
A Hierarchical Receding Horizon Algorithm
for QoS-driven control of Multi-IaaS Applications

Danilo Ardagna, Michele Ciavotta, Riccardo Lancellotti, Michele Guerriero

October 8, 2018

Abstract

Cloud Computing is emerging as a major trend in ICT industry. However,
as with any new technology, new major challenges lie ahead, one of them con-
cerning the resource provisioning. Indeed, modern Cloud applications deal with a
dynamic context that requires a continuous adaptation process in order to meet sat-
isfactory Quality of Service (QoS) but even the most titled Cloud platform provide
just simple rule-based tools; the rudimentary autoscaling mechanisms that can be
carried out may be unsuitable in many situations as they do not prevent SLA vio-
lations, but only react to them. In addition, these approaches are inherently static
and cannot catch the dynamic behavior of the application. This situation calls for
advanced solutions designed to provide Cloud resources in a predictive and dy-
namic way. This work presents capacity allocation algorithms, whose goal is to
minimize the total execution cost, while satisfying some constraints on the average
response time of Cloud based applications. We propose a receding horizon con-
trol technique, which can be employed to handle multiple classes of requests. An
extensive evaluation of our solution against an Oracle with perfect knowledge of
the future and well-known heuristics presented in the literature is provided. The
analysis shows that our solution outperforms the heuristics producing results very
close to the optimal ones, and reducing the number of QoS violations (in the worst
case we violated QoS constraints for only 8 minutes over a day versus up to 260
minutes of other approaches). Furthermore, a sensitivity analysis over two differ-
ent time scales indicates that finer grained time scales are more appropriate for
spiky workloads, whereas smooth traffic conditions are better handled by coarser
grained time scales. Our analytical results are validated through simulation, which
shows also the impact on our solution of Cloud environment random perturbations.
Finally, experiments on a prototype environment demonstrate the effectiveness of
our approach under real workloads.

Index terms— Auto-Scaling, Capacity Allocation, Optimization, QoS

1 Introduction
Cloud computing has been a major driving force for the evolution of the Information
and Communication Technology (ICT) industry over the last years. The main players
of the ICT industry (e.g., Google [1], Amazon [2], and Microsoft [3]) aim to improve

1

cost-effectiveness, reliability and the overall computing power consumption of Cloud
systems. This effort is shifting the business models of many companies that try to
gain benefit from this new paradigm. The delivery at large scale of services through a
Cloud computing platform requires a collaboration between one or more infrastructure
providers, that manage the Cloud platform and are responsible for providing computa-
tional and networking capabilities, and a service provider that runs the actual applica-
tion exploiting the resources of one or more infrastructure providers.

The growing popularity of Cloud computing opens new challenges, especially in
the area of resource provisioning. In particular, we need to guarantee an adequate
Quality of Service (QoS) for the Cloud customers. This objective, in turn means that
we need management solutions that support performance prediction, monitoring of
Service Level Agreements (SLAs), and adaptive configuration, while satisfying the
requirements of cost-effectiveness, reliability, and security. Current solutions aimed
at enforcing SLA guarantee are mainly focused at single Clouds. If we consider a
multi-Cloud solution that is the case where a Cloud provider manages multiple data
centers or where we have multiple providers each with his own data center, we have
few solutions (e.g., the Amazon autoscaling rules1) which follow a purely reactive
approach: Scaling is triggered when exceeding a threshold on some monitoring metric
(e.g., CPU utilization is above 60%). However, providing SLA guarantees with a multi-
Cloud scope is fundamental when we want to meet also the availability requirements
of mission critical services.

We propose novel algorithms for the delivery of services that can take full advan-
tage from the Cloud characteristics such as the ability to dynamically manage requests
in a scenario characterized by multiple Cloud providers distributed geographically,
each hosting several applications.

Our proposal follows a dual time-scale approach, that has been proved successful
in literature [4]. At a coarse-grained time scale, we propose an innovative technique for
the distribution of requests among multiple Cloud providers while at the fine-grained
time scale we apply a receding horizon algorithm to allocate VMs in each data cen-
ter meeting the future workload demands that is an evolution of [5]. Our effort is
not limited to the algorithmic proposal, but we provide three types of validation for
our technique that represent additional contributions of this paper. First, we provide
an analytical framework to compare the proposed solution with an Oracle with perfect
knowledge of the future and with well-known heuristics proposed in the literature [6–8]
based on utilization thresholds. Second, we develop a new simulator that captures the
data center behavior including the presence of exogenous effect on the overall perfor-
mance, modeled through Random Environments, as proposed in [9]. This simulator
allows us to evaluate the SLA violations of our proposal in realistic situations. Fur-
thermore, we use the simulator for a thorough sensibility analysis with respect to the
time granularity of the control strategy, the random environments parameters and the
workload scenarios. Third, we present a first prototype of system, developed within
the scope of the MODAClouds project [10,11] and we demonstrate the viability of the
proposed algorithms.

1http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/
policy creating.html

Our results confirm that our solution outperforms the heuristics producing results
very close to the optimal ones (cost savings range is [30, 80]%), and reducing the
number of QoS violations (in the worst case we violated QoS constraints for only 8
minutes over a day versus up to 260 minutes of other approaches). Furthermore, a
sensitivity analysis over the two time scales indicates that finer grained time scales
are more appropriate for spiky workloads, whereas smooth traffic conditions are better
handled by coarser grained time scales. Simulation shows that our solution is robust to
Cloud environment random perturbations. Finally, the results achieved in the prototype
environment demonstrated that the number of SLA violation under a real workload are
less than 2%.

The remainder of this paper is organized as follows: In Section 2 we present the
global problem of managing the delivery of web-based services over multiple Cloud
infrastructures. Section 3 provides the theoretical definition of the fine- and coarse-
grained part of the problem. Section 4 describes the algorithms used for both the re-
quest distribution over multiple data centers and for the VM allocation at the level of
single data center. Section 5 evaluates the quality of our solution through experiments
and simulation. In Section 6 we review other literature approaches. Finally, Section 7
contains some concluding remarks.

2 Problem Statement and Assumptions
Here we introduce the system model and the design assumptions used as reference
throughout the paper. In particular, we propose a hierarchical modeling of the problem
with two different temporal granularities, namely long-term and short-term.

2.1 Problem overview
In this paper we assume the point of view of a Software as a Service (SaaS) provider
that deploys a suite of applications, in form of Web Services (WS), on multiple Infrastructure-
as-a-Service (IaaS) providers. The applications are heterogeneous in terms of resource
demands, workload profiles they are subject to, and SLA requirements. Services with
different SLAs and workloads are categorized into independent classes.

Figure 1 depicts the reference Cloud environment considered in this paper. The
system serves a set K of WS classes, where each class corresponds to a specific web
application (in the following the terms WS application and request class will be used
interchangeably). For each class k ∈ K the input workload is referred to as Λk. Ap-
plications are deployed on virtual machines (VMs), which are instantiated on-demand
and on a pay-per-use basis by a set I of IaaS providers. For the sake of simplicity, we
assume that each VM can only host a single web service application. Services can be
replicated on multiple Clouds or on multiple data centers of the same provider (e.g.,
regions or availability zones in the Amazon EC2 platform [12]) within the same Cloud.

This approach is possible thanks to a software layer developed within MODA-
Clouds project [10, 11], which allows concurrent execution, runtime migration and
data synchronization of applications among multiple Cloud providers. MODAClouds
provides full-stack solutions for the modeling, deployment, and runtime management

r1,2 + d1,2

Virtual Machine Monitor

Hardware

.WS1 WS1 WS2 WSk

VM VM VM VM

x1,i, x2,i, . . . , xk,i

Load Balancer
Manager

xk,1

xk,2

xk,3

Total incoming workload

Arrival rate of local requests

Data synchronization

Load balancer

Virtualized servers

Local data store

IaaS Provider i = 3IaaS Provider i = 2

IaaS Provider i = 1

⇤k

⇤k

Figure 1: Cloud infrastructures and data migration and synchronization system.

of multi-Cloud applications. It aims at removing all limitations and technological lock-
ins that presently prevent the execution of applications on different Clouds. It has been
demonstrated that deploying applications on multiple Clouds provides benefits in terms
of availability and implies cost savings for SaaS providers, due to IaaS competition
and workload redistribution at runtime [13]. From a technological perspective, running
applications over multiple Clouds requires a reliable mechanism of data synchroniza-
tion among database replica (either relational or NoSQL) hosted on different Clouds.
To this end, MODAClouds runtime platform also provides a distributed middleware
(see Figure 1) in charge of synchronizing data among (even technologically) different
databases [14].

We assume that, within a single data center, multiple homogeneous VMs imple-
menting the same WS class can run in parallel, evenly sharing the incoming workload.
This corresponds to the solution currently implemented by IaaS providers (e.g., [15]).

We assume that an SLA contract associated with each WS class k ∈ K is estab-
lished between the SaaS provider and his customers. This contract specifies the QoS
levels expressed in terms of average response time Rk for each class k that the SaaS
provider pledges to meet.

In this work we aim to address the problem of minimizing SaaS leasing costs by
solving jointly the multi-Cloud Capacity Allocation (CA) and Load Sharing (LS) prob-
lems. We propose a divide et impera optimization approach that considers two different
time scales, that we refer to as long-term and short-term.

At long-term, we decide about the Load Sharing: in other words at this stage we

decide how to distribute the expected workload (for the next hour) among different
IaaS providers with the objective of minimizing the compound VM leasing costs. The
long-term algorithm splits, for each application k, a prediction for the global incoming
request flows Λ̃k

2 into the request flows for each IaaS provider xk,i k ∈ K, i ∈ I taking
into account the costs for allocating VMs on the different providers. This is a long-term
problem because we make this analysis on hourly basis planning the workload alloca-
tion one hour in advance [16, 17]. It is worth noticing that in order to calculate the
optimized workload shares for each provider the long-term problem considers both LS
and CA. The fine-grained problem is a local (for each Cloud i ∈ I) CA optimization,
with a time-scale in the order of 10 or 5 minutes, considering as incoming workload the
load distribution xk,i calculated by the long-term problem. The objective is to deter-
mine the number of VMs able to serve the local incoming workload, while minimizing
costs and guaranteeing that the average response time is below a given threshold Rk,
i.e., Rk ≤ Rk.

Even if IaaS providers usually charge software providers on an hourly basis for
every instance, in this work we want to analyze the best time scale of the short-term
problem, between 5 or 10 minutes, for the CA problem. By considering two different
time scales, we are able to capture two phenomena related to Cloud applications. The
fine-grain workload traces exhibit a high variability due to the short-term changes of
the typical web-based workload. For this reason, the fine-grain time scale provides the
allocation of new instances with the purpose of avoiding the achievement of saturation
conditions. In the coarse-grain time scale, the workload traces are more smoothed and
not characterized by the instantaneous peaks typical of the fine-grain time scale. These
characteristics allows us to use the long-time scale algorithm to predict the workload
trend that represents useful information for the capacity allocation algorithm.

The long-term problem has a time horizon denoted by Tlong that represents the
number of hours on which we calculate the workload allocation among multiple providers.
The short-term problem operates on time slots of few minutes, and we denote its time
granularity as Tslot.

2.2 Long-term request distribution mechanism
The long-term problem concerns the distribution of the incoming requests load Λk, k ∈
K over the providers of the set I, with a time scale in the order of one hour, minimizing
the cost for the instances allocated. The problem is solved one hour in advance so that
the outcome of the long term problem is used as an input of the short term problem at
the beginning of the next hour. To predict the per-class workload, multiple solutions
have been proposed, ranging from the rule of thumb of simply considering the accesses
observed in previous days at the same hour of the day up to more complex methods
involving regression-based techniques [16, 18]. To distribute the requests among the
providers, we model each WS application hosted within a Virtual Machine (VM) as an
M/G/1 queue in tandem with a delay center as in [19] and we assume that incoming
requests are served according to the processor sharing scheduling policy, frequently

2In the following ·̃ is used to denote the prediction of a given parameter. For example, Λk denotes the
real incoming workload while Λ̃k denotes its prediction.

used by web service containers [20]. The delay center Dk,i is used to model network
delays and/or protocol delays introduced in establishing connections, etc. Furthermore,
we assume that multiple VMs can run in parallel to support the same WS application
(see Figure 2).

Figure 2: System performance model

As previously stated, we consider that a SLA contract, in the form of a threshold
Rk on the average response time, is in force. We translate this bound as a SLA for
every provider such that Rk,i ≤ Rk for every WS application k and provider i. Within
each provider i, we assume that VMs are homogeneous in terms of their computing
capacity Ci (this assumption is not restrictive and compliant with auto-scaling mecha-
nisms offered by current IaaS and PaaS solutions [15]). As far as costs are concerned,
we assume two pricing models are offered by every provider: they supply reserved and
on-demand VMs. We denote by δi and ρi the hourly fees for on-demand and reserved
instances (ρi < δi), respectively. Let Wi indicates the overall number of available re-
served instances. For the service rate, we consider µk as the maximum service rate for
serving a class k request with a VM of capacity 1.

In the resolution of the long-term problem, the decision variable considered are the
number of reserved and on-demand VM instances for each provider and for each class,
denoted rk,i, and dk,i, respectively, as well as the request rate forwarded to each Cloud
provider xk,i.

2.3 Short-term receding horizon control mechanism
The short-term problem is managed at the local level of a single Cloud provider. The
data center is modeled in the same way as the long-term problem (see Fig. 2). We
assume that the performance parameters are continuously updated at runtime (see [19]

for further details) in order to capture transient behaviors, VMs network, I/O inter-
ference [21], and time-dependent performance of Cloud resources [22, 23]. To model
the time in the short-term problem, we consider multiple time slots of duration Tslot.
Within the time horizon of the long-term problem, we focus on a sliding window of Tw
future time slots. Since we deal with time scales finer than one hour, we assume to pay
for an instance as soon as it is required and after that moment we consider it as freely
available, until the end of its lease term. At the beginning of the following hour, if we
do not need that instance anymore it is released; otherwise, it remains available and
the fee is charged again. The overall number of time slots in the lease term (i.e., one
hour) is denoted by nc and it is assumed to be integer for simplicity. In the problem
formulation, we model the number of instances already paid and available for free by
means of parameters (r1k,i, . . . , r

nc
k,i) and (d

t

k,i, . . . , d
nc
k,i) for reserved and on-demand

instances, respectively.
The decision variables of the problem are (r1k,i, . . . , r

nw
k,i) and (d1k,i, . . . , d

nw
k,i), i.e.,

the number of reserved and on-demand VMs to be started during the observation win-
dow Tw = {1, . . . , nw} that, in conjunction with free instances of both types, have to
serve the predicted incoming workload (x̃1k,i, . . . , x̃

nw
k,i). The final goal is to minimize

the aggregate leasing costs to serve the predicted arrival rate, while guaranteeing that
the average response time of each WS application is lower than the SLA threshold.

The short-term solution algorithm follows the receding horizon control principle
[24], where the optimal solution achieved considering the whole time window, but the
algorithm enforces only the decisions calculated for the nearest time step. This means
that the values (rtk,i, d

t
k,i) are calculated for every future time interval of Tw, but the

algorithm acts on the controlled system by starting VMs only at the first time slot,
according to (r1k,i, d

1
k,i). The optimization process is then repeated considering the

second time slot as the starting point. Tc denotes the set of slots within the VM lease
term. Figure 3 graphically illustrates the relationships between Tc, Tw and Tslot. In
this work we considered time slots of 5 and 10 minutes and observation windows with
nw from 3 up to 5 time slots, that is ranging from 15 to 50 minutes. As regarding the
charging interval, we considered the common VM lease term of one hour, i.e. it is
composed of 6 or 12 time slots.

{ {{
Tw

1

nw

nc

1

t

Tslot

Tc

Figure 3: Relationships between Tc, Tw and Tslot over time

Concerning the workload prediction, several methods have been adopted over the
last decades [18] (e.g., ARMA models, exponential smoothing, and polynomial inter-
polation), making them suitable to forecast seasonal workloads, common at coarse time
scales (e.g., day or hour), as well as runtime and non-stationary request arrivals char-
acterizing the time scales (few minutes) considered here. In general, each prediction
mechanism is characterized by several alternative implementations, where the choice
about filtering or not filtering input data (usually a runtime measure of the metric to be

predicted) and choosing the best model parameters in a static or dynamic way are the
most significant. However, workload prediction is out of the scope of this paper.
For sake of clarity, the notation adopted in this paper is summarized in Tables 1 and 2.

3 Optimization problems formulation
This section provides the mathematical formulation of the coarse- (Section 3.1) and
fine-grained (Section 3.2) optimization problems.

3.1 Long-term problem
The idea of this problem is to split the workload prediction Λ̃k between different IaaS,
in order to minimize the cost for the VMs. The problem is solved hourly, with a scope
limited to the next hour.

The average response time for class k at provider i is given by:

Rk,i =
1

Ciµk −
xk,i

rk,i+dk,i

+Dk,i (1)

which it follows the presence of the queue center and the delay center. According
to M/G/1 equilibrium condition, it must be:

xk,i < Ciµk
(
rk,i + dk,i

)
that we write as:

rk,i + dk,i >
xk,i

Ciµk

So, we can write the formula of the average response time as:

Rk,i =
rk,i + dk,i

Ciµk
(
rk,i + dk,i

)
− xk,i

+Dk,i

subject to the QoS condition:

Rk,i ≤ Rk
After some algebra we get:

rk,i + dk,i ≤
(
Rk −Dk,i

) [
Ciµk

(
rk,i + dk,i

)
− xk,i

]
and then:

rk,i + dk,i + xk,i

(
Rk −Dk,i

1−
(
Rk −Dk,i

)
Ciµk

)
≥ 0

because 1 −
(
Rk −Dk,i

)
Ciµk < 0. Indeed, Rk > Dk,i according to the QoS

condition described before, Ci > 0 and µk > 0 in agreement with system properties.
Hence, if we denote with δi the cost of on-demand VM instances and with ρi the

cost of the reserved instances for provider i, the joint Capacity Allocation and Load
Sharing problem can be formulated as:

(Plt) min
rk,i,dk,i,xk,i

∑
i∈I

∑
k∈K

(
ρirk,i + δidk,i

)
Subject to the conditions:

rk,i + dk,i −
xk,i

Ciµk
> 0 ∀i ∈ I,∀k ∈ K (2)

rk,i + dk,i + xk,i

(
Rk −Dk,i

1−
(
Rk −Dk,i

)
Ciµk

)
≥ 0 ∀i ∈ I,∀k ∈ K (3)∑

i∈I
xk,i = Λ̃k ∀k ∈ K (4)

xk,i ≥ γiΛ̃k ∀i ∈ I,∀k ∈ K (5)∑
k∈K

rk,i ≤Wi ∀i ∈ I (6)

rk,i ≥ 0, rk,i ∈ N ∀i ∈ I,∀k ∈ K (7)

dk,i ≥ 0, dk,i ∈ N ∀i ∈ I,∀k ∈ K (8)
As we wrote before, conditions (2) represents the equilibrium condition of the

adopted queue model M/G/1. This constraint has a relation of dependence with con-
straint (3), which concerns the response time bound defined in the service level agree-
ment. The equilibrium condition (2) satisfies the condition of existence of the response
time formula (1), because it assures that the denominator has to be different from 0.

Moreover, we can see that if the response time denominator is close to 0, Rk,i
becomes very high, especially greater than the SLA threshold Rk. So, if the condition
(3) is satisfied, also the (2) is fulfilled.

Constraints (4) ensure that the traffic assigned to individual providers equals the
overall load predicted for class k jobs. In this way we ensure that the whole incoming
traffic will be managed.

Constraints (5) guarantee that every IaaS obtains at least a fraction γi of workload,
avoiding situations where all the workload is simply forwarded to the minimum-cost
provider.

The constraint (6), increases problem complexity with the creation of a relation
between different classes of request: At the same provider it is allowed to allocate the
maximum number Wi of reserved instances, considering all the applications deployed;
without this constraint, we could resolve the problem for each class request individu-
ally.

(Plt) can be classified as a Mixed Integer Linear Programming (MILP) problem,
since the variables of the problem are integer or float and the objective function and
constraints are linear.

As a results of the problem, the workload of the system is redirected to each
provider at every instant according to the probability defined by xk,i∑

i′∈Ixk,i′
.

3.2 Short-term problem
The short-term problem is addressed starting with the solution of the long-term one.
However, the time granularity of the problem is much finer, thus motivating the differ-
ences in the problem model. The Capacity Allocation (CA) problem is solved over an
observation window Tw of nw time slots and aims at minimizing the overall costs for
reserved and on-demand instances to serve the predicted arrival rate x̃tk,i while guaran-
teeing SLA constraints. The ·̃t notation highlights that the predicted arrival rate is not
the overall arrival rate from the long-term problem, but is referred to just the time slot
t. The CA problem can be formulated as:

(Pst) min
rt
k,i
,dt
k,i

∑
k∈K

(
ρi

nw∑
t=1

rtk,i + δi

nw∑
t=1

dtk,i

)

Subject to the conditions:
t∑

τ=1

(
rτk,i + dτk,i

)
+ rtk,i + d

t
k,i >

x̃tk,i

Ciµk
, ∀k ∈ K, ∀t ∈ Tw

t∑
τ=1

(rτk,i + dτk,i) + rtk,i + d
t
k,i+ ≥ x̃tk,iAk,i, ∀k ∈ K, ∀t ∈ Tw∑

k∈K
(rtk,i + rtk,i) ≤Wi ∀t ∈ Tw

rtk,i ≥ 0, rtk,i ∈ N ∀k ∈ K ∀t ∈ Tw
dtk,i ≥ 0, dtk,i ∈ N ∀k ∈ K ∀t ∈ Tw

(9)

(10)

(11)

(12)

(13)

where Ak,i =
Rk,i −Dk,i(

Rk,i −Dk,i
)
Ciµk − 1

≥ 0.

It is worth to be note that inequality (9) derives from the performance models of
Figure 2 and it corresponds to the M/G/1 equilibrium condition; the average response
time is given by:

Rtk,i =
1

Ciµk −
x̃t
k,i

rt
k,i

+d
t
k,i+

∑t
τ=1(r

τ
k,i

+dτ
k,i

)

+Dk,i (14)

Inequality (10) is obtained after some algebra form the QoS condition Rtk,i ≤ Rk
and (9) and (14) as follows:

rtk,i + d
t
k,i +

t∑
τ=1

(
rτk,i + dτk,i

)
≤

(
Rk,i −Dk,i

) [
Ciµk

(
rtk,i + d

t
k,i +

t∑
τ=1

(
rτk,i + dτk,i

))
− x̃tk,i

]
⇔

t∑
τ=1

(rτk,i + dτk,i) + rtk,i + d
t
k,i + x̃tk,i

(
Rk,i −Dk,i

1−
(
Rk,i −Dk,i

)
Ciµk

)
≥ 0 (15)

Note that 1−
(
Rk,i −Dk,i

)
Ciµk < 0. Indeed, Ci > 0, µk > 0, Rk,i � Dk,i, and

Rk � 1
Ciµk

(i.e., the QoS threshold has to be higher than the queueing network delay
Dk and the request service time 1

Ciµk
).

Finally, inequality (11) represents a constraint on the overall number of available
reserved VMs, which can not be greater than Wi (i.e., the number of VMs for which
the SaaS subscribed a long term contract on provider i).

Finally notice that, overall, problem (Pst) is a Mixed Integer Linear Problem (MILP),
which can be efficiently solved by commercial solvers (an extensive scalability analysis
is available in [25]).

Algorithm 1 Request distribution algorithm
1: procedure REQUEST DISTRIBUTION
2: for all k ∈ K do
3: Λ̃k ← GetNextHourPrediction (k)
4: end for
5: Solve (Plt)
6: Redirect global workload according to xk,i results
7: end procedure

4 Solution algorithm
In this section we describe the two algorithms used by our technique to solve the long-
and short-term problems respectively.

4.1 Solution of the long-term problem
The long term problem solution is rather simple. As the optimization problem is clearly
defined in the previous section, and due to the lack of relationship between the solutions
of two consecutive hours, the algorithm can be simply defined as in Algorithm 1.

Algorithm 1 is supposed to run within one of the available data centers. It basi-
cally invokes a prediction function to forecast the incoming flow of requests for the
next hour (Λ̃k). The vector of real workloads needed for the forecasting is monitored
locally to each data center on a hourly basis and is then sent to the data center running
Algorithm 1. The output of the forecasting function is a vector of future requests that
is fed into a solver that computes an optimal solution for the Plt optimization objec-
tive defined previously. The result is the partition of the incoming workload across the
multiple Cloud providers. The enforcement of the problem solution is performed by
properly changing the weights of the DNS servers of each Cloud provider3.

4.2 Solution of the short-term problem
The short-term problem is addressed using a controller implementing a receding hori-
zon approach, outlined in Figure 4. This controller resides in every Cloud provider
(data center) and operates independently from the other providers, unlike the solution
for the long-term problem that is centralized.

At each time slot (marked by a clock spike) the monitoring platform on Cloud
provider i provides the new workload predictions (x̃1k,i, . . . , x̃

nw
k,i) for the current time

window Tw and new estimates for the performance parametersDk,i, µk. The optimizer
component feeds the optimization model using the current application state expressed
in terms of allocated VMs. Afterwards, the optimizer uses the model to calculate the
most suitable number of VMs to allocate during the whole time window in order to
guarantee the arranged SLAs. Finally, the optimizer operates on the running Cloud ap-
plication, through IaaS APIs, enacting only the first time slot of the attained allocation
plan. Notice that performance parameters are continuously updated at runtime in order

3https://www.nginx.com/resources/admin-guide/load-balancer/

to capture transient behavior, VMs network and I/O interference [21], and performance
variability of the Cloud provider [22].

Optimizer
Optimization

Model

Cloud
Application

Solve

Optimal
solution

Clock

First slot configuration

Receding Horizon controller

Predicted workload

Monitoring
Platform

Update Model
Parameters

IaaS
Interface

(r1
k, d1

k)

Figure 4: Receding horizon controller.

Algorithm 2 is a high-level description of the receding horizon approach we use
to solve the short-term problem. The algorithm consists in four main steps, iteratively
repeated to cover the overall time horizon. The first step (lines 2-8) initializes the main
model parameters representing the state of the system and the predicted workload for
the considered time window some model parameters. In particular, the system state
is defined by the number of reserved and on-demand VMs available free of charge
for each time slot of the observation window. It is worth to note that that, in order to
manage the state of the system (rtk,i, d

t

k,i) in the execution of the algorithm for different
time slots, we adopt the global parameters N t

res,k,i, N
t
ond,k,i, which store the number

of VM instances inherited from previous time slots and, therefore, available for free at
time slot t. The second step (line 9) is the solution of problem Pst to optimality using a
third-party solver. The third step (line 11) implements the receding horizon paradigm
by modifying the application deployment using only the values calculated for the first
time slot of the considered time window, Scale(k, r1k,i, d

1
k,i). Finally (lines 12-15),

the algorithm updates accordingly the system state, N j+t
res,k,i, N

j+t
ond,k,i. Since the VMs

allocated at time t are available until the end of their charging period, the algorithm
only updates the state from t to t+ nc. As a consequence, at time slot t+ nc + 1 these
instances will be switched off, if no longer needed.

5 Experimental Results
In this section our approach is compared with current state-of-art solutions imple-
mented in modern Clouds and according to the auto-scaling policies often implemented
at IaaS provider level. In particular, our analysis focuses on the costs of the various
solutions and their ability to satisfy response time constraints. Furthermore, some pre-
liminary analyses demonstrated that both the long-term and short-term algorithms scale
almost linearly with respect to the number of sites and request classes. Systems up to
5 providers/data centers, 160 classes and considering 5 time slots can be solved in less

Algorithm 2 Receding Horizon Algorithm
1: procedure SOLUTION ALGORITHM

2: for all k ∈ K do
3: for w ← 1, nw do
4: x̃wk,i ← GetPrediction (w, k)
5: rwk,i ← N t+w

res,k,i

6: d
w
k,i ← N t+w

ond,k,i

7: end for
8: end for

9: Solve (Pst)

10: for all k ∈ K do

11: Scale (k, r1k,i, d1k,i)

12: for j ← 1, nc do
13: N t+j

res,k,i ← N t+j
res,k,i + r1k,i

14: N t+j
ond,k,i ← N t+j

ond,k,i + d1k,i
15: end for
16: end for
17: end procedure

Initialization

State update

Solving the

current model

Applying the changes

according to the first

time slot decisions

than 200 sec on a single core of an Intel Xeon Nehalem using CPLEX 12.2 solver. The
complete scalability analysis is available in [25].

Section 5.1 presents the design of experiments. In Section 5.2 we describe the
heuristics considered for comparison. Section 5.3 analyzes the results achieved in
terms of the costs of the solutions and SLAs fulfillment considering analytical perfor-
mance models. Section 5.4 provides an overview of the two algorithms performance
tested using a simulator able to capture a more realistic scenario where performance
may change due resource contention within a data center and Section 5.5 provides an
experimental evaluation using a real system.

5.1 Design of experiments
The analyses performed in the following sections are intended to be representative
of real Cloud environments. We used a large set of randomly generated instances,
obtained varying the performance parameters in ranges used by other literature ap-
proaches [26], [6], [7] or observed in real applications as in [27, 28]. Such ranges are
reported in Table 5.1. The bound on the number of reserved instances is set to 10 in
order to lead the saturation of the available reserved resources and, then, considering
the worst case solutions where also the on-demand resources are used (recall that by
relaxing constraint (12) problems (Plt) and (Pst) become much easier and can be sep-
arated into smaller problems, one for each WS application). For what concerns the
cost parameters, we adopt the prices currently charged by IaaS Cloud Providers [2].
We decide to randomly generate the instance costs in order to replicate infrastructures

spread worldwide. Table 5.1 reports the ranges we adopted.
Regarding the application workload Λk, we used actual measurements coming from

a large popular website that wants to remain anonymous for privacy reasons. Workload
can be characterized by a bi-modal distribution with two peaks around 10am and in the
early afternoon, with low traffic in the early hours of the day and during the night. As
in [29], [27], [30] and [31], we produced a different workload for each WS application
k, by scaling the peak value of each request class. We further added some noise as
in [29], thus extending the original trace set with the aim of analyzing the behavior of
WS applications under different workload conditions.

The workload prediction Λ̃k is obtained by adding white noise to each sample Λk,
as in [27], [32] (the noise is proportional to the workload intensity Λk). For what
concerns the short time scale, the predictions x̃tk,i in a real context become less accurate
while increasing the number of time slots in the future, for this reason the amount of
noise is increased with the time step t ∈ [1 . . . nw] (further details are reported in the
next section). Our choice of applying white noise is consistent with [31] and provides
the benefit of being independent from the choice of the prediction technique.

5.2 Heuristics
In the following sections we perform a cost-benefit evaluation of our algorithms with
respect to other heuristics proposed in the literature and based on utilization thresholds.

Heuristic 1: it derives from [6], [7] and is currently implemented by some IaaS
providers (see, e.g., Amazon AWS Elastic Beanstalk [8]). The heuristic implements
an algorithm for auto-scaling the number of instances in order to handle the workload
variation. As in our approach, capacity allocation is performed over the overall time
horizon considering an observation window Tw and employs the receding horizon ap-
proach by executing only the decisions made for the first time step in Tw. Heuristic
1 fixes the number of instances to allocate in each time slot according to some upper
and lower utilization thresholds: In a nutshell, let U1 and U2 be the lower and upper
thresholds respectively. If at time slot t the utilization exceeds U2 the number of run-
ning VMs at time t+ 1 is suitably increased; otherwise if the considered metric drops
under U1, a number of VMs, among the oldest ones, is switched off. In this way, the
heuristic tries to keep the utilization U t within the interval [U1,U2].

U1 ≤ U tH1 ≤ U2 ∀t ∈ [1..n] (16)

As in [27], we considered multiple values for [U1, U2], as it will be discussed more
in details later.

Heuristic 2: it is based on a more accurate evaluation of the utilization thresholds.
Instead of considering fixed values for U1 and U2, they are derived from the response
time thresholdRk. In particular, by considering the response time formula (14) and the
constraints on the average response time (11) we obtain the following condition on the
VMs utilization:

Uk,i =
x̃tk,i

Ciµk

(
rtk + d

t
k +

t∑
τ=1

(
rτk + dτk

)) = 1−
1

Ciµk
(
Rk −Dk

)

In other words, Uk is the VMs utilization which corresponds to the average re-
sponse time Rk at provider i. So, if we denote with α and β, respectively, the co-
efficient of lower and upper bound thresholds, with α < β, we define the utilization
thresholds as:

U1,k,i = α

(
1−

1

Ciµk(Rk −Dk)

)
;U2,k,i = β

(
1−

1

Ciµk(Rk −Dk)

)

In this way, we obtain different thresholds for different WS classes. In the exper-
iments we adopt different thresholds characterized by different values of α and β, as
we will described in the following section.

5.3 Cost-Benefit Analysis
We perform a cost-benefit evaluation of our approach considering other heuristics with
a twofold aim: on one hand we compared the cost of our solution against other state-
of-the-art techniques. On the other hand, we assessed the impact of the number of time
slots within the sliding window on the CA solution.

As performance indicators we used the overall virtual machines cost and the num-
ber of SLA violations. The test case considers a single IaaS provider (and hence relies
on Algorithm 2 only) and it is based on a 24 hours time span and each hour is divided
into time slots of 10 or 5 minutes, according to the time scale under analysis. The
incoming traffic models used in the case under study are grouped into two categories:
“normal traffic model” and “spiky traffic model,” corresponding to two different traces
obtained from real logs. In both cases, the traces, presented in [27], are character-
ized by the presence of daily peaks around 10.00am and 2.00pm but in the normal
traffic model the number of client requests exhibits a slow increase or decrease rate.
Vice versa, the spiky workload is characterized by larger variations between consec-
utive samples. Furthermore, for each workload trace we considered both a low level
of noise, (corresponding to a more accurate prediction), and a heavy one. The amount
of noise increases in the observation window, because the prediction gradually loses
accuracy with t ∈ [1 . . . nw]. Furthermore, the level of noise of the workload sample
x̃tk is proportional to the workload Λk and increases with t as reported in Table 5.3.
A noise level up to 45% has been considered, since for larger values the prediction of
the single sample becomes uncertain and comparable with a value equal to the sample
itself, undermining the effectiveness of the overall approach.

The alternative solutions considered in our comparisons are the following:

• Our short-term algorithm (S-t Algorithm): the time scale Tslot has been varied
between 5 and 10 minutes and the observation window has been varied between
1 and 5 steps.

• Oracle-based algorithm (Oracle): has the same structure of our solution but the
prediction of incoming traffic is 100% accurate, i.e., perfect knowledge of the
future is assumed. At a first though this could seem the top performing approach,
but it is not necessarily cheaper than other solutions. Indeed, if the prediction
slightly underestimates the real traffic, our algorithm or other heuristics could

result in a cheaper solution than the one determined by the Oracle, but, of course,
they would provide a larger number of SLA violations.

• Heuristic 1 (Heu1): the heuristic adopts the same time horizon, time step, and
VM life span (of one hour for each instantiated VM) as in our solution. The num-
ber of instances is determined such that the utilization of each running instance
is between some given thresholds. The thresholds used in the experiment are:
(U1, U2) = (40%, 50%), (50%, 60%), and (60%, 80%) as considered in [7,27].

• Heuristic 2 (Heu2): this heuristic differs from the previous one only for the
way the thresholds are calculated. The thresholds coefficient we considered are:
(α, β) = (0.9, 1.2) and (0.8, 1.3).

In the following, we first focus our attention on the costs achieved by the considered
alternatives and then on the SLA violations. The reference scenario under analysis is
composed of 10 different classes.

In the following figures we present the mean solution cost evaluated over multiple
test executions for a 24 hours time horizon.

Precisely, we executed three different tests for each configuration of time scale,
workload type, noise and thresholds, for a total number of 72 runs; each run calculated
the cost considering the overall time horizon. For space limitations we report here
detailed results only for the spiky workload case. The complete analysis is available
in [25]. Figures 5 and 6 show the results obtained with the adoption of a time scale of
5 minutes, instead Figures 7 and 8 display the values we obtained by using a 10 min-
utes time scale. Being the level of noise proportional to the incoming workload Λk, in
Figures 6, 7 and 8 we did not consider a time window of 5 step ahead, since, in the
case of spiky workload, this would make the prediction to become unreliable. Notice
that our approach is competitive with the Oracle and we record the best performance of
Algorithm 2 with a time scale of 5 minutes. The cost difference between our solution
and the Oracle, which is more relevant in case of spiky traffic (Figures 5, 6), denotes
how strongly the traffic prediction is affected by the noise with the increase of observa-
tion windows size. On the other hand, the Oracle never violates the SLAs (indeed, no
unexpected conditions can arise). Finally, Heuristic 1 turns out to be the worst solution
in the comparison. However, it gradually improves with the growth of the utilization
thresholds.

Figures 7 and 8 describes the evolution of the average solution cost with a time
scale of 10 minutes. The performance trend that we noticed in the previous figures
is confirmed even if we have to underline that the difference between our Short-term
algorithm and Heuristic 2 is significantly reduced.

Finally, it is worth to be noticed that in a normal workload conditions the 10 minutes
time scale is the best suited solution; in case of a more spiky traffic, it is more beneficial
to employ a time scale of 5 minutes.

In our analysis, we considered also the number of SLA violations during the 24
hours time horizon (i.e., the number of times the average response time during a time
slot was above the threshold). This analysis allows to understand whether the receding
horizon technique leads to a reduction of violations with respect to single step opti-
mization (i.e., obtained with nw = 1), which characterizes most of other literature

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

Co
st [

$]

Tw

S-t Algorithm

Heu1 (40,50)

Heu1 (50,60)

Heu1 (60,80)

Heu2 (0.9,1.2)

Heu2 (0.8,1.3)

Oracle

Figure 5: Solution cost, Tslot = 5min, spiky traffic and low noise level.

0

100

200

300

400

500

600

700

800

900

1 2 3 4

Co
st [

$]

Tw

S-t Algorithm

Heu1 (40,50)

Heu1 (50,60)

Heu1 (60,80)

Heu2 (0.9,1.2)

Heu2 (0.8,1.3)

Oracle

Figure 6: Solution cost, Tslot = 5min, spiky traffic and high noise level.

0

100

200

300

400

500

600

700

800

1 2 3 4

Co
st [

$]

Tw

S-t Algorithm

Heu1 (40,50)

Heu1 (50,60)

Heu1 (60,80)

Heu2 (0.9,1.2)

Heu2 (0.8,1.3)

Oracle

Figure 7: Solution cost, Tslot = 10min, spiky traffic and low noise level.

0

100

200

300

400

500

600

700

1 2 3

Co
st [

$]

Tw

S-t Algorithm

Heu1 (40,50)

Heu1 (50,60)

Heu1 (60,80)

Heu2 (0.9,1.2)

Heu2 (0.8,1.3)

Oracle

Figure 8: Solution cost, Tslot = 10min, spiky traffic and high noise level.

approaches. Results are reported in Tables 7, 7, 7 and 7. Increasing the observation
window size nw, the percentage of SLA violations for our solution decreases. Fur-
thermore, our solution exhibits very small percentages of violations with respect to
Heuristic 2, both (0.9, 1.2) and (0.8, 1.3) cases, even in the presence of spiky and high

noisy workloads, where, Heuristic 2 shows better results in terms of resource costs.
Therefore, the receding horizon technique allows improving the performance of the
system in terms of SLA violations. Heuristic 1, instead, is very conservative: it is more
expensive than our approach, but it satisfies the QoS constraints almost in any condition
of traffic and noise.

Moreover, considering the comparison between the average results obtained by the
two time scale under analysis, the 5 minutes time scale guarantees better performance
in terms of SLA violations: 8 minutes (0.556%) over 24 hours for the normal traffic
and 15.3 minutes (1.065%) for the spiky one. Furthermore, using two or more forward
steps the performance improves: A maximum of 2.5 minutes (0.174%) for the normal
traffic and 7.3 minutes (0.509%) for the spiky one. This means that in terms of SLA
violations our algorithm performs significantly better with the adoption of at least two
forward steps. Finally a more in-dept analysis demonstrates that our algorithm provides
the best results by making use of an observation windows with three steps.

5.4 System simulation
While the analytical evaluation of the proposed algorithm (i.e., based on M/G/1 for-
mula) reported in the previous section provides a first confirmation of the viability of
our proposal, an analytical-only validation is not capable of taking into account the
effect of the interaction among VMs that occur in a real data center. To evaluate our
proposal in a more realistic scenario and considering multiple providers/data centers,
we use a simulator specifically designed to capture the variable performance of real
data centers. Specifically, we first describe the simulator and its setup and then we
provide an in-depth discussion of the results obtained through simulation.

5.4.1 Simulation Setup

The proposed simulator implements the data center model described in Section 2, and
illustrated in Figure 2. In particular, we consider a reference scenario with three hetero-
geneous data centers, with the global processing power distributed over the data centers
according to the following percentages: {50%, 25%, 25%}, so that the first data center
has a processing capacity double w.r.t. the others. The long-term algorithm partitions
the incoming workload according to the processing capacity of each data center while
the VMs management in each data center is handled by the short-term algorithm.

To validate our proposal we rely on a discrete event simulator based on the Om-
net++ framework [33] that has been developed ad-hoc for this purpose. In particular,
we introduce in our simulator a support to capture the performance degradation that
appears randomly in Cloud data centers due resource contention and imperfect per-
formance isolation between VMs. To this aim our simulator includes Random Envi-
ronments (REs) [9]. REs are Markov chain-based descriptions of time-varying system
operational conditions that evolve independently of the system state. Hence, REs are
natural descriptions for exogenous variability in a Cloud environment [9, 34] and have
been successfully used also for analyzing the performance of servers adopting dynamic
voltage-scaling technologies that change over time CPU frequency to reduce energy
consumption [35].

Within the simulator we implement REs with two stages to model the variability
of performance of a virtual hardware due to resource contention (see Figure 9). Un-
der resource contention, individual VMs are characterized by the service rate µslowk

and delay Dslow
k , while under normal operation VMs are characterized by parameters

µfastk > µslowk and Dfast
k < Dslow

k . We consider a transition probability between the
two stages: pfast is the transition probability from the state slow to state fast, while
pslow is the probability of the opposite transition.

µslow
k Dslow

k

µfast
k Dfast

k

pfast
pslow

Figure 9: Random Environment modeling Cloud resource contention.

In order to model these effects in our simulator, we collected data from several
experiments on applications running on an Amazon EC2 infrastructure. To this aim
we executed a computationally-intensive application on VMs of different sizes and we
monitored the response time of the application as well as the system parameters. In
particular, we consider CPU utilization and CPU steal (this latter is the fraction of VM
CPU time that is claimed by the hypervisor). Our experiments found that when the
application runs on large VM instances there is no performance degradation and no
CPU stealing form the hypervisor. On the other hand, when medium or smaller VM in-
stances are used, the hypervisor introduces a limitation in the amount of computational
resources that can be used by a single VM. Specifically, as shown in Figure 11, we ob-
serve under constant incoming workload that, after a period where with full processing
power, the hypervisor intervenes capping the CPU consumption of the VM, as shows
by the performance degradation and by the increase of the CPU steal parameter. For an
application that is not completely CPU-bound, such as a web-based application where
the load is distributed by a load balancer over multiple VMs, the effect of resource
capping is less evident, with the response time assuming a bimodal distribution, as
suggested by the samples in Figure 12. In this case, the limitation on the CPU demands
is activated in an intermittent way determining an alternating succession of normal and
degrade performance that is easily modeled by the REs model of our simulator.

The experiments on the real system are used to model the parameter of the REs in
the simulator. The resulting values are reported in Table 10. In particular we use the
performance degradation ratio to quantify the impact of congestion on the VM perfor-
mance (both in terms of processing time and of delay) and we model the transitions
between slow and fast states as exponentially distributed time intervals characterized
by their average value. The parameters for the data center in a state with no resource
contention (Dfast and µfast) are the same used in the previous experiments and can
be found in Table 5.1.

An additional element that we capture in our simulator is the process of client

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500

Ex
ec

ut
ion

 tim
e

[m
s]

Time [s]

Figure 10: Execution time under CPU steal effect in Amazon EC2 medium instance

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

CP
U

St
ea

l [%
]

Time [s]

Figure 11: CPU steal in Amazon EC2 medium instance.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Re
sp

on
se

 tim
e

[m
s]

Time [s]

Figure 12: Performance degradation in a multi VM web server application.

requests dropped from the waiting queue. We consider that client requests may leave
the system without being serviced for the following two reasons: (1) because a timeout
To is expired and the user is not willing to wait for the completion of the request and
(2) because the WS buffer queue size is a finite value Q and only a limited number
of requests may be waiting for service. This latter effect is typically configured in
web servers such as Apache httpd4 to avoid thrashing conditions. In our experiments,
we explore several scenarios for different combinations of To and Q, as detailed in
the following subsection. Table 10 provides a summary of the parameters used in our
simulations.

4http://httpd.apache.org

5.4.2 Sensitivity to queue length and timeout

We now evaluate through our simulator the number of dropped requests as well as
the number of SLA violations for different values of the window Tw and for different
values of queue length Q and timeout To. Specifically, we consider two scenarios
for the timeout parameter, that is, a short timeout scenario where the timeout is five
time the response time without resource contention 1

µfast
+ Dfast and a long timeout

where the timeout is ten times that value. For each scenario we consider multiple queue
lengthsQ and observation window sizes Tw (the observation window size is considered
in the receding horizon algorithm used to solve the short-term problem).

Table 11 reports the result of these experiments for the two considered scenarios. If
we consider the short timeout scenario we can observe three interesting results. First,
for every considered combination of parameters we have no SLA violations. If we
focus on the percentage of dropped requests, we observe that the values range from
0.3% to 1.8%, which outperforms results that can be achieved in other literature pro-
posals [36].

The second interesting finding is that, the percentage of dropped requests decreases
as the queue length grows. This result is easily explained by considering that longer
queues means that the system is able to better manage incoming peaks of requests
without rejecting the incoming load. Finally, we observe that the number of dropped
requests is reduced also as a function of the observation window used in the receding
horizon algorithm. This result confirms that the proposed solution can handle effec-
tively the Cloud workloads with an auto-scaling mechanism that is more effective as
the observation window increases.

The long timeout scenario basically confirms that main findings of the experiments
with a short timeout. However, comparing the results of the two timeout scenarios, we
observe that the percentage of dropped requests for the long timeout scenario ranges
from 4.2% to 0.7%, which is significantly higher if compared with the results of the
short timeout alternative. This result can be explained considering that, in the case
of a long timeout, requests stay within the system for longer periods and, due to the
processor-sharing nature of the model, consume resources that may delay other jobs.
On the other hand, in the case of a short timeout, long requests tend to be dropped from
the system in a short time and have a smaller opportunity to consume resources.

Furthermore, we observe that, when the queue length grows beyond 30 requests,
besides the reduction in the number of dropped requests, we may experience a small
amount of SLA violations (below 0.1%). This result can be explained by considering
that the long queue length determines an increase in the requests within the system,
resulting in a growth in the response time that determines the SLA violations.

5.5 Prototype Environment Analysis
The experimental analysis presented throughout this section has been performed con-
sidering the Modelio Constellation5 modeling platform developed by Softeam within
the MODAClouds project. Modelio Constellation is a web-based software-as-a-service

5https://link.springer.com/chapter/10.1007/978-3-319-46031-4_12/
fulltext.html

application modeling environment, which includes four main components. The Ad-
ministration Server exposes a web service interface to provide the users with a GUI
to retrieve, modify and update the available projects and read their configuration. This
component uses the Administration Database to store the access permission policies.
The SVNAgent uses SVN to provide versioning, sharing and conflict management with
the aim of enabling multiple users to work simultaneously on the same project. To
offload the previous component from some of the burden, the HTTPAgent component
provides read-only access to the models. Constellation is subject to a variable work-
load during a day.
In order to reduce the complexity of the Constellation case study and due to the fact
that the 80% of the requests have been found to be SVN reads, we decided to deploy
just the HTTPAgent in a dedicated VM and to consider this simplified scenario for the
evaluation of our short term algorithm. Along this path, we measured the resource de-
mand of the HTTPAgent, that we found to be around 40 ms (in particular Dk = 5 ms,
1
µk

= 35 ms).
We considered two scenarios. We first injected a ramp-like workload (Figure 5.5) with
a peak around 30 requests/s and then we evaluated the system with the workload from
real users (Figure 13) obtained from the logs of a pre-production environment, that is
basically a bi-modal workload with 100 requests/s at its peaks, located in the central
part of the day. In this second scenario, we shrunk to 4 hours the original 24 hour last-
ing workload in order to reduce the duration of each experiment, making sure to scale
down also the workload peak, to keep the original workload variations.
The validation experiments tested the capability of our short term algorithm to react
to workload fluctuations considering the SOFTEAM HTTPAgent component deployed
on Amazon m3.large VMs. We used Apache JMeter to inject the two previously de-
scribed workloads. An average response time QoS constraint equal to 560 ms was set
and our receding horizon algorithm used a 5 steps ahead control with a time period of
5 min. Workload predictions were obtained by using an ARIMA model, while service
demand estimates were obtained through the Extended Regression for Processor Shar-
ing resources (ERPS) method [37], acting at 10s time scale.
The short term algorithm started up to 11 VM instances. The percentage violations of
the average response time measured at runtime were 1.9%, if the average is evaluated
at 10 s time scale and 0% if the average is evaluated at 5 min time scale. In the ramp
workload scenario the number of allocated VMs is step wise, while in the bimodal
workload case the number of allocated VMs follows the workload trend.

6 Related Work
Several approaches have been developed to manage efficiently the resources of Cloud
systems. Since Cloud computing is a promising technology, rapidly growing and ap-
pealing for industries, there is a multitude of studies in different research fields.

Many studies concern the resource allocation problem, with constraints on cost
and execution time. The work presented in [38] helps to define a realistic SLA with
customers and support a dynamic capacity allocation able to adapt to workload fluctu-
ations. The model formulated represents a Cloud center with a M/M/C/C queuing

system, with different priority classes. Authors in [39] show a solution method for
a multi-dimensional resource allocation problem in data centers while guaranteeing
SLAs for clients with applications that require multiple tiers of service to be executed.
The work in [40] proposes a VM provisioning problem from the IaaS provider perspec-
tive, where Cloud customers bids for the use of VM resources and have no incentives to
lie about their requested bundles. The problem is formulated as an integer program and
solved by greedy heuristics. A multi-Cloud perspective is considered in [41], where
an on-line approach is used to address problem of allocating VMs over a distributed
infrastructure. The work in [42] aims at optimizing the cost and the utilization of a set
of applications running on Amazon EC2 proposing a vertical auto-scaling mechanism,
i.e., the algorithm, given the current set of instances used (their number, type, utiliza-
tion), proposes a new set of instances for serving the same load, so as to minimize
cost and maximize utilization, or increase performance efficiency. A slightly different
approach, extending the problem to multiple Cloud data centers and focusing on sci-
entific work-flows is presented in [43]. However, most of these mechanisms do not
follow the split long-term and short-term problems to be solved separately to provide
a scalable and accurate resource provisioning. In [31] the VM placement problem for
a PaaS is solved at multiple time scales through a hierarchical optimization framework
similar to the present paper. However, our work aims at providing a different vision to
the problem, more tailored to the multi-Cloud scenario.

A methodology to integrate workload burstiness in performance models is proposed
in [44]. The workload model share some common traits with [45], even if the focus in
this latter paper is more oriented towards a container-based virtualization scenario. The
authors exhibit a parametrized queuing model that can be used to predict performance
in systems even in the challenging case where there are bottleneck switches among the
various servers. In [46] is presented a strategy for Cloud resource allocation that, com-
pared with traditional approaches related on cost and performance, ensures predictable
processing speed and SLAs.

The work in [47] provides a queuing model and closed-form solutions for esti-
mating Cloud applications response time, blocking probability and throughput, and
proposes a very fast solution for estimating the minimum number of VMs required to
achieve performance objectives.

Finally, an online VM provisioning method is proposed in [48]. The solution solves
allocation problems with partial information, calculating allocation and revenues as
customers arrive at the system and place their requests.

Most of the research studies deal with a single step prediction of the Cloud system
workload. This paper is one of the first contributions proposing and analyzing the
effectiveness of the adoption of two time scales and of receding horizon solutions. The
work in [49] is the closest contribution to our approach where a predictive controller
for key-value storage systems is presented. The controller builds, according to the
system current state, the optimal set of actions (e.g., move or copy data among multiple
instances) and executes the first action of the sequence and then recomputes the optimal
sequence again. However, the impact of the workload prediction error and controller
time scales are not analyzed.

7 Conclusions
In this work we proposed a capacity allocation technique able to minimize the exe-
cution cost of Cloud applications guaranteeing the respect of the SLA. An extensive
analysis that takes into account multiple factors as different workloads and system
configurations has been provided demonstrating that our approach outperforms major
techniques available in the literature or currently used by IaaS providers.

When compared with an Oracle with perfect knowledge of the future the cost gap
is about 7% on average. With respect to heuristic solutions, cost savings range is [30,
80]%. If the multiple solutions are compared in terms of SLA violations the benefit of
the adoption of the receding horizon control is evident, since we can achieve a max-
imum of 8 minutes average response time violation over 24 hours (versus up to 260
minutes of other approaches). Finally, results have shown that in normal traffic condi-
tions, the best time scale length is 10 minutes while with spiky workloads the receding
horizon is more effective considering a more fine grained time scale, i.e., 5 minutes.

Future work will be devoted to the development of an adaptive approach that will
be able to switch between different time scales according to the workload condition.

Acknowledgement
The research reported in this article is partially supported by the European Commission
grant no. FP7-ICT-2011-8-318484 (MODAClouds).

Danilo Ardagna is an Associate Professor at the Dipartimento di Elettronica In-
formazione and Bioingegneria at Politecnico di Milano, Milan, Italy. He received the
Ph.D. degree in Computer Engineering from Politecnico di Milano in 2004. His work
focuses on performance modelling of software systems and on the design, prototype
and evaluation of optimization algorithms for resource management and planning of
Cloud and big data systems.

Michele Ciavotta received the Ph.D. degree in automation and computer science
from Roma Tre, Italy in 2008. From 2012 he is Postdoctoral Fellow at the Dipartimento
di Elettronica Informazione and Bioingegneria at Politecnico di Milano. His research
work focus on modeling and optimization of complex real-life problems mainly arising
in the fields scheduling and planning, and more recently resource management for
Cloud based and data intensive systems under constraints of quality of service.

Riccardo Lancellotti received the Ph.D. in computer engineering from the Uni-
versity of Roma “Tor Vergata” in 2003. He is a researcher at the University of Mod-
ena and Reggio Emilia since 2005. His research interests include geographically dis-
tributed systems, Cloud computing and social networks. For additional information:
http://web.ing.unimo.it/rlancellotti/

Michele Guerriero is a Ph.D. candidate at Politecnico di Milano, Italy. His main
research interests concern software engineering methods and advanced software archi-
tectures in the context of Cloud computing and Big Data. In particular, his research
addresses model-driven engineering methods for modern data-intensive applications,
with a special interest on the deployment and data privacy issues.

References
[1] Google Inc., “Google inc.” [Online]. Available: www.google.com/about/company/

[2] Amazon Inc., “Amazon Web Services,” http://aws.amazon.com/.

[3] Microsoft, “Microsoft corporation,” http://www.microsoft.com/.

[4] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, “Dual time-scale distributed
capacity allocation and load redirect algorithms for cloud systems,” J. of Parallel and Distr.
Computing, vol. 72, no. 6, pp. 796 – 808, 2012.

[5] D. Ardagna, M. Ciavotta, and R. Lancellotti, “A receding horizon approach for the runtime
management of iaas cloud systems,” in SYNASC 2014 Proceedings.

[6] A. Wolke and G. Meixner, “Twospot: A cloud platform for scaling out web applications
dynamically,” in ServiceWave, 2010.

[7] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,
D.Gmach, R. Gardner, T. Christian, and L. Cherkasova:, “1000 islands: An integrated
approach to resource management for virtualized data centers,” Journal of Cluster Com-
puting, vol. 12, no. 1, pp. 45–57, 2009.

[8] Amazon Inc., “AWS Elastic Beanstalk,”
http://aws.amazon.com/elasticbeanstalk/.

[9] G. Casale and M. Tribastone, “Modelling exogenous variability in cloud deployments,”
SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4, pp. 73–82, Apr. 2013.

[10] D. Ardagna, E. Di Nitto, P. Mohagheghi, S. Mosser, C. Ballagny, F. D’Andria, G. Casale,
P. Matthews, C.-S. Nechifor, D. Petcu, A. Gericke, and C. Sheridan, “Modaclouds: A
model-driven approach for the design and execution of applications on multiple clouds,” in
MISE 2012 Proceedings.

[11] “MODAClouds: MOdel-Driven Approach for design and execution of applications on mul-
tiple Clouds.” http://www.modaclouds.eu.

[12] Amazon Inc., “Amazon Elastic Cloud,” http://aws.amazon.com/ec2/.

[13] D. Ardagna, M. Ciavotta, and M. Passacantando, “Generalized nash equilibria for the ser-
vice provisioning problem in multi-cloud systems,” IEEE Transactions on Services Com-
puting, vol. 10, no. 3, Sept. 2015.

[14] M. Scavuzzo, E. Di Nitto, and D. Ardagna, “Experiences and challenges in building a data
intensive system for data migration,” Empirical Software Engineering, 2017.

[15] Amazon Inc., “Elastic Load Balancing,”
http://aws.amazon.com/elasticloadbalancing/.

[16] S. Casolari and M. Colajanni, “On the selection of models for runtime prediction of system
resources,” Autonomic Systems, Springer, 2010.

[17] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, “Dual time-scale distributed
capacity allocation and load redirect algorithms for cloud systems,” J. Parallel Distrib.
Comput., vol. 72, no. 6, pp. 796–808, 2012.

[18] S. Casolari and M. Colajanni, “Short-term prediction models for server management in
internet-based contexts,” Decis. Support Syst., vol. 48, no. 1, pp. 212–223, Dec. 2009.

[19] L. Zhang, X. Meng, S. Meng, and J. Tan, “K-scope: Online performance tracking for
dynamic cloud applications,” in ICAC, 2013.

[20] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “Loosely coupled coor-
dinated management in virtualized data centers,” Cluster Computing, vol. 14, no. 3, pp.
259–274, 2011.

[21] Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong, “Performance analysis of network i/o
workloads in virtualized data centers,” Services Computing, IEEE Transactions on, vol. 6,
no. 1, pp. 48–63, 2013.

[22] A. Croll, “Cloud performance from the end user perspective,” http://www.bitcurrent.com/
download/cloud-performance-from-the-end-user-perspective/.

[23] G. Casale, W. Wang, M. Miglierina, and V. I. Munteanu, “D6.3.2 Monitoring platform
final release,” http://www.modaclouds.eu/wp-content/uploads/2012/09/MODAClouds D6.
3.2 MonitoringPlatformFinalRelease.pdf.

[24] Wook Hyun Kwon, Soo H. Han, Receding Horizon Predictive Control: Model Predictive
Control for State Models. Springer, 2005.

[25] D. Ardagna and M. Ciavotta, “Receding Horizon Auto-Scaling Algorithm
for IaaS Cloud Systems. Politecnico di Milano Technical Report 2014.5,”
http://home.deib.polimi.it/ardagna/Cloud2014.pdf, 2014.

[26] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and M. Trubian, “Joint
admission control and resource allocation in virtualized servers,” Journal of Parallel and
Distributed Computing, vol. 70, no. 4, pp. 344 – 362, 2010.

[27] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, “Dual time-scale distributed
capacity allocation and load redirect algorithms for cloud systems,” Journal of Parallel
and Distributed Computing, vol. 72, no. 6, pp. 796 – 808, 2012.

[28] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang, “Energy-aware autonomic resource
allocation in multitier virtualized environments,” IEEE Trans. Services Computing, vol. 5,
no. 1, pp. 2–19, 2012.

[29] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang, “Power and perfor-
mance management of virtualized computing environments via lookahead control,” Cluster
Computing, vol. 12, no. 1, pp. 1–15, 2009.

[30] D. Ardagna, S. Casolari, and B. Panicucci, “Flexible distributed capacity allocation and
load redirect algorithms for cloud systems,” in IEEE CLOUD 2011 Proceedings.

[31] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang, “A hierarchical ap-
proach for the resource management of very large cloud platforms,” IEEE Transactions on
Dependable and Secure Computing, vol. 10, no. 5, pp. 253–272, 2013.

[32] D. Kusic, N. Kandasamy, and G. Jiang, “Approximation modeling for the online perfor-
mance management of distributed computing systems,” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, vol. 38, no. 5, pp. 1221 –1233, oct. 2008.

[33] “OMNeT++ Discrete Event Simulation System,” 2014, - http://www.omnetpp.org.

[34] G. Casale and M. Tribastone, “Fluid analysis of queueing in two-stage random environ-
ments,” in QEST, 2011.

[35] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. A. Kozuch, “Optimality analysis of
energy-performance trade-off for server farm management,” Perform. Eval., pp. 1155–
1171, 2010.

[36] Y. Amannejad, D. Krishnamurthy, and B. H. Far, “Predicting Web service response time
percentiles,” in CNSM 2016 Proceedings.

[37] J. F. Perez, G. Casale, and S. Pacheco-Sanchez, “Estimating computational requirements in
multi-threaded applications,” IEEE Transactions on Software Engineering, vol. 41, no. 3,
pp. 264–278, March 2015.

[38] W. Ellens, M. Zivkovic, J. Akkerboom, R. Litjens, and H. van den Berg, “Performance of
cloud computing centers with multiple priority classes,” in IEEE CLUD 2012 Proceedings.

[39] H. Goudarzi and M. Pedram, “Multi-dimensional sla-based resource allocation for multi-
tier cloud computing systems,” in IEEE CLOUD 2011 Proceedings.

[40] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family of truthful greedy mechanisms for
dynamic virtual machine provisioning and allocation in clouds,” in IEEE CLOUD 2013
Proceedings.

[41] F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee, “Online allocation of virtual
machines in a distributed cloud,” IEEE/ACM Transaction on Networking, vol. 25, no. 1,
pp. 238–249, Feb. 2017.

[42] P. Kokkinos, T. Varvarigou, A. Kretsis, P. Soumplis, and E. Varvarigos, “Cost and utiliza-
tion optimization of amazon ec2 instances,” in IEEE CLOUD 2013 Proceedings.

[43] A. C. Zhou, B. He, X. Cheng, and C. T. Lau, “A declarative optimization engine for re-
source provisioning of scientific workflows in geo-distributed clouds,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 3, pp. 647–661, March 2017.

[44] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “Dealing with burstiness in multi-tier ap-
plications: Models and their parameterization,” Software Engineering, IEEE Transactions
on, vol. 38, no. 5, pp. 1040 –1053, sept.-oct. 2012.

[45] O. Adam, Y. C. Lee, and A. Zomaya, “Stochastic resource provisioning for containerized
multi-tier web services in clouds,” IEEE Transactions on Parallel and Distributed Systems,
vol. Pre-print, pp. 1–1, 2017.

[46] M. Ferber, T. Rauber, M. Torres, and T. Holvoet, “Resource allocation for cloud-assisted
mobile applications,” in IEEE CLOUD 2012 Proceedings.

[47] K. Salah, “A queueing model to achieve proper elasticity for cloud cluster jobs,” in IEEE
CLOUD 2013 Proceedings.

[48] S. Zaman and D. Grosu, “An online mechanism for dynamic vm provisioning and alloca-
tion in clouds,” in IEEE CLOUD 2012 Proceedings.

[49] B. Trushkowsky, P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, “The
scads director: Scaling a distributed storage system under stringent performance require-
ments,” in USENIX, 2011.

Table 1: Parameters of the Capacity Allocation Problem.
Global parameters

I Set of IaaS providers
Ci VMs instance capacity of provider i
δi Time unit cost (measured in dollars) for on-demand VMs of provider i
ρi Time unit cost (measured in dollars) for reserved VMs of provider i
K Set of WS classes
Dk,i Queueing delay (measured in sec) for processing WS class k requests at provider i
Rk,i Average response time (measured in sec) for WS class k request at provider i
Rk Average response time threshold (measured in sec) for WS class k request
Wi Maximum number of reserved instances available, at provider i
µk Maximum service rate (measured in requests/sec) of a capacity 1 VM for executing WS class

k requests

Long Term Problem
Tlong Long-term CA time horizon, measured in hours
Λ̃k Prediction for the total exogenous arrival rate (measured in requests/sec) for WS class k for

the whole Cloud system
γi Minimum percentage of traffic distributed to each provider i

Short Term Problem
Tw duration of the window of observation
Tc duration of the charging interval
Tslot Short-term CA time slot, measured in minutes
nc Number of time slots within the charging interval Tc
nw Number of time slots within the time window Tw
rtk,i Number of reserved VMs available for free for the time slot t in the interval under analysis,

for class k requests, at provider i

d
t
k,i Number of on-demand VMs available for free for the time slot t in the interval under analy-

sis, for class k requests, at provider i
xjk,i Real local arrival rate (measured in requests/sec) for WS class k, at provider i and at time

slot j
x̃tk,i Local arrival rate prediction (measured in requests/sec) for WS class k, at provider i and at

time slot t

Table 2: Decision variables of the Capacity Allocation Problem.
Long Term Problem

dk,i Number of on-demand VMs to be allocated for WS class k request, at provider i
rk,i Number of reserved VMs to be allocated for WS class k request, at provider i
xk,i Arrival rate allocated to provider i, for class k request

Short Term Problem
dtk,i Number of on-demand VMs to be allocated for WS class k request at time slot t at provider

i

rtk,i Number of reserved VMs to be allocated for WS class k request at time slot t at provider i

Table 3: Performance parameters

Dk,i [0.001, 0.05] s µk [200, 400] req/s W 10 VMs

Table 4: Cost parameters

On-Demand Reserved
[0.060, 1.520] $/h [0.024, 0.608] $/h

Table 5: Noise levels adopted.

t Low noise High noise

1 5% 20%
2 10% 25%
3 15% 30%
4 20% 40%
5 25% 45%

Table 6: Response Time percentage violations Tslot = 5 min, spiky traffic and high
noise.

Tw

Solution 1 2 3 4 5

Oracle 0.000% 0.000% 0.000% 0.000% 0.000%
S-t Algorithm 1.065% 0.428% 0.336% 0.255% 0.208%

Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 13.530% 13.356% 13.252% 12.975% 13.090%
Heu2 (0.8, 1.3) 13.646% 13.600% 13.565% 13.461% 13.368%

Table 7: Response Time percentage violations for Tslot = 5 min, spiky traffic and low
noise.

Tw

Solution 1 2 3 4

Oracle 0.000% 0.000% 0.000% 0.000%
S-t Algorithm 1.065% 0.509% 0.289% 0.231%

Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 13.530% 13.391% 13.287% 13.032%
Heu2 (0.8, 1.3) 13.646% 13.634% 13.565% 13.287%

Table 8: Response Time percentage violations for Tslot = 10 min, spiky traffic and
low noise.

Tw

Solution 1 2 3 4

Oracle 0.000% 0.000% 0.000% 0.000%
S-t Algorithm 3.102% 0.694% 0.532% 0.370%

Heu1 (40%, 50%) 0.000% 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.000% 0.000% 0.000% 0.000%

Heu2 (0.9, 1.2) 17.245% 17.083% 16.181% 16.042%
Heu2 (0.8, 1.3) 15.347% 15.440% 14.792% 14.560%

Table 9: Response Time percentage violations for Tslot = 10 min, spiky traffic and
high noise.

Tw

Solution 1 2 3

Oracle 0.000% 0.000% 0.000%
S-t Algorithm 4.259% 1.204% 0.625%

Heu1 (40%, 50%) 0.000% 0.000% 0.000%
Heu1 (50%, 60%) 0.000% 0.000% 0.000%
Heu1 (60%, 80%) 0.116% 0.208% 0.069%

Heu2 (0.9, 1.2) 15.509% 15.301% 13.681%
Heu2 (0.8, 1.3) 16.204% 15.602% 14.236%

Table 10: Simulator parameters
parameter value

RE parameters
µfast

µslow
= Dslow

Dfast
2.42

T (fast→ slow) 994.05 [s]
T (slow → fast) 694.80 [s]

Data center parameters
Q 5-40
To 5, 10× 1

µfast

Table 11: Sensitivity to queue length and timeout
Tw = 1 Tw = 2 Tw = 3 Tw = 4 Tw = 5

Queue Dropped SLA Dropped SLA Dropped SLA Dropped SLA Dropped SLA
Length Q Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%] Req. [%] Viol. [%]

Short timeout
5 1.8676 0.00 1.5025 0.00 1.4378 0.00 1.2737 0.00 1.1881 0.00

10 0.9724 0.00 0.7626 0.00 0.7270 0.00 0.6314 0.00 0.5851 0.00
15 0.7707 0.00 0.5755 0.00 0.5464 0.00 0.4519 0.00 0.4048 0.00
20 0.6807 0.00 0.4927 0.00 0.4560 0.00 0.3683 0.00 0.3235 0.00

Long timeout
15 4.2243 0.00 3.515 0.00 3.4030 0.00 3.0594 0.00 2.8769 0.00
20 2.0720 0.00 1.6784 0.00 1.6124 0.00 1.4288 0.00 1.3406 0.00
25 1.5284 0.00 1.2336 0.00 1.1889 0.00 1.0518 0.00 0.9905 0.00
30 1.3334 0.03 1.0633 0.07 1.0215 0.00 0.9003 0.00 0.8398 0.00
35 1.2485 0.00 0.9458 0.02 0.8667 0.00 0.8236 0.00 0.7600 0.00
40 1.1950 0.03 0.9001 0.01 0.8426 0.00 0.7737 0.07 0.7062 0.00

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

W
or

klo
ad

 [r
eq

/s
]

of

 V
M

s

Time [10s]

Workload
VMs

Figure 13: VMs allocation, 5 minutes time scale, ramp workload and low noise level.

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400

W
or

klo
ad

 [r
eq

/s
]

of

 V
M

s

Time [10s]

Workload
VMs

Figure 14: VMs allocation, 5 minutes time scale, real bimodal workload and low noise
level.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

Re
sp

on
se

 ti
m

e
[m

s]

Time [10s]

Figure 15: Response times, 5 minutes time scale, ramp workload and low noise level.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400

Re
sp

on
se

 ti
m

e
[m

s]

Time [10s]

Figure 16: Response times, 5 minutes time scale, real bimodal workload and low noise
level.

