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Abstract—The increasing diffusion of user-friendly editing
software and online media sharing platforms has brought forth
a growing on-line availability of near-duplicate (ND) videos. The
need of authenticating these contents and tracing back their
history has led to the investigation of forensic algorithms for the
reconstruction of the video phylogeny tree (VPT), i.e., an acyclic
directed graph summarizing video genealogical relationships.
Unfortunately, state-of-the-art solutions for VPT reconstruction
suffer from strong computational requirements.

In this paper, we propose a processing age measure based
on video DCT coefficients and motion vectors statistics, which
enables to provide preliminary information about possible video
parent-child relationship. The use of processing age allows a
forensic analyst to blindly select a smaller amount of significant
video pairs to be compared for VPT reconstruction. This solution
grants computational complexity reduction to the overall VPT
reconstruction pipeline.

I. INTRODUCTION

The recent disposal of versatile acquisition, editing, and
sharing tools has led to the spreading of multiple versions of
the same multimedia objects, which are called near-duplicates
(NDs). This has brought several new issues and problems
concerning the discrimination of the originating file, the iden-
tification of the owner, or the reconstruction of the processing
history of each copy [1], [2], [3]. In these tasks, multimedia
forensics research has usually focused on the detection of
footprints left on images [4] or video sequences [5] by each
editing step. This analysis is significantly affected by the
modelling accuracy and the amount of noise affecting the data
under analysis (which could erase or alter these traces).

As a matter of fact, recent researches have been focusing the
analysis on the relations between different versions of the same
content [6], [7], [8]. The underlying idea is that multimedia
contents evolve like DNA sequences of organisms mutate
in biology. This process can be well-described by means
of a structure called phylogeny tree (PT), and phylogenetic
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analysis permits reconstructing it by analyzing similarities
between the nucleotides sequences of different organisms.
Similarly, multimedia phylogeny solutions aim at building a
complete relational graph, in which edge labels model the
similarity/dissimilarity between every pair of ND images or
videos [9], [6]. Then, the underlying PT is estimated by
means of graph optimization strategies that identify which
dependency relations among the different contents are the most
plausible.

Unfortunately, the accuracy of the PT reconstruction is
degraded by several factors such as the noise affecting the
similarity/dissimilarity measures, or the missing of some ob-
jects/nodes in the analysis pool. Moreover, in order to build the
relational graph, current solutions prove to be computationally
expensive due to the need of comparing every pair of ND
objects in the analysis set. This is a problem especially
when video sequences are taken into account, rather than still
images.

The current paper aims at reducing the computational bur-
den of the typical state-of-the-art video phylogeny tree (VPT)
reconstruction pipeline. To this purpose, we present a set of
processing age metrics for video sequences that are based on
statistics of DCT coefficients and motion vector differences.
By including the proposed metrics in the video phylogeny tree
reconstruction process, it is possible to check the feasibility
of graph edges before running the optimization routine on
them. Experimental results performed on 2.800 ND video
sequences, show that the proposed solution permits improving
the accuracy of the identification of the root sequence (i.e., the
original one used to generate all the other ND in a set), and
it reduces the computational complexity of the overall VPT
reconstruction scheme.

In the following, Section II presents the problem of VPT
reconstruction and overviews some of the works published on
the subject. Section III describes how the proposed processing
age metric is computed, and reports how to include it in the
VPT reconstruction strategy. Finally, Section IV verifies the
performance of our algorithm by means of thorough empirical
testing, whereas Section V draws the final conclusions.

II. PROBLEM STATEMENT AND RELATED WORKS

Two video sequences Si and Sj are considered NDs if they
can be generated applying some content preserving editing
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operations (e.g., blurring, coding, brightness adjustment, etc.)
to the same originating video sequence S0. Solving the prob-
lem of VPT reconstruction means finding the genealogical
relationships between ND videos in a pool in order to infer
which sequence generated another one. In order to solve
this problem, state-of-the-art solutions are inspired by works
originally proposed for still images [9], [10], and basically
follow a common pipeline [6], [11].

First, video phylogenetic strategies start building a com-
plete relational graph where each node corresponds to a
different video sequence, and edge labels denote dissimilarity
(or alternatively similarity) relations between nodes [6], [11].
Specifically, given a pair of ND video sequences Si and Sj ,
dissimilarity is defined as

D(Si, Sj) = arg min
T
L (Si, T (Sj)) , (1)

where L computes the mean squared error, and T is the
combination of editing operations (such as cropping, resizing,
logo addition, rotation, color enhancement, etc.) that best
maps Sj into Si. The rationale behind dissimilarity is that,
if a transformation T mapping Sj into Si exists (i.e., low
dissimilarity value), then Sj may have been used to generate
Si. Conversely, if this transformation does not exists (i.e., high
dissimilarity value), the two sequences are surely not in parent-
child relationship. The most time consuming operation in VPT
reconstruction is the estimation of T .

Then, the underlying VPT is estimated by means of op-
timization strategies that identify the maximum/minimum
spanning tree, like Oriented Kruskal (OK) [12] or Optimum
Branching (OB) [13].

Unfortunately, the accuracy of the reconstruction can be
significantly impaired by several factors. Often the adopted
similarity/dissimilarity metric is highly noisy, leading to sev-
eral reconstruction errors. This fact is more evident whenever
video sequences have been significantly edited at every ND
generation, and therefore, several equalization and synchro-
nization steps need to be applied in order to have a mean-
ingful measurement [11]. One of the most frequent errors is
parent-child inversion, which takes place whenever the editing
operations that generate the child do not significantly change
the visual information of the father (e.g., in the case of minor
cropping). Moreover, many reconstruction errors arise when-
ever some nodes of the VPT trees are missing, which causes
the estimation algorithm to approximate ancestry relations
via the similarity of non-directly related nodes. Additionally,
computational complexity is another crucial issue since the
dissimilarity needs to be computed for every pair of videos;
thus, the overall amount of calculation scales quadratically
with the number of videos in the analysis pool.

Problems related to noisy dissimilarity values can be ef-
fectively mitigated by including additional redundancy in the
reconstruction process [14]. Conversely, problems related to
high computational burden can be mitigated by techniques
enabling to pre-emptively select subsets of video pairs to
analyze. To this purpose, the approach in [15] introduces a no-
reference quality metric that models the processing age (PA)

of images, i.e., the amount of editing that has been applied
on every ND image in the dataset. By comparing the PA of
the images, it is possible to exclude a-priori some parent-
child relations that appear to be unfeasible (i.e., a parent with
a PA lower than his child). This operation permits reducing
the computational complexity of the overall PT reconstruction,
and improves accuracy.

In this paper, leveraging findings of [15], we propose a
processing age measure for video sequences, which enables to
reconstruct the VPT with decreased computation complexity.

III. VIDEO PHYLOGENY TREE RECONSTRUCTION USING
PROCESSING AGE MEASURE

Because of the massive amount of data that need to be
stored, video sequences are usually available in compressed
format. As a matter of fact, every editing performed on
a video sequence needs to be followed by a compression
operation. Estimating the number of coding steps permits
placing the analyzed video sequence at the correct depth of
the reconstructed VPT (i.e., a video compressed many times
cannot be parent of a video compressed less times). This
permits detecting wrong dependencies and removing unfea-
sible links (thus reducing the computational complexity since
their similarities/dissimilarities do not need to be computed
anymore).

Video processing age. The forensic community has faced the
problem of double or multiple video compression detection
before [16], [17], [18]. Anyway, most of the approaches rely
on training a machine-learning classifier on a set of video
sequences which were edited and coded according to a finite
set of possible parameters. Since in a real scenario the range
of possible editing and coding choices is quite wide, we
investigate a more general no-reference metric that permits
comparing and ordering different ND sequences according to
their creation time rather then identifying the exact number of
compressions operated on each of them.

We call this metric processing age (PA), and compute it
analyzing the statistics of the DCT coefficients of prediction
residuals of video frames, as well as motion vector statistics,
leveraging the findings in [15].

Aging metric based on DCT coefficient statistics
Given a video sequence Si, the n-th frame Si(n) is pre-

dicted from the frame Si(n − 1) using a motion estimation
routine. The generated prediction Pi(n) is then subtracted to
it generating the prediction residual Ri(n) = Si(n) − Pi(n).
Then, Ri(n) is partitioned into 4× 4 blocks x, and each one
of them is transformed using the 4× 4 DCT-like transform of
H.264/AVC and quantized into the integer output coefficients
Xq . In the analysis, we adopted 4 × 4 blocks since it is the
smallest transform size adopted by the existing video coding
standards (and therefore, it grants the finer granularity on
frame analysis).

For every spatial frequency (u, v), it is possible to com-
pute a histogram of the absolute coefficient values c =
|Xq(u, v)|. This empirical statistics, which will be referenced



(a) Nc = 1 QP=21. (b) Nc = 2 QP=25.

(c) Nc = 3 QP=28. (d) Nc = 4 QP=24.

Fig. 1. Probabilities P0,2(c) (blue values) and the fitted model P̃0,2(c)
(dashed line) for frame 1 of sequence soccer compressed Nc times. The
adopted video coded is H.264/AVC with quantization parameter QP.

with the symbol Pu,v(c), can be well-approximated by an
exponentially-decreasing model. As a matter of fact, several
DCT coefficients fitting models have been proposed in lit-
erature, such as Laplacian [19], generalized Gaussian [20],
laplacian+impulsive [21], and Cauchy [22]. In this work, we
simplified all these models with the function

P̃u,v(c) =Γe−π(c), (2)

where π(·) is a polynomial of third degree and Γ is a
normalizing constant. In this way, it is possible to include
both a Laplacian and a Gaussian model for the absolute value
of quantized coefficients avoiding the fitting problems related
to the generalized Gaussian.

The statistics P̃u,v(c) is obtained by fitting c > 0 values
to the given model. Null coefficients are omitted since many
video coders adopt dead-zone quantizers and non-linear co-
efficient cancellation strategies driven by rate-distortion opti-
mization routine. This alters coefficient statistics making the
fitting more complex.

Fig. 1 reports the statistics of quantized DCT coefficients
(on semi-logarithmic axes) for the sequence soccer coded
Nc times with varying quality parameters. It is possible to
notice that as Nc increases, the empirical Pu,v(c) deviates
from the fitted P̃u,v(c) model. Therefore, it is possible to
associate the processing age metric with a divergence metric.
To this purpose, we considered the Jensen-Shannon divergence

au,v =
1

2

∑
c

Pu,v(c) log2

Pu,v(c)

P̃u,v(c)
+

1

2

∑
c

P̃u,v(c) log2

P̃u,v(c)

Pu,v(c)
(3)

The graphs in Fig. 1 reports the PA values au,v for different
Nc. It is possible to notice that the values au,v increase as the
number of compression increases.

Experimental results showed that this property is verified for
low-frequencies coefficients; as a matter of fact, processing age
computation was limited to a subset U of NU spatial frequen-
cies corresponding to the first 9 AC coefficients (following a
zig-zag scan).

Aging metric based on motion vector statistics
A similar analysis can be performed on the statistics of

motion vectors (MVs). At first, each frame is partitioned into
4 × 4 blocks and a displacement vector v = [vx, vy] is
assigned to each block from motion vector values coded in the
coded stream. Whenever motion vectors are referred to larger
blocks, displacement vectors are obtained by replicating the
corresponding MV. Then, for every MV of the frame, motion
vector difference dMV is computed as follows:

dMV = [|dx|, |dy|] =

[∣∣∣∣vt − vAt + vBt
2

∣∣∣∣]
t=x,y

(4)

where vA, vB are the displacement vectors related to the left
and upper 4× 4 blocks.

The statistics of |dx|, |dy| can be well-characterized by
a second-order description defined by the averages mx =
E[|dx|], my = E[|dy|] and the corresponding variances
σx = E[|dx| −mx], σy = E[|dy| −my]. As a matter of fact,
it is possible to define two motion vector based aging metrics
as

aavg =
mx +my

2
, avar =

σx + σy
2

. (5)

PA-based video phylogeny tree estimation. Given the
previously-described metrics, it is possible to generate for the
i-th video sequence an age vector

ai = [ai,k] =
[
[au,v](u,v)∈U , aavg, avar

]
(6)

that groups the different metrics.
For every pair of nodes/videos Si, Sj in the dissimilarity

graph, it is possible to check the hypotheses
H1 = {Si is younger than video Sj} and H2 = ¬H1 for
every component ai,k. More precisely, if ai,k − aj,k < γ,
the hypothesis H1 is verified by the k-th aging metric; if
ai,k−aj,k > γ, H2 is considered valid; otherwise the situation
is doubtful and nothing is done. The threshold γ can be chosen
upon training depending on how much we trust PA for the
considered video tree. Composing the outcomes for all the
ages via a majority voting strategy, it is possible to determine
which hypothesis between H1 and H2 is more likely. In case
H1 obtains the majority of votes, the link Sj → Si is removed
from the graph; in case H2 wins, link Si → Sj is erased;
otherwise, nothing is removed.

Then, the underlying minimum spanning tree (MST) can
be estimated from the resulting dissimilarity graph using a
standard optimum branching strategy (like in [13]).

Note that, in case a link is removed, dissimilarity computa-
tion for that link is skipped reducing the overall computational
complexity. Moreover, whenever the noise level affecting the
dissimilarity is high, final accuracy can improve as well. These
advantages will be highlighted in the following section.

IV. EXPERIMENTAL RESULTS

In this section we describe the performed experimental
campaign and the achieved results in order to validate the
proposed algorithm.



TABLE I
EMPLOYED OPERATIONS, CODECS, QP VALUES AND GOP SIZES.

Operation Parameters
Resize New size in [90%, 110%]
Crop New size in [90%, 98%]
Brightness Luminance increased or decreased up to 10%
Contrast Luminance mapped in ranges {10%, 80%} or {20%, 90%}
MPEG2 QP ∈ [2, 10] and GOP ∈ [15, 30]
MPEG4 QP ∈ [2, 10] and GOP ∈ [15, 30]
H264 QP ∈ [5, 25] and GOP ∈ [15, 30]

TABLE II
BREAKDOWN OF THE VIDEO PHYLOGENY TREE DATASETS (10 NODES).

Dataset N. Trees Topology Operations Time Clip
DMPEG2 30 Chain MPEG2 No
DMPEG4 30 Chain MPEG4 No
DH264 30 Chain H264 No
Dcod 30 Chain Random Codec No
Dgeom 30 Chain Crop or Resize + Random Codec No
Dluma 30 Chain Brightness or Contrast + Random Codec No
Dtree 100 Random Random Operation + Random Coding Yes

Datasets. To test the proposed method under diverse working
conditions, we built different datasets for a total number of
2.800 near-duplicate videos. As original videos, we selected
15 well-known sequences at CIF resolution (352x288) of
approximately 300 frames each, namely: city, crew, news,
foreman, hall, akiyo, coastguard, container, flower, mobile,
mother, paris, salesman, soccer, and table1. Near-duplicates
have been generated applying to a video one editing operation
and a coding step. Optionally, temporal clipping was also
applied by removing 10% of frames from the head or the tail of
a video. The breakdown of editing operations and parameters
is reported in Table I.

Considering these transformations, we generated different
realizations of video phylogeny trees of 10 nodes each, ran-
domly selecting a root among the 15 original videos and
mixing different operations with different tree topologies.
Table II reports the list of all generated datasets, reporting the
number of realizations, the used operations, and considered
topology (i.e., random or chain). Datasets DMPEG2, DMPEG4,
DH264 and Dcod are composed by chains (i.e., each video only
generates one near-duplicate sequence) of only coded videos,
using MPEG2, MPEG4, H264 and mixing them, respectively.
Conversely, Dgeom and Dluma are composed by chains of videos
to which only one operation (geometrical or luminance-based)
and one coding step were applied. Finally, Dtree contains
randomly shaped trees of videos to which any operation and
coding scheme has been randomly applied, in addition to
possible temporal clipping.

Methodology. We measure the performance of the proposed
algorithm according to different indicators.

In order to evaluate how many video pair comparisons we
can successfully avoid thanks to the use of aging metrics,
we compute the Parent-Child Link Loss. This is the
percentage of parent-child relationships that are mistakenly
removed and not considered for dissimilarity computation.
Clearly, discarding parent-child edges from the dissimilarity

1Available at https://media.xiph.org/video/derf/
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Fig. 2. Parent-child link loss using different coefficients separately or their
average. Results are averaged on different datasets. Majority voting (thick
blue) provides better performance than any single PA (dotted blue). All
solutions strongly deviates from random guess (dashed black).

matrix hinder the reconstruction of the VPT. Conversely,
as long as we avoid comparing videos not in parent-child
relationship, VPT reconstruction is not negatively affected.
Therefore, the Parent-Child Link Loss measures how
reliable is the proposed method.

To evaluate the final effect on VPT reconstruction, we
make use of the standard graph-matching metrics used in
other phylogeny works [6], [11], namely: Root, which is
the percentage of correctly reconstructed tree roots (i.e., the
originating node); Edges, which is the percentage of cor-
rectly reconstructed directional edges; Leaves, which is the
percentage of correctly reconstructed leaves, i.e., the furthest
nodes in a tree; Ancestry, which measures the percentage
of correctly identified ancestral relationships among videos.
All these metrics assume values in [0, 1], where 0 is the worst
result and 1 means perfect reconstruction.

Results. Our first experiments aims at validating the increased
robustness given by voting on processing ages computed
from different DCT coefficients and motion vectors, rather
than simply using single PAs. To this purpose, we computed
processing ages for all videos in DMPEG2, DMPEG4, DH264,
Dcod, Dluma, Dgeom, using either one of the first nine DCT
coefficients read in zig-zag mode separately, motion vectors
statistics, or voting among all of them. Fig. 2 shows the
average Parent-Child Link Loss obtained for each
coefficient separately (dotted blue lines) and using voting
(thick blue line) while increasing the percentage of removed
edges (i.e., by increasing and decreasing the processing age
confidence threshold γ). It is possible to notice that each curve
based on processing age (blue lines) strongly deviates from the
one obtained by removing edges randomly (dashed black line).
Moreover, voting always grants a smaller Parent-Child
Link Loss for each given percentage of removed edges,
thus making it the best choice for our algorithm. As a matter
of fact, the plot shows that it is possible to avoid almost
15% video pair dissimilarity computations (i.e., save 15% of
computational time), with almost lossless results. By reducing
the computational complexity by 25%, the link loss is about
5% only, still making the algorithm pretty accurate.

In order to provide a better insight on processing age
reliability when different transformations are involved, Fig. 3
reports Parent-Child Link Loss results for each tested
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dataset Dtree. Baseline is dashed.

dataset separately. This test highlights that luminance based
transformations are strongly characterized by processing age.
Conversely, randomly switching codecs or applying geometric
transformations make processing age less reliable, due to
changes of coding block sizes.

Finally, we tested the effect of processing age on VPT
reconstruction. To this purpose we applied the proposed VPT
reconstruction algorithm obtained by integrating processing
age results within the pipeline proposed in [11] (not con-
sidering the temporal constraint of [11]). Results in terms of
Root, Edges, Leaves and Ancestry while increasing the
percentage of removed edges (i.e., changing γ) are reported in
Fig. 4. In this case, avoiding edge removal (i.e., the leftmost
point of each curves) coincides with using the baseline [11].
It is therefore interesting to notice that, using processing ages,
it is possible to decrease the computational complexity of
the baseline solution of about 10% with no significant VPT
reconstruction accuracy loss. Even more interesting, the use of
processing age seems to “denoise” dissimilarity matrix making
the root more easily identifiable during VPT reconstruction.
For this reason, Root metric assumes values even higher
than those obtained by the baseline [11], even considering that
computational complexity is decreased by more than 30%.

V. CONCLUSIONS

In this paper we proposed a processing age metric that en-
ables reducing VPT reconstruction computational complexity,
still granting accurate results. The idea is that it is possible to
approximately correlate deviations in DCT and motion vector
statistics and the amount of processing operations applied
to videos. Given two near-duplicate videos, this enables to
understand which one may have generated the other one, thus
providing a rough directionality indication that is useful to
avoid meaningless dissimilarity computations.

Even though a thorough theoretical validation of the pro-
posed idea is left for future work, results obtained on a
dataset of 2.800 video sequences preliminary validate the
methodology, especially when some processing operations are
considered. Therefore we consider the proposed algorithm as
a possible solution towards VPT reconstruction computational
complexity reduction.
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