2 seconds with 10 seconds apart. The setting
time, iset, was defined as the first time instant in which the
actual elbow angle was closer than 2 degrees from the target
position and the instantaneous angular velocity was close to
zero. At iset the elbow brake was activated to hold the position
and the stimulation was switched off.
In summary, the testing session included the following phases:

3References at https://it.mathworks.com/discovery/pid-tuning.html web-
page

TABLE I
SETTING OF THE VARIABLES

Subject φs [◦] φtl [◦] φth [◦] cur1 [mA] cur2 [mA]
S1 92 120 140 8 9
S2 103 125 150 13 10
S3 100 125 140 5 11
S4 125 70 90 8 10
S5 120 100 80 11 12

• System configuration.
• 10 repetitions of low target controlled by RL.
• Recovery phase of 5 minutes.
• 10 repetitions of low target controlled by PID.
• Recovery phase of 5 minutes.
• 10 repetitions of high target controlled by RL.
• Recovery phase of 5 minutes.
• 10 repetitions of high target controlled by PID.

Table I shows the values of the parameters for the five subjects.

C. Measures of Performance and Statistical Analysis

The absolute position error (Eq. 10) and the smoothness
(Eq. 11) were computed on each repetition. The repeatability
of the gesture within the same task was assessed by computing
a dissimilarity index, defined in Eq. 12.

eabs = |φt − φI | (10)

Where φt is the target position of the current task and φI is
the elbow angular position at the end of the repetition span.

sm =
φ̇mean

φ̇max
(11)

Where φ̇mean and φ̇max are respectively the mean and the
maximum instantaneous velocity of the repetition. Smoothness
values around 0.5 were previously found in healthy subjects
performing similar movements supported by a passive ex-
oskeleton [15].

d =
1

I

I∑
i

std(Φ(i)) (12)

Where Φ is the [10 × 1] vector whose each element is the
elbow angle of the jth repetition (with j = 1, .., 10) at the
time instant i.

Linear mixed model analyses for repeated measures (p =
0.05) were made on each of the computed metrics (setting
time, smoothness and absolute error). The repeating factor
was the task repetition, the task and controller were entered as
fixed effects and the metrics as dependent variables. Subjects
were included as random effects, since we chose them as
representative of the healthy population.



Fig. 2. Repetitions of the low-range target reaching task. Panels (a-b) shows
the RL control performances; panels (c-d) those of the PID.

IV. RESULTS

The execution of the reaching tasks by the fourth subject
is shown in Figures 2 and 3 for the low and the high range
target respectively. Panels (a) and (c) show the elbow angular
trajectories of the PPO and the PID respectively. The dashed
line indicates the target angle and the asterisks above the
trajectories specify their setting time. When the asterisk is
missing, the transient phase did not ended within two seconds.
For the trajectory highlighted in dark in the panels (a) and (c)
the corresponding control action provided by the PPO and PID
are shown in panels (b) and (d) respectively.

In both tasks, the PID control was characterized by a higher
overshoot in the transient phase. This is particularly noticeable
in Figure 2, where the trajectories in panel (c) overtook the
target position of over 30◦. Also the setting times were shorter
in the case of RL control. The control action in the RL case
worked as a discrete process in which a single stimulation
pulse represented an event. The stimulation patterns were
modulated in order to gently drive the arm to the target
position, avoiding to over-activate the muscles. In addition,
only the agonist muscle was activated during the execution of
the task. The control action in the PID case instead, consisted
of a continuous modulation of the pulse width until the target
was reached. The intrinsic variability of the FES-induced
trajectories for the same task is easy to notice by looking at
the overlapped repetitions (we obtained dissimilarity values of
1.34◦, 3.89◦, 2.42◦ and 2.30◦ respectively for the trajectories
in panels (a) and (c) of Figures 2 and 3).

Fig. 3. Repetitions of the high-range target reaching task. Panels (a-b) shows
the RL control performances; panels (c-d) those of the PID.

Table II shows the performance measures achieved by the
two control systems. There was a significant difference in
terms of controller for all of the three performance measures.
The RL control showed better performances by looking at
the mean values of position error and smoothness. Moreover,
it showed a faster dynamics since it reported shorter setting
times.
Transient phase behaviour of the two control systems was
compared by counting the times there was an overshoot: a
higher number of overshoots was achieved by the PID with a
31% of times (compared to the 16% of the RL control).
In terms of repeatability, we obtained a dissimilarity (median
[quartiles]) of about 2.30 [1.46 2.51] and 2.35 [2.31 2.70] for
the PID and the RL control respectively.

V. DISCUSSION

Our results revealed that RL can perform better than PID
in the control of FES induced flex-extension movements
facilitated by a passive exoskeleton. Indeed, a significant effect
of the controller in favour of the PPO was found for all the
outcome measures. A good accuracy level was obtained for
both the RL and the PID controllers since position errors
were low. However, the PPO outperformed the PID in terms of
speed of response and general behaviour in the transient phase:
the movements driven by the RL resulted not only faster but
also smoother and more natural, rarely generating overshoots.
Being both closed loop control systems, the RL and the PID
were able to compensate for disturbances due to the intra-
subject variability of the system dynamics. However, the RL
solution had some advantages.



TABLE II
PERFORMANCE MEASURES OF THE RL AND PID CONTROLLER.

Metrics
RL PID

Pcontroller Ptask Pinteractionlow high low high
n ≈ 10 n ≈ 10 n ≈ 10 n ≈ 10

eabs [◦] 0.677± 0.119 0.489± 0.082 0.685± 0.105 1.002± 0.115 0.003 0.388 0.003
sm [0 : 1] 0.523± 0.035 0.471± 0.032 0.469± 0.038 0.456± 0.042 0.004 0.742 0.031
iset [s] 1.055± 0.084 1.220± 0.092 1.364± 0.078 1.366± 0.091 < 0.001 0.449 0.508

First, considering the control laws, the action of the RL
control is based on the current state only, while for the
PID it is determined after computing the actual error. This
features makes the RL controller work as a look-up table
and compensate for the intrinsic time-lag in the closed loop
response. On the other side, the PID controller is a linear-
time invariant system and, for stability reasons, the closed-loop
response should not be fast. Moreover, the PID was tuned on
the linearized dynamics of the human arm response, therefore
its transient behaviour was greatly affected by the the target
angle.
In addition, the control action of the RL control resulted more
efficient in terms of muscular activation. It was able to stop
the stimulation when no muscle activation was needed, while
the PID controller stimulated the muscle without interruption,
thus favouring the onset of muscle fatigue.
It is also worthy to notice that the PPO modulates the fre-
quency while the PID modulates the pulse width. Thus, the two
control systems differ both in terms of algorithm (PPO versus
PID) and in terms of control action (frequency versus pulse
width). This could be a limitation of the study since it makes
challenging to separate the effects. However, we decided to
implement a frequency-based controller since the frequency
modulation has been revealed more efficient in muscle force
production [16]. On the other hand, for the PID we chose to
modulate the pulse width, since this is the traditional approach
found in the literature. Further research on its use is therefore
envisaged.

VI. CONCLUSION

In this work, we compared RL and PID control solutions
for an upper limb FES system combined with a passive
exoskeleton. The performance of the two controllers were
tested during elbow flex-extension movements. Our results
showed that the RL control outperformed the PID.
RL also presents several advantages that could be further
exploited. First, the control problem could be extended con-
sidering trajectory tracking tasks, as demonstrated in pole
balancing experiments [17], and involving more degrees of
freedom. Then, an online learning approach based on RL
techniques can be investigated to obtain fine-tuned controllers,
able to adapt to changes in the system dynamics (e.g., muscle
fatigue or due to muscle recovery) [18].
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