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Abstract
The four wave mixing (FWM) process is widely exploited for the generation of tunable
ultrashort light pulses. Usually this process is driven in bulk materials, which are however prone
to optical damage at high pump laser intensities. A tunable source of ultrashort 10 μJ level pulses
in the visible spectral region is described here. In particular, we report on the implementation of
FWM driven by a two-color ultrafast laser pulse inside a gas-filled hollow core fiber (HCF). Due
to the high-damage threshold and the long interaction distance, the HCF-based FWM
configuration proves to be suitable for high-energy applications. Moreover, this technique can be
potentially used for ultrashort pulses generation within a wide range of spectral regions; a
discussion on the possibility to extend our scheme to the generation of few-cycle mid-IR pulse is
provided.

Keywords: nonlinear wave mixing, nonlinear optics, parametric processes, ultrafast nonlinear
optics

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last few decades, the development of ultrafast laser
sources led to remarkable advances in the field of spectrosc-
opy, providing a powerful technology for studying atomic,
molecular and solid state dynamics on an ultrashort time scale
[1]. Currently, the increasing interest in strong field physics
and the great attention on the wavelength-scaling law
underlying matter response under a strong-field excitation are
driving laser technology towards novel frequency regimes.
The leading approach for high-energy wavelength-tunable
ultra-broadband pulse generation is provided by optical
parametric amplification (OPA). Unlike stimulated emission
in active media, parametric amplification is a non-resonant
process that involves energy transfer from a high-energy
high-frequency pump to low-energy low-frequency beams,
the signal and the newly generated idler. By overcoming the
restrictions due to the linewidth of electronic or vibrational
lasing transitions, OPA allows for broadband amplification in

a wide range of spectral regions provided that proper phase-
matching occurs between the spectral components of the
pump and signal/idler fields. The pump-to-signal conversion
efficiency of the parametric sources is commonly between
10% and 30%, and to achieve high output energies, extremely
intense sources, up to the multi-terawatt scale, must be used
as pump. Moreover, the OPA scheme provides both energy
and bandwidth scalability. Nowadays, tunable few-cycle
pulses with an energy above the μJ-level can be generated in
the visible and in the infrared (IR) by means of this technique
[2, 3]. A mJ-level BBO-based parametric amplifier at 1.5 μm
was demonstrated in 2007 by Vozzi et al, providing 10 Hz
1.2 mJ, 17 fs CEP-stable pulses at 1.5 μm [4]. Even shorter
durations were achieved by spectral broadening of the OPA
output pulses. Sub-two-cycle hundreds-of-μJ 1 kHz OPA
pulses at 2 μm were generated by Hauri et al in 2007 [5]
through self-phase modulation (SPM) in a plasma filament.
By a gas-filled HCF as an alternative to plasma, a 1.6-optical
cycle duration was achived by Schmidt et al in 2011 [6].
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A promising route towards the development of parametric
system on a multi-mJ scale is represented by optical parametric
chirped pulse amplification (OPCPA). OPCPA provides the
possibility to attain amplification up to energy levels that are
inaccessible by standard OPA systems because of the limitations
imposed by optical damage. A main drawback of the OPCPA
system is the considerable complexity of the experimental setup.
In this framework, it is worth mentioning several outstanding
results related to OPCPA systems operating in the mid-IR. In
2011, Andriukaitis et al achieved a mid-IR OPCPA system at
a central wavelength of 3.9 μm that delivers few-optical-cycle
8mJ pulses [7]. Mayer et al reported on the generation of
sub-four-cycle 12μJ pulses centered at 3.4μm from an OPCPA
working at 50 kHz [8]. Shamir et al implemented an OPCPA
source that delivers of 2μm pulses with an energy of 60 μJ and a
repetition rate of 100 kHz [9]. In 2016, Sanchez et al reported
a sub-eight-optical-cycle OPCPA system at 7 μm approaching
mJ-level pulse energy at 100Hz repetition rate [10]. More
recently, Elu et al demonstrated the generation of 100 μJ 3μm
pulses at 160 kHz with a duration down to the single-cycle
regime by OPCPA followed by soliton self compression inside a
gas-filled photonic crystal fiber [11].

In this work, we explore a different approach to wave-
length-tunable ultrashort pulses generation in the visible
spectral region based on four wave mixing (FWM) inside a
gas-filled hollow core fiber. FWM has attracted attention as a
promising method for ultrashort pulse generation, providing
the possibility for frequency-conversion in different portions
of the spectrum. Wavelength-tunable ultrashort pulse gen-
eration has been achieved by means of FWM in bulk media,
including CaF2 and BaF2 for wavelength conversion into the
mid-IR [12], while BK7 glass, fused silica, and sapphire
plates for wavelength conversion into the visible [13–15], and
BBO for conversion into the UV [16]. FWM in single mode
optical fibers has also been demonstrated [17]. In the case of
optical fibers, nonlinear processes are strongly affected by
chromatic dispersion. As a consequence, an efficient FWM
has been obtained within the zero-dispersion wavelength
region [18, 19]. Concerning ultrashort pulse generation,
FWM has been demonstrated in microstructuted fibers [20],
enabling the generation of an almost octave-spanning spec-
trum by cascaded FWM in the anomalous dispersion
region [21].

In the case of bulk media, the possibility to extend both
the OPA and the FWM schemes to several regions of the
spectrum is limited by the availability of nonlinear crystals
and glasses with a suitable optical transparency in the spectral
window of interest. Moreover, the energy of the incoming
laser pulses can be pushed up to the limit imposed by optical
damage, thus strongly compromising the energy scalability.

With respect to bulk media, gas media exhibit a higher
damage threshold upon optical excitation, making them a
suitable target for frequency conversion processes driven by
intense laser fields. On the other hand, the nonlinear optical
response is commonly weaker in gas media than in bulk
media. Moreover, since an unperturbed gas medium exhibits
an isotropic response and its optical properties cannot be

permanently engineered, as in the case of nonlinear crystals,
birefringence or periodically poled arrangements cannot be
used to optimize the phase matching. In addition, due to the
low density, long interaction lengths are required in order to
achieve high conversion efficiency. The implementation of a
FWM experiment in gas media actually relies on the use of
methods for confining the radiation on a distance longer than
the confocal parameter of the laser beam. In this sense,
plasma-sustained filamentation has been successfully exploi-
ted. Specifically, tunable few-cycle pulses in a number of
spectral windows have been generated in a gas cell by means
of FWM under a filamentation regime, including in the UV
[22–25], the visible [26], the mid-IR [27–29] and also in the
THz [30, 31]. The typical energy attained being on a sub-
10 μJ scale. In order to increase the FWM signal energy, it is
necessary to use a higher driving pulse energy. However,
because of saturation effects in the intensity dependence [32],
the filamentation method poses strong limitations towards
energy scaling.

As an alternative to filamentation, a gas-filled capillary
can be used for achieving the confinement. Indeed, UV pulses
with temporal duration in the sub-10 fs scale were generated
by means of cascaded FWM in a HCF filled with noble gases
[22, 23]. The HCF-based approach offers several advantages
with respect to filamentation. In particular, the interaction
length corresponds to the waveguide length. The beam pro-
pagation is determined by the fiber modes such that the
intensity and focusing geometry are not coupled as in fila-
mentation. Moreover, the intensity may be increased up to the
fiber damage limits. Additionally, the beam coming out from
the guiding structure is endowed with a high spatial quality.

Here, we describe FWM performed inside a gas-filled
HCF as driven by a two-color laser field composed of 800 nm
pulses (ω1) co-propagating with near-IR pulses (ω2). Phase-
matching is achieved for a three-photon combination
sequence which leads to the generation of new components
(ω3) in the visible spectrum (2ω1−ω2=ω3). The broadband
spectrum of the driving pulses allows the generation of a
broadband visible spectrum associated to optical pulses with a
duration of a few-tens of femtosecond and an energy above
the μJ-level. In addition, numerical simulations under the
same experimental conditions show a good agreement with
the experimental measurements. By properly selecting the
experimental parameters, ultra-broadband FWM generation in
the mid-IR is also numerically predicted (the corresponding
photons combination rule is 2ω2−ω1=ω3 in this case), thus
supporting the possibility to extend our scheme to long-
wavelength pulse generation in the few-cycle regime.

2. Experimental methods and results

In our experiment, 60 fs 200 μJ 800 nm pulses provided by a
10 Hz Ti:sapphire (Ti:Sa) laser source were used in combi-
nation with 25 fs 300 μJ pulses delivered by an OPA system
tunable from 1.3 to 1.9 μm [4]. The OPA is pumped by a
10 mJ portion of Ti:Sa laser output and it operates at the same
repetition rate. The temporal and spectral properties of the
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800 nm and of the OPA input fields are reported in figure 1. A
detailed description of the sources is provided by Vozzi et al
in [33].

The two beams with parallel polarization were collinearly
combined by means of a dichroic mirror and were focused by
means of a 60 cm focusing mirror inside a gas-filled 1 m long
HCF with a inner diameter of 330 μm. The temporal delay
between the 800 nm and the OPA pulses was controlled by
means of a folded optical delay line with a motorized

translation stage located on the 800 nm path. Several gases
have been explored, including kripton (Kr), nitrogen (N2) and
carbon dioxide (CO2). These media exhibit a high ionization
threshold (above 1014W cm−2 [34]) and a large third-order
hyperpolarizability (on the order of 15 × 10−62 C4 m4 J−3

[35]), thus resulting ideal candidates for FWM by an intense
driving radiation. A pressure regime lower than 1 bar was
chosen, which ensures proper phase-matching conditions for
the ω3=2ω1−ω2 photon mixing combination. Indeed,

Figure 1. Temporal and spectral characterization of the input fields obtained by FROG measurements. (a) Temporal profile and phase of the
800 nm pulse. In the insert (b), the spectrum of the 800 nm field is shown. (c) Temporal profile and phase of the OPA pulse tuned at 1.45 μm.
In the insert (d), the corresponding spectrum is reported.

Figure 2. FWM generation in 400 mbra of Kr. (a) In the insert, the four-photon mixing sequence is reported. (b) Experimental measurement
showing the 800 nm pulse spectra and FWM spectra as a function of the delay between the 800 nm and the 1.45 μm pulses. According to the
convention used, the delay is negative (positive) when the 1.45 μm pulse arrives before (after) the 800 nm pulse. (c) FWM generation as
predicted by numerical simulations performed in the same conditions as in the experiment. (d) Experimental measurement showing the
1.45 μm pulses spectra as a function of the delay of the 800 nm.
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according to our calculations, at those pressures the phase-
mismatch vector (D = + -k k k k22 3 1, with k wavevector)
was assessed to be smaller than 3 m−1 over the whole range
of tunability of the OPA system. Moreover, the velocity-
mismatch among the pulses (estimated upon a multi-cycle
pulse regime as d = -v v1 113 1 3 and d = -v v1 123 2 3,
with v group velocity) turns out to be below 10 fs m−1,
meaning that a pulse walk-off less than 10 fs occurs during
the propagation within the fiber.

In the above mentioned experimental conditions, FWM
generation was achieved associated to the generation of new
components in the visible spectral region. In figure 2, we
report an experimental measurement obtained in Kr by tuning
the OPA at 1450 nm. Figure 2(a) shows a sketch of the four
photon interaction. A sequence of spectra detected at the HCF
output as a function of the delay between the two driving
pulses is shown in figure 2(b). According to our convention,

the delay is negative (positive) when the OPA pulses come
before (after) the 800 nm pulses. Two spectral contributions
can be clearly identified. The contribution around 800 nm
corresponds to that portion of the residual driving laser beam
that exits from the HCF. The spectrum extends from 750 nm
up to 850 nm because of SPM. Moreover, a strong pertur-
bation in the shape of the 800 nm spectrum can be observed at
around zero-delay when the temporal overlap is achieved
between the 800 nm and the OPA pulses; this spectral per-
turbation is due the cross-phase modulation (XPM) [36, 37].
SPM and XPM correspondingly affect the OPA pulse spec-
trum as shown in figure 2(d). In the same delay window, a
second contribution centered at 550 nm arises, which corre-
sponds to the newly generated FWM signal. The FWM
spectrum shows an evolution as a function of the delay that
correlates to the perturbation of the driving fields spectra
produced by the XPM. This effect cannot be avoided in a
nonlinear regime and the FWM spectrum inherits the spectral
properties of the driving fields.

For sake of comparison, the theoretical prediction of the
FWM is provided in figure 2(c). The calculations have been
performed by exploiting the split step Fourier method
[38] for numerically solving the nonlinear propagation
equation of the electric field = w-( ) ( ) ( )t z t eE r A, , i k z t

1 1 1 +
+w w- -( ) ( )( ) ( )z t e z t eA A, ,i k z t i k z t

2 32 2 3 3 , where the index j=
1, 2, 3 refers to the three pulses involved in the process
(800 nm, near-IR and FWM pulses), Aj is the corresponding
complex envelope, kj is the component of the wavevector
along the propagation direction z, and ωj the central frequency
of the pulses. The experiment has been modeled by
using a set of three coupled equations, in the form of

 m w¶ ¶ + = -( ) ( ) ( ) ( )z t z z t ik z tA A p, , 2 ,j j j j j0
2 , where pj

is the nonlinear dipole moment density including the main
third-order contributions affecting the experiment, i.e. SPM,
XPM and FWM;  is the dispersion operator in the time
domain. The simulated FWM spectra show a reasonable
agreement with the measured ones both in terms of delay-
dependence and spectral intensity. The calculated FWM pulse
energy assesses on tens-of-μJ-level that matches with the
experimental results. In particular, an output energy of 11 μJ
(conversion efficiency from the 800 nm pump to the FWM of
≈5%) was measured compared to a predicted value of 20 μJ.

FWM generation can be optimized by changing the gas
type and pressure [23, 39]. In this work, we used the same
experimental configuration for investigating molecular gases,
including N2 and CO2. The main results achieved in
CO2-filled HCF under the same conditions as in Kr are shown
in figure 3. Figure 3(a) reports the evolution of the 800 nm
spectrum and of the newly generated FWM spectrum as a
function of the delay between the two input fields. The
800 nm components is affected by a remarkable modulation at
negative delays. This long-lasting modulation is due to
additional effects that occur when molecular gases are excited
by intense ultrashort pulses, namely the activation of roto-
vibrational dynamics that are associated to a transient bire-
fringence of the molecules according to the polarization axis
of the driving field [40, 41]. In this case, a comparison
between the measured and the computed FWM spectra is

Figure 3. (a) Evolution of the 800 nm spectrum and of the FWM
spectrum as a function of the delay between the two input fields. The
OPA was tuned at 1.45 μm. The measurements were acquired at a
CO2 pressure of 400 mbar. FWM generation in CO2: (b) as
experimentally measured and (c) as theoretically predicted. FWM
pulse temporal characterization: (d) resulting from SH FROG
measurement and (e) resulting from simulations.
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provided in figures 3(b) and (c). With respect to Kr, an effi-
cient generation of nonlinear components centered at 580nm
was observed in CO2. Compared to the the Kr case, the dif-
ference in the spectral position of the FWM contribution must
be attributed to the strong perturbation of the driving pulse
spectra due to the above mentioned roto-vibrational
dynamics.

A temporal characterization of the FWM signal was
performed by means of the FROG technique. A 50 μm BBO
crystal is used for generating the second-harmonics (SH) of
two delayed replica of the FWM pulse. A collection of SH
spectra were acquired as a function of the delay between the
replica and subsequently used for retrieving the temporal
profile of the FWM pulse. As reported in figure 3(d), a 45 fs
pulse envelope was obtained. The phase of the reconstructed
pulse shows a quadratic dependence that can be potentially
compensated by means of chirped mirrors, thus reducing the
pulse duration to 30 fs. The simulated FWM spectra shown in
figure 3(c) exhibit a larger bandwidth which can support even
shorter durations, down to 17 fs. The mismatch between
the experimental and the numerical results can be attributed to
the delay-dependence of the wave mismatch vector and of the
molecular hyperpolarizability produced by the roto-vibrational
dynamics experienced by CO2 molecules under the effects of
intense ultrashort pulses [42, 43], which was not taken into
account in our simulations and that can play a role in shaping
the FWM spectrum.

In CO2, we obtained the same FWM energy as in Kr.
Since both the conversion efficiency and the spectral dis-
tribution exhibited a significant dependence on the amount of
gas contained inside the fiber, the output energy and the pulse
duration were measured for different gas pressures. The
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Figure 4. FWM pulse temporal characterization at (a) p=600 mbar, (b) p=400 mbar and (c) p=200 mbar. The pulse energy
corresponding to each pressure value is also reported. (d) Pressure dependence of the FWM spectra.

Figure 5. FWM spectral tunability as a function of the OPA pulse
central wavelength.

Figure 6. FWM generation in Kr by using a chirped 800 nm pulse.
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results obtained by changing the pressure at a fixed delay are
provided in figure 4. It is possible to observe that as the
pressure decreases from 600 to 200 mbar both the intensity
and the bandwidth of the FWM signal decrease. At higher
pressures, SPM and roto-vibrational-induced phase-modula-
tion are stronger. These processes produce a significant
spectral broadening of the interacting pulses making more
components available for the frequency mixing process. On
the other hand, these phenomena introduce a nonlinear per-
turbation of the phase that is responsible for a temporal dis-
persion of the interacting fields. As a consequence, the
resulting duration of the FWM pulses decreases from 70 fs
down to 39 fs by reducing the pressure from 600 to 200 mbar.
In this framework, the performances of HCF-based FWM
would possibly benefit from the phase-shaping of the input
pulses, allowing for a pre-compensation of phase-distortion
effects during the interaction in the HCF.

In our configuration, an additional factors limiting the
conversion efficiency is represented by the mismatch between
the driving pulses durations. According to calculations, a
significant enhancement in the conversion efficiency is
expected by using shorter 800 nm pulses. In particular, by
reducing the pulse duration to the same scale of the OPA
pulses, energy of ≈40 μJ can be attained. Moreover, by
scaling the energy of the driving sources towards the mJ level,
higher FWM energies can be potentially achieved. In this
case, HCF with a larger inner diameter must be used, in order
to reduce the gas ionization. A more sophisticated analytical
model is also required to account for the effects of ioniz-
ation [39].

By operating the OPA at different wavelengths, the
FWM signal can be tuned, as shown in figure 5. Here, several
FWM spectra are reported, each of which was acquired at a
different OPA central wavelength. By changing the OPA
wavelength from 1.35 to 1.8 μm the FWM spectrum under-
goes a shift from 530 to 650 nm. The bandwidth of the FWM

spectrum reduces at 1.8 μm. This can be attributed to a
decrease of the OPA spectral bandwidth while approaching
the longer wavelengths.

An alternative way for a spectral tuning of the FWM is
based on the introduction of a temporal dispersion into one of
the two driving pulses. In this case, only those spectral
components of the chirped pulse that are temporally over-
lapped with the second pulse contribute to the process. By
changing the delay between the two pulses, different com-
ponents can be selected, thus leading to the possibility of
finely tuning the FWM frequency. The measurement shown
in figure 6 was performed under the same experimental
conditions as in figure 2 by adding a phase distortion to the
800 nm pulses. Filamentation in an Ar-filled gas cell was used
for phase shaping [44, 45]. Uncompressed positively-chirped
120 fs pulses at 800 nm were thus obtained. The advantage of
exploiting filamentation relies in the possibility it offers of
achieving both phase dispersion and spectral broadening. As a
consequence, more components are available during the
FWM process and a larger tunability range can be achieved.
As expected, the FWM spectrum experiences a drift as a
function of the delay. At each delay, the bandwidth of the
FWM signal is narrower than that obtained in the transform-
limited pulse configuration since only a selection of 800 nm
pulse spectrum is taking part into the mixing process due to
the temporal spreading of its components. In this scheme, the
FWM pulses energy decreases to below 1 μJ.

A future application of our HCF-based FWM scheme
will be the generation of ultrashort pulses in the mid-IR.
According to a numerical investigation, phase-matching for
the frequency conversion process ω3=2ω2−ω1 is enabled
under a high gas pressure regime (> 4.5 bar). By setting the
OPA operational wavelength at 1.3 μm FWM generation of a
seed radiation at around 3.1 μm can be achieved (see
figure 7). The conversion efficiency is expected to be one
order of magnitude lower than that obtained for FWM in the

Figure 7. Numerical investigation on FWM generation in the mid-IR. (a) A broadband spectrum of mid-IR components centered around
3.1 μm is predicted. (b) The simulations predict mid-IR pulses with a FWHM of 15 fs, corresponding to sub-two optical cycles.
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visible. This is due both to enhanced fiber losses at longer
wavelengths and to a detrimental velocity mismatch among
the propagating pulses. A broadband spectrum is however
predicted, potentially supporting 15 fs pulse duration, on the
single-optical-cycle time scale.

It is worth to briefly comment on the results here reported
in comparison with the state of the art in the field of high-
energy (from the 1 μJ level upward) ultrashort (few-tens of fs)
pulse generation by frequency conversion. To this purpose, a
summary of the most remarkable results available in the lit-
erature is provided in table 1.

By inspection, it is possible to notice that both FWM-
based sources and parametric amplifier cover a wide range of
spectral regions, going from the UV to the mid-IR.

Throughout the spectral range, OPAs and OPCPAs allows for
unsurpassed performances, in terms of conversion efficiency
and output pulse energy. This is mainly due to the availability
of crystals with structured optical properties and highly
nonlinear coefficients. Moreover, geometrical degrees of
freedom are also available in OPAs and OPCPAs, making the
non-collinear configuration the most widely used for
achieving ultrabroadband phase-matching.

FWM provides an alternative way for achieving ultra-
broadband μJ-level pulses by using more compact setups. In
particular, FWM in gas media (gas-filled HCF and plasma
filaments) enables good conversion efficiencies and allows to
access pulse durations on the few-cycle scale, without any
additional compression process as SPM. Our experiment aims
at combining the advantages provided by gas-based FWM

Table 1. State of the art in high-energy linear source of ultrashort pulses based on the OPA/OPCPA and FWM schemes.

Process Output pulses Conversion Main
(NL media)a Pump sources λ(μm)b τ(fs)c E(μJ)d efficiencye references

FWM in the UV
gas (gas-filled HCF
and filaments)

few-mJ tens-fs
Ti:Sa+SH/THf

SH+OPA in the IR

0.16–0.3 <10–30 1–10 0.1%–30% [22–25]

FWM in the visible
bulk (fused silica,
sapphire)

few-mJ tens-fs
Ti:Sa

400–700 30–50 1–3 <10% [46, 47]

gas(air-, Ar- filament) few-mJ tens-fs
Ti:Sa+OPA in the IR

400–700 10–30 1–10 1%–20% [26]

FWM in the mid-IR
bulk(CaF2, BaF2) few-mJ hundreds-fs

Ti:Sa+near-IR OPA
2.4–7.7 200–300 0.1–0.2 <1% [12]

gas(air-, N2-, Ar- filament) few-mJ hundreds-fs
Ti:Sa+SH

2–6 <10–20 0.5–2 <1% [27–29]

OPA in the vis
(BBO) few-mJ tens-fs

SH of Ti:Sa
0.5–0.7 <10–25 10–500 20%–30% [48, 49]

OPA in the near-IR
(BBO) few-mJ tens-fs

Ti:Sa
1.3–2.2 15–200 500–1500 20%–30% [4–6]

OPCPA in the near-IR
(BBO, KTP, BiB3O6,
PPMgLN, LiNbO3)

mJ ps and fs
solid-state

(Nd:YAG, Nd:YLF,
Yb-doped LPF, Ti:Sa)

1.5–2.1 10–50 60–3000 18%–25% [9, 50–52]

OPCPA in the mid-IR
(ZGP, PPLN, KTA
KNbO3, MgO:LiNbO3)

multi-mJ ps
fiber-doped
(Ho:YLF)

or
solid-state

(Nd:YVO4, Nd:YAG)

2–7 10–200 12–10000 10%–24% [7, 8, 10, 11]

a

Nonlinear (NL) media.
b

Spectral range containing the central wavelengths of the referenced sources.
c

Range of the pulse durations of the referenced sources.
d

Range of the pulse energy of the referenced sources.
e

For FWM process, the efficiency is estimated as the ratio between the FWM pulse (ω3) energy and the pump pulse (ω1) energy; in the case of
OPA and OPCPA, it is estimated as the ratio between the signal pulse energy and the pump pulse energy (the idler is neglected).
f

(SH) second harmonic and (TH) third harmonic of the output pulses of a Ti:Sa system.
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with the long interaction distances supported by HCF. The
output pulse energy and duration are on the level of the most
intense ultrafast sources of visible light based on FWM.

3. Conclusions

The scheme we presented here provides the possibility to
generate ultrashort pulses by frequency conversion of an
intense two-color input field inside a gas-filled HCF. In
particular, we reported on the observation of ≈10 μJ visible
ultrashort pulses through FWM driven by two intense ultra-
short IR pulses. The conversion efficiency we measured is
quite low (FWM pulse energy over the pump 800 nm pulse
energy, ≈5%) but an improvement can potentially be
achieved by properly shaping the driving pulses duration and
phases. By using the same scheme, frequency conversion in
different portions of the spectrum can be achieved. Particu-
larly attractive is the perspective to apply this approach to
FWM generation in the mid-IR spectral domain. In this sense,
calculations suggested a broadband frequency conversion
resulting in sub-two-optical cycle pulses at 3.1 μm.
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