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Novelty Indicator for Enhanced Prioritization of
Predicted Gene Ontology Annotations

Davide Chicco, Fernando Palluzzi, and Marco Masseroli

Abstract—Biomolecular controlled annotations have become pivotal in computational biology, because they allow scientists to
analyze large amounts of biological data to better understand their test results, and to infer new knowledge. Yet, biomolecular
annotation databases are incomplete by definition, like our knowledge of biology, and may contain errors and inconsistent
information. In this context, machine-learning algorithms able to predict and prioritize new biomolecular annotations are both
effective and efficient, especially if compared with the time-consuming trials of biological validation. To limit the possibility that
these techniques predict obvious and trivial high-level features, and to help prioritizing their results, we introduce here a new
element that can improve the accuracy and relevance of the results of an annotation prediction and prioritization pipeline. We
propose a novelty indicator able to state the level of ”newness” (or ”originality”) of the annotations predicted for a specific gene
to Gene Ontology terms, and to help prioritizing the most novel and interesting annotations predicted. We performed a thorough
biological functional analysis of the prioritized annotations predicted with high accuracy by using this indicator and our previously
proposed prediction algorithms. The relevance of our biological findings proves the effectiveness and trustworthiness of our
proposed indicator and of its prioritization of annotation prediction pipeline results.

Index Terms—biomolecular annotation, prioritized gene annotation, novelty indicator, semantic similarity, Gene Ontology, gene
function, functional analysis
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1 INTRODUCTION

In the past ten years, genomic data and informa-
tion have incredibly grown [1] [2], creating a lot
of new opportunities for scientists and biomedical
researchers, especially in computational biology. To
better express available biological knowledge and ef-
fectively use it to analyze these genomics big data,
computational biologists use controlled biomolecular
annotations. A controlled biomolecular annotation is an
association between a biomolecular entity (e.g. a gene
or a protein) and a controlled term describing one of
the biomolecular entity functions. These terms can be
part of a flat terminology or of a controlled vocabulary
of an ontology, such as the Gene Ontology (GO) [3];
in the latter case semantic hierarchical relationships
exist among the controlled terms, so that when a
biomolecular entity is annotated to a term, it is also
implicitly annotated to all its ancestor terms in the
ontology.

Controlled biomolecular annotations are very use-
ful to the scientific community, because they allow sci-
entists to immediately retrieve all the biological func-
tion features associated with a specific gene, or vice
versa, all genes with a specific function. For example,
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the statement ”the human gene RARA is involved in the
molecular function of retinoid acid binding” can be easily
expressed with the association between the retinoic
acid receptor, alpha (RARA) human gene (identified by
the Entrez Gene ID 5914) and the retinoid acid binding
term (identified by the ID GO:0001972 of the Gene
Ontology). The pairing <RARA, retinoid acid binding>
is a typical biomolecular annotation.

Biomolecular annotation databases can be effec-
tively exploited by scientists and researchers to sup-
port the understanding of biomolecular test results
and the comprehensions of new hypothesis in bi-
ology. Many computational tools (e.g. GFINDer [4]
[5], FatiGO [6], DAVID [7], QuickGO [8] and others
[9]) are available to take advantage of these data
resources. Albeit very useful and effective, biomolec-
ular annotation databases also have some important
flaws that scientists have to face [10]. First, they
are incomplete by definition, since our knowledge
of biology is incomplete. Second, they may contain
several errors, because only a small percentage of
these annotations are supervised by human curators.
Third, since different laboratoriess around the world
may work on the same genes or proteins and reach
different discoveries, annotation databases may con-
tain inconsistent or ambiguous information about the
same genes.

In this context, a key role is played by compu-
tational techniques, based on machine-learning and
data-mining algorithms, which are able to predict
new biomolecular annotations and generate priori-
tized lists of them. In the past, we developed several
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computational intelligence algorithms for this goal
[11]-[20]. All these methods are effective in predicting
likely Gene Ontology annotations, but they all share a
common flaw: most of the gene-function relationships
that obtain the highest prediction values often regard
obvious high-level functional features, such as cellu-
lar process. This issue makes these methods predict
annotations which are trustworthy, but also often
quite trivial and self-evident, and thus not particularly
useful for biological discoveries.

To address this problem, we propose an additional
layer to the annotation prediction pipeline: a novelty
indicator able to state the ”newness” (or the ”origi-
nality”) of annotations predicted for a gene, and thus
helping their prioritization. Furthermore, we present
the performed thorough functional analysis of the
biological relevance of the main prioritized prediction
results obtained using the proposed indicator

We organize the rest of this paper as follows. After
this Introduction, we describe some previous work
related to our novelty indicator in Section 2. We then
describe the datasets that we used for testing, the
implemented novelty indicator, and the main results of
its application to predicted biomolecular annotations
in Section 3. In the second part of the paper, we
report the prioritized predicted annotations, and the
techniques that we used to obtain and select them
in Section 4.1. Then, biological relevance in Section
4.2 we describe the functional analysis that we made
to highlight the biological relevance of the prioritized
predicted annotations obtained. Finally, we illustrate
the main conclusions and possible future develop-
ments in Section 5.

2 RELATED WORKS

In the past twenty years, scientists developed sev-
eral measures to state the level of context. semantic
similarity between two genes or proteins. their GO
annotations. In a survey by Pesquita et al. [21], the
authors comprehensively described all the main se-
mantic similarity measures used in the biomedical
ontology domain, providing also some examples of
implementations, applications, and a complete com-
parison. In particular, they described the Jiang [22],
Lin [23] and Resnik [24] rates, that are able to mea-
sure the semantic similarity between genes (or gene
products), taking advantage of the structure of the
analyzed ontology. All of these are information-theoretic
approaches based upon the concept of lowest com-
mon ancestor (LCA) between two analyzed ontology
terms, where the LCA is the closest ancestor node that
the two terms have in common in their ontology (that
is their lowest shared ancestor in the ontology tree
structure). These information-theoretic measures were
shown to be significantly more robust than other rates,
especially with respect to the node density variability
in different branches of the ontology.

Other scientists then invented more complex mea-
sures which tried to integrate this information-
theroretic knowledge with other available biological
information. Lord and colleagues [25] introduced a
protein similarity approach that combines protein
sequence similarity (computed through bioinformat-
ics tools such as BLAST [26]) and semantic simi-
larity based on protein GO annotations (computed
through classical measures such as the Resnik one
[24]). Their measure generates interesting results, but
does not consider the tree position of GO terms, and
is very bounded to the GO Molecular Function sub-
ontology. Conversely, Speer et al. [27] proposed a
similarity measure that takes advantage of a cluster-
ing technique for the partition of genes according to
their GO biological functions. This technique leads
to good results, but its limitation is the clustering
distance choice: the authors showed that the selection
of slightly different clustering distances may lead to
very different similarity results.

Starting from the two similarity measures by Lord
and colleagues [25] and Speer et al. [27], Schlicker et
al. [28] properly modified the Lord [25] and Speer
[27] rates, and developed a new indicator, named
GOscoreBM, which is able to take advantage of both
the structural position of the terms in the analyzed
ontology tree and their semantic similarity score com-
puted through the Resnik measure. Due to its com-
pleteness of information, we decided to take advan-
tage of this Schlicker rate as novelty indicator within
our work on prediction and prioritization of Gene
Ontology annotations.

It is also worth mentioning QuickGO [8], a GO
browser with visualization functionalities able to
show a GO Directed Acyclic Graph (DAG), i.e. the
tree structure of a sub-part of the GO induced by the
hierarchical relationships existing between GO terms.
Its web interface provides an easy-to-use DAG of the
ancestor terms of a GO term, whose ID or name
is specified by the user. However, with QuickGO
(and with any of the GO visualization tools currently
available) it is not possible to differentiate existing
annotation terms from new predicted annotation ones.

To detect the ”novelty” of predicted gene annota-
tions, we implemented a statistical measure able to
compare the ontological trees of the annotation terms
of a gene before and after the annotation prediction,
and to evaluate the dissimilarity of the two ontological
trees. In the next section we introduce this novelty
indicator which is based on Schlicker et al. work [28].

3 METHODS

In this section we describe the annotation prediction
and prioritization pipeline and the datasets that we
used for our tests, as well as the novelty indicator that
we applied to enhance the prioritization of the pre-
dicted annotations, and its main application results.
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3.1 Prediction pipeline and datasets

We used the annotation prediction and prioritization
pipeline described in [20], which includes the predic-
tion methods truncated singular value decomposition
(tSVD), semantically improved tSVD with gene clus-
tering (SIM1), and Semantically IMproved tSVD with
gene clustering and feature term similarity weights
(SIM2), all described in [12] [13]. Figure 1 shows the
used computational pipeline and its extension with
the novelty indicator proposed in this paper.

We ran our prediction tests on the datasets of Gene
Ontology annotations of Homo sapiens genes avail-
able in the Genomic and Proteomic Data Warehouse
(GPDW) [29], [30], an integrated data resource pub-
licly and freely available from Politecnico di Milano
at http://www.bioinformatics.deib.polimi.it/GPKB/
which includes multiple versions of annotation
datasets. We applied our prediction pipeline on the
annotations of the July 2009 GPDW version and then
validated the predicted annotations by looking for
them in the March 2013 GPDW version [31]. Despite
the March 2013 not being the most updated GPDW
version, we used it because it is one of the most
stable and accurate versions recently delivered [29].
We chose the Homo sapiens gene annotations to the
three GO sub-ontologies (Biological Process, Molec-
ular Function, Cellular Component) because they in-
clude representative numbers of genes and GO terms.
We excluded all the annotations having evidence code
equal to IEA (Inferred from Electronic Annotation)
or ND (No biological Data available) from the input
dataset in order to base our prediction only on the
most reliable annotations available. Conversely, we
made no evidence code distinction when considering
the annotations from the more recent GPDW version,
i.e. we considered all available annotations (including
the computational ones) to validate our predicted
annotations. We are aware of the importance of the
evidence code information, and we plan to use it as an
additional selection layer to our pipeline in the future.

In the July 2009 analyzed dataset, the Homo sapiens
gene GO annotations had the following quantitative
characteristics: for the Biological Process (BP) sub-
ontology: 7,902 genes, 3,528 GO terms, and 21,048
annotations; for the Molecular Function (MF) sub-
ontology: 8,590 genes, 2,057 GO terms, and 15,467
annotations; for the Cellular Component (CC) sub-
ontology: 7,868 genes, 684 GO terms, and 14,341 an-
notations.

PRESENTE IN FIGURA

3.2 Novelty indicator

The GOscoreBM semantic similarity measure was in-
troduced to evaluate the similarity between two genes
based on their GO annotations [28]. Conversely, we

Analyzed
annotations

Create the input
annotation matrix

Hyper-parameters
optimization

[i] Prediction method
(tSVD, SIM1, or SIM2)

Anomaly
correction

Input and output
matrix comparison

  List of annotations
predicted (APs)

Retrieve the updated
set of annotations

Count the confirmed
predictions

[ii] Top 10% rule

Statistical 
results

Updated
annotations

[iii] Confirmed 
> 50% rule

[iv] Prioritization rule

[v] Novelty indicator

Fig. 1. Flowchart of the described computational pipeline for the
prediction of biomolecular annotations (left hand side) and for their
validation (right hand side). The [i] to [v] steps correspond to the
controls listed in Section 4.1. The novelty indicator introduced in this
paper is the [v] step on the left hand side of the flowchart.

propose to take advantage of this measure as a statis-
tical indicator of the novelty of ontological annotations
predicted for a gene, by using it to compare the DAG
of the gene annotation terms before and after the
prediction.

The GOscoreBM is defined as follows. Given two
genes p and q, let us denote with GOp the set of all GO
terms annotated to the gene p, and with GOq the set of
all GO terms annotated to the gene q. The general idea
of this measure is to build a matrix S with the binary
semantic similarity measures between each term of
the first set GOp and each term of the second set GOq ;

http://www.bioinformatics.deib.polimi.it/GPKB/
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then, to consider the maximum value of each row of
the matrix S and to compute the average of these
values, doing likewise also for the matrix columns.
We build the S matrix as follows: with i = 1, ..., N
rows and j = 1, ...,M columns, each matrix element
sij is computed as the Resnik similarity measure (as
defined in [24]) between the ith element of the GOp

set and the jth element of the GOq set.

∀i ∈ {1, ..., N}, ∀j ∈ {1, ...,M} :
sij = ResnikSimilarity(GOp

i , GOq
j ) (1)

Based on this S ∈ RN×M matrix, two operators are
defined: rowScore, as the average of the row maximum
values of the S matrix, and columnScore, as the average
of the column maximum values of S.

∀i ∈ {1, ..., N},∀j ∈ {1, ...,M} :
rowMaxScorei = max(sij)

∀i ∈ {1, ..., N} : rowMaximaSum = (2)∑
rowMaxScorei

∀j ∈ {1, ...,M},∀i ∈ {1, ..., N} :
columnMaxScorej = max(sij)

∀j ∈ {1, ...,M} : columnMaximaSum = (3)∑
columnMaxScorej

rowScore = rowMaximaSum / N

columnScore = columnMaximaSum / M (4)

The GOscoreBM measure for the genes p and q is
then defined as:

GOscoreBM (p, q) =

max(rowScore(p, q), columnScore(p, q))
(5)

We use this score to measure the level of ”newness”
of the annotations predicted for a gene g, by compar-
ing the set of GO terms associated with the gene g
before the prediction (gbefore) and the set of terms as-
sociated with it after the prediction (gafter). The more
the two sets are different, the lower the GOscoreBM
is. Among all the most common semantic similarity
measures available between two terms of an ontology
(Jiang [22], Lin [23] and Resnik [24]), we decided to
use the Resnik one because it is considered the most
efficient rate in correlating gene sequence similarities
[32] [33]. Since the Resnik similarity measure has
no upper bound, the GOscoreBM that uses it has no
predefined upper bound; this does not influence our
application, since we look for low values of the score,
which we heuristically defined as GOscoreBM < 1.

The main advantage of introducing this novelty
indicator is to help the computational machinery to se-
lect automatically interesting non-obvious annotations,

TABLE 1
Quantitative characteristics of the Homo sapiens GO annotations

predicted in the tests. tSVD, SIM1 and SIM2 are prediction
algorithms described in [12]. Cellular Component, Molecular

Function and Biological Process are the sub-ontologies of the Gene
Ontology.

method Cellular Molecular Biological totalComponent Function Process
tSVD 8 81 112
SIM1 8 13 116
SIM2 8 30 111
total 600

among all the predicted ones. As explained in [19],
this is a limit of any algorithm for the prediction of on-
tological annotations, i.e. often most of the predicted
gene-function relationships are rather obvious high-
level descriptive features, such as cell cycle. To address
this issue, we decided to use this novelty indicator as an
additional tool to help computationally predicting and
prioritizing annotations not only very likely to be cor-
rect, but also deemed novel and interesting, since quite
different from those known before the prediction.

3.3 Novelty indicator test

We tested the use of the GOscoreBM measure as a
novelty indicator on all the GO annotations predicted
for the Homo sapiens genes, based on the gene GO an-
notations available in the GPDW dataset of July 2009
and using the (tSVD), Semantically IMproved tSVD
with gene clustering (SIM1), Semantically IMproved
tSVD with gene clustering and feature term similarity
weights (SIM2) tSVD, SIM1 and SIM2 methods de-
scribed in [12]. The GOscoreBM measure resulted in
concordance with the visual evaluation of the gene
annotations performed by an expert. As a general
example, we show the DAG of the GO Biological
Process terms annotated to the human protein phos-
phatase methylesterase 1 (PPME1) gene in Figure 2. The
annotation prediction for this gene lead to a very low
(good) zero indicator value (GOscoreBM = 0.087).

4 RESULTS

We used the just-described novelty indicator as the
last step of our computational pipeline for annotation
prediction, prediction techniques, to create a final list
of prioritized annotations very likely to be correctly
predicted and interestingly novel. In Section 4.1 we
describe these annotations that we obtained and in
Section 4.2 we report their thorough functional anal-
ysis that we performed to demonstrate their correct-
ness.

4.1 Prioritized predicted annotations



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, MONTHXXX 20XX 5

Biological process
GO:0008150

Cellular process
GO:0009987

Cellular 
metabolic process

GO:0044237

Metabolic process
GO:0008152

Cellular macromolecule metabolic process
GO:0044260

Macromolecule metabolic process
GO:0043170

Primary metabolic process
GO:0044238

Biopolymer metabolic process
GO:0043283

Cellular biopolymer metabolic process
GO:0034960

Cellular protein metabolic process
GO:0044267

Protein metabolic process
GO:0019538

Cellular component
organization
GO:0016043

Organelle organization
GO:0006996

Chromosome organization
GO:0051276

Biopolymer modification
GO:0043412

Protein modification process
GO:0006464

Post-translational protein modification
GO:0043687

Protein amino acid dealkylation
GO:0008214

Protein amino acid demethylation
GO:0008214

Chromatin organization
GO:0006325

Chromatin modification
GO:0016568

Covalent chromatin modification
GO:0016569

Histone modification
GO:0016570

Histone demethylation
GO:0016577

Fig. 2. Directed acyclic graph (DAG) of the GO Biological Process terms annotated to the Homo sapiens PPME1 gene (Entrez Gene ID
51400). The black circles represent the terms already known to be annotated to the human PPME1 gene before the prediction, while the
blue hexagons represent the terms of the predicted annotations using the tSVD method with our optimized parameters [17].

We ran some prediction tests on the Homo sapiens
GO annotations of the previously-mentioned GPDW
dataset of July 2009, by using the tSVD, SIM1 and
SIM2 methods described in [12]. We report the quan-
titative characteristics of the predictions in Table 1.

On the basis of the prediction algorithms measures
and novelty indicator described or referenced in the
previous section, we can obtain a list of the most
likely predicted annotations, which can be prioritized
according to the accuracy conditions following de-
scribed: usable by biologists and physicians to address
their experiments, and here we report this directory
for the Homo sapiens annotations. We report this list in
Table 2 annotations, not found in the updated version
of the database, that respect these conditions: we list
such GO Biological Process predicted annotations for

the considered dataset, which are not found in the
more updated GPDW version considered (of March
2013) and satisfy the following conditions:

[i] Predicted by one (or more) of the used methods
(tSVD, SIM1, SIM2) described in [12];

[ii] Ranked within the top 10% of the predicted anno-
tations (”top 10%” column in Table 2), according
to the annotation likelihood calculated by the
prediction method, which means being one of the
most likely predicted annotations;

[iii] Regarding a gene with more than 50% of the
predicted annotations found confirmed in the
more updated GPDW database version consid-
ered (”conf. > 50%” column in Table 2);

[iv] Regarding a GO term with all the parent terms
already annotated to the same gene in the con-
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sidered GPDW database version, or with at least
one parent term predicted annotated to the same
gene and found confirmed in the more updated
GPDW database version considered (”pred. conf.”
column in Table 2), as in the ”prioritization rule”
introduced in [20];

[v] Low novelty indicator value (”GOscoreBM < 1”
column in Table 2), which indicates a very novel
prediction for the gene (this condition is true for
all the genes in Table 2; we heuristically evaluate
novel enough to be considered only the predictions
leading to novelty indicator values lower than 1.

We report all the just-mentioned prioritization con-
ditions in Figure 1, where we label them with their
corresponding numerals (from [i] to [v]).

In Table 2, we list the novel GO Biological Process
annotations predicted for the Homo sapiens genes,
based on the old GPDW version considered (of July
2009), and not found reported in the more updated
GPDW database version considered (of March 2013);
they satisfy both the novelty indicator condition and at
least other three of the above prioritization conditions,
and are sorted by decreasing number of conditions
satisfied. Among all the 600 predicted GO annota-
tions of Table 1, only 7 satisfy at least four items
of the [i]-[v] accuracy conditions. Therefore, the GO
annotations reported in Table 2 represent only the
1.17% of all the gene-function relationships predicted
by our algorithms, and they would not be obtained as
such without using the proposed novelty indicator. The
novelty indicator condition states the relevance of the
predictions: without it our pipeline would not be able
to drop obvious and trivial gene functions, limiting
its ability to lead to significant biological discoveries.
The added value of the novelty indicator to our pipeline
consists in constraining the predicted annotations to
be “novel enough” to raise the interest of the biolo-
gists’ community, as we address in functional analysis
Section 4.2.

The predicted annotation list reported in Table 2
is the final biological relevance we can provide to
physicians and biologists to address their experiments
about human genes. A concrete application of our
methods, that we hope may improve and quicken
the discovery of new cures, new therapies, and new
knowledge about gene functions. The annotations
reported in Table 2 are sorted by number of conditions
satisfied, from the ones that satisfy more conditions,
to the ones that satisfy less conditions.

By observing Table 2, we can notice that the anno-
tation <PPME1, organelle organization> was predicted
by all three prediction methods used, has a likelihood
score that ranks it in the top 10% of all the predicted
annotations, and regards a GO term with at least one
parent term predicted annotated to the same gene and
found confirmed in the updated version of the GPDW
database.

Two annotations predicted for the CHST14 gene

(<CHST14, chondroitin sulfate proteoglycan biosynthetic
process> and <CHST14, biopolymer biosynthetic pro-
cess>) are suggested by all the thee methods used
(tSVD, SIM1 and SIM2), regard a gene with more than
a half of the predicted annotations found confirmed
in the more updated version considered of the GPDW
database, and regard GO terms with at least one
parent term predicted annotated to the same gene
and found confirmed in the more updated version
considered of the GPDW database. Despite that, their
prediction likelihood score does not rank them in the
top 10% of the annotations predicted by all the three
methods.

Also the annotation <CHST14, dermatan sulfate pro-
teoglycan biosynthetic process> was predicted by the
three methods, and regards a gene with more than
half of the predicted annotations found confirmed in
the more updated version considered of the GPDW
database.

The annotation <CPA2, proteolysis involved in cellular
protein catabolic process> was predicted only by the
SIM1 and SIM2 methods, but it regards a gene with
more than half of the predicted annotations found
confirmed in the more updated version considered
of the GPDW database, and regards a GO term with
at least one parent term predicted annotated to the
same gene and found confirmed in the more updated
version considered of the GPDW database.

Another annotation, <PPME1, chromosome organiza-
tion>, was predicted by the tSVD and SIM1 methods
only, but its likelihood score ranks it within the top
10% of the predicted annotations.

Finally, in this list of the prioritized most likely
annotations predicted, the gene annotation <CNOT2,
positive regulation of cellular metabolic process> was
predicted only by the tSVD method, but its likelihood
score ranks it in the top 10% of the predicted anno-
tations, and it regards a GO term with at least one
parent term predicted annotated to the same gene
and found confirmed in the more updated version
considered of the GPDW database. Conversely from
the other prioritized annotations which involve quite
specific GO terms, this annotation regards a quite
general function and high level GO term; despite that,
it is relevant since it has a clear supporting evidence:
CNOT2 is part of the CCR4-NOT transcription com-
plex (comprising CNOT, TOB1, RQCD1 genes; see
Table 3), a highly conserved machinery with a gen-
eral role in controlling mRNA metabolism, including
mRNA degradation and miRNA-induced silencing,
transcription initiation and elongation, ubiquitination,
and post-transcriptional regulation [34]-[36]. Members
of the CCR4-NOT complex interact with components
of the proteasome (including PSMA proteins and
ubiquities UBE2D1, UBE2E1 and UBC) and with poly-
A binding proteins (including PABPC1 and PAIP1).

As already mentioned, 600 gene GO annotations
were predicted, but only 7 of them (1.17%) satisfIed
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TABLE 2
List of the top prioritized gene annotations to the GO Biological Process (BP) sub-ontology predicted by our methods and not found in the
more updated version of the GPDW database considered. tools. The “# conditions” column states how many conditions of this table were

satisfied by the specific gene prediction. The ”predicted by tSVD, SIM1, SIM2” columns state which method(s) predicted the annotation; the
”top 10%” column states if, in the likelihood ranking of all the three prediction methods, the annotation position is in the top 10% of all the

annotations predicted; the ”conf. > 50%” column states if the percentage of all the predicted annotations for the gene that are found
confirmed in the more updated version of the GPDW database considered is greater than 50%; the ”pred. conf.” column states if the

predicted annotation term has all the parent terms annotated to the gene in the considered GPDW database version, or it has at least one
parent term predicted annotated to the gene that is found confirmed in the more updated version considered of the GPDW database; the

”GOscoreBM < 1” column states if the introduced novelty indicator has a low value for the annotated gene, that indicates a very novel
prediction for the gene.

# conditions Gene symbol GO term predicted by top conf. pred. GOscoreBM
(Entrez Gene ID) tSVD SIM1 SIM2 10% > 50% conf. < 1

PPME1 (51400)
Organelle √ √ √ √ √ √

6 organization. [BP]
(GO:0006996)

6 CHST14 (113189)

Chondroitin

√ √ √ √ √ √
sulfate

proteoglycan
biosynthetic
process. [BP]
(GO:0050650)

6 CHST14 (113189)

Biopolymer
√ √ √ √ √ √biosynthetic

process. [BP]
(GO:0043284)

5 CHST14 (113189)

Dermatan

√ √ √ √ √
sulfate

proteoglycan
biosynthetic
process. [BP]
(GO:0050651)

5 CPA2 (1358)

Proteolysis

√ √ √ √ √
involved in

cellular
protein

catabolic
process. [BP]
(GO:0051603)

4 PPME1 (51400)
Chromosome √ √ √ √

organization. [BP]
(GO:0051276)

4 CNOT2 (4848)

Positive

√ √ √ √
regulation of

cellular
metabolic

process. [BP]
(GO:0031325)

both the novelty indicator condition and at least three
of the other six conditions reported in Table 2.

4.2 Functional analysis
The application of the accuracy controls described in
the previous section prioritized the seven predicted
GO Biological Process (BP) annotations for the four
homo sapiens genes listed in Table 2. To assess the va-
lidity and biological relevance of these novel annota-
tions predicted, we evaluated them using a network-
based functional validation procedure, followed by
a cross-check against the KEGG pathway database
[37]. Such procedure allows supporting a predicted
annotation when the involved gene is closely related,
in a gene network, to other genes that are known

to be annotated to the same term of the predicted
annotation.

The performed biological assessment highlighted
the importance of our prediction pipeline and accu-
racy controls in reliably predicting and prioritizing
new gene annotations, therefore improving current
biological knowledge. As mentioned, the addition of
the novel indicator presented in this paper allowed
our computational prediction pipeline to avoid se-
lecting obvious high–level descriptive features, and to
finally prioritize annotations deemed “novel enough”
to raise the biologists’ community attention.

For each gene in Table 2, we retrieved a network of
interacting neighbor genes from the STRING database
[38]. We chose STRING for three reasons: (i) to take
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TABLE 3
Biological assessment of the prioritized novel gene annotations predicted. Results of network expansion followed by Gene Ontology (GO)

Biological Process (BP) and KEGG enrichment are shown. Columns PFPs (Predicted Functional Partner genes) and ASGs
(Association-Supporting Genes) report the ensemble of genes found supporting the predicted gene annotations prioritized. PFPs are

predicted interactors of the annotated gene, according to STRING [38]. ASGs are interacting genes sharing the predicted annotation. The
two gene lists overlap when PFPs have the predicted annotation. KEGG enrichment is used as an external source to further support the

predicted annotation to the biological process. Enrichment is considered significant if its p-value is less than 0.01.

gene Entrez GO BP GO ID biological PFPs ASGs KEGG enrichment (p-value)Gene ID validation
PPME1 51400 Organelle GO:0006996 Primary TJAP1 AKT1 hsa04530: Tight junction

organization evidence PPP2CA AXIN1 (3.1E−7)
PPP2R1A STRIP1 hsa04310: Wnt

Chromosome GO:0051276 Secondary PPP2CB PPP2R4 signaling pathway (9.3E−4)
organization evidence PPP2R1B PPP2R2A hsa04730: Long-term

PPP4R1L PPP2CA depression (1.7E−3)
PPP4C PPP2R1A hsa04350: TGF-beta
LCMT1 PPP2CB signaling pathway (2.5E−3)
XRRA1 TJAP1 hsa04114: Oocyte meiosis

DNAJB13 LCMT1 (4.0E−3)
CHST14 113189 Dermatan GO:0050651 Already BCAN BCAN hsa00532: Chondroitin

sulfate confirmed NCAN NCAN sulfate biosynthesis
proteoglycan VCAN VCAN (1.6E−4)
biosynthetic CSPG4 CSPG4

process CSPG5 CSPG5
DCN DCN

Chondroitin GO:0050650 Primary B3GAT1 IGF1
sulfate evidence B3GAT2

proteoglycan ZNF469
biosynthetic

process

Biopolymer GO:0043284 No evidence
biosynthetic

process
CNOT2 4848 Positive GO:0031325 Primary CNOT1 CPEB3 hsa03018: RNA degradation

regulation evidence CNOT3 PAIP1 (1.3E−8)
of cellular CNOT4 CNOT1 hsa03050: Proteasome
metabolic CNOT6 CNOT8 (2.2E−8)

process CNOT6L TOB1
CNOT7 PABPC1
CNOT8 UBC
CNOT10 UBE2D1

TOB1 UBE2E1
RQCD1 PSMA1

PSMA2
PSMA3
PSMA4
PSMA6
PSMC3
PSMD7

CPA2 1358 Proteolysis GO:0051603 Secondary CTRB1 UBC
involved evidence CTRB2

in cellular POR
protein LNX

catabolic SLC9B1
process SLC9B2

CA2
ATP6V0D1
ATP6V0D2

advantage of the different data types integrated in
STRING, including experimental assays, inferred in-
teractions, and text mining; (ii) to base our evaluation
on a comprehensive annotation repository, integrating
knowledge from several independent sources; and (iii)
to rely on a combined score for interaction filtering,
which STRING provides. Furthermore, the STRING
database allowed us to retrieve predicted functional
partner (PFP) genes of our genes, according to the

STRING annotation, in order to improve the analysis.
To include only strong associations, we considered
a relationship only if its STRING combined score is
above 0.6.

The first step of our validation procedure is the
gene network expansion of each considered gene x,
which is annotated to a set of GO terms {ti}. Let
us define the gene network expansion depth as the
minimum number of steps to walk from the farthest
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neighbor gene to the gene x, or to one of its PFP
genes. The latter ones, provided by STRING, are used
to improve our search for functionally related genes
that could be enriched for the predicted annotation
terms. The interactome obtained after the expansion
procedure contains genes annotated to at least one of
the ti terms; some of these genes can be PFP genes.
There can be also non-PFP genes in the interactome,
which can be annotated to the ti terms; we define
them as association-supporting genes (ASGs), since they
are genes interacting with the considered gene x and
annotated to at least one ti term. We heuristically
found that the optimal depth for the expansion of
our predicted annotations is 3; this allowed us to
find evidence, at least indirect, for six out of the
seven predicted and prioritized annotations. The only
exception was the predicted annotation of the human
carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase
14 (CHST14) gene to the biopolymer biosynthetic process
(GO:0043284), which could not be validated at any
reasonable depth (≤ 10). Furthermore, we classified
the functional evidence for a predicted annotation to
a term tx in four classes: (i) already confirmed, when
available in public databases at the time of writing;
(ii) primary evidence, when one or more PFP genes
are annotated to tx; (iii) secondary evidence, when
one or more non-PFP genes are annotated to tx; (iv)
no evidence, when there are no genes supporting
the annotation. In many cases, a predicted annotation
can be supported both primarily and secondarily.
Table 3 reports the results for gene network expan-
sion followed by GO Biological Process and KEGG
enrichment for the prioritized predicted annotations
in Table 2.

For every considered gene, each annotation term
was tested using the aforementioned procedure. Out
of the 7 prioritized predicted annotations listed in Ta-
ble 2, only one, <CHST14, dermatan sulfate proteoglycan
biosynthetic process (GO:0050651)>, was available (i.e.
confirmed) at the time of writing. The CHST14 gene
annotation to chondroitin sulfate proteoglycan biosyn-
thetic process (GO:0050650), which is not available
in public databases, is shared with five PFP genes
(i.e. BCAN, NCAN, VCAN, CSPG4, CSPG5) and two
ASGs (i.e. DCN, IGF1) of the CHST14 gene in its
expanded network at depth 3 (Figure 3). The role of
these genes in inflammation has been largely doc-
umented in literature. All the detected genes are
involved in mast cell secretion during inflammatory
response, characterizing both innate and adaptive
immunity. Mast cells are characterized by a large
amount of cytoplasmatic secretory granules, contain-
ing negatively charged molecules, including heparin
and chondroitin sulfate proteoglycans. Furthermore,
IGF1 production is known to be stimulated by CD44
induction by hyaluronic acid during macrophage-
mediated inflammatory and repair processes [39]-[42].

KEGG enrichment evaluation shows that all these

genes are involved in chondroitin sulfate biosynthesis (p-
value < 0.001). Furthermore, on the base of the GO
Biological Process DAG, chondroitin and dermatan
sulfate proteoglycan biosynthesis are tightly related.
All this provides further molecular support to the
predicted annotation of chondroitin sulfate proteoglycan
biosynthetic process to the CHST14 gene through its
PFPs and ASGs. Thus, proximity and predicted associ-
ations enabled us to validate the predicted annotation
from a biological functional point of view; further-
more, our prioritized prediction of this annotation
correctly added related knowledge, not present in
GO nor in KEGG databases, to an existing new gene
annotation (<CHST14, dermatan sulfate proteoglycan
biosynthetic process>).

We validated the predicted annotation of the hu-
man protein phosphatase methylesterase 1 (PPME1) gene
to organelle organization (GO:0006996) through the
9 PPME1-interacting genes (i.e. ASGs) already an-
notated to organelle organization, which include the
AKT1, AXIN1, STRIP1, PPP2R4, PPP2R2A, PPP2CA,
PPP2R1A, PPP2CB and TJAP1 genes (Figure 4); only
the last four of these genes are also PFP genes accord-
ing to STRING, together with the PPP2R1B, PPP4R1L,
PPP4C, LCMT1, XRRA1 and DNAJB13 genes (Table
3). Please notice that, since organelle organization is
the parent term of chromosome organization, all genes
annotated to the latter one are also annotated to the
former one.

The other PPME1 predicted annotation, to chro-
mosome organization (GO:0051276), was not found in
any of the PPME1 interactors at depth 3. However,
adding its first five ASG genes (i.e. AKT1, AXIN1,
STRIP1, PPP2R4, PPP2R2A) to its PFP gene set and
repeating the analysis at depth 3, also the annota-
tion to chromosome organization (GO:0051276) is found
in four distantly interacting genes (not direct inter-
actors and non-PFPs) of PPME1. These genes are
LEF1, TCF7L2, CDKN2A and PTGES3, all involved
in cancer and neural development pathways (as con-
firmed by KEGG over-representation analysis - data
not shown), which is in accordance with the function
of the AKT1, AXIN1, STRIP1, PPP2R4, PPP2R2A,
PPP2CA, PPP2R1A, PPP2CB and TJAP1 genes. This
is evidence for the predicted annotation of PPME1
to chromosome organization, since we included possible
functional partners of PPME1, even if distantly placed
in the interactome, using the two related predicted
annotations, i.e. organelle organization and chromosome
organization. This suggests that ASGs can be proposed
as novel PFP genes, since they show enrichment in
specific biological processes (in our case, chromosome
organization). In the specific case of PPME1, a nuclear
phosphatase, the predicted annotation to chromosome
organization is supported by 9 ASGs, including sev-
eral PP2A phosphatases (PPP2R4, PPP2R2A, PPP2CA,
PPP2R1A, PPP2CB). Deregulation of phosphatases
PP2A is a common biomarker of various complex
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Fig. 3. Expanded (at depth 3) interaction network of the human CHST14 gene. Enrichment was found for the annotation to chondroitin
sulfate proteoglycan biosynthetic process (GO:0050650). Dark red nodes support the predicted annotation. Color code of the connections is
in accordance with the one used in STRING [38] (green: neighborhood; red: gene fusion; blue: co-occurrence; black: co-expression; purple:
experiment-based; cyan: database-based; light green: text mining; violet: homology).

Fig. 4. Expanded (at depth 3) interaction network of the human PPME1 gene. Enrichment was found for the annotation to organelle
organization (GO:0006996). Dark red nodes support the predicted annotation. Color code of the connections is as in STRING [38] (green:
neighborhood; red: gene fusion; blue: co-occurrence; black: co-expression; purple: experiment-based; cyan: database-based; light green:
text mining; violet: homology).

diseases including breast cancer [43] and Alzheimers
disease [44]. In these works, it has been reported how
the expression of these phosphatases is controlled by
cytoskeleton-associated factors and cofactors involved
in chromosome and organelle organization, including

AXIN1, LCMT1 and STRIP1 (that are in the ASG list of
PPME1). All this supports our prioritized prediction
of PPME1 to chromosome organization, and shows how
a gene can be added to the existing knowledge of a
biological process, suggesting a new possible interac-
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tion even with distantly related genes.
A clear example of the possibility of proposing

ASGs as novel PFP genes also exists for the pre-
dicted annotation of the human carboxypeptidase A2
(pancreatic) (CPA2) gene to proteolysis involved in cel-
lular protein catabolic process (GO:0051603). None of
the PFP genes of CPA2 were found annotated to the
prioritized predicted annotation term. However, after
interactome expansion, we detected a gene support-
ing this predicted annotation: the UBC gene, which
encodes for a precursor of Ubuquitin and interacts
with POR and ATP6V0D1, two ASGs of CPA2. CPA2
is a pancreatic carboxipeptidase involved in insulin
metabolism [45]. In our prioritized prediction, CPA2
has been annotated with proteolitic activity. The ASGs
we found for this gene share, by definition, the same
annotations. These genes are also involved in insulin
metabolism, diabetes mellitus, and immune response.
Although CPA2 proteolytic activity is documented
since long time [46], [47], the relationship with insulin
metabolism has not been clarified yet. In a recent work
[48], it has been shown how high expression levels of
genes (including CPA1, CPA2 and CTRB1) involved
in insulin sensitivity, erythropoiesis, hemangioblast
generation and cellular redox control were evident in
spleens of cured mice, which indicates their possible
contribution to protection against autoimmune type
1 diabetes mellitus. Thus, in this case, our priori-
tized prediction is supported by the literature, and
prompted us to recover also additional information
about other related functions connecting CPA2 to its
ASGs (i.e. insulin metablism and immune response).

Besides assessing the validity and biological rele-
vance of our prioritized predicted gene GO annota-
tions, this functional analysis procedure provides a
way of finding new functional partners of our con-
sidered genes, using predicted knowledge. In general,
our results show how this validation procedure can
be used to find novel genes involved in a biological
process, being functional partners of genes already
known to be involved in the process.

5 CONCLUSIONS
Biomolecular annotations are pivotal concepts in com-
putational biology, but unfortunately they contain er-
rors and are always incomplete by definition, since in-
complete is our knowledge of biology. Thus, machine-
learning and data-mining algorithms able to reli-
ably predict them can be effective tools to suggest
new gene functions to biologists and biomedical re-
searchers.

In the past, we developed and applied several
annotation prediction methods and a prioritization
rule able to provide trustworthy annotations. Here,
we extended our previous works by introducing a
novelty indicator able to state the level of ”newness” (or
“originality”) of the predicted Gene Ontology anno-
tations of a gene. We showed that it helps to reliably

prioritize the predicted gene annotations, and select
relevant annotations that would not been prioritized
otherwise. We performed a thorough functional anal-
ysis of the prioritized predicted annotations obtained,
which highlights the biological relevance of the most
promising biomolecular annotations that our methods
predicted and the introduced novelty indicator helped
prioritizing. Results showed novel interesting biolog-
ical aspects that can be leveraged by biologists and
biomedical scientists.

In the future, we plan to apply the novelty indicator
to biomolecular annotations predicted through other
computational methods (such as Latent Dirichlet Allo-
cation, probabilistic Latent Semantic Analysis, or deep
autoencoder neural networks) based upon the most
recent Gene Ontology annotation dataset available.
We also aim to integrate our computational pipeline
into the online Bio Search Computing framework [49],
[50], publicly available through the internet.
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