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ABSTRAC T

In this work, an analytical formulation for the vibration response of a bridge due to walking pedestrians is proposed to the aim of modelling the human-structure 
interaction (HSI) in the vertical direction. Bridge and pedestrians are described as mechanical systems having a finite number of degrees of freedom (DOFs). A new 
single DOF model of a bipedal pedestrian is proposed, that reproduces the alternation of single and double support phases of human gait and the related ground 
reaction forces. The finite element method is adopted to model the 3D geometry of the bridge. The coupled equations of motion are derived based on the key 
assumption that contact points between the pedestrians and the bridge deck are massless. However, the structural matrices of the coupled system are time varying due 
to the pedestrian motion along the bridge. An uncoupled solution strategy is devised to reduce the computational burden, allowing for the separate integration of the 
bridge and the pedestrian sub-systems. The coupled formulation is uncoupled and associated with an iterative procedure that restores compatibility and equilibrium at 
contact points. The pedestrian model and the analytical procedure are implemented in a research code where input data are the bridge structural matrices computed 
with a commercial FE code. The modelling and analysis procedure is applied to a case study, a lively footbridge in Seriate, Italy. A first validation of the code is 
obtained by comparison with a closed form solution for a 1D beam. For the loading scenarios analyzed here, a maximum of two iterations per step are necessary to 
achieve con-vergence within a prescribed tolerance. Loading scenarios encompassing groups of pedestrians in different transverse positions highlight the importance 
of the 3D bridge modelling. The comparison with a few experi-mental results clarifies the role of the modelling assumptions. Conclusions discuss novelties, 
advantages, limits and future developments of the proposed approach.

1. Introduction

In civil engineering dynamics, human-induced vibrations have be-
come a considerable serviceability issue due to the strong trend towards 
the design of light and slender structures, such as modern footbridges 
[1–3]. These structural systems often show natural frequencies in the 
range typical of human activities such as walking, running, bouncing, 
etc., so that the design requires careful attention to vibration levels [4]. 
At the design stage, the fulfilment of serviceability prescriptions re-
quires a due consideration of some key aspects [5]. These include ex-
pected loading scenarios and dynamic properties of the structures, as 
well as the accuracy of the models representing dynamic loading and 
human response to vibration [6].

During footbridge vibration, some form of human-structure inter-
action (HSI) occurs [7]. HSI is a complex phenomenon in which pe-
destrians and footbridge interact as coupled mechanical systems in two 
possible ways: changes in the structural properties lead to changes in 
the humans’ walking and vice versa [8,9]. Structural vibration can

affect the human gait and consequently the forces induced by human 
occupants that, in turn, can change the bridge response [10]. This 
phenomenon is well documented for lateral vibration only [2,11]. In 
vertical vibration, the structural response due to pedestrians’ motion 
cannot be predicted from the properties of the empty structure loaded by 
the pedestrian’s forces. Thus, accounting for HSI is fundamental to 
predict a reliable dynamic response [6].

A large research effort performed over the last 15 years led to the 
development of human models and analytical procedures able to de-
termine the footbridge response [12]. In a recent work, Caprani & 
Ahmadi [13] illustrated different literature approaches for modelling 
both structures and pedestrians. For structures, either a formulation in 
modal coordinates or the Finite Element (FE) method are used. For 
pedestrians, dynamic travelling forces, mechanical systems, or a com-
bination of both, are proposed. However, dynamic analyses using force 
models cannot treat the dynamic effects of the mechanical human body 
and the consequent HSI [14]. A force model describes only ground 
reaction forces (GRFs) applied by a pedestrian [15], leading to a
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pedestrian, are described by means of discretized linear models. For the 
former, a 3D FE mesh is developed, with the refinement usual in en-
gineering practice. For the latter, a new bipedal spring-mass-damper 
(SMD) model that simulates the human gait cycle is proposed. The 
model transmits contact forces through compliant and damped legs. As a 
working assumption, a periodic nature of the steps is considered in its 
first implementation, even though the sequence of footfalls in the human 
walking is non-periodic [30,31]. The coupled equations of motion are 
derived under the assumption of perfect contact at massless contact 
points. A solution strategy overcoming the problems related to the time-
varying nature of the coupled matrices is proposed to integrate 
separately the two systems. This simplifies the representation of the 
force transfer typical of human gait, characterized by alternate loading 
applied by the feet.

After the description of the new bipedal pedestrian model in Section 
2, Section 3 presents the equation of motion of the pedestrian-bridge 
coupled system. The equations are subsequently uncoupled and an 
iterative solution strategy is established in Section 4. The case study in 
Section 5 is a lively footbridge analyzed in a previous work [32]. Sec-
tion 6 describes the main features of the research code where the un-
coupled formulation is implemented and the results of the analyses. A 
code validation is performed on a 1D simply supported beam. The 
performance of the iterative procedure is assessed. Finally, both the 
numerical response due to pedestrians’ different trajectories and a 
comparison with an experimental test are presented. Conclusions in 
Section 7 highlight the advantages and novelties of the proposed ap-
proach and discuss limits and future developments.

2. Pedestrian model

The model represents a pedestrian who moves with a known motion
in the longitudinal direction, along the line at the intersection between 
his sagittal and frontal planes. Since there is not lateral motion in the 
pedestrians’ transverse plane, it is not necessary to consider degrees of 
freedom (DOFs) in the horizontal plane. Rigid-body rotations are ne-
glected. The model simulates the typical human gait characterized by a 
sequence of alternate phases, in which either only one foot (Single 
Support Phase, SSP) or both feet (Double Support Phase, DSP) are in 
contact with the ground (Fig. 1a) [33]. Hence, each model’s foot 
transmits a vertical contact force Fi, where i =  1, 2 refers to the leading 
and the trailing leg, respectively. As a working assumption, intra-
variability is neglected, and the model follows a deterministic and 
periodic representation of the human gait. Thus, its steps repeat iden-
tically with a period Te equal to the sum of the duration times of SSP and 
DSP, Ts and Td respectively, and both feet transmit the same pattern of 
force at each step. In the literature, the reference model for the de-
scription of the GRFs transmitted by each foot is the one by Li et al.[34]. 
The position of the single foot force Fi(t) is constant in the interval Te. Its 
typical shape is depicted in Fig. 1b. In [34], Fi(t) is the sum of five 
harmonics, whose amplitudes An (or DLF, dynamic load factor) act as 
multipliers of the pedestrian weight G:
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The coefficients An depend explicitly on the step frequency fs, the in-
verse of the duration Ts of the SSP. From the statistical results of Eb-
rahimpour [35], an average value of 4.16 is assumed for the ratio of Te
and Td. Thus:
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The proposed SMD bipedal mechanical model (Fig. 2) accounts for the 
above assumptions. The single DOF (SDOF) system has a mass Mh, the 
total mass of the human being, and is connected to the ground through 
two vertical spring-damper legs, acting in parallel in the same vertical

reduction in the accuracy of estimated bridge response [16]. On the 
contrary, a mechanical system also represents the mass, stiffness and 
damping of the pedestrian, all of which can combine with the structural 
properties [17].

To represent the human body, some authors have proposed simple 
mechanical systems, in which a complete representation of the human 
gait is not attempted (Zhang et al. [6,8], Shahabpoor et al. [16], Da 
Silva & Pimentel [18,19], Van Nimmen et al. [20], Venuti et al. [21], 
Caprani et al. [13]). Other researchers adopted stiff or compliant bi-pedal 
models to simulate the leg-switching behavior of walking (Bocian et al. 
[22], Geyer et al. [23], Kim & Park [24], Qin et al. [25], Whit-tington & 
Thelen [26]).

Caprani & Ahmadi [13] underlined that most of these studies do not 
present in detail the analytical formulation of the proposed models. In 
particular, they pointed out that (a) there is a need to provide the de-
tailed formulation of HSI models, particularly under moving crowd 
scenarios; (b) presently, the models for HSI proposed in the literature are 
often not complemented with efficient integration procedures for the 
dynamic equations of motion, which would benefit other re-searchers in 
the field. Furthermore, to the best of the authors' knowl-edge, the 
literature does not offer examples of full 3D modelling of footbridges 
within a HSI analysis. In fact, in several works the foot-bridge is modelled 
as a simply supported Euler-Bernoulli beam with uniform cross-section 
(Zhang et al. [6], Bocian et al. [22], Qin et al.[25], Gomez et al. [27], 
Caprani & Ahmadi [13]). This approach cannot capture the plate 
behavior of the deck and the effect of coupled tor-sional-flexural natural 
modes, which could be excited by eccentric transits of pedestrians. In 
addition, a 1D-bridge model cannot treat loading scenarios having 
different spatial distributions in the transverse direction and social force 
models necessary to include the interaction among pedestrians (human-
human interaction).

Since humans transmit a three-component contact force, HSI should 
be accounted for in the longitudinal, transversal and vertical direction. 
Even though, as a starting point, the focus of this work is restricted to 
vertical interaction, HSI remains a multifaceted problem. The high 
variability of pedestrians’ motion, in terms of trajectory, intra-varia-bility 
and inter-variability, has to be considered when pursuing a 
comprehensive approach to HSI. The derivation of a complete analy-tical 
formulation to compute the bridge response to walking pedes-trians, still 
lacking as pointed out from the above considerations, can be proposed 
and its applicability investigated. Thus, it is necessary to in-vestigate 
whether the type of pedestrian’s motion modifies the me-chanical 
principles governing the footbridge response. If this is not the case, the 
two aspects can be analyzed separately.

The derivation of the coupled equation of motion requires the de-
scription of the two systems and of their interaction. The bridge model 
should describe accurately mass and stiffness of the structure, crucial in 
determining the modal properties, and the effects arising from human 
activities, as underlined in the European Guideline [28]. To this aim, a 
3D FE model of the structure is a straightforward option. The pedestrian 
mechanical model on one hand should describe the dynamic properties of 
the human body and, on the other hand, transfer forces to the bridge only 
through its legs. The interaction between the two systems requires the 
definition of the compatibility conditions at the interface. A perfect 
contact can be assumed as in the solution strategy previously adopted for 
the vehicle-bridge interaction (VBI) problem in [29], taking ad-vantage 
of analogies between VBI and HSI. The finite area and the mass of feet can 
be neglected. While the VBI assumptions on contact hold for the HSI as 
well, the continuous wheel movement is completely different from the 
human walking or running. Thus, the model must be able to simulate the 
human gait and the derivation of the coupled equation must account for 
the real human locomotion and for the simultaneous presence of many 
pedestrians on the bridge.

The aim of this work is to derive an analytical formulation and a 
numerical procedure for the HSI, restricted to vertical direction, ac-
counting for the above assumptions. Both systems, bridge and
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To make the variation of α1(t) and α2(t) independent of Td, a non-di-
mensional time variable t is defined over DSP:
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As a first approximation, coefficients vary linearly. Since their sum
remains constant, the functions α1 and α2 (Fig. 3a) must satisfy the
conditions:

+ = = =α t α t α α( ) ( ) 1 (0) 1 (1) 01 2 1 1 (5)

The model proposed by Kim and Park [24] provides the values of the
model leg parameters as a function of the walking speed (units m/s)
v= lstep× fs [37]. The spring stiffness K and damping ratio ζ, normal-
ized to the weight to height ratio, are computed as:

= +K v30.16 14.93 (6)

= −ζ v0.048 0.026 (7)

The equation of motion for the pedestrian model is written with respect 
to the Lagrangian coordinate zh (Fig. 2), representing the absolute

vertical displacement of the pedestrian centre of mass (CoM). Con-
sistently, the vertical resultant of contact forces acts on the CoM without 
eccentricity. In the longitudinal direction, the position of the foot in 
contact does not vary in each support phase. In the vertical di-rection, 
perfect contact constrains the contact points to move as the surface the 
pedestrian is walking on. Thus, a further coordinate is in-troduced for 
each foot at contact points, zc,1 and zc,2 respectively (Fig. 2), which 
vanishes in case of a rigid surface. During SSP, the “flying foot” of the 
trailing leg is linked rigidly to the CoM and its motion is equal to zh.

In the real case, the body metabolism (the human “internal engine”) 
provides the energy necessary for walking and transmitting contact
forces. In the model, an equivalent external “biomechanical” force Fb

acting on the CoM introduces energy. This approach differs from that in 
[36], aiming to the simulation of bobbing, where the driving force is an 
internal one. In fact, here the aim is to simulate the vertical oscillations 
(Fig. 2) loading the “legs” of the walking model, and the Lagrangian 
coordinate is an absolute one. Fb is an equivalent or “model consistent” 
force since, when applied to the SMD system walking on a rigid surface, 
delivers the single foot force in Eq. (1) as output contact force. Hence,
Fb is computed numerically from the GRF through an inverse analysis 
performed in the frequency domain. To this aim the complex frequency 
response function (FRF) relating the (unknown) biomechanical force
b (F t) and the (known) ground reaction force F t( )  in (1) can be first 
expressed. The FRF can be written as the sum of the elastic and viscous 
forces transmitted to the ground by the oscillator undergoing steady-
state motion under a unit harmonic force:

= +H f k H f ic πfH f( ) ( ) 2 ( )F F h hb (8)

In (8) i is the imaginary unit and f denotes frequency. H f( ) is the usual 
FRF relating the displacement of a SDOF system to the applied dynamic 
force, i.e.:
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In (9) fh is the natural frequency of the pedestrian model. Once the FRF
(8) is defined, the Fourier Transform (FT) ∼F t( )b of the biomechanical
force is obtained from the FT of the ground reaction force ∼F f( ) as

=∼ ∼F t F f H f( ) ( )/ ( )b F Fb . Finally, the time-history of the biomechanical
force is obtained by performing the inverse FT. As an example, F t( )b has
been numerically computed according to the above-sketched procedure
and by use of Discrete Fourier Transforms for the case of a pedestrian
having a mass of 80 kg, height of 1.80m and travelling at 1.3 m/s.
Fig. 3b depicts the input and output forces.

Finally, the equation of motion of the SMD model, accounting for
the alternation between SSP and DSP governed by the time intervals Te
and Ts, is written for both phases as:

Fig. 1. Gait cycle: (a) sequence of single and double support phases; (b) vertical force transmitted by each foot during a cycle.

Fig. 2. Single DOF system modelling a bipedal walking pedestrian: (a) double 
and (b) single support phase.

plane. During DSP (Fig. 2a), both legs are in contact with the ground, at 
a distance lstep. During SSP (Fig. 2b), the leading leg is in contact while 
the trailing leg is “flying”. With a well-consolidated assumption (e.g. 
Dougill et al. [36]), a perfect contact takes place at the foot-ground 
contact areas, modelled as massless points. During SSP, the stiffness and 
damping coefficients ki and ci of legs are constant and equal to kh and ch
respectively. During DSP, the force of the leading leg decreases to zero, 
while the trailing leg transmits a force increasing from zero (Fig. 1b). A 
variation of the legs parameters can simulate this phenomenon. In this 
work, also to retain a linear behavior of the model, the stiffness and 
damping coefficients of each leg vary during DSP but their sum, kh and ch 

respectively, remains constant. The leg coefficients follow the same 
time-variation:
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In (10) only the right hand side (RHS) depends on the phase within the 
gait cycle, reflecting the linearity of the system. Two biomechanical 
forces, one for each leg, act during DSP (see also Fig. 2a). Given zh, the 
equilibrium condition at the constrained DOFs provides the contact 
forces, computed as the opposite of the internal forces in legs:

= − + −F c z z k z z SSP( ̇ ̇ ) ( )c h h c h h c,1 ,1 ,1 (11a)

= − + − =F c z z k z z DSP i( ̇ ̇ ) ( ) 1, 2c i h h c i h h c i, , , (11b)

The forces defined in (11a) and (11b) are the whole contact forces. In
this respect, this approach differs from the one in [38], where the
contact force is fictitiously computed as the sum of the GRFs on a rigid
surface and of a term coming from the interaction with the vibrating
structure.

3. Equations of motion for coupled system

The derivation of the bridge-pedestrian coupled equation of motion
follows the approach adopted on a previous work on vehicle-bridge 
interaction [29]. The derivation is based on the following assumptions:
(a) the bridge is modelled with the FE method, as usual in the en-
gineering practice; (b) the pedestrian is modelled as a bipedal SMD 
system and walks with a given horizontal velocity vh, independent of his 
vertical motion; (c) contact forces are vertical; (d) perfect contact takes 
place at massless contact points.

Without loss of generality, we assume that a rectangular grid re-
presents the mesh of the bridge deck. Contact points can be everywhere 
on the deck, not necessarily coincident with mesh nodes. At the generic 
time instant t, each contact force directly loads the nodes of the crossed 
mesh element (Fig. 4a). If the trajectory coincides with a line of nodes, 
the loaded nodes are those immediately before and after the contact 
point (Fig. 4b). The vector q of the Lagrangian coordinates for the 
coupled bridge-pedestrian system lists the bridge coordinates qb̂ and the 
pedestrian’s one qh ̂:
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Taking into account the pedestrian’s position, the bridge vector qb ̂ is 
further partitioned into qb and qc. As schematically depicted in Fig. 4c,

the latter lists the coordinates of the directly loaded nodes, the former
covers the remaining nodes (and coordinates) of the bridge:
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The contact point on the bridge at the generic time t is not a mesh node.
Hence, its coordinates qcb (Fig. 4c) are not listed in qb̂ . To solve the 
problem, they are related to the coordinates qc through a set of shape 
functions N x( (t)), where x (t) is the position vector of the pedestrian:

=q N x qt( ( ))cb c (14)

Similar to the bridge vector, the pedestrian’s sub-vector ̂qh is parti-
tioned into q qandch h. The former contains the constrained DOFs at
contact points, the latter lists the remaining coordinates:
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For the SMD model in Section 2, qch contains the coordinates zci in (10),
(11a) and (11b), qh the coordinate zh. The assumption of perfect contact 
generates a compatibility condition between bridge and pedestrian:

(16)qch = qcb

Taking into account (14), Eq. (16) can be rewritten as:

qch = N x( (t))qc (17)

The time derivative of (17) is necessary to compute the kinetic energy T 
and the dissipation function D of the coupled system. Since the velocity 
vc of the contact points is null, the convective term vanishes in this case:
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Taking into account (17), the sub-vector qch disappears from the vector
q in (12):
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The equations of motion of the coupled system are derived using the
Lagrange equation:
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In (20), the subscript “k” spans bridge (“b”), contact (“c”) and human 
(“h”) vector coordinates and Qk

(n.c.) is the vector of non-conservative

Fig. 3. Pedestrian model. (a) Functions α t( )1 and α t( )2 . (b) Biomechanical force (input) and single foot force (output) for fs=1.8 Hz, vs=1.3m/s.



forces. The contributions of both systems are summed to provide the 
kinetic energy T, the potential energy V, and the Rayleigh dissipation 
function D. Eqs. (12)-(20) are formally independent of the SMD model 
adopted.

With the meaning of subscripts introduced above, all the structural 
matrices of the two systems are partitioned as the corresponding vector 
of the coordinates. Since the contact points are massless and the pe-
destrian moves with a constant horizontal velocity vh, taking into ac-
count (18) the kinetic energy of the coupled system is:
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In computing the potential energy, the contribution of the bridge static
loads is accounted for through the vector Q0. Taking into account (17)
we obtain:
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Taking into account (18), the function D is:
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The only non-zero term in the vector Q(n.c.) is given by the equivalent
biomechanical forces:

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Q
F

0
0n c

b

.( . )

(24)

By standard derivations, the equations of motion are obtained:
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The mass matrix M in (25) is uncoupled and time-invariant due to the 
assumption of massless contact points. The damping matrix C and 
stiffness matrix K are symmetric, due to the null value of the convective 
term in (18), and show the same pattern. The coupling between the
coordinates qc and qh is due only to terms related to contact points that 
contain the time-dependent shape function matrix N . When n

pedestrians are on the bridge, the diagonal matrices mh h, , ch h, and kh h,
have dimensions (n× n). The dimensions of diagonal matrices cch ch,
and kch ch, for a single pedestrian are (1×1) and (2× 2) during SSP
and DSP, respectively. For obvious reasons, each contact point belongs
to one and only one pedestrian. No direct coupling takes place among
pedestrians, apart from the indirect effect due to the bridge response.

To analyze the effect of the bridge static deflection in (25), the
vector q is decomposed into the sum of the bridge static deflection q0
and of the dynamic coupled response of both systems qd:

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= +q
q
q
q

q
q

q
q
q

q q[ ]
0

b

c

h

b

c

db

dc

h
d

0

0 0
(26)

When (26) is inserted in (25), the vector of static forces Q0 at the RHS
disappears since the static equilibrium condition of the bridge

=K q Qb 0 0 holds. The structural matrices in (25) are not affected by the
decomposition (26) and the equations of motion can be rewritten in a
compact form as:

+ + = −Mq Cq Kq Q Q¨ ̇d d d
n c

c
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where:
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4. Uncoupled formulation and iterative procedure

The Eq. (27) formally solves the problem of deriving the equations of
motion of the coupled system. However, the stiffness and damping 
matrices in (25) are time dependent. This implies that, whenever a 
pedestrian’s foot changes its position on the bridge, it is necessary to 
update the structural matrices and their topology and to triangularize 
the equivalent stiffness matrix adopted in the numerical integration. The 
solution strategy proposed here is based on a forced uncoupling, 
obtained by moving the coupling terms of (27) to the RHS [29]. The 
structural matrices become block diagonal: the first two rows refer to the 
bridge, the last one to the pedestrian. The equation of motion for the 
footbridge is written as:
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In (29) the vector f contains the forces exerted by the pedestrian at 
contact points, transformed into proper nodal forces P when pre-mul-
tiplied by N T :

= − + + +
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The equation of motion for the pedestrian mechanical system is written
as:

Fig. 4. Loaded mesh nodes: (a) contact point in a generic position; (b) trajectory along a mesh line; (c) subdivision of Lagrangian coordinates of the bridge deck.
Labels qc/qb denote nodes that will be directly/indirectly loaded during the entire pedestrian’s transit.



(31)

The vector f h in (31) contains the pedestrian’s forcing term depending 
on its base motion:

= − + +f k Nq c Nq k Nq( ̇ )h ch h
T

dc ch h
T

dc ch h
T

c, , , 0 (32)

The uncoupled equations can be solved only through an iterative pro-
cedure. The iteration strategy named STS (Single Time Step) in [29] is 
adopted here, where iteration is performed at each time step, moving 
back and forth from one system to the other (staggered approach).

Within the algorithm of numerical integration, the response of the 
two systems must be determined at the kth time step, for each iteration j. 
The iterative procedure starts from the bridge, with the computation of 
the RHS of (29). The position of each SMD contact point is de-termined 
at the beginning of the step according to the rules of the human 
locomotion described in Section 2 and remains constant during the step. 
The contact forces f at first iteration are those determined at the end of 
the previous step, and in subsequent iterations are those at the end of the 
previous iteration:
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The bridge equations of motion (29) are integrated in incremental form.
For j =  1 the vector of effective loads of the bridge ΔP∗k,j contains the 
term due to the step initial conditions:

= +∗P P PΔ Δ Δk j k j k i c, , , . . (34)

For j > 1, the increment of nodal loads is computed as:

= = −∗ −P P P PΔ Δk j k j k j k j, , , , 1 (35)

The bridge solution provides displacements and velocities of contact 
points, through (14) and (18):

=q N qcb
k j k

dc
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From (36) and (37) the forcing term (32) for the SMD due to its base 
motion is computed:
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Eq. (31) is integrated in finite form, and an updated value of the forcing
term f k j, for the bridge is computed as:
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In the exact solution, the vectors f k,j in (33) and (39) would coincide. 
Due to the staggered solution, the two vectors differ in principle and 
their difference provides a measure of the error in two subsequent 
iterations. Convergence is achieved when, for each pedestrian crossing 
the bridge, the error err is smaller than a prescribed tolerance μ. Since 
each pedestrian can have one (SSP) or two (DSP) contact points with 
the bridge, the difference between forces at subsequent iterations is 
normalized to the number ncp of contact points:
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(40)

The measure (40) is independent of the pedestrian model adopted. If the 
convergence criterion is satisfied, the algorithm moves to step k+ 1. In 
the opposite case, the sequence (33)–(40) is repeated, up-dating the 
iteration counter from j to j + 1.

5. Case study: The Seriate Footbridge

The Seriate steel footbridge (Fig. 5a) is located in the Serio River 
Park near Milan, Italy. The suspended deck, with an arch rise of 1.3 m,

is 63.90 m long and its width varies between 2.5 m and 5.0 m. A grid of 
steel stringers and floor beams support the timber deck (Fig. 5b). The 
floor beams belong to two classes: the main transverse beams, spaced 
3.0 m apart and characterized by a tapered cross-section, and the sec-
ondary IPE 120 transverse beams. The stringers include a couple of IPE 
330 edge beams and a central girder with a hollow circular section (Ø = 
298.5 mm). A series of X-braces completes the deck and provides 
stiffness in the horizontal plane. The suspension system supporting the 
deck (Fig. 5b) is not symmetric about the vertical plane crossing the 
longitudinal bridge axis. Four steel pylons, arranged to constitute two A-
shaped portal frames, are connected at their top to the main sus-pension 
cables and to the backstays. The two main suspension cables (Ø = 60 
mm) support the deck through 42 hangers (Ø = 16 mm). Four backstays
(Ø = 60 mm) link the pylons to the ground. Two lateral stabilizing
cables (Ø = 40 mm) have opposing curvature. During con-struction, all 
the cables were pre-tensioned.

As a part of the proof tests carried out in July 2012, the dynamic 
behavior of the footbridge was investigated through dynamic tests 
performed by Gentile [32]. Operational modal testing under ambient 
excitation was performed. The instrumentation layout is depicted in Fig. 
6. Seven accelerometers at each side of the bridge, numbered from 1 to 
14, recorded vertical acceleration. Three instruments (15, 16 and 17) 
recorded horizontal acceleration. Using different input-output 
techniques ([39,40]) typical of operational modal analysis (OMA), 14 
vibration modes were identified in the frequency range 0–10 Hz. The 
frequency of the fundamental mode is 1.03 Hz. Five modes are in the 
frequency range 1.9–3.0 Hz. Subsequently, to assess the level of vibra-
tion due to crossing pedestrians, various loading scenarios were defined 
and simulated on site, with groups having different number of pedes-
trians, respectively 4, 8, 16 and 32. For the proof tests only the max-
imum acceleration recorded in each test and the location where it took 
place were considered (see [32]). The test with four walking pedes-
trians will be analyzed in more detail in Section 6.5.

5.1. FE model of the bridge

The FE model of the bridge (Fig. 7) was based on the as-built design 
data extracted from the blueprints and set up within the ANSYS [45] 
framework. The girders of the steel grid, the pylons and the hangers are 
modelled with Timoshenko beam elements named “BEAM 188”. Cables 
and braces are modelled with spar elements transmitting only axial 
force, named “LINK 180”. Timber planks and handrails are modelled as 
lumped masses on steel grid. The boundary conditions of the footbridge 
model, as the constraint conditions between adjacent elements, are 
inferred from the technical drawings. A preliminary non-linear static 
analysis, using the Newton-Raphson method, accounts for the cables 
geometric stiffness and for the variation of configuration associated to 
dead loads. Loads are applied incrementally, dead loads first and the 
fictitious variation of temperature in cables that simulates their pre-
tension, next. Once the model correctly reproduces the deformed geo-
metry and the design value of tension in cables, the tangent stiffness 
matrix is computed and a modal analysis is performed by linearizing the 
system about the equilibrium configuration. No model updating was 
performed. The values of the natural frequencies for the first experi-
mentally identified 10 modes are listed in Table 1, where fE and fN 

denote experimental and numerical values, respectively, and errf is the 
percentage error between the two. The first row lists the type of mode 
shape, namely V-F: vertical-flexural; V-T: vertical-torsional and V-TR: 
vertical-transversal. V-T denotes coupled modes. Fig. 8 depicts the mode 
shapes in the frequency range 1.5–4 Hz. Modes 2–5 are in the range of 
walking induced loads, while modes 5–7 can be excited by running 
activities [28]. Further details on the derivation of the FE model are 
found in [32].

h hm q̈h c, ,h h  ḣq+ + kh h  hq, bF= f h+



6. Numerical analysis of dynamic interaction

The pedestrian model and the iterative procedure for the uncoupled
analysis of the pedestrian-footbridge system were implemented in a
numerical code in Fortran. The main features of the code are as follows.
The shape functions of a shell element relate the vertical displacement

of each contact point to three coordinates of the mesh nodes sur-
rounding the contact point (Fig. 4a), namely the vertical displacement 
and the rotations about the two axes, longitudinal and transversal, in the 
plane of the bridge deck. The stiffness and mass matrices of the Seriate 
footbridge model, extracted from ANSYS [45], are input data. The 
current implementation includes inter-variability. In fact, each 
pedestrian model has its own properties in terms of mass, stiffness, 
damping and constant gait characteristics (velocity and step frequency) 
and can freely walk following any straight trajectory parallel to the 
bridge axis. Groups of pedestrians can have different spatial config-
urations, degrees of synchronization, dynamic properties and step fre-
quencies. Full synchronization takes place if the pedestrians walk with 
the same frequency and in phase, i.e. have the same t defined in (4) 
within the gait cycle. Pedestrians start walking at the bridge entrance, 
since the effect of their initial conditions on the bridge response is 
negligible. Further details on the code can be found in [41]. In addition, 
a probabilistic model, that correlates the pedestrians' frequencies with 
their mutual distances, can be adopted [42].

First, numerical analyses are performed to assess the performance of 
the iterative procedure and of the numerical code. This aim is pursued 
through the choice of the numerical integration algorithm, a compar-
ison with a closed-form solution, and an investigation on the con-
vergence of the iterative procedure. Secondly, the bridge response is 
investigated by considering a few loading scenarios with different

Fig. 5. Seriate Footbridge: (a) overall view; (b) view of the deck; a stabilizing cable is visible on the left.

Fig. 6. Experimental campaign, position of accelerometers (after [32]).

Fig. 7. Finite element model of the Footbridge.

Table 1
Modal properties of the footbridge.

Mode # 1 2 3 4 5 6 7 8 9 10

Type V-F V-F V-T V-TR V-F V-T V-F V-T V-F V-T
fE [Hz] 1.025 1.475 1.924 1.953 2.168 2.754 2.861 3.691 4.121 4.385
fN [Hz] 1.079 1.565 1.997 2.109 2.311 2.635 2.827 3.645 4.076 4.409
errf (%) 5.22 6.07 3.77 7.99 6.58 -4.33 -1.17 -1.24 -1.10 0.55



spatial configurations. Finally, the comparison with an experimental 
test, though affected by an incomplete knowledge about pedestrian data, 
allows for both a discussion on the modelling framework and an 
evaluation of the bridge response. The time step Δt of the numerical 
integration is equal to 0.005 s, much smaller than 1/10 of the period of 
the 14th identified mode, and sufficient to discretize accurately the 
forcing term. The Rayleigh damping matrix is computed for a 1%
damping, a value experimentally identified, on the first and fourth 
mode. The maximum number of iterations per step is 10. Unless 
otherwise specified, the mechanical properties of the pedestrian model 
are 80 kg, 1.80 m and 1.3 m/s (the mean value of a normal distribution 
in [37]) for mass, height and velocity respectively. Eqs. (6) and (7) 
provide the leg parameters.

6.1. Numerical integration of the uncoupled equations of motion

At a preliminary stage, the equations of motion for the bridge and 
pedestrian (Eqs. (29) and (31) respectively), were numerically in-
tegrated using the Newmark's method. However, the bridge accelera-
tions exhibited spurious high frequency oscillations at time instants 
when the pedestrian model first applies (or removes) a step contact 
force. The numerical problem is worsened by the modelling assumption 
of pointwise contact. For this reason, the bridge equations (29) are 
integrated using the Hilber, Hughes and Taylor (HHT) algorithm [43]. 
The contribution of low period modes is damped out without mod-
ifications on the lower frequency components. The difference between 
the two responses in terms of acceleration at mid-span is shown in Fig. 9

for the case of a single pedestrian (fs = 1.6 Hz) walking along the bridge 
axis.

6.2. Numerical validation of the code

A numerical validation of the code and of the interaction algorithm is 
performed preliminarily, by using as benchmark a closed-form solu-tion 
(Fryba [44]) for the case of a force, equal to the pedestrian’s weight, 
travelling at constant speed on a simply supported beam of uniform 
cross-section. The case study is an ideal undamped 1D simple supported 
beam, 48 m long, with a rectangular cross-section (3.0 m wide and 0.73 
m deep), discretized in 48 elements. Young’s modulus is 210 GPa, 
density is 2.5x105 kg/m3. The beam natural frequencies are listed in 
Table 2, where V and T denote vertical and transversal modes, 
respectively. Vertical modes are either symmetric (s) or anti-symmetric 
(as) about mid-span. Three models of increasing accuracy simulate 
numerically the travelling pedestrian (W = 700 N, fs = 1.6 Hz) as fol-
lows. The first model is a constant static force; the second is a travelling 
couple of single foot forces reproducing the human gait in Fig. 1a, with 
magnitude varying in time according to Eq. (1), same weight of the static 
force; and the third is a SMD model, with the same gait. For a positive 
validation of the code, the solution to the static force should match the 
closed-form solution. Discrepancies between the two more accurate 
modelling of the pedestrian and between these and the static case must 
be consistent with the dynamic nature of these loads.

The comparison in terms of mid-span vertical displacement is pre-
sented in Fig. 10a. The numerical solution due to the static force exactly 
matches the analytical one. As expected, the displacements due to the 
travelling single foot forces oscillate about the closed-form solution, 
with the same frequency of the steps. The SMD model induces dis-
placements having a similar pattern but a lower amplitude of oscilla-
tions. The result can be justified by the damping added by the model to 
the overall system. In the last two cases, the bridge response shows a 
time-delay attributed to the difference between the human gait and the 
uniform motion adopted for the static force. Fig. 10b shows the mid-
span vertical acceleration. The match between the closed form solution 
and the travelling static force is very good. Greater accelerations are 
detected for the case of the dynamic force and, to a lesser extent, of the 
SMD model, consistently with the results in terms of displacements. 
Taking into account the values of the natural frequencies, the Fourier 
spectra of the accelerations (Fig. 10c and d) deliver a clear picture of the 
dynamic response. In the static case, the beam response at mid-span in 
Fig. 10c is dominated by the frequencies of the vertical symmetric 
modes. In the dynamic case in Fig. 10d the beam is responding also to 
the step frequency and its multiples. The difference between the first 
natural frequency of the beam (0.195 Hz) and the step frequency (1.6 
Hz) justifies the match in terms of displacements and the

(b) Mode 3: f = 1.997 Hz (c) Mode 4: f = 2.109 Hz

(e) Mode 6: f = 2.635 Hz (f) Mode 7: f = 2.827 Hz (g) Mode 8: f = 3.645 Hz (h) Mode 9: f = 4.076 Hz

Fig. 8. Seriate Footbridge: numerical mode shapes from 2nd to 9th.
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Fig. 9. Newmark vs. HHT method. Time-history of mid-span vertical accel-
eration, one pedestrian along the axis, fs=1.6 Hz.

(a) Mode 2: f = 1.565 Hz (d) Mode 5: f = 2.311 Hz



discrepancy in terms of accelerations. In Fig. 10d, the peak about 4.8 Hz 
is justified by the match between the 7th natural frequency and the 2nd 

harmonic of the periodic load. The same peak is found in Fig. 10c also. 
The results show that the analytical formulation and the computer code 
implementing it simulate correctly the dynamic behavior of the beam.

6.3. Evaluation of the performance of the iterative procedure

The iterative procedure is a key point in the solution of the un-
coupled equation of motion. To evaluate its properties of convergence 
and precision three loading scenarios centered along the bridge axis are 
examined. These are: (1) a single pedestrian; (2) six pedestrians walking 
in a longitudinal row, spaced 2 m apart; and (3) nine pedestrians uni-
formly distributed on three longitudinal rows spaced 0.75 m and 2 m 
apart in the transverse and longitudinal direction, respectively. 
Pedestrians have the same step frequency and weight (1.6 Hz and 700 N) 
but are not synchronized. Each loading scenario is analyzed four times, 
without iteration and with three decreasing values of the error tolerance 
μ in (40): 0.1 N, 0.01 N and 0.001 N. In a fifth analysis, without 
iteration, the groups of six and nine pedestrians have different

step frequencies, in the range 1.6–2.1 Hz and 2.1–2.3 Hz respectively.
The comparison among analyses, for each loading scenario, is per-

formed in terms of acceleration time-history at mid-span central node.
The results a0.001, corresponding to the smallest tolerance, are practi-
cally exact and are assumed as reference values. The percentage dif-
ference Δ between the current atol and the reference a0.001 acceleration,
normalized to the latter, is computed at each at each time step k:

= − ×a a aΔ ( ) (100/ )k tol k k0.001 0.001, (41)

Acceleration values close to zero, producing high but not significant 
values of Δ, are filtered out from the computation of (41). The precision 
of the iterative algorithm is measured through the maximum percen-
tage difference Δmax and the percentage difference Δamax corresponding 
to the maximum value of a0.001. Table 3 shows, for each loading sce-nario 
and for each case, the total number Ntot of iterations, the max-imum 
number nmax,Δt of iterations in a single time step and the values of Δmax 

and Δamax. The results show that: (a) Δmax decreases as the toler-ance, 
denoting a convergence of the iteration algorithm; (b) the most 
significant engineering parameter Δamax is much smaller than Δmax. The 
number of iterations increases as the number of pedestrians, but not

Mode # 1 2 3 4 5 6 7 8 9 10 11

Type V-s V-as T V-s V-as T V-s V-as T V-s V-s
f [Hz] 0.195 0.779 0.800 1.752 3.113 3.183 4.860 6.991 7.105 8.764 9.505

(a) (b)

(c) (d)
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Fig. 10. 1D bridge, closed-form vs numerical solutions. Time-history of mid-span vertical: (a) displacement; (b) acceleration. Fourier spectrum of acceleration: (c)
closed form solution and static force; (d) dynamic force and MSD model.

Table 2
Modal properties of the simply supported beam. V/T vertical/transverse mode; s/as symmetric/antisymmetric.



height (1.70 m), but different step frequencies (1.843 Hz; 2.057 Hz; 
1.675 Hz; 1.776 Hz; 1.634 Hz; 1.799 Hz) drawn from a normal dis-
tribution. Each pedestrian crosses the bridge in about 49 s and the last 
pedestrian exits the bridge about 8 s after the first.

The relevant response parameters are the time histories of vertical 
displacements and accelerations, evaluated in seven transverse sections 
of the deck at three points. Two are at the handrails base and the third 
on the deck longitudinal axis (Fig. 13). Fig. 14 a/b/c show, respectively, 
the time-histories of displacements at nodes 16, 17 and 18 (at section 
#6, ¾ of the span), for the three cases under study. The torsional effect 
induced by the eccentric transits is larger when the pedestrians cross the 
section under study and in the nodes closer to the pedestrians’ trajectory, 
while vanishing for the central trajectory (Fig. 14b).

Fig. 15 shows the peak values of acceleration, at the sections and 
nodes in Fig. 13. Thick lines bound the seven sections. For eccentric 
trajectories, extreme values are on the same side of the eccentricity and 
show a relevant difference with values on the opposite side of the same 
section. The torsional effect produced by the central trajectory is much 
smaller but not zero, vanishing only for node 11 at mid-span where the 
three peaks are practically coincident.

Fig. 16 shows a few acceleration time histories, at nodes 4 (section 
#2, left, right and central trajectory), 11 (section #4, central trajectory) 
and 18 (section #6, left and right trajectory). Maximum accelerations 
are due to the eccentric configurations and are detected at lateral nodes 
4 and 18 when the pedestrians cross the sections #2 and #6 (Fig. 16a 
and f). The couples of nodes symmetrically placed about the mid-span 
but on the opposite sides of the bridge exhibit a specular behavior under 
eccentricity having opposite signs (Fig. 16a, f and c, d). A central 
trajectory produces similar time histories in the three sections; the re-
sults for Sections 2 and 4 are shown in Fig. 16b and d. The trajectory 
does not affect the response only at mid-span (e.g. Fig. 16e, node 11). 
Fig. 17 depicts the Fourier spectra of the time histories in Fig. 16. Since 
the six pedestrians walk with different frequencies a broad frequency 
content is found, containing the first and second harmonic of the load 
and the bridge natural frequencies. Spectra due to eccentric transit have

Tolerance [N] 1 pedestrian 6 pedestrians 9 pedestrians

Ntot nmax,Δt Δmax [%] Δamax [%] Ntot nmax,Δt Δmax [%] Δamax [%] Ntot nmax,Δt Δmax [%] Δamax [%]

0.1 11,789 1 0.03 0.0015 11,831 2 0.07 0.003 11,813 1 0.6 −0.0162
0.01 12,890 2 0.02 0.0002 11,831 2 0.06 0.0011 20,008 2 0.13 0.0072
0.001 20,675 2 / / 21,860 2 / / 22,092 2 / /
No iteration same fs / / −7.3 −1.8 / / −24.5 −5.6 / / −28.1 −13.8
No iteration different fs / / / / / / −20.4 −1.97 / / −27 −0.5
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Fig. 11. Six pedestrians walking in a row: time-history of mid-span vertical 
acceleration with and w/o iteration.

with a monotonic trend. With iterations, a tolerance equal to 0.1 N 
suffices to provide accurate results. Without iterations, both Δmax and 
Δamax are reduced when each pedestrian walks with his/her own step 
frequency. In this case, the results without iterations, with Δamax smaller 
than 2%, provide a good estimate of the bridge response.

The time-history of mid-span acceleration is depicted in Fig. 11 for 
the cases of six pedestrians, with tolerance equal to 0.001 N and without 
iteration. The general pattern of the response is the same, making it 
difficult to distinguish the two curves, but the purely stag-gered solution 
overestimates the response. This result is shown clearly in Fig. 12a, a 
zoom in the time interval 10–11.5 s. Moreover, Fig. 11 shows a beat 
phenomenon due to the frequency range excited by the pedestrian-
induced load, as confirmed by the Fourier spectrum in Fig. 12b.

6.4. Groups of pedestrians with different trajectories

The bridge response is analyzed for three trajectories of the same 
group of six people in a longitudinal row, spaced 2 m apart, to in-
vestigate the importance of the 3D modelling. Pedestrians walk either 
along the bridge axis or along two parallel lines, with a left or right 
eccentricity of 1 m from the axis. The six SMD pedestrians are un-
correlated and unrestricted. They have a common weight (700 N) and
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Fig. 12. Six pedestrians walking in a row, mid-span vertical acceleration with and w/o iteration: (a) zoom in the interval 10–11.5 s; (b) Fourier spectrum.

Table 3
Performance and convergence properties of the iterative procedure.



recorded signals, and adopting reasonable estimates for the remaining 
parameters. Such a comparison aims to evaluate the proposed frame-
work of analysis and the effects of inter- and intra-variability modeling.

The parameters were chosen as follows. For the experimental test 
with four walking pedestrians analyzed here, it was estimated by Gentile 
(who performed the tests, see [32]) that the pedestrians were in a 
rectangular configuration, spaced 80 cm and 40 cm apart in the 
longitudinal and transverse direction, respectively. Reasonable choices 
for weight and height of Italian male pedestrians are 750 N and 1.75 m. 
It was assumed that pedestrians entered the bridge from the right side in 
Fig. 6. In light of the results in Section 6.4, a centered trajectory is a 
neutral choice. The pedestrians’ dominant velocity and frequency are 
roughly identified from the time histories and Fourier spectra of ac-
celeration. Based on the tests duration (see Fig. 18), the velocity vh is 
assumed equal to 1.7 m/s. The Fourier spectra of the signals (in Fig. 19) 
denote a peak at about 2 Hz. This frequency is assumed as a tentative 
value for fh. Experimental and numerical results are compared in terms 
of vertical acceleration and related Fourier spectra at selected positions 
of accelerometers (see Fig. 6).

In a first analysis, inter-variability is neglected and the pedestrians, 
walking at fh = 2 Hz, are fully synchronized. Six positions of accel-
erometers are considered, two at mid-span (7, 8), two in the first half-
span (1, 4) and two in the second half-span (11, 14). Numerical ac-
celerations (Fig. 18) at the opposite sides of each sections are similar, 
since the trajectory is centered. A significant beating phenomenon is 
visible in the numerical response, more pronounced than in the ex-
perimental response. In the numerical results, the discrepancy between 
the responses at positions 1, 4 and 11, 14 is larger than that in the 
experimental response. The closer match in terms of general pattern is 
found at mid-span, where torsional modes have a node and the effect of 
trajectory eccentricity vanishes, even though the numerical response 
underestimates the peak values. The Fourier spectra (Fig. 19) show that 
the frequency content of the numerical response is concentrated around 
the step frequency and its multiples, with a dominant peak at about 2 
Hz, whose magnitude is larger than in the experimental response. On the 
other hand, this shows a much wider frequency content, with 
components about 3 and 6 Hz also. When the numerical results in Figs. 
19 and 17 are compared, it appears clearly that the pedestrians’ 
configuration, the trajectory eccentricity and the inter-variability in 
terms of step frequency have a dominant effect on the response.
    The results in Fig. 19 suggest releasing the unrealistic assumption of 
full synchronization. Thus, a second and third case are considered,

Fig. 13. Evaluation of the bridge response: (a) cross sections; (b) control nodes for vertical acceleration.

Fig. 14. Six pedestrians in a row. Displacement time-history of nodes at section 6 for trajectories having: (a) left; (b) no and (c) right eccentricity.

Fig. 15. Six pedestrians in a row. Peak values of vertical acceleration due to a 
left, right and central trajectory.

a common pattern (Fig. 17a, c and d, f), different from that due to a 
centered transit (Fig. 17b and e). The response spectra are unaffected by 
the trajectory only at mid-span (e.g. Fig. 17e, node 11). The modal 
shapes of the 3rd mode (Fig. 8b, f3 = 1.997 Hz) and of the 8th mode (Fig. 
8g, f8 = 3.645 Hz), two torsional modes with a node around mid-span 
close to the bridge axis [32], justify the outcome of the analyses. Results 
show that the bridge response is correctly described by the proposed 
numerical approach and highlight the significant effect in-duced by 
different trajectories.

6.5. Comparison with experimental results

As stated in Section 4, dynamic testing of the footbridge under 
walking pedestrians was performed as a part of the proof tests. The aim 
of the tests was only to assess the level of vibration under loading 
scenarios with different numbers of pedestrians and data on pedestrians 
were not collected. Hence, weight, height, step frequency, velocity, 
mutual positions, trajectories, entry side on the bridge are unknown. In 
spite of the lack of data, a comparison between experimental and nu-
merical results is performed, extrapolating some information from the



where pedestrians are in a row-synchronization and in phase, with fh = 
2.05 Hz and 1.95 Hz in the first and second row respectively. In the third 
case, a delay of 0.1 s (about 20% of Te) in the gait cycle is imposed 
between two subsequent pedestrians. The phase lag is constant during 
the bridge crossing. Fig. 20 presents the numerical results at positions 1, 
4 and 8. The comparison with the results in Figs. 18 and 19 shows 
clearly that a slight modification of the gait parameters is able to modify 
the response significantly. The best match for accelerations is found for 
the case of row-synchronization while the introduction of a phase 
difference produces a general underestimation of the signal. The Fourier 
spectra are intermediate between the numerical and the ex-perimental 
ones in Fig. 19. The sharp peak at about 2 Hz of the fully synchronized 
case becomes wider but not as the experimental one. The

experimental high frequency components at about 6 Hz are absent in the 
numerical response, while those at about 3 Hz are visible in position 8, 
when a phase difference is accounted for. Finally, Fig. 21 summarizes 
the results in terms of peak values. The results point out a significant 
torsion effect in the experimental results and a large scatter among 
numerical results for different synchronizations. However, experi-
mental and numerical extreme values above 1.2 m/s2 produce the same 
negative outcome in terms of bridge serviceability assessment.

7. Conclusions

This work presents the derivation of an analytical formulation for
the footbridge-walking pedestrian coupled problem in the vertical

(a) Left, node #4 (b) Central, node #4 (c) Right, node #4

(d) Left, node #18 (e) Central, node #11 (f) Right, node 18

Fig. 16. Six pedestrians in a row. Time-history of vertical acceleration at nodes 4, 11 and 18 for left, central and right trajectories.

(a) Left, node #4 (b) Central, node #4 (c) Right, node #4

(d) Left, node #18 (e) Central, node #11 (f) Right, node #18

Fig. 17. Six pedestrians in a row. Fourier spectrum of vertical acceleration at nodes 4, 11 and 18 for left, central and right trajectories.



direction. The derivation of the coupled equation of motion is based on
the Lagrange’s equation and relies on a discrete modelling framework.
The bridge is described through a standard 3D FE model, in principle
the same adopted in design. A new bipedal SMD model represents the
pedestrian. The model matches reality in simulating the sequence of
single and double support phases of human gait and transmitting ver-
tical contact forces only through two compliant and damped legs. An
equivalent “biomechanical” force provides energy for the vertical os-
cillations. Perfect contact takes place at massless contact points. The
proposed solution strategy, based on the forced uncoupling of the
equations associated with an iterative procedure, allows for the sepa-
rate integration of the two systems. In the uncoupled solution, the
footbridge is subjected to the contact forces transmitted by the pedes-
trians, and the pedestrians are subjected to the bridge motion at their
contact points (feet). This result could have been reached by inspection,
but the formally complete approach clarifies the properties and the
advantages of the solution. First, there is no direct mechanical coupling
among pedestrians: respecting the inter-subject variability, each pe-
destrian can have his own properties and horizontal motion. Second,
social effects modifying the gait of pedestrians can be analyzed outside
the coupled framework: in fact, only the position of pedestrians and
their contact forces affect the coupled solution. Social coupling does not

imply mechanical coupling: the pedestrians’ trajectory and a variable 
rate of progression can be determined in a separate analysis and pro-
vided as input data. Third, the motion perceived at any instant by each 
pedestrian can be determined, to assess his degree of comfort along the 
bridge.

The analytical formulation is implemented in a research code pre-
viously developed to analyze the VBI problem. The case study is a lively 
suspension footbridge [32]. The adoption of the standard 3D FE model, 
developed in ANSYS [45], overcomes the limits of reduced-order 
modelling, often restricted to the first mode, and allows for a pedes-
trians’ 2D trajectory. From the point of view of implementation, the 
main advantage of the new bipedal model is preserving linearity even 
though the legs parameters vary during the double support phase. 
Disregarding intra-variability is its most limiting assumption, even 
though advantageous in terms of ease of implementation and being well 
documented in the literature. However, intra-variability is consistent 
with the proposed analytical framework and can be easily introduced, 
since horizontal and vertical motion of the SMD model are uncoupled, 
and the former is assumed to be known. For the same reason, the 
straight trajectory parallel to the bridge axis implemented in this study 
can be substituted by curved or zigzag trajectories.

Numerical analyses in the linear range, performed preliminary to
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Fig. 18. Four pedestrians, numerical (anum) vs experimental (aexp) time-history of vertical acceleration at selected positions.



investigate the problems related to the instantaneous application/re-
moval of forces on the bridge, lead to the adoption of the well-known
HHT algorithm to eliminate a spurious high frequency content.
Numerical tests confirmed the positive performance of the iterative
procedure. A numerical validation of the code is obtained by reprodu-
cing a closed form solution for a static load moving continuously on a
simply supported beam. The walking SMD model, and its counterpart in
terms of GRFs simulating the human gait (dynamic loads), showed a
match with the closed form solution in terms of displacement and
discrepancies in terms of accelerations. These are consistent with the
dynamic properties of both the crossed beam and the applied load. In
particular, the damping effect induced by the SMD model on the re-
sponse is detected clearly.

A further set of analyses concerned groups of pedestrians with dif-
ferent spatial configurations, to evaluate, also by comparison with ex-
perimental results, the effect of inter-variability and spatial configura-
tion of pedestrians. The numerical results for six pedestrians in a row
depend on the eccentricity of the trajectory and highlight the im-
portance of retaining the 3D bridge modeling. An experimental test
with four pedestrians in a rectangular configuration was simulated,
even though most of the test arrangement was not known. A reasonable

set of parameters was chosen, and three different degrees of inter-
variability were assumed. None of the cases analyzed matched well the 
experimental results, having a frequency content wider than numerical 
signals, even though the general pattern of variation along the bridge 
was captured. The reasons for the lack-of-fit, beyond the unavailability 
of the values of important parameters, are to be traced to the descrip-
tion of the trajectory, to the sensitivity of the problem to pedestrians’ 
inter-variability, and to the lack of intra-variability in the im-
plementation of the model. This is probably the main cause of the 
discrepancy in terms of frequency range.

It can be concluded that the procedure proposed in this work es-
tablishes a reliable framework of analysis for the vertical footbridge-
pedestrian interaction. The new SMD model is a starting point for future 
developments, from the implementation of non-periodic gait to a more 
refined mechanical modelling. The formulation in Section 4 holds 
whatever the model complexity, since any pedestrian will have two 
contact points with the bridge at most. Thus, complexity remains con-
fined to the development of the model and to the derivation of its 
equation of motion. Experimental tests are necessary to calibrate any 
mechanical model adopted for the pedestrian and, associated with 
numerical simulations, to identify the optimal values of the parameters.
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Fig. 19. Four pedestrians, numerical (FSnum) vs experimental (FSexp) Fourier Spectrum of vertical acceleration at selected positions.



From the engineering standpoint, the numerical simulations show the 
significant variability in the response due to relatively small variations 
in the loading scenarios. Finally, the procedure could rely on a com-
mercial code for the solution of the structure. This advantage could be 
exploited if a different iteration strategy were adopted, on the whole 
time history and not at each time step [29].

Acknowledgements

The partial financial contribution of Italian MIUR (Ministry of

Higher Education and Research) under grant PRIN 2015-2018, Project 
2015TTJN95, “Identification and monitoring of complex structural 
systems”, is acknowledged. C. Gentile provided the experimental data. 
G. Palamà, MS in Civil Engineering, ran the analyses necessary for the 
data in Table 2 and Figs. 7 and 8. F. Perotti and V. Racic provided useful 
discussions on the final draft of the first version of the paper. Reviewers’ 
comments helped improve the paper. All these contributions are 
gratefully acknowledged.

Row synchronization Row synchronization with phase difference 
Po

si
tio

n 
1

Po
si

tio
n 

4
Po

si
tio

n 
8

Fig. 20. Four pedestrians, numerical acceleration (anum) and Fourier Spectrum (FSnum) for vertical acceleration at selected positions. Left: row synchronization.
Right: row synchronization with phase difference.



References

[1] Dallard P, Fitzpatrick A, Flint A, Bourva S, Low A, Ridsdill R, et al. The London 
Millenium footbridge. Struct Eng 2001;79(22):17–33.

[2] Ingólfsson ET, Georgakis CT, Jönsson J. Pedestrian-induced lateral vibrations of 
footbridges: a literature review. Eng Struct 2012;45:21–52.

[3] Schlaich M. Planning conditions for footbridges. In: Proceedings of the International 
Conference on the Design and Dynamic Behaviour of Footbridges, Paris, France, 
November 20-22, 40-52; 2002.

[4] Van Nimmen K, Lombaert G, De Roeck G, Van den Broeck P. Vibration serviceability 
of footbridges: evaluation of the current codes of practice. Eng Struct
2014;59:448–61.

[5] Živanović S. Benchmark footbridges for vibration serviceability assessment under 
the vertical component of pedestrian load. ASCE J Struct Eng 2012;193:1193–202.

[6] Zhang M, Georgakis C, Chen J. Biomechanically excited SMD model of a walking 
pedestrian. ASCE J Bridge Eng 2016;C4016003.

[7] Živanović S, Pavic A, Reynolds P. Vibration serviceability of footbridges under 
human-induced excitation: a literature review. J Sound Vib 2005;179:1–74.

[8] Zhang M, Georgakis C, Qu W, Chen J. SMD model parameters of pedestrians for 
vertical human-structure interaction. In: Proceedings of 33rd IMAC Conference and 
Exposition on Structural Dynamics, February, Orlando, USA; 2015.

[9] Sachse R, Pavic A, Reynolds P. Human-structure dynamics interaction in civil en-
gineering dynamics: a literature review. Shock Vibration Digest 2003.

[10] Toso MA, Gomes HM, De Silva FT, Pimentel RL. Experimentally fitted biodynamic 
models for pedestrian-structure interaction in walking situations. J Mech Syst Signal 
Process 2016;72–72:590–606.

[11] Bocian M, MacDonald JHG, Burn JF. Biomechanically inspired modelling of pe-
destrian induced forces on lateral oscillating structures. J Sound Vib
2012;331:3914–29.

[12] Georgakis TC, Jorgensen GN. Change in mass and damping on vertically vibrating 
footbridges due to pedestrians. In: Proceedings of the 31st International Modal 
Analysis Conference on Structural Dynamics IMAC, February, Garden Grove, USA; 
2013.

[13] Caprani CC, Ahmadi E. Formulation of human-structure interaction system models. 
J Sound Vib 2016;377:346–67.

[14] Hongli L, Zhengqing C. Analytical and experimental study on vertically dynamic 
interaction between human and bridge. China Civil Eng J 2014;47(6):78–87.

[15] Jimenez-Alonso JF, Sáez A, Caetano E, Magalhãe F. Vertical crowd-structure in-
teraction model to analyze the change of the modal properties of a footbridge. ASCE 
J Bridge Eng 2016;C4015004.

[16] Shahabpoor E, Pavic A, Racic V. Structural vibration serviceability: new design 
framework featuring human-structure interaction. Eng Struct 2017;136:295–311.

[17] Kim SH, Mha HS, Cho KI, Won JH, Kim MA. Study on dynamic behaviour of

footbridge under pedestrian excitation generated by human body model. In:
Proceedings of the 8th Pacific Structural Steel Conference – Steel Structures in
Natural Hazards PSSC, March, New Zealand; 2007.

[18] Da Silva FT, Pimentel RL. Biodynamic walking model for vibration serviceability of 
footbridges in vertical direction. In: Proceedings of the 8th International Conference 
on Structural Dynamics (EURODYN), July, Leuven, Belgium; 2011.

[19] Da Silva FT, Brito HMBF, Pimentel RL. Modelling of crowd load in vertical direction 
using biodynamic model for pedestrians crossing footbridges. Can J Civ Eng 
2013;420(12):1196–204.

[20] Van Nimmen K, Maes K, Zivanovic S, Lombaert G, De Roeck G, Van de Broeck P. 
Identification and modelling of vertical human-structure interaction. In: Proceedings 
of 33rd IMAC Conference and Exposition on Structural Dynamics, February, 
Orlando, USA; 2015.

[21] Venuti F, Racic V, Corbetta A. Modelling framework for dynamic interaction be-
tween multiple pedestrians and vertical vibrations of footbridge. J Sound Vib 
2016;379:245–63.

[22] Bocian M, Macdonald JHG, Burn JF. Biomechanically inspired modelling of pe-
destrian-induced vertical self-excited forces. ASCE J Bridge Eng 2013. https://doi. 
org/10.1061/(ASCE)BE.1943-5592.0000490, 1336-1346.

[23] Geyer H, Seyfarth A, Blickhan R. Compliant leg behaviour explains basic dynamics 
of walking and running. Proc. Biol. Sci. 2006;273(1603):2861–7.

[24]

[25]

Kim S, Park S. Leg stiffness increases with speed to modulate gait frequency and 
propulsion energy. J Biomech 2011;44(7):1253–8.
Qin JW, Law SS, Yang QS, Yang N. Pedestrian-bridge dynamic interaction, in-
cluding human participation. J Sound Vibr 2013;332(4):1107–24.

[26] Whittington BR, Thelen DG. A simple mass-spring model with roller feet can induce 
the ground reactions observed in human walking. J Biomech Eng
2009;131(1):011013.

[27] Gomez D, Silva CE, Dyke SJ, Thomson P. Interactive platform to include human-
structure interaction effects in the analysis of footbridges. In: Proceedings of 33rd 
IMAC Conference and Exposition on Structural Dynamics, February, Orlando, USA; 
2015.

[28] Research Fund for Coal and Steel. HiVoSS: Design of footbridges; 2008.
[29] Feriani A, Mulas MG, Lucchini G. Vehicle-bridge dynamic interaction: an uncoupled 

approach. In: Proc. of International Conference on Noise and Vibration ISMA 2008,
609-624, Paper ID 142, September, Leuven, Belgium; 2008.

[30] Bocian M, Brownjohn JMW, Racic V, Hester D, Quattrone A, Monnickendam R. A 
framework for experimental determination of localised vertical pedestrian forces on 
full-scale structures using wireless attitude and heading reference systems. J Sound 
Vib 2016;376:217–43.

[31] Van Nimmen K, Lombaert G, Jonkers I, De Roeck G, Van den Broek P. 
Characterisation of walking loads by 3D inertial motion tracking. J Sound Vib 
2014;333:5212–26.

[32] Lai E, Gentile C, Mulas MG. Experimental and numerical assessment of a steel 
suspension footbridge. J Constr Steel Res 2017;132:16–28.

[33] Racic V, Pavic A, Brownjohn JMW. Experimental identification and analytical 
modeling of human walking forces: literature review. J Sound Vib 2009;326:1–49.

[34] Li Q, Fan J, Nie J, Li Q, Chen Y. Crowd-induced random vibration of footbridge and 
vibration control using multiple tuned mass dampers. J Sound Vib
2010;329:4068–92.

[35] Ebrahimpour A, Hamam A, Sack RL, Patten WN. Measuring and modelling dynamic 
loads imposed by moving crowds. J Struct Eng ASCE 1996;122(12):1468–74.

[36] Dougill JW, Wright JR, Parkhouse JG, Harrison RE. Human structure interaction 
during rhythmic bobbing. Struct Eng 2006;84(22):32–9.

[37] Pachi A, Ji T. Frequency and velocity of people walking. Struct Eng 2005;83:36–40.
[38] Van Nimmen K, Lombaert G, De Roeck G, Van den Broeck P. The impact of vertical 

human-structure interaction on the response of footbridges to pedestrian excitation. 
J Sound Vib 2017;402:104–21.

[39] Brincker R, Zhang LM, Andersen P. Modal identification from output-only systems 
using frequency domain decomposition. Smart Mater Struct 2001;10:441–5.

[40] Van Overschee P, De Moor B. Subspace Identification for Linear Systems: Theory, 
Implementation, Applications. Boston/London/Dordrecht: Kluwer; 1996.

[41] Lai E. Pedestrian-footbridge dynamic interaction: uncoupled analysis using a MSD 
model [PhD Thesis]. Politecnico di Milano, Department of Civil and Environmental 
Engineering; 2016.

[42] Lai E, Mulas MG. Pedestrian-footbridge dynamic interaction: a probabilistic as-
sessment of vibration serviceability. Meccanica dei Materiali e delle Strutture 
2016;VI(1):211–8.

[43] Hilber HM, Hughes TIR, Taylor RL. Improved numerical dissipation for time in-
tegration algorithms in structural dynamics. Earthq Eng Struct Dyn 1977;5:283–92.

[44] Fryba L. Vibration of Solids and Structures Under Moving Loads. Groningen: 
Noordhoff International Publishing; 1972.

[45] ANSYS. Online Manuals Release 5.5, < http://mostreal.sk/html/guide_55/
GBooktoc.html > ; 2015.

Fig. 21. Four pedestrians, peak values of acceleration at the accelerometers
positions, for experimental and numerical results. FS: full synchronization, RS:
row synchronization, RS w/D: row synchronization with delay. Thick lines
delimit sections s1, s3, s5 and s7.
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