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Spin-charge interconversion (SCI) phenomena have attracted a growing inter-

est in the field of spintronics as means to detect spin currents or manipulate the

magnetization of ferromagnets. The key ingredients to exploit these assets are a

large conversion efficiency, the scalability down to the nanometer scale and the

integrability with opto-electronic and spintronic devices. Here we show that,

when an ultrathin Bi film is epitaxially grown on top of a Ge(111) substrate,

quantum size effects arising in nanometric Bi islands drastically boost the SCI

efficiency, even at room temperature. Using x-ray diffraction (XRD), scanning

tunneling microscopy (STM) and spin- and angle-resolved photoemission (S-

ARPES) we obtain a clear picture of the film morphology, crystallography and

electronic structure. We then exploit the Rashba-Edelstein effect (REE) and

inverse Rashba-Edelstein effect (IREE) to directly quantify the SCI efficiency

using optical and electrical spin injection.

Bismuth exhibits a series of remarkable electronic properties that have stimulated ex-

perimental and theoretical investigations for decades, in particular in electronic transport

studies [1–3]. The lattice structure of Bi single layer films resembles that of graphene, while

the electronic structure is endowed with a very large spin-orbit coupling of the order of 1.8

eV, which may give origin to topological states [4] or to surface states with a giant Rashba

spin-orbit splitting ranging from 0.5 eV [5] to 0.8 eV [6]. Bulk Bi has a rhombohedral crystal

structure and is a semimetal with a very small indirect band overlap (≈ 38 meV), resulting

in a low charge carrier density compared with conventional metals. Electrons exhibit a long

Fermi wavelength (λF) of 40 to 70 nm [7, 8], which is more than one order of magnitude

larger than in typical metals. Moreover, the electron effective mass m∗ in bismuth amounts

to (0.001−0.26)me, depending on the crystalline orientation, with me being the free electron

mass [9]. The small m∗ value combined with the long Fermi wavelength facilitates the obser-

vation of quantum size effects (QSE) which can drive semimetal to semiconductor (SMSC)

transitions in low dimensional systems [10].

To date, the spin properties of Bi films (spin diffusion length lsf and spin Hall angle θSH)

have shown a large dispersion in experimental values which is probably due to the crystalline

state of the material. In amorphous Bi, Emoto et al. found: lsf=8 nm and θSH=0.02 [11]

whereas, in polycrystalline Bi films, very different values were obtained: lsf = 0.11 nm [12];

2.1 nm [13]; 16 nm [14]; 20 nm [15] or 50 nm [16] at room temperature up to 70 µm at 2 K
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[17] and θSHE = 0.00012 [15]; 0.008 [18]; 0.016 [14]; 0.019 [16]. Despite the large spin-orbit

coupling of Bi, the spin diffusion length is long and the spin-Hall angle ϑSH quite small, which

is detrimental for SCI phenomena or spin-orbit torque switching. For these reasons, much

effort has been devoted to the study of Bi-based systems in the ultrathin film limit, where

several phenomena were observed such as allotropic transformations [19], the emergence of

topologically protected [20] or superconducting [21] surface states and SMSC transition [22],

which may give rise to a very rich spin physics.

As a first step to investigate SCI in Bi-based low dimensional systems, we analyze the

structural and electronic properties of Bi films as a function of the thickness t. To this pur-

pose, we have grown ultrathin Bi films (t≈ 0−10 nm) by molecular beam epitaxy (MBE) on

a Bi/Ge(
√

3×
√

3 )R 30◦ wetting layer stabilized on a Ge(111) substrate. The Ge substrate

exhibits metallic character in the 30-300 K temperature range. In the following, we call

the (110)-oriented films the pseudo-cubic (PC) phase and (111)-oriented films the hexago-

nal phase (HEX) by analogy with the Bi/Si(111) system [19]. Structural characteristics of

thin Bi films on Ge(111) were investigated by means of several techniques. The Bi growth

proceeds as shown in Fig. 1 by STM: up to t= 3.5 nm, we observe the formation of iso-

lated three-dimensional PC flat nanocrystals or nanoplatelets (3D PC phase-Fig. 1 a); for

3.5<t< 4 nm, the PC nanocrystals start percolating to form a 2D layer (2D PC phase-

Fig. 1 b); for 4<t< 5 nm, there is coexistence of the PC and HEX (PC+HEX) phases and

above 5 nm we only observe the single crystalline HEX phase (Fig. 1 c). This scenario is

compatible with that observed in Ref. 25 and is confirmed by in-situ Refection High Energy

Electron Diffraction (RHEED) and grazing XRD (see Supplementary Information). The

latter technique also shows that both PC and HEX films on Ge(111) exhibit the same bulk

Bi lattice parameter.

The electronic properties of in situ grown Bi/Ge(111) samples have been characterized

by means of ARPES with spin resolution (S-ARPES) at the APE beamline of the ELET-

TRA synchrotron radiation facility. In Figs. 2 a−e, the ARPES spectra collected along the

K−Γ−M directions of the Ge(111) surface Brillouin zone (SBZ; sketched in the inset of

Fig. 2 a) are reported as a function of the Bi thickness. At the early stages of growth, in the

3D PC regime (t= 1−3.5 nm), we observe states crossing the Fermi level (EF) around the Γ

point with a hole character. In analogy with what Bian et al. observed on thin Bi/Si(111)
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[26], we conclude that these are surface states with a very short spatial extension of only

2 Bi bilayers (1 BL = 3.28 Å), as shown in Fig. 4 of Ref. 26. In this regime, we do not

clearly observe other surface or bulk states close to EF. For t= 5 nm, the band structure

has evolved and clearly shows occupied states around k‖= 0.7 Å
−1

along both the Γ−K and

Γ−M directions. At this thickness, it is worth comparing our experimental data (Fig. 2 g)

with the calculated 2D Fermi surface of Bi(110) (Fig. 2 f) [6, 27]. In the former, we observe

a dark ring around Γ and 12 elongated low-intensity rings centered around k‖= 0.7 Å
−1

.

This Fermi surface can be reproduced by considering the ARPES results of Agergaard et

al. on the (110) surface of bulk Bi [27] and the first principles calculations of Koroteev et

al. [6]. Indeed, six equivalent growth orientations of the 2-fold symmetric Bi(110) surface

are detected on the 6-fold symmetric Ge(111) surface. The elongated rings correspond to

the surface electronic states along the M
′−X1

′
direction of the Bi(110) SBZ. They are also

reported in Fig. 2 d along with the surface hole states at M
′

which cross the Fermi level at

k‖= 0.9 Å
−1

. Finally, for t= 9 nm (Figs. 2 e, h), the band structure is the one of single crys-

talline bulk Bi(111) [28]. We note here that HEX Bi films grow in registry with Ge(111) (for

further details about the crystallography of thin Bi/Ge(111) films, see the Supplementary

Information).

The results of S-ARPES are shown in Fig. 3. In Figs. 3 a−d, for t= 2.5 nm, we probe

the surface states around Γ: they exhibit a counterclockwise helical spin texture with a spin

polarization P up to 40%. The spin-momentum locking is due to the strong Rashba spin-

orbit coupling in the surface states. In Figs. 3 e−g, we show that the states at M
′

for t= 5

nm are also spin polarized (P ≈ 30%), but they have a clockwise spin helicity, as predicted

by Pascual et al. [29]. The conclusion of this analysis is that both Γ and M
′

states can

participate to SCI, but they would provide opposite contributions, since they are both holes

states and have opposite spin helicities.

Based on the accurate knowledge of the atomic and electronic structures of ultrathin Bi

films, we then perfomed SCI measurements as a function of the Bi thickness. Charge-to-

spin conversion phenomena can be directly probed by exploiting MOKE. In this respect, the

detection of an electrically-induced spin accumulation in metals is particularly challenging

and it has been limited to low temperature ranges [30]. In our case, we exploit longitudinal

MOKE (see Fig. 4 a): an electrical current flows in 1.5 mm-wide Bi/Ge(111) stripes of

constant Bi thickness and we detect the Kerr rotation signal coming from the Bi film with
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a double modulation technique at room temperature (see Supplementary Information). As

shown in Fig. 4 b, up to t= 3 nm we detect a large Kerr signal ϑk, which results from the

electrically-induced spin accumulation in Bi, whereas ϑk rapidly decreases as the Bi thickness

is increased.

The same qualitative behavior is found when the spin-to-charge conversion generated by

a spin current is investigated by either optical spin orientation in Ge [31] or spin pumping

from a ferromagnet. Optical spin orientation allows obtaining a spin accumulation with

in-plane polarization in Ge by shining circularly polarized light on the sample at a grazing

incidence [32]. The spin-polarized electrons then diffuse into the Bi film (Fig. 5 a) [33]. As an

alternative to optical spin orientation, we can also inject a spin current by spin pumping from

an Al(5 nm)/Co(15 nm)/Al(3 nm) stack grown on top of Bi at the ferromagnetic resonance

of the Co layer (Fig. 5 b) [34]. In both cases the spin current generates a transverse charge

current, which is detected as a voltage ∆V measured between two electrodes deposited across

the Bi film in open circuit conditions. Further details on both techniques can be found in

the Methods section and in the Supplementary Information. In Fig. 5 c, we show the results

for optical spin orientation measurements: the signal is larger in the 3D PC regime, whereas

for t> 3 nm, it decreases. Similarly, with spin pumping (Fig. 5 d) at 30 K and 300 K we

observe a sharp decrease of the signal above t= 3 nm, with no detectable signal for t> 4

nm. The signal at 30 K is roughly one order of magnitude larger compared to that at room

temperature. To summarize, in all the SCI experiments we observe a conversion signal for

t< 4 nm, when Bi nanocrystals are present at the surface of Ge(111), whereas the signal is

drastically attenuated for the other morphologies.

We can exclude that the Bi/Ge(111)-(
√

3×
√

3 )R 30◦ wetting layer significantly con-

tributes to SCI since Aruga et al. demonstrated both experimentally and theoretically

the absence of spin-polarized states at the Fermi level [35]. Hence, the interconversion takes

place within or at the surface of nanocrystals of a given height h and lateral size a=
√
S,

being S the nanocrystal area. STM images show that the lateral size a of nanocrystals is

comparable to the Fermi wavelength, and since h� a, quantum confinement effects play a

fundamental role in determining the spin-transport properties of the system. Indeed, due to

the low effective mass of electrons in bulk Bi, the spacing between discrete energy levels can

be large enough to open a bandgap E ′g in Bi nanocrystals [36]. The calculation of E ′g in the

Supplementary Informations gives a SMSC transition (i.e., E ′g≥ 0) for a≤ 50 nm. Hence,
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nanocrystals of lateral size a≤ 50 nm and thicker than 4 BL (meaning that opposite surface

states do not overlap each other [26]) are expected to be semiconducting. From an extensive

analysis of STM images (see the Supplementary Information), for t< 0.9 nm, the majority

of PC nanocrystals are less than 4 BL-thick, the top and bottom surface states overlap and

the corresponding SCIs, being of opposite sign, cancel each other. For 0.9<t< 3 nm, the

nanocrystals satisfy the conditions for a SMSC transition. The surface states do not overlap

and are electrically separated because the presence of a bandgap increases the bulk resis-

tance. As a consequence, SCI at each interface is allowed and no communication channel

between opposite interfaces is present. We can observe a net SCI signal. This thickness

range is reported as a shaded area in Figs. 4 b and 5 c, d, and it nicely fits the thickness

range where we experimentally observe a conversion signal. This interpretation is in agree-

ment with the increase of the spin-pumping signal at low temperature. For 0.9<t< 3 nm,

Bi nanocrystals exhibit a bandgap and the number of thermally excited electrons across this

bandgap is lower at 30 K than at room temperature, which increases the bulk resistance.

Spin-to-charge conversion takes place at the Γ states in Figs. 2 a−c due to their helical spin

texture shown in Figs. 3 a−d, thus it can be attributed to the IREE. Concerning Kerr mea-

surements, in this thickness range most of the current flows at the Bi/Ge interface, where

the conductivity of the Rashba electron gas is large [37]. As a consequence, the REE gen-

erates an in-plane spin accumulation, with a spin polarization perpendicular to the current

density vector. We detect a very large Kerr signal (Fig. 4 b), which is proportional to the

electrically-induced spin density at the Bi/Ge interface, since the absorption length α of the

incident light (α= 16 nm for λ= 691 nm) is much larger than the nanocrystal height [38].

Finally, for t> 3 nm, nanocrystals exhibit lateral sizes larger than λF and start percolating.

This reduces and finally suppresses quantum confinement at room temperature. In these

conditions, spin-polarized electrons diffuse in the entire film thickness, and being h< lsf,

the spin-to-charge conversions at both interfaces compensate each other reducing the signal

down to zero. Similarly, for charge-to-spin conversion, when nanocrystals become gradually

conducting, electrical currents flow at both interfaces, causing opposite spin accumulations,

which tend to cancel each other. Hence, the Kerr signal drastically decreases. In a simple

model, the effect of quantum confinement on SCI experiments is equivalent to the effect of

a variable bulk resistance RB electrically connecting the top and bottom metallic surface

states of resistance RS. Following Ref. 36, for t <3 nm, quantum confinement leads to
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RB � RS and surface states are electrically insulated from each other. We can observe SCI

signals. On the other hand, for t >3 nm, RB ≈ RS and the charge currents in the top and

bottom surface states are shunted through the bulk reducing and cancelling SCI signals.

We could not detect any spin-to-charge conversion by spin pumping for t= 50 nm. This is

indicative of negligible bulk spin-to-charge conversion by inverse spin Hall effect and a long

spin diffusion length lsf > 50 nm. Starting from t= 3 nm, M
′
surface states at EF develop at

the surface of Bi nanocrystals and films as shown in Fig. 2. They exhibit a hole character

and a spin chirality opposite to the one of Γ states (Fig. 3), thus also contributing to the

decrease of conversion signals.

Spin-to-charge measurements allow extracting the figure of merit of the conversion occur-

ring at the interfaces (insets of Fig. 5 c,d). It corresponds to the IREE length λIREE = j2D
c /js,

where j2D
c is the 2D charge current density (in A m−1) generated by the 3D spin current den-

sity js (in A m−2) [23]. The methods to calculate λIREE from optical spin orientation and

spin pumping measurements are detailed in the Supplementary Information: there, we as-

sume that the conversion occurs only in PC nanocrystals that fulfill the conditions h> 4 BL

(surface states do not overlap) and a≤ 50 nm (nanocrystals are semiconducting with high

bulk resistance). The fraction of the sample surface corresponding to these nanocrystals is

given by the analysis of STM images. In the conversion process, the transverse charge cur-

rent generated at the nanocrystal interfaces is transfered to the conducting Ge substrate for

optical spin orientation experiments and to the Al/Co/Al metallic trilayer for spin pump-

ing experiments. It is then detected as a voltage in open circuit conditions. We obtain a

maximum calculated value of ≈ 50 pm by both optical spin orientation and spin pumping

for t≈ 3 nm. It shows that the spin-to-charge conversion efficiencies are comparable at the

Bi/Ge and Bi/Al interfaces and that SCI occurs into the Γ surface states of Bi regardless the

material at the interface. It is important to note that such a calculation is performed under

the assumption that the bulk resistance of the nanocrystals is large enough to avoid spin

diffusion between the two interfaces. If a lower resistance value were taken into account, the

λIREE value would be drastically larger, so that 50 pm represents a lower bound estimation

of the spin-to-charge interconversion efficiency. This λIREE value is comparable to the ones

obtained at different Rashba interfaces such as Ag/Bi (100-300 pm) [23, 39], Ag/Sb (30 pm)

[39] or Cu/Bi (9 pm) [12]. For Rashba interfaces, λIREE =αRτ/~ where αR is the Rashba

coefficient and τ is the momentum relaxation time in the interface states. From Ref. 6, we

7



can estimate αR≈ 1.5× 10−10 eV m at the Bi(110) surface assuming nearly free electrons in

surface states, which gives τ ≈ 0.2 fs. This value is of the same order of magnitude as τ

values obtained at other Rashba interfaces.[12, 23, 40].

To summarize, we carried out careful structural and electronic characterizations of Bi

thin films epitaxially grown on Ge(111). SCI in Bi layers was investigated by Kerr effect,

optical spin orientation and spin pumping. In all three techniques, a conversion signal was

only observed in the t= 1−3 nm thickness range corresponding to the presence of Bi(110)

nanocrystals. We thus interpreted the results as a consequence of QSE and SCI at the sur-

face of semiconducting nanocrystals by (I)REE. Eventually, we found a λIREE value as high

as 50 pm at the Bi/Ge interface which shows the potential of this interface to manipulate

spin currents in Ge. Since this is also the first evidence of SCI triggered by QSE, our results

paves the way for the exploitation of QSE to tune SCI, and open a new route to manipulate

spin currents in Ge by Rashba effect at the interface with a metal [24].
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Methods

Sample preparation. ARPES and STM measurements were performed in-situ for bismuth thicknesses

ranging from 0 to 10 nm. Bismuth was grown by molecular beam epitaxy on Ge(111) under ultrahigh

vacuum (10−10 mbar), at room temperature and a deposition rate of 0.5 Å/s. The wetting layer was the
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Bi/Ge(111)-(
√

3×
√

3 )R 30◦ surface obtained by depositing 1 ML of bismuth on Ge(111)-(2×2) annealed

at 500◦C for 10 minutes [25, 41]. 0−10 nm Bi wedges for optical and electrical measurements were grown

in the same way. The Bi wedges for optical studies were protected by a ZrO2(10 nm)/MgO(5 nm) bilayer

grown in-situ. The first nanometer of MgO was deposited using e-beam evaporation at a very low rate

(0.025 Å/s) in order to limit the oxygen pressure in the MBE chamber and avoid partial oxidation of the Bi

film. The last 4 nanometers were deposited at a rate of 0.25 Å/s. The ZrO2 layer is grown in-situ by RF

sputtering. For spin pumping experiments, we deposited in-situ an Al(5 nm)/Co(15 nm)/Al(3 nm) trilayer.

(S-)ARPES measurements. (S-)ARPES measurements were performed using p-polarized synchrotron

radiation at the APE beamline of Elettra with a photon energy hν= 50 eV. The hemispherical electron

energy and momentum analyzer (Scienta DA30) is equipped with two very low-energy electron diffraction

(V-LEED)-based spin polarimeters. We probe the in-plane components of the spin polarization, and the

spin-detection efficiency was corrected using a Sherman function (S= 0.3), determined by comparison with

the known spin polarization of the Rashba-split surface states measured on the Au(111) surface. The

spin polarization P is extracted as: P = [I+− I−]/[S× (I+ + I−)], where I+(−) is the V-LEED scattering

intensity measured for the V-LEED target magnetization in the positive (negative) direction. The detailed

description of the S-ARPES setup can be found in Ref. 42.

MOKE measurements. Electrically-induced spin accumulation in Bi is detected by means of Longi-

tudinal MOKE (L-MOKE). We used a 691 nm-continuous wave laser as a light source. The s-polarized

light was focused on the sample surface with an average polar angle ϑ= 45◦, a spotsize of diameter 5 µm

and an optical power of W ≈ 125 µW. The reflected light beam passed through a photo-elastic modulator,

which modulated the circular polarization of the light at 50 kHz, and a polarizer, before being collected by

a photodiode as described in Ref. 43. We recorded the second harmonic of the signal with a first lock-in

amplifier and normalized the result to the sample reflectivity to obtain the pure ellipticity signal. In order

to further increase the signal-to-noise ratio, we modulated the charge current at 0.3 Hz and extracted the

optical signal with a second lock-in amplifier. Further details are given in the Supplementary Information.

Optical spin orientation. A circularly polarized laser beam (λ= 740 nm) was focused on the sample

with a spotsize diameter s≈1.5 µm and an optical power W ≈ 19 mW. Optical spin injection generates

a spin-oriented population of electrons in the Ge conduction band, with a spin polarization P ≈ 8% [44]
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parallel to the light wavevector inside Ge [32]. Since the experimental geometry is sensitive to the in-plane

component of the spin polarization [45], we had the laser beam partially filling off-axis a 0.65 numerical

aperture objective, focusing the light on the sample with a polar angle ϑ≈ 20◦. The resulting electromotive

force is measured under open-circuit conditions. The circular polarization is modulated by a photoelastic

modulator at 50 kHz and the signal is demodulated by a lock-in amplifier. Furthermore, to increase the

signal-to-noise ratio, we also modulate the light intensity at 21 Hz with a chopper and the signal is extracted

by a second lock-in amplifier.

Spin pumping. A transverse radiofrequency field Hrf, generated at the center of a cylindrical X-band

resonator cavity (f = 9.7 GHz, TE011 mode), triggers the ferromagnetic resonance of the Co layer and spin

pumping. The charge current is given by IC = ∆V/R, where R is the resistance measured between the

two voltage probes. To remove the Seebeck contribution to the signal at room temperature, we consider:

IC = (I+Hdc

C − I−Hdc

C )/2 where Hdc is the DC magnetic field applied in the film plane [46].
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FIG. 1. Morphology of Bi films grown on Ge(111) as a function of the film thickness

t. Typical STM images of a, pseudocubic Bi nanocrystals (3D PC) for t< 3.5 nm, b, percolated

pseudocubic Bi nanocrystals forming a 2D layer (2D PC) for t= 3.8 nm and c, continuous Bi film

with (111)-orientation for t= 8 nm. The thickness t is calculated starting from the Bi/Ge(111)-

(
√

3×
√

3 )R 30◦ wetting layer.
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FIG. 2. Thickness evolution of the band structure of Bi/Ge(111) as obtained by

ARPES measurements. a−e, Band structure along the K−Γ−M directions for t= 1, 2, 3, 5

and 9 nm of Bi deposited on the Bi/Ge(111)-(
√

3×
√

3 )R 30◦ wetting layer. K, Γ and M are high

symmetry points of the Ge(111) SBZ shown in the inset of panel a. BE and k are the electron

binding energy and momentum respectively. Different band structures can be identified depending

on the structural phase which are: PC Bi nanocrystals for t= 1−3 nm (3D PC phase), a PC Bi

film (2D PC phase) for t= 5 nm (HEX grains do not give a visible signal) and a (111)-oriented Bi

film (HEX phase) for t= 9 nm. f, Schematics of the Bi(110) 2D Fermi surface according to Ref. 27.

M
′
, Γ
′
= Γ and X1

′
and X2

′
are the high symmetry points of the Bi(110) SBZ. Blue lines (around

Γ and M
′
) correspond to hole states while orange ones (near X1

′
) to electron states. They are also

reported in d. k[1̄10], k[1̄1̄2] and k[111] are the basis vectors of the reciprocal space. g, Experimental

2D Fermi surface for t= 5 nm reproduced (in orange and blue lines) by superimposing 6 times the

Fermi surface of bulk Bi(110) in f. h, 2D Fermi surface of single crystalline Bi(111) for t= 9 nm.

15



BE (eV) BE (eV)
00.511.500.511.5

a b

c d

In
te

n
si
ty

(a
.u

.)
In

te
n
si
ty

(a
.u

.)

22±5%

39±7%

35±2%

25±6%

In
te

n
si
ty

 (
a.

u
.)

0 0.2 0.4 0.6 0.8

k[110] (Å
-1)

0

0.2B
E

(e
V

)

0.4

-0.2

e g

BE (eV)
0.5 0

f

BE (eV)
00.5

33±5%

t=2.5 nm t=2.5 nm

t=2.5 nm t=2.5 nm

t=5 nm t=5 nmt=5 nm

Γ

[112]

[110]

Γ

[112]

[110] Γ

[112]

[110]

Γ

[112]

[110]

FIG. 3. Spin-texture of metallic surface states. a−d, Spin polarization recorded along the Γ

states showing the helical spin texture, for t= 2.5 nm. The numbers are the net spin polarization

values. e, Band structure along Γ−K for t= 5 nm. Red solid lines are Γ (k[1̄10]≈ 0.1 Å
−1

) and

M
′

(k[1̄10]≈ 0.7 Å
−1

) hole states of Bi(110) respectively. Dotted lines crossing the Fermi level

correspond to the electron pockets near the X1
′

point shown in Figs. 2 f, g. f, g, Spin polarization

of M
′

states.
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FIG. 5. Spin-to-charge conversion efficiency probed by either optical or electrical spin

injection. a, b, Schematic drawings showing the experimental geometries used for optical spin

orientation and spin pumping measurements respectively (for more details refer to the Methods

and Supplementary Information). c, Bi-thickness dependence of the spin-to-charge conversion

efficiency IC/Φph at room temperature using optical spin orientation. IC = ∆V/R is the generated

charge current where ∆V is the voltage measured in open circuit conditions upon illumination

with circularly polarized light and R is the electrical resistance between the two contacts estimated

using four-probe resistance geometry. The charge current is normalized to the excitation signal,

i.e., the photon flux Φph. Inset: λIREE values deduced at room temperature. d, Bi-thickness

dependence of the spin-to-charge conversion efficiency IC/H
2
rf at 30 K and room temperature using

spin pumping. IC = ∆V/R is the generated charge current where ∆V is the voltage measured in

open circuit conditions at the ferromagnetic resonance of the Co electrode and R is the electrical

resistance between the two contacts. The charge current is normalized to the excitation signal, i.e.,

the radiofrequency power proportional to H2
rf. Inset: λIREE values deduced at room temperature.
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