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Abstract. In targeted cancer therapy, great relevance is assumed by data-driven in-
vestigations on the fundamental mechanisms by which epigenetic modifications co-
operate to regulate the transcriptional status of genes. At the high resolution level of
genome-wide studies, only general, mean regulative motifs are drawn, with possible
multi-functional co-regulative roles remaining concealed. In order to retrieve sharper
and more reliable regulative patterns, in this work we propose the application of K-
plane regression to partition the set of protein coding genes into clusters with shared
regulative mechanisms. Completely data-driven, the approach has computed clusters of
genes significantly better fitted by specific linear models than by single regression, and
characterized by distinct histonic input patterns and mean measured expression values.

1 Scientific Background

Understanding the fundamental mechanisms by which histone marks (HM) and tran-
scription factors (TF) operate to regulate the expression of specific genes is of great
interest. Studies revealing the main role played in cancer etiology by gene expression
alterations from epigenetic aberrations [1] have recently paved the way to the promising
field of targeted cancer therapy, where epigenetic approaches are used to treat cancers in
a personalized manner, by kick-starting particular immune responses or bringing back
the gene expression levels to the expected ones.

Leveraging the large amount of publicly available high-throughput sequencing data,
statistical models have been conceived to study the association between gene-related
epigenetic signals and messenger RNA (mRNA) abundance at a genome-wide scale [2],
with the problem usually framed as a regression task. Genes are samples, signals from
HMs and/or TFs are input features and the aim is to predict the response value, i.e.,
mRNA abundance quantifications.

At a genome-wide level, HMs and TFs have been shown to be predictive for mRNA
abundance [2], but also to exhibit certain statistical redundancy within themselves, with
few works trying to break this last in a data-driven manner. Avoiding the inclusion of
biological prior knowledge in statistical modeling is a relevant concern in the context of
targeted cancer therapy and personalized medicine: possibly uncharted epigenetic aber-
rations and anomalies in their regulative effects represent the main objects of analyses.

A notable data-driven attempt has been made in [3], where a mixture of Bayesian
linear elastic nets revealed to better fit transcriptional regulation w.r.t. a single regression
model and to expose distinct predictive relevance of the epigenetic features. Though the
models accounting to the mixture in [3] are distinctly defined, genes in the dataset are,
however, only softly clustered, as the expression for a gene is the weighted sum of the
outputs of all models.
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As this soft approach renders interpretative analyses trickier, in this work we inquire
into the possibility of performing a hard partitioning of the whole gene set in a data-
driven manner, defining clusters where specific linear regression models are fit to learn
the regulative dynamics of those gene sub-groups. In such a setting, a one-to-one asso-
ciation between linear models and gene clusters follows, and interpretative analyses are
supported at best: regulative patterns can be investigated both at a gene-specific level
and, statistically, at a gene-cluster level, and the regulative behavior can be matched
with the most represented biological processes within a group.

Considered our problem to learn different linear models in a scenario where dynam-
ics are likely to be overlapped, discontinuous, and partially lying on sub-dimensional
manifolds, a suited tool is represented by K-plane regression [4] rather than piece-wise
linear affine model fitting methods, such as that proposed in [5]. Despite its name, this
method is based on a clustering approach; it finds a fixed number of (K) hyperplanes in
order to have each point in the training set close to one of the hyperplanes, and all points
in a partition as closest as possible in the input feature space. Given the capability of
K-plane regression to tackle discontinuous functions and the more flexibility offered by
a clustering approach, we built upon this last work to solve our problem.

2 Materials and Methods

The aim of this work is modeling epigenetic transcriptional regulation by means of
a hard ensemble of linear regression models, each explaining mRNA abundance as a
function of epigenetic signals for a specific gene sub-group, i.e., a cluster of genes.

All considered measurements are over the K562 immortalized cell line (human blood
tissue), and only involve protein coding genes. GENCODE v10 reference annotation
for the hgl9 assembly was used to retrieve their transcription start sites (TSSs). The
Roadmap Epigenomics Mapping Consortium’s (REMC) repository was chosen as the
only data source in this work.

Genes are epigenetically characterized by data in the form of processed ChIP-seq
called peaks only for the m = 12 histone modifications assayed over K562 in REMC
(no TF was accounted for). The epigenetic status of the generic gene ¢ is, numerically,
an m-dimensional input vector x,. Its elements summarize, each, the g-related status
of a specific monitored HM, as the maximum peak enrichment value attained within
a symmetric window region of 10 kbases centered on ¢’s TSS. In accordance to [2],
signals closer to the genes’ TSSs (roughly, within promoters) are, indeed, the most
valuable for the prediction of gene expression. Considered together for all our n =
19,794 genes, such vectors form input matrix X, with dimensions n. X m.

As for the transcriptional characterization of genes, we consider mRNA quantifica-
tions, measured by means of RNA-sequencing. The transcriptional status of gene g is
encoded by ¢, = \/In(1 + 7,), where 7, is the original mRNA quantification, and the
application of two sub-linear, monotonically increasing functions aims at reducing the
heteroskedasticity in regression residuals. Finally, consider ¢, as the (g + 1)-th element
in n-dimensional target vector 7' collecting the transcriptional statuses of all the genes.

Together, X and T form our dataset D = (X, T'), which is going to be partitioned by
K-plane regression algorithm that, in our work, is designed to minimize the following

objective function: K-1
BO)=)_ > (t—wja)’ ()
k=0 i€O(k)

where K is a pre-defined number of clusters, © defines the partitioning over the dataset
(©(k) is the set of samples in Cluster k), &; and ¢; are, respectively, the input feature and
target value for sample i € O(k), and wy, is the weight vector of the least square solution
for those points (the ‘tilde’ indicates inclusion of the bias term in the regression).

Here, we resort to multiple re-initializations to tackle possible sub-optimality, and
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Figure 1: Values of best solutions (objective) from re-initialized K-plane regression as
a function of number of clusters (/).

drop the additive Euclidean ‘closeness term’ added in [4] to force feature space conti-
guity of sample partitions - an inadequate pre-assumption in our domain. For each of the
R runs the procedure is called, it starts by a random partition and optimizes Equation 1
by iteratively alternating a Maximization step - hyperplanes to clusters fitting - and an
Expectation one - gene-cluster reassignments. Initializations are designed to construct
a completely random partitioning made up of equally sized clusters. In the end, among
the R yielded solutions, the one attaining best objective value is returned.

3 Results

Parameter K has been made to range in [2. .. 6], as the best value is indeed hardly
guessable a priori and might depend on the nature of the specific problem. Better so-
lutions, in terms of cost functions, have been observed for larger values of K: Figure 1
depicts the trend of the convergence objective value as a function of this parameter. In
the following, results for the setting K = 4 are discussed; this mild setting is less prone
to overfit spurious correlations, still yielding a good value of the objective function. It
represents a trade-off between goodness of fit and, in light of the current knowledge
about HM (co-)activity, reasonable biological interpretability.

Let © = {¥y, ...,k 1} be our obtained solution, with K = 4 and ¥ representing
the (k + 1)-th cluster of genes computed by the algorithm. In correspondence with
this partitioning, an ensemble of cluster-wise linear models can be considered as M =
{10, - .- pr—1}, where uy, represents the hyperplane being the least square solution over
genes in U Our solution O is contrasted against O, = {Ugy }, Vg = {0,1,...,n—1},
the degenerate partitioning made up of a single cluster indexing the whole dataset D.
This solution corresponds to setting /X' = 1, that is, to the use of a single linear model
fitted over the entire dataset D. In the following, such a model is referred to as the
genome-wide one and is labeled as fi4,,.

3.1 Enhanced (Cluster-wise) Fitting

Our K-Plane Regression managed to cluster genes with common regulative behav-
iors, as the obtained model ensemble effectively enhanced data fitting. Not only the ob-
jective value associated with ©,,, is way larger than that associated with our solution ©
(3892.08 vs. 339.83), but, also, fitting is better at the level of all the computed clusters.
The regression scores computed specifically over clusters in O, for both cluster-wise
and genome-wide models, are reported in Table 1 in terms of residual sum of squares
(RSS) and coefficients of determination (R?); the row ¢ of the table comprises scores for
models y¢; and /1,4, over Cluster ¥; - subscripts ‘.,,” and ‘y,,’, respectively.

In Table 1, the effectiveness of the proposed approach is confirmed by the fact that
clusters not only are always better fitted by cluster-wise models than by 1., but, also,
that the specific linear models are acceptable, if not very good, in explaining the epi-
genetic transcriptional regulation of a large part of genes (refer to column “R?,”). In
3 clusters out of 4 the R? scores from y,,, are negative, implying the fitting, over the
genes of each of those clusters, is worse than the constant mean model.
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| cluster (cardinality) | RSS., | RSS,, | RZ, | RZ, |

0(2,717) 79.22 | 1393.00 | 0.80 | —2.50
1(7,547) 82.05 | 1514.44 | 0.54 | —7.57
2(5,045) 85.64 | 71470 | 0.84 | —0.37
3(4, 485) 92.90 | 269.92 | 0.92 | 0.76

Table 1: Cluster specific figures of merit. For cluster k, RSS., and RSS,,, are the
residual sum of squares of, 1, (g, over U, while sz and ng refer to the coefficients
of determination of jiz, ftg, OVer Uy.
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Figure 2: Cluster specific residuals from cluster-wise (orange) and genome-wide (blue)
models.

The intuition that (i, is likely to only capture the regulative mechanisms of genes
with “intermediate” regulative behaviour, such as those in Cluster 3, is supported by
what observed in Figure 2, where cluster specific residuals (y-axis) from cluster-wise
and genome-wide models are plotted against target values (7-axis).

Residuals from the genome-wide model are generally more disperse and heteroskedas-
tic except for Cluster 3 - the only where 1, attains positive R? - where they are similar
to those from the cluster-wise model 3, very well fitting the comprised genes. The
overall R? of 0.66 attained by 14, on the whole dataset D is, consequently, an interme-
diate value resulting from considering together mildly modeled genes (Cluster 3) with
the remaining ones, where the genome-wide model seems to be rather inadequate.

Hard hyperplanes clustering has revealed the criticality of single genome-wide re-
gression by exposing subsets of genes under-fitted by 1i4,,. In a real setting such that
of targeted cancer therapy, unacceptable is to reasonably fit only 23% of protein coding
genes (Cluster 3), as conceptually wrong conclusions might be drawn about the epige-
netic regulative behaviors of the remaining ones.

3.2 Cluster Characterization

The effectiveness of hyperplanes clustering also emerges by observing how the ob-
tained clusters are distinct in terms of the input patterns and mean expression value for
the genes they contain. In this sub-section we leverage the enhanced interpretability
coming from a hard gene partitioning to characterize the computed clusters.

For the generic cluster-wise model 1;, let w; be its weight vector, comprising the
learnt intercept and regression coefficients (m + 1 elements). For gene g in ¢J;, let 1, be
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Figure 3: Bottom row: cluster specific target distribution (left) and genome-wide input
pattern (right). Rows 1 through 3: cluster specific input patterns; the HMs on the 7-axis
are in the same order of the genome-wide case; in green computed activators (positive
weight), in red computed repressors (negative weight).

its weighted input vector, obtained by an element-wise multiplication between its input
vector Z, and w; - input vector is 1-edged to account for bias. Weighted input vectors
are an effective means to quickly grasp the responsibilities of single features in deter-
mining the predicted response value, as y, = Z;.”:O(ngj). Weighted input vectors for
all the genes in a cluster generate feature-wise boxplots that can be used to investigate
the frequency distributions of cluster specific histone contributions and their associated
dispersion, tracking the features which vary the most and those which, on the contrary,
are more constant within the cluster.

Figure 3 depicts the patterns obtained by considering the feature-wise medians of
the weighted input vectors, specifically for each cluster, along with the 25-th and 75-
th percentiles of their distributions. Cluster specific target distributions and the 9,,,-
associated pattern are also reported. In the patterns, intercepts are in orange, whilst
HMs are green if associated with positive regression weight and red otherwise, with
semi-transparent rendering for weights not passing a statistical F'-test with significance
a = 0.01. In this way simpler and more robust patterns are provided, as fictitious
correlations are pruned.

Cluster 1 is the most populated one and has a quite clear characterization. It com-
prises genes with a feeble histonic activity and usual null expression: this suggests the
comprised genes are likely to never be activated during a cell life, and to be repressed
at a chromatin level, e.g., embryonic genes. The flat-like input and the low intercept are
consistent with the related expression distribution (0.0 RPKM median value). In such
a scenario, a lower signal-to-noise-ratio is the probable cause of the mild attained R?
score in this cluster (see Table 1).

Clusters 2 and 0 comprise active genes, with the highest expressed ones in the latter
cluster (RPKM medians 12.73 and 32.23). This characterization is confirmed by high
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intercepts and the predominant roles assumed by activator H3K79me?2, and H3K36me3
specifically in Cluster 2. Their large variations explain higher expression levels the
most. Although being similar, the two clusters show different relative regulative rele-
vance from repressors H2A.Z and H3K9me3, and activators H3K27ac and H3K9ac.

Cluster 3 embraces null to low transcriptional activity (RPKM median 2.32) and
is characterized by a richer input pattern: more relevant than in other clusters are
H3K27me3, H3K4me?2 and H3K4me3. Bemusing are, however, activating and repres-
sive roles attributed to, respectively, H2A.Z and H3K27ac. Despite this is in contrast
with the functions commonly accredited to these features separately, single HMs might
counterbalance one another and/or co-work to induce particular effects. Whether this
observation suggests the cluster comprises genes of heterogeneous nature or a non-
standard specific regulation pattern, this is still to be investigated.

Interesting is to notice the resemblance between the pattern of Cluster 3 with the
genome-wide one. This is a further confirmation the algorithm has managed to expose
the sub-group of genes possessing the largest leverage in bending one single regression
hyperplane. Also, it has set apart the remaining population in a well differentiated man-
ner: genes lacking the single genome-wide fit have been naturally stratified according
to their expression value and in groups with distinct characteristic input patterns.

4  Conclusion

We proposed the application of a randomly re-initialized version of K-plane re-
gression to expose sub-populations of protein coding genes commonly regulated at an
epigenetic-histonic level. The proposed approach has revealed how single regression
only captures the fit of a sub-group of genes with null to low expression and how poor
scores from ji,4,, On the remaining genes are due to unfitting rather than linear under-
fitting. The hard gene partitioning produced by the method allowed a statistical char-
acterization of the computed clusters in terms of input contribution patterns, revealing
how clusters stratify for higher and higher expression levels, with histone marks assum-
ing specific roles of different relevance. Future developments will involve biological
characterizations of the found gene clusters and investigations on the optimal choice for
the value of hyperparameter /.
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