
DarkMem: Fine-Grained Power Management of
Local Memories for Accelerators in Embedded Systems

Christian Pilato Luca P. Carloni

Università della Svizzera italiana Columbia University
Lugano, Switzerland New York, NY, USA

e-mail: christian.pilato@usi.ch email: luca@cs.columbia.edu

Abstract— SRAM consumes a growing fraction of the static
power in heterogeneous SoCs, as embedded memories take 70%
to 90% of the area of specialized accelerators. We present DARK-
MEM as a comprehensive solution for fine-grained power manage-
ment of accelerator local memories. The DARKMEM methodology
optimizes at design time the bank configuration for each given
accelerator to maximize power-gating opportunities. The DARK-
MEM microarchitecture dynamically varies the operating mode of
each memory bank according to the accelerator workload. In our
experiments, DARKMEM reduces the SRAM static power by more
than 40% on average, which translates into a reduction of the total
power by almost 18% on average with less than 1% overhead.

I. INTRODUCTION

The power-dissipation density and the utilization wall, two
major concerns in integrated circuit design [9], have led to the
emergence of heterogeneous system-on-chip (SoC) architec-
tures. In these architectures, general-purpose processors and
several specialized accelerators are combined through a bus or
network-on-chip [6, 13], as shown in Fig. 1(a). In this work,
we focus on configurable, non-programmable accelerators de-
signed for high-throughput data processing [6, 7, 8], which fea-
ture a specialized microarchitecture that is optimized for one
specific functionality. For example, Debayer is an accelerator
for computer-vision applications [1]. It can be invoked by an
application (by writing proper values onto its configuration reg-
isters) to process an image of thousands of pixels, which cor-
responds to megabytes of data. When unused, it can be turned
off, thus alleviating the power density challenge.

A key component of each accelerator is its private local
memory (PLM) [8, 12]. The PLM organization typically fea-
tures many multi-ported SRAM banks to support fast, highly
parallel, and fixed-latency access from the accelerator datap-
ath logic. Even though the PLM takes most of the accelerator
area [8, 12], it implements high-level data structures (e.g., ar-
rays) that correspond only to a fraction of the data processed
by the accelerator (e.g., only few pixel rows of the input im-
age), while the rest is stored in DRAM. When the accelera-
tor is active, the PLM continuously exchanges data with main
memory (DRAM) through direct memory access (DMA) trans-
fers, potentially creating congestion on the SoC interconnects
in case of multiple components executing concurrently [4].
This situation creates opportunities for dynamic power sav-

SoC Hardware Accelerator

DMA

Accelerator Logic

PLM

Conf. Regs

system interconnect

HW
ACC

DRAM
Ctrl

CPU DRAM

(b)(a)

SRA
M

SRA
M

SRA
M

SRA
M

23.55%

11.52%

20.76%

44.17%

Acc. Logic
dynamic power
Acc. Logic
static power

PLM
dynamic power
PLM
static power

Fig. 1. Example of a heterogeneous architecture (a); each accelerator features
a private local memory composed of many SRAM banks, which are
responsible for a large fraction of its power dissipation (b).

ings with the help of voltage/frequency scaling (DVFS) tech-
niques [13]. However, the SRAM static power can be respon-
sible for up to 40-50% of the total power consumption of the
system (Fig. 1(b)) and must be addressed with additional and
specific solutions [10, 15, 17].

DARKMEM, our approach for reducing the PLM static
power, is based on three main observations. First, SRAM mem-
ories are increasingly fabricated with the possibility of selec-
tively turning off the peripheral circuitry (to be kept active only
when effectively accessing the data) or also the memory cells
(to be kept active to retain the data) [5]. These dual-rail SRAMs
have been used in processors [14], GPUs [23], or application-
specific systems [20] with only two additional sleep transistors
between each SRAM bank and the ground [19]. Then, we no-
tice that, even if an accelerator is meant to execute only one
application, it is usually designed with a certain degree of con-
figurability that broadens its applicability across a few different
execution scenarios (e.g, processing images of different sizes
and resolutions). When the accelerator is configured to operate
on a subset of the data, part of the PLM is not used and we
can eventually apply power gating to the unused SRAM banks
(scenario-based optimization). At design time we thus deter-
mine the PLM organization that maximizes the number of its
banks that can be power gated in each configuration. Finally,
the computation and communication phases of any given ac-
celerator are rarely perfectly balanced in every execution due,
for example, to competition for shared resources [13]. So, the
memory cells of its PLM can be idle for extended periods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/162433491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hence, we introduce some logic inside the PLM to vary the
operating modes of the active banks based on workload con-
ditions and save additional power (workload-based optimiza-
tion). This logic turns off banks that are not containing valid
data or selectively turns off the peripheral circuitry when data
are valid but are not expected to be accessed for a long time.
Voltage controllers can also reduce the supply voltage of the
memory cells down to the standby limit [18]. The resulting
microarchitecture can be synthesized by extending a traditional
design flow for accelerators. This solution enables fine-grained
power management of the accelerator’s PLM with only mini-
mal changes to its high-level specification.

Contributions. The three main contributions of this paper
can be summarized as follows:
• a novel accelerator microarchitecture, which performs fine-

grained power management of the accelerator private local
memories (Section II);

• a design methodology based on high-level synthesis (HLS)
to automatically determine the proper bank configuration
of the different PLM units and generate such microarchi-
tecture (Section III);

• a sensitivity analysis on the accelerator power consumption
when varying the SRAM static power and the accelerators’
execution modes (Section IV).

With our methodology we improved the design of eight com-
plex accelerators for selected kernels from two benchmark
suites (PERFECT [1] and CORTEXSUITE [22]). The experi-
mental results show that DARKMEM can reduce the total power
consumption of accelerators by almost 18% on average with a
performance overhead less than 1%.

II. DARKMEM ARCHITECTURE

The DARKMEM microarchitecture aims at minimizing the
SRAM static power by selectively applying power gating to
the periphery circuitry and the memory cells of each PLM bank
based on the accelerator execution. We assume that the mem-
ory library includes dual-rail SRAMs that can be used to find
the proper implementation of each PLM data structure to be
stored in the PLM. Each SRAM bank has thus two power-
related pins (PGL and PGM) to control the power gating of the
periphery circuit and memory cells, respectively. These are suf-
ficient to support three operating modes:
• active: the entire SRAM is active (i.e., there are active

memory operations);
• idle: both the peripheral circuitry and the memory cells are

power gated (i.e., there are no valid data on the memory
cells and no active operations on them);

• deep-sleep: the peripheral circuitry is power gated since
there are no active memory operations, while the memory
cells are active to retain the data.

Fig. 2 shows our proposed DARKMEM microarchitecture,
where the accelerator logic includes the hardware blocks to per-
form the actual computation and manage the data transfers with
DRAM, and the PLM contains multiple DARKMEM units, one
for each data structure accessed by the accelerator logic. Each
DARKMEM unit includes additional modules for power man-
agement of the SRAM banks based on the PLM configuration
and commands received from the accelerator logic.

Private Local MemoryAccelerator Logic

Load

Compute

Store

Configuration Registers

DM
A

Co
nt

ro
lle

r

Ctrl A0

Ctrl B0

Ctrl B1 DarkMem Unit (B1)

SMC

SRAM (b0)

SRAM (b1)

0PGL

0PGM

0PGL

0PGM

OR

OR

OR

OR

Power
Ctrl

Data
Ctrl

VC

sync

OMC

DarkMem Unit (A0)

DarkMem Unit (B0)

VC

VC

Fig. 2. High-level organization of the DARKMEM accelerator for Debayer;
each DARKMEM unit implements a data structure. Each DARKMEM unit
includes the proper SRAMs (black boxes represent the power-gating pins) and
the logic for power management; it is also connected to a module for
controlling the supply voltage (VC).

To further reduce the SRAM power consumption, the
DARKMEM architecture can be combined with voltage con-
trollers to lower the supply voltage of the memory cells down
to the data retention voltage (DRV) value. To this end, each
DARKMEM unit can feature a voltage controller (VC in Fig. 2),
which can be implemented with a bias generator or an inte-
grated voltage regulator (IVR) and integrated on the same die
or with 2.5D chip stacking [11]. If technology or design con-
straints limit the number of voltage controllers per accelerator,
the same component can be shared across multiple DARKMEM
units as long as the power management logic keeps the highest
voltage that is requested at any given time by the SRAMs.

Fig. 2 also shows the microarchitecture of each DARKMEM
unit, which consists of three main modules:
• the SRAM banks: based on the technology information

(e.g., available SRAM sizes, static power, etc.), we can
implement the corresponding array with different dual-rail
SRAMs transparently to the accelerator execution [16];

• the scenario memory controller (SMC): based on the values
of the configuration registers, the SMC module determines
at the beginning of the execution which banks are not nec-
essary and, therefore, they can be power gated for the en-
tire execution of the accelerator (i.e., until it is configured
to start a new execution with different parameters);

• the operating mode controller (OMC): based on a set of
command signals from the accelerator logic, the OMC
module determines the SRAM operating modes (i.e., when
to apply power gating to the periphery circuitry or also to
the memory cells).

The results of these two controllers are then combined with OR
gates to determine the actual power management for each sin-
gle bank. The resulting design is highly modular and we can
apply each of the optimizations selectively. The interface be-
tween the accelerator logic and each DARKMEM unit consists
of two memory controllers: Data Ctrl is used to perform read-

Configuration
Registers Status Reg. Img Size Mem Addr…

SMC Module (B1)

if (ImgSize <= 1024)
 Scenario = S1;
else
 Scenario = S2;

case (Scenario)
 S1: mask = 2’b01;
 S2: mask = 2’b00;
default: mask = 2’b11;
endcase

0 1

b0 b1
Mask

Generation

Scenario
Identification

mask

Scenario

Fig. 3. Microarchitecture of the SMC module.

/write operations on the data and it is the same controller used
in traditional microarchitectures, while Power Ctrl is our exten-
sion, which is used to provide information on the status of the
execution phases and determine the SRAM operating modes.

Scenario Memory Controller. Once the accelerator is con-
figured by the CPU, the DARKMEM controller identifies which
is the current scenario (among the ones defined at design time)
and determines which banks are not required during the cor-
responding execution. Hence these banks can be then power
gated. As shown in Fig. 3, each SMC module receives the con-
figuration registers as input to determine the current execution
scenario (see component Scenario Identification in Fig. 3). To
guarantee a correct computation in all cases, we assume the
case where the entire PLM is used as the default scenario. The
SMC module produces a corresponding mask as output to force
power gating of specific SRAM banks. For example, one of
the configuration registers of the Debayer accelerator stores the
size of the image to elaborate and it is used to determine which
scenario will be executed. When elaborating a smaller image
(1,024×1,024 pixels), the SMC module determines that the ac-
celerator is operating in the scenario s1 thanks to the simple
control logic shown in Fig. 3. When the accelerator operates in
this scenario and two 1,024×32 SRAMs are used to implement
array B1, the SMC module sets the mask to be “01”. As shown
in Fig. 2, the outputs of the SMC module are combined through
OR gates with those of the OMC module so that the power pins
of the first SRAM are controlled by the output signals of the
OMC module (bit mask is 0), while the second SRAM is al-
ways power gated (bit mask is 1).

The set of scenarios is determined at design time, during the
PLM configuration. The definition of these scenarios is based
on the expected values of the configuration registers (known
for non-programmable accelerators), the corresponding mem-
ory requirements, and the expected frequency of execution of
these cases. It is worth noting that the configuration registers
are modified only when the elaboration is terminated or the ac-
celerator is reset. In both cases, a new execution starts with
new values written into the configuration registers. So, each
execution is independent from the others.

Operating Mode Controller. The OMC modules determine
the operating modes of the SRAM banks based on the execu-
tion workload. Consider the example of Fig. 2: process COM-
PUTE terminates the execution of an iteration after elaborating
some rows of the input image. A debayered image row is then
contained into array B1, but no operations are performed by
any other process. So the operating mode of the correspond-
ing SRAM banks can be changed from active to deep-sleep.

OMC Module (B0)

1 0

PGL PGM

PC
mode

valid

ready

always @ (posedge clock)
begin
….
 case (state)
 ACTIVE:
 begin
 if (valid = 1’b1 && mode = DS) begin
 next_state = WAIT_DEEPSLEEP;
 PGL = 1’b1;
 end
 end
 …
 endcase
 end

Fig. 4. Microarchitecture of the OMC module.

Then, process Store starts, but the system interconnection is
not available (e.g., due to congestion). When the access to the
system interconnect is granted, it wakes up the SRAM banks by
changing the operating mode from deep-sleep to active, stalling
until the memory becomes available. Finally, when the data
transfer is completed and process COMPUTE is still producing
data on array B1, the SRAM banks can be power gated by en-
tering into mode idle. To perform the computation correctly,
each OMC module is implemented as a finite state machine
(FSM) that communicates with the accelerator logic through
three explicit protocol signals (mode, valid, ready), as
shown in Fig 4. These signals make sure that the accelera-
tor can continue its execution only when these operations are
completed, thus preventing any memory operations from exe-
cuting during the SRAM transitions [3]. Each OMC module
is then connected to the two power pins controlling the power
gating of the peripheral circuitry and the memory cells, respec-
tively. If the power management is configured to lower the
supply voltage of the SRAMs, each OCM module is connected
also to the corresponding voltage controller (i.e, bias genera-
tor [21] or IVR [13]). The FSM implements the transitions
among the three operating modes considering also the mode-
transition latency (e.g., the latency of the sleep transistors or
the delay properties of the IVRs). Most of the operating-mode
transitions have almost no impact on the performance because
they overlap with the execution of the processes.

III. DESIGN METHODOLOGY

We developed a CAD flow for the automatic genera-
tion of the DARKMEM microarchitecture by extending the
system-level design methodology for Embedded Scalable Plat-
forms [4], which uses extensively high-level synthesis (HLS).
First, we developed a DARKMEM Application Programming
Interface (API), which is a lightweight, synthesizable SystemC
library to augment the SystemC description of a given acceler-
ator. With the DARKMEM API, the designer can extend the ac-
celerator description by specifying when each given data struc-
ture is used or when it is not accessed but the data must be pre-
served. This specification corresponds to the operating mode
transitions of the associated SRAM banks. Fig. 5 shows part of
this specification.

This enhanced SystemC description is synthesized with HLS
to produce the synthesizable Verilog description of the accel-
erator logic. In particular, the synthesis of our DARKMEM
API generates the latency-insensitive protocol [3] signals to be
interfaced with the OMC modules (see Fig. 4). We then ex-
tended MNEMOSYNE [16], a prototype CAD tool to generate

void Store() {
int ping = 0;
wait();
while(true) {

/// perform DMA request
/// ...
if (ping) DARKMEM_ACTIVATE(ctrl_B0);
else DARKMEM_ACTIVATE(ctrl_B1);
/// store produced results
/// ...
if (ping) DARKMEM_IDLE(ctrl_B0);
else DARKMEM_IDLE(ctrl_B1);
/// notify compute
/// ...
ping = !ping;

}
}

Fig. 5. Example of the use of the DARKMEM API to specify the operating
modes when using double buffering.

the synthesizable Verilog descriptions of the different DARK-
MEM units1. MNEMOSYNE takes as input the list of arrays to
be stored in the PLM and the technology details of the avail-
able SRAMs. For each SRAM module, the designer provides
details on its size (i.e., bitwidth and number of words), area,
and static power consumption. This information is contained in
the technology files given by the SRAM vendor (e.g., Liberty
files). The new version also receives the list of execution sce-
narios and, eventually, technology details on the voltage con-
trollers, such as their transition delays. Each execution scenario
contains the corresponding memory requirements, the values
for the configuration registers for its identification, and the fre-
quency of execution, which must be estimated by the designer.
For any possible scenario MNEMOSYNE can always generate
a feasible implementation by executing these three steps: 1)
it determines a PLM configuration that minimizes the average
SRAM static power across all scenarios; 2) it generates the data
controllers to interface the memory interfaces of the accelerator
logic with the resulting banks; and 3) it generates the different
power controllers, interconnecting them with the correspond-
ing controlling signals of the accelerator logic.

Determining the Bank Configuration. Each PLM data
structure can be implemented with different SRAM configura-
tions, provided that they have enough memory space. At design
time we define the SRAM configurations to minimize the aver-
age SRAM static power with power gating of the unused banks
(Eq. 1) based on the information provided by the designer. For
the sake of simplicity in the generation of the controlling logic
(see below), we use a homogeneous bank organization for each
data structure and we model this optimization problem as:

min (PLMstatic) = min

(∑
s∈S

PLMs
static · freq(s)

)
(1)

PLMs
static =

∑
b∈B

PLMb,s
static (2)

∑
m∈MEM

cbm = 1 (3)

PLMb,s
static =

∑
m∈MEM

PWRb,s
m ∗ cbm (4)

PWRb,s
m = ONb,s

m ∗ pmactive + (Mb −ONb,s
m) ∗ pmgated (5)

∀m ∈MEM, b ∈ B : Wm ≥ cbm ∗W b (6)

∀m ∈MEM, b ∈ B : Hm ∗Mb ≥ cbm ∗Hb (7)

1MNEMOSYNE is an open-source tool, available at: https://github.
com/chrpilat/mnemosyne

TABLE I
CHARACTERIZATION OF THE Reference DESIGNS.

BENCHMARK
PLM

UNITS
DATA SIZE (MB)

PLM/DRAM

Total Area
(mm2)

[PLM]

TOTAL POWER
(MW) [PLM

STATIC]

FFT-2D 2 0.128 / 64.00 0.83 [95.18%] 36.49 [38.84%]
Debayer 3 0.095 / 16.00 0.69 [98.64%] 33.68 [45.04%]
Lucas Kan. 11 0.020 / 32.00 0.36 [88.27%] 32.90 [20.17%]
Change Det. 10 0.062 / 320.00 1.40 [93.52%] 89.34 [26.18%]
Disparity 11 0.145 / 15.82 2.22 [98.92%] 75.57 [53.07%]
PCA 3 0.117 / 20.19 1.16 [98.23%] 42.48 [60.49%]
RBM 8 0.065 / 3.81 2.91 [99.15%] 52.67 [48.78%]
SRR 32 0.076 / 4.76 1.26 [97.09%] 82.53 [60.75%]

where S is the set of execution scenarios, each of them having
frequency freq(s); B is the set of PLM data structures, each
of them having size Hb ×W b; MEM is the set of available
SRAMs, each of them capable of storing Hm data elements
of Wm bits; cbm is a decision variable to represent whether the
memory bank m ∈ MEM is selected to implement the array
b; Mb is the number of used banks; ON b,s

m is the number of ac-
tive banks in scenario s; pactive and pgated are the static power
consumed by these SRAM banks when active or power gated,
respectively. PLMs

static is the SRAM static power in each sce-
nario s, obtained by aggregating the power consumed by each
data structure (Eq. 2). Eq. 3 is a constraint indicating that only
one SRAM type m must be selected for each data structure b.
Only the corresponding term PWRb,s

m (Eq. 5) contributes to
PLM b,s

static, that is the PLM static power of the data structure b
in scenario s (Eq. 4). Finally, additional constraints are used to
verify that, for each data structure b, the selected set of banks
can store the entire amount of data (Eqs. 6 and 7) to guarantee
feasible implementations.

Generating the Data and Power Controllers. We use a
simple data controller for each DARKMEM unit to translate the
memory operations performed by the accelerator logic into the
proper requests to the physical banks. To this end, we gener-
ate some lightweight data controllers that are sufficient to de-
termine which physical bank is addressed based on the given
address [16]. For example, when we implement a 2,048×32
data structure with four 512×32 SRAMs, the accelerator logic
provides an 11-bit data address and only one of the four banks
effectively contains the data. So we use the two most signif-
icant bits to select the target SRAM bank and the nine less
significant bits as a physical address to effectively access the
data inside the selected bank. After configuring the PLM or-
ganization at design time, we achieve additional power sav-
ings by controlling the operating modes of the active banks in
each scenario. The additional DARKMEM modules (SMC and
OMC) are generated in Verilog starting from high-level tem-
plates. The SMC modules are then connected to the configura-
tion registers, while the OMC modules are connected between
the accelerator logic and the power pins of the SRAM banks.

IV. EXPERIMENTAL RESULTS

To evaluate our DARKMEM approach, we designed eight ac-
celerators for selected applications taken from the PERFECT [1]
and CORTEXSUITE [22] benchmark suites.

https://github.com/chrpilat/mnemosyne
https://github.com/chrpilat/mnemosyne

Scenario-based STD Library LP Library ULP Library

-45%
-30% Reference

0

0.2

0.4

0.6

0.8

1.0

FFT-2D
Debayer

Lucas Kan.

Change Det.

Disparity PCA
SRR

RBM Avg.

Fig. 6. Results in terms of SRAM static power (normalized with respect to the
reference designs) when using only the scenario-based optimization (bars in
green) and when using only the workload-based optimization with three
different libraries (bars in the three shades of red).

Experimental Setup. We designed each accelerator in
synthesizable SystemC and we used Cadence C-to-Silicon
(ver. 14.2) for synthesizing the Verilog description of the ac-
celerator logic and our initial version of MNEMOSYNE [16]
for determining the reference PLM configurations. We used
an industrial 32nm CMOS technology with a memory library
containing 18 distinct SRAMs, and we targeted a 1GHz clock
frequency. Table I shows the characterization of the Reference
designs (Figs. 6 and 7) in terms of PLM data structures (PLM
UNITS), size of the data stored in PLM and DRAM, area occu-
pation, total power consumption, and the fraction due to SRAM
static power without using DARKMEM.

We then updated these SystemC designs with our DARK-
MEM API to specify the execution modes of each data struc-
ture. We used HLS for generating the updated accelerator logic
and the DARKMEM-extended version of MNEMOSYNE [16]
for creating the DARKMEM units. For each accelerator, we
created two scenarios with different memory requirements for
the data structures. We then tested three representative cases
for the memory library:
• STD: we use only voltage controllers, reducing the deep-

sleep leakage by 40%;
• LP: the memory library has dual-rail SRAMs; the deep-

sleep mode reduces the static power by 70%;
• ULP: we use dual-rail SRAMs and voltage controllers,

reducing the deep-sleep leakage by 85% [18].
In dual-rail SRAMs, the power gating of the entire SRAM (idle
state) reduces the static power by 95% in all cases. These alter-
native cases are modeled by creating SRAM library files with
different static power characterizations based on the given val-
ues of the power pins PGL and PGM.

We performed logic synthesis of the resulting accelerators
with Synopsys Design Compiler (ver. J-2014.09-SP2) and sim-
ulation with Cadence Incisive (ver. 15.10) to extract gate-level
SAIF back-annotations for the given workloads and obtain
accurate power estimations with Synopsys Power Compiler
(ver. J-2014.09-SP2) when using the different versions of the
memory library.

Performance and Area Overhead. We performed dif-
ferent simulations varying the mode-transition latency of the
SRAMs: we varied the power-gating latency between 2 and 10
cycles [23] and the voltage controller latency between 64 and
2,000 cycles [13]. The performance overhead is generally less
than 1%. Only FFT-2D has a bigger overhead (i.e., 3.5% when
using the voltage controller with maximum latency) because it
does not use double buffering and, therefore, the transitions are
not masked by the execution of other processes. The area occu-

-59%

Reference -18%

SRAM static power Total power

0

0.2

0.4

0.6

0.8

1.0

FFT-2D
Debayer

Lucas Kan.

Change Det.

Disparity PCA
SRR

RBM Avg.

Fig. 7. Power savings (normalized with respect to the reference designs)
when combining the two optimizations.

pation of the data controllers is proportional to the number of
banks used to implement each data structure, while the area of
the OMC and SMC modules depends on the number of scenar-
ios. In any case, the total area overhead of the DARKMEM units
with respect to the corresponding PLM units in the reference
designs is much less than 1% in all cases. The area overhead
introduced by the voltage controllers is fixed and depends only
on the number of DARKMEM units and the technology used.

Impact of Optimizations. First, we performed experiments
with only one optimization active (either the scenario-based or
the workload-based one). These results are shown in Fig. 6.
For each benchmark, the green column Scenario-based reports
the average power consumption in the two scenarios of each
accelerator, while the other columns (in three shades of red) re-
port the results obtained when performing the workload-based
optimization with the three different memory libraries. Specif-
ically, in case of scenario-based optimization, we removed the
OMC modules. This corresponds to the case where the de-
signer does not take advantage of the DarkMem API to anno-
tate the execution modes of the data structures in the accelera-
tor’s SystemC. So, in each scenario, the used banks are always
kept in the active state, while the unused ones are power gated
for the entire execution of the accelerator. In this case, there is
no performance overhead due to the operating-mode transitions
during the execution. On the contrary, when we performed only
the workload-based optimization, we removed the SMC mod-
ules. This corresponds to having no information on the sce-
narios. In the scenario-based optimization, FFT-2D achieves
the best results since its requirements in terms of SRAM banks
grow exponentially with the input parameters. So, executing a
smaller scenario with power gating has significant advantages
(∼30% of SRAM static power saving). In general, to power
gate the unused banks in the SMALL scenario enables quite
significant SRAM static power savings (∼20% on average),
which correspond to a total power reduction of about 7%. In the
workload-based optimization, the results depend on the charac-
teristics of the memory library. The ULP library achieves, as
expected, the best results (∼28% of SRAM static power reduc-
tion on average); in this case, the SRAM static power of PCA
is reduced by up to 45% thanks to an efficient power manage-
ment of the PLM data structures. On average, this reduces the
total power consumption of the accelerators by 10%, where the
additional power spent in the SRAM transitions mitigates the
overall benefits.

Finally, Fig. 7 shows the results obtained by combining the
two optimizations. This reduces the SRAM static power by up
to 60%, which on average translates in a reduction of the total
power consumption by almost 18%.

V. RELATED WORK

Power consumption is the main reason behind the emer-
gence of heterogeneous architectures [6, 9, 12]. Such architec-
tures contain several SRAMs for implementing local storage
(e.g., processor caches or accelerator local memories). While
power gating and DVFS have been widely applied to proces-
sor cores [2], GPUs [23], and hardware accelerators [12, 13],
the design of individual accelerators with SRAM-specific tech-
niques has not been studied before. Cong et al. [6] focused
on creating power-efficient communications rather than opti-
mizing the SRAM power consumption. Wang et al. [23] used
power gating to reduce the static power of GPU caches. We
implemented an extension to this approach for accelerator pri-
vate local memories. In [12], multiple accelerators share a
non-specialized set of small memory banks (2KB and 4KB
SRAMs), which can be dynamically assigned to the acceler-
ators or power gated when unused. The bank configuration,
however, is not tailored to any specific accelerator. Manto-
vani et al. [13] applied DVFS to reduce the power consump-
tion of accelerators, especially in case of congestion on the
system interconnect. However, they use the same supply volt-
age for both the accelerator logic and the PLM and keeping
the SRAM always active and above the standby voltage. Our
DARKMEM architecture is complementary and can further in-
crease the energy efficiency of the accelerators’ PLM with
a more fine-grained power management. However, this re-
quires the integration of multiple IVRs per accelerator [11].
Additional power savings can then be obtained by combining
these approaches. The reduction of SRAM static power has
not been specifically addressed in accelerator design based on
HLS. Deep-sleep modes have been considered only for proces-
sor caches [14] or application-specific systems [20]. In con-
trast, we support the design of specialized accelerators where
the PLM microarchitecture is automatically determined (at de-
sign time) and managed (at run time) to optimize the SRAM
power consumption.

VI. CONCLUSIONS

We proposed an accelerator microarchitecture and a com-
panion design methodology to control the operation mode
of each SRAM bank in heterogeneous SoCs, enabling fine-
grained power management of such architectures. Results on a
set of complex accelerators show that the accelerator and total
static power can be reduced on average by 40% and 18%, re-
spectively, with negligible performance overhead. Future work
includes the study of the interaction with the processor cores
and their cache hierarchies.

ACKNOWLEDGMENTS

This research has received funding from the EU Commis-
sion’s H2020 Programme under grant agreement N. 732105,
the CERBERO project. This work was also supported by
the National Science Foundation (A#: 1527821), and C-FAR
(C#: 2013-MA-2384), one of the six centers of STARnet, a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

REFERENCES

[1] K. Barker et al. PERFECT Benchmark Suite Manual. PNNL and Geor-
giaTech Research Institute, Dec. 2013. http://hpc.pnnl.gov/
projects/PERFECT/.

[2] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design tech-
niques for system-level dynamic power management. IEEE Trans. on
VLSI Systems, 8(3):299–316, June 2000.

[3] L. P. Carloni. From latency-insensitive design to communication-based
system-level design. Proc. of the IEEE, 103(11):2133–2151, Nov. 2015.

[4] L. P. Carloni. The case for embedded scalable platforms. In Proc. of
Design Automation Conference (DAC), pages 1–6, June 2016.

[5] Y. H. Chen et al. A 0.6V Dual-Rail Compiler SRAM Design on 45nm
CMOS Technology With Adaptive SRAM Power for Lower VDDmin

VLSIs. IEEE Journal of Solid-State Circuits, 44(4):1209–1215, 2009.

[6] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman. Archi-
tecture support for accelerator-rich CMPs. In Proc. of Design Automation
Conference (DAC), pages 843–849, June 2012.

[7] F. Conti et al. An IoT endpoint system-on-chip for secure and energy-
efficient near-sensor analytics. IEEE Trans. on Circuits and Systems I:
Regular Papers, pages 1–14, May 2017.

[8] E. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An analysis of
accelerator coupling in heterogeneous architectures. In Proc. of Design
Automation Conference (DAC), June 2015.

[9] M. Horowitz. Computing’s energy problem (and what we can do about
it). In Proc. of ISSCC, pages 10–14, Feb. 2014.

[10] N. S. Kim et al. Leakage Current: Moore’s Law Meets Static Power.
Computer, 36(12):68–75, Dec. 2003.

[11] W. Kim, M. S. Gupta, G. Y. Wei, and D. Brooks. System level analysis of
fast, per-core DVFS using on-chip switching regulators. In Proc. of Int.l
Symp. on High Performance Computer Architecture (HPCA), Feb. 2008.

[12] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks. The Acceler-
ator Store: A shared memory framework for accelerator-based systems.
ACM Trans. on Architecture and Code Optimization, 8(4):48:1–48:22,
Jan. 2012.

[13] P. Mantovani et al. An FPGA-based Infrastructure for Fine-grained
DVFS Analysis in High-performance Embedded Systems. In Proc. of
Design Automation Conference (DAC), pages 1–6, June 2016.

[14] Y. Meng, T. Sherwood, and R. Kastner. On the limits of leakage power
reduction in caches. In Proc. of Int.l Symp. on High Performance Com-
puter Architecture (HPCA), pages 154–165, 2005.

[15] A. Pedram, S. Galal, S. Kvatinsky, S. Richardson, and M. Horowitz. Dark
memory and accelerator-rich system optimization in the dark silicon era.
IEEE Design & Test, 34(2):39–50, Apr. 2017.

[16] C. Pilato, P. Mantovani, G. D. Guglielmo, and L. P. Carloni. System-level
optimization of accelerator local memory for heterogeneous systems-
on-chip. IEEE Trans. on CAD of Integrated Circuits and Systems,
36(3):435–448, Mar. 2014.

[17] M. Qazi et al. Challenges and Directions for Low-Voltage SRAM. IEEE
Design & Test, 28(1):32–43, Jan. 2011.

[18] H. Qin et al. Standby supply voltage minimization for deep sub-micron
SRAM. Microelectronics Journal, 36(9):789 – 800, 2005.

[19] S. Rusu et al. Power reduction techniques for an 8-core Xeon processor.
In Proc. of ESSCIRC, pages 340–343, Sept. 2009.

[20] M. Shafique et al. Adaptive power management of on-chip video memory
for multiview video coding. In Proc. of Design Automation Conference
(DAC), 2012.

[21] H. Singh et al. Enhanced leakage reduction techniques using intermedi-
ate strength power gating. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 15(11):1215–1224, Nov. 2007.

[22] S. Thomas et al. CortexSuite: A synthetic brain benchmark suite. In
Proc. of IISWC, pages 76–79, Oct 2014.

[23] Y. Wang et al. Run-time power-gating in caches of GPUs for leakage
energy savings. In Proc. of DATE, pages 300–303, Mar. 2012.

http://hpc.pnnl.gov/projects/PERFECT/
http://hpc.pnnl.gov/projects/PERFECT/

