D-SPACEA4Cloud: Towards Quality-Aware Data
Intensive Applications in the Cloud

Eugenio Gianniti Michele Ciavotta Danilo Ardagna *

Abstract

The last years witnessed a steep rise in data generation worldwide
and, consequently, the widespread adoption of software solutions claiming
to support data intensive applications. Competitiveness and innovation
have strongly benefited from these new platforms and methodologies, and
there is a great deal of interest around the new possibilities that Big
Data analytics promise to make reality. Many companies currently en-
gage in data intensive processes as part of their core businesses; however,
fully embracing the data-driven paradigm is still cumbersome, and es-
tablishing a production-ready, fine-tuned deployment is time-consuming,
expensive, and resource-intensive. This situation calls for novel models
and techniques to streamline the process of deployment configuration for
Big Data applications. In particular, the focus in this paper is on the
rightsizing of Cloud deployed clusters, which represent a cost-effective
alternative to installation on premises. We propose a novel tool, inte-
grated in a wider DevOps-inspired approach, implementing a parallel and
distributed simulation-optimization technique that efficiently and effec-
tively explores the space of alternative resource configurations, seeking
the minimum cost deployment that satisfies predefined quality of service
constraints. The validity and relevance of the proposed solution has been
thoroughly validated in a vast experimental campaign including different
applications and Big Data platforms.

e Nonlinear programming e Performance of Systems e Distributed Systems

1 Introduction

Many analysts point out that we are experiencing years in which technologies
and methodologies that fall within the sphere of Big Data have swiftly pervaded
and revolutionized many sectors of industry and economy becoming one of the
primary facilitators of competitiveness and innovation [I].

IDC reported that Big Data until recently concerned highly experimental
projects, but its market will grow from $130.1 billion in 2016 to $203 billion

*E. Gianniti, M. Ciavotta and D. Ardagna are with Politecnico di Milano.

in 2020, with a compound annual growth rate of 11.9%, with banking and man-
ufacturing industries leading the investment market [2]. Big Data applications
offer many business opportunities that stretch across industries, especially to
enhance performance, as in the case of recommendation systems. In addition,
data intensive applications (DIAs) can also help governments in obtaining accu-
rate predictions, e.g., quality weather forecasts to prevent natural disasters and
the development of appropriate policies to improve the population life quality.
To corroborate these considerations, notice that the Obama government an-
nounced $200 million worth of investment to boost Big Data related industries
and positioned this strategy into the national agenda in 2012.

One of the pillars on which the Big Data revolution is based is the MapRe-
duce paradigm, which has allowed for massive scale parallel analytics [3]. MapRe-
duce is the core of Apache Hadoop, an open source framework that has proven
capable of managing large datasets over either commodity clusters or high per-
formance distributed topologies [4].

Hadoop’s success has been planetary; it attracted the attention of both
academia and industry as it overtook the scalability limits of traditional data
warehouse and business intelligence solutions [3]. For the first time, processing
unprecedented amounts of structured and unstructured data was within reach,
thus opening up, suddenly, a whole world of opportunities.

Despite the fact that many new solutions have been created over time,
Hadoop has been able to age well, constantly renewing itself to support new
technologies (e.g., SSD, caching, I/O barriers elimination) and workloads (batch
and interactive) [5]. In addition, a large Hadoop-based ecosystem of highly spe-
cialized tools arose. Consequently, for a long time it has been the foremost
solution in the Big Data scene. This is confirmed by the fact that, only a
few years ago, more than half of the world data were somehow processed via
Hadoop [6].

Paradoxically, the MapReduce paradigm, which has contributed so much to
Hadoop’s rise, is steadily declining in favor of solutions based on more generic
and flexible processing models. Among these, Apache Spark is a framework that
is enjoying considerable success and that, according to analysts, is expected to
dominate the market for the next decade [7].

In spite of all the fuss around Big Data technologies, it is still undeniably
true that fully embracing them is a very complex process. Many efforts have
been made to make this technology accessible, but establishing a production-
ready deployment is time-consuming, expensive, and resource-intensive. Not to
mention the fact that fine-tuning is still often perceived as a kind of occult art.

It is widely held that there is a clear need for an easy button to accel-
erate the adoption of Big Data analytics [8]. That is why many companies
have started offering Cloud-based Big Data solutions (like Microsoft HDInsight,
Amazon Elastic MapReduce, or Google Cloud Dataproc), while IDC estimates
that, by 2020, nearly 40% of Big Data analyses will be supported by public
Clouds [9]. The advantages of this approach are manifold. For instance, it pro-
vides an effective and cheap solution for storing huge amounts of data, whereas
the pay-per-use business model allows to cut upfront expenses and reduce cluster

management costs. Moreover, the elasticity can be exploited to tailor clusters
capable to support DIAs in a cost-efficient fashion. Yet, provisioning workloads
in a public Cloud environment entails several challenges. In particular, the space
of configurations (e.g., in terms of nodes type and number) is very large, thus
identifying the exact cluster configuration is a complex task; especially in the
light of the consideration that the blend of job classes in a specific workload and
their resource requirements may also vary over time.

At the very beginning, MapReduce jobs were meant to run on dedicated
clusters to support batch analyses via a FIFO scheduler [I0, [I1]. Nevertheless,
DIAs have evolved and nowadays large queries, submitted by different users,
need to be performed on shared clusters, possibly with some guarantees on
their execution time [I2, [I3]. This is not a loose requirement, indeed, as one
of the major challenges [14] [I5] is to predict the application execution times
with sufficient degree of accuracy. In such systems, capacity allocation becomes
one of the most important aspects. Determining the optimal number of nodes
in a cluster shared among multiple users performing heterogeneous tasks is a
relevant and difficult problem [I5].

Our focus in this paper is to introduce D-SPACE4Cloud, a software tool de-
signed to help system administrators and operators in the capacity planning of
shared Big Data clusters hosted in the Cloud, so as to support both batch and
interactive applications with deadline guarantees. We believe that being able to
successfully address this problem at design time enables developers and opera-
tors to make informed decisions about the technology to use, while also allowing
for the full exploitation of the potential offered by the Cloud infrastructure.

We formulate the capacity planning problem by means of a mathematical
model, with the aim of minimizing the cost of Cloud resources. The problem
considers multiple virtual machine (VM) types as candidates to support the
execution of Big Data applications (a.k.a. DIAs) from multiple user classes.
Cloud providers offer VMs of different capacity and cost. Given the complexity
of virtualized systems and the multiple bottleneck switches that occur in exe-
cuting DIAs, very often the largest VM available is not the best choice from
either the performance or performance/cost ratio perspective [12} [I6]. Through
a search space exploration, our approach seeks the optimal VM type and num-
ber of nodes considering also specific Cloud provider pricing models (namely,
reserved, on demand, and spot instances [I7]). The underlying optimization
problem is NP-hard and is tackled by a simulation-optimization procedure able
to determine an optimized configuration for a cluster managed by the YARN Ca-
pacity Scheduler [I8]. DIA execution times are estimated by relying on a gamut
of models, including machine learning (ML) and simulation based on queueing
networks (QNs), stochastic Petri nets (SPNs) [19], as well as an ad hoc simula-
tor, dagSim [20], especially designed for the analysis of applications involving a
number of stages linked by directed acyclic graphs (DAGs) of precedence con-
straints. This property is common to legacy MapReduce jobs, workloads based
on Apache Tez, and Spark-based applications. Our work is one of the first con-
tributions facing the design time problem of rightsizing data intensive Cloud
systems adopting the Capacity Scheduler.

Problem | D-SPACE4Cloud Optimized|

Description » . Solution
Initial solution & | Parallel LS
DTSM — Opt i DICE
“LDDSM —_— O = DDSM
Execution
 logs

JMT Simulator GSPN dagSim

R - <%

Figure 1: D-SPACE4Cloud architecture

We validate the accuracy of our solutions on real systems by performing ex-
periments based on the TPC-DS industry benchmark for business intelligence
data warehouse applications. Microsoft Azure HDInsight, Amazon EC2, and
the CINECA Ttalian supercomputing center have been considered as target de-
ployments. Our approach proved to achieve good performance across all these
alternatives, despite their peculiarities. Simulation results and experiments per-
formed on real systems have shown that the percentage error we can achieve
is within 30% of the measurements in the worst case, with an average error
around 12% for QNs and as low as 3% when using dagSim. On top of this, we
show that optimally choosing the resource allocation, in terms of both type and
number of VMs, offers savings up to 20-30% in comparison with the second best
configuration. In particular, at times, general purpose instances turned out to
be a better alternative than VMs advertised as suitable for Big Data workloads.

This paper is organized as follows. overviews D-SPACE4Cloud’s
architecture. presents in detail the problem addressed in the paper.
In[Section 4] we focus on the formulation of the optimization problem and on the
design time exploration algorithm implemented within our tool. In
we evaluate our approach by considering first the accuracy that can be achieved
by our simulation models and then the overall effectiveness of the optimiza-
tion method. Finally, in we compare our work with other proposals
available in the literature and draw the conclusions in [Section 7l

2 D-SPACEA4Cloud Architecture

The tool we present and discuss in this paper, namely D-SPACE4Cloud, has
been developed within the DICE (Developing Data-Intensive Cloud Applications
with Iterative Quality Enhancement) H2020 European research project [21].
The project aims at filling gaps in model-driven engineering with regard to the
development of DIAs in Cloud environments, embracing the DevOps [22] cul-
ture. DICE is committed to developing an integrated ecosystem of tools and
methodologies intended to streamline the DIA development process through
an iterative and quality-aware approach (design, simulation, verification, opti-

mization, deployment, and refinement). DICE primarily proposes a data-aware
UML profile that provides designers with the means necessary to model the
(dynamic and static) characteristics of the data to be processed as well as their
impact on the performance of the components of an application. In addition,
the project develops an IDE capable of supporting the managers, developers,
and operators in quality-related decisions. The IDE enforces the iterative design
refinement approach through a toolchain of both design and run time tools. The
former cover simulation, verification, and optimization of deployment, whereas
the latter encompass deployment, testing, and feedback analysis of monitoring
data.

D-SPACEA4Cloud is the DIA deployment optimization tool integrated in the
DICE IDE. The tool serves the purpose of optimizing the deployment costs for
one or more DIAs with a priori performance guarantees. In a nutshell, within
the quality aware development process envisioned by DICE, a DIA is associated
with quality of service (QoS) requirements expressed in form of a maximum ex-
ecution time (deadline) and concurrency level (several users executing the same
application at the same time with a certain think time). D-SPACE4Cloud ad-
dresses and solves the capacity planning problem consisting in the identification
of a minimum cost cluster (both for public and private Clouds) supporting the
concurrent and on-time execution of several DIAs. To this end, the tool imple-
ments a design time exploration process able to consider multiple target VM
candidates also across different Cloud providers. D-SPACE4Cloud supports the
deployment optimization in the two distinct scenarios of public and a private
Cloud environments. The public Cloud is mainly characterized by the fact that
the cluster resources (i.e., VMs) can be considered practically infinite for any
common purpose. In this scenario, concurrency level is not a problem and the
tool focuses on selecting the most cost-effective VM type and number of repli-
cas for each application. In the private Cloud scenario, however, the cluster
is provisioned on premises, the available resources are generally limited, and
the resource allocation plan has to contemplate the possibility to exhaust the
computational capacity before being able to provision a cluster that satisfies the
QoS constraints. In such a situation, the tool can, if required, alter the under-
lying problem considering a mechanism of admission control (i.e., including job
rejection in the optimization process). In this paper, for space limitations, only
the first scenario is presented, the discussion about motivations, algorithms, and
models related to the second scenario is left to future publications.

depicts the main elements of D-SPACE4Cloud’s architecture. Our
tool is a distributed software system designed to exploit multi-core and multi-
host architectures to work at a high degree of parallelism. In particular, it
features a presentation layer (integrated in the DICE IDE) devoted to han-
dle the interactions with users and the other components of the toolchain, an
optimization service (colored gray), which transforms the inputs into suitable
performance models [19] and implements the optimization strategy, and a hor-
izontally scalable assessment service (colored green in the picture), which ab-
stracts the performance evaluation from the particular solver used under the
hood. Currently, D-SPACE4Cloud supports a QN simulator (JMT [23]), a SPN

simulator (GreatSPN [24]), and discrete event simulator (dagSim [20]).
D-SPACE4Cloud takes in input:

1. a UML description of the applications sharing the cluster (see [22] for ad-
ditional details on DICE UML models). In this context, DIAs are specified
via DICE Platform and Technology Specific Models (DTSMs). Moreover,
under specific circumstances, execution logs, for instance the ones obtained
executing the applications in a pre-production environment, can replace
the DTSMs as input.

2. a partially specified deployment model for each application. The deploy-
ment model must be specified in DICE Platform, Technology, and Deploy-
ment Specific Model (DDSM) format. This model is used as template to
be filled and returned in output.

3. a description of the execution environment (list of candidate providers
and VM types along with VM performance profiles). These pieces of
information are used to generate suitable performance models.

4. the list of QoS constraints, that is the concurrency level and deadline for
each DIA, respectively.

The optimization service is the centerpiece of the tool. It primarily parses
the inputs, stores the relevant information using a more manageable and com-
pact format, then calculates an initial solution for the problem (via the Initial
Solution Builder) and improves it via a simulation-optimization algorithm (im-
plemented by the Parallel Local Search Optimizer).

The initial solution is generated by solving a mixed integer nonlinear pro-
gramming (MINLP) formulation, whose perhaps most interesting feature is that
some of its constraints have been modeled by applying ML techniques to the
problem of estimating the execution time of DIAs. Different techniques have
been investigated [25], including linear regression, as well as Gaussian, polyno-
mial, and linear support vector regression (SVR). The linear SVR was selected
as it proved to be both accurate and robust to noisy data. More details are
available in [Section 4l

It must be highlighted, at this point, that the quality of the initial solution
can still be improved, mainly because the MINLP relies on an approximate
representation of the application-cluster liaison. For this reason, more accurate
performance models (e.g., QNs and SPNs) are exploited. The increased accu-
racy creates room to maneuver for further cost reduction; however, since the
simulation process is time-consuming, the space of possible cluster configura-
tions has to be explored in the most efficient way, avoiding the evaluation of
unpromising configurations. The Optimizer component carries out this task,
implementing a simulation-optimization technique to minimize the number of
resource replicas (VMs) for each application class. This procedure is applied
independently, and in parallel, on all the application classes and terminates
when a further reduction in the number of replicas would lead to an infeasible
solution.

As soon as all the classes reach convergence, D-SPACE4Cloud leverages the
optimized solution (selected provider, type and number of VMs per application)
to update the DDSM models and provides them in output. Such models, in
turn, can be converted into TOSCA blueprints and used to deploy the cluster
exploiting another tool, named DICER [22], part of the DICE toolchain.

3 Problem Statement

In this section we aim at introducing some important details on the problem
addressed in this work. We envision the scenario wherein a business venture
needs to set up a cluster to carry out efficiently a set of interactive DIAs. A
cluster featuring the YARN Capacity Scheduler and running on a public Cloud
infrastructure as a service (IaaS) is considered a fitting technological solution for
the requirements of the company. In particular, the cluster has to support the
parallel execution of DIAs in the form of Hadoop jobs and Hive/Pig/SparkSQL
queries. Different classes C = {i|i = 1,...,n} gather the applications that
exhibit a similar behavior and share performance requirements. The cluster
composition and size, in terms of type and number of VMs, must be decided in
such a way that, for every application class i, h; jobs are guaranteed to execute
concurrently and complete before a prearranged deadline D;.

Moreover, YARN is configured in a way that all available cores can be dy-
namically assigned for task execution. Finally, in order to limit the risk of data
corruption, and according to the practices suggested by major Cloud vendors,
the data sets reside on a Cloud storage service accessible in quasi-constant time.

In general, IaaS providers feature a large catalog of VM configurations that
differ in features (CPU speed, number of cores, available memory, etc.) and
cost. Making the right design decision implies a remarkable endeavor that can
be repaid by important savings throughout the cluster life cycle. Let us index
with j the VM types available across, possibly, different Cloud providers and
let V={j|j=1,...,m}. We denote by 7; the VM type used to support DIAs
of class 7 and with v; the number of VMs of that kind allocated to class i.

In this scenario, we consider a pricing model derived from Amazon EC2 [17].
The provider offers: 1) reserved VMs, for which it adopts a one-time payment
policy that grants access to a certain number of them at a discounted rate for
the contract duration; 2) on demand VMs, which can be rented by the hour
according to current needs; and 3) spot VMs, created out of the unused data
center capacity. For such instances customers bid and compete, yielding very
competitive hourly fees at the expense of reduced guarantees on their reliability.
In order to obtain the most cost-effective configuration, we rely on reserved VMs
(denoting with r; their number) to satisfy the core of computational needs and
complement them with on demand (d;) and spot (s;) instances (v; = r;+d;+s;).
Let pr,, 6-,, 0, be the unit costs for VMs of type 7;, respectively, reserved, on
demand, and spot. Overall, the cluster hourly renting out costs can be calculated
as follows:

=
>
Sub-cluster
S mgpad —
P DEBE | Boo
\ / \‘@EQ

o =
Cloud
Storage
/ Service

Figure 2: Reference system

> " (priri + 6rydi + orysi). (1)

i€C

As the reliability of spot VMs is susceptible to market fluctuations, to keep
a high QoS level the number of spot VMs is bounded not to be greater than
a fraction 7; of v; for each class 7. In addition, reserved VMs must comply
with the long term contract signed with the Cloud provider and cannot exceed
the prearranged allotments R;;, where every class may have a separate pool of
reserved VMs of any type at their disposal. It is worth noting that this cost
model is general enough to remain valid, zeroing the value of certain parameters,
even in those cases where the considered Cloud does not feature on demand or
spot instances.

In the remainder, we will denote by ¢; the total number of YARN containers
devoted to application ¢, whilst m; and v; are the container capacities in terms
of RAM and vCPUs, and M; and V; represent the total RAM and vCPUs
available in a VM of type j.

Reducing the operating costs of the cluster by using efficiently the virtual
resources in lease is in the interest of the company. This translates into a
resource provisioning problem where the renting out costs must be minimized
subject to the fulfillment of QoS requirements, namely a per-class concurrency
level h; given certain deadlines D;. In the following we assume that the system
supports h; users for each class and that users work interactively with the system
and run another job after a think time exponentially distributed with mean Z;,
i.e., the system is represented as a closed model [26].

In order to rigorously model and solve this problem, it is crucial to predict
with fair confidence the execution times of each application class under different
conditions: level of concurrency, size and composition of the cluster.

The execution time can generically be expressed as:

T = T; (vi, hi, Zi, 7)), Vi€ C. (2)

What is worthwhile to note is that the previous formula represents a general
relation describing either closed form results, as those presented in [15], [27],
based on ML [I6], 28], or the average execution times achieved via simulation:
in this paper we adopted both the latter approaches.

Since the execution of jobs on a sub-optimal VM type may lead to perfor-
mance disruptions, it is critical to avoid assigning tasks belonging to class i
to the wrong VM type j # 7;. Indeed, YARN allows for specifying node la-
bels and partitioning nodes in the cluster according to these labels, then it is
possible to enforce this separation. Our configuration statically splits different
VM types with this mechanism and adopts within each partition either a fur-
ther static separation in classes or a work conserving scheduling mode, where
idle resources can be assigned to jobs requiring the same VM type. The choice
about the scheduling policy within partitions is not critical, since it does not im-
pact on the optimization technique or performance prediction approach. When
resources are tightly separated, we can expect the performance estimate to ac-
curately mirror the real system behavior, whilst in work conserving mode the
observed performance may improve due to a better overall utilization of the
deployed cluster, hence the prediction is better interpreted as a conservative
upper bound. Equations can be used to formulate the deadline constraints
as:

T; < D;, VieCcC. (3)

In light of the above, we can say that the ultimate goal of the proposed
approach is to identify the optimal VM type selection 7;, and type of lease and
number of VMs (v; = r; +d; + s;) for each class ¢ such that the total operating
cost is minimized while the deadlines and concurrency levels are met.

The reader is referred to for a graphical overview of the main ele-
ments of the considered resource provisioning problem. Furthermore, in
reports a complete list of the parameters used in the models presented in the
next sections, whilst summarizes the decision variables.

4 Problem Formulation and Solution

In the following we present the optimization models and techniques exploited
by the D-SPACE4Cloud tool in order to rightsize the cluster deployment given
the profiles characterizing the DIAs under study, the candidate VM types (pos-
sibly at different Cloud providers), and different pricing models. The resulting
optimization model is a resource allocation problem, presented in
The first issue D-SPACE4Cloud has to solve is to quickly (and with an
acceptable degree of accuracy) estimate the completion times and operational
costs of the cluster: to this end, within the mathematical programming formu-
lation of the problem, we decided to exploit ML models for the assessment of
application execution times. In this way, it is possible to swiftly explore sev-
eral plausible configurations and point out the most cost-effective among the

Table 1: Model parameters

Param. Definition

C Set of application classes

% Set of VM types

hi Number of concurrent users for class 4

Z; Class ¢ think time [ms]

D; Deadline associated to applications of class ¢ [ms]

i Maximum percentage of spot VMs allowed to class @
m; Class ¢« YARN container memory size [GB|

V4 Class i YARN container number of vCPUs

M; Memory size for a VM of type j [GB]

Vi Number of vCPUs available within a VM of type j

pj Effective hourly price for reserved VMs of type j [€/h]
0 Unit hourly cost for on demand VMs of type j [€/h]
oj Unit hourly cost for spot VMs of type j [€/h]

R;; Number of reserved VMs of type j devoted to class ¢ users

Table 2: Decision variables

Var. Definition

v; Number of VMs assigned for the execution of applications from class i

T Number of reserved VMs booked for the execution of applications from class 4

d; Number of on demand VMs assigned for the execution of applications from class 4
Si Number of spot VMs assigned for the execution of applications from class ¢

¢ Total number of YARN containers assigned to class ¢

Tij Binary variable equal to 1 if VM type j is assigned to application class %

10

feasible ones. Afterwards, the required resource configuration can be fine-tuned
using more accurate, yet more time-consuming and computationally demanding,
simulations to obtain a precise prediction of the expected running time.

According to the previous considerations, the first step in the optimization
procedure consists in determining the most cost-effective resource type for each
application based on their price and the expected performance. The mathe-
matical programming models that allow to identify such an initial solution are
discussed in Sections and Finally, the algorithm adopted to efficiently
tackle the resource provisioning problem is described in

4.1 Optimization Model

The Big Data cluster resource provisioning problem can be formalized as the
following mathematical programming formulation:

x,;r,lg,rtlj,s Z (pr;7i + 0r;di + 01, 85) (Pla)

ieC

subject to:
Zz” =1, Viec, (P1b)
jev
Riw"’i = ZRijxij, Vi € C, (Plc)
jev

pry = ijxij, viec, (P1d)

jev
67’1‘ = Zﬁjxij, ViecC, (Ple)

jev
Or; = ZO’jCEij, ViecC, (Plf)

JEV
zi; €{0,1}, Vi€C,VjeV. (Plg)
(v,r,d,s) € argmin Z (pr;Ti + 07,di + 07;55) (P1h)

iec
subject to:
ri < Riﬂ'i’ Vi € C, (Pli)
$i< —1_(ri+d;), Viec, (P1j)
— N

vi=r; +d; +s;, VieC, (Plk)
Ti (vis hi, Zs,) < Dy, Vi€C, (P11)
v, €N, Viecl, (P1m)
r €N, VieC, (P1n)
d; €N, Viec, (P1o)
s; €N, VieCl. (P1p)

11

Problem is presented as a bi-level resource allocation problem where
the outer objective function considers running costs. For each application
class the logical variable z;; is set to 1 if the VM type j is assigned to application
class i. We will enforce that only z;, = 1 in , thus determining the
optimal VM type 7; for application class i. Hence the following constraints,
ranging from to , pick the values for the inner problem parameters.

The inner objective function has the same expression as 7 but
in this case the prices p;,, d-,, and o,, are fixed, as they have been chosen at
the upper level. Constraints bound the number of reserved VMs that
can be concurrently started according to the contracts in place with the IaaS
provider. The subsequent constraints, , enforce that spot instances do
not exceed a fraction 7; of the total assigned VMs and constraints add
all the VMs available for class i, irrespective of the pricing model. Further,
constraints (P1l) mandate to respect the deadlines D;. In the end, all the
remaining decision variables are taken from the natural numbers set, according
to their interpretation.

4.2 Identifying an Initial Solution

The presented formulation of Problem is particularly difficult to tackle, as
it is a MINLP problem, possibly nonconvex, depending on 7;. According to the
literature about complexity theory [29], integer programming problems belong
to the NP-hard class, hence the same applies to . However, since there
is no constraint linking variables belonging to different application classes, the
general formulation can be split into several smaller and independent problems,
one per class i € C:

min priTi +0r,di + 07,85 (P2a)
CisTiydiys;
subject to:
ri < Rir,, (P2b)
5i< —1 (ri+dy), (P2c)
-
msc; < MT,; ("'i +d; + 32')) (P2d)
vic; < V‘ri ("'i +d; + Si)) (PQG)
1
Xiir b Xy — + X0y < Dis (P2f)
1
c; €N, (P2g)
ri €N, (P2h)
d; €N, (P2i)
s; € N. (P2j)

In Problem (P2) we dropped v; exploiting constraints (P1k) and rewrote
(P1l) as constraints (P2d)—(P2f). Specifically, (P2d]) and (P2€) ensure that the

overall number of containers, ¢;, is consistent with nodes capacity, in terms of
both vCPUs and memory. Constraint (P2f), on the other hand, is a simple

12

model of the average execution time, function of the concurrency level and the
available containers, among other features, used to enforce that the completion
time meets the arranged deadline.

Equation is the result of a ML process to get a first order approximation
of the execution time of Hadoop and Spark jobs in Cloud clusters. Building
upon [25], which compares linear regression, Gaussian SVR, polynomial SVR
with degree ranging between 2 and 6, and linear SVR, we follow [28] in opting for
a model derived with linear SVR. This is due to the fact that SVR with other
kinds of kernel fares worse than the linear one, whilst plain linear regression
requires an ad hoc data cleaning to avoid linear dependencies in the design
matrix, thus making it harder to apply in the greatest generality. In order to
select a relevant feature set, we started by generalizing the analytical bounds
for MapReduce clusters proposed in [I5] [27]. This approach yielded a diverse
collection of features including the number of tasks in each map or reduce phase,
or stage in the case of Spark applications, average and maximum values of task
execution times, average and maximum shuffling times, dataset size, as well as
the number of available cores, of which we consider the reciprocal. Since most
of these features characterize the application class, but cannot be controlled,
equation collapses all but h; and c¢;, with the corresponding coefficients,
into a single constant term, x{ ., that is the linear combination of the feature
values with the SVR~derived weights.

Problem can be reasonably relaxed to a continuous formulation as in
other literature approaches (see, e.g., [30]). Furthermore, the problem can be
additionally simplified with a couple of simple algebraic transformations.

First, constraints and share the same basic structure and are
alt