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Carrara M, Babini G, Baselli G, Ristagno G, Pastorelli R,
Brunelli L, Ferrario M. Blood pressure variability, heart function-
ality, and left ventricular tissue alterations in a protocol of severe
hemorrhagic shock and resuscitation. J Appl Physiol 125: 1011–1020,
2018. First published July 12, 2018; doi:10.1152/japplphysiol.
00348.2018.—Autonomic control of blood pressure (BP) and heart
rate (HR) is crucial during bleeding and hemorrhagic shock (HS) to
compensate for hypotension and hypoxia. Previous works have ob-
served that at the point of hemodynamic decompensation a marked
suppression of BP and HR variability occurs, leading to irreversible
shock. We hypothesized that recovery of the autonomic control may
be decisive for effective resuscitation, along with restoration of mean
BP. We computed cardiovascular indexes of baroreflex sensitivity and
BP and HR variability by analyzing hemodynamic recordings col-
lected from five pigs during a protocol of severe hemorrhage and
resuscitation; three pigs were sham-treated controls. Moreover, we
assessed the effects of severe hemorrhage on heart functionality by
integrating the hemodynamic findings with measures of plasma high-
sensitivity cardiac troponin T and metabolite concentrations in left
ventricular (LV) tissue. Resuscitation was performed with fluids and
norepinephrine and then by reinfusion of shed blood. After first
resuscitation, mean BP reached the target value, but cardiovascular
indexes were not fully restored, hinting at a partial recovery of the
autonomic mechanisms. Moreover, cardiac troponins were still ele-
vated, suggesting a persistent myocardial sufferance. After blood
reinfusion all the indexes returned to baseline. In the harvested heart,
LV metabolic profile confirmed the acute stress condition sensed by
the cardiomyocytes. Variability indexes and baroreflex trends can be
valuable tools to evaluate the severity of HS, and they may represent
a more useful end point for resuscitation in combination with standard
measures such as mean values and biological measures.

NEW & NOTEWORTHY Autonomic control of blood pressure was
highly impaired during hemorrhagic shock, and it was not completely
recovered after resuscitation despite global restoration of mean pres-
sures. Moreover, a persistent myocardial sufferance emerged from
measured cardiac troponin T and metabolite concentrations of left
ventricular tissue. We highlight the importance of combining global
mean values and biological markers with measures of variability and
autonomic control for a better characterization of the effectiveness of
the resuscitation strategy.

cardiovascular autonomic control; hemorrhagic shock; metabolomics;
myocardial sufferance; resuscitation

INTRODUCTION

Hemorrhage and unresolved hemorrhagic shock (HS) still
represent the leading cause of mortality after trauma in both
civilian and military settings, with the majority of deaths
occurring because of the inability to control bleeding and to
effectively resuscitate hemorrhage patients (27, 67).

Therefore, much effort has been spent on investigation of the
fundamental underlying pathophysiology of HS in order to
develop innovative approaches or to discover new biological
parameters capable of detecting the severity of blood loss,
controlling bleeding, and guiding resuscitation.

HS is a form of hypovolemic shock in which an acute
reduction in central blood volume causes organ hypoperfusion
and consequently an inadequate oxygen supply at the cellular
level. Clinical signs of this condition are severe hypotension
and hypoxia, pronounced tachycardia and tachypnea, diffused
coagulopathy, hypothermia, and metabolic acidosis (14).

During progressive hemorrhage, physiological compensa-
tory mechanisms are usually elicited in trying to maintain
homeostasis. Indeed, the cardiovascular system activates phys-
iological responses with the aim of maintaining cerebral oxy-
genation and blood supply to central organs; for example,
neuroendocrine-mediated modifications of peripheral vascular
resistance cause a redistribution of fluids that leads to nonuni-
form regional blood loss. Other compensatory mechanisms
consist of an increase in heart rate (HR) and myocardial
contractility to increase cardiac output (CO) (62).

The role of the sympathetic autonomic nervous system
(ANS) has been demonstrated to be crucial during bleeding to
prevent collapse through reflex tachycardia and peripheral
vasoconstriction (6, 17, 18, 23, 24, 60). Schiller et al. (62)
described a dynamic coupling between arterial blood pressure
(ABP) and sympathetic outflow oscillations during progressive
central hypovolemia. A decrease in ABP quickly initiates an
increase in traffic of sympathetic nerve impulses by decreasing
inhibitory afferent activity to the nucleus of the solitary tract;
the subsequent arterial vasoconstriction results in increased
vascular tone and compensatory elevation in ABP, activating a
baroreflex-mediated feedback reduction in sympathetic out-
flow. This baroreflex-mediated phenomenon of oscillatory cou-

Address for reprint requests and other correspondence: M. Carrara, Politec-
nico di Milano, Dept. of Electronics, Information and Bioengineering (DEIB),
Piazza Leonardo da Vinci, 32, 20133 Milan, Italy (e-mail: marta.carrara
@polimi.it).

J Appl Physiol 125: 1011–1020, 2018.
First published July 12, 2018; doi:10.1152/japplphysiol.00348.2018.

Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society. ISSN 8750-7587.http://www.jappl.org 1011

Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (131.175.028.198) on October 8, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/162433382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4187-2847
http://doi.org/10.1152/japplphysiol.00348.2018
http://doi.org/10.1152/japplphysiol.00348.2018
mailto:marta.carrara@polimi.it
mailto:marta.carrara@polimi.it
http://creativecommons.org/licenses/by/3.0/deed.en_US


pling between blood pressure (BP) and sympathetic activity
represents an important compensatory mechanism during hy-
povolemia, and there is evidence that it may be lost at the point
of hemodynamic decompensation (60). These dynamics under-
score the physiological importance of measuring oscillations of
BP rather than relying on an average trend. Analysis of BP
variability could help in understanding the extent of ANS
activation in response to volume depletion, the severity of
hemorrhage, whether the patient is approaching shock, and, at
the same time, whether he is likely to recover, i.e., when the
resuscitation is effective.

Standards of resuscitation for prehospital hemorrhagic
trauma patients include administration of fluids to stabilize BP
and vascular volume before blood transfusion and surgical
repair. However, after the replacement of blood loss the con-
sequent restoration of CO and ABP does not accurately reflect
the effectiveness of treatment (52, 58). In fact, overzealous
resuscitation with crystalloids dilutes oxygen-carrying capacity
and clotting factor concentrations, thus exacerbating coagu-
lopathy, inflammation, and hypoxia (14, 38).

For this reason, resuscitation science has tried to identify
other surrogates able to assess cardiocirculatory status and
tissue perfusion so as to better depict shock severity and
response to treatment (e.g., lactate, mixed venous saturation,
base deficit, and oxygen debt) (3, 59).

In this study, we analyzed the cardiovascular signals re-
corded during a protocol of severe hemorrhage and resuscita-
tion with the aim of characterizing the compensatory response
to hypovolemia and fluid repletion in terms of autonomic-
mediated changes in BP variability and HR variability (HRV).

Furthermore, hemorrhage is known to induce a sort of
myocardial injury (15), and the reduction in heart size with
central hypovolemia stimulates the release of other vasoactive
and volume regulatory hormones, such as arginine vasopressin
and renin. Vasoactive hormonal responses to hemorrhage in
animals may also be species dependent; for example, Thrasher
(69) confirmed that arterial baroreflexes control vasopressin
but not renin release during graded hypotension in the dog.

For these reasons, we assessed the effects of severe hemor-
rhage on heart functionality and cardiac tissue by integrating
the hemodynamic findings with measurements of plasma high-
sensitivity cardiac troponin T (hs-cTnT) and metabolite con-
centrations in left ventricular (LV) tissue.

MATERIALS AND METHODS

Study Design and Experimental Procedure

Animal preparation. Nine male pigs (36 � 2 kg) received anesthe-
sia by intramuscular injection of ketamine (20 mg/kg), completed by
ear vein injection of propofol (2 mg/kg) and sufentanil (0.3 �g/kg)
and then maintained over the whole experiment with continuous
intravenous administration of propofol (1–3 mg·kg�1·h�1), midazo-
lam (2–4 mg·kg�1·h�1), and sufentanil (0.3 �g·kg�1·h�1). Animals
were mechanically ventilated with a tidal volume of 10 ml/kg�1 and
inspired O2 fraction of 0.21 during baseline and 0.3 during and after
the shock phase; respiratory frequency was adjusted to maintain the
end-tidal partial pressure of CO2 (PCO2) values in the range 35–40
mmHg. A 7-Fr catheter was placed in the descending aorta from the
left femoral artery for blood sample collection. Another Millar Mikro-
Tip pressure catheter was inserted in the right femoral artery for
continuous monitoring of ABP. Continuous acquisition of central
venous pressure in the right atrium, pulmonary arterial pressure, and

CO through thermodilution technique was obtained by means of an
endovascular pentalumen 7-Fr catheter placed in the pulmonary artery
from the right femoral vein. Continuous monitoring of LV pressure
and volume was achieved by means of a Millar Mikro-Tip pressure
catheter inserted in the LV cavity from the right carotid artery.
Finally, a 14-Fr catheter was placed in the abdominal artery from the
left femoral artery for blood withdrawal during the induction of shock,
and a 14-Fr catheter was inserted in the left femoral vein for the
successive blood reinfusion. The study was reviewed and approved by
the Institutional Review Board and the governmental institution (Ital-
ian Ministry of Health).

Acute hemorrhagic shock model. After baseline measurements,
animals were randomized to one of two study groups: 1) HS and
resuscitation (n � 6) and 2) sham-treated control (n � 3). Bleeding
was induced by withdrawal of blood from the left femoral artery with
a peristaltic pump at a rate of 20 ml/min over an interval of 60 min,
until mean arterial pressure (MAP) reached values of 40 � 5 mmHg.
The hypoxic state with the consequent metabolic alteration was
confirmed by serial blood lactate measurements. After 2 h of the shock
condition, animals were resuscitated with a two-step procedure. Ini-
tially, fluid (normal saline) and vasopressor (norepinephrine) were
administered to restore MAP of at least 60 mmHg and a pulse pressure
variation � 12%. Then, shed blood was reinfused with the aid of a
peristaltic pump over an interval of 30 min. After 1 h of observation,
animals were euthanized by intravenous injection of Tanax (1 ml/10
kg) and heart biopsies from the LV were taken for histological,
biochemical, and omics analyses.

For sham-treated animals the preparation was identical, but they
did not undergo bleeding, fluid resuscitation, or blood reinfusion. One
of six HS animals was excluded because of elevated blood pressure at
baseline (MAP of 130 mmHg).

Animals were studied at four relevant time points: at baseline (T1),
after the development of HS (T2), after fluid and vasopressor resus-
citation (T3), and after blood reinfusion (T4).

At each time point a bolus of phenylephrine (3 �g/kg) and a bolus
of epinephrine (10 �g) were intravenously administered to elicit the
response of the ANS. Arterial and venous blood samples were
collected for blood gas analysis and laboratory analyses (i-STAT
System; Abbott Laboratories, Princeton, NJ). Plasma hs-cTnT was
measured in a central laboratory by electrochemiluminescence immu-
noassay using commercial reagents (Elecsys 2010; Roche Diagnos-
tics).

After death, a thoracotomy was immediately performed, the heart
was exposed, and the LV anterior free wall opposite to septum 1 cm
below mitral valve level was removed and collected. Samples of
50–60 mg comprising the entire thickness of the muscle (endocar-
dium to epicardium) were rinsed with protease inhibitor solution and
stored at �80°C.

Clinical Data

Clinical variables collected at each time point were the following:
CO (l/min), temperature (°C), urine output (ml), arterial pH, lactate
(mmol/l), PCO2 in arterial blood (mmHg), partial pressure of O2 in
arterial blood (PO2; mmHg), base excess (mEq/l), hs-cTnT (ng/ml),
oxygen saturation (%), hematocrit (%), and LV ejection fraction
(LVEF; %).

Hemodynamic Analyses

Signal processing. ABP, electrocardiogram (ECG), LV pressure
(LVP), and right atrial pressure (RAP) were continuously recorded
during the experiment. At each time point stationary segments of
7-min length on average were selected. R-R intervals (RRI) and HR
time series were extracted from the ECG waveform by means of the
ECG Analysis Module available for LabChart software; time series of
systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure
were obtained from the ABP waveform with specific algorithms (68,
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74). Beat-to-beat RAP time series consist of the mean values of RAP
within each cardiac cycle; the maximum of the derivative of LVP
upstroke (dP/dtmax) was derived on a beat-to-beat basis from the LVP
recording, and it was taken as an indirect measure of heart contrac-
tility. Temporal relationships were maintained among the time series:
given R(i) as the R peak of the current beat, RRI(i) designated the
difference between R(i � 1) and R(i), SAP(i) follows R(i) and is
followed by DAP(i), dP/dt(i) is the slope of the upstroke right after
R(i), and RAP(i) is the averaged RAP values within RRI(i). Finally,
an adaptive filter was applied to the data to remove outliers and
irregularities (71). Each segment was subdivided into 3-min 50%
overlapping windows. Each time series was resampled at 2 Hz by
means of zero-order hold techniques, and then it was detrended with
a high-order polynomial function to guarantee stationarity, further
verified with the Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-
Shin statistical tests.

All the indexes obtained for these series were averaged and con-
sidered for successive statistical comparisons.

Time and frequency indexes. We computed the mean value of SAP,
DAP, MAP, RRI, dP/dtmax, and RAP series.

Spectral indexes obtained from power spectra included low-fre-
quency (LF, 0.04–0.15 Hz) power distribution, total power (TP),
which represents the total area under the spectrum and is a measure of
the overall variability of the series, and LF%, which represents the
relative power in the LF band and is computed as LF/(TP � VLF)%,
where VLF is the very low-frequency component (0–0.04 Hz).

Cardiac baroreflex sensitivity analysis. We adopted the bivariate
model method (4). Briefly, the two parameters of interest are the
feedback (FB) gain, which represents the baroreflex mediated by the
ANS, i.e., changes in RRI induced by oscillations in SAP and
mediated by the ANS, and the feedforward (FF) gain, which denotes
the mechanical influence of RRI on SAP through the heart and
vasculature, also called the runoff effect. As the current RRI(i) cannot
immediately affect SAP(i), a one-beat delay was considered for the FF
relationship. Granger causality from SAP to RRI and vice versa was
verified before computation of the gains (32, 54). The order of the
model was optimized based on the Akaike information criterion,
ranging from 5 to 15.

Heart rate complexity analysis. We assessed HRV by means of
linear and nonlinear methods. In particular, we computed the root
mean square of successive differences between adjacent RRI
(RMSSD), the standard deviation of successive differences between
adjacent RRI (SDSD), and the standard deviation of the overall RRI
time series (SD) (48a). Moreover, we calculated the quadratic sample
entropy (QSE) to investigate the nonlinear characteristics of HRV
(43). The template length m was fixed at 1, and the tolerance r was
computed as 20% of the SD of the time series.

Model-based system identification of DAP variability. To better
investigate the different mechanisms of peripheral resistance control,
we implemented a multi-input single-output causal black-box model
for the prediction and spectral decomposition of DAP beat-to-beat
fluctuations from variability signals of SAP, RAP, and RRI. The
methodological principles underlying multivariate linear black-box
modeling have been exhaustively illustrated elsewhere (5). Assuming
that DAP variability is a surrogate measure of peripheral vascular
resistance (2, 51), the current DAP value is assumed to be influenced
by arterial and cardiopulmonary baroreflex control and by the me-
chanical coupling between the heart and the circulatory system, the
so-called runoff effect. To disentangle these mechanisms and to
highlight their different contributions in DAP variability, we modeled
such mechanisms as follows:

DAP(i) � �
j�s1

n

hsap� j� · SAP�i � j� � �
j�s2

n

hrap� j� · RAP�i � j�
� hrr�1� · RR�i� � e�i�

� DAPsap � DAPrap � DAPrr � DAPnoise

(1)

We limited the effect of the mechanical runoff to a single gain
parameter hrr(1), for physiological reasons. Granger causality among
the cardiovascular time series was verified before computation of the
model (32). The optimal model order n was assessed with the “ARMA
Parameter Reduction algorithm,” as proposed in Ref. 53, starting from
a maximal order value n equal to 12 and delays [s1, s2] equal to zero.
Model parameters were determined by a least-squares minimization
procedure. The black-box input-output relationships in Eq. 1 can be
assumed to be representative of the following mechanisms of DAP
variability control:

• SAP ¡ DAP (DAPsap) represents the black-box model for the
arterial baroreflex mediated sympathetic control of vasomotor
tone.

• RAP ¡ DAP (DAPrap) represents the black-box model of vaso-
motor tone control related to the cardiopulmonary baroreflex; we
assumed that RAP oscillations are representative of pressure
oscillations sensed by cardiopulmonary baroreceptors.

• RRI ¡ DAP (DAPrr) represents the mechanical effect of dia-
stolic runoff.

The residual error (DAPnoise) includes all the remaining sources of
variability not measured, such as the influence of DAP past values, the
autoregulation-mediated control of peripheral resistance, possible er-
rors, or noise.

To quantify the amount of DAP variability explained by each
component, a spectral decomposition was performed. In particular,
we performed spectral analysis of the model component series
(DAPsap, DAPrap, DAPrr) and then assessed the ratio of LF power
of DAPsap, DAPrap, or DAPrr components over total LF power
DAP (LF DAPsap/LF DAP, LF DAPrap/LF DAP, or LF DAPrr/LF
DAP), respectively.

Analysis of response to phenylephrine and epinephrine
administration. Changes in HR with respect to changes in MAP were
analyzed during phenylephrine injection to quantify the ANS-medi-
ated response to the stimulus (37).

Phenylephrine acts directly at the vessel level as a selective �1-
adrenergic receptor agonist. In physiological conditions, a bolus of
phenylephrine is expected to cause a rise in MAP accompanied by a
decrease in HR mediated by the baroreflex autonomic mechanism.

Changes in dP/dtmax during the injection of epinephrine were
analyzed to assess the ANS-mediated response of heart contractility.

Metabolomics Analyses

Metabolic profile was obtained from tissue samples of the LV for
both shock- and sham-treated animals. Sample tissue preparation was
performed as reported previously (10). Briefly, frozen tissue samples
were disintegrated with a Mikro-Dismembrator S at 3,000 revolutions/
min for 40 s. The powder obtained was resuspended in ice-cold
MeOH (3 �l/mg tissue) and homogenized for 1 min. Homogenized
samples were subsequently centrifuged for 15 min at 10,000 g, and
supernatants were stored at �80°C. Thirty microliters of each super-
natant was used for targeted metabolomics analysis. A targeted
quantitative approach using a combined direct flow injection and
liquid chromatography (LC) tandem mass spectrometry (MS/MS)
assay (AbsoluteIDQ 180 kit; Biocrates, Innsbruck, Austria) was
applied to metabolomics analysis. The assay quantifies 188 metabo-
lites from five analyte groups: acylcarnitines, amino acids, biogenic
amines, hexoses (sum of hexoses), phosphatidylcholines, and sphin-
gomyelins. The method combines derivatization and extraction of
analytes with the selective MS detection using multiple reaction
monitoring pairs. Samples were analyzed with an LC/MS (Triple
quad 5500; AB Sciex) method (for analysis of amino acids and
biogenic amines) followed by flow injection analysis-MS (analysis
of lipids, acylcarnitines, and hexose). Methodological details and
data preprocessing have been extensively reported in our previous
articles (13, 29).
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Statistical Analyses

We adopted the Mann-Whitney U-test, also known as the Wilcoxon
rank sum test, to verify significant differences in the index values
between the two groups (shock and sham-treated) separately at each
time point, whereas we used the Friedman test to assess significant
changes among time points within the same group of animals. Sig-
nificance was considered at P � 0.05.

RESULTS

Hemodynamic Analysis and ANS Indexes

Bleeding caused a significant decrease in MAP, CO, and
filling pressures and a concomitant significant increase in HR,
heart contractility (dP/dtmax) and lactate compared with sham-
treated animals (Fig. 1, Table 1). After resuscitation with fluids
and norepinephrine, MAP recovered to the target of 60 mmHg
in all animals except one, but HR and heart contractility
remained significantly higher than baseline values. Only after
resuscitation with shed blood did all the indexes return to
baseline values (Fig. 1).

The high level of lactate in HS pigs confirmed the severity
of the hypovolemic condition. However, the preserved ejection
fraction (LVEF) suggested that the severity of shock was not
sufficient to induce a concurrent acute heart failure.

Table 2 shows that LF power of BP components (SAP, DAP,
MAP) decreased during shock (T2) and remained lower with

respect to baseline after fluid and vasopressor resuscitation
(T3). After blood reinfusion (T4) the values returned similar to
baseline and higher than T3. A similar trend was observed for
LF power of HR and dP/dtmax, even if less marked. Baroreflex
FB gain was reduced at T2 and T3 (significantly at T2) and
recovered at T4; the opposite trend was observed for FF gain.

Table 3 reports the HRV indexes. Variability of RRI was
dramatically reduced at T2 and did not recover at T3, after fluid
and vasopressor administration.

The ANS response to the administration of phenylephrine in
shock pigs was quantified by considering the amplitude of the
change in MAP and HR during the administration of the bolus.
Similarly, the response to epinephrine was analyzed by con-
sidering the magnitude of the increase in dP/dtmax during bolus
injection. Both MAP and HR variations in response to phen-
ylephrine and dP/dtmax variation in response to epinephrine
were greatly reduced with respect to baseline at the end of the
shock period (Table 4).

As regards the DAP model, the portion of DAP variability
mediated by the arterial baroreflex mechanism (LF DAPsap/LF
DAP) was predominant with respect to the other mechanisms
in each phase of the experiment (Fig. 2). A significant increase
in LF DAPsap/LF DAP was observed in shock with respect to
baseline. Furthermore, the mechanical influence of the heart on
the circulatory system (LF DAPrr/LF DAP) and the portion of
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Fig. 1. Distributions (median, 25th and 75th percentiles) of the averaged value at each time point of the following variables: mean arterial pressure (MAP), heart
rate (HR), maximum of 1st derivative of left ventricular pressure over time (dP/dtmax), and right atrial pressure (RAP) for both populations of hemorrhagic shock-
and sham-treated animals. Open symbols indicate values relating to each shock- or sham-treated pig. T1, baseline; T2, after development of shock; T3, after fluid
and vasopressor resuscitation; T4, after blood reinfusion; bpm, beats per minute. *P � 0.05 shock- vs. sham-treated animals (Mann-Whitney U-test); ##P � 0.01
vs. T1; §P � 0.05, §§P � 0.01 vs. T2 (Friedman test, only for shock-treated pigs).
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DAP variability regulated by the cardiopulmonary baroreflex
(LF DAPrap/LF DAP) presented a u-shaped trend: they de-
creased during the shock period, remained lower than baseline
after resuscitation, and recovered to baseline values after blood
reinfusion.

Left Ventricle Metabolic Profiling by Targeted Metabolomics

All the measured metabolites are reported in Supplemental
Table S1 (Supplemental Material for this article is available
online at the Journal website). Only 11 metabolites signifi-

Table 1. Clinical and laboratory data for hemorrhagic shock- and sham-treated animals at each time point

T1 T2 T3 T4

Hct, %
Shock 23 (22.75, 29.5) 21 (20, 23.75) 10 (10, 11)## 20 (17.75, 25.5)
Sham 26 (25.3, 27.5) 25 (23.5, 28) 26 (23.8, 26)* 25 (24.3, 25)

CO, l/min
Shock 3.6 (2.4, 3.8) 1.5 (1.5, 1.8) 5 (4, 5.5)§§ 2.6 (2.1, 3.9)
Sham 3.5 (3, 4.5) 3.3 (3.2, 3.4)* 3.2 (3.1, 3.6) 3.6 (3.5, 3.8)

LVEF, %
Shock 59.9 (57.8, 66.6) 72.5 (68.3, 76.9) 64 (62.1, 68.9) 62 (52.5, 69.4)
Sham 60.5 (56.5, 60.9) 60.9 (60.2, 66.9) 64.4 (57.8, 68.2) 57.1 (54.2, 61.4)

Lactate, mmol/l
Shock 1.8 (1.5, 2.2) 8.5 (7.9, 8.8)# 5.9 (5.1, 5.9) (n � 4) 2.1 (1.6, 2.3)§
Sham 1.2 (0.9, 2.5) 0.9 (0.8, 1.7)* 0.8 (0.6, 1.3) 0.8 (0.7, 1.1)*

hs-cTnT, ng/l
Shock 13.9 (9.4, 33.1) 145.4 (124.3, 589.6)## 105.2 (86.6, 508.5)# 61.9 (28.9, 89.8)
Sham 3 (3, 12.5) 4.9 (3.5, 14)* 3.9 (3.2, 40.4)* 14.7 (9.6, 15.1)*

Urine output, ml
Shock 130 (107.5, 205) (n � 3) 7.5 (0, 20) (n � 4) 260 (170, 285) (n � 4) 220 (125, 342)
Sham 180 (97.5, 270) 60 (85.5, 97.5) 70 (47.5, 85) 60 (60, 75)

Temperature, °C
Shock 37.9 (37.6, 38.2) 38.3 (38, 39) 36.5 (35.8, 36.9) 36.1 (35.5, 36.7)§§
Sham 37.5 (36.8, 37.7) 37 (36.3, 37.4) 37.2 (36.3, 37.4) 37.3 (36.3, 37.5)

pH
Shock 7.5 (7.49, 7.51) 7.35 (7.3, 7.39) 7.35 (7.23, 7.37)## 7.34 (7.33, 7.43)
Sham 7.5 (7.45, 7.5) 7.5 (7.49, 7.5)* 7.51 (7.47, 7.51)* 7.47 (7.43, 7.52) (n � 2)

PCO2, mmHg
Shock 36.2 (34.4,39.4) 39.7 (35.8,40.6) 39.3 (38.1,46.5) 47.2 (41.6,48.7)#

Sham 40.6 (37.5, 40.9) 39.6 (39.6, 42,2) 41.4 (39.6, 41.7) 41.7 (37.8, 45.6) (n � 2)
PO2, mmHg

Shock 97 (88.8, 126.3) 146 (142.8, 157.5) 164 (148.5, 166)# 131 (109.8, 155.5)
Sham 89 (80.8, 95) 146 (119, 153.5) 133 (112.8, 151) 124.5 (110, 139)

Values are medians (25th, 75th percentiles). Hct, hematocrit; CO, cardiac output; LVEF, left ventricular ejection fraction; hs-cTnT, plasma high-sensitivity
cardiac troponin T; PCO2, partial CO2 pressure; PO2, partial O2 pressure; T1, baseline; T2, after development of shock; T3, after fluid and vasopressor
resuscitation; T4, after blood reinfusion. Comparisons between shock and sham: *P � 0.05 (Mann-Whitney U-test). Comparisons between time points: #P �
0.05, ##P � 0.01 vs. T1; §P � 0.05, §§P � 0.01 vs. T2 (Friedman test).

Table 2. Frequency indexes and baroreflex gains for hemorrhagic shock pigs evaluated at each time point

T1 T2 T3 T4

SAP
LF power, a.u. 105.3 (39.9, 165.3) 18 (12.2, 29.6) 12.5 (6.3, 35.8)# 78.9 (48.8, 102.1)
LF % power, % 22.2 (7.2, 39.4) 4.8 (2.4, 6.2) 4.1 (3.3, 12.8) 18 (14.5, 21.7)

DAP
LF power, a.u. 155.2 (93, 234.7) 37.9 (24.7, 46.7)# 39.9 (33.5, 71.3) 196.3 (110.6, 248.3)§
LF % power, % 38.1 (20.5, 48.4) 11.4 (5.6, 11.7) 11.6 (7.1, 20.8) 53.6 (32.6, 60.7)§

MAP
LF power, a.u. 80.3 (63.7, 123.5) 25.2 (18.1, 41.2) 24.8 (9.6, 47.6) 119.1 (99.1, 174.8)§†
LF % power, % 16.6 (13.5, 29.8) 8.7 (4.2, 10.4) 7.4 (5.9, 13.1) 29.3 (26.4, 43.3)§

RRI
LF power, a.u. 171.5 (161.7, 233) 97.3 (73.2, 130.5) 125.8 (75, 142) 116.3 (104.6, 172.7)
LF % power, % 42.8 (33.4, 57.6) 32.2 (24.9, 42.6) 31.1 (21.6, 36.6) 30 (25.2, 41.2)

dP/dtmax

LF power, a.u. 147.8 (123.7, 214.6) 75 (50.1, 118.7) 104 (45.6, 133.8) 152.1 (111.3, 202.1)
LF % power, % 31.6 (25.8, 44.9) 21.3 (14.1, 29.7) 22.7 (7.1, 40.9) 30.1 (22.6, 56.7)

BRS
FB gain, ms/mmHg 3.2 (1.1, 11.4) 0.08 (0.06, 0.2)## 0.2 (0.1, 0.6) 1.1 (0.8, 5.7)§
FF gain, mmHg/ms 0.05 (0.03, 0.1) 0.3 (0.2, 1.6) 0.4 (0.2, 0.5) 0.03 (0.02, 0.1)§

Values are medians (25th, 75th percentiles). SAP, systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; RRI, R-R interval;
BRS, baroreflex sensitivity; FB, feedback; FF, feedforward; T1, baseline; T2, after development of shock; T3, after fluid and vasopressor resuscitation; T4, after
blood reinfusion. Comparisons between time points: #P � 0.05, ##P � 0.01 vs. T1; §P � 0.05 vs. T2; †P � 0.05 vs. T3 (Friedman test).
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cantly changed concentrations between sham-treated and HS
pigs in LV tissue (Table 5). LV tissue of HS animals was
mainly characterized by enhanced levels of long-chain phos-
phatidylcholine (PC) species and reduced concentrations of a
few amino acids compared with LV tissue from sham-treated
animals.

DISCUSSION

Cardiovascular Indexes and Models

The trends of vital signs and lactate confirmed the hypovo-
lemic shock associated with a hyperdynamic cardiovascular
response (Fig. 1, Table 1).

Changes in LF oscillations of BP can be related to changes
in the outflow of the sympathetic nervous system, and spectral
analysis of BP has been proven to be a powerful tool for
identification of the different cardiovascular control mecha-
nisms that regulate BP (65, 66). From this perspective, the
reduction of LF power we observed during shock (Table 2) can
be interpreted as a withdrawal or a saturation of sympathetic
activity (6, 16, 25, 41, 64). Convertino et al. (22) and Cooke et
al. (25) measured muscle sympathetic nerve activity during
increasing negative pressure in a lower body negative pressure
protocol, supporting the hypothesis that sympathetic with-
drawal may represent a fundamental mechanism for the devel-
opment of circulatory shock. Our results are thus in line with
this hypothesis, i.e., acute bleeding and HS may cause a
cardiovascular collapse characterized by a depressed peripheral
sympathetic outflow.

Many hypotheses have been formulated in the past years,
trying to explain this phenomenon. Some literature supports
the concept that an “empty heart” might contribute to cardiac
receptor stimulation, resulting in the activation of cardiac vagal
afferents and subsequent sympathetic depression (50, 62, 64).
Koyama et al. (41) proposed that prolonged brain ischemia
could be the triggering cause of sympathetic outflow depres-
sion documented in hypovolemic shock. Another possible

mechanism that may contribute to the loss of sympathetic
peripheral outflow is the resetting of baroreflexes, which leads
to a loss of synchrony between arterial BP and muscle sym-
pathetic nerve activity, suggesting an impairment of arterial
baroreflex control over sympathetic vasomotor activity (20, 24,
39, 40).

The available data and the results of our study do not fully
support one of the above mechanisms. However, the hypoth-
esis of prolonged brain ischemia-mediated sympathetic depres-
sion can be excluded since the shock condition was not
prolonged for long and all animals recovered after blood
reinfusion. Interestingly, after resuscitation with fluid and va-
sopressor (T3) the level of LF power did not recover to
baseline value despite the animals reaching the target MAP
values, and CO was higher than baseline (Table 1). Therefore,
the persisting depressed LF oscillations of BP cannot be
attributed to vagal reflexes activated by an unloading of car-
diopulmonary baroreceptors.

As regards the cardiac baroreflex sensitivity (BRS) we
observed a significant decrease of sensitivity during shock
(BRS FB gain) that persisted even after the resuscitation
maneuvers at T3 (Table 2). A dynamic reduction in BRS with
decreased central blood volume has already been reported (19,
21, 23, 28, 47, 57, 73), and since it is known to reflect
baroreflex-mediated cardiac vagal withdrawal (23) it could be
explained as a compensatory mechanism that leads to a greater
tachycardia reserve (18).

Interestingly, the opposite trend was observed for the feed-
forward gain (BRS FF gain), or runoff effect, which was higher
compared with baseline both in shock (T2) and after fluid and
vasopressor resuscitation (T3). This may be due to a markedly
high HR.

The black-box model of DAP variability, taken as a surro-
gate of peripheral vascular resistance, highlighted interesting
changes in peripheral control mechanisms induced by severe
blood loss. During shock the cardiac baroreflex-mediated DAP
oscillations (DAPsap) significantly increased with respect to

Table 3. HRV and HR complexity indexes for hemorrhagic shock pigs evaluated at each time point

T1 T2 T3 T4

RMSSD, ms 62.4 (37.8, 302.1) 9 (6.4, 16.6)# 20.7 (16.8, 22.5) 58.3 (34.5, 145.1)§
SDSD, ms 3.3 (2, 15.8) 0.5 (0.3, 0.8)# 1.1 (0.9, 1.2) 2.3 (1.8, 7.6)§
SD, ms 17.9 (5.4, 34.4) 1.4 (1.1, 2.7)# 2.8 (2.6, 4.5) 14.1 (6.2, 15.6)§
QSE 2.4 (1.9, 3.5) �0.1 (�0.4, 0.8)# 0.9 (0.4, 1.1) 2.3 (1.8, 3.1)§

Values are medians (25th, 75th percentiles). HR, heart rate; HRV, HR variability; RMSSD, root mean square of successive difference; SD, standard deviation;
SDSD, standard deviation of successive difference; QSE, quadratic sample entropy; T1, baseline; T2, after development of shock; T3, after fluid and vasopressor
resuscitation; T4, after blood reinfusion. Comparisons between time points: #P � 0.05 vs. T1; §P � 0.05 vs. T2 (Friedman test).

Table 4. Delta values of MAP, HR, and dP/dtmax during administration of phenylephrine or epinephrine for shock animals
at each time point

T1 T2 T3 T4

Responses to phenylephrine administration
	MAP, mmHg 33.5 (27.7, 41.7) 10.6 (6.1, 13)# 27.5 (16, 31.5) 27 (19.4, 29.5)
	HR, beats/min �13.4 (�27, �9.1) 0.08 (�5.4, 1.9)# �5.1 (�10.5, �0.6) �10.1 (�12.5, �8.2)

Responses to epinephrine administration
	dP/dtmax, mmHg/s 3,401.2 (2,678.2, 3,552.7) 1,602.7 (946.1, 1,986.5)# 2,188.6 (1,983.2, 3,082.3) 2,349.2 (1,826.8, 2,515.6)

Delta values (i.e., difference between final value and starting value) are medians (25th, 75th percentiles). MAP, mean arterial pressure; HR, heart rate; dP/dtmax,
maximum 1st derivative of left ventricular pressure over time; T1, baseline; T2, after development of shock; T3, after fluid and vasopressor resuscitation; T4,
after blood reinfusion. Comparisons between time points: #P � 0.05 vs. T1.

1016 HEMODYNAMIC AND METABOLIC ALTERATIONS IN HEMORRHAGIC PIGS

J Appl Physiol • doi:10.1152/japplphysiol.00348.2018 • www.jappl.org
Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (131.175.028.198) on October 8, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



baseline, passing from ~30% to 80% in all animals. The other
components (DAPrap, DAPrr) decreased at T2 and T3 with
respect to baseline (Fig. 2). These results highlighted that the
large reduction in peripheral vascular resistance can be ex-
plained again by the high HR, which cannot sustain BP
changes.

The results of phenylephrine and epinephrine maneuvers
confirmed a reduced sympathetic modulation of HR and BP as
previously reported. During shock there was a reduced respon-
siveness to the drugs, mostly in the HR: indeed, the variation
during phenylephrine administration was negligible (Table 4).

Analysis of HRV revealed that HS induced a decrease in
HRV and HR complexity. In this context, the notion of com-
plexity, as calculated by means of entropy estimates, refers to
the regularity/irregularity of the time series, i.e., the degree to
which template patterns repeat themselves; repeated patterns
imply regularity and lead to reduced values of entropy. A loss
of HR complexity, which means a higher regularity of the HR,

is considered a feature of impaired adaptation of the ANS to
physiological stress in several cardiovascular pathologies (42,
46, 48). Accordingly, our results show that the autonomic
modulation of HR in response to acute stress induced by
hemorrhage and shock was severely impaired (Table 3), as
already reported in other studies (7). Interestingly, this condi-
tion is not relieved after administration of fluids and vasopres-
sors but only after reinfusion of shed blood.

HRV is assumed to be mostly dependent on the parasympa-
thetic outflow to the heart; moreover, the recovery of barore-
flex functionality, which followed the same trend as HRV
during the experiment, has also been associated with an in-
creased vagal activity in several pathologies (44). Thus we
could suggest a vagal driver of effective resuscitation (61).
Furthermore, an extensive literature has recently pointed to the
central role of the vagus nerve as therapeutic target: direct
vagus nerve stimulation has been proven to be beneficial in
several diseases, including hemorrhage and shock (8, 26).

The lack of a recovery in the ANS control after resuscitation
with fluid and vasopressor could be explained by the fact that
the massive fluid infusion produced a reduction in the arterial
blood oxygen content and, consequently, in the delivery of
oxygen to peripheral tissues. Indeed, the hematocrit was sig-
nificantly reduced and blood lactate still high at T3 (Table 1),
supporting the notion of an ongoing mismatch between whole
body oxygen consumption and oxygen delivery. Furthermore,
the time window between T2 and T3 may be too short to obtain
a complete resolution of the oxygen debt. Finally, the volume
expansion offered by fluid infusion is limited because of
redistribution of fluids in the interstitium and excretion in urine
that usually occur soon after the beginning of fluid resuscita-
tion (36).

After the transfusion of the shed blood we observed a
complete restoration of HR and BP variability, lactate clear-
ance, and hemodynamics to near-baseline values. Probably the
increase in hematocrit and arterial oxygen content was effec-

Ratio of LF power of DAP components over LF power DAP
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Fig. 2. Ratio between low-frequency (LF) absolute
power of each predicted component and LF abso-
lute power of diastolic arterial pressure (DAP) at
each time point for hemorrhagic shock animals.
Column height is median value for the population;
black bars indicate values of 25th and 75th percen-
tiles. T1, baseline; T2, after development of shock;
T3, after fluid and vasopressor resuscitation; T4,
after blood reinfusion; SAP, systolic arterial pres-
sure; RR, R-R interval. #P � 0.05 vs. T1 (Friedman
test).

Table 5. Concentration values of metabolites significantly
different in LV tissue between sham- and hemorrhagic
shock-treated animals

Shock Sham

PC aa C34:4 0.7 (0.4, 0.8) 0.3 (0.2, 0.3)
PC aa C36:4 11.9 (7.8, 17.9) 4.8 (3.2, 5.2)
PC aa C36:5 2.6 (1.7, 3.4) 0.9 (0.7, 1.1)
PC aa C38:4 1.8 (1.2, 2.3) 0.7 (0.4, 0.8)
PC aa C38:6 1.8 (1.2, 2.3) 0.65 (0.57, 0.66)
PC ae C38:0 0.3 (0.2, 0.4) 0.13 (0.1, 0.13)
PC ae C42:3 0.08 (0.04, 0.09) 0.029 (0.028, 0.03)
Arginine 11.7 (6.8, 14.3) 26.3 (24.4, 28.2)
Isoleucine 6.5 (5.9, 9.1) 11.9 (11.7, 13.8)
Ornithine 2.5 (1.8, 3.04) 4.4 (4.2, 5.3)
SM C22:3 0.1 (0.09, 0.14) 0.07 (0.05, 0.07)

Values (in �m) are medians (25th, 75th percentiles). LV, left ventricular; PC
aa Cxx:x, phosphatidylcholine diacyl C xx:x; SM C22:3, sphingomyelin C
22:3.
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tive in restoring tissue oxygenation. Another hypothesis, based
on the study of hemodilution physiology, is that the restoration
of systemic and microvascular conditions after hemorrhage
followed by hypovolemic shock depends mostly on blood
rheological properties rather than on maintenance of oxygen-
carrying capacity. The rationale for this hypothesis originates
from experimental studies in HS, showing that a threshold of
blood/plasma viscosity is required to maintain microvascular
perfusion and, in particular, functional capillary density (11).

Cardiac Functionality and LV Tissue

The shock protocol produced a clear decrease in CO and
MAP and a hypoxic condition as supported by a lactate
increase above 8 mmol/l. LVEF, however, was preserved, with
an increased cardiac contractility during shock. After fluid
resuscitation (T3) LVEF returned to baseline value, but only
after blood reinfusion (T4) did both CO and dP/dtmax recover
to values similar to baseline.

These results suggest that the shock insult did not impair
cardiac contractility. The main reason for this result could be
the short period of shock before initiation of treatments. In-
deed, in our study shock was maintained up to 2 h after
confirmation of lactate increase, while in previous experimen-
tal studies of HS the onset of myocardial depression was
usually observed between 2 and 5 h after insult (49, 55). In our
study, shock was not sufficiently prolonged to significantly
impair cardiac contractility and to induce acute heart failure.

Nevertheless, plasma hs-cTnT increased significantly in
shocked animals, remained high after fluid resuscitation, and
finally returned to baseline values after blood reinfusion. The
severity and the kinetics of troponin release do not support
the hypothesis of an acute coronary syndrome (1, 31); indeed, the
peak plasma concentration observed in shock was only modestly
increased. Probably such an increase in hs-cTnT is the result of a
general ischemic sufferance of cardiomyocytes. The most plausi-
ble hypothesis may consist in the mismatch between oxygen
delivery and oxygen consumption, leading to a type II myocardial
ischemia. In fact, during hemorrhage and resuscitation with fluids,
several factors may determine decrease in myocardial oxygen
delivery (hypotension, low CO, reduced diastolic time, reduced
hematocrit following fluid resuscitation) and increase in myocar-
dial oxygen consumption (extreme tachycardia, circulating cat-
echolamines, both endogenous and administered as support, i.e.,
norepinephrine) (70).

Another possible explanation of the increase in hs-cTnT
could be the mechanical stress on the LV wall in the condition
of elevated myocardial contractility and low filling volume,
which causes sarcomere disruption in a highly susceptible spot
(i.e., “zonal lesion”) (35). Unfortunately, we did not investigate
the presence of ischemic lesions in histological samples of the
LV, so we cannot confirm this hypothesis.

As regards metabolomics findings, only a small subset of the
measured metabolites were differently abundant in LV tissue
between HS and sham treatment (Table 5). A disturbance in the
composition of myocardial membrane PC species occurred.
Indeed, shocked LV tissue presented a marked increase in PC
species, containing long-chain polyunsaturated fatty acids,
such as PCaaC34:4, PCaaC36:4, and PCaaC36:5, with further
elongation/desaturation products. We can speculate that since
long-chain polyunsaturated fatty acids reduce T cell activation

and dampen inflammation (12), their enhanced presence would
help relieve serious inflammatory conditions.

Concomitantly, raised plasmalogen levels such as
PCasC38:0 and PCec42:3, which act as endogenous antioxi-
dants (9), may protect cardiomyocytes during hypoxia in
shocked LV. Interestingly, plasmalogens, highly predominant
in the sarcolemma and sarcoplasmic reticulum of myocardial
cells (33), play an important role in regulating myocardial
electrical excitability (72) and sodium/calcium exchange in
cardiac sarcolemmal preparations (30).

Together these findings converge toward a plausible adap-
tation of the LV metabolic asset to cope with the insult. Such
change in the metabolic asset might also be viewed as a key
mechanism for either membrane structural rearrangement or
damage to cardiomyocytes (45) and might directly or indirectly
contribute to the production of electrophysiological abnormal-
ities and arrhythmogenesis.

Moreover, shocked LV tissue presented a dysregulated ar-
ginine metabolism, characterized by reduced arginine and
ornithine levels, thus suggesting a possible imbalance of nitric
oxide (NO) formation. In heart, alterations of the arginine-NO
pathway have been reported in chronic heart failure (63). NO
synthesis requires the presence of arginine inside the cells of
responsive tissues. Although some cell types can synthesize
arginine from ornithine or citrulline, cardiac myocytes cannot
produce it, and thus cardiac muscle must import this amino
acid from the circulation. Depletion of arginine leads to nitric
oxide synthase uncoupling. Combination of O2

� with NO from
enzymatic or nonenzymatic sources will result in the produc-
tion of peroxynitrite (ONOO�), an oxidizing agent associated
with cell damage, decreased myocardial contractility, and con-
gestive heart failure (56).

Limitations of the Study

The main limitation of this study is the small sample size.
Moreover, the short time between T2 (shock), T3 (resuscita-
tion), and T4 (blood reinfusion) could have attenuated the
effects of shock in the physiological and metabolic responses.
Finally, the unavailability of direct measures of autonomic
outflow, such as muscle or cardiac sympathetic nerve activity,
did not permit more than speculation about the compensatory
mechanisms that are activated or suppressed during shock and
resuscitation.

Conclusions

The results of this study suggest that BP variability, HRV,
and baroreflex trends can be valuable tools to evaluate the
severity of HS and they may represent a more useful end point
for resuscitation, in combination with standard measurements
such as mean values and biological measurements. In fact, they
can add important insights into the recovery of the autonomic
mechanisms of BP and HR regulation, which are fundamental
for the recovery of organ dysfunction in shocked subjects. In
this study, for example, resuscitation with fluid and vasopres-
sor was effective in restoring circulating volume, CO, and
mean BP, but indexes of autonomic functionality revealed that
ANS control was not fully recovered. Interestingly, the high
concentrations of cardiac troponin and a dysregulated metab-
olism in the LV tissue after resuscitation are signs of a stress
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condition induced by shock not resolved by the resuscitation
maneuver.

GRANTS

This study was supported by the European Union FP7 Health Programme,
ShockOmics Project, Grant No. 602706.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

G. Baselli and M.F. conceived and designed research; G. Babini and G.R.
performed experiments; M.C., R.P., L.B., and M.F. analyzed data; M.C., G.
Babini, G.R., R.P., and M.F. interpreted results of experiments; M.C. prepared
figures; M.C. drafted manuscript; M.C., G. Babini, G.R., R.P., and M.F. edited
and revised manuscript; M.C., G. Babini, G. Baselli, G.R., R.P., L.B., and M.F.
approved final version of manuscript.

REFERENCES

1. Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in
coronary vs. non-coronary disease. Eur Heart J 32: 404–411, 2011.
doi:10.1093/eurheartj/ehq456.

2. Aletti F, Ferrario M, Xu D, Greaves DK, Shoemaker JK, Arbeille P,
Baselli G, Hughson RL. Short-term variability of blood pressure: effects
of lower-body negative pressure and long-duration bed rest. Am J Physiol
Regul Integr Comp Physiol 303: R77–R85, 2012. doi:10.1152/ajpregu.
00050.2012.

3. Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation
strategies by oxygen debt repayment. Shock 33: 113–122, 2010. doi:10.
1097/SHK.0b013e3181b8569d.

4. Barbieri R, Parati G, Saul JP. Closed- versus open-loop assessment of
heart rate baroreflex. IEEE Eng Med Biol Mag 20: 33–42, 2001. doi:10.
1109/51.917722.

5. Baselli G, Porta A, Rimoldi O, Pagani M, Cerutti S. Spectral decom-
position in multichannel recordings based on multivariate parametric
identification. IEEE Trans Biomed Eng 44: 1092–1101, 1997. doi:10.
1109/10.641336.

6. Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio
LC. Sympathetic nerve activity and heart rate variability during severe
hemorrhagic shock in sheep. Auton Neurosci 136: 43–51, 2007. doi:10.
1016/j.autneu.2007.03.004.

7. Batchinsky AI, Cooke WH, Kuusela T, Cancio LC. Loss of complexity
characterizes the heart rate response to experimental hemorrhagic shock in
swine. Crit Care Med 35: 519–525, 2007. doi:10.1097/01.CCM.
0000254065.44990.77.

8. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins
LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve
stimulation attenuates the systemic inflammatory response to endotoxin.
Nature 405: 458–462, 2000. doi:10.1038/35013070.

9. Brites P, Waterham HR, Wanders RJ. Functions and biosynthesis of
plasmalogens in health and disease. Biochim Biophys Acta 1636: 219–
231, 2004. doi:10.1016/j.bbalip.2003.12.010.

10. Brunelli L, Caiola E, Marabese M, Broggini M, Pastorelli R. Compar-
ative metabolomics profiling of isogenic KRAS wild type and mutant
NSCLC cells in vitro and in vivo. Sci Rep 6: 28398, 2016. doi:10.1038/
srep28398.

11. Cabrales P, Tsai AG, Intaglietta M. Is resuscitation from hemorrhagic
shock limited by blood oxygen-carrying capacity or blood viscosity?
Shock 27: 380–389, 2007. doi:10.1097/01.shk.0000239782.71516.ba.

12. Calder PC, Bevan SJ, Newsholme EA. The inhibition of T-lymphocyte
proliferation by fatty acids is via an eicosanoid-independent mechanism.
Immunology 75: 108–115, 1992.

13. Cambiaghi A, Pinto BB, Brunelli L, Falcetta F, Aletti F, Bendjelid K,
Pastorelli R, Ferrario M. Characterization of a metabolomic profile
associated with responsiveness to therapy in the acute phase of septic
shock. Sci Rep 7: 9748, 2017. doi:10.1038/s41598-017-09619-x.

14. Cannon JW. Hemorrhagic shock. N Engl J Med 378: 370–379, 2018.
doi:10.1056/NEJMra1705649.

15. Chatpun S, Cabrales P. Cardiac systolic function recovery after hemor-
rhage determines survivability during shock. J Trauma 70: 787–793, 2011.
doi:10.1097/TA.0b013e3181e7954f.

16. Converse RL Jr, Jacobsen TN, Jost CM, Toto RD, Grayburn PA,
Obregon TM, Fouad-Tarazi F, Victor RG. Paradoxical withdrawal of
reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J
Clin Invest 90: 1657–1665, 1992. doi:10.1172/JCI116037.

17. Convertino VA, Sather TM. Vasoactive neuroendocrine responses asso-
ciated with tolerance to lower body negative pressure in humans. Clin
Physiol 20: 177–184, 2000. doi:10.1046/j.1365-2281.2000.00244.x.

18. Convertino VA, Rickards CA, Ryan KL. Autonomic mechanisms as-
sociated with heart rate and vasoconstrictor reserves. Clin Auton Res 22:
123–130, 2012. doi:10.1007/s10286-011-0151-5.

19. Convertino VA, Reister CA. Effect of G-suit protection on carotid-
cardiac baroreflex function. Aviat Space Environ Med 71: 31–36, 2000.

20. Convertino VA, Rickards CA, Ryan KL. Responses of sympathetic
nerve activity to presyncope: new insights about mechanisms of fainting.
J Gravit Physiol 17: 27–30, 2010.

21. Convertino VA, Ryan KL, Rickards CA, Salinas J, McManus JG,
Cooke WH, Holcomb JB. Physiological and medical monitoring for en
route care of combat casualties. J Trauma 64, Suppl: S342–S353, 2008.
doi:10.1097/TA.0b013e31816c82f4.

22. Convertino VA, Ludwig DA, Cooke WH. Stroke volume and sympa-
thetic responses to lower-body negative pressure reveal new insight into
circulatory shock in humans. Auton Neurosci 111: 127–134, 2004. doi:
10.1016/j.autneu.2004.02.007.

23. Cooke WH, Convertino VA. Heart rate variability and spontaneous
baroreflex sequences: implications for autonomic monitoring during hem-
orrhage. J Trauma 58: 798–805, 2005. doi:10.1097/01.TA.0000151345.
16338.FD.

24. Cooke WH, Rickards CA, Ryan KL, Kuusela TA, Convertino VA.
Muscle sympathetic nerve activity during intense lower body negative
pressure to presyncope in humans. J Physiol 587: 4987–4999, 2009.
doi:10.1113/jphysiol.2009.177352.

25. Cooke WH, Ryan KL, Convertino VA. Lower body negative pressure as
a model to study progression to acute hemorrhagic shock in humans. J
Appl Physiol (1985) 96: 1249–1261, 2004. doi:10.1152/japplphysiol.
01155.2003.

26. Czura CJ, Schultz A, Kaipel M, Khadem A, Huston JM, Pavlov VA,
Redl H, Tracey KJ. Vagus nerve stimulation regulates hemostasis in
swine. Shock 33: 608–613, 2010. doi:10.1097/SHK.0b013e3181cc0183.

27. Eastridge BJ, Hardin M, Cantrell J, Oetjen-Gerdes L, Zubko T,
Mallak C, Wade CE, Simmons J, Mace J, Mabry R, Bolenbaucher R,
Blackbourne LH. Died of wounds on the battlefield: causation and
implications for improving combat casualty care. J Trauma 71, Suppl:
S4–S8, 2011. doi:10.1097/TA.0b013e318221147b.

28. Faris IB, Jamieson GG, Ludbrook J. Effects of acute changes in blood
volume on the carotid sinus baroreceptor reflex in conscious rabbits. J
Physiol 337: 563–573, 1983. doi:10.1113/jphysiol.1983.sp014642.

29. Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guat-
teri L, Raimondi F, Gattinoni L, Latini R, Masson S, Ristagno G,
Pastorelli R. Mortality prediction in patients with severe septic shock: a
pilot study using a target metabolomics approach. Sci Rep 6: 20391, 2016.
doi:10.1038/srep20391.

30. Ford DA, Hale CC. Plasmalogen and anionic phospholipid dependence of
the cardiac sarcolemmal sodium-calcium exchanger. FEBS Lett 394:
99–102, 1996. doi:10.1016/0014-5793(96)00930-1.

31. Giannitsis E, Katus HA. Cardiac troponin level elevations not related to
acute coronary syndromes. Nat Rev Cardiol 10: 623–634, 2013. doi:10.
1038/nrcardio.2013.129.

32. Granger CW. Economic processes involving feedback. Inf Control 6:
28–48, 1963. doi:10.1016/S0019-9958(63)90092-5.

33. Gross RW. Identification of plasmalogen as the major phospholipid
constituent of cardiac sarcoplasmic reticulum. Biochemistry 24: 1662–
1668, 1985. doi:10.1021/bi00328a014.

35. Hackel DB, Ratliff NB, Mikat E. The heart in shock. Circ Res 35:
805–811, 1974. doi:10.1161/01.RES.35.6.805.

36. Hahn RG, Lyons G. The half-life of infusion fluids: an educational
review. Eur J Anaesthesiol 33: 475–482, 2016. doi:10.1097/EJA.
0000000000000436.

37. Head GA, McCarty R. Vagal and sympathetic components of the heart
rate range and gain of the baroreceptor-heart rate reflex in conscious
rats. J Auton Nerv Syst 21: 203–213, 1987. doi:10.1016/0165-
1838(87)90023-3.

38. Hess JR, Brohi K, Dutton RP, Hauser CJ, Holcomb JB, Kluger Y,
Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Hoyt DB, Bouillon

1019HEMODYNAMIC AND METABOLIC ALTERATIONS IN HEMORRHAGIC PIGS

J Appl Physiol • doi:10.1152/japplphysiol.00348.2018 • www.jappl.org
Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (131.175.028.198) on October 8, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.

https://doi.org/10.1093/eurheartj/ehq456
https://doi.org/10.1152/ajpregu.00050.2012
https://doi.org/10.1152/ajpregu.00050.2012
https://doi.org/10.1097/SHK.0b013e3181b8569d
https://doi.org/10.1097/SHK.0b013e3181b8569d
https://doi.org/10.1109/51.917722
https://doi.org/10.1109/51.917722
https://doi.org/10.1109/10.641336
https://doi.org/10.1109/10.641336
https://doi.org/10.1016/j.autneu.2007.03.004
https://doi.org/10.1016/j.autneu.2007.03.004
https://doi.org/10.1097/01.CCM.0000254065.44990.77
https://doi.org/10.1097/01.CCM.0000254065.44990.77
https://doi.org/10.1038/35013070
https://doi.org/10.1016/j.bbalip.2003.12.010
https://doi.org/10.1038/srep28398
https://doi.org/10.1038/srep28398
https://doi.org/10.1097/01.shk.0000239782.71516.ba
https://doi.org/10.1038/s41598-017-09619-x
https://doi.org/10.1056/NEJMra1705649
https://doi.org/10.1097/TA.0b013e3181e7954f
https://doi.org/10.1172/JCI116037
https://doi.org/10.1046/j.1365-2281.2000.00244.x
https://doi.org/10.1007/s10286-011-0151-5
https://doi.org/10.1097/TA.0b013e31816c82f4
https://doi.org/10.1016/j.autneu.2004.02.007
https://doi.org/10.1097/01.TA.0000151345.16338.FD
https://doi.org/10.1097/01.TA.0000151345.16338.FD
https://doi.org/10.1113/jphysiol.2009.177352
https://doi.org/10.1152/japplphysiol.01155.2003
https://doi.org/10.1152/japplphysiol.01155.2003
https://doi.org/10.1097/SHK.0b013e3181cc0183
https://doi.org/10.1097/TA.0b013e318221147b
https://doi.org/10.1113/jphysiol.1983.sp014642
https://doi.org/10.1038/srep20391
https://doi.org/10.1016/0014-5793%2896%2900930-1
https://doi.org/10.1038/nrcardio.2013.129
https://doi.org/10.1038/nrcardio.2013.129
https://doi.org/10.1016/S0019-9958%2863%2990092-5
https://doi.org/10.1021/bi00328a014
https://doi.org/10.1161/01.RES.35.6.805
https://doi.org/10.1097/EJA.0000000000000436
https://doi.org/10.1097/EJA.0000000000000436
https://doi.org/10.1016/0165-1838%2887%2990023-3
https://doi.org/10.1016/0165-1838%2887%2990023-3


B. The coagulopathy of trauma: a review of mechanisms. J Trauma 65:
748–754, 2008. doi:10.1097/TA.0b013e3181877a9c.

39. Ichinose M, Saito M, Fujii N, Kondo N, Nishiyasu T. Modulation of the
control of muscle sympathetic nerve activity during severe orthostatic
stress. J Physiol 576: 947–958, 2006. doi:10.1113/jphysiol.2006.117507.

40. Jacobs MC, Goldstein DS, Willemsen JJ, Smits P, Thien T, Dionne
RA, Lenders JW. Neurohumoral antecedents of vasodepressor reactions.
Eur J Clin Invest 25: 754–761, 1995. doi:10.1111/j.1365-2362.1995.
tb01954.x.

41. Koyama S, Aibiki M, Kanai K, Fujita T, Miyakawa K. Role of central
nervous system in renal nerve activity during prolonged hemorrhagic
shock in dogs. Am J Physiol Regul Integr Comp Physiol 254: R761–R769,
1988. doi:10.1152/ajpregu.1988.254.5.R761.

42. Laitio TT, Mäkikallio TH, Huikuri HV, Kentala ES, Uotila P, Jalonen
JR, Helenius H, Hartiala J, Yli-Mäyry S, Scheinin H. Relation of heart
rate dynamics to the occurrence of myocardial ischemia after coronary
artery bypass grafting. Am J Cardiol 89: 1176–1181, 2002. doi:10.1016/
S0002-9149(02)02300-7.

43. Lake DE. Improved entropy rate estimation in physiological data. Conf
Proc IEEE Eng Med Biol Soc 2011: 1463–1466, 2011.

44. Lavanga M, Baselli G, Fumagalli F, Ristagno G, Ferrario M. The
possible role of the vagal nervous system in the recovery of the blood
pressure control after cardiac arrest: a porcine model study. Physiol Meas
38: 63–76, 2017. doi:10.1088/1361-6579/38/1/63.

45. Leskova GF, Kryzhanovsky GN. Changes in phospholipid composition
of cardiomyocyte plasma membranes during hemorrhagic shock. Bull Exp
Biol Med 151: 284–287, 2011. doi:10.1007/s10517-011-1310-3.

46. Lipsitz LA, Goldberger AL. Loss of “complexity” and aging. Potential
applications of fractals and chaos theory to senescence. JAMA 267:
1806–1809, 1992. doi:10.1001/jama.1992.03480130122036.

47. Ludbrook J, Faris IB, Jamieson GG. Blood volume and the carotid
baroreceptor reflex in conscious rabbits. Clin Sci (Lond) 61, Suppl 7:
173s–175s, 1981. doi:10.1042/cs061173s.

48. Mäkikallio AM, Mäkikallio TH, Korpelainen JT, Sotaniemi KA,
Huikuri HV, Myllylä VV. Heart rate dynamics predict poststroke
mortality. Neurology 62: 1822–1826, 2004. doi:10.1212/01.WNL.
0000125190.10967.D5.

48a.Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ,
Schwartz PJ; Task Force of the European Society of Cardiology and
the North American Society of Pacing and Electrophysiology. Heart
rate variability. Standards of measurement, physiological interpretation,
and clinical use. Eur Heart J 17: 354–381, 1996. doi:10.1093/
oxfordjournals.eurheartj.a014868.

49. Meng X, Ao L, Song Y, Raeburn CD, Fullerton DA, Harken AH.
Signaling for myocardial depression in hemorrhagic shock: roles of
Toll-like receptor 4 and p55 TNF-alpha receptor. Am J Physiol Regul
Integr Comp Physiol 288: R600–R606, 2005. doi:10.1152/ajpregu.00182.
2004.

50. Moulton SL, Mulligan J, Grudic GZ, Convertino VA. Running on
empty? The compensatory reserve index. J Trauma Acute Care Surg 75:
1053–1059, 2013. doi:10.1097/TA.0b013e3182aa811a.

51. Mukkamala R, Toska K, Cohen RJ. Noninvasive identification of the
total peripheral resistance baroreflex. Am J Physiol Heart Circ Physiol
284: H947–H959, 2003. doi:10.1152/ajpheart.00532.2002.

52. Pacagnella RC, Souza JP, Durocher J, Perel P, Blum J, Winikoff B,
Gülmezoglu AM. A systematic review of the relationship between blood
loss and clinical signs. PLoS One 8: e57594, 2013. [Erratum in PLoS One
8: 10.1371/annotation/4db90e4b-ae29-4931-9049-3ef5e5c9eeee, 2013.]
doi:10.1371/journal.pone.0057594.

53. Perrott MH, Cohen RJ. An efficient approach to ARMA modeling of
biological systems with multiple inputs and delays. IEEE Trans Biomed
Eng 43: 1–14, 1996. doi:10.1109/10.477696.

54. Porta A, Furlan R, Rimoldi O, Pagani M, Malliani A, van de Borne P.
Quantifying the strength of the linear causal coupling in closed loop
interacting cardiovascular variability signals. Biol Cybern 86: 241–251,
2002. doi:10.1007/s00422-001-0292-z.

55. Radisic M, Yang L, Boublik J, Cohen RJ, Langer R, Freed LE,
Vunjak-Novakovic G. Medium perfusion enables engineering of compact
and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:
H507–H516, 2004. doi:10.1152/ajpheart.00171.2003.

56. Ramachandran J, Peluffo RD. Threshold levels of extracellular l-argi-
nine that trigger NOS-mediated ROS/RNS production in cardiac ventric-
ular myocytes. Am J Physiol Cell Physiol 312: C144–C154, 2017. doi:
10.1152/ajpcell.00150.2016.

57. Randall WC, Kroeker T, Hotmire K, Burkholder T, Huprich S, Firth
K. Baroreflex responses to the stress of severe hemorrhage in the rat.
Integr Physiol Behav Sci 27: 197–208, 1992. doi:10.1007/BF02690892.

58. Rixen D, Raum M, Holzgraefe B, Sauerland S, Nagelschmidt M,
Neugebauer EA; Shock and Trauma Study Group. A pig hemorrhagic
shock model: oxygen debt and metabolic acidemia as indicators of
severity. Shock 16: 239–244, 2001. doi:10.1097/00024382-200116030-
00012.

59. Rixen D, Siegel JH. Bench-to-bedside review: oxygen debt and its
metabolic correlates as quantifiers of the severity of hemorrhagic and
post-traumatic shock. Crit Care 9: 441–453, 2005. doi:10.1186/cc3526.

60. Ryan KL, Rickards CA, Hinojosa-Laborde C, Cooke WH, Convertino
VA. Sympathetic responses to central hypovolemia: new insights from
microneurographic recordings. Front Physiol 3: 110, 2012. doi:10.3389/
fphys.2012.00110.

61. Salomão E Jr, Otsuki DA, Correa AL, Fantoni DT, dos Santos F,
Irigoyen MC, Auler JO Jr. Heart rate variability analysis in an experi-
mental model of hemorrhagic shock and resuscitation in pigs. PLoS One
10: e0134387, 2015. doi:10.1371/journal.pone.0134387.

62. Schiller AM, Howard JT, Convertino VA. The physiology of blood
loss and shock: new insights from a human laboratory model of
hemorrhage. Exp Biol Med (Maywood) 242: 874 –883, 2017. doi:10.
1177/1535370217694099.

63. Shao Z, Wang Z, Shrestha K, Thakur A, Borowski AG, Sweet W,
Thomas JD, Moravec CS, Hazen SL, Tang WH. Pulmonary hyperten-
sion associated with advanced systolic heart failure: dysregulated arginine
metabolism and importance of compensatory dimethylarginine dimethyl-
aminohydrolase-1. J Am Coll Cardiol 59: 1150–1158, 2012. doi:10.1016/
j.jacc.2011.12.022.

64. Skoog P, Månsson J, Thorén P. Changes in renal sympathetic outflow
during hypotensive haemorrhage in rats. Acta Physiol Scand 125: 655–
660, 1985. doi:10.1111/j.1748-1716.1985.tb07768.x.

65. Stauss HM, Anderson EA, Haynes WG, Kregel KC. Frequency re-
sponse characteristics of sympathetically mediated vasomotor waves in
humans. Am J Physiol Heart Circ Physiol 274: H1277–H1283, 1998.

66. Stauss HM. Identification of blood pressure control mechanisms by power
spectral analysis. Clin Exp Pharmacol Physiol 34: 362–368, 2007. doi:
10.1111/j.1440-1681.2007.04588.x.

67. Stewart RM, Myers JG, Dent DL, Ermis P, Gray GA, Villarreal R,
Blow O, Woods B, McFarland M, Garavaglia J, Root HD, Pruitt BA
Jr. Seven hundred fifty-three consecutive deaths in a level I trauma center:
the argument for injury prevention. J Trauma 54: 66–71, 2003. doi:10.
1097/00005373-200301000-00009.

68. Sun JX, Reisner AT, Mark RG. A signal abnormality index for arterial
blood pressure waveforms. Comput Cardiol 33: 13–16, 2006.

69. Thrasher TN. Baroreceptor regulation of vasopressin and renin secretion:
low-pressure versus high-pressure receptors. Front Neuroendocrinol 15:
157–196, 1994. doi:10.1006/frne.1994.1007.

70. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White
HD; Task Force for the Universal Definition of Myocardial Infarction.
Third universal definition of myocardial infarction. Nat Rev Cardiol 9:
620–633, 2012. doi:10.1038/nrcardio.2012.122.

71. Wessel N, Voss A, Malberg H, Ziehmann C, Voss HU, Schirdewan A,
Meyerfeldt U, Kurths J. Nonlinear analysis of complex phenomena in
cardiological data. Herzschrittmacherther Elektrophysiol 11: 159–173,
2000. doi:10.1007/s003990070035.

72. Zeng Y, Han X, Gross RW. Phospholipid subclass specific alterations in
the passive ion permeability of membrane bilayers: separation of enthalpic
and entropic contributions to transbilayer ion flux. Biochemistry 37:
2346–2355, 1998. doi:10.1021/bi9725172.

73. Zöllei E, Paprika D, Makra P, Gingl Z, Vezendi K, Rudas L. Human
autonomic responses to blood donation. Auton Neurosci 110: 114–120,
2004. doi:10.1016/j.autneu.2003.10.003.

74. Zong W, Heldt T, Moody GB, Mark RG. An open-source algorithm to
detect onset of arterial blood pressure pulses. Comput Cardiol, 30: 259–
262, 2003.

1020 HEMODYNAMIC AND METABOLIC ALTERATIONS IN HEMORRHAGIC PIGS

J Appl Physiol • doi:10.1152/japplphysiol.00348.2018 • www.jappl.org
Downloaded from www.physiology.org/journal/jappl by ${individualUser.givenNames} ${individualUser.surname} (131.175.028.198) on October 8, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.

https://doi.org/10.1097/TA.0b013e3181877a9c
https://doi.org/10.1113/jphysiol.2006.117507
https://doi.org/10.1111/j.1365-2362.1995.tb01954.x
https://doi.org/10.1111/j.1365-2362.1995.tb01954.x
https://doi.org/10.1152/ajpregu.1988.254.5.R761
https://doi.org/10.1016/S0002-9149%2802%2902300-7
https://doi.org/10.1016/S0002-9149%2802%2902300-7
https://doi.org/10.1088/1361-6579/38/1/63
https://doi.org/10.1007/s10517-011-1310-3
https://doi.org/10.1001/jama.1992.03480130122036
https://doi.org/10.1042/cs061173s
https://doi.org/10.1212/01.WNL.0000125190.10967.D5
https://doi.org/10.1212/01.WNL.0000125190.10967.D5
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1093/oxfordjournals.eurheartj.a014868
https://doi.org/10.1152/ajpregu.00182.2004
https://doi.org/10.1152/ajpregu.00182.2004
https://doi.org/10.1097/TA.0b013e3182aa811a
https://doi.org/10.1152/ajpheart.00532.2002
https://doi.org/10.1371/journal.pone.0057594
https://doi.org/10.1109/10.477696
https://doi.org/10.1007/s00422-001-0292-z
https://doi.org/10.1152/ajpheart.00171.2003
https://doi.org/10.1152/ajpcell.00150.2016
https://doi.org/10.1007/BF02690892
https://doi.org/10.1097/00024382-200116030-00012
https://doi.org/10.1097/00024382-200116030-00012
https://doi.org/10.1186/cc3526
https://doi.org/10.3389/fphys.2012.00110
https://doi.org/10.3389/fphys.2012.00110
https://doi.org/10.1371/journal.pone.0134387
https://doi.org/10.1177/1535370217694099
https://doi.org/10.1177/1535370217694099
https://doi.org/10.1016/j.jacc.2011.12.022
https://doi.org/10.1016/j.jacc.2011.12.022
https://doi.org/10.1111/j.1748-1716.1985.tb07768.x
https://doi.org/10.1111/j.1440-1681.2007.04588.x
https://doi.org/10.1097/00005373-200301000-00009
https://doi.org/10.1097/00005373-200301000-00009
https://doi.org/10.1006/frne.1994.1007
https://doi.org/10.1038/nrcardio.2012.122
https://doi.org/10.1007/s003990070035
https://doi.org/10.1021/bi9725172
https://doi.org/10.1016/j.autneu.2003.10.003

